ANTENNA FUNDAMENTALS

An antenna is defined as a metallic device (as a rod or wire) for radiating or receiving
radio waves, or an aerial as a means for radiating or receiving radio waves. In other words,
the antenna is the transitional structure between free-space and a guiding device, as shown
in Figure 1.1. The guiding device or transmission line may take the form of a coaxial line
or a hollow pipe (waveguide), and it is used to transport electromagnetic energy from the
transmitting source to the antenna, or from the antenna to the receiver.
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Antenna as a transition device.



A transmission-line Thevenin equivalent of the antenna system of Figure 1.1 in the
transmitting mode is shown in Figure 1.2 where the source is represented by an ideal
generator, the transmission line is represented by a line with characteristic impedance Zc,
and the antenna is represented by a load ZA [ZA = (RL + Rr) + jXA] connected to the
transmission line.
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Transmission-line Thevenin equivalent of antenna in transmitting mode.

The load resistance RL is used to represent the conduction and dielectric losses associated
with the antenna structure while Rr, referred to as the radiation resistance, is used to
represent radiation by the antenna. The reactance XA is used to represent the imaginary
part of the impedance associated with radiation by the antenna.



1.2 TYPES OF ANTENNAS
1.2.1 Wire Antennas

Wire antennas are seen virtually everywhere—on automobiles, buildings, ships,
aircraft, spacecraft, and so on. There are various shapes of wire antennas such as a straight
wire (dipole), loop, and helix which are shown in Figure 1.3. Loop antennas need not
only be circular. The circular loop is the most common because of its simplicity in
construction.
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(a) Dipole (b) Circular (square) loop

(¢) Helix

Wire antenna configurations.



1.2.2 Aperture Antennas
Some forms of aperture antennas are shown in Figure 1.4. Antennas of this type are

very useful for aircraft and spacecraft applications, because they can be very conveniently
flush-mounted on the skin of the aircraft or spacecraft. In addition, they can be covered
with a dielectric material to protect them from hazardous conditions of the environment.

(a) Pyramidal horn

(b) Conical horn

(c) Rectangular waveguide

Figure 1.4 Aperture antenna configurations.



1.2.3 Microstrip Antennas

Microstrip antennas became very popular in the 1970s primarily for spaceborne
applications. These antennas consist of a metallic patch on a grounded substrate. The
metallic patch can take many different configurations. However, the rectangular and
circular patches, shown in Figure 1.5, are the most popular because of ease of analysis
and fabrication, and their attractive radiation characteristics, especially low cross-
polarization radiation. The microstrip antennas are low profile, conformable to planar and
nonplanar surfaces, simple and inexpensive to fabricate using modern printed-circuit
technology, mechanically robust when mounted on rigid surfaces, and very versatile in
terms of resonant frequency, polarization, pattern, and impedance. These antennas can be
mounted on the surface of high-performance aircraft, spacecraft, satellites, missiles, cars,
and even mobile devices.
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Rectangular and circular microstrip (patch) antennas.



1.2.4 Array Antennas

Many applications require radiation characteristics that may not be achievable by a
single element. However, a group of radiating elements in an electrical and geometrical
arrangement (an array) will result in the desired radiation characteristics. The
arrangement of the array may be such that the radiation from the elements adds up to give
a radiation maximum in a particular direction or directions, minimum in others, or
otherwise as desired. Typical examples of arrays are shown in Figure 1.6. Usually the
term array is reserved for an arrangement in which the individual radiators are separate
as shown in Figures 1.6(a—c). However, the same term is also used to describe an
assembly of radiators mounted on a continuous structure, shown in Figure 1.6(d).
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1.2.5 Reflector Antennas

The exploration of outer space has resulted in the need to communicate over great
distances. These antennas were used in order to transmit and receive signals that had to
travel millions of kilometers. A parabolic reflector shown in Figures 1.7(a) and (b).
Antennas of this type have been built with diameters of 305 m or even larger. Such large
dimensions are needed to achieve the high gain required to transmit or receive signals
over very large distances. Another form of a reflector, although not as common as the
parabolic, is the corner reflector, shown in Figure 1.7(c).
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1.2.6 Lens Antennas

Lenses are primarily used to collimate incident divergent energy to prevent it from
spreading in undesired directions. Lens antennas are classified according to the material
from which they are constructed, or according to their geometrical shape. Some forms
are shown in Figure 1.8. The diameter of the lens is usually many wavelengths, thus, their
dimensions and weight become exceedingly large at lower frequencies.
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Typical lens antenna configurations. (SOURCE: L. V. Blake, Antennas, Wiley, New York, 1966).



1.3 RADIATION MECHANISM

1.3.1 Single Wire
Conducting wires are material whose prominent characteristic is the motion of electric

charges and the creation of current. Let us assume that an electric volume charge density,
represented by qv (coulombs/m3), is distributed uniformly in a circular wire of cross-
sectional area A and volume V, as shown in Figure 1.9. The total charge Q within volume
V is moving in the z direction with a uniform velocity vz (meters/sec). It can be shown
that the current density Jz (amperes/m2) over the cross section of the wire is given by

J.=q,v, (I-1a)

If the wire is made of an ideal electric conductor, the current density Js (amperes/m)
resides on the surface of the wire and it is given by

Jg = qyv, (1-1b)

Charge uniformly distributed in a circular cross section cylinder wire.



where gs (coulombs/m2) is the surface charge density. If the wire is very thin (ideally
zero radius), then the current in the wire can be represented by

I, =qp, (1-1c)
where Qi (coulombs/m) is the charge per unit length.

Instead of examining all three current densities, we will primarily concentrate on the
very thin wire. The conclusions apply to all three. If the current is time varying, then the
derivative of the current of (1-1c) can be written as

d[z dv,

1 —= = g.a. (1-2
ar g T % 1-2)

where dvzdt = az (meters/sec?) is the acceleration. If the wire is of length I, then (1-2) can
be written as

;(H” ; dv, ;‘ A
— = lg)— = Iga, (1-
ar g T 1)

Equation (1-3) is the basic relation between current and charge, and it also serves as
the fundamental relation of electromagnetic radiation. It simply states that to create
radiation, there must be a time-varying current or an acceleration (or deceleration) of
charge. We usually refer to currents in time-harmonic applications while charge is most
often mentioned in transients. To create charge acceleration (or deceleration) the wire
must be curved, bent, discontinuous, or terminated. Periodic charge acceleration (or
deceleration) or time-varying current is also created when charge is oscillating in a
time-harmonic motion, as shown in Figure 1.17 for a A2 dipole. Therefore:

1. If a charge is not moving, current is not created and there is no radiation.
2. If charge is moving with a uniform velocity:

a. There is no radiation if the wire is straight, and infinite in extent.

b. There is radiation if the wire is curved, bent, discontinuous, terminated, or

truncated, as shown in Figure 1.10.

3. If charge is oscillating in a time-motion, it radiates even if the wire is straight.



{(e) Truncated

Figure 1.10  Wire configurations for radiation.
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1.3.2 Two-Wires

Let us consider a voltage source connected to a two-conductor transmission line which is
connected to an antenna. This is shown in Figure 1.11(a). Applying a voltage across the
two-conductor transmission line creates an electric field between the conductors. The
electric field has associated with it electric lines of force which are tangent to the electric
field at each point and their strength is proportional to the electric field intensity. The
electric lines of force have a tendency to act on the free electrons (easily detachable from
the atoms) associated with each conductor and force them to be displaced. The movement
of the charges creates a current that in turn creates a magnetic field intensity. Associated
with the magnetic field intensity are magnetic lines of force which are tangent to the

magnetic field.
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Figure 1.11  Source, transmission line, antenna, and detachment of electric field lines.



We have accepted that electric field lines start on positive charges and end on negative
charges. They also can start on a positive charge and end at infinity, start at infinity and
end on a negative charge, or form closed loops neither starting or ending on any charge.
Magnetic field lines always form closed loops encircling current-carrying conductors
because physically there are no magnetic charges. In some mathematical formulations, it
Is often convenient to introduce equivalent magnetic charges and magnetic currents to
draw a parallel between solutions involving electric and magnetic sources.

The electric field lines drawn between the two conductors help to exhibit the
distribution of charge. If we assume that the voltage source is sinusoidal, we expect the
electric field between the conductors to also be sinusoidal with a period equal to that of
the applied source. The relative magnitude of the electric field intensity is indicated by
the density (bunching) of the lines of force with the arrows showing the relative direction
(positive or negative). The creation of time-varying electric and magnetic fields between
the conductors forms electromagnetic waves which travel along the transmission line, as
shown in Figure 1.11(a). The electromagnetic waves enter the antenna and have
associated with them electric charges and corresponding currents. If we remove part of
the antenna structure, as shown in Figure 1.11(b), free-space waves can be formed by
“connecting” the open ends of the electric lines (shown dashed). The free-space waves
are also periodic but a constant phase point PO moves outwardly with the speed of light
and travels a distance of A2 (to P1) in the time of one-half of a period.



Fundamental Parameters of Antennas

RADIATION PATTERN
An antenna radiation pattern or antenna pattern is defined as “a mathematical function

or a graphical representation of the radiation properties of the antenna as a function of
space coordinates. In most cases, the radiation pattern is determined in the far-field region
and is represented as a function of the directional coordinates. Radiation properties include
power flux density, radiation intensity, field strength, directivity, phase or polarization.”
The radiation property of most concern is the two or three-dimensional spatial distribution of
radiated energy as a function of the observer’s position along a path or surface of constant
radius. A convenient set of coordinates is shown in Figure 2.1.

Elevation plane

lobe ——

Minor lobes <

Azimuth plane

Coordinate system for antenna analysis.



A trace of the received electric (magnetic) field at a constant radius is called the
amplitude field pattern. On the other hand, a graph of the spatial variation of the power
density along a constant radius is called an amplitude power pattern.

Often the field and power patterns are normalized with respect to their maximum value,
yielding normalized field and power patterns. Also, the power pattern is usually plotted on
a logarithmic scale or more commonly in decibels (dB). This scale is usually desirable
because a logarithmic scale can accentuate in more details those parts of the
pattern that have very low values, which later we will refer to as minor lobes. For an
antenna, the

a. field pattern (in linear scale) typically represents a plot of the magnitude of the electric
or magnetic field as a function of the angular space.

b. power pattern (in linear scale) typically represents a plot of the square of the magnitude
of the electric or magnetic field as a function of the angular space.

C. power pattern (in dB) represents the magnitude of the electric or magnetic field, in
decibels, as a function of the angular space.

To demonstrate this, the two-dimensional normalized field pattern (plotted in linear

scale), power pattern (plotted in linear scale), and power pattern (plotted on a logarithmic
dB scale) of a 10-element linear antenna array of isotropic sources, with a spacing of d =
0.25) between the elements, are shown in Figure 2.2. In this and subsequent patterns, the
plus (+) and minus (-) signs in the lobes indicate the relative polarization (positive or
negative) of the amplitude between the various lobes, which changes (alternates) as the nulls
are crossed. To find the points where the pattern achieves its half-power (—3 dB points),
relative to the maximum value of the pattern, you set the value of the

a. field pattern at 0.707 value of its maximum, as shown in Figure 2.2(a)
b. power pattern (in a linear scale) at its 0.5 value of its maximum, as shown in Figure 2.2(b)
C. power pattern (in dB) at —3 dB value of its maximum, as shown in Figure 2.2(c).

All three patterns yield the same angular separation between the two half-power points,
38.64-, on their respective patterns, referred to as HPBW and illustrated in Figure 2.2. This
is discussed in detail in Section 2.5.
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Figure 2.2 Two-dimensional normalized field pattern (linear scale), power pattern (linear scale), and power
pattern (in dB) of a 10-element linear array with a spacing of d = 0.25A.



In practice, the three-dimensional pattern is measured and recorded in a series of two-
dimensional patterns. However, for most practical applications, a few plots of the pattern
as a function of #for some particular values of g, plus a few plots as a function of g for
some particular values of &, give most of the useful and needed information.

Radiation Pattern Lobes
Various parts of a radiation pattern are referred to as lobes, which may be subclassified into
major or main, minor, side, and back lobes.

A radiation lobe is a “portion of the radiation pattern bounded by regions of relatively
weak radiation intensity.” Figure 2.3(a) demonstrates a symmetrical three-dimensional
polar pattern with a number of radiation lobes. Some are of greater radiation intensity
than others, but all are classified as lobes. Figure 2.3(b) illustrates a linear two-dimensional
pattern [one plane of Figure 2.3(a)] where the same pattern characteristics are indicated.

A major lobe (also called main beam) is defined as “the radiation lobe containing the
direction of maximum radiation.” In Figure 2.3 the major lobe is pointing in the =0
direction. In some antennas, such as split-beam antennas, there may exist more than one
major lobe. A minor lobe is any lobe except a major lobe. In Figures 2.3(a) and (b) all the
lobes with the exception of the major can be classified as minor lobes. A side lobe is “a
radiation lobe in any direction other than the intended lobe. A back lobe is “a radiation lobe

whose axis makes an angle of approximately 180° with respect to the beam of an antenna.”
Usually it refers to a minor lobe that occupies the hemisphere in a direction opposite to that
of the major (main) lobe.
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Figure 2.3 (a) Radiation lobes and beamwidths of an antenna amplitude pattern in polar form. (b) Linear plot

of power pattern and its associated lobes and beamwidths.

Minor lobes usually represent radiation in undesired directions, and they should be
minimized. Side lobes are normally the largest of the minor lobes. The level of minor lobes
is usually expressed as a ratio of the power density in the lobe in question to that of the major
lobe. This ratio is often termed the side lobe ratio or side lobe level. Side lobe levels of —20
dB or smaller are usually not desirable in most applications. Attainment of a side lobe level
smaller than —30 dB usually requires very careful design and construction. In most radar
systems, low side lobe ratios are very important to minimize false target indications through
the side lobes.

A normalized three-dimensional far-field amplitude pattern, plotted on a linear scale, of a
10- element linear antenna array of isotropic sources with a spacing of d = 0.25A and
progressive phase shift 5= —0.6z, between the elements is shown in Figure 2.4. It is evident
that this pattern has one major lobe, five minor lobes and one back lobe. The level of the side
lobe is about —9 dB relative to the maximum.
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Figure 2.4 Normalized three-dimensional amplitude field pattern (in linear scale) of a 10-element linear array
antenna with a uniform spacing of d = 0.25A and progressive phase shift § = —0.6z between the elements.



Isotropic, Directional, and Omnidirectional Patterns

An isotropic radiator is defined as “a hypothetical lossless antenna having equal radiation in
all directions.” Although it is ideal and not physically realizable, it is often taken as a
reference for expressing the directive properties of actual antennas. A directional antenna is
one “having the property of radiating or receiving electromagnetic waves more effectively
in some directions than in others. This term is usually applied to an antenna whose maximum
directivity is significantly greater than that of a half-wave dipole.” Examples of antennas
with directional radiation patterns are shown in Figures 2.5 and 2.6. It is seen that the pattern
in Figure 2.6 is nondirectional in the azimuth plane [f (@), & = 72] and directional in the
elevation plane [g(#), # = constant]. This type of a pattern is designated as omnidirectional,
and it is defined as one “having an essentially nondirectional pattern in a given plane (in this
case in azimuth) and a directional pattern in any orthogonal plane (in this case in elevation).”
An omnidirectional pattern is then a special type of a directional pattern.
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Figure 2.6  Omnidirectional antenna pattern.

2.2.3 Principal Patterns
For a linearly polarized antenna, performance is often described in terms of its principal E-
and H-plane patterns. The E-plane is defined as “the plane containing the electric-field vector
and the direction of maximum radiation,” and the H-plane as “the plane containing the
magnetic-field vector and the direction of maximum radiation.” Although it is very difficult
to illustrate the principal patterns without considering a specific example, it is the usual
practice to orient most antennas so that at least one of the principal plane patterns coincide
with one of the geometrical principal planes. An illustration is shown in Figure 2.5. For this
example, the x-z plane (elevation plane; @ = 0) is the principal E-plane and the x-y plane
(azimuthal plane; & = 72) is the principal H-plane. Other coordinate orientations can be
selected.

The omnidirectional pattern of Figure 2.6 has an infinite number of principal E-planes
(elevation planes; @ = &) and one principal H-plane (azimuthal plane; = 90-).

9



2.2.4 Field Regions

The space surrounding an antenna is usually subdivided into three regions:
(a) reactive near-field,

(b) radiating near-field (Fresnel) and

(c) far-field (Fraunhofer) regions

as shown in Figure 2.7.

These regions are so designated to identify the field structure in each. Although no abrupt
changes in the field configurations are noted as the boundaries are crossed, there are distinct
differences among them. The boundaries separating these regions are not unique, although
various criteria have been established and are commonly used to identify the regions.

Far-field (Fraunhofer)

R =0.62D*/x region

Ry =2D*/n
Radiating near-field
(Fresnel) region

Reactive
near-field region

1]
1INE

R,

\

Field regions of an antenna.
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Reactive near-field region is defined as “that portion of the near-field region
immediately surrounding the antenna wherein the reactive field predominates.” For most
antennas, the outer boundary of this region is commonly taken to exist at a distance
R < 0.62VD¥A
from the antenna surface, where A is the wavelength and D is the largest dimension of the
antenna.

“For a very short dipole, or equivalent radiator, the outer boundary is commonly taken to
exist at a distance A2 from the antenna surface.”

Radiating near-field (Fresnel) region is defined as “that region of the field of an

antenna between the reactive near-field region and the far-field region wherein radiation

fields predominate and wherein the angular field distribution is dependent upon the
distance from the antenna. If the antenna has a maximum dimension that is not large

compared to the wavelength, this region may not exist. For an antenna focused at infinity,
the radiating near-field region is sometimes referred to as the Fresnel region on the basis of
analogy to optical terminology. If the antenna has a maximum overall dimension which is
very small compared to the wavelength, this field region may not exist.”

The inner boundary is taken to be the distance
R >0.62VD%

and the outer boundary the distance

R < 2D%\.

where D is the largest* dimension of the antenna.

This criterion is based on a maximum phase error of #8. In this region the field pattern
is, in general, a function of the radial distance and the radial field component may be
appreciable.

Far-field (Fraunhofer) region is defined as “that region of the field of an antenna
where the angular field distribution is essentially independent of the distance from the
antenna. If the antenna has a maximum® overall dimension D, the far-field region is
commonly taken to exist at distances greater than 2D%\ from the antenna, A being the
wavelength. The far-field patterns of certain antennas, such as multibeam reflector antennas,
are sensitive to variations in phase over their apertures. For these antennas 2D%A may be
inadequate. In physical media, if the antenna has a maximum overall dimension, D, which
is large compared to 7]y, the far-field region can be taken to begin approximately at a
distance equal to [/{D27 from the antenna, p being the propagation constant in the
medium.

*T0 be valid, D must also be large compared to the wavelength (D > 4).
+To be valid, D must also be large compared to the wavelength (D > 2).
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For an antenna focused at infinity, the far-field region is sometimes referred to as the
Fraunhofer region on the basis of analogy to optical terminology.” In this region, the
field components are essentially transverse and the angular distribution is independent of the
radial distance where the measurements are made. The inner boundary is taken to be the
radial distance R = 2D%\ and the outer one at infinity.

The amplitude pattern of an antenna, as the observation distance is varied from the
reactive near field to the far field, changes in shape because of variations of the fields,
both magnitude and phase. A typical progression of the shape of an antenna, with the
largest dimension D, is shown in Figure 2.8.
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Typical changes of antenna amplitude pattern shape from reactive near field toward the far field.

It is apparent that in the reactive near-field region the pattern is more spread out and nearly
uniform, with slight variations. As the observation is moved to the radiating near-field region
(Fresnel), the pattern begins to smooth and form lobes. In the far-field region (Fraunhofer),
the pattern is well formed, usually consisting of few minor lobes and one, or more, major
lobes.
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2.2.5 Radian and Steradian

The measure of a plane angle is a radian. One radian is defined as the plane angle with
its vertex at the center of a circle of radius r that is subtended by an arc whose length is r.
A graphical illustration is shown in Figure 2.10(a). Since the circumference of a circle of
radius r is C = 2zr, there are 2zrad (2z1/4) in a full circle.

The measure of a solid angle is a steradian. One steradian is defined as the solid angle
with its vertex at the center of a sphere of radius r that is subtended by a spherical surface
area equal to that of a square with each side of length r. A graphical illustration is shown
in Figure 2.10(b). Since the area of a sphere of radius r is A = 4712, there are 47z sr (4721%42)
in a closed sphere.

The infinitesimal area dA on the surface of a sphere of radius r, shown in Figure 2.1, is
given by

dA = r?sin@dfd¢p (m?) (2-1)

Therefore, the element of solid angle dQ2 of a sphere can be written as

dQ = % —sinfdOdp (sr) (2-2)

r
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Area=r~
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in area
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(b) Steradian

Figure 2.10  Geometrical arrangements for defining a radian and a steradian.
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Example 2.1

For a sphere of radius r, find the solid angle 4 (in square radians or steradians) of a spheri-
cal cap on the surface of the sphere over the north-pole region defined by spherical angles of
0<60<30°0 < ¢ <360° Refer to Figures 2.1 and 2.10. Do this

a. exactly.

b. using Q, ~ A®, - A®,, where A®, and AB, are two perpendicular angular separations of
the spherical cap passing through the north pole.

Compare the two.
Solution:

a. Using (2-2), we can write that

360°  30° 2t )6 2 7/6
QA=/ / dﬂ=/ / sin9d9d¢=/ dd.')/ sin 8 df
0 0 o Jo 0 0

= 2x[-cos 0]|7/° = 22[~0.867 + 1] = 27(0.133) = 0.83566

AG,=A P

e
b. Q, ~AG, -AO, i (AO,)? = Z (5) = & = 109662

It is apparent that the approximate beam solid angle is about 31.23% in error.
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2.2.4 Field Regions

The space surrounding an antenna is usually subdivided into three regions:
a- reactive near-field,
b- radiating near-field (Fresnel) and
c- far-field (Fraunhofer) regions

as shown in Figure 2.7.

These regions are so designated to identify the field structure in each. Although no
abrupt changes in the field configurations are noted as the boundaries are crossed,
there are distinct differences among them. The boundaries separating these regions are
not unique, although various criteria have been established and are commonly used to
identify the regions.

Far-field (Fraunhofer)
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R =0.624/D*/2 g

Ry =2D%*/a
Radiating near-field
(Fresnel) region

Reactive
near-field region

T
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Field regions of an antenna.

1- Reactive near-field region is defined as “that portion of the near-field region

immediately surrounding the antenna wherein the reactive field predominates.” For
most antennas, the outer boundary of this region is commonly taken to exist at a distance
R < 0.62VD¥A
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from the antenna surface, where
A : is the wavelength and
D : is the largest dimension of the antenna.

Radiating near-field (Fresnel) region is defined as “that region of the field of an

antenna between the reactive near-field region and the far-field region wherein
radiation fields predominate and wherein the angular field distribution is dependent
upon the distance from the antenna. If the antenna has a maximum dimension that is
not large compared to the wavelength, this region may not exist. For an antenna focused
at infinity, the radiating near-field region is sometimes referred to as the Fresnel region
on the basis of analogy to optical terminology. If the antenna has a maximum overall
dimension which is very small compared to the wavelength, this field region may not
exist.”

The inner boundary is taken to be the distance
R > 0.62\D¥).
and the outer boundary the distance
R < 2D\
where D is the largest* dimension of the antenna.
This criterion is based on a maximum phase error of 78. In this region the field
pattern is, in general, a function of the radial distance and the radial field component may
be appreciable.

Far-field (Fraunhofer) region is defined as “that region of the field of an antenna

where the angular field distribution is essentially independent of the distance from the

antenna. If the antenna has a maximum' overall dimension D, the far-field region is

commonly taken to exist at distances greater than 2D%)\ from the antenna, A being the
wavelength. The far-field patterns of certain antennas, such as multibeam reflector
antennas, are sensitive to variations in phase over their apertures. For these antennas 2 D%\
may be inadequate. In physical media, if the antenna has a maximum overall dimension,
D, which is large compared to #]p{, the far-field region can be taken to begin
approximately at a distance equal to [}4D2/ from the antenna, p being the propagation
constant in the medium.

*To be valid, D must also be large compared to the wavelength (D > ).
+To be valid, D must also be large compared to the wavelength (D > }).

For an antenna focused at infinity, the far-field region is sometimes referred to as the
Fraunhofer region on the basis of analogy to optical terminology.” In this region, the
field components are essentially transverse and the angular distribution is independent of
the radial distance where the measurements are made. The inner boundary is taken to be
the radial distance R = 2D%A and the outer one at infinity.
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The amplitude pattern of an antenna, as the observation distance is varied from the
reactive near field to the far field, changes in shape because of variations of the fields,
both magnitude and phase. A typical progression of the shape of an antenna, with the
largest dimension D, is shown in Figure 2.8.

It is apparent that in the reactive near-field region the pattern is more spread out and
nearly uniform, with slight variations. As the observation is moved to the radiating near-
field region (Fresnel), the pattern begins to smooth and form lobes. In the far-field region
(Fraunhofer), the pattern is well formed, usually consisting of few minor lobes and one,
or more, major lobes.

Reactive
Near-field -
e Sy
\, } .
A\ ~
/
_ ; | N .
: \| Radiating | Far-Field
f" H‘| Near-field \
D | ‘ J
| | /
\ ' /
[ b
\ / ~
-~
- - \\ / : Lz ~
S~/ L -~  Fresnel Fraunhofer
—— ]

Field — »

|

|

|

|

|

|

|

|

|

|

[ |
| |

s | |
Distribution | |
| |

| |

| |

L
-

Typical changes of antenna amplitude pattern shape from reactive near field toward the far field.

2.2.5 Radian and Steradian
The measure of a plane angle is a radian. One radian is defined as the plane angle

with its vertex at the center of a circle of radius r that is subtended by an arc whose
length is r. A graphical illustration is shown in Figure 2.10(a). Since the circumference

of a circle of radius r is C = 27, there are 27rrad (27vr) in a full circle.

The measure of a solid angle is a steradian. One steradian is defined as the solid

angle with its vertex at the center of a sphere of radius r that is subtended by a spherical
surface area equal to that of a square with each side of length r. A graphical illustration

12



is shown in Figure 2.10(b). Since the area of a sphere of radius r is 4 = 4712, there are 477
st (47z77%+%) in a closed sphere.

The infinitesimal area d4 on the surface of a sphere of radius », shown in Figure 2.1, is
given by

dA = r’sinfdfdp (m?) 2-1y
Therefore, the element of solid angle dQ of a sphere can be written as
dQ = % —sin@dOdg (sr) (2-2)
=

(a) Radian

Equivalent
in area

(b) Steradian

Figure 2,10 Geometrical arrangements for defining a radian and a steradian.
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Example 2.1

For a sphere of radius r, find the solid angle Q4 (in square radians or steradians) of a spheri-
cal cap on the surface of the sphere over the north-pole region defined by spherical angles of
0<8<30°%0 < ¢ < 360° Refer to Figures 2.1 and 2.10. Do this

a. exactly.
b. using Q4 ~ A®, - A®,, where A®, and AB, are two perpendicular angular separations of
the spherical cap passing through the north pole.

Compare the two.
Solution:

a. Using (2-2), we can write that

360° 30° 2
Qy = / / dQ = / / sin@ df d¢p = / do / sin @ d6

= 2a[- cos 0]|/° = 22[-0.867 + 1] = 27(0.133) = 0.83566

=AG 2
b. Q, ~ A®, - AO, ,.l.f 40,7 =% (%) = & = 109662

It is apparent that the approximate beam solid angle is about 31.23% in error.

2.3 RADIATION POWER DENSITY
Electromagnetic waves are used to transport information through a wireless medium

or a guiding structure, from one point to the other. It is then natural to assume that

power and energy are associated with electromagnetic fields. The quantity used to

describe the power associated with an electromagnetic wave 1S the instantaneous
Poynting vector defined as

W =X (2-3)

W = instantaneous Poynting vector (W/m?)
& = instantaneous electric-field intensity  (V/m)

A = instantaneous magnetic-field intensity (A/m)

Note that script letters are used to denote instantaneous fields and quantities, while
roman letters are used to represent their complex counterparts. Since the Poynting vector
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is a power _density, the total power crossing a closed surface can be obtained by
integrating the normal component of the Poynting vector over the entire surface. In
equation form

P =§°z¢hds=é{w-ﬁm (2-4)
Y Y

4 = instantaneous total power (W)
n = unit vector normal to the surface

i e . " « 2
da = infinitesimal area of the closed surface (m*)

For applications of time-varying fields, it is often more desirable to find the average

power density which is obtained by integrating the instantaneous Poynting vector
over one period and dividing by the period. For time-harmonic variations of the form
@ we define the complex fields E and H which are related to their instantaneous
counterparts € and H by

which are related to their instantaneous counterparts & and # by

&(x,v,z:1) = Re[E(x, v, 2)e/™] (2-5)
Z(x,y,7;1) = Re[H(x, y, 2)e/'] (2-6)

Using the definitions of (2-5) and (2-6) and the identity Re[Ee/®'] = %[Ee/‘“’ + E*e~/®], (2-3) can
be written as  he jnstantaneous Poynting vector)

W =& x H = tRe[E x H*] + tRe[E x He/**'] (2-7)

The first term of (2-7) is not a function of time, and the time variations of the second are twice the

W (2, %,2) = [#(x, 5,2, )],y = %Re[E xH* 1 (W/m?) (2-8)

The ' factor appears in (2-7) and (2-8) because the E and H fields represent peak
values, and it should be omitted for RMS values. A close observation of (2-8) may raise
a question. If the real part of (E x H*) /2 represents the average (real) power density, what

natural to assume that the imaginary part must represent the reactive (stored)
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ower density associated with the electromagnetic fields. In later chapters, it will be

its far-field region is predominately real and will be referred to as radiation density.
Based upon the definition of (2-8), the average power radiated by an antenna

(radiated power) can be written as

Il

Pog=P,, = jﬁ( W, - ds = jﬁ( W, - fida

5 5
éf Re(E x H*) - ds
Ay

The power pattern of the antenna, whose definition was discussed in Section 2.2, is
just a measure, as a function of direction, of the average power density radiated by the
antenna. The observations are usually made on a large sphere of constant radius
extending into the far field. In practice, absolute power patterns are usually not desired.
However, the performance of the antenna is measured in terms of the gain (to be
discussed in a subsequent section) and in terms of relative power patterns. Three-
dimensional patterns cannot be measured, but they can be constructed with a number of
two dimensional cuts.

(2-9)

2| =

16



Example 2.2
The radial component of the radiated power density of an antenna is given by

sin @

5
r2

Wia = é\‘,*']’][‘/r = aA]rt’ﬂl(} (W/le)

where A is the peak value of the power density, @ is the usual spherical coordinate, and &, is the
radial unit vector. Determine the total radiated power.

Solution: For a closed surface, a sphere of radius r is chosen. To find the total radiated power,
the radial component of the power density is integrated over its surface. Thus

Pey= ﬁ W,.q - Nda
S
2 T 5
- sin @
= / / (a.f'AG b)
0 0 /=

A three-dimensional normalized plot of the average power density at a distance of r= 1 m is
shown in Figure 2.6.

) (8,2 sin0dOdp) = A, (W)

An _isotropic radiator is an ideal source that radiates equally in all directions.
Although it does not exist in practice, it provides a convenient isotropic reference with
which to compare other antennas. Because of its symmetric radiation, its Poynting vector
will not be a function of the spherical coordinate angles #and . In addition, it will have
only a radial component. Thus the total power radiated by it is given by

2x Vs
Prg = ﬂ W - ds = / / [4,W,(r)] - [a,7% sin 6 dO dg] = 4xr* W, (2-10)
0 0
S

and the power density by which is uniformly distributed over the surface of a sphere
of radius r.

P
Wy=4a,(—=L) (Wm? (2-11)

W,=a4a
0 "\ 4rxr2
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2.4 RADIATION INTENSITY
Radiation intensity in a given direction is defined as “the power radiated from

an antenna per unit solid angle.” The radiation intensity is a far-field parameter, and

it can be obtained by simpl multi I in the radiation density by the square

U=rWw,, (2-12)

ra

where
U = radiation intensity (W/unit solid angle)
Whrad = radiation density (W/m?)

The radiation intensity is also related to the far-zone electric field of an antenna,
referring to Figure 2.4, by

2 2

U(h. ¢) = ;—”lE(r.H.(,b)lz |Ep(r.60, )% + |Ey(r.0, )]

lﬁ (2-12a)
~ 5 1E56. ) + 56, )|

Where

e—Ikr

E(r, 0. ¢) = far-zone electric-field intensity of the antenna = E°(
Ey. E4 = far-zone electric-field components of the antenna

n = intrinsic impedance of the medium

18



The radial electric-field component (Er) is assumed, if present, to be small in the

Pmd=#-[fdﬁ=/0 /D Usin@do de (2-13)
Q)

where dQ = element of solid angle = sin6 d6 d¢.

Prad = # L"g dQ = UD # d€ = 4JTUD (2-14)

Q Q

Example 2.3

For the problem of Example 2.2, find the total radiated power using (2-13).
Solution: Using (2-12)

U=r*W_4=Agsinb

and by (2-13)

2z T 2z T
Prog = / / Usinfdfdp = A, / / sin® 0 df dgp = n?A,
0 0 0 0

which is the same as that obtained in Example 2.2. A three-dimensional plot of the relative radi-
ation intensity is also represented by Figure 2.6.

Uy=— (2-15)
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(4]

Normalized Field
Pattern (linear scale)

Ue.o)

y
X
(a) Three-dimensional
Normalized Field
Pattern (linear scale)
HPBW = 28.65°
FNBW = 60°

(b) Two-dimensional

Figure 2.11  Three- and two-dimensional power patterns (in linear scale) of U(8) = cos?(8) cos?*(36).
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2.5 BEAMWIDTH
Associated with the pattern of an antenna is a parameter designated as beamwidth.
The beamwidth of a pattern is defined as the anqular separation between two

identical points on opposite side of the pattern maximum.
In an antenna pattern, there are a number of beamwidths. One of the most widely used

beamwidths is

- The Half-Power Beamwidth (HPBW), which is defined by IEEE as: “In a plane
containing the direction of the maximum of a beam, the angle between the two
directions in which the radiation intensity is one-half value of the beam.” This is
demonstrated in Figure 2.2.

- Another important beamwidth is the angular separation between the first nulls of the
pattern, and it is referred to as the First-Null Beamwidth (FNBW).

- Both the HPBW and FNBW are demonstrated for the pattern in Figure 2.11 for the pattern
of Example 2.4.

- Other beamwidths are those where the pattern is —10 dB from the maximum, or any
other value.

- However, in practice, the term beamwidth, with no other identification, usually

refers to HPBW.

- The beamwidth of an antenna is a very important figure of merit and often is used
as a trade-off between it and the side lobe level: that is, as the beamwidth decreases,
the side lobe increases and vice versa.

- In addition, the beamwidth of the antenna is also used to describe the resolution
capabilities of the antenna to distinguish between two adjacent radiating sources or
radar targets.

- The most common resolution criterion states that the resolution capability of an
antenna to distinguish between two sources is equal to half the first-null
beamwidth (FNBW/2), which is usually used to approximate the half-power
beamwidth (HPBW) [5], [6]. That is, two sources separated by angular distances
equal or greater than FNBW/2 =~ HPBW of an antenna with a uniform distribution
can be resolved. If the separation is smaller, then the antenna will tend to smooth
the angular separation distance.
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Example 2.4
The normalized radiation intensity of an antenna is represented by

U(8) = cos?(8)cos>(39). (0<6 <90°, 0° < ¢ <360°

The three- and two-dimensional plots of this, plotted in a linear scale, are shown in Figure 2.11.
Find the

a. half-power beamwidth HPBW (in radians and degrees)
b. first-null beamwidth ENBW (in radians and degrees)

Solution:

a. Since the U(8) represents the power pattern, to find the half-power beamwidth you set the
function equal to half of its maximum, or

U(8)]gg, = c0s*(8) cos*(30)|g—g, = 0.5 = cos 6, cos 36, = 0.707
_1{ 0.707
6), = cos™!
h = €08 (cos 30, )

Since this is an equation with transcendental functions, it can be solved iteratively. After a
few iterations, it is found that

0, ~ 0.25 radians = 14.325°

Since the function U(#) is symmetrical about the maximum at 8 = 0, then the HPBW is
HPBW = 20, =~ 0.50 radians = 28.65°
b. To find the first-null beamwidth (FNBW), you set the U(8) equal to zero, or
U(0)]gg, = c0s*(6) cos*(30)|g—g =0
This leads to two solutions for 6,,.
cosf, =0=6,=cos ' (0) = g radians = 90°

cos 1(0) = % radians = 30°

cos39n=0=}-9n=%

The one with the smallest value leads to the FNBW. Again, because of the symmetry of
the pattern, the FNBW is

FNBW = 260, = — radians = 60°

W N
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2.6 DIRECTIVITY

Basically the term directivity in the new 1983 version has been used to replace
the term directive gain of the old 1973 version. Therefore directivity of an antenna

by 4z If the direction is not specified, the direction of maximum radiation
intensity is implied.” Stated more simply, the directivity of a nonisotropic
source is equal to the ratio of its radiation intensity in a given direction over that of
an isotropic source. In mathematical form, using (2-15), it can be written as

L,r _ 4JrU

T (2-16
lr-";rO Prad J

If the direction is not specified, it implies the direction of maximum radiation
intensity (maximum directivity) expressed as

[/

/ / 7
_ lem{ _ Ymax __ 43Lmax
max — - 7 - 7 -
{-"D [’{] P rad

(2-16a)

D = directivity (dimensionless)

Do = maximum directivity (dimensionless)

U = radiation intensity (W/unit solid angle)

Umax = maximum radiation intensity (W/unit solid angle)

Uy = radiation intensity of isotropic source (W/unit solid angle)
Prag = total radiated power (W)

For an isotropic source, it is very obvious from (2-16) or (2-16a) that the directivity
Is unity since U, Umax, and Ug are all equal to each other.
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For antennas with orthogonal polarization components, we define the partial
directivity of an antenna for a given polarization in a given direction as “that
part of the radiation intensity corresponding to a given polarization divided
by the total radiation intensity averaged over all directions.” With this definition

for the partial directivity, then in a given direction “the total directivity is the sum
of the partial directivities for any two orthogonal polarizations.” For a spherical
coordinate system, the total maximum directivity Do for the orthogonal ¢ and &
components of an antenna can be written as

D(]:Dg +D¢, (2-17]

while the partial directivities Dyand D are expressed as

AU
D, = el (2-17a)
{Pl‘ud:'ﬂ + (Prad)gt:
U,
D (2-17b)

v {Pmdlﬁ + (Prad):j;:

where

Uy = radiation intensity in a given direction contained in #field component
Uy = radiation intensity in a given direction contained in ¢ field component
(Prad)# = radiated power in all directions contained in #field component
(Prad)# = radiated power in all directions contained in ¢ field component
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Example 2.5

As an illustration, find the maximum directivity of the antenna whose radiation intensity is that
of Example 2.2. Write an expression for the directivity as a function of the directional angles 6
and ¢.

Solution: The radiation intensity is given by

U=r*W,_4=Aysiné

The maximum radiation is directed along 8 = z /2. Thus

In Example 2.2 it was found that
Prg = j"":2‘1"‘0
Using (2-16a), we find that the maximum directivity is equal to

dnU . 4
— =—=1.27
0 P n

rad

Since the radiation intensity is only a function of 8, the directivity as a function of the directional
angles is represented by

D = Dysin@ = 1.27sin 6

Before proceeding with a more general discussion of directivity, it may be proper at

this time to consider another example, compute its directivity, compare it with that of the
previous example, and comment on what it actually represents. This may give the reader
a better understanding and appreciation of the directivity.
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Example 2.6

The radial component of the radiated power density of an infinitesimal linear dipole of length
| << ) is given by

sin @
2

W, =4a,W, =44, (W/m?)

I

where A is the peak value of the power density, 8 is the usual spherical coordinate, and &, is the
radial unit vector. Determine the maximum directivity of the antenna and express the directivity
as a function of the directional angles 8 and ¢.
Solution: The radiation intensity is given by
) - 92
U=r"W,=A,sin" 0

The maximum radiation is directed along & = = /2. Thus

The total radiated power is given by

prd T
Prad=#UdQ-=A0./o. /0 sinzﬂsinﬂdﬂfff,f):AO(gT’r)
Q

Using (2-16a), we find that the maximum directivity is equal to

AU ax 4z A, 3
D= "=% =2
rad T(AOJ

which is greater than 1.27 found in Example 2.5. Thus the directivity is represented by

D = Dgsin®> @ = 1.5sin’ 6

At this time, it will be proper to comment on the results of Examples 2.5 and 2.6.
To better understand the discussion, we have plotted in Figure 2.12 the relative radiation

intensities of Example 2.5 (U = Agsin &) and Example 2.6 (U = A sin? &) where A; was
set equal to unity. We see that both patterns are omnidirectional but that of Example 2.6
has more directional characteristics (is narrower) in the elevation plane. Since the
directivity is a “figure of merit” describing how well the radiator directs energy in
a certain direction, it should be convincing from Figure 2.12 that the directivity of
Example 2.6 should be higher than that of Example 2.5.

To demonstrate the significance of directivity, let us consider another example; in
particular, let us examine the directivity of a half-wavelength dipole (I =A2), which
Is derived in Section 4.6 of Chapter 4 and can be approximated by
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D = Dysin’® @ = 1.67sin’ (2-18)
since it can be shown that [see Figure 4.12(b)]

2
cos (% coS 9)
sin° 6 o~ , (2-18a)
sin @

where # is measured from the axis along the length of the dipole. The values
represented by (2-18) and those of an isotropic source (D=1) are plotted two- and three-
dimensionally in Figure 2.13(a, b). For the three-dimensional graphical representation of
Figure 2.13(b), at each observation point only the largest value of the two directivities is
plotted. It is apparent that when

U=sin’6@ /

U=sin@

Figure 2.12  Three-dimensional radiation intensity patterns. (SOURCE: P. Lorrain and D. R. Corson, Electro-
magnetic Fields and Waves, 2nd ed., W. H. Freeman and Co. Copyright (¢) 1970).
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Directivity

D (isotropic)=1 S s
(dimensionless)
18

57.44°

D (dipole)=1.67sin’(@)

180°

(a) Two-dimensional

Directivity
(dimensionless)

D=1.67sin%(8)

(b) Three-dimensional

Figure 2.13  Two- and three-dimensional directivity patterns of a /2 dipole. (sourcke: C. A. Balanis, “Antenna
Theory: A Review.” Proc. IEEE. Vol. 80, No. 1. January 1992. (c) 1992 IEEE).

sin}(1.67)¥® = 57.44° < # < 122.56°, the dipole radiator has greater
directivity (greater intensity concentration) in those directions than that
of an isotropic source. Outside this range of angles, the isotropic radiator has
higher directivity (more intense radiation). The maximum directivity of the dipole

(relative to the isotropic radiator) occurs when #= 72, and it is 1.67 (or 2.23 dB) more
intense than that of the isotropic radiator (with the same radiated power).
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The directivity of an isotropic source is unity since its power is radiated equally well
in all directions. For all other sources, the maximum directivity will always be greater
than unity, and it is a relative “figure of merit” which gives an indication of the
directional properties of the antenna as compared with those of an isotropic source. In
equation form, this is indicated in (2-16a). The directivity can be smaller than unity; in
fact it can be equal to zero. For Examples 2.5 and 2.6, the directivity is equal to zero in
the # = 0 direction. The values of directivity will be equal to or greater than zero and
equal to or less than the maximum directivity (0 <D < DO0).

