
1

Lecture 1

Introduction to Computers

Communication Engineering Dept.

College of Electronics Engieneering

Ninevah University

2020/21

2

What Is A Computer?
A computer is an electronic
device,

operating under the control of
instructions (software) stored
in its own memory unit, that
can accept data (input),
manipulate data (process),
and produce information
(output) from the processing.

Computer System: collection
of devices that operate
together.

3

Devices that comprise a computer
system

Printer
(output)

Monitor
(output)

Speaker
(output)

Scanner
(input)

Mouse
(input)

Keyboard
(input)

System unit

(processor, memory…)

Storage devices

(CD-RW, Floppy,
Hard disk, zip,…)

6

What Does A Computer Do?

Computers can perform four general
operations, which comprise the information
processing cycle.

◼ Input

◼ Process

◼ Output

◼ Storage

7

Why Is A Computer So Powerful?

◼ The ability to perform the information
processing cycle with amazing speed.

◼ Reliability (low failure rate).

◼ Accuracy.

◼ Ability to store huge amounts of data and
information.

◼ Ability to communicate with other computers.

Data Representation

Bit - the smallest unit of data that a computer

uses. It can be used to represent two states

of information, such as Yes or No.

Byte - is equal to 8 Bits. A Byte can represent

 256 states of information, for example,

 numbers or a combination of numbers and

 letters. 1 Byte could be equal to one character.

Bits on Bytes

1 byte = 8 bits

1 kilobyte (K / KB) = 1,024 bytes

1 megabyte (M / MB) = 1,048,576 bytes

 (1024KB)

1 gigabyte (G / GB) = 1,073,741,824 bytes

(1024 MB)

1 terabyte (T / TB) = 1,099,511,627,776 bytes

 (1024 GB)

Computer System.ppt

◼ Information is moved in bytes, or multiple
bytes called words.

◼ Words are the fundamental units of
information.

◼ The number of bits per word may vary per
computer.

◼ A word length for most computers is 32 bits:

10

◼ Fact 1: Megabyte

 One of those old 3-1/2 inch floppy disks can

hold 1.44 Megabytes or the equivalent of a

small book.

Computer System.ppt

◼ Fact 2: Megabyte

 650 Megabytes might hold a couple volumes

of Encyclopedias.

Computer System.ppt

6

650 Megabytes is about the amount of

data that will fit on a CD-ROM disk.

13

What Are The Primary
Components Of A Computer ?

◼ Input devices.

◼ Central Processing Unit
(containing the control
unit and the
arithmetic/logic unit).

◼ Memory.

◼ Output devices.

◼ Storage devices.

Input Devices

– enable users to get

data into the computer

for processing

◼ Input - getting data into the computer

Computer System.ppt

Input Devices

• Keyboard.
• Mouse.

15

Output Devices

Output devices make the information
resulting from the processing available for
use. The two output devices more commonly
used are the printer and the computer
screen.

The printer produces a hard copy of your
output, and the computer screen produces a
soft copy of your output.

9/17/2023 Introduction to Computers 16

power

supply

hard

drive

motherboard

A Look Inside
..

CD-ROM

drive

floppy

drive
cards

9/17/2023 Introduction to Computers 17

A Look Inside…

◼ Identify all the major components:

◼ Power Supply

◼ Motherboard

◼ Memory

◼ Card Slots

◼ Cards (sound, video, network)

◼ CPU, heatsink and fan

◼ Drives (floppy, hard and CD-ROM)

9/17/2023 Introduction to Computers 19

What these components do.

◼ Power Supply – supplies DC power to all circuits and
devices in computer system.

◼ Motherboard – acts as a manager for everything on the
computer – connects all the other components together.

◼ CPU – Central Processing Unit – Represent the brain--
this does all the work of computing.

9/17/2023 20

◼ RAM – Random Access Memory holds data
and program instructions that the
computer is currently using.

◼ Hard Drive – holds all types of data that
needs to be stored between uses of the
computer.

Floppy and CD-ROM drives – store data on
portable media and allow to give data to
the computer (Read) or take data away
from the computer (Write).

What these components do..

9/17/2023 Introduction to Computers 21

◼ Card Slots – Allows other components (Cards) to
be added to the computer.

◼ Video card – Increase the processing of data
(photo and videos) (media) quickly.

◼ Sound card – Increase the processing of data
audios quickly.

◼ Network Card – allows computer to connect to
other computers over a wire or wireless.

What these components do..

9/17/2023 Introduction to Computers 22

Video Card

9/17/2023 Introduction to Computers 23

Sound Card

9/17/2023 Introduction to Computers 24

M
o

th
e

rb
o

a
rd

CPU

◼ Processing - transforming data into

information

CU

ALU

Memory
Registers

26

The Central processing Unit

The central processing unit (CPU) contains electronic
circuits of millions transistor for processing the data.

1-The CPU interprets instructions to the computer.

2-Performs the logical and arithmetic processing operations.

3-Causes the input and output operations to occur.

4-It is considered the “brain” of the computer.

27

Memory

RAM Memory, Random Access Memory or (temporary
memory) is the main memory of the computer.

1-It consists of electronic components that store data
including numbers, letters of the alphabet, graphics and
sound.

