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Basic Probability And Statistics

1. Statistics:
Statistics is the area of science that deals with collection,
organization, analysis, and interpretation of data. It also deals
with methods and techniques that can be used to draw
conclusions about the characteristics of a large number of data
points commonly called a population.
2.Probability: which measures the likelihood that an event will occur, is an
important part of statistics. It is the basis of inferential
statistics, where decisions are made under conditions of
uncertainty
Definitions:

Random outcome : an outcome that cannot be predicted with certainty

An experiment is a process whose output is not known with certainty.

Sample Space (S) isthe set of al possible outcomes of an experiment .

The outcomes are called sample pointsin S.

A random variable (X,Y,Z,--) isafunction that assigns areal number to
each pointin S.

An Event isthe subset of the sample space.

Examples

EXPERIMENT SAMPLE SPACE
Toss one coin H, T

Roll adie 1,2,3 4,56
Answer atrue-false question True, False

Toss two coins HH, HT, TH, TT
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1.Classical Probability
» The sample space isacollection of equally likely outcomes

outcomesin event A
outcomesin the samplespace

P(A)=

2.Empirical Probability (relative frequency)
» The outcomes of arandom experiment are observed over repeated
trials

timesevent Aoccurs
repetitionsof the experiment

P(A)=

Note: The Law of Large Numbers states that relative frequency gets closer
and closer to the true probability as the sample size increases

1. The probability of any event must be between O and 1. That is,
0 < P(A)<1foranyevent A

2. The sum of the probabilities for all simple eventsin a sample space
must be 1.

3. The complement of event A consists of all outcomesin the sample
space that do not make up event A, therefore

P(AC)=1—P(A)
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Examplel:

For a card drawn from an ordinary deck, find the probability of getting
(@) queen (b) a6 of clubs (c) a3 or adiamond.

o | ¥ hearts Al2|3|4|5|6|7|8|9]10]|J|Q]|K

“ | ®diamonds |A|2|3|4|5|6|7|8|9|10|J|Q|K

'§ Mspades |A|2|3|4|5|6|7|8|9[10|J|Q|K

2 | Sclubs Al2|3|4|5|6|7|8|9]10]|J|Q|K
Solution:

() Sincethere are 4 queens and 52 cards, P(queen) = 4/52 = 1/13.

(b) Since thereis only one 6 of clubs, then P(6 of clubs) = 1/52.

(c) There are four 3s and 13 diamonds, but the 3 of diamondsis counted
twicein thelisting. Hencethere are only 16 possibilities of drawing a 3
or adiamond, thus  P(3 or diamond) = 16/52 = 4/13.

Example 2:

Inasample of 50 people, 21 had type O blood, 22 had type A blood, 5 had
type B blood, and 2 had AB blood. Set up afrequency distribution.

Type Frequency
A 22
B 5
AB 2
O 21

50=n
Example 3:

Find the following probabilities for the previous example.

A person has type O blood.
Solution: P(O) =f/n = 21/50.

A person hastype A or type B blood.
Solution: P(A or B) = 22/50+ 5/50 = 27/50.
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3. A Venn diagram isuseful for displaying relationships among eventsin a
sampl e space.

The Venn diagram to show A and A® might look like this:

AC

4, Two events are mutually exclusive (or digoint) if they contain no
COMMON OUtCOMeS.
The Venn diagram to show two digoint events A and B might ook

like this:

5. The union of two events A and B consists of al outcomesin the
sample space that are in A or B, or both.

The Venn diagram to show the union of two events A and B
might look like this:

A B

AT & “AorB”
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6. The intersection of two events A and B consists of all outcomesin the
sampl e space that are in both A and B.
The Venn diagram to show the intersection of two events A and B
might look like this:

A () < “Aand B”

Example 4 .
An experiment consists of rolling asingle die.

S = {1,2,3,4,5,6}

Define two events, A, B asfollows.

A = {1,234}
B = {24,6}

Then
Union of A and B: AUB ={1,2,3,4,6}
Intersection of A and B: AnB ={24}
Complement of A: A' = {56}

7.General Addition Rule: The probability of the union of any two events A
andBis

P(AUuB)=P(A)+ P(B)- P(An B)

If A and B are mutually exclusive, then P(ANB)=0 and

P(AUB)=P(A)+ P(B)
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8.Two events are independent if the occurrence of one event does not
change the probability of the other event.

Example 5.
An experiment consists of rolling asingle die.
S = {12345,6}

Define two events, A and B, asfollows.
A:  "roll aneven number® A {2,4,6}
B: "roll afive" B {5}

Events A and B are mutualy exclusive events; they have no elements in
common.

_nA) _ 3
PA="nS = 6
1

PB)= e =

P(AUB) = P(A orB) = P(A)+P(B) =

o
olw

+
ol

I
olhd

I
WIn

Example 6:

In a hospital unit there are eight nurses and five physicians. Seven nurses
and three physicians are females. If a staff person is selected, find the
probability that the subject isanurse or amale.

STAFF FEMALES MALES TOTAL
NURSES 7 1 8
PHY SICIANS 3 2 5
TOTAL 10 3 13
Solution:
P(nurse or male)= P(nurse) + P(male) — P(male nurse) = 8/13 + 3/13 — 1/13
=10/13
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9.The conditional probability of event A given that event B has already
occurred is defined as

P(AN B)
P(B)

P(A|B)=

Note that the conditional probability of B given A isdefined as

P(ANB)
P(A)

P(B|A)=

10._General Multiplication Rule: The probability of the intersection of any
twoeventsAand Bis

P(A~B)=P(A|B)-P(B)

P(ANB)= S(A)- P(B| A)

11. If two events A and B are independent, then

P(A)= P(A|B)
P(B)=P(B|A)
P(A~B)= P(A)-P(B)

if any oneistrue, then al 3 are true
Furthermore, if any one of the above equations is true, then we can conclude
that events A and B are independent.
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Example 7:
Box 1 contains two red balls and one blue ball. Box 2 contains three blue

ballsand onered ball. A coinistossed. If it falls heads up, box 1 is selected
and abal isdrawn. If it falstalls up, box 2 is selected and a ball is drawn.
Find the probability of selecting ared ball.

AR|B,) 2/3

Red (1/2)2/3)

A B) 1/2
Box 1

P(BB,) 1/3

Blue (1/2)(1/3)

AR|\B,) 1/4

AB,) 1/2 Box 2 Red @/2)(1/4)

Hﬂ B’)) 3/4 Blue 1/2)3/4)

Solution: P(red) = (1/2)(2/3) + (U2)(1/4) = 2/6 + 1/8 = 8/24 + 3/24
= 11/24.

Example 8:
Two fair dice arerolled . What is the conditional probability that the sum

of the two face is 6 given that the two dice are showing different faces?
Let: A-event the two dice are showing different faces.
B-event the sum of the two faceis6.

p(BNA)
P(BIA)="—
BA="om
Die 2
Die 1 1 2 3 4 5 6

1 1y 1 12| 13|14 | @15 | 16
21) | (22) | (23) ] (24) | (25) | (2,6)
(3.1) | 32) | (33)](34) | (35) ]| (3,6)
(41) | (42) | (43) | (44) | 45) | (4.6)
B1) 52| (B3| (B4 ]| (BS5 | B)
(6,1) | (6,2) | (63) | (6,4) | (65) | (6,6)

(Ol Wi
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B ={(15),(24),(33),(4.2),(5))}

5
P(B)= 36

BA={(L5),(2.4),(4,2),(51)}

4
P(BA)= 3¢

PA—@ P(B/A _ 4136 _ 2
(A)= 36 , P(BIA)= 30/36 15
Bayes Theorem:

From the multiplication rule, we know that

P(AN B)
P(B)
P(AN B)
P(A)

P(A|B) =

P(B|A) =

From [P(B|A)] : P(AnB)=P(AP(B|A)

P(AP(B|A)
P(B)
This is known as Bayes Theorem, and is a very important result in
probability, as it tells us how to “turn conditional probabilities around”
that is, it tells us how to work out P(A/B) from P(B/A), and thisis often very

useful.

This can be substituted into P(A|B) to give you: P(A|B) =

Also, P(B) may be rewritten as:

P(B) = P(An B) + P(AnB) (law of total probability)

This can be proven by the use of a Venn diagram, and rewriting P(B),

we can also get: P(B) = P(A)P(B| A) + P(A')P(B| A)

This can then be substituted again into P(A|B) to give you:
P(AP(B|A)

P(AP(B|A) +P(A)P(B|A)

P(A|B) = ( theorem of total probability)
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Bayes Theorem for partitions

Another important thing to notice that the use of the theorem of total
probability in order to expand the bottom line of Bayes Theorem. In fact,
thisis done so often that Bayes Theorem is often stated in this form.

Suppose that we have a partition (Aq,....... A, of a sample space S.
Suppose

further that we have an event B, with P(B) > 0. Then, for each A;, the
probability of A; givenB is

PCA)P(B| A
(A 1B)- n(A,) (Bl A)
2. P(B/A)p(A)
Example 9: e

A clinic offers you a free test for a very rare hideous disease. The test they
offer isvery reliable. If you have the disease it has a 98% chance of giving a
positive result, and if you don’'t have the diseasg, it has only a 1% chance of
giving a positive result. You decide to take the test, and find that you test
positive — what is the probability that you have the disease?

Let P be the event “test positive” and D be the event “you have the disease”.
We know that
P(P/D) =0.98 and that P(P/D°) = 0.01
We want to know P(D/P), so we use Bayes' Theorem.
P(D|P) = P(D)P(P|D)
P(P)

B P(D)P(P|D) B 0.98* p(D)

~ P(D)P(P|D)+P(D°)P(P|D°®) 0.98* p(D)+0.01* (1— p(D))
So we see that the probability you have the disease given the test result
depends on the probability that you had the disease in the first place. Thisis
arare disease, affecting only one in ten thousand people, so that
P(D) = 0.0001. Substituting thisin gives

B 0.98* 0.0001 ~0.1
0.98* 0.0001+ 0.01* (1-0.0001)

So, your probability of having the disease has increased from 1 in 10,000 to
1in 100, but still isn’t that much to get worried about! Note the crucia

10
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difference between P(P/D) and P(D/P).
Counting Rules: How many ways can it happen?

