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Techniques of Integration

Integration of Rational Functions by Partial Fractions

How to express a rational function (a quotient of polynomials) as a sum of simpler fractions,
called partial fractions, which are easily integrated.

50— 3 __2 + 3
x2 =2y —3 x + 1 x =3

General Description of the Method

Success in writing a rational function f(x)/g(x) as a sum of partial fractions depends on

two things:

® The degree of f(x) must be less than the degree of g(x). That is, the fraction must be
proper. If it isn’t, divide f(x) by g(x) and work with the remainder term. See Example 3

of this section.

®  We must know the factors of g(x). In theory, any polynomial with real coefficients can
be written as a product of real linear factors and real quadratic factors. In practice, the

factors may be hard to find.

1.

Method of Partial Fractions (f(x)/g(x) Proper)

Let x — r be a linear factor of g(x). Suppose that (x — »)" is the highest
power of x — r that divides g(x). Then, to this factor, assign the sum of the

m partial fractions:
Al A2 Am
— + ot
X / ()C _ },)2 ()C _ },)m

Do this for each distinct linear factor of g(x).

Let x> + px + ¢ be a quadratic factor of g(x). Suppose that (x> + px + ¢)"
is the highest power of this factor that divides g(x). Then, to this factor,
assign the sum of the » partial fractions:
Bix + C) 4+ Brx + (& 4 B,x + C,
x4+ px+q  (x2+px+ ) (x* + px + q)"

Do this for each distinct quadratic factor of g(x) that cannot be factored into
linear factors with real coefficients.

Set the original fraction f(x)/g(x) equal to the sum of all these partial
fractions. Clear the resulting equation of fractions and arrange the terms in
decreasing powers of x.

Equate the coefficients of corresponding powers of x and solve the resulting
equations for the undetermined coefficients.
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EXAMPLE 1 Distinct Linear Factors

Evaluate

/ X2+ 4x + 1 dc
(x =D+ D(x+3)

using partial fractions.

Solution The partial fraction decomposition has the form

Xt 4 4x + 1 _.4 . B _ C
x—Dx+Dx+3) x—1 x+1 x+3°

To find the values of the undetermined coefficients A, B, and C we clear fractions and get

FAax+1l=A + Dx+3)+Blx— Dx+3)+Clx— Dx+1)
=(4+ B+ Ox*+ (44 + 2B)x + (34 — 3B — O).

The polynomials on both sides of the above equation are identical, so we equate coefficients
of like powers of x obtaining

Coefficient of x?: A+ B+C=1
Coefficient of x': 44 + 2B =4
Coefficientof x": 34 — 3B — C =1
There are several ways for solving such a system of linear equations for the unknowns A,

B, and C, including elimination of variables, or the use of a calculator or computer. What-
ever method is used, the solutionis 4 = 3/4, B = 1/2,and C = —1/4. Hence we have

X+ 4+ 1 e — I SN SR SR S B P
(x — D(x + D(x +3) 4x—1 2x+1 4x+3|7

3 1 1
=4 lx — 1| +§1n|x+ 1| — 4 |x + 3| + K,

where K is the arbitrary constant of integration (to avoid confusion with the undetermined
coefficient we labeled as C). [ ]
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EXAMPLE 2 A Repeated Linear Factor

Evaluate

6x + 7

ot T
(x + 227

Solution First we express the integrand as a sum of partial fractions with undetermined
coefTicients.

ox+7 _ A4 n B
(x+2)P x+t2 (x+2)
6x +7 =A(x +2) + B Multiply both sides by (x + 2)*.
= Ax + (24 + B)

Equating coefficients of corresponding powers of x gives

A=606 and 2A+B =12+ B =17, or A=6 and B = —5.

6x+7dr:/(6 5 )dr
(x +2)* x+2 (x+2)72) 7

— de -2
—6/x+2 5/(x+2) dx

=6Iln|x+2| +5x+2)"+cC u

Therefore,

EXAMPLE 3  Integrating an Improper Fraction

R 2 _ _
/ 2x . dx X 3 dx.
x“—=—2x—-3

Solution  First we divide the denominator into the numerator to get a polynomial plus a
proper fraction.

Evaluate

2x
x2 —2x — 3)2)63 — 4= x =3
2% — 4x? — 6x

S5/ — 3
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Then we write the improper fraction as a polynomial plus a proper fraction.