2- Any information stored in RAM is lost when the computer
is turned off.

ROM Memory, Read Only Memory is permanent memory that
has start-up software for direction the computer.

CASH Memory, built in CPU to support high speed of CPU for
processing data.

9/17/2023 Introduction to Computers 28

RAM Module

RAM Module

RAM Slot

29

Storage Devices

Auxiliary storage devices are used to store
data when they are not being used in
memory.

The most common types of auxiliary storage
used on personal computers are:

floppy disks,

hard disks

CD-ROM drives.

30

Floppy Disks

A floppy disk is a

portable,

inexpensive storage medium

consists of a thin, circular, flexible plastic disk
with a magnetic coating enclosed in a square-
shaped plastic shell.

Store 1.44MB or 2.25MB

9/17/2023 Introduction to Computers 31

Floppy Drive

32

Hard Disks

◼ Another form of auxiliary storage is a hard disk.

◼ A hard disk consists of one or more sold metal plates
coated with a metal oxide material that allows data
to be magnetically recorded on the surface of the
platters.

◼ The hard disk platters spin at a high rate of speed, by
revolutions per minute (RPM).

◼ Storage capacities of hard disks for personal
computers range from 10 GB to 1 TB.

33

34

Compact Discs

◼ A compact disk (CD), also called an optical disc, is a
flat round, portable storage medium.

◼ A CD-ROM (read only memory), is a compact disc
uses laser technology for recording data.

◼ Store different types of data such as text, graphics,
audios and videos.

◼ The capacity of a CD-ROM is 650 MB of data.

◼ A DVD (Digital Video Disc) looks just like a CD, but
holds much more video data

9/17/2023 Introduction to Computers 35

CD-ROM Drive

Flash Drive
Store data permanently
(ROM)

It’s like a mini, portable
hard drive!

Plug into the USB port
(Universal Serial Bus) on
the front or rear of
computers

9/17/2023 Introduction to Computers 37

Ribbon Cables
Connect between drivers and motherboard

polarized

◼ Example of sending

the word WOWover

the ribbon cable

◼ Voltage pulses

corresponding to

the ASCII codes

would pass through

the cable

38

39

Computer Software

Computer software is the key to
productive use of computers.
Software can be categorized into
two types:

◼ Operating system software

◼ Application software.

40

Operating System Software

Operating system software tells the computer how to perform
the functions of :-

Loading application.

Storing application.

Executing application.

transferring data.

GUI (Graphical user interface): type of operating system
provides visual clues such as icon symbols to help the user.
Like Windows, Linux and Macintosh.

DOS (Disk Operating System) is an older operating system
uses text-based command.

41

Application Software

Application Software consists of programs
that tell a computer how to produce
information. Some of the more commonly
used packages are:

◼ Word processing

◼ Electronic spreadsheet

◼ Database

◼ Presentation graphics

1

Introduction to the C
Programming Language

Omar K. S. (9/17/2023)

2

Introduction

• Program is a set of instructions to direct CPU like widows
and application

• Why programming??
1- For processing a lot of data (text, audio and video) in rapid
 speed (Arithmetically or logically)
2- For controlling hardware like printer, scanner, etc…

• Type of programming language
1- Low-level language
 a- Machine language
 b- Assembly language (commands with understanding words)
2- high-level language
• Fortran 1956…Basic 1963…Pascal 1970….C 1990

Omar K. S. (9/17/2023)

3Fred Kuhns (9/17/2023) CSE332– Object Oriented Programming Lab

4

Standard C

• Standardized in 1989 by ANSI (American National
Standards Institute) known as ANSI C

• International standard (ISO) in 1990 which was
adopted by ANSI and is known as C89

• As part of the normal evolution process the standard
was updated in 1995 (C95) and 1999 (C99)

• C++ and C
– C++ extends C to include support for Object Oriented

Programming and other features that facilitate large software
development projects

– C is not strictly a subset of C++, but it is possible to write
“Clean C” that conforms to both the C++ and C standards.

Omar K. S. (9/17/2023)

5

Algorithms

6

C Program Structure

• Preprocessor directives

• Function main

• The curly braces { }

• Statements

• functions

Omar K. S. (9/17/2023)

7

C program skeleton

• In short, the basic skeleton of a C program looks like
this:

#include <stdio.h>

void main(void)

{

 statement(s);

}

Int function_name()

{

}

Preprocessor directives

Function main

Start of segment

End of segment

Omar K. S. (9/17/2023)

88

Preprocessor directives

• a C program line begins with # provides an instruction
to the C preprocessor

• It is executed before the actual compilation is done.

• Two most common directives :
– #include<stdio.h>…

– #include<math.h>

– #include<stdlib.h>

– #include<conio.h>

– #define

• In our example (#include<stdio.h>) identifies the
header file for standard input and output needed by
the printf().

Omar K. S. (9/17/2023)

99

Function main

• Identify the start of the program

• Every C program has a main ()

• 'main' is a C keyword. We must not use it for any
other variable.

• 4 common ways of main declaration

int main(void)

{

 return 0;
}

void

main(void)

{

}

main(void)

{

}

main()

{

}

Omar K. S. (9/17/2023)

1010

The curly braces { }

• Identify a segment / body of a program
– The start and end of a function
– The start and end of the selection or repetition block.

