S st daala
il g ST daia 4418

Circuit Design with VHDL

2

Hussein Aideen

~ VHDL> Data Types

¢ Pre-Defined Data Types:
> BIT (and BIT_VECTOR): 2-level logic (‘0’,°I").

SIGNAL x: BIT;?

—-— X 15 declared as a one-digit signal of type BIT.

SIGNAL y: BIT VECTOR (3 DOWNTO 0);

-—— y 15 a 4-bit wvector, with the leftmost bit being the MSB.
SIGNAL w: BIT VECTOR (0 TO 7);

-—— W 1s an 8-bit wvector, with the rightmost bit being the MSB.

-

VHDL> Data Types

X <= "']1";

|-- x is a single-bit signal (as specified above), whose wvalue 1is
-— '"1', Notice that single gquotes (' ') are used for a single bit.

y <= "0111";

-—— v 15 a 4-bit signal (as specified above), whose value 1s "0111"
—— (MSB='0"). Notice that double quotes (" ") are used for

-— vectors.

w <= "01110001";

-—— W 15 an 8-bit signal, whose wvalue is "01110001™ (MSB='1").

VHDL> Data Types

e STD_LOGIC (and
STD_LOGIC_VECTOR):

8-valued logic system introduced in the IEEE
| 164 standard.

> ‘X" Forcing Unknown (synthesizable unknown)

> ‘0’ Forcing Low (synthesizable logic‘l’)

‘I’ Forcing High (synthesizable logic ‘0’)

"Z’ High impedance (synthesizable tri-state buffer)

0]

0]

-

VHDL> Data Types

. SIGNAL x: 5TD LOGIC:
. —— X 1s declared as a one-digit (scalar) signal of type STD LOGIC.
SIGNAL y: STD LOGIC VECTOR (3 DOWNTO 0) := "OO0O01";
-— y 1s declared as a 4-bit wvector, with the leftmost bit being

-— the MSB. The initial wvalue (optional) of y is "0001"™. Notice
—— that the ":=" operator 1s used to establish the initial wvalue.

VHDL> Data Types

e BOOLEAN:True, False.

 INTEGER: 32-bit integers
(from -2,147,483,648 to +2,147,483,647).

* NATURAL: Non-negative integers (from
0 to +2,147,483,647).

e SIGNED and UNSIGNED: data types defined in the
std_logic_arith package of the ieee library. They have the
appearance of STD LOGIC_VECTOR, but accept arithmetic
operations, which are typical of INTEGER data types.

e REAL:Real nhumbers ranging
from -1.0E38 to +1.0E38. Not synthesizable.

e Physical literals: Used to inform physical quantities, like time,
voltage, etc. Useful in simulations. Not synthesizable.

VHDL> Data Types

=0

®x1

0

X3

Examples:
<= '0'; -- bit, std logic, or std ulogic wvalue 'O

<= "00011111"; -- bit vector, std logic vector,
-— s5td ulogic wvector, signed, or unsigned

<= "0001 1111"™; -- underscore allowed to ease visualization

<= "101111" -- binary representation of decimal 47

VHDL> Data Types

e Examples:

' x4 <= B"101111" -- binary representation of decimal 47
x5 <= 0"57" -- octal representation of decimal 47
X6 <= X"2F" —-- hexadecimal representation of decimal 47
n <= 1200; —-- integer
m <=1 200; —- 1nteger, underscore allowed
IF ready THEN... —— Boolean, executed if ready=TRUE
y <= 1.2E-5; -- real, not synthesizable

q <= d after 10 ns; -- physical, not synthesizable

VHDL> Data Types

 5IGNAL

a: BIT;
'SIGNAL b: BIT VECTOR(7 DOWNTO 0):;
SIGNAL c: STD LOGIC;
' SIGNAL d: STD LOGIC VECTOR (7 DOWNTOC 0):
SIGNAL e: INTEGER RANGE 0 TO 255;
a <= b(3); ——- legal (same scalar type: BIT)
b(0) <= a7 —-—- legal (same scalar type: BIT)
c <= d(5); —— legal (same scalar type: STD LOGIC)
d(0) <= ¢c; —— legal (same scalar type: STD LOGIC)
a <= c; -—- 1llegal (type mismatch: BIT x STD LOGIC)
b <= d; -— 1llegal (type mismatch: BIT VECTOR X

—-— S5TD LOGIC VECTOR)

e <= b; -- 1llegal (type mismatch: INTEGER X BIT VECTCR)

e <= d; —— 1llegal (type mismatch: INTEGER X
—-— STD LOGIC VECTOR)

