U

(5 i Azl
il g ST At 4418

Circuit Design with VHDL 11

Textbook: Volnei A. Pedroni

Submitted By: Hussein Aideen

I

- VHDL> State Machines

® Finite state machines (FSM) constitute a special modeling

technique for sequential logic circuits.

® helptul in the design of certain types of systems, (digital

controllers, counters, for example).

- VHDL> State Machines

° Mealy machine: the output of the machine depends not only on

the present state but also on the current innut.

d=1/x=b

d=1/x=a

® Moore machine: the output depends only on the current state.

stateB

{x=b)

g VHDL> State Machines

Combinational
logic

nx_state

Sequential
logic

Figure 8.1
Mealy (Moore) state machine diagram.

- VHDL> State Machines

Design Style H1:

® the design of the lower section is completely separated from that

of the upper section.

LIBRARY ieee;

USE ieee.std logic 1164.all;

ENTITY <entity name> IS
PORT (input: IN <data type>;

reset, clock: IN STD LOGIC;
output: OUT <data_ type>);

END <entity name>;

ARCHITECTURE <arch name> OF <entity name> IS
TYPE state IS (state0, statel, stateZ, state3, ...);
SIGNAL pr state, nx state: state;

BEGIN

: VHDL> State Machines

Design of the Lower (Sequential) Section:

PROCESS (reset, clock)
BEGIN
IF (reset='l"') THEN
pr_state <= statel;
ELSIF (clock'EVENT AND clock='1l') THEN
pr_state <= nx state;
END IF;
END PROCESS;

- VHDL> State Machines

PROCESS (input, pr_state)
BEGIN
CASE pr_state IS
WHEN statel =>
IF (input = ...) THEN
output <= <value>;
nx state <= statel;
ELSE ...
END IF;
WHEN statel =>
IF (input = ...) THEN
output <= <value>;

nx_state <= statel;

N

Design of the Upper (Combinational) Section:

ELSE ...
END IF;
WHEN state2 =>
IF (input = ...) THEN
output <= <value>:
nx_state <= state3;
ELSE ...
END IF;
END CASE;
END PROCESS;
END <arch name>;

: VHDL> State Machines

Example
Example 8.2: Simple FSM #1

Figure 8.4 shows the states diagram of a very simple FSM. The system has two states
(stateA and stateB), and must change from one to the other every time d = °1" is
received. The desired output is x = a when the machine is in stateA, or x = b when in
stateB. The initial (reset) state is stateA.

a —p
b —» FSM - X state A atdteB
d=0 (x=a) f x=h) d=0
d —»
7
clk st
Figure 8.4

State machine of example 8.1.

- VHDL> State Machines

2

7

8

9

10
11
12
13
14
15
16
17
18
19

-

ENTITY simple fsm IS

PORT (a, b, d, clk, rst: IN BIT;
x: OUT BIT);

END simple fsm;

ARCHITECTURE simple fsm OF simple fsm IS
TYPE state IS (statehA, stateB);
SIGNAL pr state, nx state: state;

BEGIN
————— Lower section: -—-——-—————————————-
PROCESS (rst, clk)

BEGIN
IF (rst='1"') THEN
pr_state <= statel;
ELSIF (clk'EVENT AND clk='l"') THEN
pr_state <= nx state;
END IF;
END PROCESS;

: VHDL> State Machines

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

—————————— Upper section: --————————————————
PROCESS (a, b, d, pr state)
BEGIN
CASE pr_ state IS
WHEN statelA =>
X <= aj;
IF (d='1l') THEN nx state <= stateB;
ELSE nx_state <= stateA;
END IF;
WHEN stateB =>
X <= b3
IF (d='1"') THEN nx state <= stateA;
ELSE nx state <= stateB;
END IF;
END CASE;
END PROCESS;

36 END simple fsm;

- VHDL> State Machines

Design Style #2 (Stored Output):

* In #1: Notice that in this case, if it is a Mealy machine (one whose
output is dependent on the current input), the output might

change when the input changes (asynchronous output).

® To make Mealy machines synchronous.

- VHDL> State Machines

Design Style #2 (Stored Output):

LIBRARY ieee;

USE ieee.std logic_1164.all;

ENTITY <ent name> IS
PORT (input: IN <data_type>;

reset, clock: IN STD LOGIC;
output: OUT <data type>);

END <ent name>;

ARCHITECTURE <arch name> OF <ent name> IS
TYPE states IS (statel, statel, state2, state3d, ...);
SIGNAL pr_state, nx state: states;
SIGNAL temp: <data_type>;

BEGIN
—————————— Lower section: —-eecccecccccccccc e e ————
PROCESS (reset, clock)

BEGIN
IF (reset='1"') THEN
pr_state <= state0;
ELSIF (clock'EVENT AND clock='1l"'") THEN
output <= temp;
pr_state <= nx state;
END IF;
END PROCESS:

- VHDL> State Machines

Desion Style #2 (Stored Output):

---------- Upper sectlon: —=—=——cccmmcccccccc e c— e
PROCESS (pr_state)
BEGIN
CASE pr_state IS
WHEN statel =>
temp <= <value>;
IF (condition) THEN nx state <= statel;
END IF;
WHEN statel =>
temp <= <value>;
IF (condition) THEN nx state <= statel;
END IF;
WHEN state2 =>
temp <= <value>:
IF (condition) THEN nx state <= state3;
END IF;
END CASE;
END PROCESS;
END <arch name>;