• Since the opening brace indicates the start of a
segment while the closing brace indicating the end of a
segment, there must be just as many opening braces
as closing braces (this is a common mistake of
beginners)

Omar K. S. (9/17/2023)

1111

Statements

• A specification of an action to be taken by the
computer as the program executes.

• Each statement in C needs to be terminated with
semicolon (;)

• Example:
#include <stdio.h>

void main(void)
{
 printf(“I love programming\n”);
 printf(“You will love it too once ”);
 printf(“you know the trick\n”);
}

statement

statement

statement

Omar K. S. (9/17/2023)

1212

Statement cont…

• Statement has two parts :
– Declaration

• The part of the program that tells the compiler
the names of memory cells in a program

– Executable statements

• Program lines that are converted to machine
language instructions and executed by the
computer

Omar K. S. (9/17/2023)

1313

C Development Environment

DiskPhase 2 :

Preprocessor

program

processes the

code.

DiskCompilerPhase 3 :
Compiler

creates object

code and stores

it on Disk.

Preprocessor

DiskLinkerPhase 4 :

EditorPhase 1 :

Program is

created using the

Editor and

stored on Disk.

Disk

Linker links object

code with libraries,

creates a.out and

stores it on Disk

Omar K. S. (9/17/2023)

1414

C Development Environment cont

LoaderPhase 5 :

:

.

Primary

Memory

Loader puts

Program in

Memory

C P U (execute)Phase 6 :

:

.

Primary

Memory

CPU takes each

instruction and

executes it, storing

new data values as

the program executes.

Omar K. S. (9/17/2023)

1515

Entering, translating, and running a High-Level Language
Program

Omar K. S. (9/17/2023)

1616

Identifiers

• Words used to represent certain program entities
(variables, function names, etc).

• Example:
– int my_name;

• my_name is an identifier used as a program
variable

– void CalculateTotal(int value)

• CalculateTotal is an identifier used as a function
name

Omar K. S. (9/17/2023)

1717

Rules for naming identifiers

Rules Example
Can contain a mix of characters and numbers.
However it cannot start with a number

H2o

First character must be a letter or underscore Number1;
_area

Can be of mixed cases including underscore
character

XsquAre

my_num

Cannot contain any arithmetic operators R*S+T

… or any other punctuation marks… #@x%!!

Cannot be a C keyword/reserved word struct; printf;

Cannot contain a space My height

… identifiers are case sensitive Tax != tax

Omar K. S. (9/17/2023)

1818

Variables

• Variable → a name associated with a memory cell
whose value can change

• Memory is addresses in hexadecimal, for each address
variable value equal to one byte.

• Variable Declaration: specifies the type of a variable
– Example: int num;

– int deg = 8;

• Variable Definition: assigning a value to the declared
variable
– Example: num = 5;

Omar K. S. (9/17/2023)

19

Memory addresses
Omar K. S. (9/17/2023)

num 0 0 0 0 0 1 0 1

0 0 0 0 1 0 0 0 deg

2020

Basic Data Types

• There are 4 basic data types :
– int
– float
– double
– char

• int
– used to declare numeric program variables of

integer type (2 Byte) (65536)
– whole numbers, positive and negative
– keyword: int

int number, number2;
number = 12;
Number=number2;

Omar K. S. (9/17/2023)

2121

Basic Data Types cont…

• float
– fractional parts, positive and negative(4 Byte)
– keyword: float

 float height;
 height = 1.72; 1.2E-38 to 3.4E+38

• double
– used to declare floating point variable of higher

precision or higher range of numbers
– exponential numbers, positive and negative(8 Byte)
– keyword: double
 double valuebig;
 valuebig = 2.3E-308 to 1.7E+308;

Omar K. S. (9/17/2023)

2222

Basic Data Types cont…

• char
– equivalent to ‘letters’ in English language
– Example of characters:(1 Byte) (256)

• Numeric digits: 0 - 9
• Lowercase/uppercase letters: a - z and A - Z
• Space (blank)
• Special characters: , . ; ? “ / () [] { } * & % ^ < > etc

– single character
– keyword: char

char my_letter;
my_letter = 'U';

• In addition, there are void, short, long, etc.

The declared character must be

enclosed within a single quote!

Omar K. S. (9/17/2023)

23

Basic Data Types cont…

• Short
– used to declare numeric program variables of

integer type (2 Byte) (65536)
– whole numbers, positive and negative
– keyword: short

short number;
number = 12;

• Long
– used to declare numeric program variables of

integer type (4 Byte)
– whole numbers, positive and negative
– keyword: long

Long number;
number = 12;

Omar K. S. (9/17/2023)

24

positive and negative numbers

• Signed int variable = positive and negative numbers

• Unsigned int variable = negative numbers

• 00001010 = 10

• 10001010 = -10

• Unsigned long variable = positive and negative numbers

• Unsigned long variable = negative numbers

Omar K. S. (9/17/2023)

2525

Constants
• Entities that appear in the program code as fixed

values.
• Any attempt to modify a CONSTANT will result in

error.
• 4 types of constants:

