U

(5 i Azl
il g ST At 4418

Circuit Design with VHDL 5

Textbook: Volnei A. Pedroni

Submitted By: Hussein Aideen

I

- VHDL> Concurrent & sequential Code

o Example: Write VHDL code to implement the following circuit.

D Q Output
C —
, Inverted
D — Yz Clock = Q Output

- VHDL> Concurrent & sequential Code

® Concurrent Code:
e WHEN,
e GENERATE,
* Assignments using only operators (AND, NOT, +, *,ll, etc.),
® A special kind of assignment, called BLOCK.

e Sequential Code:

e PROCESSES, FUNCTIONS, PROCEDURES.

o IF, WAIT, CASE, and LOOP.
e VARIABLES.

e

VHDL>Combinational vs Sequential Logic

e Combinational Logic: output depends solely on the current

inputs)

INPUL mpp

Combinational
Logic

== Output

» sequential logic: output depend on previous

iInputs.

INput sl

Combinational

Logic

output

present
state Storage

Elements

next
state

4 .
VHDL> Concurrent versus Sequential

® VHDL code is inherently concurrent (parallel).

® Only statements placed inside a PROCESS, FUNCTION, or
PROCEDURE are sequential.

® the block, as a whole, is concurrent with any other (external)

statements.

® (Concurrent code is also called dataflow code.

® Concurrent: The order does not matter.

- VHDL> Concurrent Code

® In summary, in concurrent code the following can be used:

® Operators;

® The WHEN statement (WHEN/ELSE or WITH/SELECT/WHEN);
e The GENERATE statement;
® The BLOCK statement.

- VHDL> Concurrent Code

° Operators:

Table 5.1
Operators.
Operator type Operators Data types
Logical NOT, AND, NAND, BIT, BIT_VECTOR,
OR, NOR, XOR, XNOR STD_LOGIC, STD_LOGIC_VECTOR,
STD_ULOGIC, STD_ULOGIC_VECTOR
Arithmetic +, —, %, [, ** INTEGER, SIGNED, UNSIGNED
(mod, rem, abs)
Comparison =, /= <, >, <= >= All above
Shaft sll, srl, sla, sra, rol, ror BIT_ VECTOR
Concatenation &, (,,,) Same as for logical operators, plus SIGNED and

UNSIGNED

g VHDL> Concurrent Code

. qQ— |
* Multiplexer #1
1 b —
| MUX
2 LIBRARY 1leee; C —
3 USE leee.std logic 1164.all;
4 I R d—
ENTITY mux IS s1 <O

PORT (a, b, ¢, d, s0, sl: IN STD LOGIC;
y: OUT STD_LDGIC]:
END mux;

WO o =J a0

10 ARCHITECTURE pure logic OF mux IS

11 BEGIN

12 y <= (a AND NOT sl1 AND NOT s0) OR

13 (b AND NOT s1 AND s0) OR

14 (c AND 51 AND NOT s0) OR

15 (d AND 51 AND s0);

16 END pure logic;

O

: VHDL> Concurrent Code

* WHEN (Simple and Selected)

WHEN | ELSE:

assignment WHEN condition ELSE
assignment WHEN condition ELSE

-
- = F

WITH |/ SELECT /| WHEN:

WITH identifier SELECT
assignment WHEN value,
assignment WHEN value,

.
- & F

- VHDL> Concurrent Code

® Whenever WITH / SELECT / WHEN is used:

* all permutations must be tested,
* keyword OTHERS is often useful.

* keyword UNAFFECTED,

® which should be used when no action is to take place.

* “WHEN value” can indeed take up three forms:

WHEN value -- single wvalue

WHEN valuel to value2 -- range, for enumerated data types
-- only

WHEN valuel | value2 |... -- valuel or value2 or ...

