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Introduction to Digital Control 

 

1.1 Digital Control System 

A digital control system model can be viewed from different perspectives 

including control algorithm, computer program, conversion between 

analog and digital domains, system performance etc. One of the most 

important aspects is the sampling process level. 

In a digital control system, the control algorithm is implemented in a 

digital computer. The error signal is discretized and fed to the computer 

by using an A/D (analog to digital) converter. The controller output is 

again a discrete signal which is applied to the plant after using a D/A 

(digital to analog) converter. General block diagram of a digital control 

system is shown in Figure 1. 

e(t) is sampled at intervals of T. In the context of control and 

communication, sampling is a process by which a continuous time signal 

is converted into a sequence of numbers at discrete time intervals. It is a 

fundamental property of digital control systems because of the discrete 

nature of operation of digital computer. Figure 2 shows the structure and 

operation of a finite pulse width sampler, where (a) represents the basic 

block diagram and (b) illustrates the function of the same. T is the 

sampling period and p is the sample duration. 

Automatic control is the science that develops techniques to steer, guide, 

control dynamic systems. These systems are built by humans and must 

perform a specific task. Examples of such dynamic systems are found in 

biology, physics, robotics, finance, etc.  

Digital Control means that the control laws are implemented in a digital 

device, such as a microcontroller or a microprocessor. Such devices 

are light, fast and economical.  
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1.2Why digital control? 

Digital control offers distinct advantages over analog control that explain 
its popularity. Here are some of its many advantages: 
 
Accuracy. Digital signals are represented in terms of zeros and ones with 
typically 12 bits or more to represent a single number. This involves a 
very small error as compared to analog signals, where noise and power 
supply drift are always present. 
 
Implementation errors. Digital processing of control signals involves 
addition and multiplication by stored numerical values. The errors that 
result from digital representation and arithmetic are negligible. By 
contrast, the processing of analog signals is performed using components 
such as resistors and capacitors with actual values that vary significantly 
from the nominal design values. 
 
Flexibility. An analog controller is difficult to modify or redesign once 
implemented in hardware. A digital controller is implemented in 
firmware or software and its modification is possible without a complete 
replacement of the original controller. Furthermore, the structure of the 

1
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digital controller need not follow one of the simple forms that are 
typically used in analog control. More complex controller structures 
involve a few extra arithmetic operations and are easily realizable. 
 
Speed. The speed of computer hardware has increased exponentially 
since the 1980s. This increase in processing speed has made it possible to 
sample and process control signals at very high speeds. Because the 
interval between samples, the sampling period, can be made very small, 
digital controllers achieve performance that is essentially the same as that 
based on continuous monitoring of the controlled variable. 
 
Cost. Although the prices of most goods and services have steadily 
increased, the cost of digital circuitry continues to decrease. Advances in 
very large-scale integration (VLSI) technology have made it possible to 
manufacture better, faster, and more reliable integrated circuits and to 
offer them to the consumer at a lower price. This has made the use of 
digital controllers more economical even for small, low-cost applications. 
 
 
1.3 Examples of digital control systems 
 
In this section, we briefly discuss examples of control systems where 
digital implementation is now the norm.  
 
1.3.1 Closed-loop drug delivery system 
 
Several chronic diseases require the regulation of the patient’s blood 
levels of a specific drug or hormone. For example, some diseases involve 
the failure of the body’s natural closed-loop control of blood levels of 
nutrients. Most prominent among these is the disease diabetes, where the 
production of the hormone insulin that controls blood glucose levels is 
impaired. To design a closed-loop drug delivery system, a sensor is 
utilized to measure the levels of the regulated drug or nutrient in the 
blood. This measurement is converted to digital form and fed to the 
control computer, which drives a pump that injects the drug into the 
patient’s blood. A block diagram of the drug delivery system is shown in 
Figure 3. 
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Figure.3 Block diagram of a drug delivery system. 
 
 

 على. محددة هرمون أو للدواء المريض دم مستويات تنظيم المزمنة الأمراض من العديد تتطلب
 مستويات من الطبيعية الجسم سيطرة مغلقة حلقة فشل على تنطوي الأمراض بعض المثال، سبيل
 إنتاج قيمته انخفضت حيث السكري، داء مرض هو هؤلاء أبرز ومن. المغذية المواد من الدم

 حلقة الدواء توصيل نظام تصميم. الدم في السكر مستويات في يتحكم الذي الأنسولين هرمون
 في المغذيات أو للتنظيم الخاضعة المخدرات مستويات لقياس استشعار جهاز ويستخدم مغلقة،

 أن مضخة يحرك الذي الكمبيوتر، لمراقبة وتغذية رقمي شكل إلى القياس هذا تحويل يتم. الدم
 .3 الشكل في المخدرات تسليم للنظام بياني رسم ويرد. المريض دم في الدواء يحقن

 
 
1.3.2 Computer control of an aircraft turbojet engine 
 
To achieve the high performance required for today’s aircraft, turbojet 
engines employ sophisticated computer control strategies. A simplified 
block diagram for turbojet computer control is shown in Figure.4. The 
control requires feedback of the engine state (speed, temperature, and 
pressure), measurements of the aircraft state (speed and direction), and 
pilot command. 
 

 متطورة استراتيجيات توظف إرتكاس محركات اليوم، للطائرات المطلوب العالي الأداء لتحقيق
في  نفاث الكمبيوتر جهاز على للسيطرة مبسط بياني رسم ويرد. الكمبيوتر جهاز على السيطرة
 ،)والضغط الحرارة ودرجة سرعة (المحرك حالة من الفعل ردود مراقبة تتطلب. 3الشكل 

. التجريبية والقيادة ،)واتجاه سرعة (الطائرات حالة وقياسات
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Figure .4-Turbojet engine control system. (a) F-22 military fighter 
aircraft. (b) Block diagram of an engine control system. 
 
1.3.3 Control of a robotic manipulator 
 
Robotic manipulators are capable of performing repetitive tasks at speeds 
and accuracies that far exceed those of human operators. They are now 
widely used in manufacturing processes such as spot welding and 
painting. To perform their tasks accurately and reliably, manipulator hand 
(or end-effector) positions and velocities are controlled digitally . 
Each motion or degree of freedom (D.O.F.) of the manipulator is 
positioned using a separate position control system. All the motions are 
coordinated by a supervisory computer to achieve the desired speed and 
positioning of the end-effector. The computer also provides an interface 
between the robot and the operator that allows programming the lower-
level controllers and directing their actions. A simple robotic manipulator 
is shown in Figure 1.5a, and a block diagram of its digital control system 
is shown in Figure 1.54b. 
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Figure 5 Robotic manipulator control system. (a) 3-D.O.F. robotic 
manipulator. (b) Block diagram of a manipulator control system. 
 