When outcomes are equally likely to occur (like when tossing a coin or
rolling adie), you can use counting rules to find out how many outcomes are
possible and then use that number to find probabilities.

1.Multiplication rule —when outcomes are selected from more than one set
or group, multiply the number of outcomes for each
Set.

Examplel: How many different meals can be made by pairing up 3
main courses and 4 side dishes?

Answer: 3x4 =12 meals
(What if you have 2 dessert options? Then you can make2x 3x 4 =24
meals!)

In general if atask can be performed in nl ways, a second task in n2

ways and athird task inn3ways........... , then the total
number of distinct ways of performing all tasks together is nl1x
N2xN3...............

Example 2: How many 4 or 5 digit telephone numbers are possible,
assuming the first is not zero?

ans: 9x10x10x10 + 9x10x10x 10 x 10=99 000

Example 3:Tosstwo coin: m*n=2*2=4

Example 4:Throw two dice : m* n=6* 6=36

11
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2._Permutation rule — when outcomes are selected from only one set and
the order that they are selected does matter, the
total number of ways r outcomes can be chosen
from n outcomesis

I
IDnr — L
’ (n—r)!

whee I=N(N—1D(N—22)---3-2-1
(forexample A= 4-3-2-1 = 24)
The! iscaled a“factoria.”
¢ The number of permutations of n objects using all of them is n!
Example 1: In how many ways can 5 people line up in a queue?

ans 5! =120

Example2: Suppose that a class president, vice-president, secretary, and
treasurer are to be randomly selected out of a group of 12 students
nominated and that the order in which they are picked determines which
office they will hold. What is the probability of getting a specific set of
class officers?

5 __ 12 _12.1110.9-8:7.6:5:4-3-2-1
24 12-2) 8.7-6.5.4.3.2.1

=12-11-10-9=11880
Since there are 11,880 possible sets of class officers and they are dll

equally likely, the probability of getting a specific set of class officersis

1
11880

12
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Example3:How many three -letter codes are there using letters A,B,C and D
if no letter can be repeated?

Solution :
Note ,the order does matter

=t o4
(4-3)!

Example 4: A club has 12 members. How many ways could a president,
vice-president and treasurer be appointed.

12!
12 - _
P3 - (12 - 3)| - 1 320

+» Permutations with repeated elements

If abag contains some objectsin which m; are of type 1, m, are of type 2,
.... m are of type k. The number of permutationis:

(m +m, +...+m)!

Example 5: How many ways can you permute the letterss BANANA ?

Of the 6 letters, thereare 3 A's, 2 N's, and 1 B.
The 2 N's could berearranged in 2! = 2 different ways.
The 3 A's could be rearranged in 3! = 6 different ways.
So we need to divide 6! by both 6 and 2.
6!

The number of waysto rearrange the lettersin BANANA is oI~ 60

13
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3.Combination rule — when outcomes are selected from only one set and
the order that they are selected does not matter, the
total number of ways r outcomes can be chosen from
n outcomesis

C.. =(”j= L
’ r r{r¢(n—r)!

Examplel: Suppose there are 8 students in a group and that 5 of them must
be selected to form a basketball team. How many different teams
could be formed? What is the probability of ending up with one
specific team?

Answer: Use the combination rule with n =8 and r = 5 as shown below.

8 7.6.5.4.3.2.
.. — __ 8 87654321 o .
5) 5-(3) 5-4-3-2-1-(3-2-1)

56 teams are possible and they are al equaly is players are picked

randomly, so the probability of ending up with one specific team is 5—:';3

Suppose YOU were one of the 8 people to be selected for the team.
What is the probability that you would be selected to be on the team?

Since you must be on the team, we only need to select the other 4 players
from theremaining 7, giving atotal of C;,=35 teams.

S0, the probability of YOU being on the team is % = 0.625

14
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Example2:How many committees of three can be selected from four
people?
4

C,=————=4
“T0 (4-3)13

Example 3: From aclub of 12 members, how many ways are there of
selecting a committee of three?

12!

1263 -
(12 - 3)I3I

=220

Example 4: A group consists of 8 boys and 5 girls:
(@) How many ways can you select 2 boys and 2 girls?
(b) How many ways can you select a committee of 4 containing
a least 2 boys?

ans
(a) 8C2 x °C, = 28 x 10= 280

(b) Atleast 2 boys=2boysand 2 girls+ 3 boysand 1 girl + 4boys
= 8Co % °C2 + €3 x °Cy +8C4 x °Co
=280+280+70
= 630

15
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Probability Calculations Using Combinations / Permutations

Example 1: 4 chocolates are chosen at random from a box containing 6 with

hard centers, and 8 with soft centers.

(a) Calculate the probability that 3 of the chocolates have soft centers.

(b) Calculate the probability that at least 3 of the chocolates have soft
centers.

(a) Total number of ways of selecting 4 chocolates = 1*C4 = 1 001

Number of ways of selecting 3 soft centers (and 1 hard) = 8¢3 x °¢;
= 336

336
P( 3 soft) = m‘O 3357

(b) Numbers of ways of selecting at least 3 soft = 8C3 x °Cy + 8C4 x ©Co

=336+ 70
= 406
P( at least 3 soft) = 406 o 0.4056
1001
Example 2: A 4 digit security number is made using the digits O, 1,........ 9.

If anumber is made up at random, what is the probability that it contains the
same digit repeated 3 timesin arow.

(a) Total number of security codes = 10* = 10000.
(b) Total number of ways of getting 3 of the samein arow:

10x(1x1x1x9+9x1x 1x1)=180

© A3inarow) = 22 - 0018

10000
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Random Variables and Probability Distributions:

In statistics we deal with random variables- variables whose observed value is determined
by chance. Random variables usually fall into one of two categories. discrete or
continuous.

A random variable (r.v.) is afunction that associates a real number with each element in
the sample space. Random variables will be denoted by uppercase letters and their
observed numerical values by lowercase letters.

1.Discrete Random Variable. A random variable is discrete if it can assume at most a
finite or a count ably infinite number of possible values.

Example 1. Two balls are drawn in succession without replacement from an urn
containing 4 red and 3 black balls. The possible outcomes and values y of the random

variable Y where Y isthe number of red balls are:

Sample Space | Y
RR 2
RB 1
BR 1
BB 0

2.Continuous Random Variable. A random variable is continuous if it can assume any
value in someinterval or intervals of real numbers and the probability that it assumes any
specific valueisO.

3.Discrete Probability Distributions
Definition. The set of ordered pairs (x, f (x)) is a probability function, probability mass

function or probability distribution of the discrete random variable X if,

(1) f(x)=0

2 > f(x)=1

(3) P(X =x)= f(x).
Example 1. A committee of size 5 is to be selected at random from 3 chemists and 5
mathematicians. Find the probability distribution (p.d.) for the number of chemists on the

committee.

Let X bethe number of chemists on the committee. Then x: 0,1 2,3.

17
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szm=fw%ﬁikg=l; WXDf@)C?ggi
5
p(x=2):f(2):@®—30' ) E

== HXz@zf@)[ﬂ
J - :

o) o

Therefore the probability distribution of X is
X o 1 2 3
f(x) L 15 30 10
56 56 56 56

4.Cumulative Distribution. The cumulative distribution F(x)of a discrete random
variable X with probability distribution f (x) is

F(X)=P(X<x)=> f(t), for —o<x<oo.
t<x
Example 2. Find the cumulative distribution of the number of chemists on the committee
in example 1.
Using F(x), show that f(3):é—g.
1
F(0)=f(0)=—;
(0)=1(0) =
16
F()=f(0)+ f(1)==—
@)= 1(0)+ (D=5
46
F(2)=f(0)+f()+f (2)=§;

Hence

(0, ifx<O

1 .

— if0<x<1

56

16 46 10
F(x)=9— if 1sx<2 f(3)=F(3)-F(2)=1-

56 Now, () () () 56 56

46

— if2<x<3

56

1 if x=>3

18
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5.Mean or Expected Value

The mean or expected value of arandom variable x is the average value that we should
expect for x over many trials of the experiment.

Notation: The mean or expected value of arandom variable x will be represented by
#(X) or E(X)

We can cal cul ate the mean theoretically by using the formula:
E() = u(x) = Y, XP(X)

Examples:

let T bethe random variable that represents the number of tails obtained when acoinis
flipped three times. Then T has 4 possible values: 0, 1, 2, and 3. The probability
distribution for T isgiven in the following table:

T 0] 1 2 3
P(T) 1/8 3/8 3/8 1/8

1 3 3 1 36 3 1 23
E(T)=) TxP(T)=| Ox= |+|1x—= |+| 2x= |+| 3x= |[=0+ =+ —+—=—=—
()me(xsj(xsj(xsj(xsj 8’8’8 8 2

6.Variance and Standard Deviation

Often, we are aso interested in how much the values of arandom variable differ from
trial to trial. To measure this, we can define the variance and standard deviation for a
random variable.

For arandom variable x, the variance of x, denoted by &*(X) can be calculated by the
formula:

o?(x) = (x= 1)*P(x)

The standard deviation of x, denoted by o (X) isjust the square root of o*(X) .

o(X) = /> (x= 1)*P(¥)
As before, standard deviation estimates the average difference between avalue of x and
the average.

19
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Example:
The probability distribution of the random variable Y, isgiven as

Py 063 02 009 004 002 001 001

Find the mean and standared deviation of distribution.

mzixi pi =-3(0.63)-2(0.2)-1(0.09)+0(0.04)+0.02+2(0.01)+3(0.01)
=-231

0% = E(X*)-m?

sd=+s?

