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Communication Engineering Department

Class Second Theory : 3 Hrs/wk
Subject Engineering Analysis Tutorial 1 Hrs/wk
Code CE2201 Practical Hrs/wk

Article

Multiple Integrals:

i) Double Integral. ii) Area and volumes. iii) Double Integral in Polar Coordinates
iv) Evaluation of volume and triple Integrals. v) Evaluation of surface & surface
Integrals.

Sequences And Series:

i) Sequences: convergence; Test of monotone i) Series : geometric series; nth partial
sum; test of convergence; alternating series. 1i1) Power and Taylor’s series.

Vectors Functions:

i)Equations of lines and planes. ii) Product of three or more vectors.

iii) Vector function & motion : velocity and acceleration. iv)Tangential vectors.

v) Curvature and normal vector.

Ordinary Differential Equations:

i) First order (variables separable; homogeneous; linear — Bernoulli and exact).

ii) Second order (Homogeneous and non homogeneous).

iii) Higher order differential equations.

Solution Of Differential Equations By Power Series:

Legendre s equation; Legendre s polynomials; Bessel function of the first and second
kinds; Bessel function properties.

Partial Differentiation Equation:

Wave equation; laplace equation; solution of boundary condition problems; general
solution; solution by separation of variables.

Numerical Analysis:

i)Solution of non-linear equations (Iteration; bisection and Newton-Raphson).

ii) Finite differences. iii) Numerical differentiation and Integration.

iv) Numerical solution of 1% order ordinary differential equations.

Matrix Analysis:

Review of matrix theory; Linear transformation; Eigen values & eigen vectors; lace Lap
transform of matrices; Application of matrices to electric circuits.

Statistics:

Definition; Frequency distribution (relative & commutative; Mean; Standard deviation).
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Article

Probability:

Definition; mutually exclusive & conditional probability; permutations &
combinations; Probability distribution: Binomial; Normal & Poisson distributions.
Complex Variable Theory:

Function of complex variable; complex differentiation; Analytic function & its
properties; Integration in the complex plane; Cauchy s theorem; Cauchy s integral

formula for simply & multiply connected regions; Complex variable theory:
Taylor’s theorem; Laurent series; The residue theorem.

Applications of Matlab

Total

Text book:
1: “Advanced Engineering Mathematics” By KREYSIK
2: “Calculus” By Finney& Thomas

) ol 258~ I o) 55 I o 58 = ) o) 25 = ) o) 25 = ) ot 358 I ot 3258 = ) o] 25 - 1) o) 35 - I i) 0,5




Chapter One: Multiple Integrals Communication Eng./ 2" Stage

CHAPTER ONE
Multiple Integrals

The integral of functions of several variables called multiple
integral (double or triple).

/]f(-l‘,y] dA =f f(x,y) dxdy. Volume
R R

Ex1: solve the following integral:

12
// (1 — 6x?y) dx dy
-1.Jo
Sol:

1 2

= | x—3x3 d
l, y]o y
rl

= 2-—16ydy
J_1

1
= 2y — 8y?]

~1
=2-8—-(-2-8)=4
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1-Double Integral over Bounded Rectangular Region

We begin our investigation of double integrals by
considering the simplest type of planar region, a rectangle. We
consider a function f(x, y) defined on a rectangular region R,

R a=x=b c=v=d

This region is represent the base  df

region of the solid volume with ! AA,

height is f(x,)y). This region is =

divided intfo group of small e

rectangular pieces with area:

AAk = AxkAyk

Then the volume of small

rectangular element is given by:

AV = DA f (X, Vi)
Then the sum of the volumes is:

n n
Su= ) V= ) DS Cxi i)
k=1 k=1

Where: n represents the No. of rectangular pieces.
To find the total volume of the solid we take limit for both
sides of the above equation (as n — o). then:

n

Volume = lim S, = lim AALf (X, Vi)
n—oo n—>oo
k=1

Then :

v = |[ feoydda = [[ feydaxy
R R

2
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(a)yn =16 (b)n = 64 (c)n =256

As n increases, the Riemann sum approximations approach the total volume of the solid

In general:

THEOREM 1 Fubini’s Theorem (First Form)

If f(x, v) 1s continuous throughout the rectangular region R:a = x = b,
¢ = y = d, then

- od pb b pd
j/ fla,v)dd = / / flx,y)dxdy = / / flx, v) dv dx.
j? of € 7] Jda Jio

Ex1:If z=f(x,y) =4 —x —y over theregionR,R: 0 < x < 2
& 0 <y <1, find the volume bounded by R
and the surface Z.
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Ex2: If z = f(x,y) = ycosxy over the regionR,R: 0 <x <7 &
0 <y <1, find the volume bounded by R and the surface Z.
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Ex3: If z = f(x,y) = % over the regionR,R: 1 <x <2 &
1 <y <2, find the volume bounded by R and the surface Z.
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HW1: Find the volume of the region bounded above by elliptical
paraboloid z = f(x,y) = 10 + x* + 3y? and below the rectangle
Rl0<x<1& 0<y<2.

HW2: If z=f(x,y)=sinx+cosy over the region R,
R0<x<nmn & m<y<2rfind the volume bounded by R and
the surface Z.
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2-Dobule Integrals over bounded non-rectanqular region

We considered that the function
z=f(x,y) is defined over non-

rectangular region. = =~

x;<x<x,andy; <y <y, P B 3 I i

Aye| 7 ozxi, v

T |
e | L

Where: either Axg
1) x1, x2 are constants and \\M /f
Y1 =gl(x);yZ zgz(X). e = e =

2) Oryi,yz are constants and
x1 = hy(y), %2 = hy ().

By the same way mentioned in sec.1 then the volume:

THEOREM 2—Fubini’s Theorem (Stronger Form) Let f(x, y) be continuous on a
region R.

1. IfRisdefinedbya = x = b, g1(x) = y = gs(x), with g; and g> continuous
on [a, b], then

"B gz[.".']

f/ﬂl y)dA =/ f f(x, y) dvdx.
a Jgix)

R

2. If Risdefinedbyc = y = d, hi(y) = x = hy(y), with h; and h; continuous
on [c, d], then

' *d haly)
// fx,y)dd = / / f(x, y) dx dy.
7 ¢ Jinly)
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The volume of the solid shown here is The volume of the solid shown here is
d d fhay) b b fex) :
/ A(y)dy = / f(x, ) dx dy. / A(x)dx = / _/ f(x,y) dydx.
¢ ¢ Jh(y) a a Jglx)

Finding the limits of integration:

A) Using vertical cross sections (Line in y-axis direction)

J Leaves at

y y= V1 =x?
y 4 + Leaves at 1
I / y= W1 =x- ? Enters at
R Enters at y=l-x
I}‘ — ] -

L

L
. x
0 x y 1
X
X
0 * : Smallest x Largest x
isx=0 isx=1
(a) (h)

L] . . . - " " " i lc}
FIGURE Finding the limits of integration when integrating first with

respect to y and then with respect to x.
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1. Sketch. Sketch the region of integration and label the bounding curves.

2. Find the y-limits of integration. Imagine a vertical line L cutting through R in the di-
rection of increasing y. Mark the y-values where L enters and leaves. These are the
y-limits of integration and are usually functions of x (instead of constants).

3. Find the x-limits of integration. Choose x-limits which represents the minimum and
maximum values of x.

Then apply:

f/f(xv)dA_/f f(x,y) dy dx.
gilx

ym V-2
/ / f(x,y)dy dx.

Using Horizontal cross sections(Line in x-axis direction)

Largesty Y ]
iy =1 Enters at

~ 1 - x'=T =y
W
.\ ~—
Smallest ¥ - Leaves at
isy =20 l_\l_\
e - X

0 1

FIGURE Finding the limits of
integration when integrating first with
resnect to x and then with respect to y.

The same procedure can be applied here but the line in step 2
will be in the x-axis direction. Then apply the:

' d fhaly) ‘1 rNVI—2
// flx,y)dA = f / flx,p) dxdy. / / flx, v) dx dy.
3 c Jhly) Jo Ji1—

10
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Order of integration: It is mean the arrangement of integral,

dydx or dxdy.

Ex1: Find the volume of the solid whose base is the triangular in
the xy-plane bounded by the x-axis and the lines y=x and x=1 and

whose top lies in the plane:

z=flx,y) =3 —x —y
Sol;

0 y=0 1

1 fx I 192 =1
V=/f(3—x—y}@vdr=/ {3_19—3.:)2—'7] dx
0 Jo 0 =0
[l 5 -4
= X—— |dx=|—/———F = 1.
0 2 2 2]

11

(3,0,0)

z=fx,y)=3 —x—y»
/

(1,0,2)e
B s(1, 1, 1)
\”
11.&7\‘/(1.1.0)
R™ —~x = 1
x \\
i
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When the order of integration is reversed the integral for the volume is

L ri 1 2 =1 1 .
V://B—x—_v}drdy:f {33:—%—):_19] dy /—.r
0Jy 0 =y
|

1 y?
=/(3———v—3v+'—+v2)dv x=y
0 N J ) J ) N _x=1

1 S y=1
Y I SRR I R I IS P A
- A (2 4}1 + 2} )dy = [ y 2}/ + 7 L=0 =1, 0 i

Ex2: Find the volume of the solid whose base is the triangular in
the xy-plane bounded by the x-axis and the lines y=x and x=1 and
whose top lies in the plane: y

sin x A x=1
z=f(x,y)=

| L

1 X - 1 . y=x 1
/ (/ Sll&dy) dx—f (leﬂ] )dx —/ sin x dx
0 \Jo 0 y=0 0

= —cos (1) + 1 =~ 0.46.

12




Chapter One: Multiple Integrals

Communication Eng./ 2™ Stage

Ex3: sketch the region of integration and write the equivalent
integral with reversed order of the given integration.

e B e kS

]f (dx + 2) dy dx
0 Jx

Sol:

=2X

N[~ O | X

ANV O XK

X
0
1
2

4 rVy
/] (4x + 2) dx dy.
0 Jy2

}n
A

4r (2, 4)

Ex4: Find the volume of the solid whose base in the xy-plane is
bounded by the x-axis the line y=4x-2 and the curve y = 2+/x and

whose top lies in the plane:

z=f(x,y) =16 —x% — y2

X | Y=4x-2

0] -2
05 O

2 4

1 2

4 14

X Y=2vx
4 | e
-1 Jeg
o) 0
1 2
4 4

13
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2 ply+2)/4
:/ﬁ/ (16 — x* — y?)dxdy
0 Jy4

2 3 x=(y+2)/4
= f l6x — =& — xyzl dx
o L 3

,1:=}'23"4
2 [ (y+2° (y+2) , ¥yt
—‘/ﬂ _4(y-|—2}— 16d 1 — 4y +3_64+E}dy
191y 63p2  145y° 49y4 5 T 72
_ v N V _ v _ 'V N ¥ + V _ 20803 ~ 12.4.
24 32 06 768 20 1344 |, 1680

14
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Ex5: Find the volume of the solid whose base in xy-plane
bounded by the circle x? + y? = 1 and the line y=1-x in the 15
quadrant and whose top lies in the plane:

2 = f(x, y) =3 —x — V. )\ 4 Leaves at

y = V1 - x?
Sol: |
b fglx) R Enters at
J[naa= [ s avax st
a Jglx, ;
R

L
> X
0 X l
/ 7
Smallest x Largest x
Isx=0 1sx = 1

15
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H.W1: sketch the region of integration and write the
equivalent integral with reversed order of the given
integration.

2 4-2x
%4 =J j dydx
0 0

H.W2: Find the volume of the solid whose base in the xy-plane
is bounded by the x-axis and the lines y=4x and y = 2 — x and
whose top lies in the plane:

z=f(x,y)=3—x—y

17
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3-Dobule Integral in Polar form

Integrals are sometimes easier to evaluate if we change to
polar coordinates. This section shows how to accomplish the
change and how to evaluate integrals over regions whose
boundaries are given by polar equations.

Suppose that we have two curves r; = g,(6) and r, = g,(6) as
shown in figure below. To find the area bounded between them,
divided the bounded area into small rectangular elements.

=

Arc length (dr) = rd6

The area of the small rectangular element is:

dA = rdrdf

Then the total area in a polar form is;

02 12=92(0)
A= j j rdrd@
01 r1=91(0)

18
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And the volume under the surface f(r,0) is :

0, 12=9g2(0)

61 r1=91(0)

f(r,0) rdrd6

Finding Limits of Integration

The procedure for finding limits of integration in rectangular coordinates also works for
polar coordinates. To evaluate f f @ J(r, 8) d4 over a region R in polar coordinates, integrat-
ing first with respect to » and then with respect to 6, take the following steps.

Sketch. Sketch the region and label the bounding curves (Figure a).

Find the r-limits of integration. Imagine a ray L from the origin cutting through R in
the direction of increasing r. Mark the r-values where L enters and leaves R. These are
the r-limits of integration. They usually depend on the angle 6 that L makes with the

Find the 0-limits of integration. Find the smallest and largest #-values that bound R.
These are the 6-limits of integration (Figure c). The polar iterated integral is

Leavesatr=2

1.
2.
positive x-axis (Figure b).
3.
y y
7 x2+}-'2=4 )
V3 l 53 inf=y=V2
) ( ) rsmf=y="V2
=V Y or
r=V2esch
0 r 0

19

F

fLargest fis %
L
/'{y =¥
R /

r
/" Smallest  is }

N

* X

(c)
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ExI: Evaluate
]/ e dy d,
R
where R is the semicircular region bounded by the x-axis and the curve x>+ y=1.

in the 15t and 2" quadrant.

Sol:
.v
, y=VI- ¥
Substituting x = rcos 6,y =rsinf | e
/

and replacing dy dx by r dr dfl enables us to evaluate the integral as

T ] T 1
240 2 ] .
et dvdx:] / ¢’ rdrdB:/ [—e’] a9
f/ ] 0 Jo " b=m 1 o=0

K -

=

l T
i .ﬁ E(E ~ 1) = 5(9 - 1) The semicircular region

0=r=l, 0=f6=m

20
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Ex2:Find the area enclosed by the lemniscate r*> = 4 cos 26.

Solution ~ We graph the lemniscate to determine the limits of integration (Figure )and
see from the symmetry of the region that the total area is 4 times the first-quadrant portion.

y Leaves at
r="V4cos2#
N N s
w/4 Vicos20 /4 2 r=V4cos 20 S 4 /
A:4/ / rdrd9=4/ [—} df /
0 Jo 0 r=0 y
/4 /4 / N\
= 4/ 2¢0820 df = 45sin 26‘] = 4. Entersat| N ) r? =4 cos 20
0 0 T
r=0 4

To integrate over the
shaded region, we run r from 0 to

V4 cos 20 and 6 from 0 to 7/4

Ex3; Find the limits of integration for integrating f(r, 6) over the region R that ﬂ

lies inside the cardioid r = 1 + cos 8 and outside the circle r = 1, r=1+cosf

Solution

1. We first sketch the region and label the bounding curves 7

2. Next we find the r-limits of integration. A typical ray from the origin enters R where
r =l and leaves where r = 1 + cos 0.

3. Finally we find the 0-limits of integration. The rays from the origin that intersect R run
from @ = -m/2to§ = /2. The integral is

A=_T!  Eners Leavesat
2 a0 r=l+csf

r=1

72 [l4eos
f / f(r, 0) r dr b,
y Finding the limits of

7/2
Infegration in polar coordinates

21
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Ex4: Evaluate the integral

1 rV1I-2
/ ] (x? + y?) dy dx.
0 0

Solution  Integration with respect to y gives
1 5 5 (1 o IZ}S;’Z
V1 —x + ———— | dx,

0 3

an integral difficult to evaluate without tables. I

1 V122 w2 Pl
/ f (x? + yYdydx = / j (r?) r dr d
0 Jo 0 0
2 4 =1 w2
T 1 T
= — de = —df = .
el [ e

HW1 : Find the volume of the solid region bounded above by the paraboloid
z = 9 — x2 — »? and below by the unit circle in the xy-plane.