A more general expression for the directivity can be developed to include sources with
radiation patterns that may be functions of both spherical coordinate angles Zand &. In
the previous examples we considered intensities that were represented by only one
coordinate angle &, in order not to obscure the fundamental concepts by the mathematical
details. So it may now be proper, since the basic definitions have been illustrated by
simple examples, to formulate the more general expressions.

Let the radiation intensity of an antenna be of the form

U = ByF(0,) ~ ﬁ—ln IES(0. )1 + |1 ES(6. ) (2-19)

where By is a constant, and Eg and Eg are the antenna’s far-zone electric-field components. The

maximum value of (2-19) is given by
Uma_x = BDFfH ¢}|max = BOFmax{g' ¢p) (2-19a)

The total radiated power is found using

2z T
Py = ﬁum.{mdgzgﬂfo /D F(8. ¢)sin 8 d6 d¢p (2-20)
Q

We now write the general expression for the directivity and maximum directivity using (2-16) and
(2-16a), respectively, as

F(o,
D(6.¢) =4x 0.9)

/“ / F(6.$)sin 6. d6 dep =2
0 0

29



F{g' ¢}||ﬂﬁx
=4r
21’1’ T ) {2_22}
/ / F(6.¢)sinB db d¢
0 0

D,

Dividing by F(&, g)|max merely normalizes the radiation intensity F(&, &), and it
makes its maximum value unity.

The beam solid angle QA is defined as the solid angle through which all the power of the
antenna would flow if its radiation intensity is constant (and equal to the maximum value
of U) for all angles within QA

Dy = 4z _ —1_21'

2t pr Q4 (2-23)
U / F{é.@}sinedadcp] /F{H.cmlmax S
0 0

where Q, 1s the beam solid angle, and it i1s given by

7 2
] -/‘...JT /‘)T . LT s .
Q= — F{H.qﬁ)smfi‘dé'dc;b:/ f F (6. ¢)sin8d6 dg
A F(€¢}||na_x 0 0 0 0 N
(2-24)

F(8.¢)
F,(6.¢) = ¢

= —_— (2-25)
F(6. )| max
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Example 2.7

The radiation intensity of the major lobe of many antennas can be adequately represented by
U=B8B cos* @
where By is the maximum radiation intensity. The radiation intensity exists only in the upper

hemisphere (0 < 8 < z/2,0 < ¢ < 27), and it is shown in Figure 2.15.
Find the

a. beam solid angle; exact and approximate.

b. maximum directivity; exact using (2-23) and approximate using (2-26).

04, = 1.1437 rads

Normalized Field
Pattem (linear scale)
1

0.9

0.8

10.7

0.6

0.5

0.4

0.3

- 0.2

v

0.1

L Ll L T L L e e

Figure 2.15  Radiation intensity pattern of the form U = cos*# in the upper hemisphere.
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Since the pattern 1s independent of the ¢ coordinate, the beamwidth in the other plane is also
equal to

©,, = 1.1437 rads

a. Beam solid angle Q ;:
Exact: Using (2-24), (2-25)

360° 90° 2z xf2
Qy =/ / cos49dQ=/ / cos* @sin 0 dO d¢p
0 0 0 0

2r xzf2
= / dqb/ cos* 8sin 6 d6
0 0

mf2 o
= 2;:/ cos? Bsinfdo = -T steradians
0

Approximate: Using (2-26a)

Q, ~ 0,,0,, = 1.1437(1.1437) = (1.1437)? = 1.308 steradians

b. Directivity Dy:

47(5 : :
Exact: Dy = ax = 32r( ) = 10 (dimensionless) = 10 dB
A T
The same exact answer is obtained using (2-16a).
Approximate: Dy =~ g—z = ]3%8 = 9.61 (dimensionless) = 9.83 dB

The exact maximum directivity is 10 and its approximate value, using (2-26), is 9.61. Even better
approximations can be obtained if the patterns have much narrower beamwidths, which will be
demonstrated later in this section.

Many times it is desirable to express the directivity in decibels (dB) instead of
dimensionless quantities. The expressions for converting the dimensionless quantities of
directivity and maximum directivity to decibels (dB) are

D(dB) = 10 log10[D(dimensionless)] (2-28a)

Do(dB) = 10 log10[Do(dimensionless)] (2-28b)
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2.8 ANTENNA EFFICIENCY
Associated with an antenna are a humber of efficiencies and can be defined

using Figure 2.22. The total antenna efficiency €o is used to take into account losses
at the input terminals and within the structure of the antenna. Such losses may be
due, referring to Figure 2.22(b),_to

1. reflections because of the mismatch between the transmission line and the antenna

2. I°R losses (conduction and dielectric)

In general, the overall efficiency can be written as

€y = 6,664 (2-44)

.

l-—i Antenna ﬂ

Input Output
terminals terminals
(gain reference) (directivity reference)

(a) Antenna reference terminals

]

r 2| |
\; :

~U

(b) Reflection, conduction, and dielectric losses

[ ]

Reference terminals and losses of an antenna.

€o = total efficiency (dimensionless)

er = reflection (mismatch) efficiency = (1 —|I" |?) (dimensionless)
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ec = conduction efficiency (dimensionless)

ed = dielectric efficiency (dimensionless)

I' = voltage reflection coefficient at the input terminals of the antenna

[ = (Zin — ZoMZin + Zo) where Zin = antenna input impedance, Zo =
characteristic impedance of the transmission line]

1+ |I]
[ =1

VSWR = voltage standing wave ratio =

Usually ec and eq are very difficult to compute, but they can be determined experimentally.
Even by measurements they cannot be separated, and it is usually more convenient to
write (2-44) as

€0 = ered = ecd(1 — |T)?) (2-45)

where ecq = eceq = antenna radiation efficiency, which is used to relate the gain
and directivity.

2.9 GAIN, REALIZED GAIN

in a given direction, to the radiation intensity that would be obtained if the power
accepted by the antenna were radiated isotropically. The radiation intensity
corresponding to the isotropically radiated power is equal to the power accepted
(input) by the antenna divided by 4. In equation form this can be expressed as

radiation intensity U, ¢)
= 4am
total input (accepted) power P,

Gain = 4n

(dimensionless) (2-46)
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In most cases we deal with relative gain, which is defined as “the ratio of the
power _gain in a given direction to the power gain of a reference antenna in _its
referenced direction.”

- The power input must be the same for both antennas.

- The reference antenna is usually a dipole, horn, or any other antenna whose gain

can be calculated or it is known.

- Inmost cases, however, the reference antenna is a lossless isotropic source. Thus

4rU(0. _
G = ]r‘ ( ('b)‘ (dimensionless) (2-46a)
P;,(lossless isotropic source)

When the direction is not stated, the power gain is usually taken in the direction of
maximum radiation.
Referring to Figure 2.22(a), we can write that the total radiated power (Prag) iS

related to the total input power (Pin) by
Pracl = ('}c'dpin (2-47)

where €cd is the antenna radiation efficiency (dimensionless) which is defined in (2-
44), (2- 45) and Section 2.14 by (2-90). According to the IEEE Standards, “gain does not

include losses arising from impedance mismatches (reflection losses) and

polarization mismatches (losses).”

In this edition of the book we define two gains; one, referred to as gain (G), and the
other, referred to as realized gain (Gr), that also takes into account the

reflection/mismatch losses represented in both (2-44) and (2-45).
Using (2-47) reduces (2-46a) to

U0, )

(2-48)
Prz]d

G(0. ) = e,y [4.:r
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which is related to the directivity of (2-16) and (2-21) by

G(O. ) = e yD(0. p) (2-49)

In a similar manner, the maximum value of the gain is related to the maximum
directivity of (2-16a) and (2-23) by

GO = G(0, d))lmax = ()cdD(Q' (ﬂb)lmax = (')m’DO (2-49a)

not take into account the losses when the antenna element is connected to a
transmission line, as shown in Figure 2.22. These connection losses are usually referred

e,G(0. ) = (1 = [[1)G(O. ¢)
= ¢,e04D(0.$) = ¢,D(0.$) (2-49b)

Q
=

S
I

Gre(l = G:‘e(g- dj)lmax = ")rG(g- ¢)|max = (1 - |1—‘|3)G(9._ d))lmax

(2-49¢)
= €,€.qD(0. P)|max = €,D(0, )| nax = €,Dy
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intensity corresponding to a given polarization divided by the total
radiation intensity that would be obtained if the power accepted by the
antenna were radiated isotropically.” With this definition for the partial gain,

Go = Gy + G, (2-50)

while the partial gains Gy and G4 are expressed as

AU

Gy = il (2-50a)
P:‘n
Ax U

Gy = — ¢ (2-50b)

A

where
Ug = radiation intensity in a given direction contained in E4field component
U = radiation intensity in a given direction contained in E4 field component
Pin = total input (accepted) power

In practice, whenever the term “gain” is used, it usually refers to the maximum gain as
defined by (2-49a) or (2-49c).

Usually the gain is given in terms of decibels, instead of the dimensionless quantity of
(2-49a). The conversion formula is

Go(dB) = 10log,yle. 4D, (dimensionless)] (2-52)
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Example 2.10

A lossless resonant half-wavelength dipole antenna, with input impedance of 73 ohms, is con-
nected to a transmission line whose characteristic impedance is 50 ohms. Assuming that the
pattern of the antenna is given approximately by

U = Bysin® 8

find the maximum realized gain of this antenna.
Solution: Let us first compute the maximum directivity of the antenna. For this

Ulmax = Umax = BO

2x F 4 T »%]?'_2
Pmd=/ / U(Q,cﬁ)sin&dﬂdqb:zﬂ:BO/ sin4ede=30(‘4 )
0 0 0
U
Dy = dr—max _ 16 497
P 3z

rad

Since the antenna was stated to be lossless, then the radiation efficiency e.; = 1.
Thus, the total maximum gain is equal to

Go = e.4Dp = 1(1.697) = 1.697
Go(dB) = 10log,,(1.697) = 2.297

which is identical to the directivity because the antenna is lossless.

There is another loss factor which is not taken into account in the gain. That is the loss due to
reflection or mismatch losses between the antenna (load) and the transmission line. This loss is
accounted for by the reflection efficiency of (2-44) or (2-45), and it is equal to

2
73 —50 ) = 0.965

er=(1 =TT = (1‘|n—+50

e,(dB) = 1010g,0(0.965) = —0.155

Therefore the overall efficiency is

ey = e,e.q = 0.965
en(dB) = —0.155
Thus, the overall losses are equal to 0.155 dB. The maximum realized gain is equal to

G0 = €Dy = 0.965(1.697) = 1.6376
G 0(dB) = 1010g;((1.6376) = 2.142

The gain in dB can also be obtained by converting the directivity and radiation efficiency in
dB and then adding them. Thus,
e.4(dB) = 10log((1.0) =0
Dy(dB) = 101log((1.697) = 2.297
Gy(dB) = e.4(dB) + Dy(dB) = 2.297

which is the same as obtained previously. The same procedure can be used for the realized gain.
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2.10 BEAM EFFICIENCY

by

power transmitted (received) within cone angle 6; _
BE = . . (dimensionless) (2-33)
power transmitted (received) by the antenna

where & is the half-angle of the cone within which the percentage of the
total power is to be found. Equation (2-53) can be written as

2 ‘9|
/ / U(0. ¢)sin 0 dO dg
BE — 0 0

/ / U6, ¢) sin 0 dO dep
0 0

If & is chosen as the angle where the first null or minimum occurs (see Figure 2.1),

beam efficiencies of some typical rectangular and circular aperture antennas will be
discussed in Chapter 12,

2.11 BANDWIDTH

frequencies, on either side of a center frequency (usually the resonance frequency for a
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dipole), where the antenna characteristics (such as input impedance, pattern, beamwidth,
polarization, side lobe level, gain, beam direction, radiation efficiency) are within an
acceptable value of those at the center frequency.

e For broadband antennas, the bandwidth is usually expressed as the ratio of the

e For narrowband antennas, the bandwidth is expressed as a percentage of the
frequency difference (upper minus lower) over the center frequency of the

- Because the characteristics (input impedance, pattern, gain, polarization, etc.)
of an antenna do not necessarily vary in the same manner or are even critically
affected by the frequency, there is no unique characterization of the bandwidth.

- The specifications are set in each case to meet the needs of the particular
application.

- Usually there is a distinction made between pattern and input impedance

variations. Accordingly, pattern bandwidth and impedance bandwidth are used
to emphasize this distinction.

- Associated with pattern bandwidth are gain, side lobe level, beamwidth,
polarization, and beam direction,

- while input impedance and radiation efficiency are related to impedance
bandwidth.

- For example, the pattern of a linear dipole with overall length less than a half-
wavelength (I <\2) Is basically insensitive to frequency.

- The limiting factor for this antenna is its impedance, and its bandwidth can be
formulated in terms of the Q.

- The Q of antennas or arrays with dimensions large compared to the wavelength,
excluding superdirective designs, is near unity. Therefore, the bandwidth is
usually formulated in terms of beamwidth, side lobe level, and pattern
characteristics.

- For intermediate length antennas, the bandwidth may be limited by either pattern

antennas, a 2:1 bandwidth indicates a good design.
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dipole), where the antenna characteristics (such as input impedance, pattern, beamwidth,
polarization, side lobe level, gain, beam direction, radiation efficiency) are within an
acceptable value of those at the center frequency.

e For broadband antennas, the bandwidth is usually expressed as the ratio of the

e For narrowband antennas, the bandwidth is expressed as a percentage of the
frequency difference (upper minus lower) over the center frequency of the

- Because the characteristics (input impedance, pattern, gain, polarization, etc.)
of an antenna do not necessarily vary in the same manner or are even critically

affected by the frequency, there is no unique characterization of the bandwidth.
- The specifications are set in each case to meet the needs of the particular

application.
- Usually there is a distinction made between pattern and input impedance

variations. Accordingly, pattern bandwidth and impedance bandwidth are
used to emphasize this distinction.

- Associated with pattern bandwidth are gain, side lobe level, beamwidth,
polarization, and beam direction,

- while input impedance and radiation efficiency are related to imgedance
bandwidth.

2.13 INPUT IMPEDANCE

Input impedance is defined as “the impedance presented by an antenna
at its terminals or the ratio of the voltage to current at a pair of terminals
or the ratio of the appropriate components of the electric to magnetic

these terminals are designated as a — b.
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Figure Transmitting antenna and its equivalent circuits.
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The ratio of the voltage to current at these terminals, with no load attached, defines the
impedance of the antenna as

Zy =Ry +]X,4 (2-72)

where

ZA = antenna impedance at terminals a—b (ohms)
RA = antenna resistance at terminals a—b (ohms)
XA = antenna reactance at terminals a—b (ohms)

In general, the resistive part of (2-72) consists of two components; that is

Ry =R, +R; (2-73)

where

Rr = radiation resistance of the antenna
RL = loss resistance of the antenna

The radiation resistance will be considered in more detail in later chapters, and it will
be illustrated with examples.
If we assume that the antenna is attached to a generator with internal impedance

Z, = R, +jX, (2-74)

L,

where
Rg = resistance of generator impedance (ohms)
Xg = reactance of generator impedance (ohms)

and the antenna is used in the transmitting mode, we can represent the antenna and
generator by an equivalent circuit shown in Figure 2.27(b). To find the amount of power
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delivered to Rr for radiation and the amount dissipated in RL as heat (1R./2), we first find
the current developed within the loop which is given by

V, V, Ve
ly=—=-—7-= — (A) (2-75)
$Zy Zy+Z, (R, 4R +Ry)+jX,+X,)
and its magnitude by
IVl
IAE - (2-75a)

[(R, + R, + R, + (X4 + X,)?]'/2

where Vg is the peak generator voltage. The power delivered to the antenna for
radiation is given by

|V, R
P, =11, = = r (W) (2-76)

IQ.
2 [{R,, + Ry + Ry)? + (X, +X,)?

and that dissipated as heat by

|
P, = Sl

R, = — - (W) (2-77)
2 | (R, +RL+ R+ (X, +X,)?

i

The remaining power is dissipated as heat on the internal resistance Rg of the generator,
and it is given by

IV, |? R,
P,=— : - W) (2-78)
* 2 (R, + R, +R,)* + (X, +X,)°
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The maximum power delivered to the antenna occurs when we have conjugate
matching; that is when

R, +R, =R, (2-79)

X,y = —X, (2-80)

For this case

Vo> T R \Ak R
Pr — g r ﬂl — £ r q] (2-81)
2 4R, +Ry)? 8 [(R,+R;)*
V.’ R
P, = 5 L _ (2-82)
8 [(R,+Rp)*|
2 r - 2 2
p, = el AT L I N L (2-83)
7 8 |R.+R)Y] 8 [R+R.| S8R,
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Q1] A hypothetical isotropic antenna is radiating in free-space. At a distance of 100 m

from the antenna, the total electric field (Eg ) is measured to be 5 VV/m. Find the
(a) power density (Wrad),

(b) power radiated (Prad).

Solution:

G == *_:_E_f":f)’ldr:. A Walts/m 2
(6) W_md z[g)(ﬂ ] 2y Qr ST 0.63315 Gr /m

(b) Prog =§8 WraqdS = f:wivco. 033]5)(r*sinede dg)

ar T 5
= go g (0.03315) Cloo) * Sing de dgr

T
=2M (0.03315) (160)~ { Singdp =2 (0.03315)(100)* 2
= 4165.95 watts

Q2] The maximum radiation intensity of a 90% efficiency antenna is 200 mW/unit solid
angle. Find the directivity and gain (dimensionless and in dB) when the:

(@) input power is 125.66 mW,

(b) radiated power is 125.66 mW.

Solution:

Radiated power=input power X efficiency.

(@) D, = AmlUmox _ 4T(200 X0 3)

e - e Joo I — ,347&8
Prad 0.9 (125.66x163)

Go = €+ D, = 0.9 (22.22)=2p =13.0/dB

b) D= AT Umax - 4Ar(200x163) : Ak
Prad (125.66)(,0‘3) =20 =13.0|dB

G[O = e‘.Do = O.?-(20)=18 =|?-55d8
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Q3] The normalized radiation intensity of a given antenna is given by U(0)=B, C0s3(0).
If the total radiated power is equal to 10 Watts. Determine; (a) the maximum power
density at a distance of 1km, (b) directivity and (c) gain.

U = Be S8

1\'/ 2

2w T2 2T
(2 Pro.d P gb . U Sing d6 dZ = BOL f Ccos3g Sing d6 dg
o)

T|'/2
= 278, So cos38 Sing db

Fad = 27 B (= ®s*e o = B, =to = 22 =6.366=2
i3 = Sz bh=lo3B.s 5 =6

0
U= §.3662 S3p

AL T3 66 3Ia = 6366 = g
w= Y = = @s% e o536 = 6-3662 X106 °®SH
Wlmax = 6-3662 %168 Cos3e{ = 63662 X16°% wWaths /im=
max
S — ANMUmar . .4aW (63662) =
o -, s o 8 74B

© . Go = €+t Ps = 8 =948
Q4] The normalized radiation intensity of a given antenna is U(0,$)=sin0 sing. The
intensity exists only in the 0 <0 <, 0 < ¢ <z region, and it is zero elsewhere. Find the:
(a) exact directivity (dimensionless and in dB).
(b) azimuthal and elevation plane half-power beamwidths (in degrees).

Do: AT Umax
pr‘aa(
(@ U=Simbsng for 0<6LT, OSEE ™
Ulwae =1 ond it occurs when 8=g= Tz

T T ™
Pmdzj j USineJedsl‘:f S;nﬂdﬁﬂ%in*@de =2(F)=T1
(o) o (o]

Thus Dp= 28D _ 4 =6.024dB

T

The half- power beamwidths are equal to

HPBW (az.)=2L 90~ sin'¢ 2> = 2 ( J6°-30°) = IRo°
HPBW (el.) =2 [76°- sin"'(Ya)] = 2(70°-30°) = (20"
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Q5] In target-search ground-mapping radars it is desirable to have echo power received
from a target, of constant cross section, to be independent of its range. For one such

application, the desirable radiation intensity of the antenna is given by

6, ) | 0°% 9 € 20°
Par s o °< g £ 360°
g 0.34.2 CSC(6) 20°£6£60 0" ¢ F &

o - €0°< 6 £ 180°
F|nd the dlrect|V|ty (in dB) using the exact formula

Solution:

(6. 2) | 0°¢8 € 20°
= t)$ 600
(6,9 0.34.2 CSC6) 20°<B6£60° e

o) £0°< 6 £ 180°

ar W ‘
Frad =g ‘( U(g, ) Sing d8dg = 2w [ J
0 ) '

t/?
Sine d6] = 4T {-COSG

+ 0.342 -6
T (l—l)}
:211{ [-Co&(q)fl] + 0.342 (37 9

o

Sime db +y 0.34-2 cSC(6) X

20

/3
/9 }

= 2n { [Lpasvere 1] + 03427 ()

_T { 0.0603| + 0.2387¢6 } = 1.877I2

D, 4L Umay ;ﬂq;') = 668737 = §.25255 dB.
= Prod l. (2
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Q6] The radiation intensity of an antenna is given by

U(0,0) = cos*0 sin%)

for 0 <0 <w/2 an d 0< ¢ <27 (i.e., in the upper half-space). It is zero in the lower half-
space. Find the:

(a) exact directivity (dimensionless and in dB),

(b) elevation plane half-power beamwidth (in degrees).

Solution:

L s |
(% Py :i’“&ovu(e,g) Sine de dg :J:'Isin‘,dd,a’.j; s’ sing do

=@)(%) =73
Umax = U(B=0° &= "2) =1.

Do = _‘H_Lﬂ’.“xz ﬂ = 20 =I3.0 dB
Prad ("/5)

(b Elevation Plane : & varjes , & fixedl
2 ChoaSe Z=T/2.
Uc,g=")=0s*e , o0g6< "z

COS4[ HP?ZW(GEQ ] = i..

HPBW (el.) = 2. oS '{Vd.5 } = 65.5°,
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Q7] Anantenna (1-m long dipole antenna is driven by a 150 MHz source) with a radiation
resistance of 73 ohms, a loss resistance of 0.625 ohms, and a reactance of 42.5 ohms is
connected to a generator with open-circuit voltage of 100 V and internal impedance of 50
ohms.

(a) Draw the equivalent circuit

(b) Determine the power supplied by the generator

(c) Determine the power radiated by the antenna

(d) the radiation efficiency of the antenna.
3 : 6.625
246 f=iseMHz, A=2m ———{Ruess |
7alZ]

= |m dipole is £ in electric.] levlj'ﬂ\ Rs] 500

P Re=73n ,Zn=73+j425 n
V Vszloo vV 42.5 | XA
Q. lacexm 3 . o /.
" 847304 4425 0.765 L=18.97° A Qb

13. dess.‘P = PLOSS = é'lo.ntr:RLnss = Ie? mW

c. Pag® 21T YR =20 8éW

d. €= R _ 1 X100 _ oo .
Ke + Rioss  73+40.625 L /e

Q8] The E-field pattern of an antenna, varies as follows:

-

(a) What is the directivity of this antenna?
(b) What is the radiation resistance of the antenna if the electric field at 200 m from it is
equal to 10 VV/m (rms) for 8 = 0° and the terminal current is 5 A (rms)?

0° <@ < 45°
45° < @ 90°
90° < @ 180°

N =0 -
A IA |

(CL) u — Ij__E_:
3
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uwax = -ri

since the values of the E-field and current are given in rms values, then:

B o 45° (86°
Pmd » ‘-f dg 5- Sinede + L Singdsé ]
7 0 ) ?oo 4

S X % B vod [T o
v [21r][ Cose[0 +4( wse)lw J

- 2 rl"‘ < [+] ]
[ ~®@S45°+ coso ~iComso°+—LCos‘?o‘J

7 3
Prao( = 0.5428¢ .zr’rzr’-
5 AT 5 3
D 4"Pu’"“ = Z = 3684
rod 0.5428F (AIT>/x

(b) When the field is equal to (0 V/m , for =0’

_ ¢ 1o V/m  0<6g45°
» E o 45°¢C6<0°
2X10Vm  90°<6 < (80°
Pmd — I_’_‘ 21 450 A ,800 A ;
;i [L {L [E|*sine de +£° E|*simed6 }dﬁ]
Rad = y2 (0.5428?)(%(1) lto]* = 36,153
Prad = —_é-o [ II2Rr = [Irms'%Rr
[ Irms | & 25
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Q9-  Find the half-power beamwidth (HPBW) and first-null beamwidth (FNBW), in radians and
degrees, for the following normalized radiation intensities:

(a) U@) =cos  (b) U()=cos*d
(c) UB) =cos(28) (d) U(B) =cos*(20)3(0< 8 <90°,0 < ¢ < 360°)
(e) U(B) = cos(30) (f) U(B) = cos*(36)

Then plot the radiation intensity for each case.

Q10-  The normalized radiation intensity of a given antenna is given by

(a) U=sin@sing (b) U= sin@sin”

(¢) U= sinBsin’ ¢ (d) U= sin® Bsing

(¢) U= sin’fsin’ ¢ (f) U= sin’fsin’ ¢

The intensity exists only in the 0 < 8 < x,0< ¢ < x region, and it is zero elsewhere.
Find the

(a) exact directivity (dimensionless and in dB).
(b) azimuthal and elevation plane half-power beamwidths (in degrees).
(c)plot the radiation intensity in yz-plane and xy-plane for each case.

Q11-  The nermalized radiation intensity radiated by an antenna is given by

sinfcos’¢p 0° <80 < 180°
Ug.¢)= 00° <8< 270°

0 Elsewhere

The maximum of the radiation intensity occurs towards # = 90° and ¢ = 180°. Find the:
(a) Exact maximum directivity (dimensionless and in dB).

(b) Half-power beamwidth (in degrees) in the principal azimuth (horizontal) plane.

(c) Half-power beamwidth (in degrees) in the principal elevation (vertical) plane.

(d) plot the radiation intensity in xz-plane and xy-plane.

Q12- The maximum gain of a hom antenna s +20 dB, while the gain of its first sidelobe 1s - 13 dB.
What 15 the difference m gain between the maximum and first sidelobe:

(a) mdB (b) as a ratio of the field intensities.
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Radiation Integrals and Auxiliary Potential Functions

In the analysis of radiation problems, the usual procedure is to specify the
sources (J and M ) and then require the fields (E and H) radiated by the sources. A
common practice in the analysis procedure is to introduce auxiliary functions,
known as vector potentials, which will aid in the solution of the problems. The
most common vector potential functions are the A (magnetic vector potential) and
F (electric vector potential). Another pair is the Hertz potentials ITe and IIh.
Although the electric and magnetic field intensities (E and H) represent physically
measurable quantities, among most engineers the potentials are strictly
mathematical tools. The introduction of the potentials often simplifies the solution
even though it may require determination of additional functions. While it is
possible to determine the E and H fields directly from the source-current densities
J and M, as shown in Figure 3.1, it is usually much simpler to find the auxiliary
potential functions first and then determine the E and H. This two-step procedure
is also shown in Figure 3.1.

Integration

Sources path | Radiated fields
LM E.H

Integration Drifferentiaticn
path 2 path 2
Sector patentisls
AF

-~

of
. I,
Block diagram for computing fields radiated by electric and magnetic sources.
The Vector Potential A For An Electric Current Source J
The vector potential A is useful in solving the EM field due to a given harmonic
electric current J. The magnetic flux B is always solenoidal; that is, V - B = 0.

Therefore, it can be represented as the curl of another vector because it obeys the
vector identity

V.- ¥xA=0 i2-1
where A is an arbitrary vector. Thus we define

l
Hy=-—"%xA (3-2a)
By, =uH, =Vx A (3-2) Or #

where subscript A indicates the field due to the A potential. Substituting (3-2a) into
Maxwell’s curl equation

V£, =—juuH, (33 VxE;=—jouH, = -jwVx A (3-4)
Vi [Ey +jwA]=0 i3-5)
From the vector identity

Vx (-¥g,)=0 (3-6)

From Eqgs 3 to 5 it follows



E, +jok = V¢, (1) | Ea=-Vde - juh (37a)

The scalar function & represents an arbitrary electric scalar potential which is a
function of position.

Taking the curl of both sides of (3-2) and using the vector identity, it can be shown that
(See Balanis, Antenna Theory and Design):

. : : n
Ei=-¥¢, —jwA = —jwA — j—FVI(¥V - A) (3-15)
e

Once A is known, Ha can be found from (3-2a) and Ea from (3-15). Ea can just as easily
be found from Maxwell’s equation with J = 0. It will be shown later how to find A in
terms of the current density J.
ELECTRIC AND MAGNETIC FIELDS FOR ELECTRIC (J) AND MAGNETIC (M)
CURRENT SOURCES

In the previous two sections we have developed equations that can be used to find
the electric and magnetic fields generated by an electric current source J and a
magnetic current source M. The procedure requires that the auxiliary potential functions
A and F generated, respectively, by J and M are found first. In turn, the corresponding
electric and magnetic fields are then determined (Ea, Ha due to A and Ef, Hr due to F).
The total fields are then obtained by the superposition of the individual fields due to A
and F (J and M).

ix,¥.2}

Summary
1. Specify J and M (electric and magnetic current density sources).
2. a. Find A (due to J) using

w ([ e ™,
A= E /// J R av (3-27)
i

which is a solution of the inhomogeneous vector wave equation.
b. Find F (due to M) using

1 £ T e R )
F= E /// M 7 av (3-28)
v




SOLUTION OF THE INHOMOGENEOUS VECTOR POTENTIAL WAVE EQUATION
Assume that a source with current density J,, which in the limit is an infinitesimal
source, is placed at the origin of a x, y, z coordinate system, as shown in Figure 3.2(a).
Since the current density is directed along the z-axis (J), only an A, component will
exist. Thus we can write ( note that Jz=0 at the observation point)

VA + A =0 (3-32)
It can be shown that the solution of this equation is:

T e=ikr
A= E///‘ J p eh! (3-48)
v

Note the vectors A and J have the same components.
After finding A the radiated field components can be found as :

Far-Field Region

E,~0
Eg=—jodg L | Ea=—joA (3-584)
E, = —jwA, (for the & and ¢b components only
since E, = ()
H =0 B
ag 0
E Hi~—xE,=——axA
o i A A 4 r
i e { " (3-58b)
w o (for the & and ¢b components only
H o —.'.—,z'-il = —_— .
¢ n # n | since H =~0)
Chapter 4; Linear Wire Antennas

Wire antennas, linear or curved, are some of the oldest, simplest, cheapest, and in
many cases the most versatile for many applications.
INFINITESIMAL DIPOLE

An infinitesimal linear wire (/ « A) is positioned symmetrically at the origin of the
coordinate system and oriented along the z axis, as shown in Figure 4.1(a). Although
infinitesimal dipoles are not very practical, they are used to represent capacitor-plate
(also referred to as fop-hat-loaded) antennas. In addition, they are utilized as building
blocks of more complex geometries. The end plates are used to provide capacitive
loading in order to maintain the current on the dipole nearly uniform. Since the end
plates are assumed to be small, their radiation is usually negligible. The wire, in
addition to being very small (/ < A), is very thin (a < A). The spatial variation of the
current is assumed to be constant and given by ( with lo constant) :

I(Z) = a.l, (4-1)



{a} Infinitesimal dipole (hl Electric W onentation

Figure 4.1 Geometrical arrangement of an infinitesimal dlpole and its associated
electric-field components on a spherical surface.
Since the source only carries an electric current 1, I, and the potential function F are zero. To
find A we write

ikR
ACLY.Z) = —fI o, 4]‘1 dr (4-2)

where (x, ¥, ) represent the observation point coordinates, (', ¥, 27 represent the coordinates of the
somrce, B is the distance from any point on the source to the ohservation point, and path C is along
the length of the source. For the problem of Figure 4.1

Lix',v. 2 =4, {4-3a)
¥ =¥ = = OJinfinitesimal dipolz) i4-3h)
_.f Y ETE
H-y{.t—.}m YI+E-Tr=yr+y+2
= = constant (4-3¢)
dl = df (43d)
50 We can write (4-2) as
+2 Il
ALY f‘f" / ¢ =1 el 44
-2




The next step of the procedure is to find Hy using (3-2a) and then E4 using (3-15) or (3-10)
with J = 0. To do this, it is often much simpler to transform (4-4) from rectangular to spherical
components and then use (3-2a) and (3-13) or (3-10) in spherical coordinates to find H and E.

The transformation between rectangular and spherical components 1s given, in matrix form, by

(VII-12a) (see Appendix VII)
A, sinfcos¢p sinfsingg cosd A,
[Alg] = [cosﬂmsqﬁ cos @ sin ¢ —sinﬂ] [A_,r.] (4-5)
Ay —sin ¢ cosgh 0 A;

For this problem. A, = A.,I. = 0, s0 (4-3) using (4-4) reduces to

[oleik
A =A.cosf = Hote cos & (4-6a)
- ar
Iple "
Ay = —-A.sinf= -2 o sin (4-6b)
- ar
Ay=0 (4-6c)

Using the symmetry of the problem (no ¢ variations), (3-2a) can be expanded in
spherical coordinates and written in simplified form as

| |d dA;
H=a,— [=(rd)) - — 4-7
ﬂqbyr [E‘j’[r g} ag { }
Substituting (4-6a)—(4-6c) nto (4-7) reduces it to
H=H,=0 (4-8a)
klylsin@ | "

H, = |+ —] e (4-8b)
6= " | jkr] ‘ ‘

The electric field E can now be found using (3-13) or (3-10) with ] = 0. That is,

B=F, =—jok- V¥4 = VxH (49)
£

wp Jo¢



Substituting (4-6a)—(4-6¢) or (4-8a)—(4-8b) into (4-9) reduces it to

E =n JE g ikr (4-10a)

2l

_ Iylcosé I] [

. Hc,a’siﬂﬂ[ I l I —jkr (4-10b)

== " e e ¢
E,=0 (410c)

The E- and H-field components are valid everywhere, except on the source itself, and they are
sketched in Figure 4.1(b) on the surface of a sphere of radius r. It is a straightforward exercise to
verify Equations (4-10a)—(4-10c), and this 1s left as an exercise to the reader (Prob. 4.14).

4.2.2 Power Density and Radiation Resistance

For a lossless antenna, the real part of the input impedance was designated as

radiation resistance. It is through the mechanism of the radiation resistance that power
is transferred from the guided wave to the free-space wave. To find the input resistance
for a lossless antenna, the Poynting vector is formed in terms of the E- and H-fields
radiated by the antenna. By integrating the Poynting vector over a closed surface
(usually a sphere of constant radius), the total power radiated by the antenna is found.
The real part of it is related to the input resistance.

For the infinitesimal dipole, the complex Poynting vector can be written using (4-8a)—
(4-8b) and (4-10a)—(4-10c) as

T J 1 ] |. .-'- A A
W= 2ExH) = 36,E, +aE)x (3, H))

= Mo B, -4 Hy) (@10

whose radial W, and transverse W, components are given, respectively, by

Il sin @ [

. n ! sin .

W==-|— - ),

v, 313 2 [] J[h‘]-‘ (4-12a)

o i k|Iyl|* cos@sind [ @1t
= 2y ¥ (kr)? —

The complex power moving in the radial direction is obtained by integrating (4-11)-(4-
12b) over a closed sphere of radius r. Thus it can be written as

P= ﬁ- W. ds= /_ / (a,W, 4+ d,Wy) - 4,77 sin8 db dep (4-13)
0 0
5

which reduces to
2 7
LR T JI'JI'_ |,
P= W 2sing db dp = n= |—| |1-j—s 4-14
/D /ﬂ - sind db de i [ e (4-14)




The transverse component Wy, of the power density does not contribute to the
integral. Thus (4-14) does not represent the total complex power radiated by the
antenna. Since Wj, as given by (4-12b), is purely imaginary, it will not contribute to any
real radiated power. However, it does contribute to the imaginary (reactive) power
which along with the second term of (4-14) can be used to determine the total reactive
power of the antenna. The reactive power density, which is most dominant for small
values of k;, has both radial and transverse components. It merely changes between
outward and inward directions to form a standing wave at a rate of twice per cycle. It
also moves in the transverse direction as suggested by (4-12b).

Equation (4-13), which gives the real and imaginary power that is moving outwardly,
can also be written as

— i)
1 - ([l 1
P=; ExH 'Ejﬁzﬂlj]_— |-__.'I—-
2 30 A (kr)
&
= P +720(W, - W,) (4-15)
where
P = power (in radial direction)
Pp,q = time-average power radiated
W, = time-average magnetic energy density (in radial direction)
!, = ime-average electric energy density (in radial direction}
W, =t lect density (in radial direction)

2w(W,, — W,) = time-average imaginary (reactive) power (in radial direction)

From (4-14)

. Il 2 .
Pryg =”|’(%) N i4-16)
and
AL
20(Wy = We = -n (3 ) |- ﬁ (4-17)

It is clear from (4-17) that the radial electric energy must be larger than the radial
magnetic energy. For large values of &r (kr > 1 or r » \), the reactive power diminishes
and vanishes when Ar = oo,

Since the antenna radiates its real power through the radiation resistance, for the
infinitesimal dipole it is found by equating (4-16) to

=15

where R,is the radiation resistance. Equation (4-18) reduces to

2

-, +18)




2 I e 1Y f
R,._W(T)(I) = 80 (I) (4-10)

for a free-space medium (7 = 1207). It should be pointed out that the radiation
resistance of (4-19) represents the total radiation resistance since (4-12b) does not
contribute to it.

For a wire antenna to be classified as an infinitesimal dipole, its overall length must be
very small (usually | < A50).

Example 4.1

Find the radiation resistance of an infinitesimal dipole whose overall length 1s [ = & /50,
Solution: Using (4-19)

2 2
R, =802 (L) =802 () = 0316 ohms
A 50
Since the radiation resistance of an infinitesimal dipole is about 0.3 ohms, it will present a very
large mismatch when connected to practical transmission lines, many of which have characteristic
impedances of 50 or 75 ohms. The reflection efficiency (e,) and hence the overall efficiency (eg)
will be very small.

4.2.4 Near-Field (kr = 1) Region

An inspection of (4-8a)—(4-8b) and (4-10a)—(4-10c) reveals that for kr < A or r < A/ 2z they can
be reduced in much simpler form and can be approximated by

Iole™*
E, =~ M cos 0 (4-20a)
ID!E"_";R'E
Eg=~- inf :
ST S (200
-k
Hy = lofe er sin (3-20d)
4rr-

4.2.5 Intermediate-Field (kr > 1) Region

As the values of Ar begin to increase and become greater than unity, the terms that
were dominant for &7 << 1 become smaller and eventually vanish. For moderate values
of kr the E-field components lose their in-phase condition and approach time-phase
qguadrature. Since their magnitude is not the same, in general, they form a rotating
vector whose extremity traces an ellipse. This is analogous to the polarization problem
except that the vector rotates in a plane parallel to the direction of propagation and is
usually referred to as the cross field. At these intermediate values of 47, the Eysand
Hy components approach time-phase, which is an indication of the formation of time-
average power flow in the outward (radial) direction (radiation phenomenon).



As the values of kr become moderate (kr > 1), the field expressions can be
approximated again but in a different form. In contrast to the region where &r «< 1, the
first term within the brackets in (4-8b) and (4-10a) becomes more dominant and the
second term can be neglected. The same is true for (4-10b) where the second and third
terms become less dominant than the first. Thus we can write for Ar >1

I h,—_.-'ﬁ:r
E, = n———cos¥ (4-23a)
i o
klgle™"
Eg = jp———sin# 1.2
o =M S (4-23b)
Ey=H, =Hy=0 (4-23c)
] le—ikr )
Hy =~ J.-'—h [ih-rr' sin & (4-23d)

4.2.6 Far-Field (kr »1) Region

Since (4-23a)—(4-23d) are valid only for values of kr > 1 (r > A), then Er will be smaller
than E» because Er is inversely proportional to r* where Ey is inversely proportional to r.
In a region where kr » 1, (4-23a)—(4-23d) can be simplified and approximated by

 klglet
E, z_l.'pghD— sin & (4-26a)
dnr
.Er. =~ E‘i:' = H_r. = HI:':' = ﬂ 3 _,r.l'_f' T ] I-_-I__:ﬁh-l
Klgle=*
Hy e j———sin g (4-26¢)
The ratio of Esto Hyis equal to
E ,
Z,= H_i =~ (4-27T)
where

Zw = wave impedance
» = intrinsic impedance (377 = 1207 ohms for free-space)

The E- and H-field components are perpendicular to each other, transverse to the
radial direction of propagation, and the r variations are separable from those of # and
@. The shape of the pattern is not a function of the radial distance r, and the fields form
a Transverse ElectroMagnetic (TEM) wave whose wave impedance is equal to the
intrinsic impedance of the medium.

4.2.7 Directivity

The real power F,q radiated by the dipole was found in Section 4.2.2, as
given by (4-16). The same expression can be obtained by first forming the
average power density, using (4-26a)—(4-26c¢). That is,



Kyl |

Ar

Integrating (4-28) over a closed sphere of radius r reduces it to (4-16).
Associated with the average power density of (4-28) is a radiation intensity U which is
given by

?g 1
73- 4-28)

“m:l&WKH]—H s =i A

2 kil 2 r i 2 ~
U=r W, = 2 K) sin~ 8 = ElEg{r.Equll (4-29)
and it conforms with (2-12a). The normalized pattern of (4-29) is shown in Figure 4.3.
The maximum value occurs at = 7/2 and it is equal to

kIl
Uax = ( . ) 4-30)
Ax
Using (4-16) and (4-30), the directivity reduces to
U g
Dy =4x pm == (4-31)
rad =
and the maximum effective aperture to
-U.l? = ( )Dﬂ = _l'.;q' (4-32)

Radiation pattern
U=sin“g
\

Dipole antenna.__

Three-dimensional radiation pattern of infinitesimal dipole.

Integrating the complex Poynting vector over a closed sphere, as was done in (4-
13), results in the power (real and imaginary) directed in the radial direction. Any
transverse components of power density, as given by (4-12b), will not be captured by
the integration even though they are part of the overall power. Because of this
limitation, this method cannot be used to derive the input reactance of the antenna. The
procedure that can be used to derive the far-zone electric and magnetic fields radiated
by an antenna, along with some of the most important parameters/figures of merit that
are used to describe the performance of an antenna, are summarized in Table 4.1



TABRLE 4.1 Summary of Frocedurs to Determine the Far-Field Radiation Characteristics of
an Antenna

L.

Eal

ar

or

Specify electric andfor magnetic current densities J. M [phy=ical or equivalent (see Chapler 3,

Figure 3.173]
Determine vector potential components 4,. 4, andfor Fg, F, using (3-46) —(3-54) in far ficld

Find far-zone E and H radiated ficlds (Ey. Ey Hy, Hg)uzing (3-58a)—(3-58b)
Form either
a.

l"""-rldl: . E-- 'ﬁ] = “-|r|:r-. ﬂ-ﬁf‘] = ELRE[E. o H‘]
1 ﬁ -~ ~ ~
o2 —Re [(BaEy + figEy) x (25 + 8,H00]

[Es1* + | E,
Wi B, ) = B~ [%

1
'3 ] = EI_E[F[H,.:;-]F

b, U8, ) = 12 W ir 8.0 = [Fid. |2
Daetermine cither

Ir
ﬂ-Pr..:=j': Jf:wm[r,ﬁ'-qﬁ]r’sjnﬂd&dqﬁ

b. Py = jlr ){r L&, ) sin & d8 def
0 o
Find directivity using

DR, ) 4xU(8. )

INg, ) =
L Pra
ohd, gl x|
Dy = D = D, g = ———0 = —————=
o md
Form rormalized power amplitude patiem:
e gh
Fif.di= —q{'
U i
Dretermine radiation and input resisiance:
P, R,
B=TE: W=l
o sin” [:j

Determine maximum effective area



4.3 SMALL DIPOLE
The creation of the current distribution on a thin wire was discussed in

Section 1.4, and it was illustrated with some examples in Fig. 1.16. The
radiation properties of an infinitesimal dipole, which is usually taken to
have a length /< M50, were discussed in the previous section. Its current
distribution was assumed to be constant. Although a constant current
distribution is not realizable (other than top-hat-loaded elements), it is a
mathematical quantity that is used to represent actual

current distributions of antennas that have been incremented into many
small lengths.