-

: VHDL> Concurrent Code

* Examples:

------ With WHEN/ELSE —-=--eemmm e
outp <= "000" WHEN (inp='0' OR reset='1l') ELSE
"001" WHEN ctl='l' ELSE

IIﬂlDIIF

—=== With WITH/SELECT/WHEN
WITH control SELECT

output <= "000" WHEN reset,
"111l" WHEN set,
UNAFFECTED WHEN OTHERS;

: VHDL> Concurrent Code

* Multiplexer #2: when/else b

l e Solution 1: with WHEN/ELSE —-——=——=- MUX y

LIBRARY ieee:
USE ieee.std_logic_1164.all;

= W R

ENTITY mux IS
PORT (a, b, ¢, d: IN STD LOGIC;
sel: IN STD LOGIC_VECTOR (1 DOWNTO 0);
y: OUT STD LOGIC);

sel (1:0)

o < o

11 ARCHITECTURE muxl OF mux IS

N ‘ ~ i a
2 o Simple

13 y <= a WHEN sel="00" ELSE

14 b WHEN sel="01" ELSE

15 c WHEN sel="10" ELSE TR
16 d; \AQ7
17 END muxl;

- VHDL> Concurrent Code

® Multiplexer #2: with/select/when

1 --- Solution 2: with WITH/SELECT/WHEN —-----
2 LIBRARY ieee:
3 USE ieee.std logic 1164.all;

13 WITH sel SELECT

\\\ 18 END mux2;

4 e — e ————————————

5 ENTITY mux IS

6 PORT (a, b, ¢, d: IN STD LOGIC;

7 sel: IN STD_LOGIC_VECTOR (1 DOWNTO 0);
8 y: OUT STD LOGIC);

9 END mux;

10 m— e

11 ARCHITECTURE mux2 OF mux IS

12 BEGIN

q —
b
MUX
C_
d_
sel (1:0)
~ || rvF
bvhvuﬁu
|

14 y <= a WHEN "00", -- notice "," instead of ":;"
15 b WHEN "O1",
16 c WHEN "10",
17 d WHEN OTHERS; -- cannot be "d WHEN "11" "

- VHDL> Concurrent Code

cna

® Tri-state Buffer:

input (7:0) output (7:0)
1 LIBRARY ieee:;

2 USE ieee.std logic 11l64.all;
S
4 ENTITY tri state IS

5 PORT (ena: IN STD_LOGIC;

6 input: IN STD LOGIC VECTOR (7 DOWNTO 0);
7 output: OUT STD LOGIC VECTOR (7 DOWNTO 0));
8 END tri state;

L

10 ARCHITECTURE tri state OF tri state IS

11 BEGIN

12 output <= input WHEN (ena='0') ELSE

13 (OTHERS => 'Z');

14 END tri state;

- VHDL> Concurrent Code

® Home Works: Encoder: page 73:

ENTITY encoder IS
PORT (x: IN STD LOGIC VECTOR (7 DOWNTO 0);
y: OUT STD LOGIC_VECTOR (2 DOWNTO 0));
END encoder:

ARCHITECTURE encoderl OF encoder IS
BEGIN
y <= "000" WHEN x="00000001" ELSE

"001l" WHEN x="00000010" ELSE
"01l0" WHEN x="00000100" ELSE
"01ll" WHEN x="00001000" ELSE
"100" WHEN x="00010000" ELSE
"101" WHEN x="00100000" ELSE
"110" WHEN x="01000000" ELSE
"111" WHEN x="10000000" ELSE
"ZZZ";

X(n-1) —p
X(n-2) —p

X(1) —»
X(0) —»

nxm
ENCODER

= (m-1:0)

: VHDL> Concurrent Code

® Home Works: ALU: page 75

a (7:0)
b (7:00)

cin

sel (3:0)

I Logic
Mux
_- : Arithmetic
Unit sel (3)
|

y (7:0)
sel Operation Function Unit
0000 y<=a Transfer a
0001 y <=a+l Increment a
0010 y <=a-1 Decrement a
0011 y<=b Transfer b Arithmetic
0100 y <=b+l Increment b
0101 y <=b-1 Decrement b
0110 y <=a+b Addaand b
0111 y <= a+b+cin Add a and b with carry
1000 y<=NOTa Complement a
1001 y<=NOTb Complement b
1010 | y<=a ANDD AND
1011 y<=aORb OR Logic
1100 | y<=aNANDb NAND
1101 | y<=aNORDb NOR
1110 | y<=aXORb XOR
1111 | y<=a XNOR b XNOR