 التي تلك بكثير تتجاوز التي ودقتها بسرعة المتكررة المهام أداء على قادرة الروبوتية المتلاعبين
. والرسم البقعة لحام مثل التصنيع عمليات في واسع نطاق على الآن تستخدم. الإنسان مشغلي من

 وسرعات مواقع) المستجيب نهاية أو (اليد مناور التحكم يتم موثوق، وبشكل بدقة مهامهم لأداء
 السيطرة مستقل نظام باستخدام مناور من.) D.O.F (حرية درجة أو حركة كل وضع يتم.رقميا
 السرعة لتحقيق الإشرافي كمبيوتر كتبها التي الاقتراحات جميع تنسيق يتم. الموقف على

 والمشغل الروبوت بين واجهة الكمبيوتر يوفر كما. المستجيب نهاية من المواقع وتحديد المطلوبة
 بسيط الروبوتية مناور ويرد. أعمالهم وتوجيه الأدنى المستوى التحكم وحدات برمجة يسمح الذي

 b1.5   الشكل في الرقمي التحكم نظام من بياني رسم ويظهر ،a 1.5 الشكل  في
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Z-transform 
 
The simple substitution  

                         Tsez   

Converts the Laplace transform to the z transform. Making this substitution into the Laplace 
transform of the sampled signal   

   )()]([)( ** zFtfZsF   TsTs eTfeTff 2)2()()0(  
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where F(z) designates the z transform of )(* tf . Because only values of the signal at the 
sampling instants are considered, the z transform of )(tf  is the same as that of )(* tf .   
 
Z Transform by Definition:   
 

In the following analysis, the z transform is derived using Eq.(1), where )(nTf is the 

function for which the z transform will be obtained.                              
 
Impulse function: 
 
The discrete unit impulse function is defined as  

       


 


otherwise
n

nT
0

01
)(  

The z transform of the delta function )(nT can be given as 
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Discrete unit step function:  
 
The discrete step function is defined as  
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Multiplying both sides of this last equation by z results in  
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Discrete ramp function: 
 
The discrete ramp function is defined as  
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Discrete cosine function: 
 
Let  
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The first step is the choice of the alternative representation of cosine function using Euler 
identity: 
     
 
Then, 
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Discrete exponential decay function: 
 
Let  
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In Table (1) is given a partial listing of Laplace transforms and corresponding z 

transforms for commonly encountered functions. 

 
Z Transform Using Partial Fraction: 

When the Laplace transform of a function is known, the corresponding z transform may 
be obtained by the partial fraction  
Ex: Determine the z transform for the function whose Laplace transform is  
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From Table (1), the z transform corresponding to s1  is 1zz  and that corresponding to 
11 s  is  Tezz  . Thus, 



 4

                                 
))(1(

)1(
1

)(
T

T

T ezz
ez

ez
z

z
zzF





 








   

 
Table (1) z transforms 

Time function 
 

Laplace Transform 
 

Discrete Time 
function 

Z transform 
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Ex: Determine the z transform of )cos( t . 

       It is known that the Laplace transform is )( 22 ss . Performing a partial-fraction 

expansion gives  
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 jsjss
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The corresponding z transform is  
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Z Transform Using Residue Method: 
      This is a powerful technique for obtaining z transforms. The z transform of )(* tf may be 

expressed in the form  

               )()()]([)( * sFofpolesat
ez
zsFofresiduestfZzF sT


  

      When the denominator of )(sF  contains a linear factor of the form rs  such that 

)(sF has a first-order pole at rs  , the corresponding residue R is  
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When )(sF contains a repeated pole of order q , the residue is  

                       
 
       As is illustrated by the following examples, the determination of residues is similar to 
evaluating the constants in a partial-fraction expansion. 
Ex: Determine the z transform of a unit step function.  

For ssF 1)(  , there is but one pole at s=0. The corresponding residue is  
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Ex: Determine the z transform of ate .  

 For this function, )(1)( assF  , which has but one pole at s=-a. Thus, 
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Ex: Determine the z transform of for the function whose Laplace transform is 
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 The poles of )(sF occur at s=0 and s=-1. The residue due to the pole at s=0 is  
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The residue due to the pole at s=-1 is  
                               
 
Adding these two residues results in 
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Ex: Determine the z transform of )cos( t . 

      The Laplace transform is  
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The poles are at js   and js  . Thus, 

              
              
 
 
 
Adding these verify the previous result 
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Ex: Determine the z transform corresponding to the function ttf )( . 

The Laplace transform is  
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This has a second-order pole at s=0. Thus, the residue becomes 
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Theorems 
 

  Initial value theorem: 

Suppose )(nTf  has z transform )(zF  and )(lim zF
z 

 exist, then the initial value )0(f  

of )(nTf  is given by  
 

                  
 
 
Proof: Note that 
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letting z , the theorem is verified.  
                                                                          
 

  Final value theorem : 

 
Suppose )(nTf  has z transform F(z). Then, 
 

                
 

 
Proof: Consider the following sums nS and 1nS   
             
                
                
 
Dividing the second series by z and then subtracting the second from the first gives 
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Taking the limit as z approaches 1 gives  

         
 

When n is very large, )(1 zFSS nn  . Thus, the final-value theorem given by Eq.(1) is 

verified.   
 
Ex: For a discrete data system with transfer function  
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find the final value of the response sequence )(nTy . The response in the z domain is  
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  Shifting property: 
 
Left shifting:  When )(nTf  is delayed k sampling instants, the function )( kTnTf  shown in 

Fig.(1-b) results. The value of )( kTnTf   when kn   is )0(f , the value when 1 kn  is 

)(Tf , etc. The z transform of )( kTnTf   is 
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Right shifting:  When the function )(nTf  of Fig.(1-a) is shifted one sampling period to the left, 

the function )( TnTf  shown in Fig.(1-c) results. The value of  )( TnTf   when 0n  is 

)(Tf , the value when 1n  is )2( Tf , etc. The z transform of )( TnTf  is  
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Multiplying through both sides by 1z  and adding )0(f  to both sides gives  
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Similarly, it follows that  
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In general,  

                
 
 
 
 

  Multiplication by (nT): 
 

The z transform of )(nTfnT  is 

                    
 

Proof: To verify this theorem, note that 
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The right side is the z transform of  )(nTfa n . 
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Figure (1) Translation of a discrete function )(nTf  
 
A listing of z transform theorems and properties is given in Table(2) 

 
Table (2) Properties of the z transforms 
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Inverse z transform 
 

Inspection of Table (1) shows that z transform tend to be more complicated than 
corresponding Laplace transforms. Fortunately, there are some relatively simple techniques for 
obtaining inverse z transforms.  

 

  Partial-Fraction Method: 

In this method, obtaining )(nTx  is based on the partial fraction expansion of zzX )(  

and the identification of each of the terms by the use of a table of z transforms. Note that the 

reason we expansion we zzX )(  into partial fractions is that the functions of z appearing in 

tables of z transforms usually have the factor z in their numerators.  
Consider )(zX  given by  
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  Factor the denominator polynomial of )(zX  and find the poles. 
  Expand zzX )(  into partial fractions so that each of the terms is easily recognizable in a 

table of z transforms. 
 