E(x?) = (-3%)0.63+(-2%)0.2+(-1%0.09+0.02+(2%)0.01+(3%)0.01=6.71
52=6.71-5.336=1.376 , s.0=1.172

Homework:

The probability distribution of the random variable X, isgiven as.

X 2 2.5 3 3.5 |4 4.5
P(x) | 0.07 0.36 | 0.21 0.19 0.1 | 0.07

1.Calculate
1) p(x < 3.8).
ii)P(x>3.8).

2-Find the mean and standard deviation of distribution

20
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7.Continuous Probability Distributions

Definition. (Probability Density Function) The function f(x) is a probability density
function for the continuous random variable X , defined over the set of real numbersR,
if

(1) f(x)=0, foral xe R
2 T f(x)dx=1
@) P(a< x < b):ff (x)dx:

a

Note that for a continuous random variable X ,
P(X =a) zj f(x)dx=0.

8.Cumulative Distribution. The cumulative distribution F (x) of a continuous random

variable X with density function f (x) is

F(x):P(XSX)zj-f(t)dt for —0< X<,

Example 1. Suppose that a random variablé X has a probability density function given
by
; (X):{kx(l—x) 0<x<1
0] elsewhere

(a) Find the value of k that makes this a probability function.
1
[lx(1-x)dx=1=k=6
0

(b) Find P(0.4< X <1)

(0.4)° (0.4)°
L -

1
[ 6x(1-x)dx=1- 6{ }: 0.332
0.4

(c) Find F(x)=P(X < x) and sketch the graph of this function.

0, if x<O0
F(x)=43x*—2x°, if 0<x<1
1 if x=>1

21
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9.Some Useful Probability Distributions

The observations generated by different statistical experiments have the same general
type of behaviour. Random variables associated with these experiments can be described
by essentially the same probability distribution and therefore can be represented by a
single formula. The followings are the probability distributions that will be covered in
this chapter:

e Binomial Distribution

e Poisson Distribution and Poisson Process

e Normal Distributions

9.1 The Binomial Distribution

Perhaps the most commonly used discrete probability distribution is the binomial
distribution. An experiment which follows a binomia distribution will satisfy the
following requirements (think of repeatedly flipping a coin as you read these):

1. Theexperiment consists of nidentical trials, where nisfixed in advance.

2. Eachtria hastwo possible outcomes, Sor F, which we denote " success' and
“failure" and code as 1 and O, respectively.

3. Thetrials are independent, so the outcome of one trial has no effect on the
outcome of another.

4. The probability of success, p isconstant from onetrial to another.

The random variable X of abinomial distribution counts the number of successesinn
trials. The probability that X isa certain value x is given by the formula

n n-x
P(X =x)=b(x,n,p)= (x] p*(1-p)
where 0< p<l1and x=0,12,....,n. Recal that the quantity (ZJ , nchoosex," aboveis
(n) _ n!
) oln—o)V

We could use the formulas previously given to compute the mean and variance of X.
However, for the binomial distribution these will always be equal to

E(X)=g=np and Var(X)=0o"=npq

Note: A particularly important example of the use of the binomial distribution is when
sampling with replacement (thisimpliesthat p isconstant).

22
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Example 1. Suppose we have 10 ballsin abowl, 3 of the balls are red and 7 of them are
blue. Define success Sas drawing ared ball. If we sample with replacement, P(S=0.3 for

every trial. Let's say n=20, then X [J b(x,20,0.3) and we can figure out any probability
we want. For example,

P(X =% = (1“)0.3%1—0.3)”4

= 15504{0.3%)(0.7*%) = 0.1784.

The mean and variance are
E(X) =20(0.3) =6, Var(X) = 20(0.3)(0.7) = 4.2.
Example 2. The probability that a patient recovers from arare blood diseaseis 0.4. If 15
people are known to have contracted this disease, what is the probability that
(a) at least 10 survive?
(b) from 3 to 7 survive?
(c) exactly 5 survive?

Solution. Probability of success= p = 0.4, and the probability of failure=q=0.6.
n=15 and X :no. of surviving patients
(@) P(X =10)=1-P(X <9)=1-B(915,0.4) = 1-0.9662=0.0338

(b) P(3< X <7)=P(4< X <6) =b(415,0.4)+b(5;15,0.4) + b(6;15,0.4) = 0.509

(©) P(X =5)=b(5.15,04) @5J(o.4)5(o.6)15'5:0.186

Example 3. A traffic control engineer reports that 75% of the vehicles passing through a
checkpoint are from within the state. What is the probability that fewer than 2 of the next
9 vehicles are from out of the state?

Solution. Probability of success= p = 0.25, and the probability of
faillure=q=1-0.25=0.75.
n=9 and X :no. of vehicles passing through the checkpoint
P(X <2)=P(X <1)=b(0;9,0.25)+b(1;9,0.25)

= (2}(0.25)0 (0.75) + @(0.25)l (0.75)° = 0.3

Example 4. Assuming that 6 in 10 automobile accidents are due mainly to speed
violation,
(@) find the probability that among 8 automobile accidents 6 will be due mainly to
a speed violation.
(b) Find the mean and variance of the number of automobile accidentsfor 8
automobile accidents.
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Solution. Probability of success= p = 6/10, and the probability of failure
g=1-06=04
n=8 and X :no. of automobile accidents

@ P(X za)zb(ﬁ;s,s/lo):@(%j @%} 02090

(b) The mean of the number of automobile accidentsis
6
=E(X)=np=8*—=48.
p=E(X)=np=8*_
The variance of the no. of auto. accidentsis
6,4

2 _Var(X)=npg=8*2* % _1.02.
o =Var(X)=npq=8"_ "0

9.2 The Poisson Distribution

The Poisson distribution is most commonly used to model the number of random
occurrences of some phenomenon in a specified unit of space or time. For example,

e The number of phone calls received by atelephone operator in a 10-minute
period.

e Thenumber of flawsin abolt of fabric.

e The number of typos per page made by a secretary.

For a Poisson random variable, the probability that X is some value x is given by the
formula

_at X
P(X =x)=f(xAt) =# x=012,..

where 4 isthe average number of occurrences per unit time or region denoted by t. For
the Poisson distribution,

E(X)=4t and Var(X)=At.

Example 1. The number of false fire alarmsin a suburb of Houston averages 2.1 per day.
Assuming that a Poisson distribution is appropriate, the probability that 4 false alarms
will occur on agiven day is given by . _s1

2. 1% e

P(X =4) = ——5— = 0.0992.
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Example 2. During a laboratory experiment the average number of radioactive particles
passing through a counter in 1 millisecond is 4. What is the probability that 6 particles
enter the counter in a given millisecond?

Example 3. A secretary makes 2 errors per page, on average. What is the probability that
on the next page he or she will make

(@) 4 or more errors?

(b) no errors?

Example 4. The number of customers arriving per hour at a certain automobile service
facility is assumed to follow a Poisson distribution with 2 = 7.
(&) Compute the probability that more than 10 customers will arrive in a 3-hour
period.
(b) What is the mean number of arrivals during a 4-hour period?

Example 5. A restaurant chef prepares tossed salad containing, on average, 5 vegetables.
Find the probability that the salad contains more than 5 vegetables

(@) onagiven day

(b) on 3 of the next 4 days

(c) for thefirst timein April on April 5.
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9.3 The Normal Distribution

The most important continuous probability distribution in the entire field of statistics is
the normal distribution. Normal distributions are a family of distributions that have the
same general shape. They are symmetric with scores more concentrated in the middie
than in the tails. Normal distributions are sometimes described as bell shaped which are
shown below. Notice that they differ in how spread out they are. The area under each
curve is the same. The height of a normal distribution can be specified mathematically in
terms of two parameters. the mean () and the standard deviation (o).

@ przo ¥
—z0—o

Definition. The density function of the normal random variable X, with mean g and
variance o, is

e—(l/ 2[(x-p)lo]

N(x;,u,a):m :

where 7 = 3.14159.... and e = 2.71828.

—0 < X<

Standard normal distribution

The standard normal distribution is a normal distribution with a mean of 0 and a standard
deviation of 1. Normal distributions can be transformed to standard normal distributions
by the formula:

where X is a score from the original normal distribution, p is the mean of the original
normal distribution, and o is the standard deviation of original normal distribution. The
standard normal distribution is sometimes called the z distribution. A z score aways
reflects the number of standard deviations above or below the mean a particular scoreis.
For instance, if a person scored a 70 on a test with a mean of 50 and a standard deviation
of 10, then they scored 2 standard deviations above the mean. Converting the test scores
to z scores, an X of 70 would be:


http://davidmlane.com/hyperstat/A12328.html�
http://davidmlane.com/hyperstat/A15885.html�
http://davidmlane.com/hyperstat/A16252.html�
http://davidmlane.com/hyperstat/A6929.html�
http://davidmlane.com/hyperstat/A15885.html�
http://davidmlane.com/hyperstat/A16252.html�
http://davidmlane.com/hyperstat/A16252.html�
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So, a z score of 2 means the original score was 2 standard deviations above the mean.
Note that the z distribution will only be a normal distribution if the original distribution
(X) isnormal.

Note : The following figures give us the areas to the right of some z— value, to the left of
some z-—value and between two z— values.

S| REea b ; PEeh)

P(a<Z<h)

Areas under portions of the standard normal distribution are shown to the right. About .68
(.34 + .34) of the distribution is between -1 and 1 while about .96 of the distribution is
between -2 and 2.

el bci 2413

. 13549

0215
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Example 1. Given a standard normal distribution, find the area under the curve that lies
(a) totheright of z=1.84
(b) between z=-1.97 and z=0.86

by table A3

Solution. (a) P(Z >1.84)=1-P(Z<184) = 1-0.9671=0.0329.
(b)
by table A3
P(-1.97<Z <0.86)=P(Z<0.86)-P(Z<-197) = 0.8051-0.0244=0.7807

Example 2. Given anormal distribution with 4 =50 and o =10, find the probability
that X assumes a value between 45 and 62.