22
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HWZ2 : Using polar integration, find the area of the region R in the xy-plane en-

closed by the circle x2 + y2 + 4, above the line y = 1, and below the line

y = Vix. ; )
A y = V3x
2
(1, V3)
y=1or
r=csc
R
1
=1
(V3,1
¥
T \3 X2 + '\’2 =4
6 | -
0 1 2

23
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4-Triple Integral in Rectanqular Coordinate

Suppose the surface z = f(x,y)

to find the volume under the T
surface divide the volume into (ks Vs Ze)
small rectangular solids with
volume: D —Ay

/ \Axk
AV = AzAyAx Ay,
Then the total volume _r/

FRoep

V=ZAV

X2 Y2=92(%) Z2=f2(x,y)
V= f j f dz dy dx

Finding Limits of integration in the order dz dy dx

To evaluate [[f F(x,y,2z)dV over the region D, integrate first
with respect to z, then with respect to y, and finally with
respect to x. to find the limits of integration:

24
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1-  Sketch. Sketch the region D

along with its "“shadow" R I
(vertical projection) in the xy- ‘f
plane. Label the upper and lower
bounding surfaces of D and the

upper and lower bounding curves
of R.

z= FHx, y)

2- Find the  z-limits  of T
integration. Draw a line M passing a =~
through a typical point (x,y) in R |
parallel to the z-axis. As z
increases, M enters D at z = fi(x,
y) and leaves at z = f2(x,y). These
are the z-limits of integration.

—- Leaves at
z=folx,y

D

3- Find the y-limits of integration. 2
Draw a line L through (x,y) parallel to | -
the y-axis. Asy increases, L enters R |
at y = gi(x) and leaves at y = ga(x).
These are the y-limits of integration.

D

25
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4- Find the x-limits of integration. Choose x-limits that
include all lines through R parallel to the y-axis (x =aand x = b

in the preceding figure). These are the x-limits of integration.
The integral is:

X2

Y2=92(x) zZ=f2(x,y)

Y2=92(x) za=f2(x,y)

dz dy dx

Ex1 : Find the volume of the region D enclosed by the surfaces z = x* + 3y?

)
andz = 8 — x° — y“.

-

Leaves at

2 2
z=8—x3—y

Enters at
¢ 2
z2=x+ 3y ——

Enters at :
y=-Vid-x3)2 — <

(

2,0,0) 5
(x 0.0) X

Leaves at
y="V(4—x2)2

26

M

2 2
z=8—x“—y*

The curve of intersection

\
SR
~=2,0,4)
\‘ ' z=x2+ 3y?

[=12.0.0
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Ex2: Find the volume of the 3D-region in the 15" octant
bounded plane and z + y = 2 and the cylinder x = 4 — y2,

28
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Ex3: Find the volume bounded by the surface z=3—-x—y
and the area in x-y plane enclosed by the circle x* + y* =1
and the line y=x and y-axis.

30
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5- Triple Integral in cylindrical coordinate

We obtain cylindrical
coordinates  for space by
combining polar coordinates in
the xy-plane with the usual z-
axis. This assigns to every point in
space one or more coordinate
triples of the form (r, © z), as
shown in Figure.

The cylindrical coordinates of a point in
space are r, #, and z.

DEFINTION Cylindrical coordinates represent a point P in
space by ordered triples (r, 6, z) in which

1. r and © are polar coordinates for the vertical projection of P
on the xy-plane.

2. z is the rectangular vertical coordinate.

Equations Relating Rectangular (x, y, ) and Cylindrical (r, 8, z) Coordinates
x =rcosé, y = rsinf, z =z,

rP=x2+y%  tanf = y/x

32
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How to Integrate in Cylindrical Coordinates
To evaluate: }

f/].f{r'. 0,z)dv
s

over a region D in space in cylindrical
coordinates, integrating first with
respect to z, then with respect to r,
and finally with respect to 6, take the
following steps.

L= gz(f, 0)

1-Sketch the region D along with its
projection R on the xy-plane. Label the
surfaces and curves that bound D and
R.

2- Find the z-limits of integration.
Draw a line M through a typical point (r,
B) of R parallel to the z-axis. As z
increases, M enters D at z; = gi(r, ©)
and leaves at zz = gz(r, ©). These are
the z-limits of integration.

3- Find the r-limits of integration.
Draw a ray L through (r, ©) from the
origin. The ray enters R at r = h; (6) and
leaves at r = hz( ©) . These are the r-
limits of integration. e

.

i i \\ 6=p8

7 r = hy(0)

33
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4- Find the ©-limits of integration. As L sweeps across R, the
angle © it makes with the positive x-axis runs from 6 = a to
© = b. These are the 8-limits of integration. The integral is

0=B fr=hy0) [fz=gr,0)
ﬂ f(r,0,z) dV = f f f f(r,0,z) dzrdrdb.
» O0=a Jr=mh(0) Jz=g(r,0)

EXAMPLE 1  Find the limits of integration in cylindrical coordinates for integrating a
function f(r, 6, z) over the region D bounded below by the plane z = 0, laterally by the
circular cylinder x* + (y — 1)* = 1, and above by the paraboloid z = x* + %,

¥+ (y -1 =1
2 2 Top
x“+y =2y +1=1 Cartesian: z = x2 + )2
2 — 2rsing = 0 Cylmdnﬂcal: z=1r
r = 2sin 6. |
X
w f2sing pr M D
/f/f{r,ﬂ,z)dl”z// f(r,0,z) dzrdrdo.
0 Jo 0
D y
o
—r 5
R / \(r. 0) L

Cartesian: x2 + (y — 1) =1
X Polar: r=2sin6

34
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Ex2: Let D be the region bounded below by the plane z = O,
above by the sphere x? + y2 + z2 = 4, and on the sides by the
cylinder x2 + y? = 1. Set up the triple integrals in cylindrical
coordinates that give the volume of D using the following orders
of integration. .

a) dz dr dO . 2

b) dr dz d© .
c) d6 dz dr. HF'@T

r2+z%2=14

™~

i
ke

...-";'}";‘ Fara :"':-'
A

X +y2+22=4

w— 4-!2 :}

.
Lies 2 S,
o A

(a) f:r J;I j: ]ﬁﬁ dz r drdf
w [ )”’” [rardzas + [ f_ [ ]‘H " rdrdzdd
©) j: f}T | :rrdﬂdzdr

35
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6- Triple Integral in spherical coordinate

Spherical coordinates locate
points in space with two angles and
one distance, as shown in Figure. P(p, ¢, )
The first coordinate p = |0P|, is '
the point's distance from the
origin. Unlike r, the variable p is
nhever negative. The second
coordinate, @, is the angle |0P|
makes with the positive z-axis. It
is required to lie in the interval [O,
]. The third coordinate is the
angle © as measured in cylindrical
coordinates.

> &

The spherical coordinates p, ¢, and 6 and their
relation to x, y, z, and r.

DEFINITION: Spherical coordinates represent a point P in
space by ordered triples (p, @, 8) in which:

1. pis the distance from P to the origin.

2. ®is the angle |0P|makes with the positive z-axis (0 < @ < 7).

3. O is the angle from cylindrical coordinates (0 < 6 < 2rx).

Equations Relating Spherical Coordinates to Cartesian
and Cylindrical Coordinates

r = psin g, x = rcosf = psing cos o,
z = pcos g, v = rsinf = psindgsinb,

p:\/’rx‘?—i—yz—#:z: N r2 + z2.
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Ex1: Find a spherical coordinate equation for the sphere

x% + ,\'3 +(z—12=1
p=2cosd

x4y (z-1)2=1. L

Ay (-1 =1 2 \

p*sin® d cos” @ + p?sin® psin?f + (pcosd — 1)* = |

\

p2 sin® d(cos’ @ + sin6) + p2 cosch) —2pcosd +1 =1 &

I
/ ' ‘ Ty

pX(sin’ & + cos’ @) = 2pcos 3

p* = 2pcosd
p=2cosd.

Ex2: Find a spherical coordinate equation for the cone
2= (37572 -

st =7
pcosd = Vp?sin® ¢
pcoscd = psing

cos ¢ = sin¢

o
¢=1 /
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How to Integrate in Spherical Coordinates

To evaluate:

[/ flp. &, 0) dV
S

over a region D in space in spherical coordinates, integrating
first with respect to p, then with respect to @, and finally with
respect to 6, take the following steps.

1- Sketch the region D along with its

projection R on the xy-plane. Label the = 0D
surfaces that bound D. o 4
2- Find the p-limits of integration. Draw a e =540
ray M from the origin through D making an
angle @ with the positive z-axis. Also draw
the projection of M on the xy-plane (call
the projection L). The ray L makes an angle
© with the positive x-axis. As p increases, o e
M enters D atp = g,(@,0) and leaves at \ ‘b\ElLNQi
p=g,00,0). These are the p-limits of < il
integration. TS
3- Find the @-limits of integration. For any
given 6, the angle @ that M makes with the
z-axis runs from ® = ® min fo ® = ® max.
These are the @ -limits of integration.
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4- Find the ©-limits of integration. The ray L sweeps over R as
© runs from a to p. These are the 6-limits of integration. The
integral is:

fi= .8 h= '[I’m.m F HE[L‘IEL UJ
]] flp, &b, 0)dV = f / f f(p, b, 0) p?sin ¢ dp dep d.
ﬁ!‘ ("-"m i P EJ[‘!‘ ':”

Ex1: Find the volume of the "ice cream cone" D cut from the
solid sphere p < 1 by the cone ¢ = ~.

.
D =i Sphere p = 1

2 w3 ol
:ff/pzsin¢dpd¢d8=] / fpzsinqbdpdqtrdﬂ
0 0 0
D

27 )l P:'l' 2 1
=f / [?} sin ¢ dcb do —/ / 3s sin ¢ d¢p db
0 0
2 1 /3
:f [—gcusci)] d{i:] ( +
] ]

_l _ 7
do = ¢ (2m) = 3.

Ld| —
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Coordinate Conversion Formulas

CYLINDRICAL TO SPHERICAL TO SPHERICAL TO
RECTANGULAR RECTANGULAR CYLINDRICAL
X =rcos#f x = psin¢gcos @ r = psing
v =rsind v = psing¢sinf z=pcosd
z=1z z=pcoso 0=20
Corresponding formulas for 4V in triple integrals:
dV = dx dy d:z
= dzrdrdb
= p?sin ¢ dp d¢p df
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CHAPTER TWO

Vectors

Some of the things we measure are determined simply by their
magnitudes. To record mass, length, or time, for example, we need
only write down a number and name an appropriate unit of measure.
We need more information to describe a force, displacement, or
velocity. To describe a force, we need to record the direction in which
it acts as well as how large it is.

1-Vector in Space:

A—B>:(X2 =X)i+ (Y, = y) i+ (2, —2,)k
Né:xi+yj+zk

Then the length (magnitude) of the vector is:

‘ﬁ‘:\/x2+y2+z2

Where as : AB /

i : is a unit vector in the direction of x. .

o

j +is a unit vector in the direction of y. /\

k : is a unit vector in the direction of z.

Note: Two vectors are equal if they have the same length and
direction.

2-Unit Vector:

It is a vector whose length is equal to the one unit of length along the
coordinate axis.
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Ex: let A(-3,4,1) and B(-5,2,2) two points in the space, find:
1- The vector AB.

2- Length of AB.

3- Unit vector of AB.

Sol:

AB = (X, = x)i+ (Y, — V1) +(2, — 2,)k = (-5+3)i +(2—4) j + (2-Dk
AB=-2i-2j+k

‘E‘:Jx2+y2+zz =J4+4+1=49=3

AB  —2i-2j+k -2. 2.

UAB:‘A—B»‘_ 3 —3I—§j

+1k
3

3-Addition and Subtraction of Vectors: let

=X1+VY,]+2zk

=

=X,1+Y,]+2,K

N

V, = (X + X)i+ (Y, + Y,) j + (2, + 2,)k

V1 _Vz = (Xl - Xz)i + (Y1 - yz)j + (Zl - Zz)k

<
_+_

V2

VIHV2 V2 Vit

V1 -V2
VIH-V2)

V1 V2

() (b)
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4-Multiply Vectors with constant:

When we multiply a vector with a constant, that is mean
changing in the length of the vector (scaling vector length).

Let C is a constant and the vector V is:
V = xi+ yj + zk

Then

C*V = (C*X)i+(C*y)j+(C*2)k

Ex: let Vi=-1+3i+k gnd V> =4+7] find:

V,+V, = (X +X,)i+ (Y, +Y,)j+(z, + ,)k =3i +10j +k

V, =V, = (% = %,)i+ (Y, = ¥,) j + (2, —2,)k = —5i 4 +k

e mgzﬁzzm
2 4 4 4 4 2

5-Slope, tangents(Vt), Normal (V) in the plane:

If y=f(x) represent a curve in x-y plane then the 1°" derivative

v_ y’ slopof tanget at p(x,y) = S; = b
dx 3

The tangent vector is:

Vr = ai + bj
1 a
Slope of tangent s, -5 =1

T

V, =-bi+ajorV, =bi—aj
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Ex1: find the vector tangent and normal fo the curve y =« +% at p(1,1).
Sol.:

dy
'=—“2=1=—=5lo
y dx Y
V; =i+ ]
S, =+ =12

S, b
V,=—i+] or V, =i—]
unit normal

N —i+]
Un:—:

Nl V2

6-Dot (Scalar) Product:

If we want to measure the angle between two vectors we apply the
dot product. Also we apply it to find the y

projection of one vector onto another. Then
let we have two vectors:

A=ai+a,]j+ak A
B=hji+h,j+hk &
B
The A*B is called the dot (scalar) product of  —5 T

Ag B and given by:

AeB=ab, +a,b, +ab, = ‘AHé‘COSH

0= cos{ﬁﬁ} , Where @ is the angle between two vectors
A|B

Note:

1) iei=joj=kek=1

2)iej=jek=kei=0

3) Ae(B+C)=AeB+AeC

if AeB=0 .. ALB  because c0s90=0
if AeB ‘AHB‘ - AllB because  cosO=1
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Ex: Find the angle between A=1721—2K gqqB=61+3]+2K
Sol:

AeB=(1*6)+(-2*3) +(-2*2) =4
W=Jaf +b’+c’ =V1+4+4=3
‘ﬁ‘ :\/az2 +b,+c,’ =4/36+9+4=7

6 =cos* A:;F = cos‘l(_—4j =100.98°
‘A B 3)(7)

Vector Projection:
AeB = ‘A‘ Blcos@

AeB
‘A‘ CoSO = ——
g
B
Pr OJQ — A : B Length = |A| cos # Length = —|A| cos 8
‘B‘ (a) (b)

7- Cross Product:

When we apply the cross product onto two vectors we will get a new
vector normal to these vectors. Also it gives us information about the
area of the parallelogram which contains the vectors.
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If we have two vectors:

A=ai+a,j+ak
B=hi+b,j+bk

! Ik a, a a, a a, a
AxB=la, a, a,|=|> li—|* i+ %k

o b | b Bl e T b
Axézh‘ﬂ”é‘sine
Note: |
1— if A//B then sind=0 AxB=0 [ \\
2— ixi=jxj=kxk=0 i

o . |
3- AxB=—-(BxA) K J
4— (AxB)eC=(BxC)eA=(CxA)eB
Ex: Findu X vandv X uifu =2i + j + kandv = —4i + 3j + k.
Solution
Pk
S 2' *1' 1 11 ‘2 o2,
uXxXv= = i— j
3 1 -4 1 -4 3
-4 3 1

= —2i — 6j + 10k

vu=—(uxXv)=2i+6j— 10k

Ex: 1-Find the normal vector to the plane which contains points A (1,-

1,0),B(2,1,-1), C(-11,2).
1-Find the normal unit vector to the plane.
Solution

AB=(2-Di+0-(-D)j+(-1-0k=i+2j—k
AC = (-1-D)i+ (L—(-1)j+ (2—0)k = —2i + 2 + 2k
Then the normal vector to the plane is:




Chapter Two: Vectors Communication Eng./ 2" Class

i j ok
ABxAC=|1 2 —1=6i+6k
2 2 2

__ABxAC _ 6 . 1.1
ABxAC| 6V2 62 N2 2

H.w: Determine if the two vectors are orthogonal or parallel or not?

1- A= 6i + 6k and §=—2i+2j+2k
o A=3i-2j+k and B =2j+4k
3. A=6i+3j+2k and B=12i+6]+4k
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Lines and Planes in Space

1) Plane Equation in space

Suppose M is a plane passes through the point Po (xo, yo, 20). Also M
plane is a set of points P (x, y, z). And N is a vector normal to the M

plane. Then:

. - Plane M

PoP = (x — xo)i + (y — yo)j + (z — zp)k /

N ] i P(X’y’ 2)

N = Ai + Bj + Ck @
PO(XO’ _)/0,;"_0)/v

PP LN

PO—P)-IVI> = |130—15||ﬁ| cos90 =0

|

POP-IV=(x—xO)A+(y—yO)B+(z—ZO)C=0

Ax + By + Cz = Axy + By, +Czo = D

Equation (1) is called a plane equation, where D is a constant.