26 —4x? —x -3 50— 3
5 =+ 5
xX°—2x — 3 xX°—=2x— 3
We found the partial fraction decomposition of the fraction on the right in the opening
example, so

R 2 o o
/ 2 2 4 x -3 dx = / 2x dx + / 25)6—3 dx
X —2x—3 X —=2x—3
_ 2 3
—/2xdx+/x+ldx+]x_3dx

=¥ +2In|x+ 1| +3In|x - 3| + C. m

A quadratic polynomial is irreducible if it cannot be written as the product of two linear
factors with real coefficients.

EXAMPLE 4  Integrating with an Irreducible Quadratic Factor in the Denominator

—2x + 4
f TEr

Solution The denominator has an irreducible quadratic factor as well as a repeated
linear factor, so we write

Evaluate

using partial fractions.

—2x + 4 Ax + B C D
= + + : 2
G2+ Dx—1DF 2+ 1 x—1 (x—1)3 @)

Clearing the equation of fractions gives
“2x+4=(Ax + B)(x — 1)+ Clx — DEE+ 1) + D>+ 1)
=4+ Ox+ (=24 +B— C+ DN

+(A4—-2B+COx+(B—C+ D).
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Equating coefficients of like terms gives

Coefficients of x°: 0=4+C
Coefficients of x*: 0= -24+B—-C+ D
Coefficients of x —2=4—-2B+C
Coefficients of x: 4=B—-C+D
We solve these equations simultaneously to find the values of 4, B, C, and D:
—4 = =24, A=2 Subtract fourth equation from second.
C=-A4=-2 From the first equation
B =1 A = 2and C = —2 in third equation.
D=4—-B+C=1. From the fourth equation

We substitute these values into Equation (2), obtaining

—2x + 4 >+l 2 ]
K+ Dr—-1)% 2+1 x—1  (x=1)7"

Finally, using the expansion above we can integrate:

—2x + 4 2x + 1 2 |
dx = — + b7k
2+ Dix— 127 / (xz 1 o1 (x— 1)2) '
2x 1 2 |
= + — + dx
/ (x2 +1 x*4+1 x—1 (x — 1)2)

=In(x?+ 1)+ tan'x — 2In|x — 1| — vci [tC =
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EXAMPLE 5 A Repeated Irreducible Quadratic Factor

/ dx
x(x? + 1)

Solution The form of the partial fraction decomposition is

Evaluate

1 A, B +C, Dy+E
xx2+ 12 Y xr+ (x2 + 1)

Multiplying by x(x* + 1), we have
1 =A%+ 12+ (Bx + O)x(x* + 1) + (Dx + E)x
= A+ 22+ 1) + BGH + 20 + OF + x) + DY+ Ex
=UA+Br*+ P+ Q24 +B+D+ (C+ E)x+ 4

If we equate coefficients, we get the system

A+ B=0, C =0, 24+ B+ D =0, C+E=0, A=1.
Solving this system gives 4 = 1, —1. C=10, D= —1,and £ = 0.Thus,
1 X
= - dx
/x(x + /L‘ 2+1 (x? +1)Z}
_ /d_ / x dx / xdx
X R (x> + 1)
d\ du _ dur u=x>+1,
du = 2x dx

= In |x]| —%ln|u| +——|—K

_ L2 1
= In |x]| 2ln(nc +l)+2(x2+1)+K
Xl

Va2 +1 262 +1)

= In
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The Heaviside “Cover-up” Method for Linear Factors

When the degree of the polynomial f(x) is less than the degree of g(x) and
glx) = (x —r)lx — 1)~ (x = 1)

is a product of n distinct linear factors, each raised to the first power, there is a quick way
to expand f(x)/g(x) by partial fractions.

Heaviside Method
1.  Write the quotient with g(x) factored.:

) _ /)
g G =) =)

2. Cover the factors (x — r;) of g(x) one at a time, each time replacing all the
uncovered x’s by the number 7;. This gives a number A; for each root r;:

B f(r)
A= il —

- f(r2)
S R T
. ¥

B (l‘,, - rl)("n - ”2) = (I’,, - rn—l) .
3. Write the partial-fraction expansion of f(x)/g(x) as

f(X) o Al A2 An
gr) G-r) G=r) T =—r)
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EXAMPLE 6  Using the Heaviside Method

Find 4, B, and C in the partial-fraction expansion

X2+ 1 A B C
G- —-2)r—-3) x-1 x-2 " x-3 (3)

Solution  If we multiply both sides of Equation (3) by (x — 1) to get

G4, Ba-1) -1
G-a—3 AT 2 T3

and set x = 1, the resulting equation gives the value of 4:
(1) + 1

(1 —2)(1 —3)

A4=1.