 
Ex: Find )(nTx  if )(zX  is given by 
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we first expand zzX )(  into partial fractions as follows  
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From table (1), one can obtain 
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Performing a partial fraction expansion of zzF )(  gives 
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From Table (1), the corresponding discrete time function 
 

       ,2,1,01)(   nenTf nT  
  Residue Method: 

       The third method of finding the inverse z transform is to use the inversion integral. Note 
that  
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By multiplying both sides of this last equation by 1nz , we obtain  
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If  js   is substituted in this last equation, we obtain Tjez )(   , or  
         Tez || ,      z T      
  
If the poles of L[x] lie to the left of the line 1s  in the s plane, the poles of Z [x] will lie inside 

the circle with its center at the origin and radius equal to Te 1  in the z plane. 

       Suppose we integrate both sides of Eq.( ) along this circle in the counterclockwise 
direction: 

                dzzTfdzzTfdzzfdzzzF nnn 1211 )()()0()(  

Applying Cauchy's theorem, we see that all terms on the right-hand side of this last equation 
are zero except one term  
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from which we obtain the inversion integral for the z transform 
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which is equivalent to stating that  
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In particular, the residue due to a first order pole at rz   is  
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Similarly, the residue due to a repeated pole of order q is  

           ])()[(lim
)!1(

1 1
1

1










 nq

q

q

rz
zzFrz

dz
d

q
R  

Ex: Using residue method, find )(nTf  if )(zF  is given by 

            
))(1(

)1()(
T

T

ezz
zezF







  

Application of the residue method to determine the inverse of the above equation 
              
              
 
 

Adding these residues gives  

                 ,3,2,1,01)(   nenTf nT  

Ex: Determine the inverse z transform for the function 

                
2)1(

)(



z

TzzF  

This function has a second-order pole at 1z ; thus 
                 
 
For nTnTf )( , the corresponding time function is ttf )(  .       
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1-Structure Of  Control Systems 
The first approach for introducing a digital computer or a microprocessor 
into a control loop is indicated in Figure 1.The cascade: ADC -computer-
DAC should behave in the same way as an analog controller (PID type), 
which implies the use of a high sampling frequency but the algorithm 
implemented on the computer is very simple (we just do not make use of 
the potentialities of the digital computer!). 

 
 
A second and much more interesting approach for the introduction of a 
digital computer or microprocessor in a control loop is illustrated in Fig. 2 
 

 
This discretized system is characterized by a “discrete-time model”, which 
describes the relation between the sequence of numbers {u(k)} and the 
sequence of numbers {y(k)}. This model is related to the continuous-time 
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model of the plant. This approach offers several advantages. Among these 
advantages here we recall the following: 

1. The sampling frequency is chosen in accordance with the 
“bandwidth” of the continuous-time system (it will be much lower 
than for the first approach). 

2. Possibility of a direct design of the control algorithms tailored to the 
discretized plant models. 

3. Efficient use of the computer since the increase of the sampling 
period permits the computation power to be used in order to 
implement algorithms which are more preferment but more complex 
than a PID controller, and which require a longer computation time.  
  

2-ADC, the DAC and the ZOH 
As indicated in Figure 3: 
The Uanalog-to-digital converterU (ADC) implements two functions: 
1.Analog signal sampling: this operation consists in the replacement of the 
continuous signal with a sequence of values equally spaced in the time 
domain (the temporal distance between two values is the sampling period), 
as these values correspond to the continuous signal amplitude at sampling 
instants. 
2.Quantization: this is the operation by means of which the amplitude of a 
signal is represented with a discrete set of different values (quantized 
values of the signal), generally coded with a binary sequence. 
The Udigital-analog converterU (DAC) converts at the sampling instants a 
discrete signal, digitally coded, in a continuous signal. The zero-order hold 
(ZOH) keeps constant this continuous signal between two sampling instants 
(sampling period), in order to provide a continuous-time signal. 
 

 
Figure 3. Operation of the ADC, DAC and the zero-order hold (ZOH) 
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3- Discretization and Overview of Sampled-data Systems: 
 
It can be noted that, for a sampling frequency 08 ff s = , the continuous nature 
of the analog signal is unaltered in the sampled signal. 
 

 
For the sampling frequency 02 ff s = , if the sampling is carried out at instants 
2π fR0R t other than multiples of π, a periodic sampled signal is still obtained. 
However if the sampling is carried out at the instants where  
2π fR0R t = nπ, the corresponding sampled sequence is identically zero. 
In order to reconstruct a continuous signal from the sampled sequence, the 
sampling frequency must verify the condition (Nyquist's theorem): 
fRsR > 2 fRmaxR   --------1 
Figure 5 illustrate the spectrum of the sampled signal. The upper part 
represents the case that the sampling frequency (fRsR) is greater than twice the 
maximum frequency of the continuous signal fRmaxR. The spectrum of the 
sampled signal, if max2 ff s 〈  , is represented in the lower part of Figure .5. 
The phenomenon of overlapping (aliasing) can be observed. This 
corresponds to the appearance of distortions. The frequency (1/2)fRsR, which 
defines the maximum frequency (fRmaxR) admitted for a sampling with no 
distortions, is known as “Nyquist frequency” (or Shannon frequency). 
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Figure5. Spectrum of a sampled signal 

 
For a given sampling frequency, in order to avoid the folding (aliasing) of 
the spectrum and thus of the distortions, the analog signals must be filtered 
prior to sampling to ensure that: 
fRsR > 2 fRmax 
The filters used are known as “anti-aliasing filters”. A good anti-aliasing 
filter must have a minimum of two cascaded second-order cells (fRmaxR << 
(1/2) fRsR). An example of an anti-aliasing filter of this type is given in Figure 
2.6. These filters must introduce a large attenuation at frequencies higher 
than (1/2) fs, but their bandwidth must be higher than the required 
bandwidth of the closed loop system (generally higher than open loop 
system bandwidth). 
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1- The ZOH Equivalent of the plant transfer function: 
The ZOH transfer function 

 
)()()( sZOH Ttututg −−=    tacking the Laplace transform; 
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UExample-1: 
 
Find the ZOH equivalent for the following: 
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2- Pulse transfer function in Cascade: 
 Consider the two different cases below: 
 

 
 For Ucase (a) U  

)()()( *
2 sAsGsC =   

Thus after sampling    )()()( 2 zAzGzC =  

Also    )()()( *
1 sEsGsA =  

So after sampling    )()()( 1 zEzGzA =  

Therefore,     )()()()( 21 zEzGzGzC =  
i.e the total transfer function is the product of the pulse transfer functions. 
For Ucase (b): 

)()()()( *
21 sEsGsGsC =  

Thus after sampling    )()()( 21 zEzGGzC =  

Where )}()({)( 2121 sGsGZzGG =  

Remember that )}()()( 2121 zGzGzGG ≠  
 
Therefore, the situation where there are ADC, digital controller, and DAC as follows: 

 
In this case  
 

)()()()( zEzDzGzC ZOH=  
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3- Pulse transfer function in closed loop: 
These two discrete-time systems are equivalent. They have the following closed-loop 
transfer function as: 
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UExample-2: 
Find the closed-loop transfer function of the following system: 
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UHome Work: 
Find the sequences c (t) if R (z) is a unit step (Assume K=1). Plot c (t).  
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)4( ss
K )(sC)(sR

Time Response 
 
              In this section the time response of the sampled data system of Fig.(1) 

to unit step input will be determined. Three methods will be explained: long-

division, difference equations and partial fraction expansion.   