– Integer constants
• Positive or negative whole numbers with no fractional

part
• Example:

– const int MAX_NUM = 10;
– const int MIN_NUM = -90;

– Floating-point constants (float or double)
• Positive or negative decimal numbers with an integer

part, a decimal point and a fractional part
• Example:

– const double VAL = 0.5877e2; (stands for 0.5877 x
102)

Omar K. S. (9/17/2023)

2626

Input/Output Operations

• Input operation
– an instruction that copies data from an input device into

memory

• Output operation
– an instruction that displays information stored in memory to

the output devices (such as the monitor screen)

Omar K. S. (9/17/2023)

2727

Input/Output Functions

• A C function that performs an input or output
operation

• A few functions that are pre-defined in the header
file stdio.h such as :
– printf()

– scanf()

– getchar() & putchar()

Omar K. S. (9/17/2023)

2828

The printf function

• Used to send data to the standard output
(usually the monitor) to be printed
according to specific format.

• General format:

– printf(“string literal”);
• A sequence of any number of characters

surrounded by double quotation marks.

– printf(“format string”, variables);
• Format string is a combination of text,

conversion specifier and escape sequence.

Omar K. S. (9/17/2023)

2929

The printf function cont…

• Example:
– printf(“Thank you”);

– printf (“Total sum is: %d\n”, sum);

• %d is a placeholder (conversion specifier)
– marks the display position for a type integer variable

• \n is an escape sequence
– moves the cursor to the new line

Omar K. S. (9/17/2023)

3030

Escape Sequence

Escape Sequence Effect

\a Beep sound

\b Backspace

\f Formfeed (for printing)

\n New line

\r Carriage return

\t Tab

\v Vertical tab

\\ Backslash

\” “ sign

\o Octal decimal

\x Hexadecimal

\O NULL

Omar K. S. (9/17/2023)

3131

Placeholder / Conversion Specifier

No Conversion

Specifier

Output Type Output Example

1 %d Signed decimal integer 76

2 %i Signed decimal integer 76

3 %o Unsigned octal integer 134

4 %u Unsigned decimal integer 76

5 %x Unsigned hexadecimal (small letter) 9c

6 %X Unsigned hexadecimal (capital letter) 9C

7 %f Integer including decimal point 76.0000

8 %e Signed floating point (using e notation) 7.6000e+01

9 %E Signed floating point (using E notation) 7.6000E+01

10 %g The shorter between %f and %e 76

11 %G The shorter between %f and %E 76

12 %c Character ‘7’

13 %s String ‘76'

Omar K. S. (9/17/2023)

3232

The scanf function

• Read data from the standard input device (usually
keyboard) and store it in a variable.

• General format:
– scanf(“Format string”, &variable);

• Notice ampersand (&) operator :
– C address of operator
– it passes the address of the variable instead of the variable

itself
– tells the scanf() where to find the variable to store the new

value

Omar K. S. (9/17/2023)

3333

The scanf function cont…

• Example :
 int age;
 printf(“Enter your age: “);
 scanf(“%d”, &age);

• Common Conversion Identifier used in printf
and scanf functions.

printf scanf

int %d %d

float %f %f

double %f %lf

char %c %c

string %s %s

Omar K. S. (9/17/2023)

3434

The scanf function cont…

• If you want the user to enter more than one value, you
serialise the inputs.

• Example:

 float height, weight;

 printf(“Please enter your height and weight:”);

 scanf(“%f%f”, &height, &weight);

Omar K. S. (9/17/2023)

3535

getchar() and putchar()

• getchar() - read a character from standard input

• putchar() - write a character to standard output

• Example:

#include <stdio.h>

void main(void)

{

 char my_char;

 printf(“Please type a character: ”);

 my_char = getchar();

 printf(“\nYou have typed this character: ”);

 putchar(my_char);

}

Omar K. S. (9/17/2023)

3636

getchar() and putchar() cont

• Alternatively, you can write the previous code using
normal scanf and %c placeholder.

• Example

#include <stdio.h>

void main(void)

{

 char my_char;

 printf(“Please type a character: ”);

 scanf(“%c”,&my_char);

 printf(“\nYou have typed this character: %c ”, my_char);

}

Omar K. S. (9/17/2023)

3737

Operators

• Arithmetic Operators
– +, - , *, / and the modulus operator %.

– + and – have the same precedence and associate left to right.

 3 – 5 + 7 = (3 – 5) + 7  3 – (5 + 7)

 3 + 7 – 5 + 2 = ((3 + 7) – 5) + 2

– *, /, % have the same precedence and associate left to
right.

– The +, - group has lower precendence than the *, / %
group.

 3 – 5 * 7 / 8 + 6 / 2

 3 – 35 / 8 + 6 / 2

 3 – 4.375 + 6 / 2

 3 – 4.375 + 3

 -1.375 + 3

 1.625

Omar K. S. (9/17/2023)

3838

Operators

• Arithmetic Operators
– % is a modulus operator. x % y results in the remainder when x

is divided by y and is zero when x is divisible by y.

– Cannot be applied to float or double variables.