=A4+0+0,

Thus, the value of A 1s the number we would have obtained if we had covered the factor
(x — 1) in the denominator of the original fraction

X2+ 1
(x = Dlx = 2)(x = 3) (4)
and evaluated the restat x = 1:
(1) + 1 )
4= = = 1.
o) (=20 -3 (DhE=2)

f

Cover

Similarly, we find the value of B in Equation (3) by covering the factor (x — 2) in Equa-
tion (4) and evaluating the rest at x = 2:

5 (2 + 1 _ 5 _
Q-1 (-2 (=3 W=D ’

N

Cover

Finally, C is found by covering the (x — 3) in Equation (4) and evaluating the rest at
x =3:
(32 +1 10
- = — 5‘ -
B-DG-2) (-3 @)
)

Cover

C:
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EXAMPLE 7  Integrating with the Heaviside Method

d/q x + 4 d
X3+ 3x2 - 10x

Solution The degree of f(x) = x + 4 is less than the degree of g(x) = x* + 3x°
— 10x, and, with g(x) factored,
x + 4 _ x + 4
43— 10 xly = 2)(x £+ 5)°

Evaluate

The roots of g(x)are r; = 0,7, = 2,and r; = —5. We find

1 = T = —
=20 +s 2GS
a
Cover
_ 2+ 4 6 3
Sy TQm 7
22 f@+s @O
Bl
Cover
3= — = S
(=55 -2 (x+5| D
R
Cover
Therefore,
x + 4 ::__;;_+_ 3 B 1
x(x — 2)(x +5) 5 7(x —2) 35(x+5)°
and

x + 4 2 3 1
x=—=2Inl|x| + =1In|x — — Ll + v C
fx(xz)(er S)d’c 51n|’c| 71ﬂ|’C 2| 351n|r 5| +C -
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Trigonometric Integrals

Trigonometric integrals involve algebraic combinations of the six basic trigonometric functions.

Products of Powers of Sines and Cosines

We begin with integrals of the form:

[ sin” x cos” x dx,

where m and »n are nonnegative integers (positive or zero). We can divide the work into
three cases.

Case 1 If m is odd, we write m as 2k + 1 and use the identity sin>x = 1 — cos’x to
obtain

2k+1 k

sin” x = sin?" 1y = (sin®x)¥ sinx = (1 — cos®x)sin.x. (1)

Then we combine the single sin x with dx in the integral and set sin x dx equal to —d (cos x).

Case 2 Ifmisevenand nis odd in j sin™ x cos” x dx, we write n as 2k + 1 and use the
identity cos>x = 1 — sin’ x to obtain

2k+1

cos” x = cos? ! x = (cos’x) cosx = (1 — sin®x)*cosx.

We then combine the single cos x with dx and set cos x dx equal to d(sin x).

Case 3 If both m and n are even in j “sin” x cos” x dx, we substitute

sin? x = 1 — gos 2x, costx = 1 + gos 2x 2)

to reduce the integrand to one in lower powers of cos 2x.
Here are some examples illustrating each case.
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EXAMPLE 1  mis Odd

Evaluate

/ sin’® x cos” x dx.
] sin’ x cos® x dx = / sin’ x cos® x sin x dx

Solution

- /(1 — cos’x) cos” x (—d (cos.x))

= /(l — 1?) () (—du)
2/(11 — u?) du

:?‘?+C

5 3
_cos"x  cos’x
=5 3 + C.

EXAMPLE 2  mis Even and n is Odd
Evaluate
/cossxdx.
Solution
/cossxdx = /cos“xcosxdx = /(l — sin® x)? d(sin x)

= /(l — ) du
= /(l — 2u* + u*) du

1 2 |
Zu**u + -’ + C=sinx — —sin’x + -sin’x + C.