A better approximation of the current distribution of wire antennas, whose
lengths are usually A50 < /< M10, is the triangular variation of Fig.
1.16(a). The sinusoidal variations of Fig. 1.16(b)—(c) are more accurate
representations of the current distribution of any length wire antenna.

The most convenient geometrical arrangement for the analysis of a
dipole is usually to have it positioned symmetrically about the origin with its
length directed along the z-axis, as shown in Fig. 4.4(a). This is not
necessary, but it is usually the most convenient. The current distribution of
a small dipole (M50 < /< M10) is shown in Fig. 4.4(b), and it is given by

=
5]
L)
(=]
—
—
|
.
L
e
=
15
e,

< f2

L.ir.v.2= i4-33)

where [, = constant.

I P @ @)
g

{ad Dbpole and peometry



(b)Y Current distribation
Geometnical arrangement of dipole and current distribution.

FoIIowmg the procedure established in the previous section, the vector
potential of (4-2) can be written using (4-33) as

A[H"\——[ﬂ_/ I J+—- }"_’ dz
!.l'. b v .EI

(4-34)

Because the overall length of the dipole is very small (usually / £ A10), the values
of R for different values of z’ along the length of the wire (-I/2 < z' < l/2), R can be
approximated by R =~ r throughout the integration path. The maximum phase
error in (4-34) by allowing R = r for M50 </ < M10, will be kl/2 = 7710 rad = 18" for
| = M10. Smaller values will occur for the other lengths. This amount of phase
error is usually negligible and has very little effect on the overall radiation
characteristics. Performing the integration, (4-34) reduces to

| jl.!,:,ft’_-'u?
=2 dar

which is one-half of that obtained in the previous section for the infinitesimal
dipole and given by (4-4).

The potential function given by (4-35) becomes a more accurate as kr - oo,
This is the region of practical interest, and it is called the far-field region. Since
the potential function for the triangular distribution is 1/2 of that for the constant
(uniform) current distribution, the corresponding fields of the former are one-half
of the latter. Thus we can write the E- and H-fields radiated by a small dipole as

A=dA =i - (4-35)



kI e % a e
Eg=jn e sin & (4-36a)
By
E=E;=H=Hg=01 jprs] {4-36h)
Kl
Hli' = | .y sin & l:-'l--.?l'fll.'.':l

with the wave impedance equal, as before, to (4-27).

Since the directivity of an antenna is controlled by the relative shape of the
field or power pattern, the directivity, and maximum effective area of this
antenna are the same as the ones with the constant current distribution given by
(4-31) and (4-32), respectively.

The radiation resistance of the antenna is strongly dependent upon the
current distribution. Using the same procedure for the infinitesimal dipole, it can
be shown that for the small dipole its radiated power is 1/4 of (4-18). Thus the
radiation resistance reduces to

2

2P 4 J
= =2 = 20x2 () (4-37)

T =
I

which is also one-fourth ( 1 /4) of that obtained for the infinitesimal dipole as
given by (4-19). Their relative patterns (shapes) are the same and are shown in
Fig. 4.3.

4.4 REGION SEPARATION
It is desirable to separate the space surrounding an antenna into three

regions; namely, the reactive near-field, radiating near-field (Fresnel) and
the far-field (Fraunhofer). Approximations can be made, for the far-field
(Fraunhofer) region, which is of the most practical interest. So it will be
very important to understand their implications upon the solution.

It is difficult to perform the integration of

_—nR
A(x,v,7) = —/ | O dl' (4-38)
Where
R = \/ C=XP 4G =V)P+ (=2 (4-38a)

The length Ris defined as the distance from any point on the source to the
observation point. The integral of (4-38) was used to solve for the fields of
infinitesimal and small dipoles in Sections 4.1 and 4.2. However in the



first case (infinitesimal dipole) /R = rand in the second case (small dipole)
R was approximated by r (R = r) because the length of the dipole was
restricted to be /< M10. The major simplification of (4-38) will be in the
approximation of R.

A very thin dipole of finite length / is symmetrically positioned about the
origin with its length directed along the zaxis, as shown in Fig.4.5(a).
Because the wire is assumed to be very thin (¥ = ¥ = 0), we can write (4-
38) as

R= \/u — X2+ (-2 +@-7)P= \/.rz +v2+(z-2)? (4-39)
Which be written as
R = \/(-“'2 FV2 4 22) 4+ (=222 + 277 = V2 4+ (=2r7' cos 6 + 712) (4-40)
=ty 4 2 (4-400)
Z7=rcos# (4-40b)

Using the binomial expansion, we can write (4-40) in a series as

-2 R 13 .
R=r—7cosf+ l (“T sin~ 9) + L,} (T cos @ sin~ 9) + - (4-41)

7 P Z

whose higher order terms become less significant provided r > 7.
z

A P 0,6)

(a) Finite dipole geometry



(b) Geometrical arrangement for far-field approximations
Figure 4.5 Finite dipole geometry and far-field approximations.
4.4.1 Far-Field (Fraunhofer) Region
The most convenient simplification of (4-41), other than R = r, will be to
approximate it by its first two terms, or
R=r-_2cos /¥ (4-42)
The most significant neglected term of (4-41) is the third whose maximum
value is

12

12 - i
1 (‘T sin” H) = when 8 = z/2 (4-43)
max

r £ &

When (4-43) attains its maximum value, the fourth term of (4-41) vanishes
because #= 7z72. It can be shown that the higher order terms not shown in
(4-41) also vanish. Therefore approximating (4-41) by (4-42) introduces a
maximum error given by (4-43).

It was shown by many investigators that for most practical antennas, with
overall lengths greater than a wavelength (/ > \), a maximum total phase
error of 778 rad (22.5°) is not very detrimental in the analytical formulations.
Using that as a criterion we can write, using (4-43), that the maximum
phase error should always be



k@2 _ =

4-44
2r T 8 ( )

which for -/2 < Z < /2 reduces to
F>2 (f (4-45)

Equation (4-45) means that for a maximum phase error < 778 rad (22.5)), r
must equal or be greater than 2.%\ where L is the largest dimension of the
antenna. The usual simplification for the far-field region is to approximate
the Rin the exponential (¢”F) of (4-38) by (4-42) and the Rin the
denominator of (4-38) by R = r. These simplifications are designated as

the far-field approximations and are usually denoted in the literature as
Far-field Approximations

R~r—7'cosd for phase terms

Revr for amplitude terms (4-46)

provided rsatisfies (4-45).

It may be advisable to illustrate the approximation (4-46) geometrically.
For R~ r- Z cos &, where #is the angle measured from the zaxis, the
radial vectors R and r must be parallel to each other, as shown in Fig.
4.5(b). For any other antenna whose maximum dimension is D, the
approximation of (4-46) is valid provided the observations are made at a
distance

DZ

r=25 4-a47)

For an aperture antenna the maximum dimension is taken to be its
diagonal. For most practical antennas, whose overall length is large
compared to the wavelength, these are adequate approximations. Allowing
Rto have a value of R = 4D2/\ gives better results.

Example 4.3

For an antenna with an overall length [ = 5i. the observations are made at r = 60A. Find the
errors in phase and amplitude using (4-46).
Solution: For @ = 90°,z" = 2.5A, and r = 605, (4-40) reduces to

R = AV (60)2 + (2.5)? = 60.052x

and (4-46) to
Ry, = r = 60ML
Therefore the phase difference is

Ag = kAR = 2}—?{(}?] — R;) = 2x(0.052) = 0.327 rad = 18.74°

which in an appreciable fraction (= %} of a full period (360%).
The difference of the inverse values of R is

1 1

11 l(L_ 1 )71.44x]0_5
» R A\N60 60052/ Fy

which should always be a very small value in amplitude.



4.5 FINITE LENGTH DIPOLE

The former techniques can also be used to analyze linear dipoles of any
length. For simplicity it is assumed here that the dipole has a negligible
diameter ( provided the diameter <<).
4.5.1 Current Distribution
For a very thin dipole (ideally zero diameter), the current distribution can be
written, to a good approximation, as

al, sin [L- G - }] . 0<Z <2
1l

a_l, sin [L‘ L— +:_')] . =l2<7 <0

L =0,y=07)= (4-56)

This distribution assumes that the antenna is center-fed and the current
vanishes at the end points (Z = = /2). Experimentally, the current in a
center-fed wire antenna has sinusoidal form with nulls at the end points.
For /=M2 and M2 </ <A the current distribution of (4-56) is shown plotted
in Figs. 1.16(b) and 1.12(c), respectively. The geometry of the antenna is
that shown in Fig. 4.5.
4.5.2 Radiated Fields: Element Factor, Space Factor, and Pattern

The finite dipole antenna of Figure 4.5 is subdivided into a number of
infinitesimal dipoles of length AZ. As the number of subdivisions is
increased, each infinitesimal dipole approaches a length dz. For an
infinitesimal dipole of length dZ positioned along the zaxis at Z, the
electric and magnetic field components in the far field are given, using (4-
26a)-(4-26c¢), as

. ,i.rd_lﬁ'l _}.l _:I ]\'."-_I-H?

dEg = jn Ik s & o7’ (4-57a)
dE, = dE; = dH, = dHy; =10 i4-57)
Qi = YT e g o 457¢)
i = | s1n I G

¢ =TT R ’ e

where Ris given by (4-39) or (4-40).
Using the far-field approximations given by (4-46), (4-57a) can be written
as

L H Y e ol ot
dE, = jp— sin ge R =8 (4-38)
dnr
Summing the contributions from all the infinitesimal elements, the integral
reduces to

if2 ."-'.-'_-':‘I"" +j'2 e e
Eg — fl l!.'.Eﬁ'- :-Illlril '-LI”. SIJ-.I{'] f I|"|.l|:.;' _:'.' .z :I.'_" bl 1] .:.'.: [_1_%]3'5-“
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Figure 4.8 Current distributions along the length of a linear wire antenna.

For the current distribution of (4-56), (4-58a) can be written as

ke " LN A B B :
Eg = jn— SJHE‘{f s .t;[_+:‘:| gk e g
dar —ij2 | L2 ;

N f—l-!_;’?sm _l‘; l:r% ~ __:":I-
i L=

5

ik cosd g } (4-60)

After performing the integration, it can be shown that

& ' ki
I,emit COs [? C08 -EIJ — CO08 I:rT‘:I
Eg =in der gin & (4-622)

And Hy=Eo/n
4.5.3 Power Density, Radiation Intensity, and Radiation Resistance

For the dipole, the average Poynting vector can be written as

Fi .

o I 1 E,
W, = SRe[Ex H'] = ZRe[fgE, x 4,H}] = SRe [hE,Eg . ﬁé?"]

oml M el cos (HY ]
ol ‘m[z“ﬂsgj_“ﬂSEEJ (4-63)
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And the radiation intensity is U= Wy, r° (4-64)

The normalized (to O dB) elevation power patterns, as given by (4-64) for /
= M4, V2, 3V4, and A are shown plotted in Figure 4.6. The current
distribution of each is given by (4-56). The power patterns for an
infinitesimal dipole / < A (U ~ sin® &) is also included for comparison. As
the length of the antenna increases, the beam becomes narrower.
Because of that, the directivity should also increase with length. It is found
that the 3-dB beamwidth of each is equal to

{2 A 3-dB beamwidth = 90°

i=A/4 3-dB beamwidth = 87°

[=Af2 3-dB beamwidth = Ta° (465)
f= 3074 3-dB beamwidth = 64°

= 3-dB beamwidth = 47.8°

As the length of the dipole increases beyond one wavelength (/ > 1), the
number of lobes begin to increase. The normalized power pattern for a
dipole with /= 1.25\ is shown in Fig. 4.7. In Fig. 4.7(a) the 3-D pattern in
color is illustrated, while in Fig. 4.7(b) the 2-D (elevation pattern) in color is
depicted. For the 3-D illustration, a 90" angular section of the pattern has
been omitted to illustrate the elevation plane directional pattern variations.
The current distribution for the dipoles with /= M4, M2, A\, 3M2, and 2A, as
given by (4-56), is shown in Fig. 4.8.
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Figure 4.6 Elevation plane amplitude patterns for a thin dipole with
sinusoidal current distribution (/=M50, V4, V2, 3V4, M),
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Figure 4.7 3-D and 2-D amplitude patterns for a thin dipole of /= 1.25A
and sinusoidal current distribution.

To find the total power radiated, the average Poynting vector of (4-63) is
integrated over a sphere of radius r. Thus

r E
P.i= f f W rsin @ dé deb

o TR
If |q [ms —n:t:sE' —'3'5'5(”]]
= f smE' = Bl (4-6T7)

4.5.4 Directivity

Figure 4.6, shows that as the radiation pattern of a dipole becomes more
directional as its length increases. When the overall length is greater than
one wavelength, the number of lobes increases and the antenna loses its
directional properties. The parameter that is used as a “figure of merit” for
the directional properties of the antenna is the directivity. The directivity
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where H 4, &) is related to the radiation intensity U by (2-19), or

D, = 4x (4-71)

U = BoF(8, o) (4-72)

From (4-64), the dipole antenna of length /has

cos | —cosf | —cos | —
Fig.¢p)=F@) = i L 2 ) {\ 1”} (4-73)

sin &

It can be shown that

:F[g”]]]“
= i
o o (4-75)

Q= (C + In(kl) — C;(kl) + = sin(kD)[S,(2k]) — 25,(kD)]
+ L cos(kD[C + In(kl/2) + C;(2kl) = 2C,(kD)]} (4-75a)

4.6 HALF-WAVELENGTH DIPOLE

One of the most commonly used antennas is the half-wavelength (/= M2)
dipole. Because its radiation resistance is 73 ohms, which is very near the
50-ohm or 75-ohm characteristic impedances of some transmission lines,
its matching to the line is simplified especially at resonance. Because of its
wide acceptance in practice, we will examine in a little more detail its
radiation characteristics.

The electric and magnetic field components of a half-wavelength dipole
can be obtained from (4-62a) and (4-62b) by letting /= M2

Ep=in — (4-84)

And H¢ = Eg /r]
In turn, the time-average power density and radiation intensity can be
written, respectively, as

I, ms{%cmﬂ IAE
1 ey R (+26)




And  U=1" W,

whose two-dimensional pattern is shown plotted in Figure 4.6 while the
three-dimensional pattern is depicted in Figure 4.12a. For the 3-D pattern
of Fig. 4.12a, a 90" angular sector has been removed to illustrate the
figure-eight elevation plane pattern variations.

The radiation intensity of the A/2 dipole can be approximated by, as
represented in (4-87); that is, U ~ sin®4.

The total power radiated can be obtained as a special case of (4-67), or

I N L A
|Ir|:.|: '/".T Cos {TLGSHJ .
a

Poa=mn I - de (4-88)
D, = 4 Jmux _ g Ulo=siz 4 1~ Led (4-01)
i — b— flug — b— = S
’ P P C,llr) 243 SR

The corresponding mazimum effactive area is equal to

I T o
am = ED.J = 4_|J'5-1"|] = ()] 3k (492)

n

A
and the radiation resistance, for a free-space medium (p = 120x), 1s given by

EP__.d ill - s -
= ﬁ = - Cial2m) = 302435)= 73 (403

The radiation resistance of (4-93) is also the radiation resistance at the
input terminals (input resistance) since the current maximum for a dipole of
/= M2 occurs at the input terminals (see Fig. 4.8). As it will be shown in
Chapter 8, the imaginary part (reactance) associated with the input

impedance of a dipole is a function of its length (for /= M2, it is equal to
/42.5). Thus the total input impedance for /= M2 is equal to

Lo = T3 4425 (4-93a)

To reduce the imaginary part of the input impedance to zero, the antenna
is matched or reduced in length until the reactance vanishes. The latter is
most commonly used in practice for A2 dipoles.



The M4 Monopole

In practice, a wide use has been made of a quarter-wavelength monopole (I =
M4) mounted above a ground plane, and fed by a coaxial line, as shown in Fig.
4.22(a). For analysis purposes, a A4 image is introduced and it forms the A2
equivalent of Fig. 4.22(b). It should be emphasized that the A2 equivalent of Fig.
4.22(b) gives the correct field values for the actual system of Fig. 4.22(a) only
above the interface (z > 0, 0 < # < 772). Thus, the far-zone E and H fields for the
M4 monopole above the ground plane are given, respectively, by (4-84) and (4-85).

" .
J.e—ikr | COS (— COs H)
. Ape 2

E, ~ A_QAT
L sy sind (4-84)
- .
R Ie—ikr | €08 (E COS 8) ks
¢ =S 0y sin @ 2

g =0

(a) 1/4 monopole on infinite electric conductor )
(b) Equivalent of 4/4 monopole on infinite electric conductor

Figure 4.22 Quarter-wavelength monopole on an infinite perfect electric conductor.

From the discussions of the resistance of an infinitesimal dipole above a ground
plane, it follows that the input impedance of a 4 monopole above a ground plane
is equal to one-half that of an isolated A2 dipole. Thus, referred to the current
maximum, the input impedance Z; is given by

Z;, (monopole) = lZm,. (dipole) = %[?3 + j42.5] = 36.5 +21.25 (4-106)

2

where 73 + j42.5 is the input impedance (and also the impedance referred to the
current maximum) of a A2 dipole as given by (4-93a).



Summary of Important Formulas for the center-fed dipoles

(far-field region)

FABLE 43 Summary of Important Parameters and Associated Formulas and Equation Numbers for

a Dipole in the Far Field

Parameter

Formula Equation Number

Normalized power pattern

Radiation resistance R,

Input resistance R;,

Wave impedance Z,
Directivity I,
Maximum effective area 4.,

Half-power beamwidth

Normalized power pattern

Radiation resistance R,

Input resistance B,
Wave impedance Z,,
Directivity Iy

Maximum effective area A,

Half-power beamwidth

MNormalized power pattern

Radiation resistance R,

Input impedance Z

Dhrectivity Dy,

Half-power beamwidth

Tafinitesimal Dipole

(< h/30)
U =(E,,)* = Cysin" 8 (4-29)
_ (2N (I a2 (1Y (4-19)
R=n(3)(3) = (+) 2
2y (] Ve -
= =08 = LY i4-19)
Ru=R, ”( 3 ) (:ab) 80 (;«LJ
E
=2 o = 377 ohms
‘3
Dy=5=1761dB (4-31)
T3l .
e E i4-32)
HPEW = 90F (4-63)
Small Dipole
(n/50 < 1 < hf10)
U = (E,,)* = C, sin’# (4-36a)
YIL%
— 1 - (-
R, =20x (}L) (4-37)
R, = R, = 20 (}%} @-37)
e )
Z, = H—" ~ y = 377 ohms (4-36a). (4-36¢)
’)
Dy = %= 1.761 dB
Tl
AE‘.‘JI = E
HPEW = o0° (4-65)
Half Wavelengih Dipole
=5x/2)

ﬁ.l: |
Ccos [:? Cos E\}

U=(E,)\ =0, —— =~ C, sin” # (4-87)
R = iC,- (2m) = T3 ohms (4-03)
dx
Z,=T34+j425 (4-93a)
4 ;
D, = = |.643 = 2.156 dB 4-91
v Cl'ﬂl: EE:I . . II :
HPFBW = 78° (4-65)



Cuarter- Wavelength Monopole

il=xr/d
Cos [ % cos 8 )
Normalized power pattern U=i(E,)r=C, —mg | = C,sin’ @ (4-87)
sin
Radiation resistance R, R = ;TIC,-E[EE} = 36.5 chms (4-106)
Input resistance R, R,=R, = EiC'j,,iErr] =~ 36.5 ohms (4-106)
E'a
Input impedance Z;, £, =365+j21.25 (4-106)
E
Wave impedance Z, £, = H—g =~y = 377 ohms
¢
Directivity D, Dy =3.1286=5167dB

Solved Questions
Q1. A horizontal infinitesimal electric dipole of constant current /0 is placed
symmetrically about the origin and directed along the x-axis. Derive the

(a) far-zone fields radiated by the dipole,
(b) directivity of the antenna.

bl e g
Sinp= | I-cos*y = N 1-16:-Gr*
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Byt T o [ o R Rl ‘k‘Io‘ﬂ.e-jh'r‘j'——._—&

ATr
< R0 SR o P
Hy = j RBLEZ_-siny _’ZK
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‘. Prod= uofuf(l—sin‘e-as‘;z)-s‘meded,a - Uc-%’l
6 Y0

= AVl 3
s~ uo,ﬂo- Z_ls
3

Q.2. Repeat Problem 4.1 for a horizontal infinitesimal electric dipole
directed along the j~axis.
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Q.3. A thin linear dipole of length | is placed symmetrically about the Z-
axis. Find the far-zone spherical E and H components radiated by the
dipole whose current distribution can be approximated by:
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The radiation field of a particular antenna is given by:
InA — jkr InA —Jkr
E =agjouk sing221¢ T + agmp sing 222
dr 2mr

The values A} and A, depend on the antenna geometry. Obtain an expression
for the radiation resistance. What is the polarization of the antenna?
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Q5] A A2 dipole situated with its center at the origin radiates a time-
averaged power of 600 W at a frequency of 300 MHz. A second A/2 dipole
is placed with its center at a point P (r, 6, @), where r =200 m, 6 =90, ¢ =
40'. Its axis is parallel to that of the transmitting antenna. What is the
available power at the terminals of the second (receiving) dipole?

=00 M : °
%[]‘L %ﬂ 2 8=50°, @ = 40

At = 300MHz | A= F =Im

r=200mv»>0.5m

A V2
(PY i (;/fﬁ‘) G‘ot G‘o‘r ) %)lDﬁ: Dor

A— for Lossless antenno
Now Simce Do-t = Dor = 11643 for = d4'>o)e

(Frsso ) (1643)C1L643) W = 0.2mW

Q6] A A2 dipole is radiating into free-space. The coordinate system is defined so that
the origin is at the center of the dipole and the z-axis is aligned with the dipole. Input
power to the dipole is 100 W. The overall efficiency is 50%, find the power density (in
W/m?) at r = 500 m,6= 60", ¢ = 0.

The time cweraje power densdj (Way= ‘ul)
|Io| C SL(:.COS J T 2 Ty
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s o Sing
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|T.) = 1.3¢6888 .
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0 36688 Cos*( 3 o8 60° )
= |20 ¥ - : [ 2 (o]
W 8= (500)* Sin“go?

& 136888
= IS (0.6667)

= |743X10° Walts/m>



Q7] A 3-cm long dipole carries a phasor current |, = 10e’®® A. Assuming
that A = 5 cm, determine the E- and H-fields at 10 cm away from the dipole
and at 6 = 45",

| f=3cm, A=56m, I=10ei%

> 2°z=——~2’f531= LSQ =360m 210cm is in the farfield.
% % 06 = lenjth of dipole is finite, %_g =T 7{ =0.6T

; A gikr [ s (% k! CoSB ) — CoS('k-e )] Ice"" [‘(os(asu(age) t0. 30&j
Sing (e Hne

T (<- (oS (0.6T-CoS45°) + 0309

5m45° = 07703 )

)kr 21 =45
> kr‘ or = 2%, 00 = 41 = 2. 566 3 rol

e)6o. eJ4~“

D Ep = j 120w - (0.7703) = 4gq0 03152

2T (0.1m)

lEgl = 4620 V/m ,1H5|= 4620 - |2 25 Ampere

Q8] A satellite S transmits an e.m. wave, at 10 GHz, via its transmitting antenna. The
satellite which is at a distance of 3.7 x 10" m from the earth surface, radiates 10 W from
its antenna whose directivity is 50 dB. Determine the magnitude of the E-field at earth
surface.

Prad = 10 Watt, r:3.’7x10"m, Do =50dB = lo®

— rl x =
— AT Umax _ 41 r*|E| =|0° , (Since Umax= =0

6. B Prad 2710 2y

3 n -lloﬂ’)

S E = 105x2x(20¥x 10 _ 2 4408
4T (3.7x107)2

E =2x10"% V/m

Q9] A base-station in a mobile system has a lossless antenna of a maximum gain of
16 dB and works at 1,900 MHz. Assuming the input power to the antenna is 8 watts,
what is the:

(a) maximum radiated power density (in wattstm?) at a distance of 100 m

from the base station.

(b) maximum power received at 100m by a mobile telephone whose antennais a
lossless M4 vertical monopole. Assume the &4 monopole is mounted on an infinite
ground plane.



Q10] The half-wavelength dipole has an input impedance of (73+j42.5)
Ohm. Determine its equivalent capacitor and resistance, then fine the
VSWR when it is connected to a 50 Ohm feed line.

3. 0= 22, Zc:=50 chms
: N | P il s
Zin = 73+)42.5, Yin= ZinT 73+j425 73-)42.5

Tin= 001023 -]0.0059563 = (10.23 ) 5.9563) X160 = Gin~ Br,

= = A Tl U e 3 it
By = Gigs 2P L3 = Cry B2 0= f‘,f,sffo";?os) = 0.94797 x13'2

<. Cin = 094797 pF
Gin= 10,23 x163

R;n" Zc e ?’7'75"‘"50

|
Rin:' G[ih =?7-75, zhzl?;.r!—Zc 7. 76 =+ SO=0'3232
o 5 i :
VSWR = ll lll‘n) _ 1+t0.3232 _ T
=113l | —0.3232

W

“.

n
— _— " e
Examples of external and embedded/internal antennas Triangular array of dipoles used as a sectoral used
in commercial cellular and CB radios. in base-station antenna for mobile communication.




Vertical pattern

Horizontal pattern +45°- polarization
+45°- polarization 6° electrical downtilt
Specifications:
Frequency range 806-960 MHz
Gain 2 x 16.5 dBi (806—880 MHz)
2 x 17 dBi (880-960 MHz)
Impedance 50 ohms
VSWR <1.5:1 (806-880 MHz)
<1.3:1 (880-960 MHz)
Intermodulation (2x20w) IM3: <-150dBc

Front-to-back ratio =30 dB (co-polan



Friis Transmission Equation

The Friis Transmission Equation relates the power received to the power
transmitted between two antennas separated by a distance R > 2D%\, where D is
the largest dimension of either antenna. Referring to Fig.2.31, let us assume that
the transmitting antenna is initially isotropic. If the input power at the terminals
of the transmitting antenna is P, then its isotropic power density W, at distance
R from the antenna is
Wo = 11,4;% (2-113)
where e; is the radiation efficiency of the transmitting antenna. For a
nonisotropic transmitting antenna, the power density of (2-113) in the direction

6+, ¢, can be written as
W PGB, ) _ {FFP,D,rQ,.fIJ,} 2.114)

' 4nR? " dxRZ '
where G(6,, ¢) is the gain and D(6;, ¢,) is the directivity of the transmitting
antenna in the direction 8,, ¢.. Since the effective area A, of the receiving
antenna is related to its efficiency e, and directivity D, by
A =eD, 0, b (’“—) (2-115)

ST

Transmitting :mteng a
P G Dy e T P

= R = Recelving antenna,
PG D .. T P
Geometrical orentation of transmitting and receiving antennas for Friis transmission equation.
the amount of power P, collected by the receiving antenna can be written, using
(2-114) and (2-115), as

AZDL(B,. D (0., .
A'D6. 90D 6 9Py 5 - 2 (2-116)

2
P.=eD.@. ) "W =ee :
| Epld (L qllJ. 4.i'|_ i €€y [_1_;,|_R'|_

or the ratio of the received to the input power as
P, , MDUB,. D8 )

— =g

p, (47R)?

(2-117)

The P, based on (2-117) assumes that the transmitting and receiving antennas
are matched to their respective lines or loads (reflection efficiencies are unity)
and the polarization of the receiving antenna is matched to the impinging wave
(polarization efficiency is unity). Then

P,

I g 3 A \2 - ~ 2 +
P, = Carearl = [T =01 = IT,rI'F{ﬁ} D8, b )D 8. by - pel” | (2-118)



Example 2.16
Two lossless X-band (8.2—12.4 GHz) horn antennas are separated by a distance of 100k, The
reflection coefficients at the terminals of the transmitting and receiving antennas are (.1 and
(0.2, respectively. The maximum directivities of the transmitting and receiving antennas (over
isotropic) are 16 dB and 20 dB, respectively. Assuming that the input power in the lossless
transmission line connected to the transmitting antenna 1s 2 W, and the antennas are aligned for
maximum radiation between them and are polarization-matched, find the power delivered to the
load of the receiver.
Solution: For this problem

€.dr = €ogr = | because the antennas are lossless.
- - 2 . -
| - P|” = 1 because the antennas are polarization-matched
D.=D because the antennas are aligned for
[ o 5
D, = Dy,
D = 16 dB = 30 81 (dimensionless)
Dy, = 20 dB = 100 (dimensionless)

maximum radiation between them

Using (2-118), we can write

P, = [1 = (0.12][1 = (0.2)%][& /4 (100A)]%(39.81)(100)(2)
= 4. 777 mW

For reflection and polarization-matched antennas aligned for maximum
directional radiation and reception, (2-118) reduces to

P, Aoy L .
= (ﬁ) GoGor (2-119)

r

Equations (2-117), (2-118), or (2-119) are known as the Friis Transmission
Equation, and it relates the power Pr (delivered to the receiver load) to the
input power of the transmitting antenna Pt. The term (M47zR)” is called the free-
space loss factor, and it takes into account the losses due to the spherical
spreading of the energy by the antenna.

Ql] In a long-range microwave communication system operating at 9 GHz, the transmitting
and receiving antennas are identical, and they are separated by 10,000 m. To meet the signal-
to-noise ratio of the receiver, the received power must be at least 10 uW. Assuming the two
antennas are aligned for maximum reception to each other, including being polarization
matched, what should the gains (in dB) of the transmitting and receiving antennas be when
the input power to the transmitting antenna is 10 W?

Q2] A communication system, operating at 100 MHz, uses two identical A2 vertical
lossless dipole antennas as transmitting and receiving elements separated by 10 km. In order
for the signal to be detected by the receiver, the power level at the receiver terminals must be
at least 1 pW. Each antenna is connected to the transmitter and receiver by a lossless 50-Q
transmission line. Assuming the antennas are polarization-matched and are aligned so that the
maximum intensity of one is directed toward the maximum radiation intensity of the other,
determine the minimum transmitter power so that the signal will be detected by the receiver.
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The FOLDED DIPOLE

To achieve good directional pattern characteristics and good matching to
practical coaxial lines with 50- or 75-ohm impedances, the length of a
single wire element is usually chosen to be M4 <| < A. The most widely
used dipole is that whose overall length is | ~ M2, and which has an input

iImpedance of Z;, =~ 73 + j42.5 and directivity of D, ~ 1.643.

In practice, there are other very common transmission lines whose
characteristic impedance is much higher than 50 or 75 ohms. For example,
a “twin-lead” transmission line (usually two parallel wires separated by
about 8mm and embedded in a low-loss plastic material used for support
and spacing) is widely used for TV applications and has a characteristic

impedance of about 300 ohms.

-

_!t-ul
A
&

!

{a) Folded dipole

50

To provide good matching characteristics,
variations of the single dipole element must be
used. One simple geometry that can achieve this
is a folded wire which forms a very thin (s «<A)
rectangular loop as shown in Figure . When ( s< <
A), is known as a folded dipole and it serves as a
step-up impedance transformer (approximately by
a factor of 4 when | = M2) of the single-element
impedance. Thus when | = M2 and the antenna is
resonant, impedances on the order of about 300
ohms can be achieved, and it would be ideal for
connections to “twin-lead” transmission lines.

Ze=474=4X73 =292 = 300 Ohm

ia) Folded dipole

ibi Regular dipole

=

when |s is the current of the
folded dipole and 14 is the
current of the ordinary dipole,
the input power of the two
dipoles are identical, or

|

Pr= 2122 = Py = 1134
Which means
Zf = il'zﬁr




Loop Antennas
Loop antennas are simple, inexpensive, and very versatile type of

antennas. Loop antennas take many different forms such as a rectangle,
square, triangle, ellipse, circle, and many other configurations.

Because of the simplicity in analysis and construction, the circular loop is
the most popular and has received the widest attention. The small loop
(circular or square) is equivalent to an infinitesimal magnetic dipole whose
axis is perpendicular to the plane of the loop. That is, the fields radiated by
an electrically small circular or square loop are of the same mathematical
form as those radiated by an infinitesimal magnetic dipole.

Loop antennas are usually classified into two categories, electrically
small and electrically large. Electrically small antennas are those whose
overall length (circumference) is usually less than about (C < 0.1 A).
However, electrically large loops are those whose circumference
Is about (C ~ A). Most of the applications of loop antennas are in the HF
(3-30 MHz), VHF (30-300 MHz), and UHF (300-3,000 MHz) bands.

SMALL CIRCULAR LOOP
Consider a small loop antenna on the x-y plane, at z = 0, as shown in the

Figure. The wire is assumed to be very thin and the current is constant
along the wire, Iy = |y, . This type of current distribution is accurate only for
a very small circumference.

acos Y =a(a, -4, =
al(sin & cos ¢ cos ¢
+ sin @ sin ¢ sin ¢)

(b) Geometry for far-ficld observations

2 27 ikr e The far-field components
_ kealge ™" aSlye= ™ _
Hy=———F——sinf = ——"—sinf . of the small circular loop
] ] ar. - Il s ‘s ::' |- H
Rl xSl " antenna of radius a.
Ep=n———sind = np—— sin @ 2
4r A S=Tra

Is the area of the loop.




r

Dy =4x o= =
'Pl:ird

B |

A2 T
Aew = (E)DU = B

When the radius of the loop is relatively large and the current can be
considered constant along the loop, then the far-field components will be

E=FEg=10
¥ g r>> a
aknly e |I=constant
E,=~ %Il[.’m sin )
H = H.i, =0
E akly ek
Hg =~ _?:.b = - I?J;- Jyikasind)
- lawp)? ||
U=rW,= MZ%AIJE{&:? sin @)
]
g Normalized amplitude 1 N“’"ﬁ,'.'f:,f,f:g‘ :mne

pattem (dB) 0

b C=55

@ C=0.15

Three-dimensional amplitude pattems of a circular loop with constant current distribution.

A horizontal, lossless, one-turn circular loop of circumference C= A, with a
nonuniform current distribution, is radiating in free space. The Tar-field
pattern of the antenna can be approximated by

. e 0P <@ < 00°
Eg = Cocos™6 ;_} 0° < ¢ < 360°

where Cg is a constant and 6 is measured from the normal to the
plane/area of the loop. Determine the

(a) Maximum exact directivity (dimensionless and in dBb).

(b) Approximate input impedance of the loop.

(c) Input reflection coefficient when the antenna is connected to a balanced
“twin-lead” transmission line with a characteristic impedance of 300 ohms.

(d) Maximum gain of the loop (dimensionless and in dBb).



Array Antennas

Usually the radiation pattern of a single element is relatively wide, and each
element provides low values of directivity and gain. In many applications,
antennas with very directive characteristics (very high gains) are required to meet
long distance communications. This can only be accomplished by increasing the
electrical size of the antenna.

Enlarging the dimensions of a single element often leads to more directive
characteristics. Another way to enlarge the dimensions of the antenna, without
necessarily increasing the element size, is to form a group of elements in an
electrical and geometrical configuration. This new antenna is referred to as an
array. In most cases, the elements of an array are identical as this is convenient,
simpler, and more practical. The individual elements of an array may be of any
form (wires, apertures, etc.).

The total field of the array is determined by the vector addition of the fields
radiated by the individual elements. To provide very directive patterns, it is
necessary that the fields from the elements of the array interfere constructively
(add) in the desired directions and interfere destructively (cancel each other) in the
remaining space. Ideally this can be accomplished, but practically it is only
approached. In an array of identical elements, there are at least five controls that
can be used to shape the overall pattern of the antenna. These are:
1.the geometrical configuration of the overall array (linear, circular, rectangular,
spherical, etc.),

2. the relative displacement between the elements,

3. the excitation amplitude of the individual elements,
4. the excitation phase of the individual elements,

5. the relative pattern of the individual elements.

The simplest and one of the most practical arrays is formed by placing the
elements along a line. We will start with the simplest example of a two-element
array.

Two-Element Array

Assume that the two element antenna is an array of two infinitesimal
horizontal dipoles positioned along the z-axis, as shown in Fig. 6.1(a). The total
field radiated by the two elements, assuming no coupling between the elements, is
equal to the sum of the two and in the y-z plane it is given by

o M{I; E?_J.-'|.n-rj—r.ﬁ,f2.ﬁ] E—J.-'[A-r3+|_ﬁ,f2.ﬁ|
E,=E; +E, =agn cost) + ——cos b, (6-1)
) - 4 8 r -

where £ is the difference in phase excitation between the elements. The
magnitude excitation of the radiators is identical. In the far-field region, the
following approximations can be made
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{a) Two infinitesimal dipoles

iht Far=field nheervatinne

Fig. 6-1 Geometry of a two-element array positioned along the z-axis.
0, =20, =8 (6-2a)

rp=r— gcos e
for phase variations (6-2b)

d
rp = r+ —cost
ry s, =r for amplitude variations (6-2c)

Then Eq. 6-1 can be written as

Er _ ﬁejnk‘lﬂm_j” COS 9[€+ﬁ£‘cfcosﬂ+ﬁif’2 + E—j[kdcos E'+£5'Jx'r’2]
drr
o k.’fo?‘f"”' 1
E; = dgjn———cos @ {'2 cos [—{kd cos 8 + ﬁ“}] } (6-3)
drr 2

Equation (6-3) shows that the total field of the array is equal to the field of a
single element positioned at the origin multiplied by a factor which is called the
array factor. Thus for the two-element array of constant amplitude, the array
factor is given by

AF = 2cos[;(kd cos 0 + )] (6-4)
And its normalized version is
(AF), = cos[5(kd cos 8 + )] (6-4a)

The array factor is a function of the array geometry and the excitation phase. By
varying the separation d and/or the phase £ between the elements, the array factor
and of the total field of the array can be controlled.

It has been illustrated that the far-zone field of a uniform two-element array of
identical elements is equal to the product of the field of a single element, at a
selected reference point (usually the origin), and the array factor of that array.
That is,

E(total) = [E(single element at reference point)] X [array factor]  (6-5)



This is referred to as pattern multiplication for arrays of identical elements. It is
also valid for arrays with any number of identical elements which do not
necessarily have identical magnitudes, phases, and/or spacings between them.

Each array has its own array factor. The array factor, is a function of the
number of elements, their geometrical arrangement, their relative magnitudes,
their relative phases, and their spacings. The array factor is usually derived using
the point-source array, then the total field of the actual array is obtained by the use
of (6-5). Each point-source is assumed to have the amplitude, phase, and location
of the corresponding element it is replacing.

In order to synthesize the total pattern of an array, the designer is not only
required to select the proper radiating elements but the geometry (positioning) and
excitation of the individual elements.

Example 6.1
Given the array of Fig. 6.1(a) and (b), find the nulls of the total field when d =14
and: (@) pB=0, (b) B=n/2, (c) P=-n/2.
Solution: (a) p=0,
In this case kd=2n/A X M4==n/2 , then EQq. 6-4-a becomes

E,, = cosfcos (% cos 9)
The nulls are obtained by setting the total field equal to zero, or Ew=0,
E,, = cosfcos (% Cos -‘5') lg=g, =0

which means that the product of two terms is equal to zero, then

either cos@,=0=8, =90 | or

cos (% cos Hﬂ) =0= gcos g, = %—% =, = does not exist

The only null occurs at #=90° and is due to the pattern of the individual elements.
The array factor does not contribute any additional nulls since there is not enough
separation between the elements to introduce a phase difference of 180° between
the elements, for any observation angle.

Solution: (a) p=n/2,

In this case kd=2n/A X M4==n/2 , then Eq. 6-4-a becomes

E,, = cos f cos [EfCDS & + l}]
The nulls are obtained by setting the total field equal to zero, or Ew=0,
E,, = cosfcos [%{cos & + ]‘Jl] lo=g, =0
which means that the product of two terms is equal to zero, then

either C080n =070, =907 or



T . : _om _ e
COoS [ZfCDSH—F l"}] lo=g, = O I{cos g, +1)= 3 8,=0

=> %fCDS 6, +1)= —g = @, = does not exist

The nulls of the array occur at #= 90" and 0°. The null at 0" is introduced by the arrangement of
the elements (array factor). This can also be shown by physical reasoning, as shown in Fig.
6.2(a). The element in the negative z-axis has an initial phase lag of 90° relative to the other
element. As the wave from that element travels toward the positive z-axis (& = 0° direction), it
undergoes an additional 90° phase retardation when it arrives at the other element on the positive
z-axis. Thus there is a total of 180" phase difference between the waves of the two elements
when travel is toward the positive z-axis (¢ = 0°). The waves of the two elements are in phase
when they travel in the negative z-axis (¢ = 180-), as shown in Fig.6.2(b).

A A
b
a = 0"
g —o° #1 i
3
#1 o ATi4 ASB
T e_,.'f_—-m 1 | A = O0°
A B
ASB i
— Ag = 907 i Y.
W H2
l e
22 & = 180~
8 = 180"
¥
(a) g =07 direction (b)) & = 1807 direction

Phase accumulation for two-element array for null formation toward & = 0° and 180°.
T

C. ﬁ:—E

The normalized field is given by
T
E,, = cos @ cos [E{cos g — l}]
and the nulls by

E,, = cos 8 cos [%{cos g — ]}] lo=g, = O

Thus
cos8d, =0=>4, =90°
and
cos [E(CDSQP = l‘}] =0="(cosf,—1)= Z = @, = does not exist
4 ) 4 ) 2
and

Fra

T
= —(cos@,—1)=——=08,= 180°
4 €os n 2 "

The nulls occur at 90° and 180°. The element at the positive z-axis has a phase lag of 90° relative
to the other, and the phase difference is 180° when travel is restricted toward the negative z-axis.
There is no phase difference when the waves travel toward the positive z-axis. A diagram similar
to that of Figure 6.2 can be used to illustrate this case.



The normalized patterns of the single element, the array factor, and the total array for each of
the above array examples are shown in Fig. 6.3, 6.4(a), and 6.4(b). In each figure, the total
pattern of the array is obtained by multiplying the pattern of the single element by that of the
array factor. In each case, the pattern is normalized to its own maximum. Since the array factor
for the example of Fig. 6.3 is nearly isotropic (within 3 dB), the element pattern and the total
pattern are almost identical in shape. The largest magnitude difference between the two is about
3 dB, and for each case it occurs toward the direction along which the phases of the two
elements are in phase quadrature (90" out of phase). For Fig. 6.3 this occurs along £ = 0" while
for Fig.6.4(a,b) this occurs along & = 90°. Because the array factor for Fig.6.4(a) is of cardioid
form, its corresponding element and total patterns are considerably different. In the total pattern,
the null at #=90° is due to the element pattern while that toward £= 0" is due to the array factor.
Similar results are displayed in Fig. 6.4(b).
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Array factor
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Fig.6.3 Element, array factor, and total field Fig.6.4-a Element, array factor, and total field
Patterns of a 2-element array(#= 0", d =24). Patterns of a 2-element array(4=90°, d = M4).
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Total

Fig.6.4-b (£=-90", d = M4).