Ex:Write VHDL code to design 8-3 encoder (use if statement)

(¥ B« IS B VI BT iy L % B

[D % B B L% T % B L% % R S I S B L e e e T e Y o e
[Me D = RS s R Y O L T T S e O ¥ S s VI g Y < L Y % I S o |

library ieee;
uge ieee.std logic 1164.all;

entity encoder using if is
port |
enable :in =std logic:

encoder in :in =td logic vector (7 downto 0)2

binary out :out =std logic wvector (2 downto 0)

) :

end entity;

architecture behavior of encoder using if is

begin
process (enable, encoder in} begin
binary out <= "00";
if (enable = '1'}) then
if (encoder in = X"02") then binary out <=
if (encoder in = X"04") then binary out <

if (encoder in

if (encoder in = X"10") then binary out <

if (encoder in = X"Z0") then binary out <=

if (encoder in = X"40") then binary out <

if (encoder in = X"20") then binary out <=
end if;

end process;
end architecture;

X"0E2") then binary out <

Enakle for the encoder
le-bit Inmput
4 bit binary Cutput

s end
s end
s end
s end
s end
s end
s end

if;
if;
if:
if;
if;
if;
if;

VHDL> Data Types

e User-Defined Data Types:

e VHDL also allows the user to define his/her own
data types.

TYPE integer IS RANGE -2147483647 TO +2147483¢47;
—— This 15 1ndeed the pre-defined type INTEGER.

TYPE natural IS RANGE 0 TO +2147483647;
—— This 1s 1ndeed the pre-defined type NATURAL.

TYPE my integer IS RANGE -32 TO 32;
-— A user-defined subset of integers.

TYPE student grade IS RANGE 0 TO 100;
-— A user-defined subset of integers or naturals.

VHDL> Data Types

TYPE bit IS ('0', "1");
—— This 15 1ndeed the pre-defined type BIT

TYPE my logic IS ('O', '1', 'Z2'):
—— A user-defined subset of std_logic.

TYPE state IS (idle, forward,
backward, stop):

—— An enumerated data type, typical of

—— finite state machines.

TYPE color IS (red, green, blue, white);
—— Another enumerated data type.

VHDL> Data Types

» Sub-Types:

» The main reason for using a subtype rather than specifying a new type is
that, though operations between data of different types are not allowed,
they are allowed between a subtype and its corresponding base type.

SUBTYPE natural IS INTEGER RANGE (0 TO INTEGER'HIGH;
—— As expected, NATURAL 15 a subtype (subset) of INTEGER.

SUBTYPE m}r_lr::gic IS STD LOGIC RANGE '0O' TO 'Z';
-— Recall that STD LOGIC=('X','O','1','Z','W','L','H','-").
—— Therefore, my logic=('0',"'1"','Z").

SUBTYPE my color IS color RANGE red TO blue;
—— Since color=(red, green, blue, white), then
-— my color=(red, green, blue).

SUBTYPE small integer IS INTEGER RANGE -32 TO 32;
—— A subtype of INTEGER.

VHDL> Data Types

 Signed and Unsigned Data Types:
o defined in the std logic_arith package of the seeelibrary.

LIBRARY ieee:
USE ieee.std logic 1l64.all;

USE ieee.std logic arith.all; -- extra package necessary

SIGNAL a: IN SIGNED (7 DOWNTO 0);
SIGNAL b: IN SIGNED (7 DOWNTO 0);
SIGNAL x: OUT SIGNED (7 DOWNTO 0);

v <= a + b; -- legal (arithmetic operation OK)
w <= a AND b; -- illegal (logical operation not OK)

VHDL> Data Types

Example: Legal and illegal operations with std_logic_vector.

LIBRARY ieee:

USE ieee.std logic 1164.all; -- no extra package required
SIGNAL a: IN STD LOGIC_VECTOR (7 DOWNTO 0);

SIGNAL b: IN STD LOGIC_VECTOR (7 DOWNTO 0);

SIGNAL x: OUT STD LOGIC VECTOR (7 DOWNTO 0);

v <= a + b; -- 1llegal (arithmetic operation not OK)

w <= a AND b; -- legal (logical operation OK)

LIBRARY ieee:
USE ieee.std logic 1164.all;
USE ieee.std_logic_unsigned.all; -- extra package included

SIGNAL a: IN STD LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL b: IN STD LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL x: OUT STD_LOGIC_VECTOR (7 DOWNTO 0);

v <= a + b; -=- legal (arithmetic operation OK), unsigned

w <= a AND b; -- legal (logical operation OK)