Solution.

P(45< X <62) = P(

45-50 62 -50
<Z<

= P(-05<Z <1.2) = table(1.2) - table(-0.5
10 1oj(<<)abe()e()

= 0.8849-0.3088 = 0.5764

Example 3. Given a standard normal distribution, find the value of k such that
(@) P(Z <k)=0.0427
(b) P(Z > k)=0.2946
(c) P(-0.93<Z <k)=0.7235

Solution. (a) P(Z < k) =0.0427 = table(k) = 0.0427 = k = -1.72

(b)
P(Z >k)=0.2946= P(Z > k) =1- P(Z < k) = 0.2946

= P(Z <k)=1-0.2946 = 0.7054
— table(k) = 0.7054 = k = 0.54
(c) P(-0.93< Z < k) = 0.7235 = table(k) — table(-0.93) = 0.7235
table(k) = 0.7235+ 0.1762 = 0.8997
— k=128
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10.Uniform Random Variables

Probability Density Function Pdf:

We want to define a random variable X that is “equally likely” to take on any
value in some finite interval (ab). Formaly this is nonsensica since the
probability of a continuous random variable assuming a particular value is always
0. A better way of formalizing our intuition is that the probability of X fallingina

subinterval of (a,b) should depend only on the length of the subinterval, not on its
location within (a,b).

The random variable X that satisfies this condition is the uniform random
variable. We write X~uniform(a,b). It has the probability density function.

(%) = = fora<'x<b'
0, otherwise

The graph of the pdf satisfies our intuition about “equal likelihood” of all

intervals of a given length within (a,b). It also clearly has total area 1 under
the pdf curve.

Ub-a —T

Area=1

Cumulative Distribution Function Cdf:

The cumulative distribution function F given below is easy to compute either by
integration of the pdf or by finding the area of rectangles. Note that it has all the
usual properties of acdf: 0 to theleft, 1 to the right, increasing and continuous
inbetween.

0, ifx<a
F(X)=412, ifa<x<b
1 ifx>b
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Here we see F and its properties graphically.

1 R

a b

If we want to find the probability P(c<X<d) where a<c<d<b, then we can
integrate formally, but it is easier to note that the probability is simply the
ratio of the length of (c,d) to the length of (a,b).

Uba —+

Area=
(d-c)/(a-b)

Expected Value

Intuitively we anticipate E(X)=(atb)/2, the midpoint of the interval. This turns out
to be correct.
If X~uniform(a,b) we calculate

E(X) = xf (xdx=

b 1 1 L p-a?
J' Xdx = X7 =
ap-a 2(b-a) |, 2(b-a)

_(b+a)(b-a) b+a
~ 2(bb-a) 2

Variance
Let X~uniform(a,b). We can find the variance of X using the shortcut formula

Var (X) = E(X?) - 1. We proceed as follows.
B 3 |b B b _a®
3b-a)|, 3(b-a)

E(X?) :Lbbfla x2alx

b?+ab+a?
3
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_b*+ab+a® (a+h)’

E X2 _ 2_
(X)) —u 3 2
. 4b* + dab+4a®  3b® +6ab+3a°
Finally = T - T
_b*-2ab+a’® (b-a)’
12 12

Example 1. Imagine yourself blindfolded and having to cut a ribbon of length 1 yard
suspended between two posts. Define a random variable to be the length of one of the
two pieces of ribbon after you cut it. Thisis an example of a continuous random variable.
Assuming that you have equal chance of making the cut at any point on the ribbon, the
probability of cutting a piece of length say d is proportional to d, and since the total
length is one, the probability is exactly d. This is an example of a uniform random
variable. Its probability density functionis f(x) =1, for al x<[0,]].

If we want to find the probability that the length of the cut pieceislessthan 0.5 of ayard,

0.5

we compute P(X <0.5) = J' f(x)dx=0.5. Smilarly, the probability that its length is
0

between 0.25 and 0.5 is;

0.5
P(0.25< X < 0.5) = j f(x)dx=0.25
0.25
In general, a uniform random variable on an interval [a,b] has a probability density

function given by f(x) = b—la’ for al xe[a,b].
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11.Exponential Random Variables

Probability Density Function Pdf:

WS A ol NS T e

Let X be a positive real number. We write X~exponential (1) and say that X is an
exponential random variable with parameter A if the pdf of X is

e ifx>0
f(x)= .
0, otherwise -

A look at the graph of the pdf is informative. Here is a graph produced by Maple
for A=0.5. Note that it has the same shape as every exponential graph with
negative exponent (exponential decay). The tail shrinks to O quickly enough to
make the area under the curve equal 1. Later we will see that the expected value
of an exponential random variable is /A (in this case 2). That is the balance point

of the laminawith shape defined by the pdf.

o
0

]
L

]
ha
I
o

A simple integration shows that the total areaunder f is 1.

%) . t _ . _ t
I le?dx=lim| Ae*dx=lim-e** .

t—wd0 t—o

=lim-e™ —(—e‘“’) =—0+1=1

t—ow
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Cumulative Distribution Function Cdf:
Essentially the same computation as above showsthat F(x) =1—e . Hereisthe
graph of the cdf for X~exponential (0.5).

o o o
A o i -

o
v

As the coming examples will show, thisfarmulagreatly facilitates finding
exponential probabilities.

Expected Value
So, if X~exponential (1), then

2 t
E(X) = f XA€ ¥dx = l mJ' x1e **dx. Let u=x and dv = 1e **dx.
0 0

t
Then du = dx and v=—e**. So E(X) = !im(uv|; —jvduj
0

t t
= Iim[xeﬂx L _[ —e“dxj = Iim(te“ -0- [1 e D
t—o0 0 t—o0 /1 o

0
=lim te“—[ie"“—le"m} =Iim(te"“—1e‘“+l]
t—o ﬂ/ /’l t—»o0 /1 ﬂ,
1

Variance: By asimilar computation Var(X) = %
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ex1-Suppose the wait time X for service at the post office has an exponential distribution
with mean 3 minutes. If you enter the post office immediately behind another
customer, what is the probability you wait over 5 minutes?

Since E(X)=1/A=3 minutes, then A=1/3, so X~exponential (1/3). We want
P(X>5)=1-P(X <5 =1-F(5

1g 5
=1—[l—e 3 j=e 3~0.189

ex2-Under the same conditions, what is the probability of waiting between 2 and 4
minutes? Here we calculate

PR<X <4)=F(4-F(Q) =(1-e‘3j_£1_e-§j

4

2 _4
=e3-e3x0.250

Thetrick in the previous example of calculating P(a< X <b)=F(b)-F(a)
is quite common. It isthe reason the cdf isso useful in computing probabilities of
continuous random variables.
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Numerical Analysis

1.Roots of Single Equations

1.1 Fixed-Point Iteration Method:

The method requires oneinitial guess only.
» Procedure:
Consider the equation f(x) =0

1- Re-write the equation as x = g(x)

2- Assume an initial guessfor the root = X, and calculate the first
estimate of the root x; from: x;=g(Xo)

3- Repeat step 2 several times until convergenceis achieved, i.e.
Xi+1=g(X;) until €, < €5
Convergence Condition: [g(x)| < 1 in the region of interest.

Examplel: Use the fixed-point iteration method to estimate the root of
f(x)=e™-x with an accuracy of €= 5%. (The exact root is
0.56714329).

Solution:

The above iterative formula becomes

X1 = e

Performing the iterations, we get:

lter# Xis1 (i=0,1,2,............ ) Let xo=0
1 e’=1

2 el=0.367879

3 g 038787 = 0,692201

4 g% = 0.500473

5 e = 0.606244

10 g0°™114 = 0 564879
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Example2: Use the fixed-point iteration method to estimate one of the roots
of f(x)=x*-2x-3 with an accuracy of €= 5%. (The exact roots
are: x=-1 and x=3).

Solution:

Alternative (1): Re-write the equation in the form: x =+/2x+3, so that
g(X) =+2x+ 3. Let xo=0. and use the above iterative formulato generate
the following results:

Iter # X

1 1.73205
2 2.54246
6 2.99413

Note that the method here, converges to the root x=3.

Alternative (2): Re-write the equation in the form: x = iz , SO that
X_

3
a(x) ~%_2

For Xo=0, we get:

Iter # X

1 -1.50000
2 -0.85714
5 -1.00549

So that the method converges to theroot x = -1.
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Alternative (3): Re-write the equation in the form: x = x? — x—3, so that
g(x) = x? — x—3. Starting with xo = 0, we get:

Iter # X

1 -3.0000
2 9.00000
3 69.0000
4 4689.00

It is obvious that the method does not converge for the above choice of g(x).

L et us repeat the procedure with adifferent initial guess, say xo=2.9 whichis
very close to one of the root. We get:

Iter # X

1 2.51000
2 0.79010
5 90.6150
6 8117.47

It does not converge! Evenif you try Xo =-1.1 which is very close to the
other root, you will find out that the method diverges again!! The reason

will be clarified later.
2

Alternative (4): Re-write the equation in the form: x = X , SO that
x% -3 .
g(x) = . Starting with xo = 0, we get:
Iter # X
1 -1.50000
2 -0.37500
14 -0.66217
15 -1.28076

It is obvious that the method diverges for this choice of g(x). The same thing
will happen, even if we start with X, very close to one of the roots!!
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1.2The Newton-Raphson Metod :

» The method is based on the first order Taylor expansion, i.e.:

FO40) = £06) + F106) (%2 —%)
When we hit theroot, f(x_,)=0, then:

ax 1)
X|+1 XI f'(X,)
» Procedure:

4- Assume an initial guessfor the root = X and calculate the first

estimate of the root x; from: X, = X, — (%)

(%)
5- Repeat step 1 several times until convergence is achieved, i.e.
G —
=X — until €, < €5
X|+1 XI f,(xl)

The procedure isillustrated by the figure shown below.