Example 6.2
Consider an array of two identical infinitesimal dipoles oriented as shown
in Figs.6.1(a) and (b). For a separation d and phase excitation difference £
between the elements, find the angles of observation where the nulls of the
array occur. The magnitude excitation of the elements is the same.

Solution: The normalized total field of the array is given by (6-3) as
E._ = cos @ cos[—ikd cos @ + F)]
To find the nulls, the field is set equal to zero, or

E,=cosd -:u:us[é[.fid cos 8 + f1]lg_p, = 0

_ — —_— i
Thus cosfly, = 0= 8, =90

and

3”:'[),;

CoR [_:t[kdcgséln +p‘f|] == %[R{FEGSE‘“ + == [

_ A
=8, = cos 1 [_ﬂr[_p"i[zn+ J].':]‘:I.

L L

n=10,1,12,...

The null at = 90- is attributed to the pattern of the individual elements of
the array while the remaining ones are due to the formation of the array.
For no phase difference between the elements (4 = 0), the separation d
must be equal or greater than half a wavelength (d = M2) in order for at
least one null, due to the array, to occur.



N-ELEMENT LINEAR ARRAY: UNIFORM AMPLITUDE AND SPACING

Now let us generalize the method to include N elements. Referring to the
geometry of Figure 6.5(a), assume that all the elements have identical
amplitudes but each succeeding element has a /4 progressive phase lead current
excitation relative to the preceding one (4 represents the phase by which the
current in each element leads the current of the preceding element). An array of
identical elements all of identical magnitude and each with a progressive phase
Is referred to as a uniform array. The array factor can be obtained by
considering the elements to be point sources. If the actual elements are not
Isotropic sources, the total field can be formed by multiplying the array factor of
the isotropic sources by the field of a single element. This is the pattern
multiplication rule of (6-5), and it applies only for arrays of identical elements.

r 'I,\r

(a) Geomelry (b) Phasor diagram

Figure 6.5 Far-field geometry and phasor diagram of N-element array of
isotropic sources positioned along the z-axis.
The array factor is given by

AF=1+ E?+J.-'r_."{ci cos 8447) + E?+J.-".!r_."mf cos 844 oo Ej-'l_.-'\-'—]_ﬁr_."{d cos 844

.\-‘ X
co . (6-6)
AF = .fx,-'lf}.'—l_ll_.-i{fCDS 24+
Which can be written as
N
AF = Z altn=y (6-7)

n=1

where w = kdcos8 +f (6-Ta)



Since the total array factor for the uniform array is a summation of
exponentials, it can be represented by the vector sum of N phasors each of unit
amplitude and progressive phase ¥ relative to the previous one. Graphically this
is illustrated by the phasor diagram in Fig. 6.5(b). It is apparent from the phasor
diagram that the amplitude and phase of the AF can be controlled in uniform
arrays by properly selecting the relative phase ¢ between the elements; in
nonuniform arrays, the amplitude as well as the phase can be used to control the
formation and distribution of the total array factor.

The array factor of (6-7) can also be expressed in an alternate, compact and
closed form whose functions and their distributions are more recognizable. This
is accomplished as follows. .

Multiplying both sides of (6-7) by €'#, it can be written as

(AF)eY = eV 4 o™V 4 &V oo 4 & N=DW L oV (6-8)
Subtracting (6-7) from (6-8) reduces to
AF(eV — 1) = (=1 + V) (6-9)
which can also be written as
N _ l] _ GIN=1)/ 20y [ef"--"*"r’f-'w - e—i'--""ff-'w]

AF = .
l alwv — ] el 2y _ o—ji1/ 2y

. _,"'c.-r \
sin (—w )
— pIl(N=1)/2]w 2

sin (%w)

If the reference point is the physical center of the array, the array factor of (6-10) reduces to

B sin (%w)

(6-10)

AF =] ———— (6-10a)
sin (lw )
2
For small values of ¢, the above expression can be approximated by
sin (%w )
AF ~ — (6-10b)
2

The maximum value of (6-10a) or (6-10b) is equal to N. To normalize the array factors so that the
maximum value of each is equal to unity, (6-10a) and (6-10b) are written in normalized form as

1 sin (%w)

(AF), = — | ——=——— (6-10c)
? N sin (lw)
2
Which can be approximated to
sin (%w)
(AF), = | ——=—— (6-10d)
—y

=2



To find the nulls of the array, (6-10c) or (6-10d) is set equal to zero. That is,

) N N _ A 2n
sin (%w) =0 EW|9=9n = i.’f.‘-‘t’r_.\'&” = COs ] I:m (—ﬁ * F?’E)]

n=1.2.3,... (6-11)
n# N,2N,3N, ... with (6-10c)

For n =N, 2N, 3N.,..., (6-10c) attains its maximum values because it reduces
to a sin(0)/0 form. The values of n determine the order of the nulls (first,
second, etc.). For a zero to exist, the argument of the arccosine cannot exceed
unity. Thus the number of nulls that can exist will be a function of the element
separation d and the phase excitation difference 4.

The maximum values of (6-10c) occur when

% = %{kdcos 0+ Plog=p, = xmx = 6, = cos™! [bi—“d{—ﬁ + 2m‘;ar“}]
m=0,1,2,... (6-12)
The array factor of (6-10d) has only one maximum and occurs when m =0 in

(6-12). That is,
6, = cos™! (;Tﬁ(f) (6-13)

which is the observation angle that makes ¢ = 0.
The 3-dB point for the array factor of (6-10d) occurs when

JI"'l'r .i""fr
—y = E{RdCDSE -1—,8}'9:9}? = +1.391

2
| [ A 2782 ] .
= 8, = cos [—zxd (-5 = = ) (6-14)
Which can also be written as
T N 2.?8'2)]
f#, = — —sin (—p‘i (6-14a)
h— 2 2rd N
For large values of d(d = 1), it reduces to
4 A 2,782
0= 3 -5 (1257 (1

The half-power beamwidth ®, can be found once the angles of the first
maximum (4,) and the 3dB point (4,) are determined. For a symmetrical pattern

E)-"i': 2|9:.'r_9!:| (6-14c)

The secondary maxima (maxima of minor lobes) which occur approximately
when the numerator of (6-10d) attains its maximum value. That is,

) Jhi'r . J;\l! _ . — J;\l'r
sin (Ew) = sin [E(ﬁ.dcose + ,3}] |9=5';, ~ 417 E{kd cos 8 + ﬂ“}lgzgs

~ s+ 1N o=l [ A 25 + 1
_i( 2 )”' 05 = cos {-2;m’[_ﬁi( N ”]}

s=1.2.3,... (6-15)




Which can also be written as

T .- A 254+ 1 —_—
0, ~ = — sin l{ [—ﬂi( + )r]} s=1,2.3,... (6-15a)
' ' 2xd N .
For large values of d(d > }). it reduces to
9-*'5—}—‘[—%(2”"-] s=1,2,3 (6-15b)
= E e (BN s=12a 5b)
The maximum of the first minor lobe of (6-10c) occurs approximately when
N N ] 3me - \
F¥ = 3(kdcos0 + )lgeg, = 2 ( =) (6-16)
Or when
1 A Ar .
#. = cos { [— + ]} (6-16a)
: 2rd b N 1.
At that point, the magnitude of (6-10d) reduces to
sin (%W} -
(AF), = | ——=7—" = - =0212 (6-17)
B o=a, o

=1

Which in dB is equal to
) — _13.46 dB (6-172)

(AF), = 20log,, (f

T
Thus the maximum of the first minor lobe of the array factor of (6-10d) is 13.46
dB down from the maximum at the major lobe. More accurate expressions for
the angle, beamwidth, and magnitude of first minor lobe of the array factor of
(6-10d) can be obtained.
Broadside Array
In many applications it is desirable to have the maximum radiation of an
array directed normal to the array axis [broadside; 6, = 90" of Fig. 6.5(a)]. To
optimize the design, the maxima of the single element and of the array factor
should both be directed toward 8, = 90°. The requirements of the single
elements can be accomplished by proper choice of the radiators, and those of
the array factor by the proper separation and excitation of the individual
radiators. In this section, the requirements that allow the array factor to

“radiate” efficiently broadside will be developed.
Referring to (6-10c) or (6-10d), the first maximum of the array factor occurs when

Y=kdcosd+5=0 (6-18)
Since it is desired to have the first maximum directed toward &, = 90°, then

w = kdcos@ + flo—gp- = f =0 (6-18a)

Thus to have the maximum of the array factor of a uniform linear array directed
broadside to the axis of the array, it is necessary that all the elements have the
same phase excitation (in addition to the same amplitude excitation). The
separation between the elements can be of any value. To ensure that there are no
principal maxima in other directions, which are referred to as grating lobes, the



separation between the elements should not be equal to multiples of a
wavelength (d #Znk, n=1,2,3...) when £=0.Ifd=nA,n=1,2,3,... and F=
0, then
w=kdcost + floy = 2ancos@|y_p. gpe = 207 (6-19)
p=0

n=1.2.3,...
This value of  when substituted in (6-10c) makes the array factor attain its
maximum value. Thus for a uniform array with £ =0 and d = nA, in addition to
having the maxima of the array factor directed broadside (&° = 90) to the axis
of the array, there are additional maxima directed along the axis (&,= 0°, 180¢)
of the array (end-fire radiation).
One of the objectives in many designs is to avoid multiple maxima, in addition
to the main maximum, which are referred to as grating lobes. Often it may be
required to select the largest spacing between the elements but with no grating
lobes. To avoid any grating lobe, the largest spacing between the elements
should be less than one wavelength (diax < A).
To illustrate the method, the 3-D array factor of a 10-element (N = 10) uniform
array with /£ =0 and d = M is shown plotted in Figure 6.6(a). A 90" angular
sector has been removed for better view of the pattern distribution in the
elevation plane. The only maximum occurs at broadside (&0 = 90°). To form a
comparison, the three-dimensional pattern of the same array but with d = X is
also plotted in Figure 6.6(b). For this pattern, in addition to the maximum at 40
=90, there are additional maxima directed toward &,=0",180-. The
corresponding two-dimensional patterns of Figures 6.6(a,b) are shown in Fig.
6.7.
If the spacing between the elements is chosen between A < d < 2A, then the
maximum of Figure 6.6 toward &, = 0" shifts toward the angular region 0> < 40
< 90° while the maximum toward & = 180¢ shifts toward 90° < A < 180-.
When d = 2), there are maxima toward 0°, 60, 90, 120° and 180e.
In Tables 6.1 and 6.2 the expressions for the nulls, maxima, half-power points,
minor lobe maxima, and beamwidths for broadside arrays have been listed.
They are derived from (6-10c)—(6-16a).

NULLS 6, = cos! (£22) TABLE 6.1 Nulls,
" TN d .
n=1.2.3. . Maxima, Half-Power
n# N.ZN.3N. ... Points, and Minor
MAXIMA 8 = cos! (+£~} Lobe Maxima for
(] 4 ) )
m=0.12. .. Uniform Amplitude
HALF-POWER POINTS g, ~ cos™! {t%} Broadside Arrays
md /b= 1 ‘
. o hofle4 1o
MINOR LOBE MAXIMA 8, = cos~! [ig[ ~ _]]

s= 123, ...

wd fho= |



FABLE 6.2 Beamwidths for Uniform Amplitude Broadside Arravs

FIRST-NULL BEAMWIDTH (FNBW) 0, =2 [% —cos™! (%)]
HALF-POWER BEAMWIDTH (HPBW) @y =2 [% _ cos! ( % ]
md b = ]
FIRST SIDE LOBE BEAMWIDTH (FSLBW) @, =2 [ - (% ]
md b <
Nomndized Field 42

Nomalized Field
Pattern (linear scale)
1

Al Pattem (linear scale)

0.9

x (4) Breadside (B=0,d = M4)

(b) Broadside/end-fire (8=0.d=})

Figure 6 Three-dimensional amplitude patterns for broadside array (left), and
broadside/end-fire array (right) with (V= 10).
? : Array Factor

Pattem (dB)
0

Array Factor
Pattem (dB)

=

90°

d=M4
e AL 180°

Figure 6.7 Array factor patterns of a 10-element uniform amplitude broadside array (N = 10, § = 0).
6.3.2 Ordinary End-Fire Array
Instead of having the maximum radiation broadside to the axis of the array, it
may be desirable to direct it along the axis of the array (end-fire). It may be
necessary that the array radiates toward only one direction (either £, =0 or
180 of Fig. 6.5).



To direct the first maximum toward &, = 0",
w=kdcosO+ Plo_ge =kd+ f=0=f = —kd (6-20a)
If the first maximum is desired toward &, = 180°, then
w=kdcost + flo_igeo = —kd + f=0=f = kd (6-20h)

Thus end-fire radiation is accomplished when #= —kd (for £ =0") or #=kd
(for &, = 180).
If the element separation is d = A2, end-fire radiation exists simultaneously in
both directions (&, = 0" and &, = 180). If the element spacing is a multiple of a
wavelength (d =nk, n=1, 2, 3,...), then in addition to having end-fire radiation
in both directions, there also exist maxima in the broadside directions. Thus for
d=nA,n=1,2,3,... there exist four maxima; two in the broadside directions
and two along the axis of the array. To have only one end-fire maximum and to
avoid any grating lobes, the maximum spacing between the elements should be
less than dya < M2.

The three-dimensional radiation patterns of a 10-element (N = 10) array with
d =M, f = +kd are plotted in Figure 6.8. When £ = —kd, the maximum is
directed along & = 0" and the 3-D pattern is shown in Fig. 6.8(a). However,
when £ = +kd, the maximum is oriented toward &, = 180", and the 3D pattern is
shown in Fig. 6.8(b). The 2D patterns of Figs. 6.8(a,b) are shown in Figure 6.9.
To form a comparison, the array factor of the same array (N = 10) but with d =2
and /= —kd has been calculated. Its pattern is identical to that of a broadside
array with N =10, d = A, and it is shown plotted in Fig. 6.7. It is seen that there
are four maxima; two broadside and two along the axis of the array.

The expressions for the nulls, maxima, half-power points, minor lobe
maxima, and beamwidths, as applied to ordinary end-fire arrays, are listed in
Tables 6.3 and 6.4.

Amplitude Pattem
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1 z
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Fig. 6.8 3D amplitude patterns for end-fire arrays toward & = 0" and 180" (N=10, d=\4).
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on

Array Factor
Pattern (dB)

N P ¥
m———f=kd

Array Factor
Pattern (dB)

igure 6.9 Array factor patterns of a 10-element uniform amplitude end-fire array (N = 10.d = »/4).
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rdfh < 1
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2Nd

TABLE 6.3 Nulls, Maxima,
Half-Power Points, and Minor
Lobe Maxima for Uniform

Amplitude Ordinary End-Fire
Arrays

T'ABLE 6.4

Beamwidths for Uniform Amplitude Ordinary End-Fire Arrays

FIRST-NULL BEAMWIDTH (FNEW)

HALF-POWER BEAMWIDTH (HPEW)

FIRST SIDE LOBRE BEAMWIDTH (FSLBW)

&, =2cos™! (l -

@, =~ 2cos™! (l -
wdfh = |

@, =~ 2cos! [:] -

wd 2 < |

A
~7)

1.3'-}1}'.,)
mdlN

6.3.3 Phased (Scanning) Array

In the previous two sections it was shown how to direct the major radiation
from an array, by controlling the phase excitation between the elements, in
directions normal (broadside) and along the axis (end fire) of the array. It is then




logical to assume that the maximum radiation can be oriented in any direction to
form a scanning array. The procedure is similar to that of the previous two
sections.

Let us assume that the maximum radiation of the array is required to be
oriented at an angle A0 < A < 180°). To accomplish this, the phase
excitation £ between the elements must be adjusted so that

w = kdcos8 + fly_g, = kdcos8y + f = 0= fi = —kd cos

Thus by controlling the progressive phase difference between the elements,
the maximum radiation can be squinted in any desired direction to form a
scanning array. This is the basic principle of electronic scanning phased array
operation. Since in phased array technology the scanning must be continuous,
the system should be capable of continuously varying the progressive phase
between the elements. In practice, this is accomplished electronically by the use
of ferrite or diode phase shifters. For ferrite phase shifters, the phase shift is
controlled by the magnetic field within the ferrite, which in turn is controlled by
the amount of current flowing through a coil around the phase shifter.

(6-21)

Figure 6.10 shows an incremental

. This design is simple,

In Out Speed. The lines of Iengths Il and |2

single-pole double-throw switches.

by switching on and off the two
paths, is given by
.-':'h.f,lllJ= :r-.l.r'r: - .‘r[]

J ) l switched-line PIN-diode phase shifter
straightforward, lightweight, and high

are switched on and off by controlling
the bias of the PIN diodes, using two

L ! J The differential phase shift, provided
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6.4 N-ELEMENT LINEAR ARRAY: DIRECTIVITY
Here we investigate the directivity of the broadside and end-fire arrays. The
directivity represents a figure of merit on the operation of the system.
6.4.1 Broadside Array
As a result of the criteria for broadside radiation given by (6-18a), the
array factor for this form of the array reduces to
B0 [ %ﬁm‘ msa;l

l

(AF), = = (6-38)

&M {%kc‘.’ cosél:]

which for a small spacing between the elements (d <« A) can be
approximated by
&N {Ekdms E":I

(AF) = (E-238a)
’ [‘h" h'?msél:I

The radiation intensity can be written as:

ey = [(AF), ] = = =

o (5-7300
'?.im‘ cos &

sml:{‘;kc'.fmsﬂjl ) [gml.;j]:

Z

Z=2pdcos o (6-30a)
Al

The directivity can be obtained using (6-32) = T
where Umax Of (6-39) is equal to unity (Umax = 1) and it occurs at = 90",

The average value U, of the intensity reduces to
Up= Py = if [“”‘E” siné 8

{-'r

max

4x 20 | Z )
-3
z sm .ch msH‘:I
f siné @ (6-40)
—Aﬁ-.osﬂ
By making a change of variable, that s _
Z= g.m’msa (6-40a)
dz= -2 kdsine e (6-401)
{6-40) can be written as
~Jikd +Hikd 2
U,=- 1 smzl i = an] iz 641)
JI'HM +ikd) 2 F'!.'l.nf'r =Jiki2




For a large array (Nkd/2 — large), then (6-41) can be approximated by
extending the limits to infinity. That is,

| [ IsmEr T ks [smfr
Uy = — — | di= — —| dZ G-dla
T Nk [ iy L Z Ned o, L Z (o=
Since
o p 2
f SE g7 = (6-41b)
o £
(6-41a) reduces to
Uy~ — 641
0= Wid (6-416)
The directivity of (6-32) can now be written as
L Mhkd i
D= = =2N|- f-42
R T [}3 (6=
—_ I F
Using L=V—1ud (6-43)
where L is the overall length of the array, (6-42) can be expressed as
d Ly ¢d :
= AN =2 — — (-
Do = 2N f}] (1+ 7) [;nﬁ" (6-44)
which for a laree array (L= ) reduces to
d Lyysdy Le=d _ /L :
=IN[=1=2 = £ = /
Dy [}H" (1+3) f};l (5) (6-44a)
Example 6.3

Given a linear, broadside, uniform array of 10 isotropic elements (N = 100 with a separation of
Adid = A 4) between the elements, find the directivity of the array.
Solufion: Using (6-44a)

D, = 2N (;—f) = 5 (dimensionless) = 1010g,,(5) = 6.99 4B

6.4.2 Ordinary End-Fire Array
For an end-fire array, with the maximum radiation in the & = 0O
direction, the array factor is given by

sin [%Rdn;-:n::s g — J]]
(AF), = — J (645
N sin ’;.t‘.n‘[-:n::s o 1 ]]




which, for a small spacing between the elements (d <«<'A), can be
approximated by

N
S10 [Th'.ﬁ;-:-::-s & — J]]

[AF), = w (G-45a)
[‘?m;msa _ l_a]
The corresponding radiation intensity can be written as
N .
S0 ’—ﬂ.‘n‘[msﬂ - l:-] ) 2
U(e) = [(AF), = | —2 = [*’“f -‘] (6.46)
—kd(cosg— 1)
2
N o
Z= —kdicosé— 1) (6-46a)

whose maximum value is unity (Umax = 1) and it occurs at #=0°. The
average value of the radiation intensity is given by

= | sin [%Rd{mse - J:-l

U = _% f f o siné d8 de
*Jo  Jo Shid(cos & — 1)
1 = | sin [‘,_li.t'n’[msél - l:-] i
= ;J’!‘ R siné e (6-47)
=0 '?.m‘[cn:ﬁé'— 1
By letting
N
L= ?.t;:f[-:u::-s &— 1 (6-47a)
dZ = — 2k sin @ de (6-47Tb)
(6-47) can be written as
—Nid . 2 Nkd , 2
: | SN0 Z ) | sIniZ)
Uy = ——— —| dz=— —| az (6-48)
Nkd Jq Z Nkd Jq Z

For a large array (N — large), (6-48) can be approximated by extending the limits to infinity,

That is,
Nkd 2 o0 p 2
p_ |l L) | s )
U= Nkd J, [ = ] i = .ﬁ-’m,/.;.‘ [ =z ] dz iB-48a1

Using (64 1b) reduces (6-48a) to
(E5-48h)
and the directivity to

—'=4.uf[—d} 6-40)



Another form of (6-49%, using (6-43), is

ﬂD=4Jw'[ifT]=4{1+$]{%] (6-49a)

which for a lagre array (L 7 d) reduces o

py=av(f)=a (14 L) (4) P29 4(E) (6-40b)
It should be noted that the directivity of the end-fire array, as given
by (6-49)—(6-49b), is twice that for the broadside array as given by (6-

42) — (6-443).

Example 6.4
Given a linear, end-fire, uniform array of 10 elements (¥ = 10) with a separation of
A Ad = A/ 4) between the elements, find the directivity of the array factor. This array is identical
to the broadside array of Example 6.3
Selation: Using (6-49)

Dy = 4N ( %} = 10 {dimensionless) = 10 log,,(10) = 10 dB

This value for the directivity (D, = 10) is approximate, based on the validity of (6-48a). However,
it compares very favorably with the value of Dy = 10.05 obtained by numerically integrating
(6-43) using the Directivity computer program of Chapter 2.

Nz il : Amglliais Fetiom

(linear scale)

A Patten (i scal)

J () Brodie (=0, 4=
% (@) B,=0°

Broadside array End-fire array



6.5 DESIGN PROCEDURE

In the design of any antenna system, the most important design
parameters are usually the number of elements N, spacing between
the elements d, excitation (amplitude and phase), half-power
beamwidth HPBW, directivity Do, and side lobe level. In a design
procedure some of these parameters are specified and the others are
then determined.

The parameters that are specified and those that are determined vary
among designs. For a uniform array, the side lobe is always
approximately —-13.5 dB. The order in which the other parameters are
specified and determined varies among designs. For each of the uniform
linear arrays that have been discussed, equations and some graphs
have been presented which can be used to determine the half-power
beamwidth and directivity, once the number of elements and spacing (or
the total length of the array) are specified. In fact, some of the equations
have been boxed or listed in tables. This may be considered more of an
analysis procedure. The other approach is to specify the half-power
beamwidth or directivity and to determine most of the other parameters.
This can be viewed more as a design approach, and can be
accomplished to a large extent with equations or graphs that have been
presented. More exact values can be obtained, if necessary, using
iterative or numerical methods.

Example 6.6
Design a uniform linear scanning array whose maximum of the array factor 1s 30° from the axis
of the array (fy = 30°). The desired half-power beamwidth is 2° while the spacing between the
elements is A/4. Determine the excitation of the elements (amplitude and phase), length of the
array (in wavelengths), number of elements, and directivity (in dB).
Solution: Since the desired design 1s a uniform |imear scanning array, the amplitude excitation
1s uniform, However, the progressive phase between the elements 1s, using (6-21)

),
p=—hdcosty = (i) cos(30°) = - 1.36 raians = ~T7.94°

The length of the array 1s obtamed using an iterative procedure of (6-22) or its graphical solu-

AN
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Figure 6,12 Half-power beamwidth for broadside. ordinary end-fire, and scanning uniform linear arrays.
(source: R. S. Elliott. “Beamwidth and Directivity of Large Scanning Arrays.” First of Two Parts. The
Microwave Journal, December 1963).

tion of Figure 6.12. Using the graph of Figure 6.12 for a scan angle of 30° and 2° half-power

beamwidth, the approximate length plus one spacing (L + &) of the array is 504, For the 503
length plus one spacing dimension from Figure 6.12 and 30° scan angle, (6-22) leads to a half-
power beamwidth of 2.03%, which is very close to the desired value of 2°. Therefore, the length
of the array for a spacing of A /4 is 40,754,

Since the length of the array is 49.73A and the spacing between the elements is & /4. the total
number of elements is

The directivity of the array is obtained using the radiation intensity and the computer program
Directivity of Chapter 2, and 1t 1s equal to 100.72 or 20.03 dB.

6.6 N-ELEMENT LINEAR ARRAY: THREE-DIMENSIONAL
CHARACTERISTICS

Up to now, the 2-D array factor of an N-element linear array has been
investigated. Although in practice only 2-D patterns can be measured, a
collection of them can be used to reconstruct the 3-D characteristics of
an array. It would then be instructive to examine the 3-D patterns of an
array of elements. Emphasis will be placed on the array factor.
6.6.1 N-Elements Along Z-Axis

A linear array of N isotropic elements are positioned along the z-axis
and are separated by a distance d, as shown in Fig. 6.5(a). The
amplitude excitation of each element is an and there exists a



progressive phase excitation /4 between the elements. For far-field
observations, the array factor can be written according to (6-6) as
N N
AF = " a,e/"=Ddeosyi) = N g ltr=Dv (6-52)
n=1 n=1
w=kdcosy + f (6-52a)
where the ans are the amplitude excitation coefficients and p is the
angle between the axis of the array (z-axis) and the radial vector
from the origin to the observation point.
In general, the angle p can be obtained from the dot product of a unit
vector along the axis of the array with a unit vector directed toward the
observation point. For the geometry of Figure 6.5(a)

cosy=4a-d,=a_-(a,sinfcosd+asinfsing +4a_cost) =cosd =y =10 (6-33)
Thus (6-52) along with (6-53) is identical to (6-6), because the system of
Fig. 6.5(a) possesses a symmetry around the z-axis (no & variations).
This is not the case when the elements are placed along any of the other
axes, as will be shown next.
6.6.2 N-Elements Along X- or Y-Axis

Let us consider an array of N isotropic elements along the x-axis, as
shown in Fig. 6.16. The far-zone array factor for this array is identical in
form to that of Fig. 6.5(a) except for the phase factor ¥. For this
geometry

cosy=a,-a,=a,-(a,sinfcosgh+ a,sinfsing + a.cos ) = sinfcos b (6-54)

cosy =sinfcosh—=y = cos™ !(sin @ cos ¢) (6-54a)
The array factor of this array is also given by (6-52) but with » defined
by (6-54a). For this system, the array factor is a function of both angles
(Fand @).
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Linear array of N isotropic elements positioned along the x-axis.



In a similar manner, the array factor for N isotropic elements placed
along the y-axis is that of (6-52) but with p defined by

cosy =a,-a, =sinfsingh =y = cos~ l(sin@singh) (6-55)

Physically placing the elements along the z-, x-, or y-axis does not
change the characteristics of the array. Numerically they yield identical

patterns even though their mathematical forms are different.
Example 6.7
Two half-wavelength dipole (I = A/2) are positioned along the x-axis and are separated by a
distance d, as shown in Figure 6.17. The lengths of the dipoles are parallel to the z-axis. Find the
total field of the array. Assume uniform amplitude excitation and a progressive phase difference

of p.

(b) B ==+ 180°

Figure 617 Three-dimensional patterns for two A/2 dipoles spaced A/2. (source: P. Lorrain and
D. R. Corson. Electromaonetic Fields and Waves. 2nd ed.. W. H. Freeman and Co.. Copvright (G 19700,



Solution: The field pattern of a single element placed at the origin is given by (4-84) as

I
Joe-i¥r | ©08 (? Cos E?)

-

2rr sin

Using (6-32), (6-34a), and (6-10c), the array factor can be written as

sin(kd sin A cos¢h + f)

(AF), =
2 sin [;[ffﬂ' sinfcos ¢+ ﬁ]]

The total field of the array is then given. using the pattern multiplication rule of (6-5), by

. L
Ee —E. - (AF) _J,”}'DE_J'“ cos (j cos [;I) sin(kd sin & cos ¢ + B)
ar = a8 n=

2rr sin & 2 sin [%[_{n’ sinfcos¢ + 3']

To illustrate the techniques, the three-dimensional patterns of the two-
element array of Example 6.7 have been sketched in Figs. 6.17(a) and
(b). For both, the element separation is M2(d = M2). For the pattern of
Fig. 6.17(a), the phase excitation between the elements is identical (4 =
0). In addition to the nulls in the ¢ = O direction, provided by the
individual elements of the array, there are additional nulls along the x-
axis (¢ = 72, ¢ =0 and ¢ = ) provided by the formation of the array.
The 180° phase difference required to form the nulls along the x-axis is a
result of the separation of the elements [kd = (27A\)(N2) = 7].

To form a comparison, the three-dimensional pattern of the same
array but with a 180° phase excitation (4 = 180°) between the elements is
sketched in Fig. 6.17(b). The overall pattern of this array is quite different
from that shown in Fig. 6.17(a). In addition to the nulls along the z-axis
(¢ = 0) provided by the individual elements, there are nulls along the y-
axis formed by the 180- excitation phase difference.
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UNIFORM SPACING, NONUNIFORM AMPLITUDE
The theory to analyze linear arrays with uniform spacing, uniform amplitude, and a
progressive phase between the elements was introduced in the previous lectures. In
this lecture, broadside arrays with uniform spacing but nonuniform amplitude
distribution are considered. The binomial and Dolph-Tschebyscheff broadside arrays
(also spelled Tchebyscheff or Chebyshev) will be analyzed.

Of the three distributions (uniform, binomial, and Tschebyscheff), a uniform
amplitude array yields the smallest half-power beamwidth. It is followed, in order, by
the Dolph-Tschebyscheff and binomial arrays. In contrast, binomial arrays usually
possess the smallest side lobes followed, in order, by the Dolph-Tschebyscheff and
uniform arrays. As a matter of fact, binomial arrays with element spacing equal or
less than /2 have no side lobes. It is apparent that the designer must compromise
between side lobe level and beamwidth.

A criterion that can be used to judge the relative beamwidth and side lobe level of
one design to another is the amplitude distribution (tapering) along the source. It has
been shown analytically that for a given side lobe level the Dolph-Tschebyscheff
array produces the smallest beamwidth between the first nulls. Conversely, for a
given beamwidth between the first nulls, the Dolph-Tschebyscheff design leads to
the smallest possible side lobe level.

Uniform arrays usually possess the largest directivity. However, superdirective
(or super gain as most people refer to them) antennas possess directivities higher
than those of a uniform array. Before introducing design methods for specific
nonuniform amplitude distributions, let us first derive the array factor.

6.8.1 Array Factor

An array of an even number of isotropic elements 2M (where M is an integer) is
positioned symmetrically along the z-axis, as shown in Fig. 6.19(a). The separation
between the elements is d, and M elements are placed on each side of the origin.
Assuming that the amplitude excitation is symmetrical about the origin, the array
factor for a nonuniform amplitude broadside array can be written as

5 1 Mil-A HE LY
{AFIEM — H]E‘F__.'I.]fr.._l,{hil...ﬂsg + (igf*-l_-'r" [2dcosf ¥

+ ”lf?_";i 1/ 2)kd cos @ +a2€—jl3ﬁ_l£':fccns|9 F e

E_J,-'[r_j,-w—] )/ 2]kd cos &

+ dy
M i
(2n=1) N
(AF)yy =2 Z a, cos | ————kdcos 8 (6-39)
i ] 2
n= L
Which is in normalized form reduces to
M -
2n—1) .
(AF),y, = Z a, cos [Tﬁ.’(fﬂﬂﬁa (6-39a)
n=l

where a,’s are the excitation coefficients of the array elements.
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(a) Even number of elements (b} Odd number of elements

Figure 6,19 MNonuniform amplitude arravs of even and odd number of elements.

If the total number of isotropic elements of the array is odd 2M + 1 (where M is

an integer), as shown in Fig. 6.19(b), the array factor can be written as
(EF}E.'H#] = 2(][ +ﬁ,2€+jk-ﬂ’CDSE +a3€_.'25.'t1"l:05|9 4+ - +{r:w+]€,-:'|rf|i;.:fcosg

—j2kdcos @ f,_j.-wm cos £

+”2€—jkdcosﬂ +ﬂ_1€ + .- +{?I.w+]
M+1
(AF)ypy1 =2 )" a,cos[(n— 1)kd cos 0] (6-60)
n=1
Which is in normalized form reduces to
M41
(AF)ypp1 = ), acosl(n— 1kd cos 0] (6-60a)

n=l1
The amplitude excitation of the center element Is 2a,.
Equations (6-59a) and (6-60a) can be written in normalized form as



(6-61a)
M

(AF),y (even) = Z a, cos[(2n — 1)u]

n=l1

M+1

6-61b
(AF)yy41(0dd) = Y @, cos[2(n — 1] (6-61b)
where n=l
wd
= ) cos (6-61c)

The next step will be to determine the values of the excitation coefficients (an’s).
6.8.2 Binomial Array
The array factor for the binomial array is represented by (6-61a)—(6-61c)
where the a,’s are the excitation coefficients which will now be derived.
A. Excitation Coefficients

To determine the excitation coefficients of a binomial array, J. S.
Stone suggested that the function (1 + x)™* be written in a series, using
the binomial expansion, as

(14xml=140m=1x+

(e — Lime — 20 4
X

3§
(m— LW — 2Wme — 3) - i
) ) S ST (6-62)

N |

oL

The positive coefficients of the series expansion for different values of m are

l

l
m=2 1 1
m=3 | 2 |
m=4 l 3 3 |
m=>35 I 4 6 4 I
m="nh l 3 L0 10 3 l

The above represents Pascal’s triangle. If the values of m are used to
represent the number of elements of the array, then the coefficients of
the expansion represent the relative amplitudes of the elements. Since
the coefficients are determined from a binomial series expansion, the
array is known as a binomial array. Referring to (6-61a), (6-61b), and (6-
63), the amplitude coefficients for the following arrays are:

3. Four elements (2M = 4)
1. Two elements (2M = 2)

ap = 3
a) = l d, =1
2. Three elements (2M + 1= 3) 4. Five elements (2M + 1 = 5)
2aj=6=>aq =3
2dap=2=a =1
e = 4
n'.'nrz = |. dq = |

The coefficients for other arrays can be determined in a similar manner.



B. Design Procedure
For the binomial method, as for any other nonuniform array method, one of
the requirements is the amplitude excitation coefficients for a given number of
elements. This can be accomplished using either (6-62) or the Pascal triangle of
(6-63) or extensions of it. Other figures of merit are the directivity, half-power
beamwidth and side lobe level. It already has been stated that binomial arrays
do not exhibit any minor lobes provided the spacing between the elements is
equal or less than one-half of a wavelength. Unfortunately, closed-form
expressions for the directivity and half-power beamwidth for binomial arrays of
any spacing between the elements are not available. However, because the
design using a A2 spacing leads to a pattern with no minor lobes, approximate
closed-form expressions for the half-power beamwidth and maximum
directivity for the d = M2 spacing only have been derived in terms of the
numbers of elements or the length of the array, and they are given, respectively,
by
106 106 _ 075

HPBW(d = 1/2) = = =
VN =1 2L/h  +/L/A

(6-64)

1

Dy = — (6-65)

/k [cos( ' cosé)]zw_“ sinéd 48
0 .

(2N = 202N = 4) .2 |
Do = : (6-65;
07 (ON 32N = 5) - | 1)

ST

3

Dy = 1.77VN = 1.77\/1 + 2L/ (6-65h)
These expressions can be used effectively to design binomial arrays with a
desired half-power beamwidth or directivity. The value of the directivity as
obtained using (6-65) to (6-65b) can be compared with the value using the array
factor and the computer program Directivity of Chapter 2.

To illustrate the method, the patterns of a 10-element binomial array (2M =
10) with spacings between the elements of A4, M2, 304, and A, respectively,
have been plotted in Fig. 6.20. The patterns are plotted using (6-61a) and (6-
61c) with the coefficients of a; = 126, a, =84, a3 =36,a, =9,and a5 = 1. It is
observed that there are no minor lobes for the arrays with spacings of A4 and A2
between the elements. While binomial arrays have very low level minor lobes,
they exhibit larger beamwidths (compared to uniform and Dolph-Tschebyscheff
designs). A major practical disadvantage of binomial arrays is the wide
variations between the amplitudes of the different elements of an array,
especially for an array with a large number of elements. This leads to very low
efficiencies for the feed network, and it makes the method not very desirable in
practice. For example, the relative amplitude coefficient of the end elements of
a 10-element array is 1 while that of the center element is 126. Practically, it



would be difficult to obtain and maintain such large amplitude variations among
the elements. They would also lead to very inefficient antenna systems. Because
the magnitude distribution is monotonically decreasing from the center toward
the edges and the magnitude of the extreme elements is negligible compared to
those toward the center, a very low side lobe level is expected.

Table 6.7 lists the maximum element spacing . for the various
linear and planar arrays, including binomial arrays, in order to maintain
either one or two amplitude maxima.

"]

[ Relative power (4B d

d =
Flgure 620 Amay factor power pattems for a 10-clement broadside binomial aray with N= 10 and
d=74.0f2.30/4. and .




Example 6.8

For a 10-element binomial array with a spacing of &/2 between the elements, whose amplitude
pattern is displayed in Figure 6.20, determine the half-power beamwidth (in degrees) and the
maximum directivity (in dB ). Compare the answers with other available data.

Solution: Using (6-64), the half-power beamwidth is equal to

106 106

HPBW =~
vio-1 3

= (1.353 radians = 20.23°

The value obtained using the array factor, whose pattern is shown in Figure 6.20, 1s 20.5° which
compares well with the approximate value.
Using (6-63a), the value of the directivity 1s equal for N = 10

Dy=5302=732dB

while the value obtained using (6-63h) is

D, = 1.77V/10= 5.507 = 7.48 dB

The value obtained using the array factor and the computer program Directivity is
Dy = 5.392 (dimensionless) = 7.32 dB. These values compare favorably with each other.

TABRLE .7  Maximem Element Spacing o, to Maintain Either One or Two Ampltede Maxima of a
Linear Array

Array Dristribution Type DHirection of Maximan Element Spacing
Linear Liniform Broadside B = 7 anly F
B = 0 00°, 180° ad=i
simultansonsly
Linear LIniform Ordinary end-fire 8, =0 only e < A2
B = 120" anly A = A2
#y = 0F, 00°, 1807 ad=5x
simultanaonsly
Linear Liniform Hanzen-"Woosdyand B, =07 anly = Af S
end-fine 8, = 180° only == g4
Linear LIniform Scanning 8, =8, e < A
0= fy = 1807
Linear Monuniform Binomial &, = 90 anly g = A
ty = 07, Q0°, 1807 ad=i
simultanaonsly
Linear Monuniform Drolph-Tachebysche B = 9F anly o — %-c:-:-i‘J (—_L)
Lo
d, = 0= Qe |80 ad=5x
simultanaonsly
Fanar Ulnifomm Flanar g, = 07 only g = A
ty = 07, Q0F and 1807 =i

iy = 0@, 0=, 1 80= 270"
simultansonsly




6.10 PLANAR ARRAY

In addition to placing elements along a line (to form a linear array), individual
radiators can be positioned along a rectangular grid to form a rectangular or
planar array. Planar arrays provide additional variables which can be used to
control and shape the pattern of the array. Planar arrays are more versatile and
can provide more symmetrical patterns with lower side lobes. In addition, they
can be used to scan the main beam of the antenna toward any point in space.
Applications include tracking radar, search radar, remote sensing,
communications, and many others.
6.10.1 Array Factor
To derive the array factor for a planar array, let us refer to Figure 6.30. If M
elements are initially placed along the x-axis, as shown in Figure 6.30(a), the
array factor of it can be written according to (6-52) and (6-54) as

M
AF= ) 1, el Ddesinbeosdtfy) (6-87)
m=1

where I, is the excitation coefficient of each element. The spacing and
progressive phase shift between the elements along the x-axis are represented,
respectively, by d, and 4. If N such arrays are placed next to each other in the
y-direction, a distance d, apart and with a progressive phase £, a rectangular
array will be formed as shown in Fig. 6.30(b). The array factor for the entire
planar array can be written as

N M
AF= E I, E I, &/ Dikd; sinfcos bty ;.] (A= 1)k, Sin 6 sin gt ) (6-87a)

n=1 m=1

ar

AF=§,

.m;"i_'--n

(H-88)

where



M

S.m — Z Imlr."[m—l]{l'drsin B cos by (6-88a)
m=1
N

Syp= 3 Iy eltn- ity sinésingsey) (6-38b)
=1

Equation (6-88) indicates that the pattern of a rectangular array is the product of
the array factors of the arrays in the x- and y-directions.

If the amplitude excitation coefficients of the elements of the array in the y-
direction are proportional to those along the x, the amplitude of the (m, n)th
element can be written as

Imn = Imllln (6'89)
If in addition the amplitude excitation of the entire array is uniform (I, = lo),
(6-87a) can be expressed as

M N
AF = Il.'] Z Ej{nl—l}[.l‘:fx S0 & COs g ) Z E,j{ﬂ—l )k, sin & sin gh4Fy ) (6-00)
m=1 =1

According to (6-6), (6-10), and (6-10c), the normalized form of (6-90) can also
be written as

sin (E%) sin (;t}.‘f,r) (6-91)
AF, (8. ¢ = %‘—%ﬁ" < %—" >
M gin (—‘) : =in (ﬂ)
. 2
where L J
(6-O1a)

w, = kd, sinfcosgh + f,

w, = kdysin@sin¢ + b, (6-01b)

Relative Amplitude

Nomalized Antenna
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x-z plane (9= 0%) y-z plane (¢ = 90%) 6

Figure 6.32  Three-dimensional antenna pattern of a planar array of isotropic elements with a spacing of
d, = d, = »/2. and equal amplitude and phase excitations.



PROBLEMS ABOUT ARRAY ANTENNAS
6.1. Three isotropic sources, with spacing d between them, are placed along the
z-axis. The excitation coefficient of each outside element is unity while that of
the center element is 2. For a spacing of d = A4 between the elements, find the
(a) array factor
(b) angles (in degrees) where the nulls of the pattern occur (0> < #< 180-)
(c) angles (in degrees) where the maxima of the pattern occur (0> < £< 180°)
(d) directivity using the computer program Directivity of Chapter 2.

= 5 )k S|RN 57k
61 Q. E*:E'+E3*E3:2Eo~er)-r+&§ﬁr—t-ae)r‘

0y Va
Where the center element (s placed at the origin. for fur-field
observationg
¢ (ompu.?er Fthmvw\
N X r~ad (o8 irectivi
for phase variatio Divectivity
N r+d ose 11 : S s U = GosH(Z C56)
Gab=p for amplitude variationg e
and Sikr ; _ el
Et:Eo% {21— e)kdcose+e)kdm9} D°=|.4424.4
o aikr S it ke =1.571048
>, & {airg(eMe®y gibeso )t ) ¢ sy
Sikr
=F, S {201+ Cos Ckdeoss]]] [AFG)=465F 0s6) |

Thus +he array factor s equal to
AFC8) =2[ I+ CoSChdcese )] = 4 Cbs*(—ffdcdse )
which In normalized form can also be written aS
AF(6)n = |+ Cos (kdcose) =2Co82("%6°86)

b. The nulls of the pattern can be found using Cither of the above
forms forthe army factor. [or example

One Torm the other Form
AF(8) = 1+ oS Ckd Cos6n) =0 2008 (kd Gosn) =0

Co8 Chd Cos 6n) = - | kd 0sgn = @5 'C0) = D, n=ti, 13-
R4 CoS 6n = CoS (=) =T, n=21,43, . Bn=cogl(nA(ad)) n=tl,+3,..