3 5 3

U = Cosx

m =0

i = sinx

5
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EXAMPLE 3 m and n are Both Even

/sinzxcos“xdx.
2
/sinz,rcos4,rd,r = f (1 goslr)(l ha ;oslr) dx

= %/ (1 — cos2x)(1 + 2cos2x + cos” 2x) dx

Evaluate

Solution

= é/ (1 + cos2x — cos?2x — cos’ 2x) dx

= %[r + %sin 2x — /(cosz2x + cos’ 2x) dx],

For the term involving cos” 2x we use

/cos2 2xdx = %f (1 + cos4x)dx

1 1 . Omitting the constant of
— o\ + 4 Sm 4 |. integration until the final result

For the cos® 2x term we have

/0053 2xdx = / (1 — sin® 2x) cos 2x dx u = sin 2x,

du = 2 cos 2x dx

Again
= %/ (1 —u?)du = % (sin 2x — %sin3 2x>. (,,{]i:ﬁmg c

Combining everything and simplifying we get

.2 4 _L B l . l .3
/sm xcos xdx = 6 (x A sin4x + 3 sin 2x) + C. ]
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EXAMPLE 4 Evaluate

/4
/ V1 + cosdxdx.
0

Solution To eliminate the square root we use the identity

_ 1 + cos260

7 , or 1 + cos26 = 2cos’ 6.

cos’ 6

With & = 2x, this becomes
1 + cos4dx = 2 cos? 2x.

Therefore,

/4 /4 /4
/ V1 + cosdxdx = / V2 cos? 2x dx = / \/5 \/ cos” 2x dx
0 0 0

/4 /4 _
= \/2/ |cos 2x| dx = \/E/ cos 2x dx cos 2x =0
0 0 on [0, 7/4]

A lsin 2XT/4 B V2 V2

2 |, T2 o= "




15 Techniques of Integration

Integrals of Powers of tan x and sec x

We know how to integrate the tangent and secant and their squares. To integrate higher
powers we use the identities tan’ x = sec’x — | and sec’x = tan’x + 1, and integrate
by parts when necessary to reduce the higher powers to lower powers.

EXAMPLE 5 Evaluate
f tan® x dx.

tan® x - tan® x dx = f tan® x - (sec’x — 1) dx

Solution

/ tan* x dv =

tan® x sec? x dx — / tan® x dx

I
— — — —

tan” x sec® x dx — / (sec’x — 1) dx

tan” x sec” x dx — / sec’ xdx + f dx.

u = tanwx, du = sec’ x dx

/uzdu = %1{3 + (.

The remaining integrals are standard forms, so

In the first integral, we let

and have

ftan4.rd.r = %tan‘?’x — tanx + x + C.
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EXAMPLE 6 Evaluate

/ sec’ x dx.

Solution We integrate by parts, using
1 = secux, dv = sec? x dx, v = tanx, du = secxtanx dx.

Then

/ sec’ x dx = secxtanx — / (tan x)(sec x tan x dx)

= secxtanx — / (sec’x — 1) sec x dx tan?x = sec?x — 1

= secxtanx + /secxdx /sec3xdx.

Combining the two secant-cubed integrals gives

2 / sec’ xdx = sec xtanx + / sec x dx

/sec*‘x dx = Lsecxtanx + L1n |secx + tanx| + C. |

and

2 2
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Products of Sines and Cosines

The integrals

/ sin mx sin nx dx, / SIn mx cos nx dx, and / COS MX COS Ax dx

arise in many places where trigonometric functions are applied to problems in mathemat-
ics and science. We can evaluate these integrals through integration by parts, but two such
integrations are required in each case. It is simpler to use the identities

sin mx sin nx = %[cos (m — n)x — cos(m + n)x], (3)

sin mx cos nx = %[sin (m — n)x + sin(m + n)x], (4)
1

COS MX COS NX = E[cos (m — n)x + cos(m + n)x]. (5)

These come from the angle sum formulas for the sine and cosine functions (Section 1.6).
They give functions whose antiderivatives are easily found.

/ sin 3x cos Sx dx.

Solution From Equation (4) withm = 3 and n = 5 we get

EXAMPLE 7 Evaluate

/ sin 3x cos Sxdx = %/ [sin (—2x) + sin 8x]dx

= ;/ (sin 8x — sin2x) dx

_ cos8x | cos2x
= 6 4 + C. |
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Trigonometric Substitutions

Trigonometric substitutions can be effective in transforming integrals involving Va? — x2,

Va? + x?,and Vx? — a? into integrals we can evaluate directly.

SF

o=

H = tan!

=)
o=

SIE

e

X
-1 |0 1 a

FIGURE 8.3 The arctangent, arcsine, and
arcsecant of x/a, graphed as functions of
x/a.
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Three Basic Substitutions

The most common substitutions are x = atanf,x = asinf, and x = a sec . They come
from the reference right triangles in Figure 8.2.

Withx = atan 6,

a* + x> =a* + a*tan’0 = o*(1 + tan’ ) = a*sec? 6.