Jo

X

Xz Xp
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Examplel: Use Newton-Raphson method to estimate the root of f(x)=e™-x.
Show all details of theiterations. Hint: the root is located between 0 and 1.

Example3:
Use the Newton- Raphson method ,with 1.5 as starting point ,to
find solution of f(x)= x-2sinx
f(x)=x-2sinx , Xxo=15, f’(X)=1-2cosx
_ f(x,) X, — 28N X,
T (k) % T 2cosx,
_2(sinx, — X, COSX,)
~ 1-2cosx,

X

RET

1.8956220

(5] Loosear

1.895494267033

[ 189404267033
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1.3 Secant Method:

The method is used instead of Newton-Raphson method when the derivative
of the function is difficult to obtain or if the slope of the function = 0 near
the root. The formula of the method is obtained by replacing the exact

f(x)—f(x_1)
X — X1

derivative in Newton-Raphson’s formula by so that

X — X
X=X — f(Xi)_ f(Xi—l) f(xi)

» Procedure:
6- Assume two initial guess xq and X to calculate the first estimate of the
root X, from:  — %1~ % f (x
2= o)~ f(xg) | Y
7- Repeat step 1 several times until convergenceis achieved, i.e.

= —— TN gy until €,< €
ST )~ Fh )

» Example3: Repeat Examples 1 using the secant method with the two
initial guesses xo = 0. and x; = 1.

Solution:
lter | Xia X Xi+1
1 1. 2. 0.6127
2 2. 0.6127 0.563838
3 0.48714 | 0.563838 | 0.56717

> Example4: Repeat Examples 3 using the secant method with the two
initial guesses xo = 2. and x; = 3.

Solution:
Iter Xia Xi Xi+1
2. 3. 0.2823
2 3. 0.2823 | 0.6570

S 0.5719 0.5671 | 0.5671
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2.Numerical Solution of Ordinary Differential Equations (ODE)
An eguation that consists of derivatives is called a differential equation.
Differential equations have applications in all areas of science and
engineering. Mathematical formulation of most of the physica and
engineering problems lead to differential equations. SO, it is important for
engineers and scientists to know how to set up differential equations and
solve them.
Differential equations are of two types

1) ordinary differential equation (ODE)

2) partia differential equations (PDE).
An ordinary differential equation is that in which all the derivatives are with
respect to a single independent variable. Examples of ordinary differential
equation include
d’y ,dy dy
1) v +2&+ y—O,&(O)—2,y(O)—4,

d®y _d?y _dy .
2) —2+3 +5—2 + y=sinx,
) dx®  dx?  dx y

d?y
dx?

©=12. 20 =2,y0)=4

Note: In this first part, we will see how to solve ODE of the form

dy

—_— = f , : 0 =

5= [y ¥0)=o

In another section, we will discuss how to solve higher order ordinary
differential equations or coupled (simultaneous) differential equations.

But first, How to write afirst order differential equation in the above form?
Example 1

dy —X
—+2y=13e 7,y(0
R y(0)
IS rewritten as

dy X
Y _13e*-2y,y(0)=5
™ y, ¥(0)

5

In this case
f(x,y)=13e* -2y
Example 2

e’ %‘l‘ x?y? =239n(3x), y(0)=5

IS rewritten as
‘ 2\ ,2 ) ‘ y2y,2
d_ 28n(30) =Xy ,y(0)=5 Inthiscase f(x,y):zsn(?’x) Xy
dx e¥ e’
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2.1. Euler’s Method
We will use Euler’ s method to solve an ODE under the form:

% = f(x,y), y(0)= yo

At x=0,wearegiventhevaueof y=y, Letuscal x=0as x,. Now
since we know the slope of ywith respect to x, thatis, f(x,y), thenat x=x,,
theslopeis f(xy,Ys). Both x,and y, are known from theinitial

conditiony(x) = Yo-

A

AN

_— Yy
Predicted

value

True value

Xo,Yo

)
B
a.
o
>
\ 4

v
x

Figure 1. Graphical interpretation of the first step of Euler’s method.

So the slope at X=X, as shown in the figure above
Y1— Yo

Slope ===

X1 — Xo
= f(xo')’o)
Thus
Yi= Yo+ F(%:¥o) (% = %)

If we consider x, — x,as astep sizeh, we get
Yi=Yot f(xo’yo) h.

We are able now to use the value of y; (an approximate value of yatx=x,)
to calculatey,, which isthe predicted value at x,,
Yo=Y+ f(xl’yl) h
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Xy =X +h
Based on the above equations, if we now know thevalueof y=y, at x;, then

Yo=Y+ f(x,y)h

Thisformulais known asthe Euler’ s method and is illustrated graphically in
Figure 2. In some books, it is aso called the Euler-Cauchy method.

»

Y 4

True Vaue

_| Vi+1, Predicted value

Yi A
- h ————

Step size

n
>

X

Xi Xi+1

Figure 2. General graphical interpretation of Euler’ s method.

Examplel:
Solve the differential equation ; %z 2x*+2y ,y(0)=1, by Euler Method

asofind Y on 0<x<0.3 using h=0.1

Euler Method; vy, =y, +hf(y,,x)

y(0.2) = y(0) + (0.D(2(0)* + 2(1))
=12
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Example2:

Use Euler's method with h=0.14 to obtain a numerical solution of
v =1+@—x)*
subject to y(1)=1.59 giving approximate values of y for 1< y <24

y()=159 |, h=0.14 L 1<x<2.4
y(n+1) =y, +h[1+(y, —x,)°]
Y, = Yo +0.14[1+(y, - Xo)z]

=1.59 + 0.14[1+ (1.50 —1)?] = 1.7787

| n x|y,
B 1.59
1.14 1.7787
1.28 1.9758
1.42 2.1836
1.56 2.4052
1.7 2.6453
o 184 2.9104
1.98 3.2108
s 212 3.5629
e 226 3.9944
2.4 45554
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3.Numerical Integration:
Redlistically, to solve most engineering problems we require a numerical

method, as the problem cannot be solved using an analytical technique.
What do we mean by an analytical technique? Analytical techniques are
based on algebraic methods. All the integration examples we have seen so
far have been solved using analytical techniques such as integration by parts,
substitution, partial fraction, etc. with these techniques you obtain an exact
answer.

What does a numerical method involve?

Numerical methods are based on arithmetic operations. This normally
involves calculations and generally with numerical methods your final result
IS an approximation. Here we will evaluate integrals with limits using
numerical methods such as the Trapezium rule and Simpson's rule.

3.1 Trapezium Rule

b
What is the area represented by j ydx , wherey = f (x) ?

¥ e

X

The area under the curve y= f(x) and the axis between a and b. We can

b
approximate this area, [ ydx, by blocks of atrapezia.

We add all the blocks together, such that:
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1
=§h[y° 2V, 42V, + e+ 2V, + Y]

Remember the area under the curve is represented by y= f(x) and so we

have the formula known as the trapezium rule:

b

1
Iydxzzh[yo+2yl+2y2+ ...... +2y,,+ Y. ]

Note: the rule contains an approximation sign ~ as we are finding an

approximate solution and not an exact solution.

Remember that y, represents the height of the given function at the point x,
thus vy, is called the ordinate. Hence the trapezium rule can also be written

as

Area

Wi dth of block [(first ordinate) + (last ordinate) + 2(other ordinates)].

1
Examplel: Evaluate j x*dx using the trapezium rule with 4 intervals.
0

b
Solution: Assume we are calculating j f (x)dx using the trapezium rule with

nintervals.

=0.25

Calculate uniform width: h= (b;a} _ (1;0) _

1
4
Cdculate function value f(x) (use width h=0.25for 4 intervals i.e.

n=0.1234 so going fromato b (0 to 1) we have x=0, 0.25, 0.5, 0.75 and 1):
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n |x Yn y=x*

0 [0 v |O

1 [0.25 |y: [0.0625

2 105 |y, |0.25 2(y1+Y,tY3) 1.75
3 [0.75 |Ys |0.5625 |Yo+2(Y1+Yo+Y3)+Ya 2.75
4 |1 |y |2 1/8[yo+2(y1tys+ys)tys] | 0.344

Calculate area using the Trapezium Rule:

N width of block[

Area (first ordinate) + (last ordinate) + 2(other ordi nates)]

Therefore

h 0.25 0.25 1
[xdx ~ T[y0 + 20y, + Y, + Ya)+ Va & T[0+1.75+1]z g[2.75]z 0.344
0

1
Example2: Evaluate Ie_x dXx ysi ng the trapezium rule with 4 intervals.
(0]}

Solution: Calculate uniform width: h=[ﬁ)=[1—0j 1

=—=0.25
n 4 4

Calculate function value f(x) (use width h=0.25for 4 intervals i.e.

n=01234):
nIx y, [z=x° |e°
0 |O Yo (O 1
1 [0.25 |y:1 |-0.063 [0.9394
2 (0.5 |y, |-0.25 ]0.7788 |2(y1+YotY3) 4.576
3 10.75 |yz [-0.563 |0.5698 |Yot2(Y1+Y21Y3)+Ya 5.944
4 |1 Ya |1 0.3679 |1/8[yo+2(y1+y2tys)+ya] | 0.743

Calculate area using the Trapezium Rule:

y width of block [

Area (first ordinate) + (last ordinate) + 2(other ordi nat&)]
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Therefore

1
je*xz dx ~ %[y0 +2(Y, + Y, + V) + V] = 0'—225[1+ 4.576 + 0.368] ~ =[5.944] ~ 0.743
[0]

|-

2
Example3: Evaluate j (x* +1)dx using the trapezium rule with 8 intervals.
0

Solution: Calculate uniformwidth: |, _ [b— a) _ (2;0j _ % _0.25
n

Calculate function value f(x) (use width h=0.25for 4 intervals i.e.

n=01234):

S 3
% Yn |X xX7+1

0] Yo |O 1
0.25 Jy1 |0.0156 |1.0156
0.5 [y2 [0.125 [1.125 |2(Y1tY2tY3+YatYstYety7) 38.5
0.75 |Ya [0.4219 |1.4219 |Yo+2(Y1tY2+Y3stYatYstYetY7)+Ys 48.5
Ya |1 2 1/8 (Yo+2(Y1+Y2tYs+tYatYs+Yety7)+Ys) [ 6.063
1.25 lys [1.9531 |2.9531
1.5 Ye |3.375 ]4.375
1.75 ly; |5.3594 |6.3594
2 Ys |8 9

O|IN|joO|O|d|W|IN|[F]|O]|S
=

Calculate area using the Trapezium Rule:
_ width of block

Area > [(first ordinate) + (last ordinate) + 2(other ordinates)]
Therefore
iexzdx ~ 0'7225[3/0 +2(Yy Yo+ Yo+ Ya+ Vo + Vo + Vr) + Ve
~ LZZ5 [1+38.5+9]~ %[48.5] ~ 6.063
TRY:

Evaluate zfsin 1,4x Using the trapezium rule with 4 intervals
5 2

T

2 : : : :
Evaluate [+cosxdx using the trapezium rule with 8 intervals
0
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3.2 Simpson's Rule

Here we state another numerical method used to find a value of an integra
with limits, known as Simpson's Rule.