Bn=0oS'(nA/f2d ), N=11,%3 45,
which are of identicad form. Therefore bsth forms yield the same
results.  Thus for d=7/4

6i= s (44 = Co§'(an) ,n=#1,%3, -- > No nulls exist.



C. Similquj the moxima, of the pattery Can be found us[nj ecther
of the two forms for the arroy factor, For exaw:p(e_

&5 1(Contd) One  Form Other Form
AF()= I+ costkd wsdm) =2  ARB)=206S™( k’;c{cdgem):z
oS (Rd Cosm) = | cosC & s om) = |
fd 0S8 = CoS'(1)=2mT, m=0,2I;-, ‘—%"—‘Cosem=®§'(-‘tl):mﬂ » M=0 £l
Bm = Cos™'( A s M0k, & 200 Q= COS"(%A), M= 0,%|, %2 "

which are of identical form. Therefore both yield the same results .

Thus for‘ d=cAjal
ODm = (bg_'<4m) 1 mlg‘il e AN

m=0: 8= (0S'(o) =%0°
‘i‘h =+1: 61=c08'(4)=> Does not exist.
>The same is true for other values ofm
;.gi-em:-_:tz)ts,"' ) Ther-efwe the ofhlj
| : Moxima OCCur ol 6=90°

6.3. A three-element array of isotropic sources has

the phase and magnitude relationships shown. The . l
spacing between the elements is d = A2, )
(a) Find the array factor.

(b) Find all the nulls.

Q. AF = |+ ej“@daﬁe + -"—/.2)+ e‘j(kd(ose‘*' Tr/-l)

"L_-!;

= |+ 2 CoS(*dcose + T/2)

© AF = |-2Sin(kdcos6)
b. to find the nulls,

AF = |-28In(kdcosp) =0
28“’1(*4(036): l, TCeSH = S"(n_‘(—zl-): %"_’ ?gﬂ'_) %’(_\:’

CoS o = ?, —gi’: Lss_

Bvus = 80.4°, 33.6°



6.5. Four isotropic sources are placed along the z
z-axis as shown. Assuming that the amplitudes
of elements #1 and #2 are +1 and the
amplitudes of elements #3 and #4 are —1 (or
180 degrees out of phase with #1 and #2), find
(a) the array factor in simplified form

(b) all the nulls when d = A2

s sl Ske—a

(&) E— e}‘kr:. e-jkrl Ly é)kr} . e_)kr4
k r Y3 Y4
r - ik . k3
- grl_ [é’)k é_.é-(g se+e)k;(osa_ e"‘) kg»('o&@_ e)k é(ﬂral

p——

=r-d
M=r-gas, ri=r-%wo, n=r+gem, 4=r+idas

AF_ 2) [Sm(skd (ose) + Sin( (ose)J

(b) Jet X= kdGese , Y= 4'-;‘- 050 > AF=4)‘[S'm(debse) Cos(‘%mse)]

AF (d= Me) =4; [sin(Tes6) ©s(Lase) ]

. On= 0° 90", 180°

6.7. Three isotropic elements of equal
excitation phase are placed along the y-
axis, as shown in the figure. If the
relative amplitude of #1 is +2 and of #2

and #3 is +1, find a simplified expression
for the three-dimensional unnormalized
array factor. o

Ekotcd — e——]kr (2+ e}kchoSty+ e—;kol COS(PJ

= e’kr (2+ 2¢cosCkd Cos ) ]

Cos ¢ = dy - Or = Sind Simg
So, AF= 2+ 2 @S (kd Sing sing)

' AF= 2C1it+@stkdsine simg )]




6.2 Two very short dipoles (“infinitesimal”) of equal length are equidistant
from the origin with their centers lying on the y-axis, and oriented parallel to the
z-axis. They are excited with currents of equal amplitude. The current in dipole
1 (at y = —d2) leads the current in dipole 2 (at y = +d2) by 90 in phase. The
spacing between dipoles is one quarter wavelength. To simplify the notation, let
Eo equal the maximum magnitude of the far field at distance r due to either
source alone.

(a) Derive expressions for the following six principal-plane patterns:

1. |Es(6)|forp =0" 2. |Eo(0)| for ¢ = 90°
3. [Eo(¢p)| for 6 =90° 4. |E4(8)| for ¢ = 0°
5. |E4(8)| for ¢ =907, 6. |[Es(¢p)| for 6 =90
(b) Sketch the six field patterns.
i ozt
L 7
1 /q %
A e
-dbz Rese @/nY
e
? _ RLl¢!
r & ed oie e \S"
one dip E J\z i nf
]
Array Factor : -j 2.3 CoS}ﬁ o R Cosy
(AP)z E[eiZ el ™ i
= peif [T, iy
= g, 2. CoS{ECosy - m E, ©1%. 2 (o5 (X(singsing - 1))

S = s\nb
(Oga‘, \Smt) Slﬂ}z’ - (0$}U)At S 'Z'?l(AWQ ,@ ?U

Q.qg) [Egla)]| =< | sSne-cos (=) { . (x-2Z plane)
6=O°, OB T -T<odlH
@ B (0)) o< ls‘lne¢.cO5(§{s*lné'—ﬂ_))\ , (y-2 plane)
B=T0°
(3) IEeC;Z)l o(\ CoS(Hsfn;é—_’l))I }(1,3. Plane)
8 = J0°

(4) IEgsCﬁ)lQS:OQ < O
(5) |Eg®) g 00 « o

Cé) \E¢(e)\e::?o° ¢ =~



6-2 (Cont'd) o7
[Eq(8)]

(6) i
|Ey (#)|
8=1c°

K -



6.13. Design an ordinary end-fire uniform linear array with only one maximum

so that its directivity is 20 dB (above isotropic). The spacing between the

elements is A4, and its length is much greater than the spacing. Determine the

(@) number of elements,

(b) overall length of the array (in wavelengths),

(c) approximate half-power beamwidth (in degrees),

(d) amplitude level (compared to the maximum of the major lobe) of the first
minor lobe (in dB),

(e) progressive phase shift between the elements (in degrees).

a. Do=4NG@)
20 = ﬂoﬂo&(o Do Cdimensionless) = D (dimensionless) = {6 *= (00
106 24N (Z)=N = N=100
b. L=37(%)= 3})\=24}752\
c L/ 450 LSRN = o st |-SRA
: ®3d8 @h 2¢os (] Nd T )mmas (l TTF‘_‘—(%JJM)

= 2 @s'( 1~ "3V 5651 =205 0.

05 ( L ) =208'(1-0.01771) =265"( 0.78228)
@ =2 10.79F) = 21.598° ~21.6°

d. Sidelobe (d3) X -13.54dB

e @=thd=£ X (F) =3 =21

6.20. Show that inorder for a uniform array of N elements not to have any

minor lobes, the spacing and the progressive phase shift between the elements
must be

(@) d = A/N, g =0 for a broadside array.
(b) d = A/(2N), p = £kd for an ordinary end-fire array.
5 (AF)y = Sint N (kd@s6+8) ]

N sin [+ (&dcoss +8> ]

a. For 8=0 3 (AF)p = Sin (fkd @s8)
N Sin(2+kd cose)

An order for the array net to have any minor dobes, we aan assume
that its firstnull occurs at 6=0°or 180°. Thus

(AFn = Sin (Bd) =0 > Nz-kd=ﬂ‘:>d=ﬁ-’£=
N Sin(t4d) N

This assures that there are no miner Lobes 'f‘or‘mecl.




b. For B=kd the maximum occurs af 6= (8¢° and the armay factor
can be written as (AF)n = Sin [Y kd (cese+4)]
N Stn[T4d(cosé+1) ]
Tnorder for ¥he array not #o have any minor Lobes,
We (an ossume that the €irst nul is formed at 6=0°

This Dk ose+0)|,_  =<Nkd=T 3 d :Nvi:':%&\

6.6. A uniform linear broadside array of 4 elements are placed along the z-axis
each a distance d apart.

(@) Write the normalized array factor in simplified form.

(b) For a separation of d = 38 between the elements, determine the:

1. Approximate half-power beamwidth (in degrees).

2. Approximate directivity (dimensionless and in dB).

6.8. Design a uniform broadside linear array of N elements placed along the z-
axis with a uniform spacing d = M10 between the elements. Determine the
closest integer number of elements so that in the elevation plane the

(a) Half-power beamwidth of the array factor is approximately 60°.

(b) First-null beamwidth of the array factor is 60°.

6.9. A uniform array of 3 elements is designed so that its maximum is directed
toward broadside. The spacing between the elements is A2. For the array factor
of the antenna, determine

(a) all the angles (in degrees) where the nulls will occur.

(b) all the angles (in degrees) where all the maxima will occur.

(c) the half-power beamwidth (in degrees).

(d) directivity (dimensionless and in dB).

(e) the relative value (in dB) of the magnitude of the array factor toward end-
fire (6o = 0°) compared to that toward broadside (6, = 90°).

6.12. Design a four-element ordinary end-fire array with the elements placed
along the z-axis a distance d apart. For a spacing of d = A2 between the
elements find the

(a) progressive phase excitation between the elements to accomplish this

(b) angles (in degrees) where the nulls of the array factor occur

(c) angles (in degrees) where the maximum of the array factor occur

(d) beamwidth (in degrees) between the first nulls of the array factor.



6.8.3 Dolph-Tschebyscheff Array: Broadside | st Ed. 2016/ Constantine A. Balanis

ANTENNA THEORY, ANALYSIS & DESIGN

Another array, with many practical applications, is the Dolph-Tschebyscheff array.
The design was originally introduced by Dolph and investigated afterward by others.
It is primarily a compromise between uniform and binomial arrays. Its excitation
coefficients are related to Tschebyscheff polynomials. A Dolph-Tschebyscheff array
with no side lobes (or side lobes of —~ dB) reduces to the binomial design. The
excitation coefficients for this case, as obtained by both methods, would be identical.

A. Array Factor

Referring to (6-61a) and (6-61b), the array factor of an array of even or
odd number of elements with symmetric amplitude excitation is nothing
more than a summation of M or M + 1 cosine terms. The largest
harmonic of the cosine terms is one less than the total number of
elements of the array. Each cosine term, whose argument is an integer
times a fundamental frequency, can be rewritten as a series of cosine
functions with the fundamental frequency as the argument. That is,
m=0 cos(mu)=1

m=1 cos(mu)=cosu

m=2 cos(mu) = cos(2u) = 2 cos*(u) — 1

m =3 cos(mu) = cos(3u) = 4 cos®(u) — 3 cos(u)

m=4 cos(mu) = cos(4u) = 8 cos*(u) — 8 cos*(u) + 1

m=5 cos(mu) = cos(5u) = 16 cos>(u) — 20 cos>(u) + 5 cos(u)

m =6 cos(mu) = cos(6u) = 32 cos’(u) - 48 cos*(u) + 18 cos*(u)- 1
(6-66)

The above are obtained by the use of Euler’'s formula

[¢]" = (cosu + jsinu)™ = ™" = cos(mu) + j sin(mir) (6-67)
and the trigonometric identity sin“u = 1 — cos®u.
If we let
I=cosu (6-68)

wd
i = cos &

(6-66) can be written as
m=0 cos(mu)=1=Tyz)

m=1 cos(mu)=2z="T,(z)

m=2 cos(mu)=27" - 1="T,(z)

m=3 cos(mu)=47 - 37=Ty(2)

m=4 cos(mu)=87* =872 +1=T,(2)

m=5 cos(mu)= 167" =20z + 57 = T4(2) (6-69)
m=6 cos(mu)=132"- 4824 + 1822 -1 = Te(2)



and each is related to a Tschebyscheff (Chebyshev) polynomial T (z).
These relations between the cosine functions and the Tschebyscheff
polynomials are valid only in the -1 < z < +1 range.
Because |cos(mu)|< 1, each Tschebyscheff polynomial is [T (z)|< 1 for
-1 <z <+1. For |z|> 1, the Tschebyscheff polynomials are related to the
hyperbolic cosine functions.

The recursion formula for Tschebyscheff polynomials is

T(z)=2zT,,_1(2) = T, () (6-70)

It can be used to find one Tschebyscheff polynomial if the polynomials of
the previous two orders are known. Each polynomial can also be
computed using

T, (z) = cos[mcos™'(7)] —-1<z<+1 (6-71a)
T,,(z) = cosh[m cosh™'(@)]" z<—-1.2> +1 (6-71b)
,.-*._
Lol ¢ i
=.l It
N -
“ : s
Y £l 5 -
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Tachebyscheff polynomials of orders zero through five.



In Fig. 6.21 the first six Tschebyscheff polynomials have been plotted.

The following properties of the polynomials are of interest:

1. All polynomials, of any order, pass through the point (1, 1).

2. Within the range —1< z <1, the polynomials have values within -1 to
+1.

3. All roots occur within =1 <z <1, and all maxima and minima have

values of +1 and -1, respectively.

Since the array factor of an even or odd number of elements is a
summation of cosine terms whose form is the same as the
Tschebyscheff polynomials, the unknown coefficients of the array factor
can be determined by equating the series representing the cosine terms
of the array factor to the appropriate Tschebyscheff polynomial. The
order of the polynomial should be one less than the total number of
elements of the array.

B. Array Design

It is assumed that the number of elements, spacing between them,
and ratio of major-to-minor lobe intensity (Ry) are known. The
requirements will be to determine the excitation coefficients and the
array factor.
Statement. Design a broadside Dolph-Tschebyscheff array of 2M or 2M+ 1
elements with spacing d between the elements. The side lobes are R, dB below
the maximum of the major lobe. Find the excitation coefficients and form the
array factor.
Procedure
a. Select the appropriate array factor as given by (6-61a) or (6-61b)

(even or odd).
b. Expand the array factor. Replace each cos(mu) function (m =0,1, 2, ...

by its appropriate series expansion found in (6-66).
c. Determine the point z = z, such that T,,(zo) = Ro (voltage ratio). The
order m of the Tschebyscheff polynomial is always one less than the
total number of elements. The design procedure requires that the
Tschebyscheff polynomial in the -1 < z < z;, where z, is the null nearest
to z = +1, be used to represent the minor lobes of the array. The major
lobe of the pattern is formed from the remaining part of the polynomial
up to point zo(z; < z < zp).
d. Substitute

cos(u) = = (6-72)
<0

in the array factor of step b. The cos(u) is replaced by z/z,, and not by z,
so that (6-72) would be valid for |z|< |zo|. At |z|= |z0]|, (6-72) attains its
maximum value of unity.



e. Equate the array factor from step b, after substitution of (6-72), to a
Tm(z) from (6-69). The T,,(z) chosen should be of order m where m is an
integer equal to one less than the total number of elements of the
designed array. This will allow the determination of the excitation
coefficients a,’s.

f. Write the array factor of (6-61a) or (6-61b) using the coefficients found

in step e.
Example 6.9

Design a broadside Dolph-Tschebyscheff array of 10 elements with spacing d between the ele-
ments and with a major-to-minor lobe ratio of 26 dB. Find the excitation coefficients and form
the array factor.

Solution:

1. The array factor 18 given by (6-61a) and (6-61c). That is,

M=5
(AF)y = Z a,cos[(2n — 1)u]
a=1

{,.l-
uz?cosﬂ

2. When expanded. the array factor can be written as

(AF), = a, cos(u) + a; cos(3u)
+ ay cos(5u) + ay cos(Tu) + as cos(Yu)
Replace cos(u), cos(3u), cos(3u), cos(Tu), and cos(Ou) by their series expansions found in
(6-66).
3. Ry (dB) = 26 = 201ogg(Ry) or Ry (voltage ratio) = 20. Determine 75 by equating Ry to
Ty(zy). Thus
Ry = 20= Ty(z) = cosh{9cosh™(z,]
Or
L= cmh[% cosh™ (20)] = 1.0851

Another equation which can, in general, be used to find zo and does not require
hyperbolic functions is

/P Ijr
1 f !

where P 1= an integer equal to one less than the number of array elements (in this case
P=9). Ry = Hy/H, and z; are identified in Figure 6.22.
4. Substitute

cos(u) = =

% 10851
in the array factor found in step 2.
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3. Equate the array factor of step 2, after the substitution from step 4, to T(z). The polynomial
Tyiz) is shown plotted in Figure 6.22. Thus

(AFp = zllay — 3az + Sa3 — Tay + %as)/ m)
+ 2 [(4a; — 203 + 56ay — 120as)/2"]
+ [(16ay — 112a, + 432a5)/ 75°]
2 [(64ay — 5T6as )/ 2]
=" [(256a5)/ 2" ]
= 9z— 12077 + 4322 — 576 + 25627

+
+



Matching similar terms allows the determination of the 2,7s. That is.

256a5,/z) = 256 = ag = 2.0860
(6day — 5T6as) ' = —376 = ay = 2.8308
(16ay — 112ay + 432as) /5g- = 432 = ay=4.11584

(4hay — 20aq + 56ay — 120ag) 5" = —120 = gy = 5.2073
(a] — 3@ + 5a3 — Tag + a5 ifgp= 9 = = 5.8377

In normalized form, the @, coefficients can be written as

ag =1 as = (357
ag = 1.357 iy = 0485
dy = 1974 or ay= 0706
ay = 2,496 g = (LB
ay = 2,798 ap =1

The first (left) st is normalized with respect to the amplitnde of the elements at the
edge while the other (right) is normalized with respect to the amplitude of the center
element.

fi. Uzing the first (left) set of normalized coefficients, the amray factor can be written as

(AFig = 2.798 cos ) + 2,496 cos(3e) + 1.974 cos Si)
+ 1.357 cosiTu) + cosf 9uw)

where w= [(xdfLicos #].

The array factor patterns of Example 6.9 for d = M4 and M2 are shown
plotted in Fig. 6.23. Since the spacing is less than A(d < A), maxima exist only at
broadside (& = 90°). However when the spacing is equal to A(d = A), two more
maxima appear (one toward & = 0 and the other toward & = 180°). For d = A
the array has four maxima, and it acts as an end-fire as well as a broadside

ol
Array Factor Array Factor

Pattern (dB) 0° Pattern (dB)

90°

d=M\4
————d=A2

array_ Figure 6.23  Array factor power pattern of a N = 10 element broadside Dolph-Tschebyscheff array.



Table 6.7 lists the maximum element spacing dnax for the various arrays, including
Dolph-Tschebyscheff arrays, in order to maintain one or two amplitude maxima.

Four isotropic sources are placed symmetrically along the z-axis a distance d apart. Design a
binomial array. Find the
(a) normalized excitation coefficients (b) array factor

(c) angles (in degrees) where the array factor nulls occur when d = 33./4
626. The excitation coefficients of a 4-element binomial army are 1,3.3.1

or
a. G1=3 = = =
N=2M=4 2M=2
aa-1 ) ;
M=2 : ,
b. (AF)4 =Z Gn0Gs[(n)u] , U=Td s, Using. (6-612) and 6-61c),
Thus

(AF)4 = Qi (oS@) + G Cos (3U) =3as (M cosg) + o5 (3 cos6)
which tan also be written, USing (6-66) for m=3, as

(A4 = 30s (5d) + 40T @s6) ~305 (T go50) = 4 s ¥( T cos6)
(AF) = 4 @s3( ¥ wse)

C. The nuls occur when
(AFe = 46s¥ Yosg) =0 » T46son = S'(0) = + (ﬂy , N=0,1,2,--"

=) ~1 2n+ 1)A Y d= 3M4 =
or On= Gs'[+ %] = os'[+ (i'*s'ﬁj MO, by - -

n=o : Bo=0s'(x2)=4819° 13].8(°
n=1 91= CbS"(:t2)= Does net exist. The same holdsfor h> 2 |,

Design a four-element binomial array of A /2 dipoles, placed symmetrically along the x-axis
a distance d apart. The length of each dipole is parallel to the z-axis.

(a) Find the normalized excitation coefficients.

(b) Write the array factor for all space.

(c) Write expressions for the E-fields for all space.

5-28. The exctadion coefficients for a 4~element binomial array are 1,3,3,1

or
Q. a,=3, a.=1

b. Since #he elements are placed qlonJ the ¥-oxis
GsY = Qx- Ar = Ax- (dx Sn6 GBS +ay SN S'ng + d2G58) = SiNGGSF
The array factor for this array is similar to that of Problem €.26 . The
(AF)4 =3 CeS(Tdsing cosp) + CoS(3{9 Sing CoSg) = 408%( Td swe @s¥ )
C. The totn] fied is obtained using the patterny Mmutiplication rule of (6-5)
by n\ultipl)ira the fied of a simgle Ma dipele, as 3‘wen by (484
Wwith +he arroy 'fad'or above. Thus

. TR cos(E(os) 3/ Td o
(total) = E (s‘vnjle F)= e, * 4 oS (— Sing cosg
Ee a o (St )X@) J'{ 27r = [ ~ )




Design a four-element, -40 dB side lobe level Dolph-Tschebyscheff array of
isotropic elements placed symmetrically about the z-axis. Find the

(a) amplitude excitation coefficients (b) array factor

(c) angles where the nulls occur for d = 3M4.

Solution:

Number of elements= 2M = 4, then degree of polynomial = 2M-1= 3.

6-35(1 (AF)4 ﬁé O @S [ (2n-Du]

= a, cos(u) + a, cos(3u) = a; cos(u) +a, (4 cos’(u) -3 cos(u))
= (a; - 3a,) cos(u) + 4a, cos’(u)

m=13 cos(mu)=cos(3u)=4cosu—3cosu

Ro = 40(‘15 2 R, =100

Zo = Cosh[ 3 (sh'(100)]=30095
Therefore

Since

(AF)4= (0-302) Z +4a, (%)‘2 32 ¥AZ8S TR
Aa

(3.00f5)2 =4 3a, =27 257 G, = 2668

al*3(37257) ) a2=1

W:-s 9 Q| = 72.71‘2

b. AF = 2.668 Cosu+ CoS3U ~ , M= T% CoS@

e d= 3% u= 3T Cos6

b
3
AF=266808 0+ CoS3U= 2.668 CoSU =3 (osu-+ 4(oS"(Y
= -0.332 CoSU +4 (08*U = (o5 (330) [—0,332+4.Co_¢*(§1‘rose)]

= Cos(sf(ase)[ 1.668 +2CoS(%1r-{056)] =0

s (2 %) FE e s . 2.5571
. s(Fwosp)=0  or Lesh= (s (-0.834) i g
By = Cog” (F3m)= 46.17°,
gl = s0730° (-Covnpufev Result |
Oa = G2 [é—f (2.5571)] : | D‘lnredLuiv
0, = Cos' [&(3726))] = 37.7487" Do= 6.85%dR3

ComputE’Y‘- quram L= T2 742, 0a=20.2)7 9 Normaliyed Ga=1, 4,266



Design a broadside uniform array, with its elements placed along the z
axis, in order the directivity of the array factor is 33 dB (above isotropic).
Assuming the spacing between the elements is A/16, and it is very small
compared to the overall length of the array, determine the:

(a) Closest number of integer elements to achieve this.

(b) Overall length of the array (in wavelengths).

(c) Half-power beamwidth (indegrees).

(d) Amplitude level (in dB) of the maximum of the first minor lobe
compared to the maximum of the major lobe.

643. a D, =2n(g)
D, =33dB = lo Qo&b D, (dimensionless)
3.3 = loa; D, (dimensionless)
Ds (dimensionless) = 10°2 = 1,995.26
1995.26 = 2N(2) = 2N (ﬁ) = L‘i:;, N.=.15,962.1 .= 15,962

l6A
N = 15,962
b L=(N-1)d = (15962 -1) 7 = {2HLA2 = 39756 A
[ = GOEEE 2

(1391 Cl6)
¢ @n=z[F-estiFRr)]=2[00-c o T aand ]

®n ~ 2[90°— 89.9745°] = 0.05086° = 0.05086"

d. —13.46 = —I13.5dB

Design a nonuniform amplitude broadside linear array of 5 elements. The total
length of the array is 24. To meet the sidelobe and half-power beamwidth
specifications, the amplitude excitations of the elements must be that of a cosine
on-a-pedestal distribution represented by
Amplitude distribution =1 + cos(mx,/L)
where X, is the position of the nth element (in terms of L) measured from the
center of the array. Determine the amplitude excitation coefficients a,’s of the
five elements. Assume uniform spacing between the elements and the end
elements are located at the edges of the array length.
Qn ="1 * 0S5 %)

200 = 1+ s(TX) =1+t Gs@)=2 3 a, =1

— T Xa
02 1+CoS(T)\ = 1+Cos( ) 1+cos(£):l.7o7
3= 1+ Gs (e =1+ s(E) =
X3=L/2

a; =1, a,=1.707, as=1, :element excitations:: 1/ 1.707/2 /1.707 /1



ANTENNA THEORY, ANALYSIS & DESIGN

Lecture Notes-15 BROAD BAND ANTENNAS | 4th Ed. 2016/ Constantine A. Balanis
One of the main objectives in the design of an antenna is to increase its
bandwidth. Typically, the response of an antenna, versus frequency, can be
classified qualitatively into three categories: narrowband, intermediate band, and
wide band. In Fig. 9.1, we exhibit four different dipole configurations, starting with the
classic dipole in Fig. 9.1(a) and ending with the hemispherical dipole of Fig. 9.1(d).
These dipoles can be qualitatively categorized into three groups; narrowband,
intermediate band, and wide band. The same can be concluded for the geometries
of the four monopole geometries of Fig. 9.2. Although in Fig. 9.1 and 9.2, the last two
configurations (d in each) exhibit the most broadband characteristics, usually these
geometries are not as convenient and economical for practical implementation.
However, any derivatives of these geometries, especially two-dimensional types, are
configurations that may be used to broadband the frequency characteristics.

A 4

(a) classic (narrow BW) (b) biconical (intermediate BW) (a) clsssical (narrow BW) (b) conical (intermediate BW)

;2|1 ®

(c) tapered (intermediate BW) (d) hemispherical (wide BW)
(c) tapered (ntermediate BW) (d) hemispherical (wile BW)
Dibole Gonfiinrations énd ssosiatsd Giilitative bandwidtis (BW; Monopale configurations and associated qualitative bandwidths (BW).
T
9.2 BICONICAL ANTENNA {

The biconical antenna formed by placing
two cones of infinite extent together, as
shown in Fig. 9.3(a) is a simple design
that can be used to achieve broadband
characteristics. This can be thought to
represent a uniformly tapered

Transmission

o _ feed line
transmission line. ~ -y
a
7, =7,=120In [(‘-:rt (I)] ‘ ,
2P
R, = 4 =11 [cot (E)]
[h]: = 4 A
If the cone is truncated, the results differs '\

slightly (a) Biconical eometry




{a} Triangular sheet (b)) Bow-lie () Wire simulation
Trangular sheet, bow-tie, and wire simulation of bicomcal antenna.

Geometrical approximations of the solid or shell conical unipole or
biconical antenna are the triangular sheet and bow-tie antennas shown
in Figs. 9.6(a, b), respectively, each fabricated from sheet metal. Each of
these antennas can also be simulated by a wire along the periphery of
its surface, which reduces significantly the weight and wind resistance of
the structure. A biconical antenna of low-mass structures, multielement
intersecting wire bow-ties were employed, see Fig. 9.6(c).
9.7 DISCONE AND CONICAL SKIRT MONOPOLE

{a) Conical skirt (ib) Discone () Wire-simulation
monopole

Conical skirt monopole, discone, and wire-simulated cone surface.
There are many variations to the basic geometrical configurations of

cones and dipoles, to obtain broadband characteristics. Two other
common radiators are the conical skirt monopole and the discone
antenna shown in Figs. 9.24(a) and (b), respectively. For each antenna,
the overall pattern is essentially the same as that of a linear dipole of
length | < A (i.e., a solid of revolution formed by the rotation of a figure-



eight) whereas in the horizontal (azimuthal) plane it is nearly
omnidirectional. The polarization of each is vertical. Each antenna
because of its simple mechanical design, ease of installation, and
attractive broadband characteristics has wide applications in the VHF
(30-300 MHz) and UHF (300 MHz-3 GHz) spectrum for broadcast,
television, and communication applications.

The discone antenna is formed by a disk and a cone. The disk is
attached to the center conductor of the coaxial feed line, and it is
perpendicular to its axis. The cone is connected at its apex to the outer
shield of the coaxial line. In general, the impedance and pattern
variations of a discone as a function of frequency are much less severe
than those of a dipole of fixed length I. The frequency response is similar
to a high-pass filter. Below an effective cutoff frequency it becomes
inefficient, and it produces severe standing waves in the feed line. At
cutoff, the slant height of the cone is approximately V4.

9.8 MATCHING TECHNIQUES
The operation of an antenna system over a frequency range is not

completely dependent upon the frequency response of the antenna
element itself but rather on the frequency characteristics of the
transmission line—antenna element combination. The characteristic
impedance of the transmission line is usually real whereas that of the
antenna element is complex. Also the variation of each as a function of
frequency is not the same. Thus efficient coupling-matching networks
must be designed which attempt to couple-match the characteristics of
the two devices over the desired frequency range.

- >

o /4 ——f+—s0—~

. — hg/4 transformer
< L L =VZRe ——

= .

0C

(a) Shunt matching (b) Ag/4 transformer
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(a) Unbalanced coaxial line

i
~

Metal sleeve

Shorted to
coax’s outer—
conductor

(b) Bazooka balun (1 : 1

Frequency Independent Antennas

Antenna characteristics such as
impedance, pattern, polarization, and so
forth, are invariant to a change of the
physical size if a similar change is also
made in the operating frequency or A. For
example, if all the physical dimensions are
reduced by a factor of two, the
performance of the antenna will remain
unchanged if the operating frequency is
increased by a factor of two. In other
words, the performance is invariant if the
electrical dimensions (size/A) remain
unchanged. If the shape of the antenna
were completely specified by angles, its
performance would have to be
independent of frequency. The infinite
biconical dipole is one such structure.

To make infinite structures more practical, the designs usually require that the
current on the structure decrease with distance away from the input terminals. After
a certain point the current is negligible, and the structure beyond that point to infinity
can be truncated and removed. The lower cutoff frequency is that for which the
current at the point of truncation becomes negligible. The upper cutoff is limited to

Coaxial line

//f

&W

\J

{a) Spiral plate

Sriral nlate and =lot antennas

ib) Spiml dot




frequencies for which the dimensions of the feed transmission line cease to look like
a “point” (usually about A8 where Az is the wavelength at the highest desirable
frequency). Practical bandwidths are on the order of about 40:1. Even higher ratios
(i.e.,1,000:1) can be achieved in antenna design but they are not necessary, since
they would far exceed the bandwidths of receivers and transmitters.

|&) Single spiral (B Two spiral {gy = 00, 73

Planar Spiral

Has the form of wire or
strip in the shape of two
spirals as shown in Fig.
11.1.

Log-Periodic antennas
All the dimensions of the

log-periodic array
increase logarithmically as

defined by the inverse of

the geometric ratio 7 g

¢k Multiple spiral () Multiple spirsl
(g =, #/2, m, 3af2) iy =0, =2 = 35/

Spiral wire antennas.
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Discone Antennas; Continuous surface (left), rods (right).

(a) Log periodic Spiral (b) Square Spiral

(c) Archimedian Spiral (2 (d) Archimedian Spiral (4
arm) arm)
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Lecture Notes-16 Aperture Antennas | «ned 2016/ Constantine A Balanis

Aperture antennas are most common at =
microwave  frequencies. The  various = ——
geometrical configurations of an aperture (4\
antenna with some of the most popular ones L_, -
are shown in Fig.1.4. They may take the form s

of a waveguide or a horn whose aperture may
be square, rectangular, circular, elliptical, or
any other configuration. Aperture antennas
are very practical for space applications,
because they can be flush mounted on the
surface of the spacecraft or aircraft. Their
opening can be covered with a dielectric
material to protect them from environmental
conditions. This type of mounting does not
disturb the aerodynamic profile of the craft,

(c) Rectangular waveguide

WhiCh in high-SpE@d appllcations iS Critlcal Aperture antenna configurations

12.5 RECTANGULAR APERTURES

In practice, the rectangular aperture is probably the most common microwave
antenna. Because of its configuration, the rectangular coordinate system is the
most convenient system to express the fields at the aperture and to perform the
integration. Shown in Fig. 12.6 are the three most common and convenient
coordinate positions used for the solution of an aperture antenna. In Fig. 12.6(a)
the aperture lies on the y-z plane, in Fig. 12.6(b) on the x-z plane, and in Fig.
12.6(c) on the x-y plane. For a given field distribution, the analytical forms for
the fields for each of the arrangements are not the same. However the computed
values will be the same, since the physical problem is identical in all cases.

R ~r— ¢ cosy for phase variations (12-5a)

R=r for amplitude variations (12-5b)
The differential paths take the form of

rfeosw =1"-a, = (4 +a.2)- (4, sinfcos ¢ + &, sin O sin ¢ + & cos 6)

=1V sin@sin¢g + 7 cos @ [Figure 12.6(a)] (12-15a)
Feosy =r"-a, =) +2a.7)-(a,sinfcos ¢p+a,sinfsing + a_cos )

= x"sin@cos ¢+ 7 cos @ [Figure 12.6(b)] (12-15b)
Feosy =v"-a, =@GEx +2a)") - (4, sinfcos ¢ + @, sin@sing + a_cos )

= x"sin@cos ¢ + v sin@sing [Figure 12.6(c)] (12-15¢)



)

Flgure 120 Rectangular aperture positions for antenna system analysis.

and the differential areas are represented by

ds' = dy' d7' [Figure 12.6(a)]
ds' = dx' d7'  [Figure 12.6(b)]
ds' = dx' dy' [Figure 12.6(c)]

(12-16a)

(12-16b)
(12-16c¢)



Rectangular aperture on an infinite electric ground plane.
12.5.1 Unlform Distribution on an Infinite Ground Plane

A rectangular aperture mounted on an infinite ground plane is shown
in Fig. 12.7. To reduce the mathematical complexities, initially the field
over the opening is assumed to be constant and given by
E,=aEy —a/2<x <af2, -b/2<y <b/f2 (12-17)

where E, is a constant. The task is to find the fields radiated by it, the
pattern beamwidths, the side lobe levels of the pattern, and the
directivity.
B. Radiation Fields: Element and Space Factors

The far-zone fields radiated by the aperture of Fig. 12.7 can be found

by following the derivations in the text book anTenNA THEORY, ANALYSIS & DESIGN 4th
Ed. 2016 / Constantine A. Balanis

For the problem in Fig. 12.7, the E-plane pattern is on the y-z plane (¢ =
w2) and the H-plane is on the x-z plane (g = 0). Thus
E-Plane (¢ = w/2)

E = qus =0 (12-24a)
. kb .
Ey = j 20 B0 | 7T (Fsin0) (12-24b)
=) s kb .
— sin #
2
H-Plane (¢=0
E =E;=0 (12-25a)
. ka .
”bkEDf,—‘."Rr sS1n (—” s1n H)

— sin@



To demonstrate the techniques, three-dimensional patterns have been
plotted in Figs. 12.8 and 12.9. The dimensions of the aperture are
indicated in each figure. Multiple lobes appear, because the dimensions
of the aperture are greater than one wavelength. The number of lobes
increases as the dimensions increase. For the aperture whose
dimensions are a = 3A and b = 2A (Fig. 12.8), there are a total of five
lobes in the principal H-plane and three lobes in the principal E-plane.
The pattern in the H-plane is only a function of the dimension a whereas
that in the E-plane is only influenced by b. In the E-plane, the side lobe
formed on each side of the major lobe is a result of A < b < 2A. In the H-
plane, the first minor lobe on each side of the major lobe is formed when
A < a < 2\ and the second side lobe when 2\ < a < 3A. Additional lobes
are formed when one or both of the aperture dimensions increase. This
Is illustrated in Fig. 12.9 for an aperture with a = b = 3A.

Relative Amplitude No. lized A o

Pattarn (lnear scals)
1
oo
0.8

0.7

0.6
105
404
403

q0.2

E o
.

e . =l
H-plane (x-z planc. &= 07) E-planc (y-z planc, @ =907

Plgore 128 Three-dimensional ficld pattem of a constant ficld rectangular aperture mounted on an infinite
ground planc (a= 3A.b = 2A).

Normalized Antenna
Pattem (linear scale)
1

I Relative Amplitude

0.9
0.8
0.7
;0.6
—0.5

-10.4

e 90° 90~ e
H-plane (x-z plane. ¢ = 0) E-plane (y-z plane. ¢ = 907)

Figure 12,9 Three-dimensional field pattern of a constant field square aperture mounted on an infinite ground
plane (@ = b = 32).



Amplitude Pattem 0°
(dB)

120°

%

N

--—-- H-plane
180°

E-plane 150° 150°

Amplitude Pattern

e 12,10 E- and H-plane amplitude patterns for uniform distribution aperture mounted on an infinite

ground plane (@ = 3a.b = 24).

The two-dimensional principal plane patterns for the aperture with a =
3\, b = 2\ are shown in Fig.12.10. For this, and for all other size
apertures mounted on an infinite ground plane, the H-plane patterns
along the ground plane vanish. This is dictated by the boundary
conditions. The E-plane patterns, in general, do not have to vanish along
the ground plane, unless the dimension of the aperture in that plane (in

this case b) is a multiple of a wavelength.
C. Beamwidths

For the E-plane pattern given by (12-24b), the maximum radiation is
directed along the z-axis (¢ = 0). The nulls (zeros) occur when

% sin6'|g:gﬂ =nx, n=123 ...

Or the angles at

6, = sin”~! (%) = sin~! (%) rad

- - A
=57.3sin”" (%)clegrees, n=1,2,3,...

If 6 > nA, (12-26a) reduces approximately to
na.

8:? =

The total beamwidth between nulls is given by
. 1 (1A
B, =20, =2sin : (?)rad

= 114.6sin”! (%) degrees, n=1,2.3,...

b rad = 37.3 (%) degrees, n=1,2,3,...

(12-26)

(12-26a)

(12-26b)

(12-27)



or approximately (for large apertures, 6 > nA) by

0 o 2nh

n =

rad = 1]4h(b )degreeq n=1.2.3... (12-27a)

The first-null beamwidth (FNBW) is obtained by letting 7= 1.
The half-power point occurs when (see Appendix I)
%\ln €lg=g, = 1.391 (12-28)

or at an angle of

0, = sin”' (2';{?2) = sin” (0'4;3}“)1'ﬂcl

y (12-282)
— 57.3sin"! ( ‘:"4?“ A
7

If 6 > 0.443)\, (12-28a) reduces approximately to
M ‘
0, ~ (O.Mﬂf—)mcl =253 ( )d&”’l&ﬂ‘- (12-28b)
' )

) degrees

b
Thus the total half-power beamwidth (HPBW) is given by

0, =26, = 2sin”! ( 04431

) rad = 114.65in” (04;' ") degrees (1229
or approximately (when 6 > 0. 443A) by
O, =~ (0.886%)1‘3-1 = 50.8 (%) degrees (12-29a)

The maximum of the first side lobe occurs when (see Appendix I)
6, ~1.43 (%)racl — 319 (i) degrees (12-30b)

b
D. Side Lobe Level

The maximum of (12-24b) at the first side lobe is given by (see Appendix I)
sin(4.494)

E 6 =0) =
IEa( o 4.494

|:0.21’?:—13.26dB (12-31)

A similar procedure can be followed to find the nulls, 3-dB points,
beamwidth between nulls and 3-dB points, angle where the maximum of
first side lobe occurs, and its magnitude at that point for the H-plane
pattern of (12-25b). A comparison between the E- and H-plane patterns
of (12-24b) and (12-25b) shows that they are similar in form except for
the additional cos# term that appears in (12-25b). An examination of the
terms in (12-25b) reveals that the cos# term is a much slower varying



function than the sin(ka sin #/2)(ka sin £/2) term, especially when a is
large.

E. Directivity
The directivity for the aperture can be found using (12-23a)—(12-23c),

(12-13)—(12-13a), and (2-19)—(2-22). The analytical details using this
procedure, especially the integration to compute the radiated power
(Praq), are more cumbersome.

Because the aperture is mounted on an infinite ground plane, an
alternate and much simpler method can be used to compute the radiated
power. The average power density is first formed using the fields at the
aperture, and it is then integrated over the physical bounds of the
opening. The integration is confined to the physical bounds of the
opening. Using Fig.12.7 and assuming that the magnetic field at the
aperture is given by
Ey
n
where 7 is the intrinsic impedance, the radiated power reduces to

Pra = ,# W, - ds= £l ds = ab ol
ra av 2?}' 2?}.
Sa

5

The maximum radiation intensity (Umax), Using the fields of (12-23a)—(12-23b), occurs
toward #= 0" and it is equal to

H =-a

a —  “x

(12-34

(12-35

E.=0 (12-23a)
abkEge™™ r rsinX sin} .
Ey :JIT?[SIMIJ E T } ( 7 }] (12-23h)
¥ o= E |"
o r_f:r) |Ey .36
Lmu};—(h o (12-36)
Thus the directivity is equal to
43{ [’F[n’l‘; '-I-J'f '-I-ﬂ' '-I-fn'."
— Hk :—{J:{?:—_;"‘i :—_A, __1,’ "
0= TP, 2T T e (12-37)

where

A, = physical area of the aperture

Aem = maximum effective area of the aperture

Using the definition of (2-110), it is shown that the physical and
maximum effective areas of a constant distribution aperture are equal.
The beamwidths, side lobe levels, and directivity of this and other
apertures are summarized in Table 12.1.
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Example 12.2
A rectangular aperture with a constant field distribution, with @ = 34 and b = 24, 1s mounted on
an infinite ground plane. Compute the

a. FNBW in the E-plane
HPBW in the E-plane
FSLBW in the E-plane
FSLMM in the E-plane

. directivity using (12-37)

=

B 6

(1]

f. directivity using the computer program Directivity at the end of Chapter 2, the fields of
(12-23a)—(12-23f), and the formulation of Section 12.4

Solution
a. Using (12-27)

6, =114.6 sin‘l{%} = 114.6(0.524) = 60°
b. Using (12-29)

o4t

0, = 114.6sin™! ( = 114.6(0.223) = 25.6°

c. Using (12-30c)

0, = 20, = 114.6sin""! (‘qﬂ) — 114.6(0.796) = 91.3°

d. Using (12-31)
|Egli;n=gj =0.217T=-1326dB

e. Using (12-37)
Dy=4x(3)(2)=754=1877dB

f. Using the computer program at the end of Chapter 2

Dy~ 804=1905dB

The difference in directivity values using (12-37) and the computer
program is not attributed to the accuracy of the numerical method. The
main contributor is the aperture tangential magnetic field of (12-34),
which was assumed to be related to the aperture tangential electric field
by the intrinsic impedance. Although this is a good assumption for large
size apertures, it is not exact. Therefore the directivity value computed
using the computer program should be considered to be the more
accurate.
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12.5.3 TEo-Mode Distribution on an Infinite Ground Plane

In practice, a commonly used aperture antenna is that of a rectangular
waveguide mounted on an infinite ground plane. At the opening, the field is
usually approximated by the dominant TE;,-mode. Thus

Ex-r) { —a/2 <x' < +a/2

a —b/2 <V < +b/2

A. Equivalent, Radiated Fields, Beamwidths, and Side Lobe Levels

Because the physical geometry of this antenna is identical to that of Fig.12.7,
their equivalents and the procedure to analyze each one are identical.