Note: to find a plane eq. we must have a normal vector and a point
within the plane.

Ex:: Find the equation for the plane passes through Po (-3, O, 7) and
perpendicular toN =5i+2j-k.

Sol

Ax+ By +Cz = Ax, + By, +Cz,
9X+2y—-z=-15+0-7
SX+2y—-2=-22
z=f(x,y)=22+5x+2y
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Exz: Find the Eq. for the plane through A (0, 0, 1), B (2, 0, 0) and C
(0, 3, 0).

Sol: V = (x=x)i+(y—Yo) i+ (z-2,)k

AB =(2-0)i+(0-0)j+(0-1k
AB =2i—k

AC =3j—k

N = ABx AC

=+

i
N=[2 0 —1=3i+2j+6k
0 3

Now we have a vector normal (N ) to the plane and point A (0, O, 1) we
can find the plane equation

Ax+ By +Cz = Ax, + By, +Cz,

3X+2y+62=6

2-The Distance from the Point to a Plane:
If Pis a point on a plane with normal N, then the distance from any

point S to the plane is the length of the vector projection ontoN.
Then the distance from S to the plane is:

PS-N — N
d=|-—=|= ‘PS y T‘ .. (2)
N| N|
Where N = Ai+Bj+Ck is normal to N

the plane.

Distance from
S to the plane

y
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Ex:: Find the distance from S (1, 1, 3) to the plane 3x + 2y + 6z = 6.
Sol: N=3i+2j+6k

P is a point may be a point of intersection between the plane and the
y-axis. Then x=z=0 then the point P is (0,3,0)

n = 3i+ 2j + 6k

SP=(1-0)i+(1-3)j+@B-0)k=i—2j+3k

S(1L, 1, 3)

— N . . 3i+2]+6k ®~-

dZSP.TII—ZJ—{—Bk,—
‘N‘ I+4+36 3Ix+2y+62=6 o0, 0.>\\

L 3. 2.6 BN
d=(-2 3K).(=i+= —k \ \\ Distance from

( I ) (7 " 7 I 7 ) \ 2 : ‘w‘ S t(:thc plane

3 4 18 17 . X
d 27—74-7:7 Iength unit /(2_0‘()) P(0, 3, ) Y

X

H.W: (Exercisers 12.5 p694 )
1- Find the distance from the point s(2, -3, 4) to the planex +2y +2z =13

3- Angles Between Two Planes

Two planes that are not parallel will intersect
in a line. The angle between two intersecting
planes is defined to be the angle between
their normal vectors.

If the equations of planes are: o
Ax+By+Cz=D

A'x+By+Cz=D’

Then the corresponding normal vectors are:

N, = Ai + Bj + Ck

N, =A'i+Bj+Ck

N,.N, =|N1||N2| cos®

f=cos*

10
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Ex:: Find the angle between the planes 3x-6y-2z=0 and2x+y-2z=5,

N,=3i-6j—2k
! : } The vectors are normal to the planes.

‘Nl‘=\/32+62+24 =J49=7

IN,[=v2?+1°+2° =9 =3

L (Bi—6j—2K).(2i+ j—2k)
7%3

=79°

0 =cos

9 = Cos_l w

Exz: Find a vector parallel to the line of intersection of the plane3x-
by - 2z=15and 2x +y - 2z = 5.
Sol:

The vector parallel to the line of intersection is the vector results
from the cross product between the two normal vectors N, N, .

N, =3i—-6j—2k
o thefvectors normal to the planes.
N, =2i+j—-2k

ik
V=N,xN,=[3 -6 —2=14i+2j+15k

2 1 -2

V =14i+2j+15k

11




Chapter Two: Vectors Communication Eng./ 2" Class

H.W;: find vector parallel to the line of intersection between two
planes.

1) x+y+z=1and x+y=2.
2) x-2y+4z=2andx+y-2z=5

H.W:: Find the angle between the planes x+y=1 and 2x+y-2z=2

12
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Vector Valued Functions and Motion in Space

1- Vector Functions:
Now that, we have learned about

vectors and the planes in space. Calculus of z
vector-valued functions will be studied to /
describe the paths and motions of objects

P( (1), g(i), k()

moving in a plane or in space. When a point o

P(x,y.z) (particle) moves through space / ,

during a fime interval t, then the point
coordinates will be a functions of t(real

humber):

x=1f(t), y=9@®. z=h()

The motion of this points P(f(t), g(t), h(t)) will make up the curve in
space that we call the particle's path (see the figure). A curve in space
can also be represented in vector form which is called the vector

valued function (also called position vector):

r(t)=0P = f (t)i+g(t) j + h(t)k ..(4)

Ex1: Graph the vector functionr(t) = (cost)i+(sint) j+tk.

Sol: At t=0 the curve will be in x-y plane,

then the curve Eq. satisfy the circle
equation. ’ /
x% 4+ y? =sin*t + cos’t = 1 %P/},:n

The curve rises as the k-component z = t
increases. Each time t increases by 2m, the
curve completes one furn around the
cylinder. The curve is called a helix.

13
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rii) = (cos 1 + (sinf)j + ik r(f) = (cos )i + (sin 1)j + 0.3k

rif) = (cos 50i + (sin 5nj + 1k

2-Derivatives and Motion of Position Vector:

Suppose that r(t) = f(t)i + g(t)j + h(t)k is the
position vector of a particle moving along a
curve in space and that f, g, and h are
differentiable functions of t. Then the
difference between the particle's positions

at time t and time is t+At:
dr
dt

V - dr(t) _ df(t) i dg(t) i+ dh(t) "
dt dt dt dt
=V i+ Vv, j+ VK

<

X

ri(t + A — r(n

» o

r(r)
r(r + Ar
/C

o

— =VelocityVector (V) Then the velocity vector is:

Then the speed of the particles is the absolute of the velocity vector:

V| = JvZ+vZ +v2

14
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|Vh

U —

) ‘

=

V= |T7‘ [Z] = speed . direction

Then the acceleration vector of moving particles is second derivatives
of the vector function:

d?r(t) dv(t) .
= =a
dt? dt -
d t .........
a':dvx(t)i+ Vy()j+dvz(t)k
dt dt dt

Exi:Find the velocity and acceleration of a particle whose motion in
space is given by the position vectorr(t) = 2cost i+ 2sint j+5cos’tk.

Sol: the velocity vector is:

V:%:(—Zsint) i +(2cost) j+(-10costsint) k
V = (-2sint) i+ (2cost) j—(5sin2t) k
The accelration vector

dv

éza:(—Zcost) i —(2sint) j—(10cos2t) k

Exz: The vector r(t)=3cost i+3sint j+t>k gives the position of moving
body at time t find:

1- Vand &,

2- Speed when t=2,

3- Direction of V when t=2,

4- At what time are the velocity and acceleration orthogonal?
Sol.

1-
- dr . . i
\Y =E:(—3smt) i+ (3cost) j+(2t) k
_ Qv . . .
azaz(—Scost) i—(3sint) j+(2) k

15
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2-

3-

4-

HW:

speed = |V| = \/9sin2t + 9cos?t + 4 = \/9 + 4t?
When 1=2
VI=J9+ (4+4)=v25=5
Direction of V =U, =VT‘
U - (-3sint) i+ (3cost) j+(2t) k

v 5
when t =2 then
U, = (—Ssinz)i N (3c052)j +(2%2)k

5 5

The two vectors are orthogonal that mean:
V.d=0

V . d={(-3sint) i+ (3cost) j+(2t) k| .{(-3cost) i—(3sint) j+(2) k}j=0
9sint cost —9cost sint+4t =0

4t =0

t=0

(Exercisers 13.1)

1- Find the angle between the velocity and acceleration vectors at
time t=0 of the position vector @ = (3t + 1)i ++/3tj + t?k .

16
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3-Direct Distance along a curve from (1o) to (1)
(Arc length in space):
The integral of |[V| from (,) to (t1) gives the direct distance along the

curve from P(t,) to P(t1) the distance is function of t and we denoted
it by s(t):

r(t)=f(t)i+g(t)j+h(t)k
g _dr® _df, dg, dn
dt dt dt dt

=% |
ds = |V|dt

t1
s(t) = j|l7|dt

to

Note: the value of (s) is +ve if ti> to and -ve if ti< to

Ex1: Find the length of one turn of the helix r(t) = (cost)i + (sint) j + tk .
Sol.

V =%= (—sint)i + (cost) j + k

sz/sinzt+coszt+1:x/§
s(t):j’\?\df
s(t) = Tﬁ dr :\/Er‘:”

s(t) =227

17
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Ex2. Find the length of the curve r(t)=(t)i+(t§)j from (0,0,0) to

(4,8,0).

Sol:

v Ce )
|V|—1/1+( t2) —1/1+—t
s(t)=j|v|dr

To find the limits of integration p(0,0,0), Q(4,8,0)

X(t,)=x, > t, =0
Xt,)=x, >t =4

or

3

y(to):yl _)toE =0 —)t0=0

3
yt,) =y, —>t2 =8—>\/E=8—>tf’ =64t =4

s0)=] J: “(/ i)
_8l0% _
- 27[(10) 1}

0
s
s(t) =3(1+ 9t)
27" " 4
0

S(t) = %[10\/5 ~1

4

18
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4-Unit Tangent Vector ( T ) of the curve:

We can define the unit fangent vector T as:

Ex1: Find T if r(t) = (cost)i + (sint)j + tk .
Sol.

.I__’

=i|<

V = (=sint)i + (cost) j + k
’\7‘=\/sin2t+coszt+1=\/§

f:i_ (—smt)i+ (cost) j+ik

V[ V2 Jo T2

5-The Curvature of the Vector Function:

As we move along the differential curve, the y
unit tangent vectorT as the curve bend. We
measure the rate at which T turns by
measuring the change in the angle ¢ that
Tmakes with i.

The value of the ‘%‘ at point P is called the

curvature of the curve.
Then the curvature k is: 0

A

7

And the radius of the curvature is:

...(10)

19
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PZE ee(11)

Exl1: Find the curvature of the circle of radius a.r(t) = (acost)i+(asint)j.

v=2ro (—asint)i+(acost) j
d =——=(—acost)i —(asint) j

i j k
—asint acost O
—acost —asint 0

=a’k

xﬂ:a

‘ = J/(-asint)? + (acost)? =a

2

6- Unit Normal Vector to the Curvature:

Among the vectors orthogonal to the unit
tangent vector T is one of particular
significance because it points in the T

direction in which the curve is turning. And

it is given by: s
Py N= 1o
kds [dT/[ | e
* [Tl

20




Chapter Two: Vectors Communication Eng./ 2™ Class

Ex;: Find T and N for the circular motion r(t) = (cos2t)i + (sin2t) j .

Sol:

T="

Vi

v
dd(tt) = (—2sin 2t)i + (2cos2t) j

V=

V|=/(~2sin2t)? + (2cos2t)? =2
T = (—sin2t)i + (cos2t) |

dT
dt

N = /4t
Tl

dT g = (F2c0s20)i - (2sin2)

‘ \/(—ZCOSZI)2 +(-2sin2t)®> =2
N = (~cos2t)i — (sin2t) j

Exz: Find T,k and N of the curve vector r(t) = (acost)i + (asint) j+btk, a
&b>0

a’+b®>#0
Sol: we calculate T from the velocity vector:

dr(t)
dt
‘V‘: \/(—f-7~‘:'i11=“)2 +(acost)’ +b° _Jat + b

V=

= (—asint)i + (acost) j + bk

v (—asint)i+ (acost)j +bk . .
T=—= (—asint)i +(acost) j + bk
‘V| Jat + b Ja [ ]
_Lar
7|l ar

1

:Jaz+bz[¢a b

[(—acost)i —(asin F)j]J

B 1 a J_ a
Val +b* \Ja* +b’ a’ +b’

21
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dT
dr

A
dTl’ 1
7 (e
it ()

a’ +b?

N:

[(—ncosr)f—(nshl r)j]J

N :[ a” +b’ _ 1 [(—acosr)f—(ﬂSﬁlf)f]J

N =(—cost)i—(sint)j

Ex3: The velocity of a particle moving in space iS:%:(cost)i —(sint)j+k
find a particles position as function of t, if r=2i +k when t=0.

Sol.

r(t) = [Vdt

r(t) =j(cost)i —(sint)j +k dt
r(t) = (sint)i + (cost) j+tk + ¢

r(Q)=j+c
J+c=2i+Kk
c=2i—j+k

r(t)=(sint+2)i+(cost—-1)j+ (t +1)k

H.W: (Exercisers 13.4)

Find T ,N and k for the curve:
1-r(t) = (6sin2t)i + (6cos2t) j + 5tk .
2-r(t) = (2t +3)i+ (5-t2)]

3-r(t) = (cos’ t)i + (sint)j , O<t <%

22




Chapter Two: Vectors Communication Eng

./ 2" Class

7-Tangential and Normal Components of Acceleration:

-

If you are traveling along a space
curve, the Cartesian i, j, and k
is used for
representing the vectors describing
your motion. Another
describe the motion is to used the

coordinate system

way to

vectors, the unit tangent vector T
and the unit normal vectorn. The

acceleration a always lies in the plane created by Tand N as shown in

figure.

<

a=

Q|

D

dr_drds
v 4
dt
ds dT
e
dt dt dt
sy (0T g
Cor S8
dt dt dt
ds
e + k(—

D

dr ds
dt  dt
+— —.
dt? dt{ ds dt
2 2
d?s j N
dt

Tdt dsdt dt
_ . d?%
2
d’s ds(kN ds
=T
The tangential and normal scalar components of acceleration are:

s d
a; = d_zs = M Tangential component | e (14)
dt dt

ds ? 2
a, =k o =k|V|" Normalcomponent | ... (15)
| a|:\/(aT)2 +(aN)2

.......... 1

a, =w/|a|2 —al (16)
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By definition, acceleration ais the rate of change of velocity vV, and
in general, both the length and direction of V change as an object
moves along its path. The tangential component of acceleration a,
measures the rate of change of the length ofv (that is, the change in
the speed). The normal component of acceleration a, measures the

rate of change of the direction of V.

Ex1: Write the acceleration of the motion

r(t) = (cost +tsint)i + (sint —tcost) j in the form of a=a, T +a N.
Sol:

s dr . oo\ : .
Vv :a:(—3|nt+tcost+smt)| +(cost +tsint —cost)

Y =(tcost)i+(tsint)j

M (tcost) +(tsint)? =t? =t

V] _aw _
Toodt dt
dv

a=-_ = (—tsint+cost)i + (t cost +sint) j

8 =+/(~tsint +cost)? + (t cost +sint) =/[t? sin?t - 2tsintcost + cos’ t)+ (t* cos’ t + 2t sint cost +sin’ t)

\a\z\/(tzsin2t+t2coszt)+(coszt+sin2t)=\/t2+1
ay =+/|a" —a7

a, =vt?+1-1
a, =t
a=a;T+ayN=1T+t N

24
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Exz: Find TN and k for the curve r(t)=ti+In(cost)j, -Ad2<t<z/2 Then
write a=a,T+ayN, Find dT/ds at t=n/3.