– Example

int num=5;

R=5%2;

Printf(“R=%d”,R);

 if (num % 2 = = 0)

printf(“%d is an even number\n”, num)’;

 else

printf(“%d is an odd number\n”, num);

Omar K. S. (9/17/2023)

3939

Type Conversions

– The operands of a binary operator must have a the same type
and the result is also of the same type.

– Integer division:

 c = (9 / 5)*(f - 32)

 The operands of the division are both int and hence the result
also would be int. For correct results, one may write

 c = (9.0 / 5.0)*(f - 32)

– In case the two operands of a binary operator are different,
but compatible, then they are converted to the same type by
the compiler. The mechanism (set of rules) is called Automatic
Type Casting.

 c = (9.0 / 5)*(f - 32)

– It is possible to force a conversion of an operand. This is
called Explicit Type casting.

 c = ((float) 9 / 5)*(f - 32)

Omar K. S. (9/17/2023)

4040

Automatic Type Casting

1. char and short operands are converted to int

2. Lower data types are converted to the higher
data types and result is of higher type.

3. The conversions between unsigned and signed
types may not yield intuitive results.

4. Example
 float f; double d; long l;

 int i; short s;

 d + f f will be converted to double
 i / s s will be converted to int
 l / i i is converted to long; long result

Hierarchy

Double

float

long

Int

Short and

char

Omar K. S. (9/17/2023)

4141

Operators

• Assignment operators
– The general form of an assignment operator is

v op= exp

– Where v is a variable and op is a binary arithmetic operator.
This statement is equivalent to

v = v op (exp)

a = a + b can be written as a += b

a = a * b can be written as a *= b

a = a / b can be written as a /= b

a = a - b can be written as a -= b

Omar K. S. (9/17/2023)

4242

Operators

• Increment and Decrement Operators
– The operators ++ and –- are called increment and decrement

operators.

a++ and ++a are equivalent to a += 1.

a-- and --a are equivalent to a -= 1.

++a op b is equivalent to a ++; a op b;

a++ op b is equivalent to a op b; a++;

Example

 Let b = 10 then

 (++b)+b+b = 33

 b+(++b)+b = 33

 b+b+(++b) = 31

 b+b*(++b) = 132

Omar K. S. (9/17/2023)

43

Logical Operator

• int d;

• d=2&4; AND gate

• int d;

• d=2 | 4; OR Gate

• int d;

• d=(2&4) | 6;

44

The If Statement

• Syntax: if (condition or conditions) statement;
• If the expression is true (not zero), the

statement is executed. If the expression is
false, it is not executed.

• You can group multiple expressions together
with braces:

if (condition or conditions)
{
 statement 1;
 statement 2;
 statement 3;
}

Omar K. S. (9/17/2023)

45

The If/Else Statement
• Syntax:
 if (condition or conditions)
{
 statement_1;
}
 else
{
statement_2;
}
• If the expression is true, statement_1 will be executed,

otherwise, statement_2 will be.
• Example :

if (myVal < 3) printf(“myVal is less than 3.\n”);
else printf(“myVal is greater than or equal to 3.\n”);

4646

Operators

• Relational Operators
< <= > >= == !=

are the relational operators.

The expression

if(operand1 relational-operator operand2)

 takes a value of 1(int) if the relationship is true and 0(int) if
relationship is false.

– Example

 int a = 25, b = 30, c, d;

 c = a < b;

 d = a > b;

 value of c will be 1 and that of d will be 0.

If (c < b) printf(“c > b”);

Omar K. S. (9/17/2023)

4747

Operators

• Logical Operators
– &&, || and ! are the three logical operators.

– expr1 && expr2 has a value 1 if expr1 and expr2 both are
nonzero.

– expr1 || expr2 has a value 1 if expr1 and expr2 both are
nonzero.

– !expr1 has a value 1 if expr1 is zero else 0.

– Example

– if (marks >= 40 && attendance >= 75) grade = ‘P’

– If (marks < 40 || attendance < 75) grade = ‘N’

Omar K. S. (9/17/2023)

48

The For Loop

• Syntax: for (initialization; condition; increment)
{statements;}

• The for loop will first perform the initialization.
Then, as long is test is TRUE, it will execute
statements. After each execution, it will
increment.

for (cntr = 0; cntr < 3; cntr = cntr + 1)
 printf(“ Counter = %d\n”, cntr);

Counter = 0;
Counter = 1;
Counter = 2;

For(; ;)

49

Logic Operator Examples

#include<stdio.h>

main()

{

int i;

i=10 < 5 || 5<1;

printf("i=%i",i);

}

50

#include<stdio.h>

main()

{

double i,k=10,n;

int h;

i=k/3;

n=10/3;

h=k/3;

printf("i=%f n=%f h=%i",i,n,h);

}

5151

Few notes on C program…

• C is case-sensitive
– Word, word, WorD, WORD, WOrD, worD, etc are all

different variables / expressions
Eg. sum = 23 + 7
• What is the value of Sum after this addition ?

• Comments (remember 'Documentation'; Chapter 2)
– are inserted into the code using /* to start and */ to

end a comment
– Some compiler support comments starting with ‘//’
– Provides supplementary information but is ignored by

the preprocessor and compiler
• /* This is a comment */

• // This program was written by Hanly Koffman

5252

Few notes on C program cont…

• Reserved Words
– Keywords that identify language entities such as statements,

data types, language attributes, etc.