The summary of its radiation characteristics is included in Table 12.1. The
E-plane pattern of this aperture is identical in form (with the exception of a
normalization factor) to the E-plane of the aperture of Section 12.5.1. This is
expected, since the TEo-mode field distribution along the E-plane (y-z plane) is
also a constant. That is not the case for the H-plane or at all other points
removed from the principal planes. To demonstrate that, a three-dimensional
pattern for the TE,g-mode aperture with a = 3A, b = 2 was computed and it is
shown in Fig. 12.12. This pattern should be compared with that of Fig. 12.8.

The expressions for the beamwidths and side lobe level in the E-plane are
identical to those given by (12-26)—(12-33). However those for the H-plane are
more complex, and a simple procedure is not available. Computations for the
HPBW, FNBW, FSLBW, FSLMM in the E- and H-planes were made, and they
are shown graphically in Fig.12.13 and 12.14.

Relative Amplitude

E, = &,E)cos ( (12-39)

Nomalized Antenna
Pattemn (linear scale)

11 - 403

e 90° 90° 2l
H-plane (x-z plane. ¢=07) E-plane (y-z plane, ¢=90%)

Figure 12,12 Three-dimensional field pattern of a TE,;-mode rectangular waveguide mounted on an infinite
ground plane (@ = 3n. b= 21).



When the same aperture is not mounted on a ground plane, the far-zone fields
do not have to be rederived but rather can be written by inspection. This is
accomplished by introducing appropriately, in each of the field components (E#
and E @) of the fourth column of Table 12.1, a (1 + cos #)/2 factor, as is done for
the fields of the two apertures in the second and third columns. This factor is
appropriate when the z-axis is perpendicular to the plane of the aperture. Other
similar factors will have to be used when either the x-axis or y-axis is
perpendicular to the plane of the aperture.

1480 - 70
[E1A]

100 |- 50

40

B0

30

Beamwidth {degrees)

Relative maximum magnitude of first side lobe (dB down)

Half-power beamwidth (HPBEW)
= e = = First null beamwidth (FNBW)
First side lobe beamwidth {FSLBW)

------- First side lobe maximum magnitude (FSLMM)
1 1 1 L 1 0
o 0.5 1.0 1.5 20 2.3 3.0

Aperture dimension & (wavelengths)

E-plane beamwidths and first side lobe relative maximum magnitude for TE j-mode rectangular
waveguide mounted on an infinite ground plane.

B. Directivity and Aperture Efficiency
The directivity of this aperture is found in the same manner as that of the

uniform distribution aperture of Section 12.5.1. Using the aperture electric field
of (12-39), and assuming that the aperture magnetic field is related to the
electric field by the intrinsic impedance 7, the radiated power can be written as

P = ﬁ‘ W__ - ds = ablEﬂlz (12-39a)

rad L awv 4?? -

The maximum radiation intensity occurs at £= 0e, and it is given by
8 sab\2 |Eol?
Umax = ; ( :*; ) 41 (12-39b)
Thus the directivity is equal to
8 4z | 4r : Az 4r

-2 2| = 2L = | (£ = = 2-30¢

Dy=— uh(ﬂ) - 081 [ab(ﬂ) _0.31,4!}(12 ) _At,m(lg) (12-3%)




In general, the maximum effective area Ay, is related to the physical area A, by
A, =€, A, 0<e <I (12-40)

Lem apip ap

where &, is the aperture efficiency. For this problem &, = 87 =~ 0.81. The
aperture efficiency is a figure of merit which indicates how efficiently the
physical area of the antenna is utilized. Typically, aperture antennas have
aperture efficiencies from about 30% to 90%, horns from 35% to 80%
(optimum gain horns have &, =~ 50%), and circular reflectors from 50% to 80%.
12.6 CIRCULAR APERTURES

A widely used microwave antenna is the circular aperture. One of the attractive
features of this configuration is its simplicity in construction. In addition, closed
form expressions for the fields of all the modes that can exist over the aperture
can be obtained.

The procedure followed to determine the fields radiated by a circular
aperture is identical to that of the rectangular, as summarized in Section 12.3.
The primary differences lie in the formulation of the equivalent current densities
(Jx Jys I2.My,myM;), the differential paths from the source to the observation
point (r' cos #), and the differential area (ds'). Before an example is considered,
these differences will be reformulated for the circular aperture.

Because of the circular profile of the aperture, it is often convenient and
desirable to adopt cylindrical coordinates for the solution of the fields. In most
cases, therefore, the electric and magnetic field components over the circular
opening will be known in cylindrical form; that is, E,, E4 E,, H,, Hg and H,.
Thus the components of the equivalent current densities Ms and Js would also
be conveniently expressed in cylindrical form (M,, Mg, M;, J,, Jg, J;). In
addition, the required integration over the aperture to find Ng, Ny, L, and L of
(12-12a)—(12-12d) should also be done in cylindrical coordinates. It is then
desirable to reformulate r’ cos ¢ and ds’, as given by (12-15a)—(12-16c).

The most convenient position for placing the aperture is that shown in
Fig.12.16 (aperture on x-y plane). The transformation between the rectangular
and cylindrical components of Js is given by (see Appendix VII)

J, cos¢’ —sing’ 071/,
J,| = |sing’ cos¢’ O Jg (12-41a)
J. 0 0 | J,

A similar transformation exists for the components of Ms. The rectangular and
cylindrical coordinates are related by (see Appendix VII)
x' = p'cos ¢’

Vi =p'sing’ (12-41b)

R

ey A



Fignre 12,16 Circular aperture mounted on an infinite ground plane.
12.6.1 Uniform Distribution on an Infinite Ground Plane
To demonstrate the methods, the field radiated by a circular aperture mounted
on an infinite ground plane will be formulated. To simplify the mathematical
details, the field over the aperture is assumed to be constant and given by

E,=4E, o <a (12-44)

where Ey is a constant.
The radiated fields are given by

E.=0 (12-33a)
. ka*Egeikr ing J,(kasin @) (12-53b)
6=/ - ka sin @ h
ka*Ege™/* 1 J(kasin @)
Etfu‘ :Jf COs SCﬂ'S(‘L‘ W (12—53‘:}
In the principal E- and H-planes, the electric field components simplify to
E-Plane (¢p = m?2)
E,=E;=0 (12-54a)

(12-54b)

ka*Eye ¥ 1], (kasin6)
Eg =]

r kasinf



H-Plane (¢ =0)

E,. = EE? =10 (12—553)
e _ ka*Eqe~ikr o Jy (ka sin §) (12-55b)
¢ =J r cos ka sin @ i

Relative Amplitude Nomalized Antenna

Pattem (linear scale)

—=——
o
2

o 00° 90~ e
H-plane (x-z plane. @ =07) E-plane (y-z plane. ¢ = 907)

Figure 12,17 Three-dimensional field pattern of a constant field circular aperture mounted on an infinite
ground plane (@ = 1.5).

A three-dimensional pattern has been computed for the constant field circular
aperture of a =1.5), and it is shown in Fig. 12.17. The pattern of Fig.12.17
seems to be symmetrical. However closer observation, especially through the
two-dimensional E- and H-plane patterns, will reveal that not to be the case. It
does, however, possess characteristics that are almost symmetrical.
B. Beamwidth, Side Lobe Level, and Directivity
Exact expressions for the beamwidths and side lobe levels cannot be obtained
easily. However approximate expressions are available, and they are shown
tabulated in Table 12.2. More exact data can be obtained by numerical methods.
HPBW=29.2)/a degrees where a is the radius of the aperture
Since the field distribution over the aperture is constant, the directivity is given

by

" R SN A
D= o = 154y = hinc ]‘(T) '(I) (12-56)

since the maximum effective area Ay, is equal to the physical area A, of the
aperture [as shown for the rectangular aperture in (12-37)].
A summary of the radiation parameters of this aperture is listed in Table 12.2.



12.6.2 TE;-Mode Distribution on an Infinite Ground Plane

A very practical antenna is a circular waveguide of radius a mounted on an
infinite ground plane, as shown in Fig. 12.16. However, the field distribution
over the aperture is usually that of the dominant TE11-mode for a circular
waveguide given by

ED XIJ / .
E, = ?JJ (?p )smqﬁ’

(12-57)

E‘M

|

e
S

gy
o,
5 |§*,

‘n-.
S
|

L#]

2

h=

elativ plitude ;
Relative Amplitude .

Pattem (linear scale)
1
0.9
0.8
0.7

40.6

6
H-plane (x-z plane. ¢=07) E-plane (y-z plane, ¢ =907)

Figure 12.1%  Three-dimensional field pattern of a TE;;-mode circular waveguide mounted on an infinite
eround plane (a = 1.51).

A summary of all the radiation characteristics is included in Table 12.2. When
the same apertures of Table 12.2 are not mounted on a ground plane, the far-
zone fields do not have to be rederived but rather can be written by inspection.
This is accomplished by introducing appropriately, in each of the field
components (Esand Ey) of the second and third columns of Table 12.2, a
(1 + cos #)/2 factor, as was done for the fields of the two apertures in the
second and third columns of Table 12.1.

HPBW=29.2)/a degrees in the E-Plane

HPBW=37 M\a degrees in the H-Plane
where a is the radius of the aperture.
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12.7 DESIGN CONSIDERATIONS

As is the case for arrays, aperture antennas can be designed to control their
radiation characteristics. Typically the level of the minor lobes can be controlled
by tapering the distribution across the aperture; the smoother the taper from the
center of the aperture toward the edge, the lower the side lobe level and the
larger the half-power beamwidth, and conversely. Therefore a very smooth
taper, such as that represented by a binomial distribution or others, would result
in very low side lobes but larger half-power beamwidths. In contrast, an abrupt
distribution, such as that of uniform illumination, exhibits the smaller half-
power beamwidth but the highest side lobe level (about - 13.5 dB). Therefore if
it is desired to achieve simultaneously both a very low sidelobe level, as well as
a small half-power beamwidth, a compromise has to be made. Typically an
intermediate taper, such as that of a Tschebyscheff distribution or any other
similar one, will have to be selected.

12.15. For the rectangular aperture of Section 12.5.1 with a = b = 3A,
compute the directivity using (12-37)

12"15 a=b= 3A o i o 55d8
Using C1237).; D= —Atab:4ﬁ(3) =113.1 .

12.28. A uniform plane wave is incident upon an X-band rectangular
waveguide, with dimensions of 2.286 cm and 1.016 cm, mounted on an
infinite ground plane. Assuming the waveguide is operating in the
dominant TE;o mode (aperture efficiency=0.81), determine the maximum
power that can be delivered to a matched load. The frequency is 10 GHz
and the power density of the incident plane wave is 10™* watts/m?.

A2 2
Aem= 47 0o = 2= [081-ab . (4X)] = c&lab
Aem = 0.8]-(0.02286 Xo.0106) = 0.8 (232257 X109

= |.88 xlot m>

The moximum power -that can be delivered to
matched Load

—

Pmax = Wi Aem = ( 104 watts/m>) - (1.88x (6% m*)

= |.88X I()_8 watts . = 0.0188 uWalfts



12.26. Two X-band (8.2-12.4 GHz) rectangular waveguides, each
operating in the dominant TE10-mode, are used, respectively, as
transmitting and receiving antennas in a long distance communication
system. The dimensions of each waveguide are a = 2.286 cm and b =
1.016 cm and the center frequency of operation is 10 GHz. Assuming
the waveguides are separated by 10 kilometers and they are positioned
for maximum radiation and reception toward each other, and the
radiated power is 1 watt, find the:

a- Incident power density at the receiving antenna

b- Maximum power that can be delivered to a matched load
Assume the antennas are lossless, are polarization matched, and each is mounted on an infinite
ground plane

=W =0 Ghe
0. A= 3Xl0l°C'm/8 L¥a T Prad B} X
lf) X10THz — #2 load
0=09"=2.286m = O0.T62 A
= ¥ o = . 7\
b=04= 1016 Cm ©.339 e lokm —
Power density for (sotropic source;
= Prad _ | Watt = 7.96 x10'° W/m*

(o]
AT R2 AT Clox(03)?

Directiuit) from Table 12.1,)2.2
Do = 2 [4Tah] = £2(0.962)(0.337)=2.63

S

Incident Power densit g
Wi = WoDo = (7.96 x 16"°W/m=) (2.63) 9 Wi =2.09X10" W/m>

b. The moximum power that can be delivered to a matched load.
Aem - Eal) Ap = 0.8|lab =1|.88 X(Cr4 m=
- - b ~I3
Pmax = Wi Aem = (2.09x10 ?N/m’-)(l-gﬁ x1a*m*)=3.94x10"wW
Pay = 3.94x16"° W
12.27. The normalized far-zone electric field radiated in the E-plane (x-z plane; ¢h = 0°) by a waveg-

uide aperture antenna of dimensions a and b, mounted on an infinite ground plane as shown
in the figure, 1s given by

z
A
. kL —
wopblyekr sin (T} COS é?) 4
E=-ay =
%/ dxr kb ) LA lh i
Tmsé‘ b e =V
2 4 i

. 74 a—>
Determine in the E-plane the:

a-The HPBW in the E-plane,
b- The HPBW in the H-plane.



12.21. For the rectangular aperture of Section 12.5.3(waveguide/mode TE;)
with a =3\, b =2\, compute the

a- E-plane half-power beamwidth, b- H-plane half-power beamwidth

c- E-plane first-null beamwidth, d- H-plane first-null beamwidth

e- E-plane first side lobe maximum (relative to main maximum)

f- H-plane first side lobe maximum (relative to main maximum)

using the formulas of Table 12.1.

Solution:
a- HPBW= 50.8\/b, (E-Plane) HPBW = 50.8x A/2A= 25.4°
b- HPBW= 68.8\/a, (H-Plane) HPBW = 68.8x A/3A=22.93°
c- NNBW= 114.6\/b, (E-Plane) NNBW = 114.6x A/2A= 57.3°
d- NNBW= 171.9Ma, (H-Plane) NNBW = 171.9x A/3A= 57.3°
e- -13.26 dB
f- -23dB

A rectangular aperture mounted on an infi-
nite ground plane has aperture electric

field distributions and corresponding efh- NN
ciencies of / \
Field Aperture b / Triangular
Distribution Efficiency / 27N,
. ) . cioas "
(a) Triangular T13% - ~
(b) Cosine square  66.67% ™ a >
What are the corresponding directives (in
dB) if the dimensions of the aperture are
a=i/2and b=231/47
Do= 4 Ao = '¢ Ap =
a ne il
A M Az SQp/p aP 7\1 (Cl b)

Do = Eqp 4W(ab) _ Ar
P b (E)tes

Q. Tricmaular -‘ EqP =76 % = 3/4
Do=2(Z) =1178( = 0.7118 dB
De = 1.118] = 0.7118dB
b. (osine Square : Eqp=66.67 7% = 2/3
Do = Eap L =2(F)=F=1.0472 = 0.2dB
Do = 1.0472 = 0.2dB
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13.1 INTRODUCTION

One of the simplest and the most widely used microwave antenna is the horn. Its
existence and early use dates back to the late 1800s. Although neglected somewhat
in the early 1900s, its revival began in the late 1930s from the interest in microwaves
and waveguide transmission lines during the period of World War Il. The horn is
widely used as a feed element for large radio astronomy, satellite tracking, and
communication dishes found installed throughout the world. In addition to its utility as
a feed for reflectors and lenses, it is a common element of phased arrays and
serves as a universal standard for calibration and gain measurements of other
high-gain antennas. Its widespread applicability stems from its simplicity in
construction, ease of excitation, versatility, large gain, and preferred overall
performance.

An electromagnetic horn can take many different forms, four of which are shown in
Fig. 13.1. The horn is nothing more than a hollow cylinder of different cross sections,
which has been tapered (flared) to a larger opening. The type, direction, and amount
of taper (flare) can have a profound effect on the overall performance of the element
as a radiator.

13.2 E-PLANE SECTORAL HORN

The E-plane sectoral horn is one whose opening is flared in the direction of the E-
field, and it is shown in Fig. 13.1(a).

13.2.1 Aperture Fields

The horn can be treated as an aperture antenna. To find its radiation
characteristics, the equivalent principle techniques developed in Chapter 12 can be
utilized. To develop an exact equivalent of it, it is necessary that the tangential electric
and magnetic field components over a closed surface are known. The closed surface
that is usually selected is an infinite plane that coincides with the aperture of the horn.
When the horn is not mounted on an infinite ground plane, the fields outside the
aperture are not known and an exact equivalent cannot be formed. However, the
usual approximation is to assume that the fields outside the aperture are zero, as was
done for the aperture of Section 12.5.2.

3
-
-

-

>

{b)} H=plane
{ay E-plane

S

(c} Pyramidal (d) Conical

Typical electromagnetic horn antenna configurations.



It can be shown that if the: (1) fields of the feed waveguide are those of its dominant
TE10 mode and (2) horn length is large compared to the aperture dimensions, the
lowest order mode fields at the aperture of the horn are given by

E=E=H=0 (13-1a)
E(x'.y) = E, cos (%.r') e~ 2p1)] (13-1h)
HHf.f}EiEL(—Eg)ﬂn(if)f4mﬂ”h”] (13-1c)

i kan a
E T
H(x' )= ——Lcos (E_r') /2] (13-1d)
: n a
p| = PpCOS WY, (13-1e)

where E; is a constant. The primes are used to indicate the fields at the aperture of
the horn. The expressions are similar to the fields of a TE;o-mode for a rectangular
waveguide with aperture dimensions of a and b;(b; > a). The only difference is the
complex exponential term which is used here to represent the quadratic phase
variations of the fields over the aperture of the horn.
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The necessity of the quadratic phase term in (13-1b)—(13-1d) can be illustrated
geometrically. Referring to Fig. 13.2(b), let us assume that at the imaginary apex of
the horn (shown dashed) there exists a line source radiating cylindrical waves. As the
waves travel in the outward radial direction, the constant phase fronts are cylindrical.
At any point y' at the aperture of the horn, the phase of the field will not be the same
as that at the origin (y' = 0). The phase is different because the wave has

traveled different distances from the apex to the aperture. The difference in path of
travel, designated as J(y'), can be obtained by referring to Fig. 13.2(b). For any point
Y’

[py + 80/ ) = p2 + (') (13-2)
Or

27 12
' Foo=
1,
which is referred to as the spherical phase term.

Using the binomial expansion and retaining only the first two terms of it, (13-2a)
reduces to

i 2 a2
50v') = —p, + py [] + (‘—) ] =%(" ) (13-2b)
[ <A/

The quadratic phase variation for the fields of the dominant mode at the aperture of a
horn antenna has been a standard for many years, and it yields in most practical
cases very good results. It also leads to closed form expressions, in terms of sine and
cosine Fresnel integrals, for the radiation characteristics (far-zone fields, directivity,
etc.) of the horn.

13.2.2 Radiated Fields

The electric field components radiated by the horn can be given by

E.=0 (13-11a)
ar/akp E e %
.EH = —] —
Br
kya
cos | — (13-11k)
s 4 5012 G b1 4 cos @) - Firy.r)
Jr\_;f'nr - fr y 2
2 ) (f)
_ {n'"i~I ranE]{ —iks
E"b = B
k.a
{'05(—_{) (13-11c)
4 e’"r”"p“' 2k) ‘cosghicos B 4+ 1) i Fit).ta)

(%) -(5)

where ty, to, Ky, ky, and F(ty, tp) are given, respectively, by (13-8a), (13-8b), (13-9a),
(13-9b), and (13-9c). The corresponding H-field components are obtained using (12-
10d)—(12-10f).

In the principal E- and H-planes, the electric field reduces to
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Figure 13,3 Three-dimensional field pattern of E-plane sectoral horn (p, = 6i, b; = 2.75h, a = 0.51).
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Figure 134 E- and H-plane patterns of an E-plane sectoral horn.

13.2.3 Directivity

The directivity is one of the parameters that is often used as a figure of merit to
describe the performance of an antenna. To find the directivity, the maximum radiation
is formed. That is,

o
Upax = U8, )| oy = ElElumax (13-14)
For most horn antennas |E|max is directed nearly along the z-axis (¢ = 0°). Thus,
. » Qavfxkp
Elux = /1B o + 1Eg e = ——|Ey|FC0) (13-15)
m=r
r2 2 Eﬂzkﬂl 2 2 4"ﬂ'zllf"'ll-;-?l |2 2
Upax =E|E|m“ = o |Ey P F 0] =WIFU}I (13-16)
b
Prnd=|E1|24l_a (13-17a)
n
Using (13-16) and (13-17a), the directivity for the £-plane horn can be written as
4xU, 64 ,
Dp = =% = —H R
Pmd ar}",bl

St \ o (13-18)
_ L o2 L\, I
kb, V2o v 2he

Where C and S are the cosine and sine integrals.
The directivity increases as the aperture increases till it reaches Max. then drops down
due to the effect of the increasing phase error as can be seen in Fig. 13.7.
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Maximum directivity can be obtained when
E'-'l o ‘I.'-'E.-l".,ﬂ[ (13-18a)

13.3H-PLANE SECTORAL HORN

Flaring the dimensions of a rectangular waveguide in the direction of the H-field,
while keeping the other constant, forms an H-plane sectoral horn shown in Fig.13.1(b).
The analysis procedure for this horn is similar to that for the E-plane horn, which was
outlined in the previous section.
It can be shown that each optimum directivity occurs when

a) = 1/ 3hp, (13-39¢)

Where a; is the flared horn aperture size along and p;
13.4 PYRAMIDAL HORN

The most widely used horn is the one which is flared in both directions,
as shown in Fig. 13.16. It is widely referred to as a pyramidal horn, and its
radiation characteristics are essentially a combination of the E- and H-
plane sectoral horns.

T IR J2 roy
El(x'.v') = Ejcos (L.x’) e~ pa ¥ 1)/ 2] (13-41a)
. ay
fo bt ED Ty —ik2 ) a2 oy )i 2]
Hix.v)=——cos | —x | g/ 2t /oli= (13-41h)
- H ay

13.4.1 Aperture Fields, Equivalent, and Radiated Fields

To simplify the analysis and to maintain a modeling that leads to computations that
have been shown to correlate well with experimental data, the tangential components
of the E- and H-fields over the aperture of the horn are approximated by
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Figure 13,16 Pyramidal horn and coordinate system.

Combining (13-43a)—(13-43d), the far-zone E- and H-field components of (12-10a)-
(12-10c) reduce to

E =0 (13-46a)
kelkr
Eg =i —1Lg +1Ne]
kE —jkr
= 29" [sindh(1 + cos )1, L] (13-46b)
oy
ke .
KEgekr
== leosdleos 0 + DL, ] (13-46¢)




The fields radiated by a pyramidal horn, as given by (13-46a)—(13-46c), are valid for
all angles of observation. An examination of these equations reveals that the principal
E-plane pattern (¢ = #2) of a pyramidal horn, aside from a normalization factor, is
identical to the E-plane pattern of an E-plane sectoral horn. Similarly the H-plane (¢ =
0) is identical to that of an H-plane sectoral horn. Therefore the pattern of a pyramidal
horn is very narrow in both principal planes and, in fact, in all planes. This is illustrated
in Fig.13.17.
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Pattem (linsar scale)
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{04
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H-plane (x-z plane. ¢=0°) E-plane (y-z plane, ¢ = 90°)
Figure 1317 Three-dimensional field pattern of a pyramidal horn (p; = p, = 6k, a; = 5.5A, by = 2754,
a= 0.5)\.. b = 0.25}\, ). 1

3.4.2 Directivity

The directivity of the pyramidal configuration is vital to the antenna designer. It is a
very simple exercise to show that | 4| max, | Eslmax,» @nd in turn Umax can be written,
using (13-46b) and (13-46¢), as

vV P1LP2 2142
|Eplpax = |Eq sin | r' [[Cla) = CONP + [Su) — S(v) 212
172
x 4 C* +5° (13-48a)
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1/2
b . b
x{cz(—1)+s—( ! )} (13-48b)
Ve, vV 2k
. s p1P 5 ,
Upax = ;—H|E|im = |ED|25—;{[CU£} — O] + [SGe) — S )

I A R
Zhpy Zhpy



2ap by

Pra = |Egl” " (13-49)
the directivity of the pyramidal horn can be written as
_ 4JTL'rmu _ 8.?1';5'“5'2 .12 12
D, = P = ab, [[C) = Clv)]= + [Stu) = S(v)]=}
(13-5300
2 b b
which reduces to
D=2~ p.p 13-50
P= Nab EH R

where De and Dy are the directivities of the £- and H-plane sectoral horns as given by
(13-18) and (13-39), respectively. This is a well-known relationship and has been used
extensively in the design of pyramidal horns.

The aperture dimensions of the optimum pyramidal horn can be given by:

ap =\ 3hpy

by = v2hp
While the gain can be given by
1 4x

Go= -2
07 7252

[{?J b] !
13.5 CONICAL HORN

Another very practical microwave antenna is the conical horn shown in Fig.13.24
with a photo of one in Figure 13.25. While the pyramidal, E-, and H-plane sectoral
horns are usually fed by a rectangular waveguide, the feed of a conical horn is often a
circular waveguide. The modes within the horn are found by introducing a spherical
coordinate system and are in terms of spherical Bessel functions and Legendre
polynomials.

\ LB Ve
/// \
j - T T — T - dm=24
~~-_\ /
= Fig. 13.25 Photo of an X-band
l conical horn (L = 7.147A, 2¢c= 35°).
N
L ]

Figure 13.24 Geometry of the conical horn.




The optimum maximum directivity (D) and axial length L based on the optimum
horn

(D )ope = 15.9749 (f) + 1.7209 (13-57a)
— — dj}f 2 dl"ﬂ
(Dodope 51572 ( 5% ) = 0.6451 ( 5™ ) +1.3645 (13-57b)
d.FH . = d.rj'] -
L~03232( =") —00475 (=% ) +0.0052 (13-57¢)

Design an E-plane horn such that the maximum phase difference between two points
at the aperture, (one at the center and the other at the edge) is 120°. Assuming that
the maximum length along its wall (©.), measured from the aperture to its apex, is
10A, find the

a- maximum total flare angle of the horn.

b- largest dimension of the horn at the aperture.

(b E-plane view

4 U\Sinj the jeovnetrj of F{jure 13.2 (b)

8. Do = Z =R Su = 2T (0e -p1) = 3 (e ~e cos 4 )= fo (1~ cos yp

2L = L (oA (1= Cos We) = 2T CIOA) (| —Cos g ) = (o) [—281#(%)]

3 A
RS- \l___‘__ =) : °
sin* {& = 30y =& 7 %:Sm (&)= 748

o =2 (1.418°)=14.836°, 2Ve = 27.672°

b g=@>sﬁn% = (oASIN(C14.8369=2.56 A & b =5.12A

1)

01 =0 Cosfe = (0OA Cos( [4.836°) =F.66T A



Design a pyramidal horn antenna with optimum gain at a frequency of 10 GHz. The
overall length of the antenna from the imaginary vertex of the horn to the center of the
aperture is 10A and is nearly the same in both planes. Determine the
a- Aperture dimensions of the horn (in cm).
b- Gain of the antenna (in dB)
c- Aperture efficiency of the antenna (in %). Assume the reflection, conduction, and
dielectric losses of the antenna are negligible.
Zﬂ:gPower delivered to a matched load when the incident power density is 10pW/m?.

-18. = 30X10Y

™ 10xt0Y ~ =04

Q. Q2= 3R = RAUOA) = V30A* = 5.47TA = (643 (m
bi > \aX¢ = V20AT = 4472 = (3.416 (m

b.  Go=7 4L (abi)=z T (5.4770) (44721) =153.89= 21.87d8

& Erecd EqP: |- |'EQP: % ; EQP:% :507‘,

-3 P =
d.  Aem =G, = 3 (153.87) = Il0. 2156 Om* = lio. 2156 X(5% m*

Proc = WiAem = lox16° x ll0. 2156 X16% = 1,102,156 16 '°= 11.02156 [0 &

Prec = 11.02I56 X10° = 0.1102156 i Watts

As part of a 10-GHz microwave communication system, a horn antenna that is said to
have a directivity of 75 (dimensionless). The conduction and dielectric losses of the
antenna are negligible, and the horn is polarization matched to the incoming signal.

A standing wave meter indicates a voltage reflection coefficient of 0.1 at the antenna
waveguide junction.

a- Calculate the maximum effective aperture of the horn.

b- If an impinging wave with a uniform power density of 1 pW/m? is incident upon the
horn, what is the maximum power delivered to a load which is connected and matched
to the lossless waveguide?

2\ A% .03)2 g
a:l o= 1= 1) e Dys gy (040? 752 E3[TT64 X0 m*

(f=10GHz +A=0.08m)
Aem = 0.0053|7764 m*

S 2T
b, Prgx = Aew Wi = (x10° wQus/mz)-(0.00SSW'?M): S31'TXI0 wag
Pmay = 5-317764 X167 Wit s
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LN-19 Microstrip Antennas
14.1 INTRODUCTION

In high-performance aircraft, spacecraft, satellite, and missile applications, where
size, weight, cost, performance, ease of installation, and aerodynamic profile are
constraints, low-profile antennas are required. Other applications like mobile radio
and wireless communications need small and light antennas. To meet these
requirements, microstrip antennas (patch antennas) can be used. These antennas
are of low profile, conformable to planar and nonplanar surfaces, simple and
inexpensive to manufacture using modern printed-circuit technology, mechanically
robust when mounted on rigid surfaces, compatible with MMIC designs. Moreover,
by adding loads between the patch and the ground plane, such as PIN and varactor
diodes, adaptive elements with variable resonant frequency, impedance,
polarization, and pattern can be designed.

Disadvantages of microstrip antennas are their low efficiency, low power, high Q
(sometimes > 100), poor polarization purity, poor scan performance, spurious feed
radiation and very narrow frequency bandwidth, which is typically <few%. In addition,
microstrip antennas are rather large physically at VHF and possibly UHF
frequencies.

14.1.1 Basic Characteristics

Microstrip antennas were first presented in 1953 and patented in 1955, then
received considerable attention in the 1970s. Microstrip antennas, as shown in
Fig.14.1(a), consist of a very thin (t < Ao, Where A, is the free-space wavelength)
metallic strip (patch) placed a small fraction of a wavelength (h < Ao, usually 0.003A,
< h = 0.05A,) above a ground plane. The microstrip patch is designed so its pattern
maximum is normal to the patch (broadside radiator). This is accomplished by
properly choosing the mode (field configuration) of excitation beneath the patch.

o \ P
,-‘f Radiating Fadiating A
,.-'jr slot #1 slot #2 PR, .-'_-|r__ (*. 8.6)
-~
[ Er Substrate / j,ff/ :
Ground plane / Y. P :
(a) Microstrip antenna W Vi f/_,-;’-‘ -.-': | )
]
7 JII' Iy
o —— v /r(_.f/f-‘;{-_ fé
4y _Z /
. h
. ‘t‘h'i 1-1'11 _ﬁr
Ground plane z
(b} Side view () Coordinate system for each radiating =lot

Microstrip antenna and coordinate system.

For a rectangular patch, the length L of the element is usually Ao/3 < L< A,/2. The
strip (patch) and the ground plane are separated by a dielectric sheet (substrate), as
shown in Figure 14.1(a).

The numerous substrates that are used in the design of microstrip antennas have
dielectric constants in the range of 2.2 < < 12. The ones that are most desirable for
good antenna performance are thick substrates whose dielectric constant is in the
lower end of the range because they provide better efficiency, larger bandwidth, but



at the expense of larger element size. Thin substrates with higher dielectric
constants are desirable for microwave circuitry because they require tightly bound
fields to minimize undesired radiation and coupling, and lead to smaller element
sizes; however, because of their greater losses, they are less efficient and have
relatively smaller bandwidths.

The radiating elements and the feed lines are usually photoetched on the dielectric
substrate. The radiating patch can have various shapes as illustrated in Fig.14.2.
Square, rectangular, dipole (strip), and circular are the most common because of
ease of analysis and fabrication, and attractive radiation characteristics« especially
low cross-polarization radiation. Microstrip dipoles are attractive because they
inherently possess a large bandwidth and occupy less space, which makes them

attractive for arrays.

{a) Square by Rectangular () Dipole (dy Circular {e) Elliptical
if) Triangular (&) Disc sector ih) Circular ring (i} Ring sactor

Representative shapes of microstrip patch elements.

14.1.2 Feeding Methods

There are many methods of feeding microstrip antennas as shown in Fig.14.3. The
four most popular are the microstrip line, coaxial probe, aperture coupling, and
proximity coupling. The microstrip feed line is also a conducting strip, usually of
much smaller width compared to the patch. The microstrip-line feed is easy to
fabricate, simple to match by controlling the inset position and rather simple to
model. However as the substrate thickness increases, surface waves and spurious
feed radiation increase, and thus limit the bandwidth (typically 2—-5%).

Coaxial-line feeds, are also widely used. The coaxial probe feed is also easy to
fabricate and match, and it has low spurious radiation. However, it also has narrow
bandwidth and it is more difficult to model, especially for thick substrates (h >
0.02A.). Both the microstrip feed line and the probe possess inherent asymmetries
which generate higher order modes which produce cross-polarized radiation. To
overcome these problems, noncontacting aperture-coupling feeds, as shown in
Figs.14.3(c,d), have been introduced.

14.1.3 Methods of Analysis

The common methods of analysis for microstrip antennas are; 1- the transmission-
line, 2- the cavity, and 3-the full wave. The transmission-line model is the easiest of
all, it gives good physical insight, but is less accurate and it is more difficult to model
coupling. The cavity model is more accurate but at the same time more complex.
The full-wave models are very accurate, very versatile, and can treat single
elements, finite and infinite arrays, stacked elements, arbitrary shaped elements, and
coupling. However they are the most complex models and usually give less physical
insight.
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14.2 RECTANGULAR PATCH
The rectangular patch is the most widely used configuration. It is very easy to
analyze using both the transmission-line and cavity models.
14.2.1 Transmission-Line Model
The rectangular microstrip antenna can be represented as an array of two radiating
narrow apertures (slots), each of width W and height h, separated by a distance L.
Basically the transmission-line model represents the microstrip antenna by two slots,
separated by a low-impedance Z. transmission line of length L.
A. Fringing Effects
Because the dimensions of the patch are finite along the length and width, the fields
at the edges of the patch undergo fringing. This is illustrated along the length in Figs.
14.1(a,b) for the two radiating slots of the microstrip antenna. The same applies
along the width. The amount of fringing is a function of the dimensions of the patch
and the height of the substrate. For microstrip antennas L./h > 1, then fringing is
reduced; however, it must be taken into account because it influences the resonant
frequency of the antenna. The same applies for the width.



The effective dielectric constant can be given by
W/ih>1

41 e -1 RV
e =~ — + [”]"W] (14-1)

7

B. Effective Length, Resonant Frequency, and Effective Width

Because of the fringing effects, electrically the patch of the microstrip antenna looks
greater than its physical dimensions. For the principal E-plane (xy-plane), this is
demonstrated in Fig. 14.7 where the dimensions of the patch along its length have
been extended on each end by a distance AL, which is a function of the effective

dielectric constant &e and the width-to-height ratio (W/h). A very popular and
practical approximate relation for the normalized extension of the length is

AL _ 0.412

1

(& ey + 0.3) {% +0264)
' ' (14-2)

W |
(eqerr = 0258) (- +08)
v K,

The width of the patch is given by

: 1 2 Ly 2 ‘
2fr\/Hogo V &0 T Loaf Ve +1

The actual length of the patch can now be determined by

L= ! _2AL (14-7)
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(b Side view

Phyvsical and effective lengths of rectangular microstrp patch.
Since the length of the patch has been extended by AL on each side, the effective
length of the patch is now (L = A/2 for dominant TMg;0 mode with no fringing)
Lar = L+ 2AL (14-3)

For the dominant TMg;0 mode, the resonant frequency of the microstrip antenna is a
function of its length. Usually it is given by
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where z, is the speed of light in free space. Since (14-4) does not account for

fringing, it must be modified to include edge effects and should be computed using
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The q factor is called the fringe factor (length reduction factor). The designed
resonant frequency, based on fringing, is lower as the patch looks longer.

F. Matching Techniques

The resonant input resistance, is referenced at slot #1. However, it has been shown
that the resonant input resistance can be changed by using an inset feed, recessed
a distance y, from slot #1, as shown in Fig.14.11(a). This technique can be used
effectively to match the patch antenna using a microstrip-line feed when its
characteristic impedance is known. The input resistance varies with the inset
distance as given by Eqg. 14-20a, where G1 and G12 are the slot conductance and
mutual conductance respectively.
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L
Microstrip Microstrip 'y
Transmission Transmission
Line 20 { Line
» Z] o
X | W "(ﬁ—zc z,=yzR,  |"
|y
Substrate Substrate I
e—— L —— = :r e—— L ——

Fig.

ia) Coupled

ib) 24 impedance transformer

Alternate feeding technigues of microstrip antenna for impedance matching.

14.12 shows two other alternative methods of matching with the patch antenna.



C. Fields Radiated—TMyo10 Mode

To find the fields radiated by each slot, we follow a procedure similar to that used to
analyze the aperture in Section 12.5.1. The total field is the sum of the two-element
array with each element representing one of the two slots.

x -
A n
#1. #2 Total

ia) E-plane (b)) H-plane

Twpical E- and H-plane patterns of each microstrip patch slot, and of the two together
E-Plane (8 = 90°,0° < ¢ < 90° and 270° < ¢ < 360°)
For the microstrip antenna, the x-v plane (8 = 90°,0° < ¢ <90° and 270° < ¢ < 360°) is

the principal E-plane. For this plane, the expressions for the radiated fields of (14-43)—(14-43b)
reduce to

(14-45)

H-Plane (¢ = 0°,0° < @ < 180°)

The principal H-plane of the microstrip antenna is the x-z plane (¢p = 0°,0° < 8 < 180°), and the
expressions for the radiated fields of (14-43)—(14-43b) reduce to

. ( koh 9) , ( koW 9)
. sin | — sin# } sin cos
g o 4o W7 WVoeTR ] i > > (14-46)
¢ zr koh koW

—sin 8 ——cos 8
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Figure 14.21  Normalized 3D and 2D patterns and S, of rectangular microstrip patch (L = 0.906 cm, W =
1.186 cm. A= 0.1588 cm, ¥, = 0.203 cm., £, = 2.2, f,, = 9.8 GHz).
14.2.3 Directivity
As for every other antenna, the directivity is one of the most important figures-of-
merit whose definition is given by (2-16a) or

. 4z U_.
l':ll.l?{ — max ( 14_50)
L‘O Pracl
The directivity of one slot can be found, then the mutual conductance and array

factor are taken into account to find the total directivity of the two slots. This is a long

procedure.
Asymptotically the directivity of two slots (microstrip antenna) can be expressed as

6.6(dimensionless) =8.2dB W <,

D, = (14-57)
8 (E) WA,
Ao

‘DU=

The directivity is not a strong function of the substrate height, as long as the height is
maintained electrically small. About 2 dB difference is indicated between the
directivity of one and two slots. A typical plot of the directivity of a patch for a fixed
resonant frequency as a function of the substrate height (h/A.), for two different
dielectrics, is shown in Fig. 14.23.




Example 14.1

Design a rectangular microstrip antenna using a substrate (RT/duroid 5880) with dielectric con-
stant of 2.2, h = 0.1588 cm (0.0625 inches) so as to resonate at 10 GHz.
Solution: Using (14-6), the width W of the patch is

30 2 .
W= +f = 1.186 cm (0.467
0V 22+1 cm ( in)

The effective dielectric constant of the patch is found using (14-1), or

22+1 + 22-1 (1 + 120.1588

~1/2
Frell = 7 2 1.186) = e

The extended incremental length of the patch AL is, using (14-2)

1.186 ,
0.1588 0'264)

1.186
0.1588

(1.972 +0.3) (

AL = 0.1588(0.412)

(1.972 — 0.258) ( + o.s)

= 0.081 cm (0.032 in)
The actual length L of the patch is found using (14-3), or

L:?—L—Q.&L: 30

2 2(10)\/1.972

Finally the effective length is

— 2(0.081) = 0.906 cm (0.357 in)

L.=L+2AL= % = 1.068 cm (0.421 in)
Q 14.5 Design a rectangular microstrip patch with dimensions W and L, whose
center frequency is 10 GHz. The dielectric constant of the substrate is 10.2 and the
height of the substrate is 0.127 cm. Determine the physical dimensions W and L (in
cm) of the patch, taking into account field fringing.
The relations used in the solution:

g,+1 g -1 _h1W2
4 ] . Yo 2 Ereff = +— [] + ]2_]
W= o T = 2 2 W
zfr HpEq £ + 1 zf; E, +1
1
ud : L= —2AL
(o +0.3)( — +0.264
AL — 0412 (5 - ) 2fir/Erett v/ oo
(€,eir — 0.258) (? +0.8)

ey = ' - gt
[,’—5. fo=l0GHZ,€r=lO-2—: h=0.05in = 0.127¢m W= L'\/lO,bi =0.634 tm

2:-lo
o e W - W _ 0634 _
o= 051+ 102 21112(4992)"] T, =2 =499,

(8.093+0.3) (4.992+0.264)
(8.093-0.258) (4.992 + 0.8)

L=;3_0__.#_2(0_050<D= 0.4255(wm W= 0.6340Cm = 0.2496 in
2(10) ¥8.093 " L=0.4255(m =0.(675 in

=8093. Al=(0.127)00.412)-

=0.0509 ¢m
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LN -20 Reflector Antennas
15.1 INTRODUCTION
Reflector antennas have been in use since the discovery of electromagnetic wave

propagation in 1888 by Hertz. World War Il brought numerous radar applications
which needed reflector antennas. Subsequent demands of reflectors for use in radio
astronomy, microwave communication, and satellite tracking resulted in fast
development of techniques to optimize the characteristics of reflector antennas.
Reflector antennas take many geometrical configurations such as the plane, corner,
and curved reflectors (especially the paraboloid), as shown in Fig. 15.1.
15.2 PLANE REFLECTOR

The simplest type of reflector is a plane reflector shown in Fig. 15.1(a). It has
been clearly demonstrated that the polarization of the radiating source and its
position relative to the reflecting surface can be used to control the radiating
properties (pattern, impedance, directivity) of the overall system. Image theory has
been used to analyze the radiating characteristics of such a system. Although the
infinite dimensions of the plane reflector are idealized, the results can be used as
approximations for electrically large surfaces.
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Geometrical configuration for some reflector systems.

15.3 CORNER REFLECTOR
To better collimate the energy in the forward direction, the shape of the plane

reflector itself must be changed so as to prevent radiation in the back and side
directions. One arrangement which accomplishes that consists of two plane
reflectors joined so as to form a corner, as shown in Figs.15.1(b) & 15.2(a), which is
known as the corner reflector. Because of its simplicity in construction, it has many
unique applications. The reflector is used as a passive target for radar or
communication applications, where it will return the signal exactly in the same
direction as it received it when its included angle is 90°. This is illustrated
geometrically in Fig. 15.2(b).



In most practical applications, the included angle formed by the plates is usually
90°; however other angles are sometimes used. To maintain a given system
efficiency, the spacing between the vertex and the feed element must increase as
the included angle of the reflector decreases, and vice versa. For reflectors with
infinite sides, the gain increases as the included angle between the planes
decreases. This, however, may not be true for finite size plates. However, since in
practice the dimensions must be finite, guidelines on the size of the aperture (D,),
length (1), and height (h) will be given.