 
 
 
 
 

Figure (1) Sampled data system 
 
The corresponding z transform of )(sG  
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  Long division method: 

 

For unit step input, 
1

)(



z

zzR . Then 
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Using the long-division method to determine the inverse gives         
 





 321

223
522.0349.0158.0

158.0368.058.121.2
zzz

zzzz  
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)(nTc

nT

1

0 T T2 T3 T4 T5 T6

Because  
 
           
 
 
then  
          c(0)=0,     c(T)=0.158,     c(2T)=0.349,    and     c(3T)=0.522 
 
 A plot of the response )(nTc  at the sampling instants is shown in 

Fig.(2).The long division method becomes quite cumbersome for computing 

)(nTc  for larger values of n. A more convenient procedure results from 

expressing the solution in the form of a difference equation.     

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (2) Sampled data system 
 

  Difference Equations:  
 
  To determine the inverse z transform by this method, one can write the 

equation for )(zC  in the form  

                   )(
]368.021.1[

158.0)( 2 zR
zz

zzC


  

Thus               
                   )(158.0)(368.0)(21.1)( 121 zRzzCzzCzzC    
 
Application of right shifting property   

                  )()([ zFzkTnTfZ n  

Then the preceding expression yields directly the difference equation  

                 )(158.0)2(368.0)(21.1)( TnTrTnTcTnTcnTc   
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This difference equation gives the value )(nTc  at the nthsampling instants in 

terms of values at the preceding sampling instants. Application of this result to 

obtain the values at the sampling instants gives 

         0)0( c , 
         158.0)0(158.0)(  rTc  
        349.0)(158.0)(21.1)2(  TrTcTc  
        522.0)2(158.0)(368.0)2(21.1)3(  TrTcTcTc  
 
Such recurrence relationships lend themselves very well to solution by a digital 

computer.  

  Partial-fraction expansion:  

The response )(nTc  at the sampling instants may be also be obtained by 

performing a partial fraction expansion and then inverting. Thus 
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The partial-fraction expansion constants are 1A , 24.01 B , and 0.12 B . 

Thus, )(zC  becomes 
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By noting that  
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The inverse is found to be  

                  

                                        

With this method, the value )(nTc  at any sampling instants may be calculated 

directly without the need to compute the value at all the preceding instants.   
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Mapping of s-plane to z-plane 
It is possible to map fro the s plane to the z plane using the relationship  

sTez   

Now  

              bjas   

Therefore, 
jTbjaTTjbasT ereeeez   )(                                                    (1) 

where aTezr  and bT .  

Since 
T

f ss



22  , then  22







 T

T
bT , where s  is the 

switching frequency in rad/sec and sf  is the switching frequency in Hz. 
Equation (1) results in a polar diagram in the z plane as shown in Fig.(1).  

 
 
 
 
 
 

 
 

Figure (1) Mapping from the s to the z plane 

 

Two horizontal lines of constant of constant b are shown in the s-plane 

of Fig.(2.a). The corresponding paths in the z-plane are radial straight lines.  
TbjaTTjbasT eeeez   )(   

The angle of inclination of these radial lines is bT .  

 Two vertical lines of constant a (i.e. constant settling time) are shown in 

Fig.(2.b). The corresponding paths in the z-plane are circles of radius aTe . For 

negative values of a  the circles are inside the unit circle of the z-plane. For 

positive values of a  the circles lie outside the unit circle of the z-plane. Thus, 

one can conclude that the left-hand side (stable) of the s plane corresponds to a 

region within a circle of unity radius (the unit circle) in the z plane.   
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Figure (2) Corresponding paths in the s plane and z plane 
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Radial lines of constant damping ratio  cos  are shown in Fig.(1.c). 

In polar coordinates, 21   nn jjbas . Thus, 

                  
21   TjT nn eez  

The corresponding paths in the z-plane are logarithmic spirals. For  090   

the spirals decay within the unit circle, and for 090 the spirals grow outside 

the unit circle.  

 Consider now how a given point, jerz  , in the z plane maps back 

into the s plane. For  

                  TbjaTsj eeerz )(     

Equating real and imaginary parts shows that  

                 Tar )ln(   

                 bT  

This verifies the fact that a circle of constant r in the z plane is a vertical line of 

constant a in the s plane. Similarly, a ray at angle   in the z plane is a 

horizontal line of constant b in the s plane.  

 

Ex: Find the corresponding locations of points in the s-plane into z plane 

 

 

 

 

 

 

 

 

 

 

 
 

Figure (3) Corresponding pole locations between the s plane and the z plane 
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Since                                                       aTer   and   

Points 3, 2, 1 and 4:                    

              0,, 4321 bandbbb       bT           04,3,2,1    

            01 a     10
1  Ter ,        

                                           and             )()( 32
32

TaTa erer  ,  
            04 a   
 

Upper points 10 and 9:   

     
T

Tbandb s 


2
2

2109        Tb99   and    Tb1010         

                            and 109 aa    
 

Upper points 10 and 9:   

 
T

Tbandb s 


2
2

2109      Tb99   and    Tb1010  

                             and 910 aa    
 

Therefore, the lower and upper points 9 and 10 coincide on each other. The 

same argument may be performed with the other points. This results in the 

corresponding points at z plane.  

Ex: The time-response characteristics of the z-plane pole locations are 

illustrated in Fig.(4). Since sTez  , the response characteristics are a function 

of both s and T.  

The poles in the s-plane occur at jbas  . These poles result in a 

system transient-response term of the form )(cos1  tek ta . When 

sampling occurs, these s-plane poles result in z-plane poles at  

jTbjTasT eree
jbas

ez  


  

The roots of the characteristic equation that appear at jerz   result in 

a transient response term of the form 
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Figure (4) Transient response characteristics of the z plane pole locations.  

Lines of Constant Damping Ratio  : 

In the s-domain, the lines of constants damping ratio   are rays 

originating at the origin while the curves representing constant undamped 

natural frequency n  are quarter circles, as shown in Fig.(5). 

Figure (6) shows the real and imaginary parts of the complex variables s 

expressed in terms of  and n . That is  

21   nn js  

The equivalent point in the z-plane is found by applying the transformation 
sTez  to obtain  

                 
21   TjT nn eez                                                                   (2)    

 

 

 

 

 

 
     
  Figure (5) Lines of constant n  and curves               Figure (6) Components of line   
                       of constant                                                             of constant n   
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         If in Eq.(2) we fix  and vary n  we will plot a log spiral curve, since the 

magnitude of z will vary exponentially with n , while the phase varies 

linearly. As shown in Fig.(6), we only need consider the portion of the ray of 

constant damping ratio between the origin and the point where the ray 

intersects the edge of the primary strip.  

For 0n a ray of constant damping ratio starts at the point  

10  ez  

The other end of the array in the s plane touches the edge of the primary strip. 