– Have special meaning to the compiler, cannot be used as
identifiers (variable, function name) in our program.

– Should be typed in lowercase.

– Example: const, double, int, main, void,printf, while, for, else
(etc..)

5353

Few notes on C program cont…

• Punctuators (separators)
– Symbols used to separate different parts of the C program.

– These punctuators include:

[] () { } , ; “: * #
– Usage example:

void main (void)
{

int num = 10;
printf (“% d”, num);

}

5454

Common Programming Errors

• Debugging → Process removing errors from
a program

• Three (3) kinds of errors :

– Syntax Error

• a violation of the C grammar rules, detected
during program translation (compilation).

• statement cannot be translated and program
cannot be executed

5555

Common Programming Errors
cont…– Run-time errors

• An attempt to perform an invalid operation,
detected during program execution.

• Occurs when the program directs the
computer to perform an illegal operation,
such as dividing a number by zero.

• The computer will stop executing the
program, and displays a diagnostic message
indicates the line where the error was
detected

5656

Common Programming Errors

– Logic Error/Design Error

• An error caused by following an incorrect
algorithm

• Very difficult to detect - it does not cause run-
time error and does not display message errors.

• The only sign of logic error – incorrect program
output

• Can be detected by testing the program
thoroughly, comparing its output to calculated
results

• To prevent – carefully desk checking the
algorithm and written program before you
actually type it

57

Q0

• Write a program in C language to calculate and print
the factorial of number 5.

#include<stdio.h>

main()

{

int i,f=1;

for(i=1;i<=5;i++)

f=f*i;

printf("The Factorial of 5 is%i\n",f);

}

}

58

Q1

• Wire a program in C language to enter 10 numbers
through the execution, test each number if even or
odd and print exprition if the number is even or odd.

#include<stdio.h>

main()

{

int i,k,f=1,k1;

for(i=1;i<=10;i++)

{

printf("Enter the number\n");

scanf("%i",&k1);

k=k1%2;

if(k==0) printf("The number %i is Even\n",k1);

else printf("The number %i is Odd\n",k1);

}

}

59

Q2

• Wire a program in C language to calculate the primary
number between 1 to 10.

#include<stdio.h>

main()

{

int i,j,c=0,s;

for(i=1;i<=100;i++)

{

for(j=1;j<=i;j++)

{

 s=i%j;

 if(s==0) c=c+1;

}

if(c==2 || c==1) printf("%i\n",i);

c=0;

}

}

60

Q3

• Write a program in C language to find the result of the
following series, input the values of x and y through
the execution

• Pow(3,1/2)

• Sqrt(3)

61

Q3 Solution

62

Q4

using While loop & getche()

63

Solution Q4

64

Q5

65

Q5 Solution

66

Q6

• Wire a program in C language to calculate and print the
primary numbers among 1 to 100, calculate the average
of the primary numbers among 25 to 75 and print this
average with explanation sentence, also calculate and
print the summation of non primary numbers among 10
to 50

67

• Wire a program in C language to calculate and print the
primary numbers among 1 to 100, calculate the average
of the primary numbers among 25 to 75 and print this
average with explanation sentence, also calculate and
print the summation of non primary numbers among 10
to 50.

Fred Kuhns (9/17/2023) CSE332– Object Oriented Programming Lab

68

Q6 Solution

69

The While LOOP

• Syntax:

while (condition)

{

statements;

}

Example :

int i=1;

While(i != 4)

{

Printf(“%d”,i);

i++;

}

70

#include<stdio.h>

Main()

{

Int num1,num2,sum;

Char ch;

Printf(“Press + for summation) :”);

Ch=getchar();

While(ch == ‘+’)

{

Printf(“Enter num1 and num2”);

Scanf(“%d \n%d\n”, &num1,&num2);

Sum=num1+num2;

}

Printf(“\n Exitting….\n”);

}
CSE332– Object Oriented Programming Lab

71

• Syntax:

do

{

statements;

}

while (condition)

Example :

int i=1;

do

{

Printf(“%d”,i);

i++;

}

While(i != 4)

The Do….While LOOP

72

Break ….Continue Instructions

• Break instruction stop the loop

• Continue instruction jump the execution of program to
the start of loop

73

LOOP using goto

• Syntax : goto place_name;

• Place_name:

74

Switch….case instruction

• Switch instruction using to test variable value with
integer constant values, where each constant value
consider as condition or comparison, switch like if…else

• Switch()

• {

• Case 1:

• Break;

• Case 2:

• Break;

• Case 3:

• Break;

• Default:

• }

75

76

Q7

• Write a program in C language to enter two numbers
through the execution, perform the following
operation and print the result, the addition if press
‘+’ sign, the subtraction if press ‘-’, the
multiplication if press ‘*’ sign and the division if press
‘/’ sign or print the error choice, repeated the
execution for infinite and terminate by pressing ‘q’
using break…..continue and switch…case instructions.