Sol:to find T:

_Vv
- i Hint :
v - g i sint j

dt cost d(inu) _1,,
V =i—tant j du u
secd =

M 1+tan t =sect c0sO
T 1 i tant . sec’d=1+tan’ @

sect  sect
T =costi—sint j

Then to find N:
dT
dt

N =_/dt
Tt

d—T_( sint) i —(cost) j

_i‘d_T‘
V|l dt
K :i:cost

sect

‘ \/( sint)? — (cost)? =
_‘dV‘ (=sint)i—(cost) j
To find the normal and tangent components:
QT (T
dt? dt

N‘:%:sect

25
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d?s d
a. =——=—(sect)=secttant
T dt? dt( )

ds)’
a, =k *(—j =cost sec’t
dt
a=(secttant)T + (cost sec’t) N
a=(sect tant)T +(L) N
cost

a=(sect tant) T + (sect) N

To find dT/ds:

_1d1T
k ds

9T _ Nk

ds
K=COSt --vvrvevermmrmnananinnaana.. att=7/3 »> k=05
N =-sint i—cost j --oeoeeeveeenns att=7/3 > N:—gi—%j
ar (V8 1)1

ds 2 2°) 2
d_T—_ﬁ'_EJ

ds 4 4

H.W: (Exercisers 13.5)

1- Find T,N and k for the curve r(t)=(e' cost)i + (e' sint) j+ 2k, Then write
a=a;T+ayN, Find dT/ds at t=n/2.
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CHAPTER FOUR

1. Sequences
A sequence is a list of numbers:

A1, A2, A3, 0005 lpy e

in a given order. Each of ai, a2, az and so on represents a number.
These are the fterms of the sequence. For example, the

sequence:
2.4,6,8,10,12,....2n....

has first term a; = 2, second term az = 4, and nth term a, = 2n.
The integer n is called the index of an, and indicates where aj
occurs in the list. Order is important. The sequence 2, 4,6, 8 ...
is not the same as the sequence 4, 2, 6, 8 .... .Sequences are
fundamental to the study of infinite series and many
applications of mathematics.

Ex1: Writ down the first few terms of the following

sequences.
n+1)®
Q) —
n® Jn=1
{n+1}°° _{234567 }
nZ n=1_ ’4)9}16)25)36; ---------

co

) {5,

(- _{11—11—11 }
2n ) o U727 47871673277

1
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Convergence and Divergence of the Sequences:
1) The sequence is convergence if:

lim a, =L Where L is constant.

n—-o0o

2) The sequence is Divergence if:

lim a, = o

n—0o

Some important Rules:

THEOREM Let {a,} and {b,} be sequences of real numbers, and let 4
and B be real numbers. The following rules hold if lim,—oa, = 4 and
]im”—}mbn = B+
1. Sum Rule: lim,—oo(a, + b,) = A + B
2. Difference Rule: limy,—oo(a, — b,) = A — B
3. Constant Multiple Rule: lim,—oo(k*b,) = k*B (any number k)
4, Product Rule: lim,—oc(d,*b,) = A+ B
5. Quotient Rule: iy soo 3 = & ifB#0
0 .
0= Undefine
(0.0)
0 Undefined
00
— = Undefined
oo
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Number _

0¢]

(O)Number =0

0)*=0

oo

Number

(Number)® = oo

(Number)? =1
(00)? =1

Ex1: Determine if the following sequences convergence or

divergence?

v
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2) {2}n=o

3) {nz}%o=1
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Test of monotone for the sequences:

In the previous section, we introduced the concept of a
sequence and talked about limits of sequences and the idea of
convergence and divergence for a sequence. In this section, we

want to take a quick look at some ideas involving sequences.

Let's start with some definitions.

Given any sequence {a,; we have the following.

1. We call the sequence increasing if o, <a, _, for every n.
2. We call the sequence decreasingif g >ga  forevery n.
3. If {a,| is an increasing sequence or {a, | is a decreasing sequence we call it monotonic.

4. If there exists a number m such that m < a, for every n we say the sequence is bounded
below. The number m is sometimes called a lower bound for the sequence.

Lh

If there exists a number M such that @, <M for every n we say the sequence is
bounded above. The number Af is sometimes called an upper bound for the sequence.

6. If the sequence is both bounded below and bounded above we call the sequence
bounded.

Note: that in order for a sequence to be increasing or decreasing it
must be increasing /decreasing for every n. In other words, a sequence
that increases for three terms and then decreases for the rest of the
terms is NOT a decreasing sequence. Also note that a monotonic

sequence must always increase or it must always decrease.
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Ex: deftermine if the following sequences are monotonic and /

bounded.

b) {(_1)n+1 }

n=1
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2.Infinite Series:
An infinite series is the sum of an infinite sequence of
humbers:
ay tay +ay+--+a, +--
The number a. is the nth term of the series. The sequence {sn}

defined by:

§1 —

§2 =@y + a»

n
sn=atat-ta, = D g
k=1

{sn} is the sequence of partial sums of the series, the number
sn being the nth partial sum. If the sequence of partial sums
converges to a limit L, we say that the series converges and

that its sum is L. In this case, we also write

oo
ay +ay +---+a, +---= 2{1,,2.*2.
n=1

If the sequence of partial sums of the series does not

converge, we say that the series diverges.
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2.1 Geometric Series

Geometric series are series of the form:

o0

a+ar+ar*+---+a" '+ ... = Ear”_'

n=1

in which a and r are fixed real numbers and r = 0. And r is:

An+1
an

The value of r can be positive or negative. The sum of the

geometric series is depending on the value of r:

1) |r|<1 - Converges - Sn=1;fr
a(1-r™)

1-r

2) |r|=1 - Diverges - Sy =

Ex1: Find the sum of the following series:

()

n=1
Sol: from the series a=2 and r =% , r <1, then the series
converges
a 2 2 ) 5 )
= = = —= X — — .
1oy 11 4
5 5
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Ex2: Find the sum of the following series:

o 2n+3

371

n=0

Sol:

(00]

M3 2\
) 5 =2.2(3)
3n 3

n=0 n=0

from the series a=8 and r = 2 ,r <1, then the series converges

2.2 Power Series

We begin with the formal definition, which specifies the

notation and terms used for power series.

DEFINITIONS A power series about x = 0 is a series of the form
Ecnx”=c(}+c1x+02x2+---+cnx”+---. (1)
n=0

A power series about x = a is a series of the form

(& 4]

Seax —a)y'=co+cilx —a) +exlx —a) + -+ elx —a) + 0 (2)
n=0

in which the center @ and the coefficients ¢y, ¢y, ¢s, ..., ¢,, ... are constants.

9
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2.3 Taylor Series

This section shows how functions that are infinitely
differentiable generate power series called Taylor series. In
many cases, these series can provide useful polynomial
approximations of the generating functions. Assume that f(x)

is the sum of a power series:

) = Senlx — a)

=i}

Where:

c, _ f{n}(ﬂ)

n!

Where f™(a) is the nth derivatives of the function at x=a.
Then the Tylor series is a representation of the function f(x)
in form of power series about x=a:

Tylor series:

S0 (= 0+ flae =)+ Dy

10
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If we use a=0, so we are talking about the Tylor series about
x=0, then we call it Maclurian series:

Maclurian series

~ ” "0 (H}O
M o oy 4 prom+ L0 gy SO,

Ex1: Find the Tylor series for the f(x) = e* about x=0.

The Tylor series at a=0

> flno
f(x):,g’;,f?rf ) x"

O FO@ O, 1O, O,

T T TR T T
f(x) =e”* ————> f(0)=1
f'(x) =e* -————  f(0)=1
f'(x) =e* ————> f'0)=1
f"(x) =e* -———  f"(0)=1
fA(x) = e* ————> f*0)=1
' 7 i 4
ex=]%x°+fl(!0)x+f2(!o) f 3$0) f4('0) b
x0 x x* x3 x*
¥ =TTt ot

o' 1! 21 31

11
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Ex2: Find the Tylor series for the f(x) = cos(x) about x=0.
The Tylor series at a=0

(n)(0
o= 3 100

O FO© O, O fO)

flx) = S T > 52 — 0 x4 oo e
f(x) = cosx ————> f(0)=1
f'(x) = —sinx ————  f'(0)=0
f""(x) = —cosx ————> f(0)=-1
f""(x) = sinx ————  f"(0)=0
f*(x) = cosx ————> f*(0) =1
7 " 4
cosx—f(()(')) +f1(.0)x+f2(!0) +f3$0) f4('0) xt+ -+
x© x? x4
cosx—m+0—§+0+5+ d
x? x* x°
cosx—1—§+z—a+ +

B z (_1)11 xZn
COSXx = onl
n=0

H.W: Find the Tylor series about x=0 for the:
1) fx) =e™.
2) f(x) = sin(x).

12
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Frequently used Taylor series
] =}
=l+x+xl+-+x"+0= Dx" x| <1
I—x n=
1 " —_— X R T
= x4 (x) —E}{ D%, x| <1
x? x" < X
e"—l+x+'2—!+ 2— |x| < o0
3 5 2n+| 0o [_]Juxlfrﬂ
. X X
=y — = + = -+ |JIJ = x| =< oo
2 4 2n o0 {_l}nxln
— 1 L _ X - .
cosx = 1 — 7y + 35 DGt 2.;. o |x| < o0
2 3 H o }n 1 |
X X n—1X -
In(1+x) =x—%5+5 -+ (1) 5 +- —E —, —l<x=1
3 5 1u+| { ”H V2t
-1, . X A, " - -
tanx =x =3+ M e z}, 1 xI=1

13
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CHAPTER FIVE
Differential Equations

The equations contain one or more derivatives. These equations
obtained from modelling of the physical systems. They can be
classified by:

1)Type: Ordinary or Partial.

2) Order: The order of D.E. is the highest order of derivatives
in the equation.

3) Degree: The exponent of the highest derivative.

Ordinary D.E.: is a differential equation that unknown function
depends on only one independent variable.

Partial D.E.: is a differential equation that unknown function
depends on two or more independent variable.

Ex: Find the order and the degree of the following differential
equations?

1) z—z =5x+3

2)(22)" + (42) = 2x +3

By e
3)4—5+sinx—=+5xy =0

4)y" + 20" =xy
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1- General Solution: of an n-th order, D.E. is the solution that
contains an arbitrary constant.

2- A Particular Solution: is a solution obtained from the
general solution by assigning specific value to the arbitrary
constant.

3- Linear D.E.: Any D.E. that can be written in the following
form:

a (t)y" (t)+a_ (1)y"" (t)+-+a (t)y'(t)+a,(t)y(t)=g(1)

1) 4x%y" +12xy'+3y=0 . Linear D.E.

2) smy =1 -y) y+y e >V ooeenee. NoONn-Linear D.E.
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. Partial Differential
L Equations
LI I
& frdy .c‘j."-
0
e
b
T
A1
E -
-
§
=
A
Otdmary Differential _
‘ Equations
dny -
vl +3y

Fast Division

Without boundary
Conditions
Direct Integration
With boundary
Separating of Conitons
Variables
_ Separable Differential
| Equations
-* Linear Equations
First Order | Homogencouse
Dufferential Equations | Differential Equations
b _ o Bemouli Differential
dx Equations
Exact Differential
Equations
Homogencouse Chamctmsnc
Diffrentil Equations™ |
ﬂ'Sccond()rdct — PR
Differential Equations R
P i | Coffiecients
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Chapter Five: Differential Equations Communication Eng./ 2™ Stage

1)First Order Differential Equations
1-1 Separable D.Es.

Any D.E. can be written in the form below is called separable.
I Ny = [ M(x)dx

Ex1: Find the general solution of the y' =1 + y*

The ODE y' =1 + _\'2 is separable because it can be written
dy

l +y

5 = dx.

By integration,

tan y =x + ¢
or

y = tan (x + c).

Ex2: Find the particular solution of they' = —-2xy,
knowing that y(0) = 1.8.

dy

— = —2xdx, Iny = —x2 4+ C, y = ce™ .
1!

This is the general solution. From it and the initial condition, y(0) = ce® =c =18

y = |.8¢" This is a particular solution,
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1-2 Exact D.Es.

The conditions for this method are:

1) The D.E. must be in the following form:
M(x,y)dx + N(x,y)dy =0
2) The equation M(x,y)dx + N(x,y)dy =0 is said to be
exact if:
oM 0N
dy  ox
Then the general solution is:

c = j M(x,y)dx + j (Terms in N do not contain x) dy

Where c is the integration constant.

Ex1: Solve the following D.E.
(x? + y?)dx + (2xy + cosy)dy = 0
Sol:

Test the equation if it exact or not.
oM N _
oy %Y =2y

oM _ N , then the D.E. is exact.
dy ox

c= f(x2 + y2)dx + j(cos y)dy

3
X 5 _
c=?+xy + siny
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Ex2: Solve the following D.E.

cos (x + y)dx + (3y2 + 2y + cos (x + y))dy = 0.
Sol:

M = cos (x + y),

N = 3}'2 + 2y + cos (x + y).

oM _

—— = —sin(x + v),

dy ’

::Ighh'r .

— = —sIin (x + v).

dXx '
oM _

— = 9% then the D.E. is exact.
y 0x

c= j M(x,y)dx + j (Terms in N do not contains x) dy

c=fcos(x+y)dx+j3y2+2ydy

c =sin(x +y) + y3 + y?
u(x,y) =sin(x +y)+y3+y?=c
To check the solution apply the following equation:

au oul
du = —dx + —dy
ox dy ’

du= cos (x + y)dx + (cos (x + y) + 3y% + 2y) dy = 0.




Chapter Five: Differential Equations Communication Eng./ 2" Stage

1-3 Linear First Order D.Es.
A first order D.E. is said to be linear if it can be written in the
form of:

dy .
TPy =0x)
Steps for solution:

1) Find the integrating factor
u(x) = efP(x)dx
2) Then the general solution is:

—i] ©Q()d
YT )

Ex1: Solve the following equation:

xy' — 3y = x?
Sol:

dy 3

dx xy—x

P(x) = —% and Q(x) = x

u(x) = efP(x)dx
1

X3

y = ﬁju(x)Q(x)dx = x3jx—13xdx = x3jx‘2dx

3
ulx) = ef_de — e 3Inlx| — -3 —

1
y =x3 [—;+c] = —x% + cx3
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Ex2: Find the particular solution of following equation:

y'+ ytanx = sin2x whereas y(0) =1

Sol:

dy .

a+ytanx = 2sinxcosx

P(x) =tanx and Q(x) = 2sinx cosx

u(x) = efP(x)dx

u(x) = pltanxdx — plnlsecx| — gac

1 1
—  — —_— —— 2 1
y ﬂ(x)J,u(x)Q(x)dx SeCxjsecx * 2 sin x cos x dx

= 2 sinx dx
Y secxj
1
y = [—2cosx + c] = —2cos?x + ccos x
sec x

At x=0 - y(0) =1

1 =—2c0s?(0) + c cos(0)

l1=-24+¢c - ¢c=3

Then the particular solution is:

y = —2cos?x + 3 cos x

H.W: Solve the following equation:
Dy —y=e*

2)y' + ysinx = e®0S*
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1-4 First Order Homogenous D.Es.

A first order D.E. is said to be homogenous if it can be written

in the form of:
v_r (Z)

dx
Pu‘r%=u1‘heny=ux

dy N du
dx dx
Ex1: Solve the following equation
dy  x%+y?
dx Xy
| + _1':
dv ey 1 i du
— = L = homo. Put =y e
dx » X dx adx
X
i, 1 + 2° du 1 +u —u”
Xei—=——s{f = X - =
dx 1 dax L
T 1 = i
1-:#1—; Iu-u’u-JT
ﬂ:h1_-.,-+._r- == :v-_,:Ln_1+4:
2 2
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Ex2: Solve the following D.E.

d

xd—i, = y(lnx —Iny)

Sol:

dy . N
xa—y(lnx In y) =X
dy_y(l x)

—_ = n—

dx x\ vy

dy ¥y ¥

ax = %)

Pu‘r%=ufheny=ux

dy N du
dx_u xdx
du
u+x—=—u(lnu)
dx
du
x— =—u(lnu) —u
dx

xdu = (—u(lnu) —u)dx

1 d —ld
(—u(lnu) —u) u_x x

1 1

du = f—dx
f —u((ln u) + 1) X
—In|(Inu) + 1| =In|x| + ¢

In[(Inu) + 1| = —In|cx]|

10
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Inu+1=cx?

lnu=cx1-1
—-1_
u= ecx 1

L1
y = xecx

1-5 Bernoulli D.Es.