Withx = asiné,

a* — x> =d* — a*sin” 0 = &*(1 — sin® ) = o® cos’ 0.
Withx = asec@,

X —a*=a’sec’d — o® = a*(sec’® — 1) = a*tan’ 4.

a at — x? a
x=atan# x=asinf x=asecH

Va* +x% =alsec]  Va*—x* = alcos 0 Vx? — a® = altan 6

FIGURE 8.2 Reference triangles for the three basic substitutions
identifying the sides labeled x and « for each substitution.

We want any substitution we use in an integration to be reversible so that we can change
back to the original variable afterward. For example, if x = a tan 6, we want to be able to
set@ = tan~' (x/a) after the integration takes place. If x = a sin #, we want to be able to set
6 = sin”' (x/a) when we’re done, and similarly for x = a sec 6.

As we know from Section 7.7, the functions in these substitutions have inverses only
for selected values of 6 (Figure 8.3). For reversibility,

x =atané requires 6 = tan ! (g) with —g <0< g

. . . X . aa m
x = asinf@ requires 6 = sin (a) with 5 =0 = 5

0=0<T if ;=1
x = asec® requires O = sec | (%) with
T<o=m it g=-1

To simplify calculations with the substitution x = a sec 6, we will restrict its use to inte-
grals in which x/a = 1. This will place 6 in [0, 7r/2) and make tan & = 0. We will then have
Vil —a® = Va tan’ g = |atan | = atan @, free of absolute values, provided a > 0.
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EXAMPLE 1  Using the Substitution x = a tan 6

Evaluate
/ dx
\/4 + x?
Solution We set
_E < 9 < E

2 27
4+ x? =4+ 4tan’0 = 4(1 + tan’ 9) = 4sec’ 0.

x = 2tan#, dx = 2 sec” 0 db,

Then

2sec’Odl sec” 0 d Visec? 6 = [sec |

_odx / 2sec’fdf
vl v e
sech > 0 for —
= / sec 0 dO

= 1In|sec® + tan@| + C

1‘V4+ﬁ ;
n| U+

ST
rq\q

From Fig. 8.4
+ C

b | =

Taking " = C — In2
=In|V4+2+x| +C. e !

Notice how we expressed In |sec # + tan 8| in terms of x: We drew a reference triangle for
the original substitution x = 2 tan # (Figure 8.4) and read the ratios from the triangle. m

FIGURE 8.4 Reference triangle for
x = 2tan 6 (Example 1):
X

tan9=§

and

4 + x?
5

sec =
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EXAMPLE 2  Using the Substitution x = asin 6

Evaluate

x2 dx
V9 — x?
Solution We set
x =3sinf, dx = 3cosbdb, —g <@ < g
9 —x?> =9 —9sin’f = 9(1 — sin’O) = 9cos’H.

Then
dx [ 9sin®6-3cosfdb
V9 — 2 |3 cosd|
= 9/ sin” 0 d6 cos @ > 0 for —g <9<

|
o

1 — cos 260
/2d9
sin 20
(9 ) )+c

(9 — Sin @ cos 9) +C sin 268 = 2 sinf cos

2
coxox V9 —xo Fig. 8.5
(sm 33 3 ) +C

V9 — X2 + C.

._..

M|\o RO O o

-1x_ X
3 2

//‘ i V25xr — 4

FIGURE 8.5 Reference triangle for
x = 3 sin 8 (Example 2):

sing = X FIGURE 8.6 Ifx = (2/5)sec#,
3 0 < 0 < m/2,then § = sec ' (5x/2), and
and we can read the values of the other
cosf — 9 — x? trigonometric functions of 8 from this right

3 ' triangle (Example 3).

ra |3
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EXAMPLE 3  Using the Substitution x = asec#

Evaluate
f __dx , X = %
\V25x2 — 4
Solution We first rewrite the radical as

N/re 2 _ 4 — S
25x 4 \/25()6 25)

to put the radicand in the form x> — @?. We then substitute

xz%sec@, de%seCQtanﬂdQ, 0<p<Z

2
2
2 (2> _ 4 e 4

5 25 25
_ 42y 40
—25(sec 0 1)—25tan )
2 2\ 2 2 tan® > 0 for
x=\5) =3 |tanf| = gtan(-). 0<6<m2

With these substitutions, we have
(2/5) sec O tan 6 d

[ = [t i

= 1/ sec B df = %ln |secd + tan@| + C

5
Sx \/25x% — 4
S+ +C

2

In Fig. 8.6

1
5