77

Solution Q7

78

Arrays

Syntax

Array_type Array_name[Row_size]……..…one dimension

Array_type Array_name[Row_size] [Colum_size]…two
dimension

Array_type Array_name[Row_size] [Colum_size]
[Item_size]….…Three dimension

Note : Need to loop for entering and loop for printing

79

80

81

Q8

• Write a program in C language to enter 10 numbers
through the execution, arrange them descending and
print these numbers before and after descending.

82

Solution Q8

83

Character Chain

• End of the chain must be ‘\0 ‘

84

• char=getchar() - read a character from standard input

• getch()

• getchar()

•

• putchar(‘char’) - write a character to standard output

• gets(string) read string from standard input

• puts(“string”) write string to standard output

85

Q9

• Write a program in C language to
enter the names of 3 students with 3`
degrees for each student, print the
name of each student with its degrees
in a table, calculate the average of
each student, increase the average
with 2 degrees if it is grater than 60,
increase the average with 4 degrees if
less than or equal 60.

86

Solution Q9

87

Q10

• Wire a program in C language to enter 10 numbers as
an array through the execution, find the most
repeated number among them and print this number
with the repeated times.

88

Solution Q10

89

Q11

• Wire a program in C language to calculate and

print the following series using switch

instruction, enter the values of X and Y

through the execution.

90

Solution Q11

• Using switch statement

91

Solution Q11

• Using if statement

92

Multi_ Dimensional Array

Example : 3 Dimensional Array

int a[2][2][2]

 1 4 9 3

 6 7 5 2

93

94

Function rand()

• rand()…..to generate random integer numbers within

 the limits.

Rand() work with the function srand(time(NULL))

Random between two limits % (max-min)+min

95

Clear function

• System(“cls”)……..clear the results screen

96

Q12

• Write a program in C language to multiply two arrays
4x3, 7*(3x2), enter the values of the arrays randomly
between 5 to 15, print the two arrays and the product
of multiplication in a form of array.

97

98

Q13

• Write a program in C language to input 5 names
through execution, find and print the number of names
start by the letter ‘m’ with its location, also find and
print the length of each name and the name itself,
using a function.

99

Solution Q13

100

Solution Q13

• Using function

101

Q14

102

Solution Q14

• 7 0 0 0 0

• -2 7 2 2 2

• -4 -4 7 4 4

• -6 -6 -6 7 6

• -8 -8 -8 -8 7

103

Functions

• Function is a secondary program executed just when
write its name and call it.

• Function like main program where consist from several
instructions (statements)….for….loop , if…else…printf

• Syntax of function

• Function_type Function_name (Function_variables)

• {

• Statements

• }

• Function_type int , float , short , long , void

104

#include<stdio.h>

main()

{

int s;

s=sum(4,8);

printf(“The summation=%d”, s);

}

int sum(int b,int c)

{

int z;

z=b+c;

return z;

}

105

!9!5

15

1

10

1


== += ii

ii

s

106

Some Mathematical instructions

pow(x,y)

abs(x)

sqrt(x)

exp(x)

• z = 5 & 6

• B = 5 << 2

• N = 2 | 6

yx

|| x

2 x

xe

107

Q15

• Write a program in C language to enter 5 student’s
name through the execution, arrange them
alphabetically and print these names after arranging.

108

Solution Q15

109

Q16

Write a program in C language to sum two arrays 3x3,

 enter the values of the arrays randomly
between 1 to 100, print the two arrays and the
product of summation in a form of array, using
function to enter and print the elements of the
arrays.

)33(72 xx

110

Solution of Q16

111

Q17

• Write a program in C language to enter the items
of two arrays a[10] and b[10] randomly between 5
to 10 using function, arrange the items of array a
ascending and items of array b descending using
same function then the main program will create a
new array c by the adding the two arrays then
calculate the summation of items of array c and b
using a function then print the array a, b, c using a
function and print the summation of items of array
c and b in the main program.

112

Solution of Q17

113

Complement of Solution Q17

114

Calling function inside function

Q18

• Write a program in C language to calculate the
value of S in main program using function(secondary
program) to calculate the summation and factorial
also use calling function inside function to calculate
the factorial.

!9

!4*

!5

!2*
15

1

10

1


== += ii

ii

s

115

Solution Q18

116

Q19

117

Solution Q19

118

Q20

119

Solution Q20

120

Q21

121

Solution Q21

First loop second loop

 The result
2

2

4

3

3

2

3

2

2

2

2

2

2

2

2

2

122

Q11

• Wire a program in C language to calculate and

print the following series, enter the values of X

through the execution.

123

• Write a program in C language to enter an array
a[10] through execution. Calculate and print the
summation of array’s when press 1 from keyboard.
Find and print the maximum and minimum number
among the array’s items when press 2 with
explanation expression. Exchange the number in the
array with 1 if it is equal to 2 when press 3 using
switch case where input the selection through
execution.

•

Fred Kuhns (9/17/2023) CSE332– Object Oriented Programming Lab

124

• Write a program in C language to input 5 names
through execution, find and print the number of names
start by the letter ‘m’ with its location, also find and
print the length of each name and the name itself.