The general form of the equation of the second -degree parabola connecting
the three point is

y=ax’+bx+c. (1)
The integration of this equation from -h to h gives the area contained in the

two strips shown under the parabola (Figure 1).

y
Ay (+1,¥m1)
A
/ _
/ y = f(x)

Y
X

-h 0 +h

Figure 1. Approximation of area under curve by a second-degree parabola

Hence
‘ ¢ ax® bx2 h
A 2rips = ff(x)dx = f (ax2+bx+c)dx:{?+7+cx (2)
-h -h B
Substituting the limits into Equation yields
_2_ .3 h 2
A 2 srips —gah +Zch=§(2ah +6C) 3
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The constant a and ¢ can be determined from the fact that points (-h, y;),
(0, yi+1), and (h, yi+») must all satisfy Equation (1). The substitution of these
three sets of coordinates into Equation (1) yields

yi = a(-h)* + b(-h) + ¢

Yis1 =C

Yira = &(h)* + b(h) + .

Solving these equations and the substitution of a and ¢ into Equation (3)
yields.

A 2iips = W3(yi + 4Yis1 +Yi+2) (4)
If the area under a curve is divided into N uniform strips ( N even) the

application of Equation (4) isresulting in Simpson’s one-third rule

b
h
jdezg[yo+4(yl+y3+y5+ ....... )+ 2(Y, + Y+ Y o) + Y, ] (5)

the number of blocks, which must be even.

Hence Simpson's Rule can be written as

Area~ g[(fi rst ordinate) + 4(sumof odd ordinates) + 2(sum of even ordinates) + (last ordi naIe)]

Note that to use this formula, the number of blocks n must be even.
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Examplel: Evaluate szdx using Simpson's rule with 4 intervals.

Solution:
Calculate uniform width: h:[b—a):(l—ojzlzo_zg,
4

n 4

Calculate function value f(x) (use width h=0.25for 4 intervals i.e.

n=01234):
n |[x Yn y=x"
0 |0 Yo |0 (Y1+Y3) 0.625
1 10.25 |y, [0.0625 |2y, 05
2 105 [y2 [0.25 [4(yi+Ys) 2.5
3 [0.75 |ys |0.5625 |Yot4(Y1tYs)+2Yo+Y, 4
4 |1 Ya |1 [1/4][1/3][yo+4(y1+Y3)+2y2tYa] [0.3333

Calculate area using Simpson’s Rule:

Therefore

1

j X3dx ~ %[yO +A(Y, + Vo) + 2(Y,) + V]~ %[m 4(0.063+ 0.563) + 2(0.25) +1]
-1

025
3

[0+ 4(0.625) + 2(0.25) + 1] ~ %[o +25+05+1]~ %[4] ~0.333
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7,
Example2: Evaluate J'«/cos(x)dx using Simpson's rule with 6 equal intervals.

Solution:

JT T
Cal cul ate uniform width: h=[b‘a): 2 .27

[ERN

Calculate function value f(x) (use width h:%for 6 intervals i.e

n=012,3456):

n [x Yn ly=cosx [y=Vcosx

0]0 Y0/1.000 |1.000 PI 3.142
1]0.262 |y, |0.966 [0.983 (Y1tystys) 2.333
210.523 |y.[0.866 [0.931  |(Y2+Ya) 1.638
3(0.785 |y;[0.707 ]0.841 4(y,tystys) 9.333
411.047 |y4|0.500 |0.707 2(Y2+Ya) 3.276
511.308 |Yy5[0.259 [0.509 Yota(Y1+Ys+Ys)+2(Yo+Ya)+Ys 13.638
6|1.57 |V6[0.001 [0.028  |(PI/36) [yo+4(y1+YstYs)+2(Y2+Ya)+Yel | 1.190

Calculate area using Simpson’s Rule:

b

h
_[dezg[yo+4(yl+y3+y5+ ....... )+ 2(Y, + Vs + Yo o) + Y, |

Therefore

N‘*‘

j\/cos(x Jox= 22 [y +A0, + Y3 + o)+ A, + Ya) + o)

= % [1+4(2.333) + 2(1.638) + 0.028] ~ % [13.638] ~1.190
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1
Example3: Evaluate j 3x% ¥ dx using Simpson's rule with 8 intervals.
0

Solution: Calculate uniform width: hz(b‘ajz(l‘oj:l

n 8 8

Calculate function value f(x) (use width h:%for 8 intervals i.e.

n=0.12345:6,7,8):

Calculate area using Simpson’s Rule:

Therefore

1

2
J‘3x3e’x dx ~
o]

wlol=

[Vo +4(Yy + Vs + Yo + ¥V7) + 2(Y, + Vs + Vo) + Ve

~ % [0+4(1.573) + 2(1.057) +1.104] ~ 2714 [9.512] ~ 0.396

53

n [x v, X7 z=-x" |e* 3x°e’
0|0 Yo |0.000 |0.000 {1.000 [0.000
1(0.125 |y, |0.002 |-0.016 |0.984 [0.006 |(y:+Ys+Ys+Y7) 1.573
210.25 |y2]0.016 [-0.063 |0.939 |0.044 |(Y2*Ya+Ye) 1.057
310.375 |y3]0.053 |-0.141 [0.869 |0.137 |4(y;+Y3tYs5tY7) 6.294
4105  |¥4|0.125 [-0.250 [0.779 [0.292 |2(Y2+Y4+Yse) 2.114
510.625 |Ys|0.244 |-0.391 [0.677 [0.496 |Yot4(Y1+Ys+YstY7)+2(Yo+YatYe)HYs 9.512
6[0.75 |Ys|0.422 |-0.563 [0.570 [0.721 |(1/24) [yo+4(y1tYs+Ystyr)+2(Yo+Ya+Ye)tYs]l | 0.396
710.875 |y; |0.670 |-0.766 [0.465 |0.935
8|1 Yg |1.000 |-1.000 {0.368 |1.104
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1
Example4: Evauate j x*dx using Simpson's rule with 4 intervals
-1

Solution:

Calculate uniform width: h:(b‘aj:(l“lj:“l:?:o.s
n 4 4 4

Cdculate function value f(x) (use width h=05for 4 intervas i.e.

n=01234):

n X Yn y=x"

0 -1 Yo -1 (Y1+Y3) 0
1 -0.5 Vi -0.125 |2y, 0
2 0 Y2 0 4(y,1+Ys) 0
3 0.5 Y3 0.125  [Yo+4(yitYs)+2YotY, 0
4 1 Ya 1 (1/12)(113)[yo+4(y1+y3)*+2Yo+Ya] 0

[ x®dx ~ 0:'35 [Vo + 4(Y, + Va) + 2(Y,) + Yu |~ O—'35[—1+ 4(—0.125 + 0.125) + 2(0) + 1]
0.5 0.5 0.5
~?[—1+4(0)+2(0)+1]~?[—1+1]~?[o]~o
TRY:

Evauate j x§ dx using Simpson's rule with 8 intervals.
o]

Evauate ?mdx using Simpson's rule with 6 intervals
0
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Complex Integration
O Inthischapter we define and study complex integration.
O Integration in the complex plane isimportant for two reasons:

® [n application there occur real integrals that can be evaluated by
complex integration, whereas the usua methods of real integral
fail.

® Derivatives of analytic functions can be established by complex
integration.

O In this chapter the basic concept of complex integra is introduced,
and the Cauchy’s integral theorem that is of most importance in
complex analysisis discussed.

O The Cauchy’s integral formula is addressed in Sec..3, and
derivatives of an analytic function are discussed in Sec..4.

1 Line Integral in the Complex Plane

O Asin read caculus we distinguish between definite integrals and
indefinite integrals.

O Anindefinite integral is a function whose derivative equals a given
analytic function in aregion.

O Complex definite integrals are called (complex) line integrals and
are written as

jc f(2)dz

where the integrand f (z) isintegrated over agiven curve C in
the complex plane, called the path of integration.

O We may express such acurve by a parametric representation
Z(t) = x(t) +iy(t) (agt<h),

which is useful for integration of non-analytic functions.

61



dpasin C¥la S ) ) BT (e

Definition of the Complex Line Integral

O Let C be asmooth curve with continuous and nonzero derivative
z=dz/dt, where

z(t) = x(t) +iy(t) (agt<h).
Alsolet f(z) beacontinuous function.
O Wenow subdividetheinterval a<t<b by points
t,(=a), t, -, t_,, t.(=h).

To this subdivision there corresponds a subdivision of C by
points

Zor Zy s Zygy Z(=2)
where z; =z(t,).

O On each portion of subdivison of C we choose an arbitrary point,
say, a point £, between z, and z, apoint ¢, between z and
z,, €C.