Numerous applications can be modeled by ODEs that are
nonlinear but can be transformed to linear ODEs. One of the
most useful is the Bernoulli equation.

dy B 0
-+ Py = Q()y

To convert it to linear form:

1)  Find the value of n.
2) LetvV=yam,
3) Then the new equation in linear form is:

(ﬁ) V'+Px)V =Q(x)

Ex1: solve the following D.E. y'+ %y = x3y?
Sol:

1) n=2
2) V=y@ D=yt
3) (=)V' +P@V =0

11
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—V'+-V=x3 — V' ——V=—x3
X x

P(x) = —g and Q(x) = —x3

u(x) = efP(x)dx

4
pG) = el =

1
u(x) = e—4f§dx — p—Alnx — -4

v—ij ©Q()d
TG ) PR

1
V = F X_4 * (—x3)dx

1
v =x4j—;dx =x*(=Inx +¢)

V=—x*Inx+x*c
y~l=—x*Inx + x*c

Ex2: Solve the following D.E.  y' + (x + 1)y = eX’y3
Sol:

1) n=3
2) Letv=yl3=y2

3) (Z)Vv'+P@V =0Q)

2

1
—EV’+(x+1)V=ex2 V' —=2(x+ 1)V = —2e*

12
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P(x) =—2(x+1) , Qx)=-2e*
u(x) = efP(x)dx
u(x) = el —2(x+1)dx

x%-2x

pulx) =e”
v = ﬁ [ uwecax

1
V = WJ e_xz_zx * —Zexzdx
X —
1
V = W,[ —Ze_zxdx
X~

_ 1 —2x
V= (e o)

V = ex2+2x(e—2x + C)
V= (e"2 + ex2+2xc)

y~2 = e¥*(1 + e?xc)

13
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2) Second Order Differential Equations
A second-order ODE is called linear if it can be written:

y'+ Py +qx)y = F(x)
Where P(x) and q(x) are called the coefficient of the ODEs.

These coefficients may be variables (functions) or constants.
In the case where we assume constant coefficients, we will use

the following differential equation form:

ay" + by' + cy = F(x) ¢ )

Where a,b and ¢ are constant coefficients.
1) If F(x) =0 thenEq.lis called Homogenous D.E.
2) If F(x)# 0 then Eq.1is called Non-Homogenous D.E.

Ex: What is the type of the following D.E.?

1) y'-xy +sinx y=0 is linear, 2™ order, homo.

2) ¥'(y'Y + y=sinx is nonlinear, 2™ order, non homo.
Then we have two type of 2" order linear D.Es.

1) The second order, constants coefficients, linear,

Homogeneous D.E.s, we use Characteristic Equation

method to solve these equations.

15
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2) The second order, constants coefficients, linear,

Non-Homogeneous D.E.s, There are two method to solve

these equations:
a) Undetermined coefficients.

b) Variation of parameters.

Homogencouse | Chamctenstic
[ Differential Equations Equation
_ Second Order | :
Differential Equauons']k Undetermined
, Coffiecients
Non- Homogeneouse

i 36 T B 4 Y
)'=2y'=3y=0 Differential Equations

Vanation of
paprmeters

2-1 The Second order Linear Homogenous D.Es. With

constant coefficients

The general form of these equations is:
ay'" + by’ +cy=0 . (2)
Where a,b and ¢ are constants. We use characteristic equation
method to solve them. Then the general solution is:
1) Put y'=Dy and y”" =D?y in eq.2. (where D is an
operator).

aD?y + bDy +cy =0
(aD? + bD + )y =0

16
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2) Replace D by r and delete y, then:

ar’+br+c=0

This equation is called characteristic equation of the
differential equation and the solution of this equation (the

roots r) give the solution of the differential equation where:

—b + Vb?% — 4ac
r =
2a

There are three cases for the roots value r:

Case one: If b2 —4ac > 0 then r; and r, are distinct (r #1,)

and real roots and the general solution is:

y = Cie"* 4+ C,e™*

Case Two: If b%* —4ac =0 thenr and r, are equal (r; =7, =7)

and real roots and the general solution is:

y=(C +Cx)e™

Case Three: If b? —4ac <0 then r; and r, are two complex

conjugate roots. r = a + jB , and the general solution is:

y = e*(C; cos Bx + C, sin fx)

17
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Y'=2y'=3y=0
Solution:

V'=2y'-3y=0

r’=2r-3=0
(r+1)(r—3)=0
r+1=0
r—3=0

= rl=-1

= r2=3
the general solution is

y=ce  +ce”

Ex.2: Solve y'—6y'+9y =0
Solution:

V'—=6y"+9y =0

ri—6r+9=20
(r—3° =0

v =(c, +c,x)e

Ex.3: Solve y"+y' +y=0

Solution:

y'+y' +y=0
r’+r+1=0 a=1,b=1,c=1
—b++1-4.1.1

2.1
-1++/-3

=1
2

: -1
r= + i

B

5 2 s A3
y=e? (c cosT.\‘ + ¢, sin—X)

18

( Not equal roots )

( Equal roots )
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73 , (Complex roots)
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2-2 The Second order Linear Non-Homogenous D.Es. With

constant coefficients

The general form of these equations is:
ay"+by' ' +cy=Fx) . (3)
Where a,b and ¢ are constants.

The general solution is:

y(x) = yn(x) + y,(x)

Whereas y,(x) is the solution of the homogenous D.E. (3):
ay”" +by' +cy=0
¥p(x): is the particular solution of the non-homogenous D.E. and

can find it using two methods.

Methods of Finding y,(x):

1) Undetermined Coefficients

2) Variations of Parameters

20
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2-2-1Undetermined Coefficients

In this method y, depends on the roots r; and rz of the

characteristic equation and on the form of F(x) in eq. (3) as

follows:
F(x) Choice of y,
kx" kx"+k x""'+k, _x"7+---+k,
nth degree polynomial
kep'!. C€ pPx
(ksin px) or ¢, cos fx +c, sin fix
(k cos px)

Note: For the repeated roots, multiply by x.
Ex: Use the table to find y,

1) F(x) = 3x?
yp = k2x2 + klx + kO
2) F(x)=—se®

yp = ce™3*

3) F(x)=2cos3x

Yp = €1 €0s 3x + ¢, sin 3x

4) F(x)=3x%?—3x+5—2e3

21
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Vp = kox? + kyx + ko + ce3*
5) F(x) = 2cosx—%sinx
Yp = €1 €C0SX + ¢, Sinx

6) F(x) = sinx — cos2x

Yp = €1 COSX + €z Sinx + €3 C0S 2X + ¢4 Sin 2x

Ex1: Solve the Following D.E. y"" —y’' — 2y = 4x?

Sol:

y = .Va’r + -V,H

First we will find y,, :

y' —y-2y =0
the char. Eq. r— r-2 =0
(r+1)r—-2)=0

h=-Lr=2

rl and r2 are not equal roots. then :

S~ LI
v, =ce " +ce”

Second we will find y, :
F(x)=4x" , is polynomial of second degree then

,
y, =k, x" +kx+k,

22
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Now, we are going to find k,, k;, k.

v =k, x*+kx+k . . L
Sp T2 : 0 differentiate the y, first and second derivative.
— y;, = Zkgx + }(| . ,‘r’; = Zk:

Substitution y,, y, ,y, in(l)

2k, — (2k,x + k)= 2(k,x* +kx+k, ) =4x’

Then, find ks, k,, k.

coeff .of x> : -2k, =4 = k,=-2
coeff .of x: -2k, -2k, =0 =k, =2
const: 2k, —k, -2k, =0 = k,=-3

Now, the y, 1s,

y, =—2x"+2x-3

Then the solution of the equation (1) is :

Yy =y, +y, =(ce” +c,e™)—2x" +2x -3

Ex2: Solve the following D.E. y'' —y' — 2y = e3*

Sol:
y'—y' —2y=e  ..(1)
y'—y' —2y=0

23
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rl—r—2=0
(r—2)r+1)=0= n=2,rn=-—1

y, =(ce” +c,e™), Put

-
v, =ce e (2)
’ 3x " o
v, =3ce . YV, =9ce

Substitute In (1)

9ce™*~3ce™- 2ce=¢"
Oc-3c-2c=1=40 -1 — czé
In(2)= , _1.

1 3x

Y=Y, +V, = ce’ +c,e + Ze

: i a*y _ 4 dy _CpX
Ex3: Solve the following D.E. —5 —3—+2y = 5e

Sol:

d?y dy

—2 _3—=42y=0
dx? dx+ Y

r’e—3r+2=0

r—2)r—1=0

24
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n=2 ,n=1

yn = cie?* + c,e”

yp = cxe”

Vp' = cxe* + ce”

V' = cxe* +ce* +ce* = cxe* + 2ce*
substitutey,, y," and y,"" in the main Eq.
cxe* + 2ce* — 3(cxe* + ce*) + 2cxe* = 5e”*
cxe* 4+ 2ce* — 3cxe* — 3ce”* + 2cxe* = 5e”
—ce* =5e* +then,c= -5

yp = —5xe*

Yy =yn+y, =cre?* + ce* — 5xe”*

Ex4: Solve the following D.E. y"" — 6y’ + 9y = e3*
Sol:

y"—6y'+9y =0

r2—6r+9=0

(r—3)(r—=3)=0

r, =1, = 3 then:

25
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yn = (C; + Cyx) e3* = C;e3* + Cyxe3*

yp — CX2€3x

Vp' = 3cx?e’ + 2cxe®”

¥y = 9cx?e3* 4 6cxe3 + 6cxe®* + 2ce®* = 9cx?e* + 12cxe3* + 2ce*
substitutey,, ¥, and y," in the main Eq.

9cx?e3* + 12cxe3* + 2ce3* — 6(3cx?e3* + 2cxe3*) + 9cx?e3* = 3%

1
y=yn+y =Ce>*+ Cxe’ + Exze”‘

Ex5: Solve the following D.E. y" + y = sinx
Sol:
y' +y=0
?+1=0, ’=-1 = r = + i, @=0, p=1
Y, = C; COSX + C,SinX

26
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Yo~ X(C3COSX+C4SinX),
Y'p=X(-C38INX+C,4CO8X)+(C3C0SX+C,SINX)

y"' p=X(-C3c08X-C48INX)+(-C3SINX+C4COSX)+(-C3SINX+C4COSX)

Substitution y, y',. ¥, .

-2¢3SINX+2¢4C0SX=SINX
2¢=1= ¢c;=-1/2,

2¢,~0=¢,=0

. X
_Vq =, CO5x + C, SINX — 5 COSXx

27
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2-2-2 Variation of Parameters

To solve ay" + by’ +cy = F(x) using Variation of parameters

method, let the homogenous solution of ay” + by’ + cy = F(x) is:

Yh = C1Uq + CoUy

and the particular solution is:

Yp = U1V1 + UV,

u,& u, are functions of x should be founded from the homogenous
solution, whereas v,& v, are unknown functions of x must be
determined. Firstly, solve the following linear equations for v'l1
and v'2:

viu;, +vhu, =0

viu'itvhu',= F(x)

Which can be solved with respect to v'1 and v'2 by Grammar rule
as follows:

u, u, 0 u, u 0
D= ' :_ 1= : 2 D" el
u, u, F(x) u, u, F(x)
D D,
and v =—L, v, =2
D - D

By integration of v'1 and v'2 with respect to x we can find vi and

V2.

29
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—F(x)u,
F(x)u
V2=j (D) L dx

Then the general solution is:

Y=Y+ W

Ex1: Solve the following D.E. y"' —y' — 2y = ¢3*

Sol: To find y;,
y' -y —2y=e”
F-r—2=0

(r+1)(r—2)=0

Thenr, = —1and r, = 2, then:

—x 2 x
Yy =ce " +ee”

Then, u; = e * and, u,= ™

Now, to solve with variation of parameters method,

r

uy=e" = u =-e

u, =e-* = u, =2e"

30
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Yp = U1V T U,

D 3e* 3 12
F(x)u, e3* xe™X e* e*
2 f D j 3ex j T3
y e4x zxex e3x e3x
Yp = UV T UV =€ *—E+e ?Z_H_I_?

31
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Ex2: Solve the following D.E. y"" + y = secx

Sol: To find y;,
y' +y=0
rF+1=0 =r'=-1=r=+i a=0, B=1

V,= C|COSX + C,SINX, U;= COSX, U,= sinX, f(X)=secx

Yp = U1V1 + UV,

Uuq | |cosx sin x
u1 —sinXx CcoSsXx

—F(x)u, secx * sinx sin x
V1=j—dx=f— dx=f— dx = In|cos x|

| = c0s%0 + sin%6 =1

D 1 Ccos x
F(x)u, Sec X * COS X
V2=dex=j n dx=j1dx=x

Yp = U1V + UV, = In|cos x| cos x + x sinx

Yy =yYn+ Y, =cycosx + cysinx + In|cos x| cosx + x sinx

32
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2-3 Euler-Cauchy Equations

It is homogenous differential equation (f(x) = O) with
hon-constant coefficients as the following form:

ax?y" + bxy' +cy =0
With given constants a, b and c. We substitute y(x):

m ’ m—1 " m—2
y=x, y = mx . y =m(m — 1)x

Then the auxiliary equation is:
ar+ (b —-a)r+c=0

Case I:Real different roots riandrz (r1# rz) and the general

solution is:

y = Cyx™ + Cyx"™

Case II: A real double root (r1 = r2 = r) and the general
solution is:

y=(C;+CyInx)x"

Case ITI: Complex conjugate roots r = a + jf

y = x%(Cy cos( B In|x|) + C, sin( B In|x]|)

34
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Ex1: solve the following D.E.  x2y" 4+ 2xy’ —2y = 0
a=1 b=2 c=-2

m?+Q2-Dr—-2=0

r’+4r—-2=20

r+2)r—-1)=0

Ex2: solve the following D.E.  x%y" —5xy' +9y =0
a=1 b=-5 ¢=9

2+ (-5—-1Dr+9=0

r2—6r+9=20

(r—3)(r—3)=0

r,=23

y = (C; + C, In|x|)x3

Ex3: Solve the following D.E. x?y" —3xy' + 68y =0
Sol:

a=1 b=-3 c¢c=68
r’+(-3-1Dr+68=0

35
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r’—4r+68= 0

—_ \Vh2—
Tyip = bizba fac a=1 b=—-4 ¢=68
(-1 (—4)2-(4x68) _ 4+V16-272 _ 4+V-1xy256 _ 4%j1
N2 = 2 B 2 - 2 )
Tl'z = 2 i]8

a =2 ) p =8
y = x2(C; cos(8In|x|) + C, sin(81n|x|)

36
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3)Higher Order Differential Equations

The general form with constant coefficient is:

(n-1)

Y +ay"V+.. +a, y+ay=Fx) ... (1)

IfF(x) = 0then (1) is called homogenous, otherwise (1) is called
nonhomogeneous. The methods of solving second order
homogenous D.Egs. with constant coefficients can be extended
to solve higher order homogenous and nonhomogeneous D.Eq.

with constant coefficients.

3-1 Higher Order Differential Equations Homogenous

The characteristic equation of nth order homogenous D. E.:

(n) (n—1)

yW+ay" " +...+a,_ y+ay=0

' +ar' +...+a,_r+a, =0
Let ry, 15,75 ... ... r,be the roots of characteristic equation then:

1) If ry, 1,15 o . 1, are all distinct then the solution is:

_ nx X X
P =88 88" +outil

37
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2)If ryrepeated m times, theny, will contain the terms:

m—1 _nx

ce™ +c,xe" +...+¢c x" e

3)If some of roots are complex (r=a=FjB8) then y, will

contain:

‘(cl cos fx +c, sin fx)e”

Now, we are going to find the roots and solve D.E. of higher
order. There are two methods help us to find the roots: long

division & fast division.

1- Fast Division

2- Long Division

Ex1: Find all roots of the given differential equation and solve

it. y""" +4y" — 3y’ — 18y = 0 using fast and long division.

