U

I

(5 i Azl
il g ST At 4418

Circuit Design with VHDL

Textbook: Volnei A. Pedroni

Submitted By: Hussein Aideen

- VHDL> Introduction

® VHDL stands for VHSIC Hardware Description Language.

e VHSIC is itself an abbreviation for Very High Speed Integrated

Circuits.

® Describes the behavior of an electronic circuit or system, from

which the physical circuit or system can then be implemented.

e first HDL standardized, IEEE 1076 standard.

- VHDL> Introduction

® Once the VHDL code has been written:

® used either to implement the circuit in a programmable device
(from Altera, Xilinx, Atmel, etc.)

® or can be submitted to a foundry for fabrication of an ASIC chip.

® Currently, many complex commercial chips (microcontrollers,

for example) are designed using such an approach.

® its statements are concurrent (parallel).

- VHDL> Design Flow

VHDL entry <
(RTL level) <
Compilation
-
Netlist
(Gate level)
Synthesis .< Optimization
Optimized netlist
(Gate level) Simulation
.
Place & Route
Physical
device [Simulation

- VHDL> Design Flow

ENTITY full adder IS
PORT (a, b, cin: IN BIT;
g, cout: OUT BIT);

END full adder;
ARCHITECTURE dataflow OF full adder IS
EEGIN

8 <= a XOR b XOR cin;

cout <= (a AND b) OR (a AND cin) OR

(b AND cin) ;

END dataflow:

: VHDL> Code Structure

LIBRARY -\’
declarations
Basic
ENTITY VHDL code
ARCHITECTURE
_

Figure 2.1
Fundamental sections of a basic VHDL code.

: VHDL> Code Structure

LIBRARY declarations:
A LIBRARY is a collection of commonly used pieces of code. Placing such

pieces inside a library allows them to be reused or shared by other designs.

LIBRARY library name;
USE library name.package name.package parts;

LIERARY 1esee; —— A semi-colon (;) indicates
USE ieee.std logic 1lé4.all; -- the end of a statement or
LIBERARY std; —— declaration, while a double
USE std.standard.all; —— dash (——) 1ndicates a comment.

LIBEARY work;
USE work.all;

library UNISIM;
use UNISIM.VComponents.all;

-

g VHDL> Code Structure

LIBRARY
PACKAGE
FUNCTIONS
PROCEDURES
COMPONENTS
CONSTANTS
TYPES

: VHDL> Code Structure

An ENTITY is a list with specifications of all input and output pins
(PORTY) of the circuit. Its syntax is shown below.

ENTITY entity name IS
PORT (
port name : signal mode signal type;
port name : signal mode signal type;

III];
END entity name;

ENTITY nand gate IS entity fulladderl is
PORT (a, b . IN BIT: Port (a : in STD LOGIC;
. - GUTFE.IT]- b : in STD LOGIC;

- f cin : in STD LOGIC;
END nand gate; s : out STD LOGIC;

cout : out ETD LOGIC);
end fulladderl;

e

VHDL> Code Structure

-

ENTITY entity name IS
PORT (

cee)

END entity name;

port name : signal mode signal type;
port name : signal mode signal type;

® The mode of the signal can be:
e IN, OUT, INOUT, or BUFFER.
® IN and OUT are truly unidirectional pins,

e INOUT is bidirectional.
* BUFFER, output signal must read internally.

IN —»

Circuit

— OUT

4> INOUT

;IFBUﬂﬁR

® The type of the signal can be BIT, STD_LOGIC, INTEGER, etc.

(discussed later).

® Finally, the name any name, except VHDL reserved words

e

VHDL> Code Structure

-

® The ARCHITECTURE is a description of how the circuit should

behave (function). Its syntax is the following:

ARCHITECTURE architecture name OF entity name IS
[declarations] B B

BEGIN
(code)

END architecture name;

® declarative part (optional), where signals and constants are

declared.

* the code part (from BEGIN down)

e
VHDL> Introductory Examples

® Process

® VHDL is inherently concurrent (contrary to regular computer

programs, which are sequential),

® so to implement any clocked circuit (tlip-flops, for example) we
have to “force” VHDL to be sequential.

PROCESS |)

BEGIN

(sequential code)

END PROCESS;

e

VHDL> Introductory Examples

e DFF

® Exam: Q1) Write aVHDL code to synthesis the following circuit
(DFF) shown in figure below:

DFF

clk »—>

st —p——

VHDL> Introductory Examples

e DFF

entity dif is
port(
data :in std logic; -- Data input
clk :in std logic:-- Clock input
q outstd logic -- Q output
):

end entity;

architecture rtl of dff is
begin
process (clk) begin
if (rising_edge(clk)) then

q <=data;
end if;

end process;
end architecture:

e

VHDL> Introductory Examples

e DFF with Asynchronous Reset

® Exam: Q1) Write a VHDL code to synthesis the following circuit
(DFF with Asynchronous Reset) shown in figure below:

DFF

clk »—>

st —p——

e

VHDL> Introductory Examples

2 LIBRARY ieee;

3 USE ieee.std logic 11e4.all;

4d - —0—-—-—-——-—— - - - —_— . — —
5> ENTITY dff IS

e PORT (d, clk, rst: IN STD LOGIC;

7 g: OUT STD LOGIC):;

8 END dff;

I e e ——

10 ARCHITECTURE behawvior OF dff IS
11 BEGIN

12 PROCESS (rst, clk)

13 BEGIN

14 IF (rst="'1l"'") THEN

15 g <= '0';

1¢ ELSIF (clk'EVENT AND clk='1l'") THEN
17 g <= d;

18 END IF;

1% END PROCESS;

20 END behavior;

—»— (

VHDL> J-k FF

entity JK_FF is
port(J.K:in std logic;
Reset:in std logic:
Clock: in std logic:
Qutput: outstd logic);
end JK FF;

architecture Behavioralof JK FFis

signal temp: std_logic;
begin

process (Clock)

begin

if rising_edge(Clock) then
if Reset='1"then
temp <="0';

elsif (J='0' and K='0") then
temp <= temp:
elsif (J='0' and K='1") then
temp <="0";
elsif (J='1' and K='0") then
temp <="1";
elsif (J='1' and K='1") then
temp <=not (temp);
end if;
end if;
end process;
Output <= temp;
end Behavioral;

VHDL> T FF

architecture rtl of tff async reset is
signal t :std logic;
begin
process (clk, reset) begin
if (reset ='0") then
t<="0"
elsif (rising edge(clk)) then
<= nott;
end 1if;
end process;
qQ==1
end architecture;