At the point of intersection  

               
Tn


  21   

or, equivalently, 

                 
21 





T

n  

Hence  

                    

 

Thus z is a vector of length                                                                 

                   

 

and angle 0180 .  Note that the larger   the shorter the length of the vector.  

 The log spiral curves connecting the end points of the curves for 

9.0,,2.0,1.0   in increments of 0.1 are shown in Fig.(7).  
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Figure (7) curves of constant   

Curves of constant natural frequency n : 

To find the curves of constant n  we again use the transformation 

sTez  , but this time we fix n  and vary  . It is customary to let 

                   
T

k
n 10

                            10,,2,1,0 k  

Then  

             
                                                                                                                 (3) 
Eq.(3) can be used to plot the curves of constant n  by holding n constant 

and varying   between zero and one. When 0 , corresponding to 

10jks   

             10010 2 kjeez  
In this case z, is a vector of length one and angle 10k  rad. Thus, all the 

curves of constant n originate on the unit circle at the angles  

             .10,,3,2,1,18
10

180 0
0

 kkk  

At the other end of each these curves, 1 , and  

             10101110  kTTkjTTk eeez           .10,,3,2,1 k  
These points lie on the positive real axis in the z plane. The smaller k, the 

larger 10ke . The curves that connect these end points are shown in Fig.(8). 
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Figure (8)  curves of constant n  

We see that the curves show increasing distortion as k increases. For k=1, the 

curve is very close to a quarter circle centered at z=1. The curves for k=2 and 

k=3 still have the general shape of a quarter circle, but for k>3 they do not. 

 

Ex: Map the shaded area in Fig.(9) in the s-plane into corresponding poles in 

the z plane. In Fig.(8), the lines of constant n  are labeled 

              
TTTT
 ,,

10
3

,
5

,   

indicating the value of n  that corresponds to each curve. As noted, the curves 

end at the angles 

              

  

By combining the curves of constant   and constant n  we can locate points 

in the z plane with any desired combination of damping ratio and natural 

frequency.  

  
 
 
 
 
 
 
 
 
 

Figure (9)  Desired pole locations in s-plane 

 
  In Fig.(9), poles locations in the s plane with damping rations between 

0.6 and 0.9 and natural frequencies between T10 and T103 are in the shaded 

area. The corresponding poles in the z plane are shown in Fig.(10).  

Notes:  
  The curves of constant   do not depend on T 
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  The curves of constant n  depends on T, and then, on the sampling rate. 

For instance, for a sampling rate of 10 Hz, the poles in the shaded region 

will have natural frequencies between 0.5 and 1.5 Hz, or one tenth and three 

tenths of the maximum frequency that can be sampled without aliasing, 

namely, 5 Hz.  On the other hand, if the sampling rate is 100 Hz poles in 

this same region will have natural frequencies between 5 and 15 Hz.  

 

 

 
 
 
 
 
 
 
 
 
 
                                               
 

Figure (10)  Desired pole locations in z-plane 
 
The primary strip:  

Suppose we map the primary strip of the s plane into the z plane. We 

begin by mapping the points of a vertical line 

             jbas   

where 0a  is fixed. Under the mapping  Tsez  , a point on this line maps to  

              TbjaTTjba eeez   )(  

The term is Tae is a real number that can be thought of as a scaling 

factor for the unit phasor Tbje . If TbT   , and a  is fixed, with 

0a , then the mapping of this portion of the vertical line in the s plane to the 

z plane is a circle with radius 1 Tae  as shown in Fig.(11).  If  0a , the line 

segment maps to a circle with radius greater than one, as shown in the figure. It 

should be noted that  

                  TbT             
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The area confined between TbT    is called the primary strip. One 

can easily see from Fig.(11) that the width of the primary strip is T2 .  The 

other strips of the same width as that of primary strip are called the secondary 

strips.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure (11)  Mapping of the Primary strip into z-plane 
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Jury's Test 
 

Jury's test is a stability test which has some advantages over the 

Routh's test for continuous-data system. In general, given the polynomial in 

z, 

0....)( 01
2

2
1

1  
 azazazazazF n

n
n

n                                  (1) 

where 0a , 1a ,…, na  are real coefficients. Assuming that na is positive, or that 

it can be made positive by changing the signs of all coefficients, the 

following table is made: 

 

 

 

 

 

 

 

 

 

 

 

 

Note that the elements of the (2k+2)th row (k=0,1,2,...) consists of 

the coefficients of the (2k+1)th row are written in the reverse order. The 

elements in the table are defined as 
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The necessary and sufficient conditions for the polynomial F(z) to have no 

roots on and outside the unit circle in the z-plane are: 
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For a second-order system, n=2, Jury's tabulation contains only one row. 

Therefore, the requirements listed in Eq.(2) are reduced to  

                   F(1) > 0,      F(-1) <0    and     n0 aa   

As in the Routh-Hurwitz criterion which is used for stability testing of linear 

continuous-data, occasionally the first element of a row or a complete row 

of the tabulation may be zero before the tabulation is scheduled to terminate. 

These cases are referred as singular cases. In Jury's tabulation a singular 

case is signified by either having the first and the last elements of a row be 

zero, or having a complete row of zeros.  

 

The Singular Cases:   

 When some or all of the elements of a row in the Jury's tabulation are 

zero, the tabulation ends prematurely. This situation is referred to as the 

singular case. The singular case can be eliminated by expanding and 

contracting the unit circle infinitesimally, which is equivalent to moving the 

roots off the unit circle. The transformation for this purpose is  

                          zz )1(                                                                        (3) 

where   is a very small real number. When   is a positive number in 

Eq.(3), the radius of the unit circle is expanded to 1 , and when  is 

negative, the radius of the unit circle is reduced to 1 . This is equivalent 



 3

to moving the roots slightly. The difference between the number of roots 

found inside ( or outside) the unit circle when the unit circle is expanded or 

contracted by   is the number of roots on the circle.  

           The transformation in Eq.(3) is actually ver easy to apply, since  

                 nn zn )1()1(                                                                     (4) 

This means that the coefficient of nz  term is multiplied by )1( n . 

 

Example1:   

If the characteristic equation of a system is 

025.0zz)z(F 2   

The first two conditions of Jury's test in Eq.(2) lead to  

                          and   

Since n=2 is even, these results satisfy the F(1)>0 and F(-1)<0 requirements 

for stability. Next, we tabulate the coefficients of  F(z) according to Jury's 

test; we have 

 

 

  

 

Since 2n-3=1, Jury's tabulation consists of only one row. The result is 

                          

 

and thus the system is stable, and all roots are inside the unit circle. 

 

Example 2:   

Consider the equation 

               08.0z3z3.3z)z(F 23   

which has roots at z=-0.5, -0.8, and -2. 
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T T

From Jury's test, F(1)=8.1 and F(-1)=0.1. For odd n, since F(-1) is not 

negative, F(z) has at least one root outside the unit circle. 

 

Example 3:   

For the following characteristic equation  

0)K0204.05026.0()K025.048.1(zz2    

Find the range of K for stability. 