Sol:
Pr+4r—3r —18=0
First method: Fast division
Find all roots of P +41* —3r — 18=0,
r: F1.F72,

f(2)=8+16-6-18=0,
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r= 2 is the root that make the equation above is zero, then:

1 4 [-3 |-18
2 |J [2 |12 |18
| 6 |9 0

' +6r+9=0
(r=2)(F+6r+9)=0
(=20 r+3 ){r+3)=0
Then the roots that we got it using fast division are:
rn=271=-371;=-3

Then, the solution of the given Differential Equation is:

y =c;e?* + cye 3% + cgxe 3%

Second method: long division

P 2 67+ 9
P+4r-3r -18=0, T I dOF 4 3
(r-2))r'+4r’-3r-18
r, = 2, is the root make the Eq. is Frt4 9yt
equal to zero. 6r° - 3r
F6r':12y
r—2)r?+6r+9)=0
0r - 18
(r=2)r+3)r+3)=0 T9r+18
0

= Z,TZ = —3,T3 = -3

y =ce?* + c,e 3 + c3xe 3
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Ex2: Solve the following D.E.

y =3y"-2y"+2y'+12y=0

1 bl
=3 -2 +2r+12=0

_ o 1 | -3|1-212 |12
r=2 1saroot = (r-2) isa factor 2l L2 28|12
= r—r—4r-6=0 I | =t =& [<% D

=r-2)r'—r'—4r—-6)=0 , r=3 root = (r-3) isa factor

[R—

= r24+2r+2=0

(r=2)(r-3)(r*+2r+2)=0
n=2, r=3 r=-1%i a=-1, =1

LI
|
2| W !
b2 O

)

T 4k : ~x
= », =q€ +ce +(c;co8 x+c,8in x)e
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3-2 Higher Order Differential Equations Non-Homogenous

The general form of nth order nonhomogeneous
differential equation is:

() (n-1)

vy’ +ay" ' +...+a,_y+ay=F(x)

Then the general solution is: y =y, + y,
Methods of finding y,:
1) Undetermined coefficients

We can extend the methods of solving second order non-
homogenous D.Es. with constant coefficients to solve higher

order non-homogenous D.E. with constant coefficients.
Ex1: Solve the following D.E. y* — 8y" + 16y = —18sinx

Sol:

yg = yh +-v;)

y-8y"+16y=0
r'-8r+16=0 = (*-4)’=0 = r'=4 = r=+2

2x % -2x -2x
vh=cie ‘+coxe +cze MHegxe
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Now, we will find y,,
let yo= A cosx + B smx, yp=-A smx + Bcosx, y'p= - A cosx — B sinx
y"'p= A sinx — B cosx, }}4)p= A cosx + B sinx

A cosx + B sinx + 8A cosx + 8B sinx + 16A cosx+16B sinx = -18 sinx
25Acosx+25Bsinx=-18sinx

25A=0 =A=0

25B=-18 = B=-18/25

2x 2x -2x X5t ]8 :
Yy ZCIC +03X€ +C3C +C4XC - ESIH«\'

2) Variation of parameters

In this method, the particular solution yp has the form y,=viuitvawm+... +vau,

Where uy, w, ..., u, are taken from yp,=cju;+cour+... +cyuy.
Ex1: Solve the following D.E. y""" + y' =secx

Let y"'+y'=0

r+r=0 = r(r’+1)=0 = =0, r’=-1 = r1=0, r=+i
Y1 =C,+C,c08X+c3SINX

u,=1, u,=cosx, u;=sinx, f(x)=secx

V| + vicosx + visinx =0
vi(0)+ v (—sinx) + v;(cosx) =0

vi(0)+ v, (—=cosx)—vi(sinx) =secx
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1 cosx sin X
. . 5 2
D=0 —smnx cosx|=smn"x+cos x=1

0 —cosx -—sinXx

0 cosX  sinXx
D,=| 0 —sinx cosx|=secx(sin”X+cos” X)=secx

SseCX —COSX —sinx

| 0 sin X
D, =10 0 COSX | =

0 secx -—sinx

0 COS X
=—cosX secx =—1

secX —sinx

—_—

COS X 0
D,=[0 -sinx P |=

0 —cosx secx

—sinXx 0 _
= —sinX secX = —tanXx

—COSX SeCX

’ Dl
V; =S —=S8eCX =V, :Isecxdx = In(sec X + tanx)
D
' D’
¥, = ':—l:v,:f—ldx:—x
2 D 2
' D
v, =—==—tanx=>v, = —Itanx dx =Incos x
: D 3

yp= In (secx+tanx)-x cosx-In cosx sinx

Yo Citcycosxtessinx+t In (secx+tanx)-x cosx - In cosx sinx
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CHAPTER SIX
Solution of D.Eqs by Power Series

In the previous chapter, we have seen that linear ODEs with
constant coefficients can be solved by algebraic methods. This
chapter will study some of ODEs with variable coefficients,
which can be solved using power series.

1.Power Series Method.:

The power series method is the standard method for
solving linear ODEs with variable coefficients. It gives solutions
in the form of power series. The power series is an infinite
series, if the series is about x=a (see chapter 4) then it is:

Z Qpx™ = ag + a1 x + ayx? + azx® + -

m=0

Here, x is a variable. ao, a1, a2, are constants, called the
coefficients of the series. We shall assume that all variables
and constants are real.

Familiar Power Series are the Maclaurin series

= E X" =14+x+x2+--- (|x| < 1, geometric series)
m=0
% m 2 3
. X X X
(:":2.—: r e —f — ...
oM 2! 3!
® (-1 )m\,Zm \.2 \.4
= ST o T .8
2 ! 4 !
o (2m)! 2! 4!
m_2m+1 3 5

= (=1 X X

X i
2m + 1)! 3! 5!

I

I
|
|
|

|

+

sin x
m=0
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Ex1: Solve the following D.E. by power series method: y' —y =0
Sol:

1) Assume the solution in the form of power series:

(o]

y = a,x™ = ay + a;x + a,x* + azx> + -

o

m=

then y':
y' = z ma,,x™ ! = a; + 2a,x + 3azx* + -
m=1

2) Insert the above series in the given D.E.

(a; + 2a,x + 3azx? + ) — (ap + a;x + ax* + azx3+ ) =0
3) Then we collect like powers of x, finding

(a; —ay) + (2a, —a;)x+ (3az —ay)x?>+--=0

4) Equating the coefficient of each power of x to zero, we have
(a; —ay) =0 (2a, —a;) =0 (Ba; —ay) =0 ,....

5) Solving these equations, we may express a1, az az in ferms of ao , which

remains arbitrary.
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With these values of the coefficients, the series solution

becomes:
— + +@2+@3+...
Yy =ay+ ayx Z!x 3!x
x> X3
Yy = qg 1+x+z+§+“'
y = aqye”

Ex2: Solve the following D.E. by power series method: y"” +y =0
Sol:

X" = ag + ayx + ax* + azxd + agxt + agx® + -

K
M

=0

3

y' = z ma,,x™ ! = a; + 2a,x + 3azx* + 4a,x> + Sagx* + -
m

Il
[uN

y" = Z m(m — 1)a,,x" % = 2a, + 6asx + 12a,x* + 20asx> + -
m=2

(2ay + 6azx + 12a4x? + 20asx® + ) + (ag + ayx + ayx? + azx3 + axx* + asx®> + ) =0

(2a, + ap) + (6as + a)x + (12a, + ay)x* + (20as + az)x>+ - =0

(2a; +ap) =0 - azz—%:_%
(6as +a;) =0 - agz—%:_%
(12a4 +a,) =0 —>a4:—;l—;:;_i:%
(20as+az) =0 - asz—%:%:%
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% 2 43 o4 M s
y=aqt+tax——x"——x+—x +—x + -
2! 3! 4! 5!
Qo Qo aq a,
y=(ao——x2+—x4—---)+(alx——x3+—x5+---)
2! 4! 3! 5!

XZ x4 x3 XS
y=a|l-—t o= Jhag | x -

y = a,(cosx) + a,(sinx)
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2.Legendre’'s Equation

Legendre's differential equation is one of the most important
ODEs in physics. The equation involves a parameter n, whose
value depends on the physical or engineering problem. The
general form of the equation is:

(1—x2)y" =2xy'+n(n+ 1)y =0
The general solution of the Legendre's D.E. is:
y = 1B (x) + ¢;,0n(%)

Where n=0,1,2,3,........ , B,(x) is called Legendre polynomial and
Qn.(x) is called Legendre function. Q,(x) series are
unbounded. B,(x) is a series and convergence for |x|<1.
Where:

= (2n — 2m)!

P,(x)= ) (D™ : x"Em

2"m!'(n—m)!(n — 2m)!

where M = % or M = nT_l whichever is an integer. The first few
B, (x) polynomials of these functions are:

1) P(x)=1

2) P(x)=x

3) P =5Gx*-1)

Whereas the first few terms of Q,(x) for |x < 1] is:

() = +x3+x5+x7+ 1 <1+x)
Qo) =x+ 4=+ 1—x

_2
x3 > 1+x
6

-1

Ql(x)—x(x+?+—+—+
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Recursion Formulas:

1) Pryr(x) =By (6) — == Py (%)
2) Ppy(x) =Py (x) = 2n+ 1B (x)
3)  Que1(®) = T xQy () — = Qpy (%)
4)  Qni1— Qno1 = @n+ 1DQn(x)

The first few Legendre polynomials are
shown in the figure.

UL L |

P,
L1 N LA AN

L o\a/o N1 oA
= P,

P,

[TT T T[T T 11

-1

Ex1: Write the general solution of (1 —x%)y" —2xy' +2y =0

Sol:

nn+1)=2

n=1

y = 1P (%) + 0, (%)
P(x) =x

0 =Fin(;5) -1

_ N xl (1+x> 1
Y =X czzn g

x
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Ex2: Find Pj(x), Q,(x), Pi(x),
Sol:
1) P,(x) =5 (3x2 — 1)

Pj(x) = = (6x) = 3x

2) to find Q,(x) we have:
1 1+
Qo(x) = —ln( x)

1—x
X + x
Q%) _Eln(l—x)_l
thenn =1

2n+1
Qn+1(x) - k

3 1
0:() = 5x0:() 5 Qo) = x[zln( —

3) to find P3(x):

Ppi1(x) = Ppq(x) = 2n+ 1)Py (x)
n+1=3
Pri1(x) = 2n+ DP,(x) + Py (x)

P3(x) = (5)P;(x) + P;(x)

- n=2

5
Pi(x) = E(sz -1D+1

Ps(x) :

XQn(X) -4 Qn 1(X)

-1zl ()
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4) To find P5(x) use the general formula:

u (2n —2m)! _2
PG = ) (-D" xn=2m
m=0

2" m! (n — m)!(n — 2m)!

2
~ (10 — 2m)!
Palx) = mZOH) 25m! (5 —m)! (5 — 2m)!

LD G I ()
25GDGD T 25(4D@EY T T 25@2n@EHD

5-2m

Ps(x) =

1
Ps(x) = §(6Bx5 — 70x3 + 15x)

HW:
1)  Find P; (x), Ps(x)
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3. Bessel's Equation, Bessel Functions J,(x):
One of the most important Eq. in applied mathematics is
Bessel's D.Eq. It appears in connection with electric field,

vibrations, heat conduction. It is given by:

x2y" +xy' + (x> —v®Hy=0| . (1)

Where v is assumed to be real and positive number.
The solutions of the Bessel's Eq. are called Bessel Function. The

general solution of Eq.1 is given by:

y = Cl]v(x) + Cz)’v(x) ------ (2)

The solution of J,(x) is called Bessel function of the first kind

of order v. The second solution y,(x) is called Bessel function
of the second kind of order v. J,(x) has a finite limit as x
approaches to zero, while y,(x) has no limit (i.e unbounded) as

x approaches to zero.

3.1 Bessel Functions of the First Kind J,(x)

The Bessel function of the first kind of order v is given as:

[o') v+2m

o CO™M(F)
Jo(x) = Z mTv+m+1) . (3)

m=0

10
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Where I'(v + 1) is the gamma function and it is given by:
F'v+1) =vl'(v)
There are two cases for v:

Case One: When v is integer then the Bessel function J,(x):

The integer values of v are denoted by n. In this case
ITm+m+1)=m+m)!
'm+1)=n!.

1

Eq.(3) can be written by

0.5

replacing v by n. for example

" [5  ) Y
~

0 | L I Ay a -

for n=0, then:

TTTTT

(o)
(— 1)m (x)zm Bessel functions of the first kind J; and J,

Jo(x) = 22mml m!
m=0

for n=1

(_1)m(x)2m+1
J1(x) = 22m+iml (m + 1)!

m=0

A function of J_,,(x) can be calculated depending on J,(x) as

given below:

J-n () = (=", (x)

The above equation show linear dependence.

11
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Case Two: When v is non-integer then the Bessel function J,(x):

If vis not integeri.e v # 1,2,3, ... then the general solution is:

y = ¢y (x) + c3)_(x)

where J,(x)and J_,(x) are linearly independent.

If v is half odd integer, J,(x)can be expressed in terms of sines

and cosines.

2
]1/2(x) = ,Esinx

2
]_1/2(x) = /Ecosx

Note:

ITm+m+1) =(n+m)! for n= integer.
F'v+1) =vTI'(v) for any value of v
r(;)=ve

r()-r(en)-2r) -2

2 2
FTv+2)=w+DI'(v+1) =W+ Dvl'(v)

12

Communication Eng./ 2™ Stage
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Some Properties of Bessel Functions:

1) Joe1(6) = =2, (1) = Jpor (%)
2) J5() = 2 Jpm1. () = Joar ()]
3) =[x/, (0] = x%y_1 ()

4) =[x, (0] = =Xy ()

5) For large values of x :

nmw 1

Jn, (x) z\/%cos(x—7—z)
Y, (x) z\/%sin(x—7—z)

nm m

Ex1l: Find ]3/2 (x)?

Sol:

2V
]v+1(x) = 7]1}(95) _]v—l(x)

U=§

1
]3/2(X) = ;fl/z(x) —]—1/2(X)

13




Chapter Six: Solution of D.Egs by Power Series Communication Eng./ 2™ Stage

12 2
]3/2(96)—; Esmx— Ecosx
2 [Ssinx

]3/2(96): /E[ ~ —cosxl

Ex2: Evaluate I = flzx‘3]4(x)dx

Sol: from Properties

d
— X7 (0)] = =x7 a1 (%)

dx
v = 3, by integrating both sides
RG] = [ =2 pea ()
2 2
1= [ % aode = )|
1
I'=— <§]3(2) —]3(1)>

To find J5, firstly we find J, depending on Jyand J;. To find J, we

use the properties:

2V
]v+1(x) = ?]v(x) _]v—l(x)

v=1

14
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2
J2(x) = ;]1(35) — Jo(x)
Then find J3(x) :
2v
]v+1(x) = ?]v(x) _]v—l(x)
v=2

4

J3(x) = ;Jz(x) —J1(x)
4 (2

1500 == (2109 = o)) — ()
8 4

J3(x) = F]l(x) - ;Io(x) — J1(x)

8 4
15 = (55 = 1) 56 =~ Jo@)

For x = 2:

8 4
1@ = (- 1) h@ =5 /@)

from the table:

J1(2) =0.5767

Jo(2) =0.2239

J3(2) =1%0.5767 — 2 %0.2239
J3(2) =0.1289

By the same way we find
J5(1) = 0.0199

[ N
[=— (513(2) —]3(1)> = — <§ % 0.1289 — 0.0199)

[ =0.0038

15
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X Jolx) Jyix) x Jolx) Jy(x) ) Jolx) Ji(x)

0.0 1.0000 0.0000 3.0 —0.2601 0.3391 6.0 0.1506 —0.2767
0.1 0.9975 0.0499 3l —0.2921 0.3009 0.1 0.1773 —0.2559
0.2 0.9900 0.0995 i2 —0.3202 0.2613 6.2 0.2017 —0.2329
0.3 0.9776 (0.1483 33 —0.3443 0.2207 6.3 0.2238 —(.208]
0.4 0.9604 0.1960 34 —0.3643 0.1792 6.4 0.2433 —0.1816
0.5 0.9385 0.2423 35 —0.3801 0.1374 6.5 0.2601 —0.1538
0.6 0.9120 0.2867 3.6 —0.3918 0.0955 6.0 0.2740 —0.1250
0.7 0.8812 0.3290 37 —0.3992 0.0538 6.7 0.2851 —0.0953
0.8 (0.8463 (.3688 38 —0.4026 0.0128 6.8 0.293] —0.0652
0.9 0.8075 0.4059 39 —0.4018 —0.0272 6.9 0.2981 —0.0349
1.0 0.7652 0.4401 4.0 =0.3971 —0.0660 1.0 0.3001 =0.0047
1.1 0.7196 0.4709 4.1 —0.3887 —0.1033 1.1 0.2991 0.0252
1.2 0.6711 0.4983 42 —0.3766 —0.1386 1.2 0.2951 0.0543
1.3 0.6201 0.5220 43 —0.3610 —0.1719 1.3 (.2882 (0.0826
14 0.5669 0.5419 44 —0.3423 —0.2028 74 0.2786 0.1096
1.5 05118 0.5579 45 —0.3205 —0.2311 1.5 0.2663 0.1352
1.6 0.4554 0.5699 46 —0.2961 —0.2566 1.6 0.2516 0.1592
1.7 0.3980 0.5778 47 —0.2693 —0.2791 T 0.2346 0.1813
1.8 (0.3400 0.5815 48 —0.2404 —0.2985 1.8 0.2154 0.2014
19 0.2818 0.5812 49 —0.2097 —0.3147 19 0.1944 0.2192
20 0.2239 0.5767 5.0 —0.1776 —0.3276 8.0 0.1717 0.2340
2.1 0.1666 0.5683 il —0.1443 —0.3371 B.1 0.1475 0.2476
2.2 0.1104 0.5560 3.2 —0.1103 —0.3432 8.2 0.1222 0.2580
23 0.0555 0.5399 53 —0.0758 —0.3460 B.3 0.0960 (0.2657
24 0.0025 0.5202 54 —0.0412 —0.3453 8.4 0.0692 0.2708
2.5 —0.0484 0.4971 p B —0.0068 —0.3414 8.5 0.0419 0.2731
26 —0.0968 0.4708 5.6 0.0270 —0.3343 8.6 0.0146 0.2728
2.7 —0.1424 0.4416 3.7 0.0599 —0.324] 8.7 —0.0125 0.2697
2.8 —0.1850 0.4097 5.8 0.0917 —0.3110 B.8 —0.0392 (0.2641
29 —0.2243 0.3754 3.9 0.1220 —0.2951 8.9 —0.0653 0.2559

