U

I

(5 i Azl
il g ST At 4418

Circuit Design with VHDL 3

Textbook: Volnei A. Pedroni

Submitted By: Hussein Aideen

e

VHDL> Data Conversion

e VHDL does not allow direct operations between data of different

types.

® itis necessary to convert data from one type to another.

* If the data are closely related: std_logic_1164 of the ieee library

provides straightforward conversion functions.

TYPE long IS INTEGER RANGE -100 TO 100;
TYPE short IS INTEGER RANGE -10 TO 10;
SIGNAL x : short;
SIGNAL vy : long;

y <= 2*x + 5; -- error, type mismatch

y <= long(2*x + 5); -=- OK, result converted into type long

/

e

VHDL> Data Conversion

™~

® Data conversion tunctions: std_logic_arith package of the ieee library.

keyword Input data type Output data type

Conv_integer(p) INTEGER, UNSIGNED, INTEGER
SIGNED, or STD_ULOGIC

conv_unsigned(p, b) INTEGER, UNSIGNED, UNSIGNED

SIGNED, or STD_ULOGIC

* Where b is number of bits.

conv_signed(p, b):

INTEGER, UNSIGNED,
SIGNED, or STD_ULOGIC

SIGNED

conv_std_logic_vector(p, b)

INTEGER, UNSIGNED,
SIGNED, or STD_ULOGIC

STD_LOGIC_VECTOR

e

VHDL> Data Conversion

package of the ieece library.

® Data conversion functions: std_logic_signed or std_logic_unsigned

keyword Input data type Output data type
unsigned(p) STD_LOGIC_VECTOR UNSIGNED
signed(p): STD_LOGIC_VECTOR SIGNED

- VHDL> Data Conversion

* Example:

LIBRARY ieee:;

USE ieee.std logic 1llé64.all;

USE ieee.std logic arith.all;

SIGNAL a: IN UNSIGNED (7 DOWNTO 0);

SIGNAL b: IN UNSIGNED (7 DOWNTO 0);

SIGNAL y: OUT STD LOGIC VECTOR (7 DOWNTO 0);

y <= CONV_STD LOGIC VECTOR ((a+b), 8);

-- Legal operation: a+b is converted from UNSIGNED to an
-= 8=bit STD LOGIC VECTOR value, then assigned to y.

- VHDL> Examples:

e A 4-bit adder:

a(3:0)

b (3:0) =

B sum (4:0)

: VHDL> Examples:

e A 4-bit adder:

————— solution 1: in/out=SIGNED ----- ———— Scolution 2: out=INTEGER --—-———
LIBRARY leee; LIBRARY ieee;

USE leee.std logic 1l64.all; USE ieee.std logic 11l64.all;

USE leee.std logic arith.all; USE ieee.std logic arith.all:
ENTITY adderl IS ENTITY adder2 IS

PORT (a, b : IN SIGNED (3 DOWNTO 0); poRT (a, b : IN SIGNED (3 DOWNTO O
sum : OUT SIGNED (4 DOWNTO 0)); sum : OUT INTEGER RANGE -16 TO 15);
END adderl; END adder2;

ARCHITECTURE adderl OF adderl IS ARCHITECTURE adder2 OF adder2 IS
BEGIN BEGIN

sum <= a + b:

sum <= CONV INTEGER(a + b):
END adderl; -

END adder?;

: VHDL>Static and non-static data

e CONSTANT:
® establish default values
® can be declared in a PACKAGE, ENTITY, or ARCHITECTURE.

CONSTANT name : type := value;
CONSTANT set bit : BIT := '1';
CONSTANT datamemory : memory := (('0','0','0','0"),

{IDIIIDIIIDIII:LI}I
{lDlIlDlIllljllf}};

- VHDL>Static and non-static data

e GENERIC:

® specifying a generic parameter (that is, a static parameter).
® code more flexibility and reusability.

® must be declared in the ENTITY.

GENERIC (parameter name : parameter type := parameter value);

ENTITY adderZ IS
GENERIC (n : INTEGER := 8);
PORT (a, b : IN SIGNED (3 D

c1m o+ ATTT TNTECRER RANCE |-14

: VHDL>Static and non-static data

e SIGNAL:

® pass values in and out the circuit, as well as between its internal

units.

® circuit interconnects (wires).

SIGNAL name : type [range] [:= initial value];

SIGNAL control: BIT := '0';
SIGNAL count: INTEGEE BANGE 0O TO 100;
SIGNAL Vy: STD_LDGIC_?ECTOR (7 DOWNTO 0) ;

: VHDL>Static and non-static data

e VARIABLE:

® represents only local information.

® It can only be used inside a sequential code (PROCESS for example).

VARIABLE name : type [range] [:= init value];

varliable control: BIT := '0';
varliable count: INTEGEE EANGE 0O TO 100;
variable Vo ET:_LDGIC_‘JECTDR (7 DOWNTO Q) ;

- VHDL>Static and non-static data

Table 7.1
Comparison between SIGNAL and VARIABLE.
SIGNAL VARIABLE
Assignment | <= =
Utility Represents circuit interconnects (wires) Represents local mformation
Scope Can be global (seen by entire code) Local (visible only inside the
corresponding PROCESS, FUNCTION,
or PROCEDURE)
Behavior Update is not immediate in sequential Updated immediately (new value can be
code (new value generally only available used in the next line of code)
at the conclusion of the PROCESS,
FUNCTION, or PROCEDURE)
Usage In a PACKAGE, ENTITY, or Only in sequential code, that is, in a
ARCHITECTURE. In an ENTITY, all PROCESS, FUNCTION, or
PORTS are SIGNALS by default PROCEDURE

- VHDL> Operators

 VHDL provides several kinds of pre-defined
operators:
e Assignment operators
e Logical operators
e Arithmetic operators
e Relational operators
e Shift operators
e Concatenation operators

: VHDL> Operators

e Assignment operators

_

<= SIGNAL.

= VARIABLE, CONSTANT,
GENERIC,
initial values.

=> vector elements or with
OTHERS.

: VHDL> Operators

e Assignment operators

SIGNAL x @ STD LOGIC:

VARIABLE y : STD LOGIC VECTOR (3 DOWNTO 0); —- Leftmost bit 1s MSB
SIGNAL w: STD LOGIC VECTOE(OD TO 7); —— Rightmost bit is —- MSB

X <= "1'"; —— '1'" is assigned to SIGNAL X using "<="

y := "0000™p; -- "0000™ is assigned to VARIABLE y using ":="

w <= "10000000"; —— LSB is '1l', the others are '0°

w <= (0 =>'1'", OTHEERS =>'0"); —- LSB 15 '"1', the others are '0'