The first two conditions of Jury's test in Eq.(2) lead to 

F(1)=  

 

F(-1)=  

 

Since n=2 is even, these results satisfy the F(1)>0 and F(-1)<0 requirements 

for stability. Next, we tabulate the coefficients of F(z) according to Jury's 

test; we have 

 

 

 

 

Since 2n-3=1, Jury's tabulation consists of only one row. The result is  

0a   =  

 

Since K > 0, then the range of stability is                and for  

 

HW: For the following block diagrams, use Routh-Hurwitz criterion and 

Jury's test to find the range of K for stable system. (T=0.25 sec) 
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Root Locus in the z-plane 
 
 As with the continuous systems, the root locus of a discrete system is a plot of the 
locus of the roots of the characteristic equation 
                             0)(1  zGH  

in the z-plane as a function of the open-loop gain constant K. The closed-loop system will 
remain stable providing the loci remain within the unit circle.  

  

Root Locus Construction Rules: 

 These are similar to those given in continuous systems. 

  Starting points ( 0K ). The root loci start at the open-loop poles.  

  Termination points ( K ). The root loci terminate at the open-loop zeros when they 
exist, otherwise at  . 

  Number of distinct root loci (branches): This is equal to the order of the characteristic 
equations (or the number of poles of open loop transfer function). 

  Symmetry of root loci: The root loci are symmetric about the real axis. 

  Root locus locations on the real axis: A point on the real axis is part of the loci if the sum of 
the open-loop poles and zeros to the right of the point concerned is odd.  

  Break away (in) points. The points at which a locus breaks away from (or break in) the real 

axis can be found by letting K as a function of z, taking the derivative of dzdK and then 

setting the derivative equal to zero. 

  Unit circle crossover: This can be obtained by determining the value of K for marginal 
stability using Jury test or Routh-Hurwitz criterion.  

 
1. Root Locus without Zero Order Hold 
                                  
Ex: Sketch the root locus for the diagram shown in Fig.(1)  
 
 
 
 
 
 
                                          Figure (1) Sample-data system 
 
The z-transform for the output )(zC  is  

                 )(
)(1

)()( zR
zG

zGzC
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The z-transformed characteristic equation is 
 
                 0)(1  zG   
The partial fraction expansion for G(s) is 
 

 










4
11

4
)(

ss
KsG  

The corresponding z transform is  
 

           
))(1(

)1(
414

)( 4

4

4 T

T

T ezz
ezK

ez
z

z
zKzG 



 





















  

For T=0.25 sec.  

              

  Open-loop poles and zeros: 

                    Poles: 1z  and 368.0z  

                       Zeros:   0z  

  Number of branches: Number of branches equals No. of poles=2. 

  Root locus locations on the real axis: The root locus on the real axis lies between poles 
( 1z  and 368.0z ) and to the left of zero (z=0).  

  Break away and in points:  

The characteristic equation is 

            0
)368.0)(1(

158.01)(1 



zz

zKzG    

or                

Then           0
)(

)368.0368.1()368.12(
158.0
1

2

2











z
zzzz

dz
dK  

or                       
                
 
To find the value of K at break away and in points, we use the magnitude condition: 

The gain K at breakaway point: 
 

                   
606.0158.0

)368.0)(1(






zz
zzK

606.0|158.0|
)368.0()1(









 


zz
zz
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The gain K at break in point: 
 

                    
606.0158.0

)368.0)(1(






zz
zzK  

     
                         
 
  Crossing points of z-plane imaginary axis: 
 

In general jbaz  , and when the root locus crosses the imaginary axis of the 

z-plane, then the real part becomes zero, or jbz  . Substitute this value in the 

characteristic equation one can obtain: 

       0158.0368.0368.12  zKzz  
       0)(158.0368.0)(368.1)( 2  jbKjbjb  
or  
           0158.0368.0368.12  Kbjbjb  
           0)158.0368.1()368.0(

ImRe

2 
  

aginaryal

Kbbjb  

Two equations will be obtained: 

            0368.02  b   and 0158.0368.1  bKb  

From the first equation one can obtain the point of interception of root locus with the 
imaginary axis  

              0368.02  b      606.0b  606.0jz   

Substitute the value of b at the second equation, the value of gain K at the imaginary 
axis becomes 
  0158.0368.1  bKb    0606.0158.0606.0368.1  K  658.8K  

Alternatively, one can use the magnitude condition to find the value of K at 
imaginary axis crossing points: (use either 606.0jz   or 606.0jz  )  

   
606.0158.0

)368.0)(1(

jzz
zzK






606.0|158.0|
)368.0()1(

jzz
zz









 
  

      






 


|606.0158.0|
)368.0606.0()1606.0(

j
jj  
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658.8K

979.0K



337.16K

337.16K

606.0jz 

606.0jz 
658.8K

6065.0z

6065.0z

1z
0K

1z

0z
K

  K for marginal stability: Using Routh-Hurwitz criterion (or Jury test), the value of K 
as the root locus crosses the unit circle into the unstable region is 

                                           316.17K   

  Unit circle crossover: Inserting 3.17K  into the characteristic equation                                       

0
)368.0)(1(

158.01)(1 



zz

zKzG  0
)368.0)(1(

158.0316.171 



zz

z  

  368.0367.12  zz    The roots are 1z  
 
  Angle of asymptotes 

                       
zp

n




180)12(           n=0,1,2,3 

where p=number of poles and z is the number of zeros. Thus   becomes 
                         180  

The real axis interception of the asymptotes is  

                        368.1
12

0368.010 0 









 

zp

zz
p z

zp

x  

The complete root-locus plot may now be constructed as shown in the following figure 
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Ex2: for the diagram shown in Fig.(2),  
  
  Sketch the root locus for T=1/4 sec.  
  Plot the response of the system to a unit step function and for K=4.  
 
 
 
 
 
 
 
                                          Figure (2) Sample-data system 
 
For T=1/4, one can show that )(zG has the form  

           
)368.0)(1(16
)717.0(368.0)(





zz
zKzG    

The z-transform closed-loop tranfer function  

              
)(1

)(
)(
)(

zG
zG

zR
zC


  

          
The characteristic equation of the above transfer function is 
 
                 0)(1  zG   
or  
                 0)01649.0368.0()368.1023.0(2  KzKz  
 
  Open-loop poles and zeros: 

                    Poles:  
                       Zeros:    
Number of branches: Number of branches equals No. of poles=2. 

  Root locus locations on the real axis: The root locus on the real axis lies between poles 
( 1z  and 368.0z ) and to the left of zero ( 717.0z ).  