Jotx) = 0 for x = 2.40483, 5.52008, 8.65373, 11.7915, 14.9309, 18,0711, 21.2116, 24.3525, 27.4935, 30.63406
Ji(x) = 0 for x = 3.83171, 7.01559, 10.1735, 13.3237, 16.4706, 19.6159, 22.7601, 25.9037, 29.0468, 32.1897

16
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X Yo(x) Yi(x) X Yo(x) Y (x) X Yo(x) Y (x)
0.0 (—>) (—x) 2.5 0.498 0.146 5.0 —0.309 0.148
0.5 —0.445 —1.471 3.0 0.377 0.325 5.5 —0.339 —0.024
1.0 0.088 —0.781 3.5 0.189 0410 6.0 —(0.288 —0.175
1.5 0.382 —0.412 4.0 —0.017 0.398 6.5 —0.173 —0.274

2.0 0.510 —0.107 4.5 —0.195 0.301 7.0 —0.026 —0.303

17
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CHAPTER SEVEN
Probabilities and Statistics

Probability and statistics are concerned with events which
occur by chance. Examples include occurrence of accidents,
errors of measurements. In each case, we may have some
knowledge of the likelihood of various possible results, but we
cannot predict with any certainty the outcome of any particular
trial. Probability and statistics are used throughout
engineering. In electrical and communication engineering,
signals and noise are analyzed by means of probability theory.

Probability versus Statistics

Probability deals with predicting the likelihood of future
events, while statistics involves the analysis of the frequency
of past events.

Statistics

Describing a set of Data with numerical measures. Graphs can
help you describe the basic shape of a data distribution.

After the sampling process, this is the next step in every
statistical study and usually consists of:

1. To classify, group and sort the data of the sample.
2. To tabulate and plot data according to their frequencies.

3. To calculate numerical measures that summarize the
information contained in the sample (sample statistics).

1
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Sample classification:

It consists of grouping the values that are the same and sorting
them if there is an order among them.

Example. X = Height

Frequency count:

It consists of counting the number of times that every value
appears in the sample.

Example. X=Height

ceTTo OO

—_ = = %

requency
count

PGS
e~ 2
D s 6

= Gm =

> =P 9T 1m=




Chapter Seven: Statistics Communication Eng./ 2" Stage

Sample frequencies

Definition - Sample frequencies. Given a sample of 71 values of a variable X, for every value Xi of the
variable we define

o Absolute Frequency 7i: The number of times that value Xi appears in the sample.

 Relative Frequency fz’: The proportion of times that value Xi appears in the sample.

fi=niin {(———
+ Cumulative Absolute Frequency Ni: The number of values in the sample less than or equal to Xi.

Ni=nit+ni= Ni-1+ni 4

« Cumulative Relative Frequency F'i: The proportion of values in the sample less than or equal

to Xi.

Fi= NiI/n L ——

Frequency table:

The set of values of a variable with their respective
frequencies is called frequency distribution of the variable in
the sample, and it is usually represented as a frequency table.

Absolute Relative Cumulative absolute ~ Cumulative relative
X values
frequency frequency frequency frequency
X1 ni fi Ni Fi
Xi ni fi Ni Fi
Xk Nk ff Nk Fi
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Example - Quantitative variable and non-grouped data.
Find (fi, N1, Fi) for the following of number of children in 25 families are:
1,2,4,2,2,2,3,2,1,1,0,2,2,0,2,2,1,2,2,3,1,2,2,1,2
Solution :The frequency table for the number of children in this sample is

1 fi N; F;
2 0.08 2 0.08
6 0.24 8 0.32
14 056 22 0.88
0.08 24 0.96
0.04 25 1
25 1

Relative Frequency fi: fi' —ni/n

Cumulative Absolute Frequency Ni: ~ Ni=ni++ i

Cumulative Relative Frequency Fi.  Fi=Ni/ n

Mle w0 = ol®
- N

Example - Quantitative variable and grouped data. The heights (in cm) of 30 students are:
179, 173, 181, 170, 158, 174, 172, 166, 194, 185,
162,187,198, 177, 178, 165, 154, 188, 166, 171,
175, 182, 167, 169, 172, 186, 172, 176, 168, 187.
Solution :The frequency table for the height in this sample is :

Xi 1y ﬁ N,‘ F,'
150,160] 2 0.07 2 0.07
160,170] 8 027 10 0.34

(
(
Cumulative Absolute Frequeney Ni:  Ni=ni+ i (170,180] 11 036 21 0.70
(
(

Relative Frequency f i f i—ni/n

180,190] 7 023 28 0.93
190,200] 2 0.07 30 1

y 30 1

Cumulative Relative Frequency [ Fi=Nijn
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Sample statistics:

According to the aspect of the distribution that they study,
there are different types of statistics: Location statistics and
Measures of dispersion.

Location statistics:
There are two groups:
1-Central location measures (Measures of center):

They measure the values where data are concentrated, usually
at the center of the distribution. The most important are:

1) Arithmetic mean
2) Median
3) Mode

Central location measures (Measures of center):

1- Arithmetic mean

Sample arithmetic mean X. The sample arithmetic mean of a variable X is the sum of
observed values in the sample divided by the sample size:

— (L%

1
Also , it can be calculated from the frequency table with the formula :

- Xil;
- X = Z}?’ s ZZA‘,'ff

f

|
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Example - Non-grouped data.

The number of children in 25 families are: 1,2,4,2,2,2,3,2,1,1,0,2,2,0,2,2,1,2,2,3,1,2,2,1,2

Lt e |

Solution: 1 410 4440424243424 141404242
X = +
i‘—zxj 25
- 0+24+2+1+2+2+3+1+24+2+1+2 4
L + = — = 1.76 children.

25 25

or using the frequency table
1 fi xm  xifi

2 0.08 0 0
6 024 6 024
14 056 28 1.12

Ml w0 = ol

2 0.08 6 024
1 0.04 4 0.16
25 1 44 1.76
__ Xxm 44 : o . —
X = - = = 1.76 children e Z xifi = 1.76 children.

Example - Grouped data. Using the data of the sample of student heights, the arithmetic mean is

= 179 + 17330+ - + 187 — 175.07 cmL

or using the frequency table and taking the class marks as x;,

X Xi M fi  xin xifi
(150,160] 155 2 0.07 310 10.33
(160,170] 165 & 027 1320 44.00
(170,180] 175 11 036 1925 64.17
(
(

180,190] 185 7 023 1295 4317

190,200] 195 2 007 390 13
> 30 1 5240 174.67
ZI;?’I; _ 5240

= S 20 = 7467cm  X= Y xifi = 174.67 cm.

Observe that when the mean is calculated from the table the result differs a little from the real value,
because the values used in the calculations are the class marks instead of the actual values.




Chapter Seven: Statistics Communication Eng./ 2" Stage

Weighted mean

In some cases the values of the sample have different importance. In that case the importance or weight of
each value of the sample must be taken into account when calculating the mean.

weighted mean of variable X is the sum of the product of each value by its weight, divided by sum of weights

X
=S

From the frequency table can be calculated with the formula

Xuw

. 2 Xiwit
w Z w{

Example. Assume that a student wants to calculate a representative measure of his/her performance in a
course. The grade and the credits of every subjects are

: Subject Credits Grade .,
Maths 3] 5
Economics 4 3
Chemistry 8 6

The arithmetic mean is

X 5+3+6
.TC:Z”I= +3+ = 4.67 points.

However, this measure does not represent well the performance of the student, as not all the subjects have
the same importance and require the same effort to pass. Subjects with more credits require more work and
must have more weight in the calculation of the mean.

In this case it is better to use the weighted mean, using the credits as the weights of grades, as a
representative measure of the student effort
> xw 5-6+3-4+6-8 90

¥ = = = — = b points.
R P 6+4+8 R

2- Median:
A second measure of central tendency 1s the median, which is the value in the middle
position in the set of measurements ordered from smallest to largest.

Definition : The median m of a set of n measurements is the value of x that falls in
the middle position when the measurements are ordered from smallest to largest.
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We can know the order and the value of median by using the following :

The value “ .5(n+ 1) “ indicates the position of the median in the ordered data set. If
the position of the median 1s a number that ends in the value .5, you need to average the
two adjacent values.

EXAMPLE  Find the median for the set of measurements 2,9, 11, 5, 6.

Solution n =5 measurements from smallest to largest:

2569 Il
I

The middle observation, marked with an arrow, 1S in the center of the set, or m = 6.

EXAMPLE  Find the median for the set of measurements 2,9, 11, 5, 6, 27.

Solution Rank the measurements from smallest to largest:

2 56911 27
T

Now there are two “middle” observations, shown in the box. To find the median,
choose a value halfway between the two middle observations:

.+.
m=u=7.5
2

Now if we use the value “.5(n+1) :

For the n = 5 ordered measurements from Example |, the position of the median
is .S(n + 1) =.5(6) = 3, and the median is the 3rd ordered observation, or m = 6.
For the n = 6 ordered measurements from Example , the position of the median is
S(n + 1) = .5(7) = 3.5, and the median is the average of the 3rd and 4th ordered
observations, orm = (6 + 9)/2 = 7.5.

3-The Mode :

Another way to locate the center of a distribution is to look for the value of x that
occurs with the highest frequency. This measure of the center is called the mode.

Note : The mode is generally used to describe large data sets, whereas the mean and
median are used for both large and small data sets.
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EXAMPLE

Starbucks and birth weight data

(a) Starbucks data (b) Birth weight data
B 7 1 5 ] 7.2 78 6.8 6.2 B.2
4 6 4 B 8 8.0 8.2 5.6 8.6 7.1
B 5 ] 3 4 8.2 7.7 7.5 7.2 7.7
5 5 5 7 6 5.8 6.8 6.8 8.5 75
3 5 7 5 5 6.1 789 9.4 9.0 78
8.5 9.0 7.7 6.7 77
(a) (b)
>
EX ]
£ H
- -
3 3
= =
56 6.1 66 7.1 76 81 B6 91 96
Visits Birth Weights

Solution’:
For The visits :

Table: From the data in Example reproduced in Table (a), the mode of the distribution of the
number of reported weekly visits to Starbucks for 30 Starbucks customers is 5.

For the birth weight :
Table: For the birth weight data in Table (b), a birth weight of 7.7 occurs four times, and
therefore the mode for the distribution of birth weights is 7.7

2-Dispersion statistics (Measure of variability)

Dispersion or spread refers to the variability of data. So,
dispersion statistics measure how the data values are
scattered in general, or with respect to a central location
measure. For quantitative variables, the most important are:




Chapter Seven: Statistics Communication Eng./ 2" Stage

1- Range
2- Variance

3- Standard deviation

1- Range :
Definition - Sample range. The sample range of a variable X is the difference between
the the maximum and the minimum values in the sample.

Range = max — min

Xi Xy
Range
_.-"f\'-n_
e T
Min Max

The range measures the largest variation among the sample data. However, it is very
sensitive to outliers, as they appear at the ends of the distribution, and for that reason

is rarely used.

Example:
the measurements “ 5, 7, 1, 2, 4 *“ vary from 1 to 7. Hence, the rangeis (7-1=6).

The range is easy to calculate, easy to interpret, and is an adequate measure of
variation for small sets of data. For large data sets, the range is not an adequate
measure of variability.

Deviations from the mean:
Another way of measuring spread of data is with respect to a central tendency

measure, as for example the mean.
In that case, it is measured the distance from every value in the sample to the mean,

that 1s called deviation from the mean-

deviation - deviation +

=l

x.,'_x x}_

Ry

3l
&

ey

10
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If deviations are big, the mean is less representative than
when they are small.

2- Variance and standard deviation

Variance of a population:

The variance of a population of N measurements is the average of the squares of the
deviations of the measurements about their mean“X". The population variance 1s denoted
by “ 6 “and is given by the formula.

S, X
N
Most often, you will not have all the population measurements available but will need

to calculate the varfance of a sample of n measurements,

F'=

The variance of a sample :
The variance of a sample of “n” measurements is the sum of the squared deviations of
the measurements about their mean ® x “ divided by (n - 1). The sample variance is

denoted by s* and is given by the formula.
10T |
§°=
n=1

For the set of # = 5 sample measurements presented in Table | the square of the
deviation of each measurement is recorded in the third column. Adding, we obtain

(- ¥)* =22.80 TABLE Computation of 3(x; - %)’
_3 s
and the sample variance is u =X -1
,, b 12 144
, Mx-x) 2280 ] ¥ 102
== Ty o 1 -8 T84
! -18 1
i i 04
18 00 780

11
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The variance ( s?) is measured in terms of the square of the original units of measurement.
If the original measurements are in inches, the variance is expressed in square inches.
Taking the square root of the variance, we obtain the standard deviation, which returns

the measure of variability to the original units of measurement.

Definition : The standard deviation(S) of a set of measurements is equal to the positive

square root of the variance s = +vV5 | (—

Both variance and standard deviation measure the spread of data around the mean.
When the variance or the standard deviation are small, the sample data are concentrated
around the mean, and the mean is a good representative measure. In contrast, when
variance or the standard deviation are high, the sample data are far from the mean, and

the mean does not represent so well.

Standard deviation small = Mean is representative
Standard deviation big = Mean is unrepresentative

Example. The following samples contains the grades of 2 students in 2 subjects

X
Student 1 I I —s=4
1 5 9
X
Student 2 —t—t s=1
4 5 6
Which mean is more representative?
NOTATION
n: number of measurements in the N:number of measurements in the
sample population
s~: sample variance - population variance
s = Vs~ sample standard @ = Vo ~: population standard
deviation deviation
For the set of n = 3 sample measurements in Table , the sample variance is
5= = 5.70, so the sample standard deviation is s = Vs~ = V5.70 = 2.39. The more

variable the data set is, the larger the value of s.

12




Chapter Seven: Statistics Communication Eng./ 2" Stage

THE COMPUTING FORMULA FOR CALCULATING s°
2_ (Zx)°

2 _ E(ri - E}E h E_rr'
§ =— n
n—1 52 =

Sx? = Sum of the squares of the individual measurements
(Zx)? = Square of the sum of the individual measurements

EXAMPLE Calculate the variance and standard deviation for the five measurements in Table
which are 5,7, 1,2, 4. Use the computing formula for s “ and compare your results with
those obtained using the original definition of s,

Table for Simplified Calculation of s and s

X, x7
5 25
7 439
1 1
2 4
4 16
18 85
Solution The entries in Table are the individual measurements, x,, and their

2 : : : : 2
squares, x7, together with their sums. Using the computing formula for s°, you have

s G0 o (19

X; .
5 n 3 22.80
§°= = =

5.70

n—1 4 4

—_—

and s = V2 =15.70 = 2.39, as before.

13
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Now that you have learned how to compute the variance and standard deviation,
remember these points:

» The value of s is always greater than or equal to zero.

* The larger the value of s or s, the greater the variability of the data set.

« Ifs?or s5is equal to zero, all the measurements must have the same value.

* Inorder to measure the variability in the same units as the original
observations, we compute the standard deviation s = Vs°.

14
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Example - Non-grouped data. Using the data of the sample with the number of children of families, with
mean X = 1.76 children, and adding a new column to the frequency table with the squared values,

Xioono X

0 2 0

LT 16 6

5= P 2 14 56

3 2 18

4 1 16

F= E:"”" = % = 1.76 children | Z 25 96

2 _ le.zn,- _2= %
n ) 25

and the standard deviationis s = /0.7424 = 0.8616 children.

