U

(5 i Azl
il g ST At 4418

Circuit Design with VHDL 6

Textbook: Volnei A. Pedroni

Submitted By: Hussein Aideen

I

- VHDL> Concurrent Code

°* COMPONENT:

* A COMPONENT is simply a piece of conventional code (that
is, LIBRARY declarations ENTITY ARCHITECTURE).
However, by declaring such code as being a COMPONENT,
it can then be used within another circuit, thus allowing the
construction of hierarchical designs.

e A COMPONENT is also another way of partitioning a code and

providing code sharing and code reuse.

- VHDL> Concurrent Code

* COMPONENT:
COMPONENT declaration:

COMPONENT component name IS
PORT (
port name : signal mode signal type;
port name : signal mode signal type;
cee);

END COMPONENT;

COMPONENT instantiation:

label: component name PORT MAP (port list);

- VHDL> Concurrent Code

°* COMPONENT:

e Example: invertor as component

————— COMPONENT declaration: —--—————————-
COMPONENT inverter IS

PORT (a: IN STD LOGIC; b: OUT STD LOGIC);
END COMPONENT;

----- COMPONENT instantiation: —-—————————-—
Ul: inverter PORT MAP (X, V);

- VHDL> Concurrent Code

°* COMPONENT:
e PORT MAP

® There are two ways to map the PORTS of a COMPONENT
during its instantiation: positional mapping and nominal

mapping. Let us consider the following example:

Ul: inverter PORT MAP (X, V);

Ul: inverter PORT MAP (x=>a, y=>b);

U2: my circuit PORT MAP (x=>a, y=>b, w=>OPEN, z=>d);

- /

- VHDL> Concurrent Code

®* The GENERATE statement:
* allows a section of code to be repeated a number of times (loop).
® GENERATE must be labeled.

® limits of the range must be static.

label: FOR identifier IN range GENERATE
(concurrent assignments)

END GENERATE;

- VHDL> Concurrent Code

* [F/GENERATE: (ELSE is not allowed).
¢ [F/GENERATE can be nested inside FOR/GENERATE, the

opposite can also be done.

labell: FOR identifier IN range GENERATE

label2: IF condition GENERATE
(concurrent assignments)
END GENERATE;

END GENERATE;

: VHDL> Concurrent Code

* Example:

SIGNAL x: BIT VECTOR (7 DOWNTO 0);
SIGNAL y: BIT VECTOR (15 DOWNTO 0);
SIGNAL z: BIT VECTOR (7 DOWNTO 0);

Gl: FOR i IN x'RANGE GENERATE
z(i) <= x(i) AND y(i+8);
END GENERATE;

- VHDL> Concurrent Code

o Example: N-bit counter

20

¢!

21

D Q
CLE &
NGO
I=H-1
QN-1

S

- VHDL> Concurrent Code

entity COUNTER_BIN_N is
generic (N : Integer := 4);
port (Q : out Bit_Vector (0 to N-1);
IN_1 : in Bit);
end entity COUNTER_BIN_N;

* Example:

architecture BEH of COUNTER_BIN_N is
component D_FF

port(D, CLK_S :in BIT; Q, NQ : out BIT);

end component D_FF;
signal S : BIT_VECTOR(0 to N);

begin
S(0) <=1IN_1;
G_1:forlin 0O to N-1 generate
D_Flip_Flop :
D_FF port map

(S(1+1), S(1), Q(l), S(1+1));
end generate;
end architecture BEH:;

- VHDL> Concurrent Code

e BLOCK:

* Simple BLOCK
° locally partitioning the code.

® turning the overall code more readable (long codes).

® can be nested inside another BLOCK.

label: BLOCK

[declarative part]
BEGIN

(concurrent statements)
END BLOCE label:

g VHDL> Concurrent Code

o Simple BLOCK: ARCHITECTURE example ...

BEGIN

blockl: BLOCEK
BEGIN

END BLOCEK blockl

blockZ: BLOCEK
BEGIN

END BLOCE blockZ;

END example;

g VHDL> Concurrent Code

o Simple BLOCK:

nested|

labell: BLOCK
[declarative part of top block]
BEGIN
[concurrent statements of top block]
labelZ: BLOCK
[declarative part nested block]
BEGIN
(concurrent statements of nested block)
END BLOCEKE label?l;
[more concurrent statements of top block]
END BLOCE labell;

- VHDL> Concurrent Code

® Guarded BLOCK:

® includes an additional expression, called guard

expression.

° A guarded statement executed only when the guard

expression is TRUE.

o sequential circuits can be constructed.

label: BLOCK (guard expression)
[declarative part]
BEGIN

(concurrent guarded and unguarded statements)
END BLOCK label:;

g VHDL> Concurrent Code

¢ DFF with Guarded BLOCK:

LIBRARY leee;

USE 1eee.std logic 1164.all;
ENTITY dffwGBlock IS

PORT (d, clk, rst: IN STD LOGIC;
q: OUT STD LOGIC):;

END dffwGBlock:

ARCHITECTURE dff OF dffwGBlock IS
BEGIN

pbl: BLOCK (clk'EVENT AND clk='1")
BEGIN

q <= GUARDED '0' WHEN rst='1l' ELSE d;
END BLOCEK bl;

END dff;