  Break away and in points:  

The characteristic equation is 

            0
)368.0)(1(16

)717.0(368.01)(1 



zz

zKzG    

or                
Then          

             0
)717.0(

)368.0368.1()368.12)(717.0()478.43( 2

2






z

zzzz
dz
dK  
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or                       

           0)368.0368.1()980.0066.02( 2  zzzz  0348.1434.12  zz             

Then  
              
To find the value of K at break away and in points, we use the magnitude condition: 
The gain K at breakaway point: 

 

     
647.0)717.0(

)368.0)(1()478.43(





zz
zzK

647.0
|)717.0(|

)368.0()1(
478.43















zz
zz

 

        139.3
|717.0647.0|

368.0647.01647.0
478.43 











  

 
The gain K at break in point: 
 

       
081.2)717.0(

)368.0)(1(478.43





zz
zzK

081.2|717.0|
)368.0()1(

478.43















zz
zz  

     

          511.240
|717.0081.2|

368.0081.21081.2
478.43 











  

 
  Crossing points of z-plane imaginary axis: 
 

In general jbaz  , and when the root locus crosses the imaginary axis of the 

z-plane, then the real part becomes zero, or jbz  . Substitute this value in the 

characteristic equation one can obtain: 

        0)01649.0368.0()368.1023.0()( 2  KjbKjb  
        
or  
 
 
 
Two equations will be obtained: 

     0)01649.0368.0( 2  bK   and   0)368.1023.0( Kb  

From the second equation one can determine the value of gain at the point of root- 
locus interception with the imaginary axis  
             0)368.1023.0( Kb   478.59K  
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Substitute the value of K into the first equation, the value of z at the imaginary axis 
becomes 

      0)01649.0368.0( 2  bK            

Then, 161.1jz   at the imaginary axis of the z-plane.   

 

  K for marginal stability: Using Routh-Hurwitz criterion (or Jury test), the value of K 
as the root locus crosses the unit circle into unstable region is 

                                           3.38K   

  Unit circle crossover: Inserting 3.38K  into the characteristic equation   

      0)3.3801649.0368.0()368.13.38023.0(2  zz  

or 

        0999.04871.02  zz   9693.02435.0 jz   (crossing points)                             

  Angle of asymptotes 

                       
zp

n




180)12(           n=0,1,2,3 

where p=number of poles and z is the number of zeros. Thus   becomes 
                         180  
The real axis interception of the asymptotes is  

                         
 
The complete root-locus plot may now be constructed as shown in the figure below. Let 
it now be desired to determine the response of this system to a unit step function for the 
case in which K=4. It follows that 

                     
367.0368.1

)171.0(092.0
)368.0)(1(16
)717.0(368.0)( 2 








zz

z
zz
zKzG  

The z-transform closed-loop tranfer function  

               
)717.0(092.0)368.0368.1(

)171.0(092.0
)(1

)(
)(
)(

2 






zzz

z
zG

zG
zR
zC  

                

 
Thus, 

                C(z) - 1.276 1z C(z) + 0.434 2z  C(z)= 0.092 1z R(z) + 0.066  2z R(z) 
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3.38K



3.38K

161.1jz 

161.1jz 

1z368.0z717.0z

511.240K

647.0z
139.3K

0K0KK

478.59K

478.59K

9693.02435.0 jz 

9693.02435.0 jz 

081.2z

 
The corresponding recursive time difference equation is given by  
 

 
The substitution of c(nT)=r(nT)=0 for n<0 and r(nT)=1 for K  0 yields the following values for 
c(nT) at the sampling instants: 
c(0)=0 
c(T) =  
c(2T) = c( 
c(3T)=c 
 
 

 
 
 
 
  
 
 

 
 
 
 
  
 
 
 

Figure (3) Root-locus plot for )717.0(023.0)368.0)(1(  zKzz .  
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 Steady State Error 
 

An important characteristic of a control system is its ability to follow, or track, certain 
inputs with a minimum of error. The control system designer attempts to minimize the system 
error to certain anticipated inputs. In this section the effects of the system transfer 
characteristics on the steady-state system errors are considered.  
 Consider the system of Fig.(1). The signal )(te  is defined as the error; that is,  

                                   )()()( tbtrte    

 
 
 
 

Figure (1) A digital control system 
 
Since it is difficult to describe )(te  in a digital control system, the sampled error )(* te  or the 
error at the sampling instants )(kTe  is usually used. Thus, the steady-state error at the 
sampling instants is defined as  
                                   )(lim)(lim ** tekTeE

tk
ss


  

Using the z-transform, the final value theorem leads to 
                                                                                      (1) 
For the system shown in Fig.(1), the z-transform of the error signal is written  

                                   
)(1

)()(
zGH

zRzE


   

Substituting the last equation into Eq.(1), we have 
                                                                               (2) 
This expression shows that the steady state error depends on the reference input )(zR , as 

well as the loop transfer function )(zGH . In the following, three basic types of input signals will 

be considered: step function, ramp function and parabolic function. 

 

  Steady State Error due to a Step Function input: 

Let the reference input to the system of Fig.(1) be a step function of magnitude h . The z-
transform of )(tr  is  

                
1

)(



z

zhzR   

Substituting the last equation into Eq.(2), we have    



 2

                                                                                                              (3) 
Let the step-error constant be defined as 

                  )(lim
1

zGHK
zp


  

Then Eq.(3) becomes  

                       
p

ss K
hE



1

*  

Thus, for the steady-state error due to a step function input to be zero, the step-error constant 

pK  must be infinite. This implies that the transfer function )(zGH must have at least one pole 

at z=1.   
 

  Steady State Error due to a Ramp Function input: 

For a ramp function, thtr )( , the z-transform of )(tr  is 

                                 2)1(
)(




z
zThzR  

Substitute the previous equation into Eq.(2), we have  
                                                                 (4) 
Let the ramp-error constant be defined as 

                                   )()1(lim1
1

zGHz
T

K
zv 


                                                                   (5) 

then, Eq.(4) becomes 

                                 
v

ss K
hE *                                                                                                (6) 

The ramp-error constant vK is meaningful only when the input to the system is a ramp function. 

Again, Eq.(6) is valid only if the function after the limit sign in Eq.(2) does not have any poles on 

or outside the unit circle 1z . This means that the closed-loop digital control system must at 

least be asymptotically stable.   

 Equation (6) shows that in order for *
ssE  due to a ramp function input be zero, vK must 

equal infinity. From Eq.(5) we see that this is equivalent to the requirement of )()1( zGHz   

having at least one pole at z=1,  or )(zGH  having two poles at z=1.  

 
   Steady State Error due to a Parabolic Function input: 



 3

 For a parabolic function, 
2

)(
2thtr  , the z-transform of )(tr  is 

                                 3

2

)1(2
)1()(





z

zzThzR  

From Eq.(2), the steady-state error at the sampling instants is written as 

                              
 )(1)1(

)1(lim
2 21

2
*

zGHz
zhTE

z
ss







                                                        

or  
                                                                                                       (7) 
Now, let the parabolic-error constant be defined as 

                          ])()1([lim1 2
12 zGHz

T
K

za 


                                                                  (8) 

Then, Eq.(7) becomes 

                            
a

ss K
hE *                                                                                                       (9) 

In a similar manner we must point out that the parabolic-error constant is associated only with 
the parabolic function input, and should not be used with any of the other types of inputs.  