— 1.76% = 0.7424 children®.

S

Compared to the range, that is 4 children, the standard deviation is not very large, so we can conclude that
the dispersion of the distribution is small and consequently the mean, X = 1.76 children, represents quite
well the number of children of families of the sample.

Example - Grouped data. Using the data of the sample with the heights of students and grouping heights in
classes, we got amean X = 174.67 cm. The calculation of variance is the same than for non-grouped data

but using the class marks.

X X; n Xty

(150,160] 155 2 48050

(160,170] 165 8 217800

a_X%m o | aro80) 175 11 336875
n (180,190] 185 7 239575

] 195 2 76050

n

(190, 200
I PRpIL/L/N 5;—?0 = 174.67 cm J Y. 30 918350

y_ LA, _ 918350
1 B

and the standard deviationis s = /102.06 = 10.1 cm.

— 174.67% = 102.06 cm?,

5

This value is quite small compared to the range of the variable, that goes from 150 to 200 cm, therefore the
distribution of heights has little dispersion and the mean is very representative.

15
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PERNMIUTATIONS

Permutations:
The total number of ways of arranging n objects, taking r at a time is given by

n! e

(n—r)!
1 % A n!
Notation: We use the notation "P, (read as “n—p-r’) to denote O
: n!
Thatis, "P, = — .
" (n-r)!
example

the total number of arrangements of 8 books on a bookshelf if only 5 are used

solution . Q! Q!

example  In how manv wavs can 5 bovs be arranged in a row
(a) using three boys at a time?
(b) using 5 boys at a time?

We have 5 boys to be arranged in a row with certain constraints.

(a) The constraint is that we can only use 3 boys at a time. In other words, we want the
number of arrangements (permutations) of 5 objects taken 3 at atime.

From rule 4: n=5,r=3,
. : 5 5! 120
Therefore, number of arrangements = \PB - G531 =—- =60
(b)  This time we want the number of arrangements of 5 boys taking all 5 at a time.
From rule 4: n=5,r=35,
. y 5 3! 120
Therefore, number of arrangements = "Py = Y ok ke 120

permutations with repetitions:

The number of permutations of n objects of which n; are identical, n, are

—_ T n'
identical, . . ., n, are identical is given by S ;. ——
nl. x n20 x e x nk.

16
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Example :

HIPPOPOTAMUS are there?

Solution :

How many different arrangements of the letters of the word

~

3!

>

B

!

= 39916800 arrangements.

17
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COMBINATIONS

On the otherhand, combinations represent a counting process where the order has no importance.
For example, the number of combinations of the letters A, B, C and D, if only two are taken at a

time, can be enumerated as:
AB,AC, AD,BC,BD, CD,
That is, the combination of the letters A and B, whether written as AB or BA. is considered as

being the same.
Instead of combination the term selection is often used.

Combinations:
The total number of ways of selecting n objects, taking r at a time is given by

E————
(n=r)r!

s

; . . n!
Notation: We use the notation ( ) (read as “n—c—r’") to denote W .
R=r).r.

’

1 n . . 1
That is, (n} - . Note:Sometimes C, is used instead of (})
r (n—r)r! r

Example : ;; o many ways can 5 books be selected from 8 different books?

Solution In this instance, we are tal king about selections and therefore, we are looking at combinations.
Therefore we have. the celection of § hooks [aking Satatimeis equa] (8]

/8 8! 8!

!

- - - = 56
\s) = Boss " At

Example : A sports committee at the local hospital consists of 5 members. A new
committee is to be elected, of which 3 members must be women and 2 members must be men.
How many different committees can be formed if there were originally 5 women and 4 men to

select from?

First we look at the number of ways we can select the women members (using Rule 6):

We have to select 3 from a possible 5, therefore, this can be done in 563 = 10 ways.

Similarly, the men can be selectedin 'C, = 6 ways.

Using Rule 2, we have that the total number of possible committees = 363 x C,=60.

18
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CHAPTER EIGHT

Probability
Probability: The likelihood that something will happen.

How can data obtained?

Data are obtained either by observing uncontrolled events in
nature or by observing events in controlled situations. We use
the term experiment fo describe either method of data
collection.

Some Important Terms:

Experiment: is the process by which an observation (or
measurement) is obtained.

Outcome: A possible result of one frial of a probability
experiment.

Sample Point: is the one of each outcome.

Event: is the outcome that observed on a single repetition of
the experiment.

Sample space: is a collection of events. or, the set of all events.

{ Roll of die)
- -

- -
Sam ple space J

/ Sample Point
Event

Sample space —> ALL

Sam ple point —> ONE
Event —> One or more
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If an expenment has equally likely outcomes and of these the event A1s defined, then the
theoretical probahility of event A occuning 15 given by

:;;_ P(A) = n(d) _ __Number of utcomes in which A occurs
= n(U) ~ Total number of cutcomes in the sample space

Where n(U) isthe total number of possible outcomes in the sample space, U, (i.e., n(U) = N ).
As a consequence of this definition we have what are known as the axioms of probahility:

. DO=sPA)=1
2. F() = 0 and Ple) = |
That is, 1f A = (@, then the event A can never occur.
A = U implies that the event A s a certainty.
33 If A and B are both subsets of U and are mutually exclusive, then
F(AUB) = P(A)+F(B).

Note: 1 i
Two events A and B are said to be mutually exclusive
(ordisjoint) if they have no elements in common,

ie ifANE = . B

MPL
B8 A fair die is thrown. List the sample space of the experiment and hence find

the probability of observing: (a)  amultiple of 3
(b)  an odd number.

Are these events mutually exclusive?

![u}l The sample spaceis I = {1,2,3,4,5,6}.
Let A be the event ‘obtaining a multiple of 3"

2
II. We then have that A = {3, 6}. Therefore, P(4) = r% = {E, = %
t (b)  Let Ebe the event ‘obtaining an odd number'.
i
~ Here B= {1,3,5} and so P(B) = % - ; - ,f,
n

Inthiscase, A= {3,6}and B= {1,3,5},s0that AN B = {3} .Therefore,as AMNBwr @

A and B are not mutually exclusive.
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Event

Set language

Venn diagram

Probability result

The complement of A is
denoted by A",

A" 1s the complement to
the set 4, 1e., the set of
elements that do not
belong to the set A.

Ai

®

F‘[A'}l = l-F[A}

P{A") 1s the probability
that event 4 doas not
OCCLLE.

The intersection of
AammdB:ANBA

ANB 1s the intersection
of the sets 4 and B, 1.,
the set of elements that
belong to boththe set A
and the set B,

(AN B)
15 the probability that
both A and B occur.

The union of events A
and B: AUR

AU B isthe union of the
sets A and B, 1.e., the set
of elements that belong to
Aor Borboth 4 and 8.

is

P(A U RB) is the
probability that either
event A orevent B (or
both) occur, From this we
have what 1s known as
the *Addition rule’ for
probability:

P(AUB) =P

(A)+ P(B)—P(ANB)

IFANB = @ the
events A and Bare saidto
be disjoint. That is, they
have noelements in
common.

FANB = & thesets A
and B are mutually
exclusive,

ANB=E

If Aand B are mutually
exclusive events then
event A and event B

cannot occur
simultaneously, Le.,
HANB) =10
=P(ANB) =10
Therefore:

F(AUB) = B(A)<PB(B)
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Calculating Probabilities for Unions

When we can write the event of interest in the form of a union, a
complement, or an Calculating Probabilities for Unions intersection,
there are special probability rules that can simplify our calculations. The
first rule deals with unions of events.

General addition rule
Given two events, A and B, the probability of their union, A U B, is equal to

| PLA U B) = P(A) = P(B) — P(A N B) | —eeeniie—

Special case of additon rule (mutually exclusive)

When two events A and B are mutually exclusive or disjoint, it means that when
A occurs, B cannot, and vice versa. This means that the probability that they both

occur, P(A N B), must be zero. Figure is a Venn diagram representation of two such
events with no simple events in common.

PA UB)= P(A) = P(B)

When two events A and B are mutually exclusive, then P(A N B) = 0 and the

Addition Rule simplifies to

M12345’678410 1 23 45 6
( . (A "..Evu\ | B —— Greater than 5 A—5 Odd
P (AU “P (A happening) + P (B happeni
L e 9! 8 — Even

s

~ P(A&Bhappeningtogether)

" 120 10 10

- 07

s 3

A
B

>2.,4,6.,8 10
>6.,7,8:9,20

2,4,6,7,8,9,10
P (AUB)=P(A)+ P(B) -P(ANB)

P(AUB)= P(A)+ P(B)- P(ANB)
A& B ---> Mutually Exelusive
P(AUB)=P(A)+P(B)
= % + % =1
P(AUB)=P(A) +P(B) MutullyExelusive
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A card is randomly selected from an ordinary pack of 52 playing cards.

Find the probability that it is either a *black card’ or a *King’.

Let B be the event *A black card is selected.’ and X the event * A King is selected’.

We first note that event B has as its elements the Jack of spades(JA), the Jack of clubs

(J#h), the Queen of spades(Q#A), the Queen of clubs(Q#) and so on.

This means that

B ={KA K&,QA Q JA Tk 10A, 104 OA Ok 8A Sd TA T OA O SA S A 4 3A,
o 2A 2k AM AL and

K = {KA K¢ K¥ K&}, sothat BN K = {KA, K.

Using the addition rule, P(BU K') = P(B)+P(K)-P(BNK)

26 4 2 7
we have P(BUK}_5§+§E_§E_T§'

SO |

. .2 . .
Note the importance of subtracting 55 88 this represents the fact that we have included the event

{KA, K} twice when finding B and X.

MPLE
E A bag has 20 coins numbered from 1 to 20. A coin is drawn at random and
its number is noted. What is the probability that the coin has a number that is divisible by 3 or by
57

Let T denote the event *“The number is divisible by 3" and §, the event *The number is
divisible by 5".

Using the addition rule we have P(TU S} = P(T)+ P(5)-P(T N §)

Now, T = {3,6,9,12,15,18} and § = {5, 10, 15,20} sothat TN S = {15}.

Therefore, we have P(T) = 5 and P{(§) = ud and P(T M 5) = L

20 20 207
- _6, 4 1 _3
This means that P(TU 5) = 0 + %30 = 35"
EMPLE |
If p(A) = 0.6, p(B) = 0.3 and p(ANB) = 0.2, find
(8 p(AUB) (b)  p(B")

(a) Using the addition formula we have, p(AU B) = p(A)+ p(B)- p(AN B)
= p(AUB) = 0.6+03-0.2 = 0.7

(b} Using the complementary formula, we have p(8') = 1-p(B) = 1-0.3 = 0.7.
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Multiplication Rule

Conditional Probablity LP(AI’]B) = P(A|B) x P(B)

]

Independence  [P(ANB) = P(A)xP(B)

Conditional probability

If the events are not independent, one event affects the probability for the other
event. In this case conditional probability must be used. The conditional probabil-
ity of B given that A occurs, or on condition that A occurs, is written Pr [B | A].
This is read as the probability of B given A, or the probability of B on condition
that A occurs,

Independence : Two events, A and B, are said to be independent if and only if the
probability of event B is not influenced or changed by the occurrence of event A, or
vice versa

Example ': A bag contains green balls and yellow balls. You are going to choose two balls

: & 2% 2 . .14 :
without replacement. If the probability of selecting a green ball and a yellow ball is —, what is

the probability of selecting a yellow ball on the second draw, if you know that the probability of

. . .4
selecting a green ball on the first draw is —.

Solution:
Step 1: List what you know
PeGYéen)< % P(first chalce and second choice) = Plsecond |first) % P(first cholce)

4
P(Green AND Yellow) = 1—9

Step 2: Calculate the probability of selecting a yellow ball on the second draw with a green ball
on the first draw

P(Green AND Yellow)
P(Green)

14
P(Y|G) = ‘43
7%

P(Y|G) =

P )'l(i) = ﬁ x 2
39 4
v,
PY|G) =128
156
21
P( Y]G )= R
Step 3: Write your conclusion: Therefore the probability of selecting a yellow ball on the second
2
draw after drawing a green ball on the first draw is ;—(
26
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Example  Two cards are chosen fmom a deck of cards. W hat is the probability that they both
will be face cards?{ drgw = ahou
Sarlraricren
Let A = 1™ Face card chosen
Let i3 = 2 Face card chosen
4 suiIts 3 face cards per suit
Therefore, the total number of face cards mthe deck =4 x 3= ]2
13
PA) =
i 11
Fa W a =
P ND B) = = x L) PCAN B) = 12 x L
(.4 A ) 5:-5] or (A ] 5:'5] 0_049
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CHAPTER Nine
Partial Differential Equations

9.1 Introduction

Partial differential equations arise in connection with
various Engineering, physical and geometrical problems, when
the functions involved depend on two or more independent
variables, usually on time (¥) and on one or several space
variables.

It is fair to say that only the simplest physical systems can
be modeled by ordinary differential equations, whereas most
problems in electromagnetic theory, fluid mechanics and other
areas of physics lead to partial differential equations.

Order of P.D.E: is the highest derivative of the equation.
Some important engineering partial differential equations:

There are many types of partial differential equations. Some
typically found in engineering and science include:

(@) The wave equation, where the equation of motion is

given by:
au | 8%u
a2 ¢2 a2

VL I . L :
where ¢ = —,with 7T beingthetensioninastring
P
and p being the mass/unit length of the string.
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(b) The heat conduction equation, is of the form:
u 1 du
2 2 o
» h
where ¢ = —, with /1 being the thermal conduc-
op

tivity of the material, o the specific heat of the
material, and p the mass/unit length of material.

(c) Laplace's equation, used extensively with electrostatic
fields is of the form:

Fu Fu dtu
ax? oy 8z

(d) The fransmission equation, where the potential u in a
transmission cable is of the form:

ﬁ_.!: =A ﬁ;f —ﬁﬁi + Cu where A, B and C are

dx = ar< at '

constants,

9.2 Solving Partial Differential Equations
We will study the following methods to solve P.D.E:

1) Direct Partial Integration
2) Separation of variables

9.2.1 Direct Partial Integration

As explained in the previous class, the integration is the
reverse process of differentiation. We can use the
integration to find the solution.
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Ex1: Integrate the partial differential equation given below
with respect fo ¥,

ou/ot= Scosx sin t

Sol: The (b cosx) term is considered as a constant
u= j 5cosxsintdt = 5cosxj sint dt

u=>5cosx (—cost)+ f(x)

Ex2: Integrate the partial differential equation given below

-

o u
axay

= Ox* cos 2y

Sol: Integrate with respect to y:

au 1 ’ ) 3
— / 6x° cos 2ydy = (6x°) / cos 2y dy
ax y ' » :

. | :
= (OXx*) ( = sin 2 )—_rn X)
2 F(x) and g(y) can be calculated

if extra information are known
like boundary conditions or

Then we integrate with respect to x: | initial conditions.

- J
= / [3.\'- sin :.\' "‘-!I‘.\‘.‘l dx 7

= x* sin 2y + /f(.r)d.\'-}- gly)

= 3x“sin 2y <+ f(x)
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. 92 :
Ex3: solve the following P.D.E ﬁ =6x2(2y —1), if the
boundary conditions are:
du .

x=0- a=sm2y ,U = COS Yy
Sol:

du 5 5

— = f6.\'“(2.\* — 1dx = 2y — l)/6x“d,\‘

ax

6x° .
= (2y — l)—,)" + f(y)

=2x°Qy — 1) + £(y)

where f(y) is an arbitrary function, From the boundary conditions, when x =0,

du )
— =sin 2y,
ax
Hence, sin2y =2(0)*(2y — 1) +f(y) from which, f(y) = sin2y
= H“ e )
Now T 2x’(2y — 1) +sin 2y
X

Integrating partially with respect to x gives:

u= / [2x*(2y — 1) + sin2y]dx

7.4
== (2y— )+ x(sin2y) + g0

From the boundary conditions, when x =0, « = cos y, hence

(0)* b o
cosy = ——(2y — 1) + (0)sin 2y + g

from which, . g@g)=cos y

2

. . 0°u . : , - e
Hence, the solution of =6x*(2y — 1) for the given boundary conditions is:

~ -
¥

3

u= ? (2y = 1) 4 xsin2y + cosy
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