The feed element for a corner reflector is almost always a dipole or an array of
collinear dipoles placed parallel to the vertex a distance s away, as shown in a
perspective view in Fig. 15.2(c).

Greater bandwidth is obtained when the feed elements are cylindrical or biconical
dipoles instead of thin wires. In many applications, especially when the wavelength is
large compared to tolerable physical dimensions, the surfaces of the corner reflector
are frequently made of grid wires rather than solid sheet metal, as shown in
Fig.15.2(d). One of the reasons for doing that is to reduce wind resistance and
overall system weight. The spacing (g) between wires is made a small fraction of a
wavelength (usually g < M0). For wires that are parallel to the length of the dipole,
as is the case for the arrangement of Fig.15.2(d), the reflectivity of the grid-wire
surface is as good as that of a solid surface.

(b) o 90°

Grid
wires

+= Su
} pporting
Eecment /%7\\\ structure

f= Dy —=1
- > el N i ~
(c) Perspective view (d} Wire—grid arrangement

Side and perspective views of solid and wire-grid corner reflectors.



In practice, the aperture of the corner reflector (D,) is usually made between one and
two wavelengths (A < D, < 2A). The length of the sides of a 90" corner reflector is
commonly taken to be about twice the distance from the vertex to the feed (I = 2s).
For reflectors with smaller included angles, the sides are made larger. The feed-to-
vertex distance (s) is usually taken to be between &3 and 23 (M3 <s < 2)3).
15.3.1 90" Corner Reflector

The first corner reflector to be analyzed is the one with an included angle of 90-.
Because its radiation characteristics are the most attractive, it has become the most
popular. Referring to the reflector of Figure 15.2(c) with its images in Figure 15.4(b),
the total field of the system can be derived by summing the contributions from the
feed and its images. Thus

]':I'}'. g.d.l:' = ]:ll:-'r]‘ E;I. ff}] =+ ['::r.l':..g. ffi‘] =+ F;:J'”'_::.g.. Q'IJ:' + [':_1_[}-4.&.(;1:' f]s—]]

Plate #1

Image #2
5

Image #4 é‘)

fa) “0° carmer reflector (by Images for 90°
corner reflector
E e o
5 = AFi8,¢0) = 2[cos(ks sin @ cosgh) — cosi(kssin & sin ¢h] (15-5)

0

Equation (15-5) represents not only the ratio of the total field to that of an isolated
element at the origin but also the array factor of the entire reflector system. In the
azimuthal plane (= #2), Eq. (15-5) reduces to
E£ =AF0 =x/2, ¢p) = 2[coslkscos ¢h) — cos(ks sin ¢b)] (15-6)
0
Figure 15.5 shows the normalized patterns for an @ = 90" corner reflector for
spacings of s = 0.1A, 0.7A, 0.8\, 0.9A, and 1.0A. It is evident that for the small
spacings the pattern consists of a single major lobe whereas multiple lobes appear
for the larger spacings (s > 0.7A). For s = A the pattern exhibits two lobes separated

by a null along the ¢ = 0- axis.
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15.4 PARABOLIC REFLECTOR
It has been shown by geometrical optics that if a beam of parallel rays is incident

upon a reflector whose geometrical shape is a parabola, the radiation will converge
(focus) at a spot which is known as the focal point. In the same manner, if a point
source is placed at the focal point, the rays reflected by a parabolic reflector will
emerge as a parallel beam. This is one form of the principle of reciprocity, and it is
demonstrated geometrically in Fig. 15.1(c). The symmetrical point on the parabolic
surface is known as the vertex. Rays that emerge in a parallel formation are usually
said to be collimated.

Another arrangement that avoids placing the feed (transmitter and/or receiver) at
the focal point is that shown in Fig. 15.1(d), and it is known as the Cassegrain feed.
Through geometrical optics, Cassegrain, a famous astronomer (hence its name),
showed that incident parallel rays can be focused to a point by utilizing two
reflectors. To accomplish this, the main (primary) reflector must be a parabola, the
secondary reflector (subreflector) a hyperbola, and the feed placed along the axis of
the parabola usually at or near the vertex.

A parabolic reflector can take two different forms. One configuration is that of the
parabolic right cylinder, shown in Fig. 15.8(a), whose energy is collimated at a line
that is parallel to the axis of the cylinder through the focal point of the reflector. The
most widely used feed for this type of a reflector is a linear dipole, a linear array, or a
slotted waveguide. The other reflector configuration is that of Fig.15.8(b) which is
formed by rotating the parabola around its axis, and it is referred to as a paraboloid
(parabola of revolution). A pyramidal or a conical horn has been widely utilized as
a feed for this arrangement.
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15.4.1 Front-Fed Parabolic Reflector

Parabolic cylinders have widely been used as high-gain apertures fed by line
sources. The analysis of a parabolic cylinder (single curved) reflector is similar, but
considerably simpler than that of a paraboloidal (double curved) reflector. The
principal characteristics of aperture amplitude, phase, and polarization for a
parabolic cylinder, as contrasted to those of a paraboloid, are as follows:
1. The amplitude taper, due to variations in distance from the feed to the surface of
the reflector, is proportional to 1/» in a cylinder compared to 1/r? in a paraboloid.
2. The focal region, where incident plane waves converge, is a line source for a
cylinder and a point source for a paraboloid.
3. When the fields of the feed are linearly polarized parallel to the axis of the
cylinder, no cross-polarized components are produced by the parabolic cylinder.
That is not the case for a paraboloid.
Generally, parabolic cylinders, as compared to paraboloids, (1) are mechanically
simpler to build, (2) provide larger aperture blockage, and (3) do not possess the
attractive characteristics of a paraboloid.
A. Surface Geometry

The surface of a paraboloidal reflector is formed by rotating a parabola about its
axis. Its surface must be a paraboloid of revolution so that rays emanating from the
focus of the reflector are transformed into plane waves. The design is based on
optical techniques, and it does not take into account any deformations (diffractions)
from the rim of the reflector. Referring to Fig. 15.10 and choosing a plane
perpendicular to the axis of the reflector through the focus, it follows that

OP 4+ PO = constant = 2f (15-12)
Since
op =y (15-13)
PO =" cost
Eq. 15-12 can be written as
Pl 4cos8')y=2f (15-14)

Or
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The antenna directivity in the forward direction can be written as

2 0 :
DD= ('ﬂ-}—d) cotl (TD) -/D -.,l.,'(_rf{é?']tan ( ) dg’ (15-54)

Where G¢(8'") is the gain function of the feed antenna.
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M. C. Bailey, NASA Langley Research Center).

1. A certain angular aperture or #d'ratio which leads to a maximum aperture efficiency, which is
around 82-83%.

2. As the feed pattern becomes more directive the angular aperture of the reflector that leads to the
maximum efficiency is smaller.



Factors affecting parabolic reflector antenna gain

There are a number of factors that affect the parabolic antenna gain. These factors

include the following:

. Diameter of reflecting surface The larger the diameter of the reflecting surface
of the antenna the higher the parabolic reflector gain will be.

. Operational wavelength: The parabolic reflector antenna gain is dependent
upon the reflector size in terms of wavelengths. Therefore, if the same reflector is
used on two different frequencies, the gain will be different. It is inversely
proportional to the wavelength being used.

« Antenna efficiency: The efficiency of the antenna has a significant effect on the
overall parabolic reflector gain. Typical figures are between 50 and 70%. The
efficiency varies as a result of a number of different factors which are detailed
below.

Parabolic reflector antenna gain

The parabolic antenna gain can easily be calculated from a knowledge of the

diameter of the reflecting surface, the wavelength of the signal, and a knowledge or

estimate of the efficiency of the antenna.

The parabolic reflector antenna gain is calculated as the gain over an isotropic

source, i.e. relative to a source that radiates equally in all directions. This is a

theoretical source that is used as the benchmark against which most antennas are

compared. The standard formula for the parabolic reflector antenna gain is:

] TDN\*
Gain (dB) = 10 x log o k (T)

Where:
G is the gain over an isotropic source in dB
k is the efficiency factor which is generally around 50% to 60%, i.e. 0.5 to 0.6
D is the diameter of the parabolic reflector in meters

A is the wavelength of the signal in meters



From this it can be seen that very large gains can be achieved if sufficiently large
reflectors are used. However when the antenna has a very large gain, the beamwidth

Is also very small and the antenna requires very careful control over its position.

It can be seen that the parabolic reflector gain can be of the order of 50 dB for
antennas that have a reflector diameter of a hundred wavelengths or more. Whilst
antennas of this size would not be practicable for many antenna designs such as the
Yagi, and many others, the parabolic reflector can be made very large in comparison
to the wavelength and therefore it can achieve these enormous gain levels. More
normal sizes for these antennas are a few wavelengths, but these are still able to

provide very high levels of gain.
Parabolic reflector gain efficiency

In the overall gain formula for the antenna, an efficiency factor is included. Typically

this may be between 50 and 70% dependent upon the actual antenna.

The parabolic reflector antenna gain efficiency is dependent upon a variety of

factors. These are all multiplied together to give the overall efficiency.

k:kr kt ks kb

Radiation efficiency, kr: The radiation efficiency is denoted as k, above. It is
governed by the resistive or Ohmic losses within the antenna. For most antennas
this is high and close to unity. Therefore the radiation efficiency does not have a

major effect on the parabolic reflector antenna gain and is normally ignored.

« Spillover Efficiency ks: The spillover efficiency is denoted as ks above. Any
energy that spills over the edge of the reflector surface will reduce the efficiency
and hence the parabolic reflector antenna gain. In the ideal case, the reflector

surface needs to be equally and fully illuminated and none should spill over the



edge. In the real case this is not viable and some reduction in efficiency, and hence
the antenna gain is experienced.

Aperture Taper Efficiency ke The aperture taper efficiency is denoted
as k; above. It affects the antenna gain because the whole parabolic reflector needs
to be properly illuminated for the optimum gain to be achieved. If parts of the
surface are not optimally illuminated by the radiated energy from the radiator then
the parabolic reflector gain will be reduced. The optimum performance is
achieved when the centre is illuminated a little more than the edges.

Surface Error: In order to provide the highest levels of parabolic reflector
antenna gain, the surface must follow the parabolic contour as accurately as
possible. Deviations from this will result in poor reflection accuracy.

Aperture Blockage: The physical structure of the feed and other elements of the
antenna often mask part of the reflector. This naturally reduces the efficiency and
hence the antenna gain. This factor needs to be accommodated within the antenna

gain calculation.

Parabolic antenna beamwidth calculation

As the gain of the parabolic antenna, or any antenna, increases, so the beamwidth

falls. It is possible to estimate the beamwidth reasonably accurately from the

following formula.

Beamwidth ¥Y=70 /D

Where:

D is the diameter of the parabolic reflector

A 1s the wavelength of the signal

All dimensions must be in the same units for the calculation to be correct, e.g. both

diameter and wavelength in meters, or both in feet, etc..



Q1] A parabolic dish antenna is a antenna.

a-omnidirectional, b-bidirectional

c-directional, d-none of these.

Q2] The energy near the edge of the parabolic dish that does not reflect but rather
is diffracted around the edge of the dish.

a- spillover, b- stored energy,

c- dissipated energy, d- copper loss.

Q3] For a 2-m diameter parabolic reflector with 10W of power radiated by the feed
mechanism operating at 6 GHz with a transmit antenna efficiency of 55% and an
aperture efficiency of 55%, determine the beamwidth.

a- 1.25 degrees, b- 2.25 degrees,

c- 1.5 degrees, d- 1.75 degrees.

Q4] The gain of a 150 cm diameter parabolic dish operating at 2 GHz, and 70%

efficiency is:
a- 28.4 dB, b- 30 dB,
c-11.2 dB, d.- none of these.

Q5] An antenna that can easily transmit circularly polarized waves is the:
a. pyramidal horn, b. dipole,

c. parabolic reflector, d. none of these.

Q6] If a parabolic dish has a diameter of 10m, and it is operating at 314 cm
wavelength, then the maximum possible (ideal) gain of the antenna will be :
a- 20 dB, b- 40 dB,

c- 50 dB, d- none of these.
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LN-21 FRIIS and RADAR EQUATIONS

2.17 FRIIS TRANSMISSION EQUATION
The analysis and design of radar and communications systems often require the

use of the Friis Transmission Equation and the Radar Range Equation.
2.17.1 Friis Transmission Equation

The Friis Transmission Equation relates the power received to the power
transmitted between two antennas separated by a distance R > 2D%A, where D is the
largest dimension of either antenna. Referring to Figure 2.31, let us assume that the
transmitting antenna is initially isotropic. If the input power at the terminals of the
transmitting antenna is Py, then its isotropic power density W, at distance R from the
antenna is

(2-113)
47R?

Wo=¢g

where e is the radiation efficiency of the transmitting antenna. For a nonisotropic
transmitting antenna, the power density of (2-113) in the direction &, & can be
written as

PG8,.¢)  PDB,.d,)

E"ifrlr = = & l:’:‘] 14]
T AR T anR2 |

where Gi(4, #) is the gain and Dy(é, &) is the directivity of the transmitting antenna
in the direction &, #. Since the effective area A: of the receiving antenna is related to
its efficiency er and directivity Dy by

A, =¢,D,0,.¢,) (L) (2-115)
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= \—-ﬁ Hﬁ}
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[= R = Receiving antenna,
(P G Dy €. T py)

Geometrical orientation of transmitting and receiving antennas for Friis transmission equation.
the amount of power P, collected by the receiving antenna can be written, using (2-114) and (2-115), as

P \
;!-‘_3 J"'»'_Drfﬂpfbrjﬂ..-{g,w (‘b;-}Pf - . 7
P.=eD. (0. d)—W =ee, - . Pl 2-116)
! Fr .'{ i (ﬁ’rj.:l.;{ I F.Ff {4;:}?]2 ! pr' { )
or the ratio of the received to the input power as
P, 22D(6,,¢,)D,(8,. b,)
o = el ——— o (2-117)
P, (47 R)?

The power received based on (2-117) assumes that the transmitting and receiving
antennas are matched to their respective lines or loads (reflection efficiencies are
unity) and the polarization of the receiving antenna is polarization-matched to the



impinging wave (polarization loss factor and polarization efficiency are unity). If these
two factors are also included, then the ratio of the received to the input power of (2-
117) is represented by

A

4KR) D6, #)D,(6,.,) 21 2-118)

P,
Fr = €edrCear(l — |r,|2}(1 - |r"|2}(

Ibr : f:lj'

For reflection and polarization-matched antennas aligned for maximum
directional radiation and reception, (2-118) reduces to

P,

Egs. (2-117), (2-118), or (2-119) are known as the Friis Transmission Equation,
and it relates the power Pr (delivered to the receiver load) to the input power of the
transmitting antenna P:. The term (M47zR)? is called the free-space loss factor, and it
takes into account the losses due to the spherical spreading of the energy by the
antenna.

l = (4;—}2)2 Gy Gy, (2-119)

Example 2.16
Two lossless X-band (8.2—12.4 GHz) horn antennas are separated by a distance of 100&. The
reflection coefficients at the terminals of the transmitting and receiving antennas are 0.1 and
0.2, respectively. The maximum directivities of the transmitting and receiving antennas (over
isotropic) are 16 dB and 20 dB, respectively. Assuming that the input power in the lossless
transmission line connected to the transmitting antenna is 2 W, and the antennas are aligned for
maximum radiation between them and are polarization-matched, find the power delivered to the
load of the receiver.
Solution: For this problem

e.4t = €.4, = 1 because the antennas are lossless.
| oy - f:l,..|2 = 1 because the antennas are polarization-matched
D, = Dy, because the antennas are aligned for
Dy, = 16 dB = 39.81 (dimensionless)
Dy, = 20 dB = 100 (dimensionless)

maximum radiation between them

Using (2-118), we can write

P.=[1- (0.1)2][1 — (0.2)2][}’x/4:r(lDOM]Q(SQ.Sl)(IUO)(Z)
= 4.777 mW



2.17.2 Radar Range Equation

In radar application, the transmitted power is incident upon a target, as shown in
Fig.2.32. The radar cross section or echo area (o) of a target which is defined as the
area intercepting that amount of power which, when scattered isotropically, produces

at the receiver a density which is equal to that scattered by the actual target. In
equation form

_ W, )
lim —| =W, (2-120)
R—co | dn R- '
Or
. » Wy _ > [ES|?
o= lim |[4rR"—| = lim |4xR"——
R oo Wil Foe [E}- (2-120
512 - a)
= lim [4rr2 ]
R— oo |Hf|2

o = radar cross section or echo area (m?)
R = observation distance from target (m)
W; = incident power density ( W/m?)
W, = scattered power density (W/m?)
E' (E*) = incident (scattered) electric field (V/m)
H' (H*) = incident (scattered) magnetic field (A/m)

Using the definition of radar cross section, we can consider that the transmitted
power incident upon the target is initially captured and then it is reradiated
isotropically, insofar as the receiver is concerned. The amount of captured power Pc

is obtained by multiplying the incident power density of (2-114) by the radar cross
section g, or

P.G,(0,. ;) P.D(0,.¢,)
-  =g—

P =cW =¢
L ! 47R? ! 47R>

(2-121)

Target
[ — |

- Incident wave
[:'L}J + R i

s — |
Transmitting antenna
(B Gp- Dy €cgr- T P Scattered wave

R‘j lrp“'\"."l

Receiving antenna

(P, Gr. Dy, epgr. Ty, P

Geometrical arrangement of transmitter, target, and receiver for radar range equation.



The power captured by the target is reradiated isotropically, and the scattered power density can
be written as

P. P.D(B,. ;)
s = : 5 = erdr':rPDr—f';bL (2-122)
47R; (47R\R,)?
The amount of power delivered to the receiver load is given by
-
P.D(0,.¢,)D(8,,¢,) A )
P_:A_wr.: ] " | St § T I I r r 2_]23
1 r''s €edi€edr® dr 4FER]R2 ( )

where A: is the effective area of the receiving antenna as defined by (2-115).
Equ. (2-123) can be written as the ratio of the received power to the input power, or

P, D,6,.¢)D,0,.4,) [ »
— =& . E .
P? cdt€cdr® 4 4?{R]R3

2

(2-124)

Expression (2-124) is used to relate the received power to the input power, and it
takes into account only conduction-dielectric losses (radiation efficiency) of the
transmitting and receiving antennas. It does not include reflection losses (reflection
efficiency) and polarization losses (polarization loss factor or polarization efficiency).
If these two losses are also included, then (2-124) must be expressed as

P. D,(6,,¢)D,(6,.¢,)
Ff:e{_d,e{_d,.u—|rr|9)(1—|r,.|’3}.:r ! ""’; ¢
t Fis

) 2 (2-125)
X[ —=——1 Ip.-p.]°
(4KR1R2) 10y - Py

where

p,, = polarization unit vector of the scattered waves
p, = polarization unit vector of the receiving antenna

For polarization-matched antennas aligned for maximum directional radiation and
reception,(2-125) reduces to

P:‘ _ GGIGGF [ A ]2

_ 2-126
P, ~ °"4r |4xR,R, (2-126)

Equ. (2-124), or (2-125) or (2-126) is known as the Radar Range Equation. It relates
the power P; (delivered to the receiver load) to the input power Pt transmitted by an
antenna, after it has been scattered by a target with a radar cross section (echo
area) of o.

How to maximize the ratio P/P ?



Transmitting and receiving antennas operating at 1 GHz with gains of 20 and 15 dB,
respectively, are separated by a distance of 1 km. Find the power delivered to the
load when the input power is 150 mW. Assume the Polarization Loss Factor PLF = 1.

B = 1" () e Gor
Grot = 20dB = Got (power ratio) = [0%=(00
Gror = [5dB = Gor (power ratio) = (0"°=31.623
£=1GHz » A=0.3 meters

R=|x (0° meters

For  10:- 0| =

Pr= (s ) (100)(31623)(50x10%) = 270344 A Yalts

Two lossless, polarization-matched antennas are aligned for maximum radiation
between them, and are separated by a distance of 50A. The antennas are matched
to their transmission lines and have directivities of 20 dB. Assuming that the power at
the input terminals of the transmitting antenna is 10 W, find the power at the
terminals of the receiving antenna.

lossless : €cd =1, polarization matched léw‘ fal 54
Live matched : (1= =41
Do =20dB =l0*=166=D),, = Dot

Pe = Pe L &) Die Doy =10 (4“ on) (100)C100) = 0.253 Watts
P- = 0.253 watts

A radar antenna, used for both transmitting and receiving, has a gain of 150 at its
operating frequency of 5 GHz. It transmits 100 kW, and is aligned for maximum
directional radiation and reception to a target 1000 km away having a radar cross
section of 3 m?. The received signal matches the polarization of the transmitted
signal. Find the received power.

B = Reogs Sex - Gar JLA ]2 A= 3108

4T 4WR,-R.. Sxiod | 206m
Pr = 0% (3)- |50 [0.06 ]1
4T C0%)

Pr = I.nxno' Waﬂs



A rectangular X-band horn, with aperture dimensions of 5.5 cm and 7.4 cm and a
gain of 16.3 dB (over isotropic) at 10 GHz, is used to transmit and receive energy
scattered from a perfectly conducting sphere of radius a = 5A. Find the maximum
scattered power delivered to the load when the distance between the horn and the
sphere is (a) 200A, (b) 500A. Assume that the input power is 200 mW, and the
radar cross section is equal to the geometrical cross section.

£=ma*=25TA™
Got = Gor = 6.3 dB 2 Got ( power ratio)=10"%3= 42 66
f=(0GHz I A =0.03m

Pr - Got * Gor A =
el A% ( 4TrR,-RL)

R =R, =200A = &€ wmeters :

= BT AR (4266)*T__A 2
B = 25T A = ).[AN(JOO)),_]-(O..L)=7.OO n Watts

R =R, =500\ = (5 meters :
Pr = 0.23 nwatts

|

In a long-range microwave communication system operating at 9 GHz, the
transmitting and receiving antennas are identical, and they are separated by 10,000
m. To meet the signal-to noise ratio of the receiver, the received power must be at
least 10 yW. Assuming the two antennas are aligned for maximum reception to each
other, including being polarization matched, what should the gains (in dB) of the
transmitting and receiving antennas be when the input power to the transmitting
antenna is 10 W 2.

B 7 A2 _ 3x10% _ 3x108 __L
ﬁ—(Aﬁ)'Gof:‘Gsr, N=Sxw0°  Joxtod 30

R= 10,000 meter = 20095 = 3 x105 A

6

—6
Pr — *7\ 2 l:. _'_O_’Sﬁ’_- — %
P+ [zur (3 xw’/\)] Go Lo =

Go> = (0 (4arx3x10%)™
Go = 63 (ATXx3x10%)=I2WX (07 = (2007

G, = 2007 =3,767.7/ =0 Qa 10 (3:767-1) dB

Go = 3,767. 71 = 35.76 dB



. . . Antennas & Radiowave Propagation,
LN-22-Radio wave propagation: Robert E. Gollin

6.1 ANTENNAS LOCATED OVER A FLAT EARTH

The general features of the interference phenomena associated with antennas
placed over the earth can be determined by studying the effects associated with
antennas located above a flat earth. Figure 6.1 shows a transmitting antenna at
height /1, and a receiving antenna at height h,, with separation d. The figure
also shows the direct ray and indirect or reflected ray that reach the receiving
antenna. When the two path lengths R, and R, diller by an appropriate
amount there may be either constructive or destructive interference at the
receiving antenna.
With reference to Fig. 6.1, the field that reaches the receiving antenna
directly will produce a voltage proportional to
e TkoRy
FOMA0) G
where f, and f, are the radiation field strength patterns of the two antennas. The
voltage produced by the indirect wave is proportional to

fkoR;

FOAODp e T—

2

where pe® is the reflection coefficient at the ground. In the usual situation h,
and h, are very small compared with the separation d, so the angles 8,, 9, 0],
A, are very small, and the antenna radiation patterns can be assumed constant
over the range of angles involved. An exception would be the case when highly

Image point

Figure 6.1 Tllustration of direct and reflected rays.



directive antennas are used and h, is large, such as occurs if the transmitting
antenna is located on the ground and the receiving antenna is located aboard a
high-flying aireraft. In this case very little power might be radiated toward the
ground; that is f,(8,) < f,(9,). The total received voltage will be proportional to
(we use R,= R, in the denominator)

e..jko-‘?p _ H’M}- —jkalR3- Ry}
4:rrR,{H N ATAYATIN

~jkaRy

” = |f1(9|}fz(f?}) E;EI_ 2
6.1)

The factor F, called the path-gain factor, shows how the field at the
receiving antenna differs from the value it would have under free-space
propagation conditions. When it can be assumed that f,(8,) = f,(8,) and f,(03) =
f5(#}), then F can be expressed as

F = |1+ p et f) _ (6.2)

£i(0,)/5(67)

The path-gain factor is the array factor associated with the antenna at height h,
and its image below the surface, with the relative excitation of the image
antenna being p e’

With reference to Fig. 6.1, it can be seen that R, = [d*+ (h,— h,)’]'"* and
R,=[d*+ (h,+ h,)’]"%. When h, and h, are very small compared with d, a
binomial expansion gives

'.l . 2 n b
NRPICSTE R S,
from which we obtain
2h\h,
R . T =
2 1 d
If pe™ were equal to —1 then
k_nh k_f_‘_z

F = |1 — g ftothihatd} 2‘ sin (6.3)

This shows that interference effects can lead to a doubling of the field strength
relative to its value under free-space conditions. With reference to Fig. 6.2 we
let i, be the elevation angle given by tan i, = h,/d so that Eq. (6.3) can be
written as

F = 2|sin(kh, tan i) (6.4)

The relationship expressed by Eq. (6.4) is usually plotted in the form of a
coverage diagram showing the variation of F with h; and d, that is, with s, for
given values of h, and A, expressed as a ratio h,/A,. Note that F is a maximum
when

A /] -
tmn,l’rn:—l——(g+n'nr)=;l-9(—+2) n=01,2,... 6.5a)



Figure 6.2 Elevation angle vy,

and is a minimum when

Ag
tan = — = n=0,1,2,... (6.5h)
h, 2
A coverage diagram is a plot of the relative field strength as a function of
direction in space from the transmitting antenna. It is analogous to the
field-strength radiation pattern of an antenna. In any coverage diagram the
fixed parameters are the height h, of the transmitting antenna and the
wavelength A, The distance d to the location of the receiving antenna and the
height h, of the receiving antenna are variable parameters, and each pair of
values h,, d determines a point in space. The coverage diagram is a plot of the
curves F/r = constant in the h,d plane. In most situations the direct line-of-
sight distance r between antennas is very nearly equal to the horizontal
distance d. The various curves of F/r that are plotted are usually chosen to
represent the same signal level that would be obtained at a distance of a
multiple or a fractional multiple of a convenient free-space reference range s
for example, Fir = m/r, ot F = mr/r,= mdjr, with m = 1.V2.2. ... or 1)V2,
12, .... The dlﬁerence in signal level between suc-:ess:ive curves i1s then 3 dB.
By using Eq. (6.3) we find that the constant signal level curves are given by
(we assume that r = d)

=m— (6.6a)

when the reflection coefficient equals —1. For the flat-earth case it is more
convenient to use Eq. (6.4) or (6.5) which gives

2|sin kohy tan | = 2| sin koh | = m :;: (6.6h)
!
In this equation d can be treated as the radial coordinate and ¢, as the angle
coordinate in a polar-coordinate reference frame. However, note that since the
vertical scale representing h, is usually expanded relative to that for d, the
angle s, appears much larger than it actually is.

Whenever h; > A, and n is small, tan 4=, and the above relations show
that the lobe structure i$ very fine; i.e., the angular separation between lobes is
very small. For example, if h, = 1[]0.?\0, then the lobes are separated by
Ao/2h, = 1/200 rad, or by approximately 0.3°, Figure 6.3 shows a typical
coverage diagram. If r, is the free-space range for a given received signal
strength, then with interference taken into account the maximum fange is 2r,
which corresponds to a horizontal distance d = 2r, cos .. For small values of i,
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Figure 6.3 Coverage diagrams for a flat earth with reflection coeflicient equal 1o —1.

we have d = 2r,. The curves corresponding to d = 2r, cos 4y, appear as vertical
lines in Fig. 6. 74 because of the greatly expanded vertical scale. The coverage
diagrams shown in Fig. 6.3 are plotted for a free-space propagation distance of
2 km. Any pair of values of &, and d that lies on the curve describing a lobe
represents a point in space where the reecived signal strength is the same as it
would be at a distance of 2 km under free-space propagation conditions. The
smaller lobe shown in Fig. 6.3b represents a constant signal level 3 dB greater
than that of the larger lobe and comes from using m = = V2 in Eq. (6.6b).
When the coverage diagram has been plotted it is a simple matter to
determine the field strength at the receiving antenna relative to the free-space
value. For example, if the receiving antenna height is 10 m, Fig. 6.3b shows that
the received signal strength at a distance of 3.2km is the same as that at 2km
under free-space conditions. The same figure shows that by raising the antenna
height to 25m at a distance of 4 km a maximum signal level will be received.
This signal level will be the same as that at 2km with free- space propagation.
When the angle i, is considerably below the first lobe maximum, Eq. (6.4)



can be approximated by 2k h 4, so

2k}
F = 2kegh g = Xl

(6.7)
which makes the received signal voltage vary as the inverse square of the
distance, thus reducing the maximum useful range quite severely.

The coverage diagrams shown in Fig. 6.3 are based on taking p =1, ¢ = 7.
In practice this is a good approximation for the reflection coeflicient for both
horizontal and vertical polarization when the grazing angle i is small, say, 1° or
less. When 4 is larger than 1° pe may depart appreciably from —1 for
vertical polarization but may still be approximated by -1 for horizontal
polarization Tor values of ¢ up to 10" or more.

The reflection coeflicient p e’ is given by the Fresnel expressions for the
reflection coeflicients for a plane TEM wave polarized with the electric field in
the plane of incidence (vertical polarization) and [or a wave polarized with the
electric field perpendicular to the plane of incidence (horizontal polarization).
The Fresnel reflection coefficients depend on the ground conductivity, permit-
tivity, frequency, and angle of incidence. If the ground conductivity is o, the
permittivity € is ke, and 4 is the grazing angle of incidence, then

(k = jx)sin yr \/I(K - jx) —Er—);i;‘: : ..
= — vertical polarization
(x — jx) sin ¢ + V(x = jy) - cos? y

pet =

(6.8a)

sin i~ V(k — jx) - cos i
pe'’ = - ——(_{’}_) - _____F_f_ horizontal polarization  (6.8h)
sin i + V(k - Jx) — cos® s

where y = a/we,. Typical values for the dielectric constant x are around 15,
while the conductivity ¢ may range from 10 1o 3% 10°28/m, with 10°2S/m
being a typical value for flat prairie land. The conductivity of mountainous
regions is much lower. In general, x is smaller, around 6 or 7, for soil with poor
conductivity and will increase up to about 30 for soil with a high conductivity,

Figure 6.4 shows the behavior of p and ¢ as a function of the grazing angle
. OF particular significance is the Brewster angle effect for vertical polariza-
tion, which causes p to go through a minimum for values of ¢ below about 15°.
As p moves through the minimum with decreasing values of i, the phase angle
¢ undergoes a rapid change from near 0° to 180°. This effect makes p e’* nearly
equal to —1 for both vertical and horizontal polarizations when the grazing
angle ¢ approaches zero. For a perfectly conducting surface p e would equal
+1 for vertical polarization. As the frequency w increases, the effect of a finite
ground conductivity decreases, since the parameter y = of/we, decreases. Thus
for frequencies above 50 MHz, the ground behaves very nearly like a dielectric
medium, since the displacement current jweE is then much larger than the
conduction current oE. If the point of reflection occurs over water, particularly
seawater, the reflection coefficient can be approximated by —1 for horizontal
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Figure 6.4 Typical reflection coefficients for the ground as a function of grazing angle ¢. x = 15,
o = 1077 §/m. {a) Vertical polarization and (b) horizontal polarization.

polarization but may differ significantly from —1 for vertical polarization, as
reference to Fig. 6.5 shows. In the case of a rough sea the reflection coeflicient
could be quite small for either polarization.

Whenever the point of reflection occurs over a rough surface the field is
scattered in a more diffuse manner, and the specular reflected component, and
hence p, is reduced in value. A measure of the height of the surface irre-
gularities that constitute a “rough surface’” may be obtained by considering the
eflective wavelength of the incident wave in the direction perpendicular to the
surface. If z is the coordinate perpendicular to the surface and x is the
coordinate along the surface, the incident wave will have a propagation factor
eforsimu-ikorcost Thye in the vertical direction the effective wavelength A, |s
given by

p=—2T A : (6.9)
kysin gy sin




6.2 ANTENNAS LOCATED OVER A SPHERICAL EARTH

For antennas located over a spherical earth, with an effective radius a, to
account for standard refraction, it is quite tedious to derive the appropriate
formulas for the interference effects. The complications that arise are due to a

dr iy

By \'/ \

a
¢ Farth's surface

Figure 6.7 Tustration of horizontal range.

number of factors, including the difficulty of expressing the patn-iengn
difference between the direct ray and reflected ray in terms of the antenna
heights /1, and h, and horizontal distance d shown in Fig. 6.8. In addition, the
grazing angle i relative to the tangent plane at the point of reflection must be
determined in order to evaluate the reflection coefficient. Also for reflection
from a spherical surface the rays in the reflected flux tube have a greater
divergence than the rays in the incident flux tube, as pointed out in Sec. 4.5 and
illusteated in Fig. 6.9. This increase in the divergence of the rays in a flux tube
weakens the reflected field at the receiving antenna such that the appropriate
expression for the path-gain factor F becomes

| = “ }- ”ﬂ (..r'dr-ilnﬁﬂ'l
= {[1+ Dp cos(¢ ~ ko AR))’ + [ Dp sin(¢ — ko, AR}

_ W
1= AR k"aR] 6.12)

- [{1 + Dp)’ - 4Dp sin
where D is the ray-amplitude divergence factor and AR is the path-length
dilference. [The divergence factor used here is the square root of that given by Eq.
(4.59)]

An examination of Fig. 6.8 suggests that the relationships between the
geometrical parameters describing the propagation paths would be relatively
simple. This, unfortunately, is not the case. The known parameters are the two
antenna heights h, and h, and the total range d. The point of reflection, which
determines d,, d,, the grazing angle , and the divergence factor D, is governed
by a cubic equation. The evaluation of the path-gain factor governing the
interference region for a spherical earth has been systematized by the intro-
duction of a set of parameters K and J that are functions of known parameters
S and T related to the antenna heights and total range d. The relevant
equations are given below without derivation and include formulas for the



AR=R, +Ry - R

Figure 6.8 Reflection from a spherical
earth.

g+ AR

Figure 6.9 Illustration of ray divergence upon refiection
from a spherical surface.

path-length difference AR = R, + R,— R and the divergence factor D.}

&Rzg%EH&T) (6.13)
tan = i+ by K(S, T) (6.14)
48,8:T e
D= [1+ 122 ] 6.15
SA-SHI+T) ©6.15)
d
where §, = :
! VZG'IH[
d
Sy = ——2=
Y \2ah,
B d _S§T+S,
V2ah,+V2ah, 14T
T=Vh/h<1

J(S, T)=(1-S)1-5)
(1-8)+ 710 -5)
1+ 717

K(S,T)=



and d|, d,, d, and  are given in Fig. 6.8. Note that T must be chosen less than
unity, so h, is taken as the height of the lowest antenna. The above formulas
show that AR and D are functions of S, and S, and hence are functions of §
and T only, since S, and S, are determined by given values of § and T. The
range d,, which determines d, = d — d, and §S,, S,, may be found by solving the
equations given below:

d b+ 7
d =—+ '
1T P 005( 3 ) (6.16a)
7 d! 172
- — 6.16b
where P 73 [a,(h[ + hy)+ . ] ( )

o Za,(hl-; h,)d

r

The phase angle of the reflected wave relative to that of the direct wave
due to the path-length difference AR only is given by

L

Chy<h, (6.16¢)

b =co

2koh
ko AR = —-“T'l"f(l - §H(1- S
2
_Amha” Bt e - sty = e (6.17a)
V2a,A, didy
4hy? hy?
where B (6.17h)
V2a,A, 10304,
when h, and A, are in meters, and
hyh
L= /My (1-SH(1-5) (6.17¢)

~ did,

with d, = V2ah,. The parameter { depends only on S and T.

If the reflection coefficient is assumed to be equal to — 1, then the patn-gain
factor becomes

F = [(1 + DY - 4D cos’ k“:R]m
- [(1 + DY~ 4D cos’(-’% ug:)] " (6.19)

For a spherical earth it is convenient to use the normalized coordinates hylhy
and d/d,, where d; = V2a,h,. The free-space reference range for a given
coverage diagram is usually chosen as a suitable multiple of the horizontal
range dy. Hence a coverage diagram is a plot of :

n

F= [(1+D)*—4D cos:(% vl)] =m g“ ¥
T .



Example 6.3 FM communication link An FM transmitter has its antenna at
a height h, equal to 80 m. The antenna gain is 5, and the transmitter power
is 500 W. The receiving antenna is at a height h, equal to 10 m. The
frequency of operation is 100 MHz. For this system v =0.01 and dy =
4122V10= 13.03km, or VZx328=8.1mi. We wish to find the field
strength in volts per meter at a distance of 8.1 mi from the transmitter. If
we refer to Fig. 6.14 we see that at h,/h, = 8 and d = d, the field strength is
the same as it would be under free-space conditions at a distance of 4d,.
The power density is

Figure 6.27 lilustration of effect of antenna pattern on the field incident on the ground.

Hence

N =

172
ZPG " _ ( 120X 00 i) =7.4mV/m
lﬂl=( ) 12 x 1.3 x 10°

ain [¢ ' - =0.25.
At the receiving site the value of the path-gain factor is d,/4d,



Example 6.4 Microwave communication link In a microwave communi-
cation link the antennas are mounted on towers al a height of 35m
above the ground. The wavelength of operation is 10 cm. It is required (o
find the maximum distance d that can be used so that the signal level is not
reduced below its free-space value. Thus a path-gain factor F equal to 1 1is
required. The parameter v is equal to h}?/10301, = 2.01. If we use the
flat-earth interference formula [Eq. (6.3)] we have

5:'111(11 T h-ﬂ‘)\ =7
2 dld;

F=2

sin 7 —-I;l =1
d

and hence d = 6d, in order to make F = {. But since h,= h, the maximum
line-of-sight range is 2d;; quite clearly the flat-carth interference formula is
not applicable.

A coverage diagram for v = 2 has nol been included in this text. Thus
we mus!t use the formulas (6.14) to (6.17). Since h,= h,, the paramelers S,
and S, are equal and T=1,5= dj2d; = §,. Hence the divergence factor D
equals

d? .]-HE ) (1 . dl,’ddﬁr)m

D=1+ - Liniad £/
(llz.r{'[ — d?,l'lddlr] (] 4 3{1”4(};-]”2
h,/h, d* 2
and { = (] -~ _J.IF)
did, 4d’,
When we equate the path-gain factor given by Eq. (6.19) to unity we obtain
, T D42
cog” ——— =
2 4

This equation can be <olved numerically, and it yields d il..";ﬁd-,-‘ D =047,
and ¢ = 0.21. Thus the maximum range is 4122 X 1.36V35=33.16km. W



Radiowave Propagation

A complication that has not been included in the flat-earth interference
formulas is the effect of the decrease in the index of refraction of the
atmosphere with height above the surface.t At greater heights the less dense
atmosphere results in a smaller index of refraction. This has the elfect of
causing the ray that leaves the antenna at a finite angle relative to the ground
to curve or bend in a downward direction in accordance with Snell's law of
refraction. The phenomenon of ray curvature may be readily understood by
dividing the atmosphere into layers, with discrete values for the index of
refraction in each layer, as shown in Fig. 6.6. For this staircase approximation
to the continuous variation in the index of refraction, Snell's law gives

n‘Sin 6l="25in 02= "'n" Sin o”= ..

Thus since each successive value of n, is smaller than the preceding value, the
angles 6, must increase and the ray curves in the downward direction. For
propagation over a spherical earth this ray curvature extends the radio horizon
beyond the geometrical horizon.

5 "‘<’|,

Figure 6.6 Illustration of ray curvature.

{ The Rayleigh criterion allows for an obstruction with a height of A,/8 leading to a maximum
phase change of 0.5 §

t The decrease in the refractive index with height is not always monotonic. Inversion layers
leading to a phenomenon known as ducting can occur. Such effects are discussed in Sec. 6.12,
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The effect of ray curvature can be taken into account in a simple way for
propagation over a spherical earth by replacing the earth with an earth having
a larger radius and considering the rays to propagate along straight lines,
provided the index of refraction decreases linearly with height. By means of
this artifice the height of any point on the ray above the surface of the earth
remains the same. For propagation studies a standard index-of-refraction
profile is commonly chosen such that it is equivalent to increasing the radius of
the earth by a factor of 4/3. Thus the effective earth’s radius a, is chosen to be
5280 mi (8497 km). With reference to Fig. 6.7, it is seen that (h,+a,) =
R+ a?, so R*=2h,a, + h?=2h,a, Since the antenna height h, is small com-
pared with the distance to the horizon, the slant distance R is nearly equal to
the horizontal distance d, to the horizon. Thus the distance to the horizon is
given by d, = (2h,a,)""?, and if d, is expressed in miles and h, in feet we have

dy mi= V2h, 1t (6.10)

The maximum line-of-sight distance in miles between two antennas at heights
h, and h,ft above a spherical earth with standard refraction conditions is then
readily seen to be given by

dy, = VZh,+ V2h, mi (6.11)

The flat-earth interference formulas are generally not valid for distances
approaching the maximum horizontal line-of-sight range. The exact distance
over which the flat-earth formulas can be used depends on a number of factors,
including wavelength. It is difficult to establish the range of validity without
direct comparison with the interference effects based on using a spherical earth
model. The evaluation of interference effects over a spherical earth is con-
siderably more complex than that for a flat earth and is discussed in the next
section.

dr (km)-4- 122+h, where h; 1s 1n meters

din em=4-122 { Vh; + Vh, } where h; & h, are in meters



6.2 ANTENNAS LOCATED OVER A SPHERICAL EARTH

For antennas located over a spherical earth, with an effective radius a, to
account for standard refraction, it is quite tedious to derive the appropriate
formulas for the interference effects. The complications that arise are due to a

Farth's surface

Figure 6.7 Nustration of horizontal range.
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number of factors, including the difficulty of expressing the path-length
diflerence between the direct ray and reflected ray in terms of the antenna
heights /1, and h, and horizontal distance d shown in Fig. 6.8. In addition, the
grazing angle  relative to the tangent plane at the point of reflection must be
determined in order to evaluate the reflection coefficient. Also for reflection
from a spherical surface the rays in the reflected flux tube have a greater
divergence than the rays in the incident flux tube, as pointed out in Sec. 4.5 and
illustrated in Fig. 6.9. This increase in the divergence of the rays in a flux tube
weakens the reflected field at the receiving antenna such that the appropriate
cxpression for the path-gain factor F becomes

I7= |14 Dp e/ /hot%
={[1+ Dp cos(¢ ~ ks AR))* + [Dp sin(¢ ~ ko, AR)J}}'”
. A 12
= |(1+ Dp)*-4Dp sin’i—g“—fi] (6.12)

where D) is the ray-amplitude divergence factor and AR is the path-length

difference. [The divergence factor used here is the square root of that given by Eq.
(4.59).]