 
Effects of Sampling on the Steady-State Error: 
If the open-loop transfer function of Fig.(1) is of the following form: 

                  
)1()1)(1(
)1()1)(1()()(

21 sTsTsTs
sTsTsTKsHsG

n
j

mba






                                                     (10) 

where the T's are nonzero real or complex constants, the type of the system is equal to j. The 
error constants for the continuous-data system are defined as 
 
Step-error constant:     )()(lim

0
sHsGK

sp


   

Ramp-error constant:  )()(lim
0

sHsGsK
sv


  

Parabolic-error constant:  )()(lim 2
0

sHsGsK
sa


  

 
According to the above equations, one can easily conclude that, for instance, a type-0 

system will have a constant steady-state error due to a step function input, and infinite error 
due to all higher-order inputs. A type-1 system (j=1) will have a zero steady-state error due to a 
step-function input, a constant error due to a ramp function input, and infinite error due to all 
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higher-order inputs. Table (1) summarizes the relationships between the system type, and the 
error constants for the continuous-data systems.    

Table (1) 
Type of System pK  vK  aK  

0 K 0 0 
1   K 0 
2     K 

 

We will evaluate the error constants of digital control system shown in Fig.(1) for the cases of 
j=0,1 and 2 as follows: 
 

  Type 0 (j=0) 
In this type j=0 and  Eq.(10) becomes  

  
)1()1)(1(

)1()1)(1()()(
21 sTsTsT

sTsTsTKsHsG
n

mba






  

where we assume that the open loop transfer function has more pole than zeros. The z 
transform of )()( sHsG  is 

                                                                    (11) 
Performing partial fraction expansion to the function inside the bracket in the last equation, we 
have  

           

















)1()1()1(
)(

1

2

1

1
sT

K
sT

K
sT

KZzGH
n

n   

                         
 
                          polesnonzerowithTerms  

It is important to note that the terms due to the nonzero poles do not contain the term )1( z in 

the denominator. Thus, the step-error constant is 
 

                        tconspolesnonzerowithtermszGHK
zzp tanlim)(lim

11



 

Substituting Eq.(11) into the ramp-error constant of Eq.(8), we get  

 polesnonzerowithtermsz
T

zGHz
T

K
zzv )1(lim1)()1(lim1

11



 

           0tan)1(lim(lim)1(lim
111





 





 




tcons
T

zpolesnonzerowithterms
T

z
zzz
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Similarly, 
 

 polesnonzerowithtermsz
T

zGHz
T

K
zza

2
12

2
12 )1(lim1)()1(lim1




 

           0tan)1(limlim)1(lim 2

2

112

2

1












 












 



tcons

T
zpolesnonzerowithterms

T
z

zzz
 

 

  Type 1 (j=1) 
In this type j=1 and Eq.(10) becomes  

)1()1)(1(
)1()1)(1()()(

21 sTsTsTs
sTsTsTKsHsG

n

mba






  

The z transform of )()( sHsG  is 

                                                                    (12) 
Performing partial fraction expansion to the function inside the bracket in the last equation, we 

have 

                 






  polesnonzerothetodueterms

s
KZzGH )(   

                 






 


 polesnonzerothetodueterms

z
KzzGH

1
)(   

 
Thus, the step-error constant is 

          



 





valuepolesnonzerothetodueterms

z
zKzGHK

zzp 1
lim)(lim

11
 

Substituting Eq.(12) into the ramp-error constant of Eq.(8), we get  
 

       



 





polesnonzerothetodueterms

z
zKz

T
zGHz

T
K

zzv 1
)1(lim1)()1(lim1

11
 

             
T
Kpolesnonzerothetodueterms

T
z

T
Kz

z




 




)()1(lim
1

 

 
Similarly, 
 
 
 

      0)()1()1(lim 2

2

21












 






polesnonzerothetodueterms

T
zzK

T
zzK

z
 

 
  Type 2 (j=2)  

For a type-1 system  j=1, Eq.(11) becomes 
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)1()1)(1(
)1()1)(1()(

21
2 sTsTsTs

sTsTsTKZzHG
n

mba


                                                              (13) 

        






  polesnonzerothetodueterms

s
K

s
KZzGH 1
2)(  

 
Then, the step-error constant is  

      
















polesnonzerothetodueterms

z
zK

z
zTKzGHK

zz
p 1)1(

lim)(lim 1
211

 

 
The ramp-error constant is   


















polesnonzerothetodueterms

z
zK

z
TzKz

T
zGHz

T
K

zz
v 1)1(

)1(lim1)()1(lim1 1
211

  

       
 
 
The parabolic-error constant  


















polesnonzerothetodueterms

z
zK

z
TzKz

T
zGHz

T
K

zz
a 1)1(

)1(lim1)()1(lim1 1
2

2
12

2
12

      
T
K

T
Kpolesnonzerothetodueterms

T
z

T
zzK

T
zK

z




 











 






00)()1()1(lim 2

2

2
1

1
 

 
 

One can summarize the above in the following Table 
Table (1) 

Type of System pK  vK  aK  

0 constant 0 0 
1   TK /  0 
2     TK /  

               

TperiodsamplingtheondependallKandKthatseemwouldIt av  

 
Ex1: Calculate the steady-state errors for the system of Fig(1), in which the open-loop transfer 
function is given as  

             

















 




)1(
1)(

ss
K

s
esG

Ts
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)(sc
)(sG

)(sR
)(sD

Thus  

             






























)1(
1)1(

)1(
1)( 22 ss

Z
z

zK
ss
eZKzG

Ts
 

                      
                      
 
 
Since )(zG has one pole at z=1, the steady state error to unit step is zero, and to ramp input is 

K/1 provided that the system is stable. 

 
Ex2: Consider the system of Fig.(1), where 1)( sH  and  

                             T

T

ez
ezG 







1)(   

Suppose that the design specification for this system requires that the steady state error to a 
unit ramp input be less that 0.01. Thus, it is necessary that the open-loop transfer function have 
a pole at z=1. Since the plant does not contain a pole at z=1, a digital compensator of the form  

                              p
i K

z
zKzD 



1

)(  

 
 
will be added to produce the resultant system shown in figure below.  
 
 
 
 
The compensator, called a PI or proportional-plus-integral compensator, is of a form commonly 
used to reduce steady-state errors. Employing the expressions above for )(zD  and )(zG , we 

see that 

                         
T
K

ez
e

z
KzKK

T
K i

T

T
ppi

z
v 



























 





1
)1(

)(
lim1

1
   

Thus iK  must equal )100( T  for the required steady-state error, provided that the system is 

stable. The latter point is needed an important consideration since the error analysis is 

meaningful unless the stability is guaranteed.  
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)(te
)(tc

)(tr
2

1
sJZOH

rK

T

pK
s
1

HW1: If a zero-order hold is included immediately after the sampler in the digital control system 
of Figure (1), then 

  Follow the same above argument, show that the step, ramp and parabolic error constants 
are the same as given in Table (1) for continuous system.  

  Do these error constants depend on the sampling period T? Why? 
 
HW2: For the simplified digital control system in the figure shown below, find the step, ramp 
and parabolic error constants. Express the results in terms of the system parameters.  
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