O Then we may form the sum

S, = Zn: f({n)AZ, where Az, =z -z .

m=1

Fig. 1 . Complex line integral
O The limit of the finite sum obtained as n— « is caled the line

integral (or ssimply the integral) of f(z) over the curve C and
written by

ims, [ f e
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or by
[[]Cf(z)dz
iIf C isaclosed path.

General Assumption. All paths of integration for complex line
integrals are assumed to be piecewise smooth, that is, they consist of
finitely many smooth curves.

Three Basic Properties Directly Implied by the Definition

1. Linearity. Integration isalinear operation.
[ (2 +k f,(D]dz=K |_f.(dz+k,[_f,(2)dz
2. Sense reversal property.
z %
Lo f(z)olz:—jZ f(2)dz.
3. Partitioning of path.

jc f (z)dz:_[cl f (z)o|z+jC f(2)dz.

Fig. 2 Partitioning of path [formula (6)]

Existence of the Complex Line Integral

THEOREM. If f(z) is continuous and C is at least piecewise
smooth, the complex lineintegral of f(z) existssuch that

[ 1 (z)dz:jcudx—jcvdyﬂUcudy+jcvdx]
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First Method: Indefinite Integration and Substitution of Limits

O This method is simpler than the next one, but is less generdl. It is
restricted to analytic functions.

THEOREM 1 (Indefinite integration of analytic functions)

Let f(z) be analytic in a simply connected domain D. Then there
exists an indefinite integral of f(z) in the doman D, that is, an
analytic function F(z) such that F'(z)= f(z), and for al paths in
D joining two points z, and z wehave

[ 1(@d 2F(z)-F(z).

Note. We can write z, and z instead of C, since we get the same
valuefor all pathsfrom z, to z.

EXAMPLE 1. f(2)=2~

) 1-+i
1+i

Zdz=17
0 3

:E(1+i)3:—g+gi.
.3 373

EXAMPLE 2. f(z)=cosz
[" cosziz=sinz", = 2isinhz = 23.007i.

EXAMPLE 3. f(2)=¢€"%

8-3ri 8-3ri ; ;
I eZ/ZdZ — 262/2 . — 2(e473m/2 . e4+7r|/2) —0.

8+ri

EXAMPLE 4. f(z):i. D is the complex plane without zero and

z
the real negative axis.
%: Lni —Ln(—|):|£—£—|£j:|7z
-z 2 2
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Second Method: Use of a Parametric Representation of the Path
O This method is not restricted to analytic functions but applies to any
continuous complex function.

THEOREM 2. (Integration by the use of the path)
Let C be piecewise smooth, represented by z=z(t), where a<t<h.

Alsolet f(z) becontinuouson C. Then

b .  dz
jc f (z)dz:J'a f[2(t)] 2(t)dt (z_ dtj.

PROOF. Let z=x+1y, then z=x+iy. We aso have dx=xdt and
dy=ydt. Thus

[ t[z0]2tdt = [ (u+iv)(x+ig)et
= [ (u+iv)(dx+idy)
= 'C[udx— vdy +i(udy + vdx) |
-C(udx—vdy)+ijc(udy+vdx)

= .'C f (2)dz

Steps in applying Theorem 2
(A) Representthepath C intheformof z(t) (a<t<b).

(B) Calculatethederivative z(t)=dz/dt.
(C) Substitute z(t) into f[z(t)].
(D) Integrate f[z(t)]z(t) over t from a to b.

EXAMPLE 5. A basic result: Integral of 1/z around the unit circle

Show that

Z_ 2
Y4

where C isthe unit circle, counter-clockwise.
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Solution. We may represent the unit circle C by
z(t) =cost +isint = €' (0<t<27).
Since

fz(t)]= % =e" and z(t)=ie",

we have

chd_zz = [ £ [20)] 2ttt = [ e Viedt = 2z

Caution! Theorem 1 cannot be applied to this problem, since the

N .
function = isnot anayticat z=0.
z

EXAMPLE 6. Integral of integer powers

Let f(z2)=(z—2z)" where m is an integer and z, a constant.
Integrate counter-clockwise around the circle C of radius p with
center at  z,.

Solution. We may represent C intheform
Z(t) = z, + p€' (0<t<27).
Then we have

m imt

F(2)=(2-2)"= p"e™, 2(t)=ipe'".

YA

—

x

Fig. 3  Path in Example 6
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Thus
fL(z-z)mdz=[" t[z0)]2t)dt= [ p"e™i pe'ct
i [T

If m=-1 then

2

0

2z . 1 .
7— mdz — | m+1 el(m+1)tdt — | m+1 e|(m+1)t
fl.(z—z)"dz=ip™| P i

m+1

_,0_ j (M T _ _
—m+1[e( 27 —1]=0.

If m=-1, then
[L(z-z)"dz=1p™[ "™ at = 27i.

Hence
(m=-1),

man 27
Dl(z—zo) dz—{ 0 (m=-1 and integer).

Dependence on path

O If we integrate a nonanalytic function f(z) from apoint z, to a
point z aong different paths, the integral will in general have
different values.

EXAMPLE 7. Integral of a nonanalytic function. Dependence on

path

Integrate f(z)=Rez=x from 0 to 1+2i (a) along C, (b) along
C, and C,. Non-analytic, need to check.

Solution. (a) Thepath C™ in the figure can be represented by
z(t)=t+2it (0<t<1) ==> f[z(t)]=t, z(t)=1+2i.
Thus

[ Reazdz= [ f[z(t)]2()dt =] 11+ 2i)ck = %(1+ %) :%+ .
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(b) From the figure, we have

C: z(t)=t,

z(t) =1, flz(t)]=x()=t (0<t<L]),
C,:

z(t) =1+it, z(t) =i, f[zt)]=x(t)=1 (0<t<2)
Thus

Rezdz=| Rezdz+| Rezdz= 1tdt+ 21-idt:1+2i.
JoRezdz=[ Rezz+ | Jott+ ],

1 x

Fig. 4  Paths in Example 7
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Curves and Regions in the Complex Plane

If x and y are real variables, then z=x+iy is complex variable. Curves

and regions in the complex plane may be represented by equations and
inequalitiesinvolving z.
Example

If z,=x,+iy, isafixed complex number, |z-z| is the distance between
zand z,, and lz-z|=r isthe equation of a circle centered at

z, withradiusr.

Ulmz

|z—z|<r describes any point inside the circle and specifies an open

Rez

circular disc.

|z—z,|<r includes points on the circle and is aclosed circular disc.

|z—z|>r is the region exterior to the circle. Similarly, r, <|z-z]|<r,

describes an open annulus

Imz

»

2
Rez
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2 Cauchy’s Integral Theorem
O Asdiscussed in Sec. 1, aline integral of a complex function f(2)

depends not merely on the endpoints of the path, but aso on the
choice of the path itself.

O However, if f(z) is analytic in a domain D and D is simply
connected, then the integral will not depend on path.

O This result follows from the famous Cauchy’s integral theorem,
the most important theorem in this chapter.

O To study Cauchy’s integra theorem we need the following two
concepts.
® A simple closed path is a closed path that does not intersect or

touch itself. For example, a circle is simple, but an 8-shaped

curveisnot.
Simple Simple Not simple Not simple

Fig. 5 Closed paths
® A simply connected domain D is a domain such that every
simple closed path in D enclosesonly pointsof D.

€200Q

Simply Simply Doubly Triply
connected connected connected connected

Fig. 6  Simply and multiply connected domains

® A doubly connected domain is a domain that can be made
simply connected by using asingle barrier line.

® A triply connected domain is a domain that can be made
simply connected by using two barrier lines.

O A simple closed path is sometimes called a contour and an integral
over such apath a contour integral.
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THEOREM 1. Cauchy’s integral theorem

If f(z) isanalytic in a ssimply connected domain D, then for every
simple closed path C in D,

gjc f(2)dz=0.
PROOF. We have

Ul f(2)dz= [ﬁc(udx—vdy) + i[ﬂc(udy+vdx).
Since f(2) is andytic in D, f'(z) exists in D.With assumption

that f'(z) is continuous, u and v have continuous partial
derivativesin D. Hence from Green's theorem, we have

L, (e~ vely) = jj(—@—a—“jd dy
ch(udy+vdx) jj[——a—y]d dy

where R is the region bounded by C. Since f(z) is andytic, the
Cauchy-Riemann equations u, =v,, u,=-Vv, hold. Finaly

Eﬁc f(2)dz=0.

-——
-
”

-
--------
-

Fig. 7  Cauchy’s integral theorem

EXAMPLE 1. No singularities (Entire function)
chezdz:o, [ﬁccoszdz= 0, [ﬁcz”dz:o (n=0,1, 2,--°)

for any simply closed path.
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EXAMPLE 2. Singularities outside contour

chseczdz:o, [& dz =0

Z2+4
where C istheunit circle.

secz=1/cosz is not anaytic a z=+7/2, +37/2,---, but al these
pointslie outside C.

1/(z> +4) is not analytic at z=+2i, but these points also lie outside
C.

EXAMPLE 3. Non-analytic function

fLzdz=] ettt = 277i % 0
0
where C istheunit circle.

EXAMPLE 4. Analyticity sufficient, not necessary
dz_

Z2

0

where C istheunit circle. (See Example 6in Sec. 14.1)

==>The conditionthat f(z) beanalyticin D issufficient rather than
necessary for [ch f(2)dz=0.

EXAMPLE 5. Simple connectedness essential
Eﬁcldz =271 20
z
for counter-clockwise integration around the unit circle.

C liesin the annulus % <|7< g where 1 is analytic, but this domain
z
Isnot ssimply connected, so that Cauchy’s theorem cannot be applied.
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THEOREM 2 (Independence of path)

If f(z) isanalyticin asimply connected domain D, then theintegra
of f(z) isindependent of pathin D.

PROOF. Let z and z, be any points in D. Integrate f(z) as

shown in Fig. 332, over a simple closed path. Then from Cauchy’s
integral theorem, we have

jq fdz+ jc* fdz=0, thus jcl fdz=— jc* fdz.