An examination of Fig. 6.8 suggests that the relationships between the
geometrical parameters describing the propagation paths would be relatively
simple. This, unfortunately, is not the case. The known parameters are the two
antenna heights h, and h, and the total range d. The point of reflection, which
determines d,, d,, the grazing angle ¢, and the divergence factor D, is governed
by a cubic equation. The evaluation of the path-gain factor governing the
interference region for a spherical earth has been systematized by the intro-
duction of a set of parameters K and J that are functions of known parameters
S and T related to the antenna heights and total range d. The relevant
equations are given below without derivation and include formulas for the

Figure 6.8 Reflection from a spherical
earth.
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f+ AR

Figure 6.9 lllusiration of ray divergence upon reflection
from a spherical surface,

path-length difference AR = R, + R,— R and the divergence factor .t

2h,h
AR = u}uj{s. T (6.13)
+
tan = hythy K(S, T) (6.14)
48,831 e
D= [I + 12 ] 615
S(L=-SH1+T) 6.15)
d
where §, = !
' Vaak,
d!
5, s —
* \2ak,
§n d S5 T+S5,
V2ag, +V3aj, 14T
T=Vhth,<1

J(S, T)=(1—-8})1-S3)

(1-8)+ T(1-8§)
1+ 7T?

K(5T)=

and d|, d,, d, and 4 are given in Fig. 6.8. Note that T must be chosen less than
unity, so h is taken as the height of the lowest antenna. The above formulas
show that AR and D are functions of §, and S, and hence are functions of §
and T only, since §, and S, are determined by given values of § and T, The
range d,, which determines d,=d — d, and §,, S,, may be found by solving the
equations given below:

+
d,=g+pcns(¢3 #) ' (6.16a)

tD. E. Kerr, Propagation of Shori Raedio Waves, McGraw-Hill Book Company, New York,
1951, Sec. 213, Note that we have interchanged by, h; and §,, 5,
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2,112

2
where =—_[ae ho+ h +_—] (6.16b)
p V3 (hy+ hy) A

hy-h
®=cos’’ ?-9—‘&#—3)5 h,<h, (6.16¢)

The phase angle of the reflected wave relative to that of the direct wave

due to the path-length difference AR only is given by

2k} ¢
kAR = =212 (1~ §7)(1 - §))
’3:‘2 J ‘
= 4’2_‘ —13/—5(1— SH(1-S)=wln (6.17a)
V2a,\, did;
4n¥? hy?
where v = —

" V3a,h, 10307,
when h, and A, are in meters, and

_hy/h,
djd,

{

with dy = V2a h,. The parameter { depends only on S and T.

r

If the reflection coefficient is assumed to be equal to -1, then the path-gain
factor becomes

F = [(l + DY~ 4D cos’ *k—ugﬁ]m
- [(1 + DY~ 4D cns’(g- vg)] ; (6.19)

For a spherical earth it is convenient to use the normalized coordinates hy/h,
and d/d,, where d; = V2ah, The free-space reference range for a given
coverage diagram is usually chosen as a suitable multiple of the horizontal
range d,. Hence a coverage diagram is a plot of

12 d

F= [(1 + DY - 4D co’(3 pg)] =m - ;
T .

(6.17b)

(1- 831 - S (6.17¢)



Example 6.3 FM communication link An FM transmitter has its antenna at
a height h, equal to 80 m. The antenna gain is 5, and the transmitter power
is 500 W. The receiving antenna is at a height h, equal to 10 m. The
frequency of operation is 100 MHz. For this system » =0.01 and d; =
4122V10=13.03km, or V2x32.8=8.1mi. We wish to find the field
strength in volts per meter at a distance of 8.1 mi from the transmitter. 1f
we refer to Fig. 6.14 we see that at h,/h, = 8 and d = d, the field strength is
the same as it would be under free-space conditions at a distance of 4d,.
The power density is

Uigp= PG
2Z, " 4w(4d.)

Figure 6.27 Tllustration of efiect of antenna pattern on the field incident on the ground.

Hence

112
Z,PG\" _ (lzoxsooxsn) A mVim
Eh (i'iwdfr 3% 1.3 % 10

. ‘ 028
At the receiving site the value of the path-gain factor is d,/4d; = 0.2



Example 6.4 Microwave communication link in a microwave communi-
cation link the antennas arc mounted on towers al a height of 35m
above the ground. The wavelength of operation is 10 cm. It is required (o
find the maximum distance d that can be used so that the signal level is not
reduced below its free-space value. Thus a path-gain factor F equal to 1 is
required. The parameter v is equal to h)?/10301,=2.01. 1f we use the

flat-earth interference formula [Eq. (6.3)] we have

sin(z v himl)‘ = 2‘ sin v %}l = |

F=2
2 dld;

and hence d = 6d,. in order to make F = 1. But since h, = h, the maximum
line-of-sight range is 2d;; quite clearly the flat-carth interference formula is
not applicable. ‘

A coverage diagram for v =2 has not been included in this text. Thus
we must use the formulas (6.14) to (6.17). Since h, = h,, the paramelers S,
and S, are equal and T=1, 5= dj2d, = S,. Hence the divergence factor D
equals

=

di -1/ (1 . d!fd_d'!i_ 12
1+ - = <
[ ' d5(1 - d’fdd’,)] (1+3d/4d7)"

and

)
did, \ 4d3
When we equate the path-gain factor given by Eq. (6.19) to unity we obtain

, T D+2
Co§' —=— =

2 4

This equation can be solved numerically, and it yields d = 1.36d,, D = 0.47,
and ¢ = 0.21. Thus the maximum range is 4122 % 1.36V35=33.16km. W



When the transmutter to receiver distance becomes too large the flat Earth approximation
15 no longer accurate. The curvature of the surface causes:
1. divergence of the power in the reflected wave in the interference region

a4 d.l.m' - i . .. i d2t+ R2=(Bwtmh¢)2
2. diffracted wave in the shadow region (note that this 1s not the same as a ground wave) t

d;, =V(2R tlg)
The distance to the horizon 1s d, = Rzy :./ER;II, or, if A, 1s 1n feet, d, = m miles. R= 6370 km
The maximum LOS distance between the transnut and receive antennas 1s d,=3.57Vh,
e =dy +d, = [2h; +.[2h; (miles) h, in meters
/ d, inkm
/ d, is called the
TANGENT RAY / / INTERFERENCE g 15¢€a
(SHADOW BOUNDARY) (/ REGION Radio Horizon
DIFFRACTION If refraction is
REGION .
considered
d~4.11vh,

SMOOTH
CONDUCTOR

Hence, the effective earth’s radius factor, K, is defined as the factor that is
multiplied by the actual earth’s radius a to give the effective earth’s radius.
Thus k=a’/a. Due to earth’s curvature and refraction of radio signal, each site
must have a minimum elevation with respect to antenna height.

The value of k can be calculated for a given area based on refractivity gra-
dient available from local chart. For standard atmosphere, k = 1.33 = 4/3.
Higher values of k would mean a greater amount of bending of radio waves
toward the earth’s surface hnd consequently would result in extension of
radio visibility. The value of radio horizon distance for a particular value of

kis given by /2kalh where h is the antenna height.

k=4/3
Re=k*R=(4/3)*6370=8493 km
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ME PROPADATION

When the grazing angle of incidence is small, A, will be large compared with Ay
olten by a factor of 10 to 100, 1f the point of reflection is raised by an amount
A, 410 the change in phase of the reflected wave reaching the receiving antenna
will be (2K, sin )4, /10 = 047 This may he regarded ac being the boundary
hetween what can be considered to be a rough surface and a smooth surface. 1
With this crilerion the surface of generally flat land can he considered
wemoath™ whenever the surface irregularities have an average height variation
of A/10sin . For example, with Ag=1m and o= 1", we find that height
variations of up 1o 6m can still be regarded as a smooth surface. At the longer
wavelengths most surfaces appear to be smooth, bul at microwave {requencies
most surfaces would be rough and the reflection coeflicient would be smaller
than that given by the Fresnel Tormulas

A complication that has not been mcluded in the Nat-carth interference
formulas is the effect of the decrease in the index of refraction of the
atmosphere with height above the suiface 3 At greater heights the less dense
atmosphere results in a smaller index of refraction. This has the effect of
eauging the ray that leaves the antenna at a finite angle relative 1o the ground
lo curve or bend in 8 downward direction in aceordance with Snell's law of
refraction. The phenomenon of ray curvature may be readily understood by
dividing the almosphere into layers, with diserete values for the index of
refraction in each layer. as shown in Fig. 6.6, For this staircase approximation
io the continuous variation in the index of refraction, Snell’s law gives

s @ ey sinfy=ccon sind, =

Thus since each suecessive value of n, is smaller than the preceding value, the
angles @ must increase and the ray curves in the downward direction. For
propagation over spherical earth this ray curvalure extends (he radio horizon

beyond the peometrical horizon.

e

Flgaee &6 [lostratsnn ol ray curvalure.

| The Rayleigh erlterion allows for an ohelrction wath 3 hesght ol A0 beading 1o 2 maximum
:

phase change ol 0157 L
t The decrease in the refractive index with height is not shwvays mondtons. Inversion lapers
lesling fo a phenomenan known a< ducling can ooour. Such efects are discussed in Sec, .12



The effect of ray curvature can be laken into account in a simple way for
propagation over & spherical earth by replacing the earth with an eanth having
A larger radius and considering the rays lo propagate along straight lines,
provided the mdex of refrachion decreases linearly with height. By means of
this artifice the height of any point on the ray above the surface of the earth
remaing the same. For propagation studies a standard index-of-refraction
profile is commonly chosen sueh that it is equivalent to increasing the radius of
the earth by a {actor of 413, Thus the effective earth's radiug a, 15 chosen 1o he
S2B0mi (8497 k). With reference 1o Fig. 6.7, it is seen that (hy+a,) =
RE4 nf. w0 RP=2ha + .frf--ﬂﬂllnr Since the antenna height B, i small com.
pared with the distance to the horizon, the slant distance R is nearly equal o
the horizontal distance d, to the horizon. Thus the distance 1o the horizon i
given by dy = (Zh,a, )", and il d, is expressed in miles and h, in Teel we have

dy mi = VT, I (6.10)

The maximum line-of-sight distance in miles between two antennas at heights
h, and hy It above a spherical earth with standard refraction conditions is then
readily seen 1o be given by

dy = VI, 4 V2 mi (.11}

The Nat-earth interference formulas are generally not valid for distances
approaching the maximum horizontal line-of-sight range. The exact disiance
aver which the Mlat-earth lormulas can be used depends on a number of factors,
including wavelength. It is difficult to establish the range of validity withoul
direct comparison with the interference effects based on using a spherical earth
model. The evaluation of interference eflects over a spherieal earth is con.
siderably more complex than that for a fla earth and is discussed in the nexi
section,

At my=4.122+h; where hy is in meters

O kmy=4.122 { Vhy + Vh, } where h; & h, are in meters



Large Scale Propagation — Three Modes
Large scale propagation is composed of three modes listed below in order of
their dominance:

o Reflection — Energy reflects off large (relative to 1) conductive objects.

o Diffraction — Bending of energy around objects.

o Scattering — Diffuse re-radiation of energy off rough, with respect to A
surfaces.

1. Reflection The angle of reflection is equal to the angle of incidence.

Reflection introduces a 180° phase shift in most cases.

Refraction (with reflection): The radio wave is bent due to the changing in the

index of refraction of the medium.

Incident wave from transmit i Refl 0
ncident wave from transmitter ! aflacted : >  Refracted wave
l |
i Angle of :
Angleot ! reiecton lonized air :
incidence : n2 =15 |
: 0 Boundary
| ; /1
Air /i
n =1 "
[
Reflacting surface ( v 1
Incident /0 1o
wave / I Reflected wave (par

2. Diffraction Diffraction can be explained by Huygen’s principle — all points
on a wavefront serve as point sources for secondary wavefronts:

?’Lv".‘.‘!

\\ 222\
/ i

-t /)
/ / )




Consider a Transmitter and Receiver where an object is blocking the direct line-
of-sight path between Tx and Rx. The signal can diffract around the object such
that energy can get to the Rx even though it is shadowed.

Note: The more deeply the receiver is shadowed, the lower the received power.
At some point, the receiver won’t be able to receive any signal.

'\ Shadowed Region (no LOS)
Shadowed Region (no reception)

Perfect Conductor

3. Rough Surface Scattering Sometimes called Diffuse Scattering or Diffuse
Reflection, scattering happens when energy impacts a rough surface and is re-
radiated in numerous directions.

Incident Field

Random scattering

Image Source:
http://www.ee.washington.edu/research/ersl/ResearchLinks/
WavePropRough.htm

So those are the basic modes of propagation. What happens when we add in a
real earth and a real atmosphere?

The earth and the earth’s atmosphere have the greatest impact on signals in the
VLF — HF range (3 kHz — 30 MHz). It’s not that the earth and atmosphere
don’t affect signals at higher frequencies (in fact, they do!) it’s just at those



higher frequencies start to come into play and dominate the effects of the
earth/atmosphere.

Let’s look at what happens to these lower frequencies first before moving on to
the higher frequencies.

Radio Band Frequency Propagation Via
VLEF Very Low 3-30kHz - Guided between the earth
Frequency and the ionosphere

LF Low Frequency 30 - 300 kHz - Guided between the earth
and the ionosphere
- Ground Waves

MF  Medium 0.3-3 MHz - Ground waves
Frequency - E layer ionospheric
refraction at night, when D
layer absorption disappears

HE  High Frequency  3-30 MHz - E layer ionospheric

(Short Wave) refraction
- F layer ionospheric refraction

VHF Very High 30-300 MHz - Line-of-sight
Frequency

UHF Ultra High 300 - 3000 - Line-of-sight
Frequency MHz

SHF  Super High 3-30GHz - Line-of-sight
Frequency

EHF Extremely High 30 - 300 GHz - Line-of-sight limited by
Frequency absorption

For VLF-HF communications, there are two basic modes a radio wave travels
from the transmitter to a receiving antenna:

e Ground wave

e Space wave

e Sky wave

The frequency of the radio wave is the most important factor in determining the
performance of each type of propagation.


http://en.wikipedia.org/wiki/Very_low_frequency
http://en.wikipedia.org/wiki/Kilohertz
http://en.wikipedia.org/wiki/Low_frequency
http://en.wikipedia.org/wiki/Kilohertz
http://en.wikipedia.org/wiki/Medium_frequency
http://en.wikipedia.org/wiki/Kilohertz
http://en.wikipedia.org/wiki/High_frequency
http://en.wikipedia.org/wiki/Shortwave
http://en.wikipedia.org/wiki/Megahertz
http://en.wikipedia.org/wiki/Very_high_frequency
http://en.wikipedia.org/wiki/Megahertz
http://en.wikipedia.org/wiki/Ultra_high_frequency
http://en.wikipedia.org/wiki/Megahertz
http://en.wikipedia.org/wiki/Super_high_frequency
http://en.wikipedia.org/wiki/Gigahertz
http://en.wikipedia.org/wiki/Extremely_high_frequency
http://en.wikipedia.org/wiki/Gigahertz

4. Ground Wave Propagation A ground wave is a radio wave that travels
along the earth’s surface (also referred to as a surface wave). A ground wave
must be vertically polarized for better propagation (lower losses since the
ground is considered as poor conductor).

Antenna

Earth antenna

Lower frequencies travel efficiently as ground waves because they are
diffracted by the surface of the earth. Ground waves thus follow the curvature
of the earth and can travel beyond the horizon, for hundreds of miles. Ground
wave propagation is strongest in the Low and Medium frequency ranges.
Ground wave propagation constitutes the main signal path for signals in the
frequency range from 30 kHz-3 MHz.

5. Sky Wave Propagation Sky waves are radiated by an antenna into the
upper atmosphere where they are reflected back to earth. This bending is
caused by refraction in the ionosphere. The air molecules of the ionosphere are
subject to severe radiation from the sun. Ultraviolet radiation causes the
molecules to ionize, or separate into charged particles, positive and negative
ions. The ionosphere is composed of 3 layers, D, E and F (although F is
subdivided into F; and F,).

50250 ./‘ Sky Wave Propagation

Radiation
- from

sun
-~

- .

D layer 25-55 miles
E layer 55-90 miles
F, layer 90155 miles
F, layer < 250 miles

Night  Day =Gl




The direction of reflection depends on the angle at which the radio wave enters
the atmosphere and the different degrees of ionization of the layers, as well as
the frequency of the transmission.

A receiver that lies between the end of the ground wave propagation and the
first sky wave reflection will not receive the transmitted signal. This region is
termed the skip zone.

6. Space Wave Propagation A space wave refers to the radio wave that
travels directly in a straight line from the transmitting antenna (Line-of-sight).
These waves are not refracted, and do not follow the curvature of the earth.

The chief limitation of a space wave is that it is limited to line-of-sight
distances. The range of space wave propagation is limited by the curvature of
the earth and height of the antennas above the earth’s surface.

If an antenna is at height h, the distance, d, to the radio horizon (which is the
maximum range for space wave communications from that antenna) is given by
the formula

At my=4.122+h; where h; is in meters

In the picture below, where we have one antenna of height " and a second

antenna of height h, , the maximum separation at which they can still
communicate by line-of-sight is
iy my=4-122 { Vhy +h, } where h; & h, are in meters

Example

What is the longest line-of-sight communication range between a transmitter
whose transmitting antenna is 100 m high and a receiver whose receiving
antenna is 10 m high?




1. Log-Normal Model

The VLF — HF range of the frequency spectrum are mostly used for
narrowband, long-distance communication. Most terrestrial wireless
communications operate in the “sweet spot” of the wireless spectrum in the
VHF and UHF bands. In this range, the earth and atmosphere play a far smaller
role, and propagation becomes dominated by the specific local environment.
Let’s consider the following scenario. Suppose we convince the ECE
Department to build a cell tower on the top of Rickover Hall, and you’re driving
down McNair Road. The signal you receive will be a combination of
Reflection, Diffraction, and Scattering, as shown in the image below. The
problem is that we call it “mobile” radio for a reason: you want to be able to
drive, move about the local environment, and communicate on your cell phone
at the same time.

As you move about the environment, the three propagation modes will have an
impact on the instantaneous received signal in different ways. In the example
shown above, you receive a nice strong signal reflected from Mahan Hall, with
a little bit of signal energy coming from diffraction off the back corner of
Nimitz Library, along with some energy scattered by the clock tower. As you
move towards Alumni hall, the direct line-of-sight signal to the tower will be



blocked, as will most of the strong reflected signals; diffraction is now the
dominant mode. Conversely, if you moved towards Rickover, you would
receive a nice strong line-of-sight signal from the tower, along with a strong
reflection from the Northeast side of Nimitz as well as scattering from all the
parked cars in the Triangle Lot.

So the question remains: Using your brand-new iPhone (or Samsung phone as
the case may be), will your signal make it to the tower and will it have sufficient
power to “close the link” and allow you communicate? Or will you suffer the
fate of a cellular “dead zone™?

Clearly, the Friis Free Space equation is out, and the ground wave/sky wave
effects are so small that they can be neglected. Although numerous
sophisticated models exist (and are used to varying degrees in both commercial
and military systems), by far the simplest and most common way to describe
propagation in such an environment is the Log-Normal or Log-Distance
model. This model is widely used to not only predict coverage for a particular
mobile user, but also for predicting the interfering signal power that the mobile
user will experience from other RF sources.

Appendix A. Log-Normal Model.

First, a quick definition. We use the term Path Loss to denote the received
signal power at a specific transmitter-receiver distance relative to the transmit
power, or mathematically:

PL(d)=P =P(d)  [dB]

P Is the transmitted power [dBm]
P, (d) Is the received power [dBm]
d Is the distance between transmitter and receiver [meters]

Over the years, wireless engineers have observed that Average Path Loss for a
particular environment generally follows a d" relationship, where the variable n
is known as the Path Loss Exponent, and is specific to that environment.
Researchers have also observed that when they made numerous measurements
at a specific distance (but in different local environments), the variation in
received signal power obeyed a “bell curve” distribution about the local mean
(the “bell curve is formally known as a “Normal” or “Gaussian” distribution).
Plotted on a log scale, the results look something like this:



PL
(dB)

Average e
Path Loss

Gaussian distribution of
Path Loss about that
particular distance
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We call this Log-Normal Path Loss. Average Path Loss obeys a linear
relationship (straight line) on a log scale, and the variation in received power at
that distance follows a normal distribution. The slope of the line is the Path
Loss Exponent, and is determined experimentally for the particular scenario of
interest.

Mathematically Log-Normal Path Loss is given by:

PL(d)=PL(d,)+10nlog,, [diJ

0

PL(d) Is the path loss at a distance d  [dB]

PL(d,) Is the path loss at some close-in reference distance do (do<< d).
Can either be measured or calculated with the Friis Free Space
equation.

n Is the path loss exponent

Note That: Antenna gains, wavelength, etc. are embedded in the model
(PL(d,), and n) parameters. Changing the configuration means we will end up

with different model parameters and different results.



Free Space Loss
B _(4rd) _ (4md)
P A2t

1 Free space loss, ideal isotropic antenng

* P; = signal power at transmitting antenna

« P, = signal power at receiving antenna

* A = carrier wavelength,

¢ = speed of light (= 3 x 108 m/s)

« d = propagation distance between antennas
where d and A are in the same units (e.g., meters).

Free space loss equation can be recast:

P And
L =10log—" = Zﬂllog{ T )

A

= —20log( )+ 20log(d )+21.98dB

C

- Zﬂlog( n/d ) = 20log(f )+20log(d )-147.56 dB

Free space loss accounting for gain of antennas

L (@xy@y @d)y  (cdy

~ v A2 2
R, (T}d CTF)II-‘ 14!” 143. tf‘ 14!‘ 14}.
* G, = gain of transmitting antenna
e G_= gain of receiving antenna
e A = effective area of transmitting antenna

t
» A = effective area of receiving antenna

In the above formula, the powers correspond to that of the input signal at the
transmitter and output at the receiver, respectively.

L, =20log(n )+ 20log(d )— 10log(.4,.4. )

= —20log(f )+ 20log(d )—10log(4, 4, )+169.54dB



For free-space envinronment the exponent n is equal 2 in the following
equation:

ﬁt(d):PL(do)-i-lonIOglO(dij

0

Here the exponent n depends on the transmission environment

0 Urban vs suburban, medium-city vs large-city,

obstructed vs unobstructed, indoors vs outdoors

0 Generally the values of n are between 2 and 4. Higher values means faster
decay of the propagating signal.

Fading

] Variation over time or distance of receivedsignal power caused by changes in
the transmission medium or path(s)

] In a fixed environment:

0 Changes in atmospheric conditions

] In a mobile environment:

0 Multipath propagation.

Effects of Multipath Propagation

1 Multiple copies of a signal may arrive atdifferent phases

o If phases add destructively, the signal level relative to noise declines, making
detection more difficult

] Intersymbol interference (ISI)

0 One or more delayed copies of a pulse may arrive at the same time as the
primary pulse for a subsequent bit.

Types of Fading

] Fast fading

0 Changes in signal strength in a short time period

1 Slow fading

0 Changes in signal strength in a short time period



] Flat fading

o Fluctuations proportionally equal over all frequency components

1 Selective fading

o Different fluctuations for different frequencies

] Rayleigh fading

0 Multiple indirect paths, but no dominant path such as LOS path

0 Worst-case scenario

] Rician fading

0 Multiple paths, but LOS path dominant

o Parametrized by K, ratio of power on dominant path to that on other paths
Diversity Techniques

] Space diversity:

0 Use multiple nearby antennas and combine received signals to obtain the
desired signal.

0 Use collocated multiple directional antennas

] Frequency diversity:

0 Spreading out signal over a larger frequency bandwidth

0 Spread spectrum

] Time diversity:

0 Noise often occurs in bursts

0 Spreading the data out over time spreads the errors and hence allows FEC
techniques to work well

o TDM

0 Interleaving
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6.7 MICROWAVE AND MILLIMETER-WAVE PROPAGATION

In the microwave and millimeter-wave region where the frequency ranges from
I GHz (A, =30 cm) up to 300 GHz (A, = I mm) the ionosphere is transparent,
since w is much greater than the plasma frequency w, and the cyclotron
frequency w. The propagation of waves in this frequency range is pre-
dominantly line-of-sight propagation. There will be interference phenomena
from the ground-reflected wave, but it is not as pronounced as it is at lower
frequencies becausc the roughness of the ground is much gireater rélativé to the
wavelengths involved. Thus the reflection from the ground is more diffuse with
a weaker specular-reflected component. In those instances'where:a kelatively
smooth ground or water surface is present at the reflection point! the inter-
ference phenomena can be significant, and the interference pattern will exhibit
a lobe structure with closely spaced lobes.

The most important factor to take into account at wavelengths of a few
centimeters and shorter is attenuation and scattering by rain and snow, and for
the millimeter-wave band attenuation, which can be very high, by fog, water
vapor, and otfier gases in the atmosphere. In this section we will present an
outline of the theory for predicting the attenuation and scattering by rain and
also data on the attenuation caused by atmospheric gases. Other phenomena
that affect the propagation of microwaves and millimeter waves are scattering
by tropospheric irregularities in the index of refraction and ducting caused by
inversions in the index-of-refraction profiles. The latier two topics are discussed
in later sections of this chapter.

Attenuation by Rain

Radio waves propagating through rain are attenuated because of absorption of
power in the lossy dielectric medium represented by water. There is also some
loss in the direct transmitted wave because of scattering of some energy out of
the beam by the rain droplets. The scattering loss is usually small relative to the
absorption loss. The theory for rain attenuation and scattering is based on the
calculation of the absorption and scattering cross sections of a single raindrop.
This calculation is straightforward for the case of a spherical droplet of water
having a radius no larger than A /10. In this situation the low-frequency
Rayleigh scattering theory can be applied. Since the radius of raindrops ranges
from a fraction of a millimeter up to several millimeters, the Rayleigh scatter-
ing theory is generally valid down to wavelengths of order 3 cm or somewhat
less. The assumption of spherical droplets is not valid since raindrops take on
an oblate spheroidal or flattened shape under the influence of aerodynamic
forces and pressure forces as they fall. However, at the longer wavelengths an
equivalent spherical radius can be assumed. At millimeter wavelengths it is
important to consider the drop shape, and the determination of the cross
sections is then much more difficult and laborious. However, with modern



Consider a spherical drop of water with a radius a much smaller than the
wavelength of the incident plane wave, as shown in Fig. 6.46. The drop is
characterized as a dielectric sphere with a complex dielectric constant « =
k" — jx". The incident electric field is chosen as

- J= = fkox
E,=Ejm,e

Over the extent of the drop the incident field is essentially uniform and equal
to Eya, The polarization produced in the drop is thus the same as would be
produced in a dielectric sphere under the action of a uniform static electric
field. This boundary value problem is readily solved (see Prob. 2.7) and shows

The incident power on the rain droplet undergoes the following types of
attenuation:

1-power loss due to the fact that the rain droplet is a lossy dielectric
(er=¢€"v-j&e").
2-power loss due to scattering of the incident ray to various other directions.
The overall losses will depend on the size of the rain drop relative to the
wavelength, the density of the rain drops (rate of rain in mm/hour), and the
frequency of the propagating wave.

LETLE B TR LRI D B ERT s

From the point of view of the communications engineer what is needed is 4
relatively simple formula relating specific attenuation to rain rate, frequency,
and temperature. Fortunately such a formula exists, and it is of the form

A = aR" dB/km (6.107)

where R is the rain rate in millimeters per hour and a and b are constants that
depend on frequency and temperature of the rain. The temperature depen-
dence is due to the variation of dielectric constant of water with temperature.
A detailed review of the theory and experimental data has led to a compilation
of the values of the two constants a and b by Olsen, Rodgers, and Hodge.t
These authors established the following empirical formulas for the constants a
and b at a temperature of 0°C:

a=G,f" f in gigahertz (6.108a)
where G, =639%107° E, =203 f<29GHz
G.=421x10° E, =242 2.9 GHz = f =54 GHz
G, =4.09x107° E, =0.699 54 GHz = f < 180 GHz
G, = 3.38 E,=-0.151 180GHz<f
and b =G, S f in gigahertz (6.108b)
where G, = 0.851 E, =0.158 f<85GHz
G, = 1.41 E,=-00779 85GHz=f<25GHz
G, = 2.63 F,=-0272 25 GHz = [ < 164 GHz

G, =0.616 E, =0.0126 164 GHz = f
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Figure 647 Adtenuation by rain at 10, 30, and 100 GHz as a function of rain rate.

Attenuation by Fog

The attenuation of microwaves and millimeter waves by fog is governed by the
same fundamental equations as attenuation by rain. The main difference is that
fog is a suspended mist of very small water droplets with radii in the range 0.01
to .05 mm. For frequencies below 300 GHz the attenuation by fog is essen-
tially linearly proportional to the total water content per unit volume at any
given frequency. The upper level for water content is around 1 g/m®, with the
content usually considerably less than this for most fogs. A concentration of
0.032 g/m” corresponds to,a fog that is characterized by an optical visibility of
around 2000 ft. A concentration of 0.32 g/m’ corresponds to an optical visibility
range of around 400 ft. The attenuation by fog in decibels per kilometer as a
function of frequency is shown in Fig. 6.48 for the two concentration levels
mentioned above. At a frequency of 300 GHz the attenuation in the more
dense fog is still only about 1 dB/km. Hence, for communication ilink designs
with sufficient signal margin built in to overcome the attenuation by rain, the
attenuation by fog will not be the limiting factor.
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g the—— e ,_/_ / Figure 6.48 Attenuation in fog
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Attenuation by Snow and Ice

When water solidifies into snow and ice crystals there is a significant change in the
complex dielectric constant k = k' — jk". Forice, k" is nearly constant and equal to
3.17 for temperatures from 0° to ~30°C throughout the centimeter and millimeter
wave bands. The imaginary part is very small, nearly independent of frequency in
the microwave and millimeter wave bands, and drops from a value of ap-
proximately 3.7x 107 at 0°C to 5.2x 10" at ~30°C.f The small value of the
imaginary part indicates relatively little attenuation by dry ice crystals. However,
snow and hail consist of a mixture of ice crystals and water in many instances, so
the attenuation is strongly dependent on the meteorological conditions. Fur-
thermore the shape of snow and ice crystals is so varied that the calculation of
absorption by a single typical particle is a formidable task, if indeed a typical
particle can even be defined.

Attenuation by Atmospheric Gases

Uncondensed water vapor and oxygen both have various absorption lines in
the centimeter and millimeter wave tegions. Consequently, there are frequen-
cies where high attenuation occurs dnd which are separated by windows or
frequency bands where the attenuation is much lower. Figure 6.49 shows the
attenuation by oxygen and water vapor (uncondensed) at 20°C at sea level. The
water content is | percent water molecules, which is typical in temperate
climates. At frequencies greater than 300 GHz the attenuation by oxygen is
negligible relative to that of water vapor. There are strong water vapor
absorption lines at Ayg=135cm and at 1.67mm, as well as at shorter
wavelengths. There is strong absorption by oxygen at A;=0.5 and 0.25 cm. At
Ag=0.5cm, attenuation by oxygen alone exceeds 10 dB/km. The attenuation
by oxygen and water vapor is additive. In those bands where the attenuation
exceeds 10 dB/km the range over which communication can take place is
severely restricted. By a proper choice of frequencies it is possible to achieve
much less attenuation; for example, at A, = 1.33 mm the attenuation is less than
| dB/km. For frequencies above 300 GHz the minimum attenuation is still
large, 6dB or more per kilometer, and places a great restriction on the

application of millimeter- and submillimeter-wave radiation for terrestrial
line-of-sight paths. However, various specialized applications such as short-
range secure communication systems and satellite-to-satellite links are suited to
the use of millimeter-wavelength radiation. The short wavelengths involved
allow very compact high-gain antennas to be used, and this can compensate for
some of the attenuation loss.
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Figure 6.49 Attenuation by oxypen and water vapor at sea level. T=20°C. Water content is
15gm' |



6.9 TROPOSPHERIC SCATTER PROPAGATION

An over-the-horizon tropospheric-scatter communication link is illustrated in
Fig. 6.52. The two antenna beams overlap in a common volume located at
considerable height above the surface of the earth (3 to 8km). The scattering
comes from the small random irregularities or fluctuations in the index of
refraction of the atmosphere. These fluctuations are very weak, but when
sufficiently high transmitted power is used a useful signal, in view of the large
volume from which scattering occurs, is scattered in the direction of the
receiving antenna, Tropospheric-scatter-propagation links operate in the
frequency range of 200 MHz up to 10 GHz. Operation at lower frequencies is
not attractive because of the cost of building antennas with sufficient gain. At
higher frequencies the transmission loss becomes too large. There is consider-
able fading associated with tropospheric-scatter-propagation links, so some
form of diversity is desirable for high reliability links. The typical distance
involved in a tropospheric scatter link is a few hundred miles, usually not more
than 400. At heights greater than 10km the troposphere is too rarefied to
produce sufficient scattering. If we assume an effective earth radius equal to
four-thirds of the actual radius, then the maximum line-of-sight distance to a
scattering point 20,000 ft above the earth (6 km) is 200 mi. The maximum
horizontal range is 400 mi for this case.

There was considerable interest in tropospheric scatter propagation during
the decade 1950-1960. With the development of satellite communication sys-
tems there is now less need for tropospheric scatter systems. A considerable
amount of research has gone into the development of the theory and also the
gathering of operational performance data for tropospheric scatter links. A
special issuc of the IRE Proceedings was devoled to this topic, and the reader is

Common
volume

200 =400 154 “
/ Figure 6.52 A tropospheric-scatter-propagation
y communication link for over-the-horizon trans-

mission.




Radio transmission: 2 viewpoints
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Jutdoor propagation: long-term modes
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Radio Wave Components

Component Comments

Direct wave Free-space/ LOS propagation

Attenuated wave Through walls etc. in buildings, atmospheric
attenuation (>~10 GHz)

Reflected wave Reflection from a wall, passive antenna,
ground, ionosphere (<~100MHz), etc.

Refracted wave Standard, Sub-, and Super-refraction, ducting,
ionized layer refraction (<~100MHZz)

Diffracted wave Ground-, mountain-, spherical earth- diffraction
(<~5GH2z)

Surface wave (<~30 MHz)

Scatter wave Troposcatter wave, precipitation-scatter wave,

igniz d-!ay&r sc&atter wave

roperty o ruza

44

Reflection: the abrupt change in direction of a wave front at an
interface between two dissimilar media so that the wave front returns
into the medium from which it originated. Reflecting object is large
compared to the wavelength.

Scattering: A phenomenon where the direction (or polarization) of the
wave is changed when the wave encounters propagation medium,
discontinuities smaller than the wavelength (e.g. foliage, ...). The
result is a disordered or random change in the energy distribution.
Diffraction: The mechanism the waves spread as they pass barriers
in obstructed radio path (through openings or around barriers).
Diffraction is important when evaluating potential interference between
terrestrial/stations sharing the same frequency.

Absorption: The conversion of the transmitted EM energy into
another form, usually thermal. The conversion happens as a result of
interaction between the incident energy and the material medium, at



the molecular or atomic level. One cause of signal attenuation due to
walls, precipitations (rain, snow, sand) and atmospheric gases.
Refraction: The redirection of a wavefront passing through a medium
having a refractive index that is a continuous function of position (e.g.,
a graded-index optical fibre, or earth atmosphere) or through a
boundary between two dissimilar media.

— For two media of different refractive indices, the angle of refraction
Is approximated by Snell's Law known from optics.

Super-refraction and ducting

It is important when evaluating potential interference between
terrestrial / earth stations sharing the same frequency.

- coupling losses into duct/layer

« geometry — nature of path (sea/land)

— propagation loss associated with duct/ layer

« frequency,  refractivity gradient, « nature of path (sea, land, coastal)
e terrain roughness

Atmospheric refraction effects on radio signal propagation

In

\ Less negative

J

\Z}ru o
(— 157 N units/lkm)

Ducting
(— 157 ™ umnits/km)

7 %
& /
Actual Earth with radius 6 370 km

Standard atmosphere: -40 N units/km (median), temperate climates
Super-refractive atmosphere: < -40 N units/km, warm maritime
regions

Ducting: < -157 N units/km (fata morgana, mirage).

Standard atmosphere
(— 40 ™ umnits/lkkm)




Fresnel Zone

* Fresnel zones are loci of

T R points of constant path-
length difference of A/2
g, oy (180° phase difference )
;o N d, slm — Thg n-th zone is the
d 2 region enclosed between
1, : radius of the 1st Fresnel zone, m the 2 ellipsoids giving
d=d, +d,: distance T-R, m path-length differences n
A : wavelength, m (M2) and (n-1)(A/2)

d,,d, : distance to R and to T, m «The 1st Fresnel zone

Example: max. radius of the 1st Fresnel zone Corresponds to n = 1

at 3 GHz (.= 0.1m) with T — R distance of 4 km:
= (1/2)sqrt(0.1*4000) = 10m
Property of R. Struzak 54
The relation between received power and transmitted one is given by

Friis transmission formula:

2

A
PH = Pf )G}"H ﬂm' Arcd )
TR

2

A\
R

Pris = Prus + Grgas + Grpgp +101l0g ( Ared]

Pt = transmitted power [W]

d = distance between antennas Tx and Rx [m]

Pr = received power [W]

G = transmitting antenna power gain

Gr = receiving antenna power gain

Pr/Pt = free-space propagation (transmission) loss (gain).

This formula is applicable to free-space propagation, where the exponent in the
last term is equal to 2.



In practical situations where there, more than one path due to reflection,
diffraction, refraction and absorption, the Friis formula is modified to
some other empirical formulas using values for the exponent ( n )other
than 2. Thus, the last term of the relation is written in the following form
to represent the change of signal strength with distance, as it was
suggested by the Okumura-Hata model:

Gavrg - Kd-n

Long-term average
K, n — constants

Typically: 3= h= 5
n = 2: free space
n = 4: two-ray mode/

Free space

The best results — when the
constants are determined
experimentally for a given

Open area (LOS) environment

Signal strength (log)

Urban Suburban

Distance (log)

The signal level decreases with distance. Free-space propagation has
the slowest decrease (n=2). Urban regions (ox/4 »=a $hkls) have the
fastest decrease ( n>2).

MAPL & max range

= Preem | Prasm | MAPL | 24 5 GHz
dB GHz range
range m
m
2 0 -80 80 100 45
2 +20 -80 100 1000 450
4 0 -80 80 6 4
4 +20 -80 100 32 21




Non-LOS propagation

« —when the 1st Fresnel zone is obstructed and/ or the signal reached
the receiver due to reflection,refraction, diffraction, scattering, etc.

— An obstruction may lie to the side, above, or below the path.

» Examples: buildings, trees, bridges, cliffs, etc.

» Obstructions that do not enter in the 1st Fresnel zone can be
ignored. Often one ignores obstructions up to 1/2 of the zone.

AL - ALOS link shown
- N in the figure was
=::::::::::_ “““““ ) ‘_“_‘_‘_‘_‘_‘_‘_‘:_‘% dGSlgned Wlth
positive link
— budget.
oae After deployment,
EE Nno signal was
EE received
« Why?

« At what distance difference the phase of the direct ray differ
from that of the reflected ray by 180 deg at frequency of

— 3 MHz?

— 300 MHz?

— 3 GHz?

« Controlling the directive
T a—— antenna gain at the
transmitter and/or receiver

Blocking the reflected ray
at the transmitter-reflector
path and/or reflector —
receiver path

Combine constructively the
signals using correlation-
type receiver

— Antenna diversity (~10 dB)

— Dual antennas placed at 2/2
separation

Methods to avoid the reflected ray at the receiving antenna.




Multipath propagation

- .
- L. -
- -

Indoor Outdoor: reflection (R),
diffraction (D), scattering (S)

The effects of multipath include constructive and destructive interference, and
phase shifting of the signal. This causes Rayleigh fading, with standard
statistical distribution known as the

Rayleigh distribution.

 Rayleigh fading with a strong line of sight content is said to have a Rician
distribution, or to be Rician fading.

» http://en.wikipedia.org/wiki/Rayleigh_fading;
http://en.wikipedia.org/wiki/Lord Rayleigh;

Received power coverage in the region around the college of Electronics Eng. due to
sector-1 of the base station near the stadium. Mohammed Sameer dissertation.


http://en.wikipedia.org/wiki/Rayleigh_fading
http://en.wikipedia.org/wiki/Lord_Rayleigh
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When the transmitter to receiver distance becomes too large the flat Earth approximation

15 no longer accurate. The curvature of the surface causes:
1. divergence of the power in the reflected wave in the interference region d2 + R>=(R+h.)?
2. diffracted wave i the shadow region (note that this 1s not the same as a ground wave) t N t

d, =V(2R h,)
The distance to the horizon 1s d, = Rgy z,/2R;h, or, if A, 1s 1n feet. 4, zm mules. R= 6370 km
The maximum LOS distance between the transnut and receive antennas 1s d,=3.57vh,
Az =y +d, = \[2h, +.[2h, (miles) h, in meters
/ d, inkm
/ d. is called the
TANGENT RAY /| INTERFERENCE ¢ 1>¢d
(SHADOW BOUNDARY) / REGION Radio Horizon
/ S DIFFRACTION If refraction is
REGION )
considered
d,=4.11vh,

SMOOTH
CONDUCTOR



Knife edge diffraction

Smooth sphere diffraction

{ = CLEARANCE DISTANCE

by Professor David Jenn



Huygen’s Principle (1)

Huvgen s pninciple states that any wavefront can be deco into a collection of point

sources. New wavefronts can be constructed from the combined “sphencal wavelets™
from the point sources of the old wavefront.

ORIGENAL
WAVE —
e N WAVE FRONT E(P) § g~ Ik T o J R p
~ —
OF WAVE FRONT n=—00 Rn —30 RP
SPHERICAL
WAVELET - -
. e S . where R is the distance from a wavelet
——  ROPAGATION source to the observation point. P.
> » Sources closest to P will contribute most

to the field

by Professor David Jenn



A plot of |[E/E,| shows that at 0.6F; the free space (direct path) value is obtained
14 :

12} -
u="_ 2d 1 Free Space Field Value /\ ﬂ N A A nd
Adyd, \j V VIV
08| -
ﬁﬂ
= osf .
4t 06F, :
12 F i
u - | | Il
-5 - 1 2 3 + 3
Scaled Dastance, u
The received power is reduced by a factor of 4 (6dB) when the knife-edge is situated

exactly on the LOS line. NS



Scaled distance parameter:
2d

Adyd,

where { <0 (1.e.. u negative) when the
obstacle extends above the direct path.

u=_{(

Example: 4 =50m h =25m d, =10 km. d, =2 km. kg, =100 m_ f=900 MHz

..... il b o 75
Sl 75 [= = — [(=75-4167=708m
o L 2000 12000
) “ r--‘\- u=-708J 24x10° =-427
10000 2000 Rx (0.33)24x10°

From the diffraction plot for u =—4.27. |E / E°| 0053 — 255 dBloss
20 log (E/E0)=20 log(0.053=25.4 4JE



Q1] A microwave link is to be deployed in an urban area at 17 GHz. The
transmitter antenna is to be located on a rooftop at 15 m. The receiver
antenna is to be installed at 5 m above ground level. Determine the
maximum height of a building at the centre of the path if transmitter and
receiver antennas are separated by 5 km.

Q2] A UHF television broadcast antenna is mounted at a height of 100 m.
Assuming flat terrain and receive antennas which are very close to the
ground, what is the maximum effective range of this antenna?