Fred Kuhns (9/17/2023) CSE332– Object Oriented Programming Lab

	Slide 1
	Slide 2: What Is A Computer?
	Slide 3: Devices that comprise a computer system
	Slide 6: What Does A Computer Do?
	Slide 7: Why Is A Computer So Powerful?
	Slide 8: Data Representation
	Slide 9: Bits on Bytes
	Slide 10
	Slide 11
	Slide 12
	Slide 13: What Are The Primary Components Of A Computer ?
	Slide 14: Input Devices
	Slide 15: Output Devices
	Slide 16
	Slide 17: A Look Inside…
	Slide 19: What these components do.
	Slide 20: What these components do..
	Slide 21: What these components do..
	Slide 22
	Slide 23
	Slide 24: Motherboard
	Slide 25: CPU
	Slide 26: The Central processing Unit
	Slide 27: Memory
	Slide 28: RAM Module
	Slide 29: Storage Devices
	Slide 30: Floppy Disks
	Slide 31: Floppy Drive
	Slide 32: Hard Disks
	Slide 33
	Slide 34: Compact Discs
	Slide 35
	Slide 36: Flash Drive
	Slide 37: Ribbon Cables Connect between drivers and motherboard
	Slide 38
	Slide 39: Computer Software
	Slide 40: Operating System Software
	Slide 41: Application Software
	Slide 1
	Slide 2: Introduction
	Slide 3
	Slide 4: Standard C
	Slide 5: Algorithms
	Slide 6: C Program Structure
	Slide 7: C program skeleton
	Slide 8: Preprocessor directives
	Slide 9: Function main
	Slide 10: The curly braces { }
	Slide 11: Statements
	Slide 12: Statement cont…
	Slide 13: C Development Environment
	Slide 14: C Development Environment cont
	Slide 15
	Slide 16: Identifiers
	Slide 17: Rules for naming identifiers
	Slide 18: Variables
	Slide 19
	Slide 20: Basic Data Types
	Slide 21: Basic Data Types cont…
	Slide 22: Basic Data Types cont…
	Slide 23: Basic Data Types cont…
	Slide 24: positive and negative numbers
	Slide 25: Constants
	Slide 26: Input/Output Operations
	Slide 27: Input/Output Functions
	Slide 28: The printf function
	Slide 29: The printf function cont…
	Slide 30: Escape Sequence
	Slide 31: Placeholder / Conversion Specifier
	Slide 32: The scanf function
	Slide 33: The scanf function cont…
	Slide 34: The scanf function cont…
	Slide 35: getchar() and putchar()
	Slide 36: getchar() and putchar() cont
	Slide 37: Operators
	Slide 38: Operators
	Slide 39: Type Conversions
	Slide 40: Automatic Type Casting
	Slide 41: Operators
	Slide 42: Operators
	Slide 43: Logical Operator
	Slide 44: The If Statement
	Slide 45: The If/Else Statement
	Slide 46: Operators
	Slide 47: Operators
	Slide 48: The For Loop
	Slide 49: Logic Operator Examples
	Slide 50
	Slide 51: Few notes on C program…
	Slide 52: Few notes on C program cont…
	Slide 53: Few notes on C program cont…
	Slide 54: Common Programming Errors
	Slide 55: Common Programming Errors cont…
	Slide 56: Common Programming Errors
	Slide 57: Q0
	Slide 58: Q1
	Slide 59: Q2
	Slide 60: Q3
	Slide 61: Q3 Solution
	Slide 62: Q4
	Slide 63: Solution Q4
	Slide 64: Q5
	Slide 65: Q5 Solution
	Slide 66: Q6
	Slide 67
	Slide 68: Q6 Solution
	Slide 69: The While LOOP
	Slide 70
	Slide 71
	Slide 72: Break ….Continue Instructions
	Slide 73: LOOP using goto
	Slide 74: Switch….case instruction
	Slide 75
	Slide 76: Q7
	Slide 77: Solution Q7
	Slide 78: Arrays
	Slide 79
	Slide 80
	Slide 81: Q8
	Slide 82: Solution Q8
	Slide 83: Character Chain
	Slide 84
	Slide 85: Q9
	Slide 86: Solution Q9
	Slide 87: Q10
	Slide 88: Solution Q10
	Slide 89: Q11
	Slide 90: Solution Q11
	Slide 91: Solution Q11
	Slide 92: Multi_ Dimensional Array
	Slide 93
	Slide 94: Function rand()
	Slide 95: Clear function
	Slide 96: Q12
	Slide 97
	Slide 98: Q13
	Slide 99: Solution Q13
	Slide 100: Solution Q13
	Slide 101: Q14
	Slide 102: Solution Q14
	Slide 103: Functions
	Slide 104
	Slide 105
	Slide 106: Some Mathematical instructions
	Slide 107: Q15
	Slide 108: Solution Q15
	Slide 109: Q16
	Slide 110: Solution of Q16
	Slide 111: Q17
	Slide 112: Solution of Q17
	Slide 113: Complement of Solution Q17
	Slide 114: Calling function inside function
	Slide 115: Solution Q18
	Slide 116: Q19
	Slide 117: Solution Q19
	Slide 118: Q20
	Slide 119: Solution Q20
	Slide 120: Q21
	Slide 121: Solution Q21
	Slide 122: Q11
	Slide 123
	Slide 124