Also
jc* fdz=— jc fdz

jcl f(2)dz= jc f(2)dz

Finally

* 1
CZ

Fig. 8 Formula (2) Fig. . 9 Formula 2"

Principle of Deformation of Path
As long as deforming path contains only points at which f(z) is

analytic, the integral retains the same value.

EXAMPLE 6. A basic result: Integral of integer powers
From Example 6 of Sec. 14.1 and the principle of deformation of path it
follows that

wo f2ri (m=-),
ch(z_zo) dz-{ 0 (m=-1 and integer)

for any counter-clockwise integration around any simple closed path
containing z, in its interior.
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THEOREM 3. (Existence of an indefinite integral)

If f(z) isanalyticinasimply connected domain D, then there exists
an indefinite integral F(z) of f(z) in D, which is analytic in D,
and for al pathsin D joining any two points z, and z in D, the
integral of D can be evaluated by

[[1@d zF@)-F@z) [F@=1@]

Cauchy’s Theorem for Multiply Connected Domains

If a function f(z) is analytic in any domain D" that contains a
doubly connected domain D and its boundary curves, then

[qu f (z)dz:[fL f (2)dz

where both integrals are taken counter-clockwise (or both clockwise).

Fig. 10 Paths in (5)

PROOF. By two cuts C, and C, we cut D into two simply
connected domains D, and D,, where f(z) isanalytic.

By Cauchy’s theorem the integral over the entire boundary of D, is
zero.

The integral over the entire boundary of D, isalso zero, and thus their
sumis zero.

Theintegrals over thecuts C, and C, cancel each other. Hence

Su m:mqf(z)dz+ﬂjc, f(z)dz:mqf(z)dz—[ﬁc f(2)dz=0
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Finally
[jjq f (z)o|z=[jjc f (2)dz.

For atriply connected domain, we have

gjq f (z)dz:[ﬂc f(z)dz+[ﬂﬂ f(2)dz

where C, and C; areinside C, and al the paths have the same direction.

Fig. 11 Doubly connected domain

Fig. 12 Triply connected domain

3 Cauchy’s Integral Formula

O The most important consequence of Cauchy's integral theorem is
Cauchy’s integral formula, which is useful for evaluating integrals.

THEOREM 1. (Cauchy’s integral formula)

Let f(z) beanalytic in a simply connected domain D. Then for any

point z, in D and any simple closed path C in D that encloses
z,, we have

[ﬁczf_(zz)o dz=27i - f(z,)

with the integration being taken counter-clockwise.
Alternatively

-
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EXAMPLE 1. Cauchy’s integral formula

C dzori-e =2xi € ~46.4268
z—2 7=2

for any contour enclosing z, = 2.

EXAMPLE 2. Cauchy’s integral formula

*_6 17-3 |
[ﬂ:;z_idz:ﬂlzz ¥ dz:27z|(%23—3)

z=i/2

: Y
for any contour enclosing z=1i.

EXAMPLE 3. Integration around different contours
Integrate

Z+1  Z7+1

Z2-1 (z+1)(z-1)

9(2) =

counter-clockwise around each of the four circles.

Solution. Consider g(z) isnot analyticat z=+1.

() Thecircle |z-1/=1 enclosesthepoint z,=1. Hence

g(Z)_22+1_22+1 1 f(Z)_zz+1
ZZ-1 z+1z-1 z+1’
Thus
Z+1, e f(2) . . .
Ul 22_1dz_gjczdz_2m Q)
2
=27 Z+1 = 27i.
z+1|

(b) givesthe same as (a) by the principle of deformation of path.

(c) We have

76



Apesdi ¥l B p | ) N1 e

ZZ+1 1 Z+1
Z) = — ==> f(2)= .
9(2)= z-1z+1 (2)= z-1
Thus

Z+1 f(2) .
dz=[|]| —~%dz=2xi-f(-1
[ﬂz— mcz+l -1

2

_oni 2L o

Z- z=-1

(d) gives 0. Why?

Fig. 12 Example 3

EXAMPLE 4. Use of partial fractions

Integrate  g(z)=(z*-1)'tanz aound the circle C: |Z=3/2
(counter-clockwise).

Solution. tanz is not analytic at +7/2, +£37/2,---, but al these
points are outside the contour.

(z2-1)" isnot anadyticat z=+1. Using partia fraction, we have

1 i1 1
z2-1 2\z-1 z+1)
From this we obtain

L= e f, |

27z| [

tan1—tan(—1)] = 27i - tanl~ 9.785i.
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4 Derivatives of Analytic Functions

O In this section we use Cauchy’s integral formula to show that
complex analytic functions have derivatives of all orders.

O Indeed, if a real function is once differentiable, nothing follows
about the existence of second or higher derivatives.

THEOREM 1. (Derivatives of an analytic function)

If f(z) is analytic in a domain D, then it has derivatives of all
orders in D, which are also analytic functions. The values of these
derivatives at apoint z, aregiven by the formulas

f(2)
'z )_Zm[ﬁ:(z 792

2! f(z)
r (ZO)_Zm[EL(z z,)° az

(n) f(2)
f(z, )‘z.fﬂc(z w02

C isany simple closed path in D and we integrate counter-clockwise
around C.
EXAMPLE 1. Evaluation of line integrals

ch cosz s dz=27i-(cosz)| . =-2ri-sinzi
(z— i) 2=

and in general

=2rsinhrx
for any contour enclosing the point z, =i (counter-clockwise).

EXAMPLE 2.
4 2 :
Dl—z 32_ :6dz_@(z -3 +6)"
(z+1) 2! S
=7i(122° -6) =-18ri

for any contour enclosing the point —i (counter-clockwise).
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EXAMPLE 3.

Ul - 262 dz=2ri 2e '
(z-D)(z°+9 z7+4)|
o (2 +4) - e222|
(2 + 4)?

~ 2.050i

z=1

for any contour for which 1 lies inside and +2i lie outside (counter-
clockwise).
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5 Residues

A point z, iscalled asingular point of afunction f if f failstobeanayticat z, butis
analytic at some point in every neighborhood of z,.

Definition 1. A singular point z, issaid to be isolated if, in addition, thereis a
deleted neighborhood 0 <| z— z, |< ¢ of z, throughout which f isanalytic.

Example 1. The function
z+1

2*(2° +1)
has the three isolated singular points z=0 and z=+i.

5.1 Cauchy’s Residue Theorem

Theorem (Cauchy). Let C be a simple closed contour, described in the positive sense. If
afunction f isanalyticinside and on C except for a finite number of singular points

z,(k=12,...,n) inside C, then

jcf(z)dz=2miRezsf(z).

1 T

jc f(9dz=27iResf(2) (k=12...,n)

Fig.1

1.Residues at Simple pole:

resf (2, =liml(z-2,) 1(2)]

2.Residues at multiple pole:

1 [dm™ .
resf (Z)z:zo = (m—l)!lzl_rz?|:dzm_l (Z_ZO) f(Z):|

80



dputia Gl AN ab) ) BN e

Example 1: Evaluate j 2 4z around thecircle | z|= 2, described

cz(z- 1)
counterclockwise

jc f(2)dz=27(c, +b,)

¢, =liml(z-2)f(2)]

5z-2
-[C z(z—-1

dz =27 (c, +b ;) =10

Example2: Evaluate k%dz around the
Z+ Z

counterclockwise

jc f(2)dz=27(c, +b,)

r&cf(z)z_4—||m{ >0z }:-8
(z-D°

resf (2),, (211)| im L;j“(z 1?2 f(z)}

| f(2)0z=21(8-8)=0

Co

1 yAl 1., . :
2£z—j/2 2= A i/8) =

Example 3

z-1=1.
Solution

The integrand has singular pointsat z=+1. We have ji
2 (z-1(z+1])
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Only the singular point z=+1 lieswithin the closed contour of integration, so we let
z,=+1and f(2)=1/(z+1):

j dz _J-f(z)d

Now f(z,)=1/(1+1)=1/2. Thus

f(9dz . I
l m— dz =27 x (1/2) = 7

Example 4

Integrate the function J' 5 dz where C is any closed contour enclosing the point
C

z=-1.
Solution

We can write thisin the form

I f(2) _dz

C (Z_ Zo)

where

f(2=2°, z,=-1

The function f(z) isanalytic on and inside the contour C so we can apply the formula

RGP T

t(z-2,) n dz

Setting n = 2 puts the formulain the form we require:
: 2

[ERICE

t(z-2,) 2 dz

Now

d? d?f

?(23) :62—) 22 :—6
zy=-1

sothatj (2 dz = —67

(z-2,)
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1

: dz - 2=
Example 5 : Evaluate £(2+1)2(Z+3) C: [z-2=4
Multiple pole at z=-1
1=27]* Res,=. 1(f(2))
Res (f(z))——l [£(2+1)2;]
= (- T dz*? (z+1)?%(z+3)
1 -1_-1

_llmz—kl[E (Z+3)]=T __ﬂ]

Problem 1

(1) Under what conditionsis Cauchy's Integral Formulavalid?

(i)  Evauatetheintegra jﬂdz whereCis|4=1 [ANSWER: 7]

(iii)  Evauatetheintegral j— dz counterclockwise around the triangle with
J

vertices z=+1, z= 2] and z=-1. Draw thetrianglein the complex plane and
show clearly the positions of the singular point(s) of theintegrand. [ANSWER:

— 27 tanh(1) = —4.785]
2z+1
2’ +z

(iv)  Evaluatetheintegral j dz where Cis

@ |z|:§, (b) ‘2—5

(v)  Evaduatetheintegral I Ze 1dz where Cis|4=2 [ANSWER: 5.287]]
127+

Problem 2
[Formulas for derivatives of an analytic function]

4
Show that the three integrals _[ 2—2 z, CO“Z’Z : 3
= (z-3j)  Z 2z

circle, are dl zero
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