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Introduction to Discrete-time Signals 
 

Objectives 

- To study basic discrete-time signals and perform various operations. 

- To learn how to represent and implement discrete-time signals using MATLAB. 

  

Introduction 

     A discrete signal will be denoted by x(n), in which the variable n is an integer 

value that represents discrete instances in time. Therefore x(n) is also called a 

discrete-time signal, which is a number sequence and can be written as follows: 

x(n) = {x(n)} = {…, x(-1), x(0), x(1), …} , 

                                             

where the up-arrow indicates the sample at n = 0. 

     Infinite-duration sequences cannot be represented in MATLAB due to the 

memory limitation. Contrarily, finite-duration sequences can be represented in 

Matlab by a row vector of values. However, such a vector does not have any 

information about sample position (n). A correct representation of x(n) requires two 

vectors, one for x and one for n. For example: 

 x(n)  = {2, 1, -1, 3, 1, 4, 3, 7} can be represented in MATLAB by: 

                               

 n = [ -3, -2, -1, 0, 1, 2, 3, 4] 

 x = [2, 1, -1, 3, 1, 4, 3, 7] 

 

 

Basic Sequences 

     The basic sequences used in digital signal processing for analysis purposes include 

Unit sample sequence (n) (also called Impulse sequence), Unit step sequence u(n), 

complex-valued exponential sequence, sinusoidal sequence and random signals.  

 In MATLAB, two functions are available to generat random sequences: the 

funcion rand(1, N) which generates a length N random sequences whose elements 

are uniformly distributed between 0 and 1, and the function randn(1, N) which 

generates a length N Gaussian random sequence with a mean of 0 and variance of 1. 
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Basic Operations 

(1) Signal Addition: This is a sample-by-sample addition given by: 

x3(n)=x1(n)+x2(n) 

In signal addition:  

- The sample value of x1 at n=-1 will be added to the sample value of x2 at n=-1. 

- The sample value of x1 at n=0 will be added to the sample value of x2 at n=0. 

- The sample value of x1 at n=1 will be added to the sample value of x2 at n=1,  

and so on (for all values of n). 

(2) Signal Multiplication: This is a sample-by-sample multiplication (or “dot” 

multiplication) given by: 

x3(n)=x1(n) .x2(n) 

In signal Multiplication:  

- The sample value of x1 at n=-1 will be multiplied by the sample value of x2 at n=-1. 

- The sample value of x1 at n=0 will be multiplied to the sample value of x2 at n=0. 

- The sample value of x1 at n=1 will be multiplied to the sample value of x2 at n=1, 

and so on (for all values of n). 

 

(3) Scaling: in this operation, each sample in the signal is multiplied by a scalar  : 

x2(n)=  . x1(n) 

(4) Shifting: in this operation, each sample in the signal is shifted by an amount (k) 

to obtain a shifted sequence: 

x2(n)=  x1(n-k) 

(5) Folding: in this operation, each sample in the signal is flipped around n=0 to 

obtain a folded sequence: 
x2(n)=  x1(-n) 

(6) Sample summation: this operation adds all the sample values of x(n) between 

nmin and nmax , and the result is a single value:  

 
 

 

(7) Sample product: this operation multiplies all the sample values of x(n) between 

nmin and nmax , and the result is a single value: 
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Matlab Functions 

 In Matlab, it is possible to create and use a function by following these steps: 

1- Open a new m-file. 
2- Define the inputs, outputs and name of the function as follows: 

function [output1, output2, …] = func_name(input1, input2, …) 

3- Press enter and start writing the operations performed by this function. 

4- Save the m-file with the SAME name given to the function in step 2 (i.e. 

func_name.m). 

5- In the main program, call the function as follows: 

[result1, result2, …] = func_name (input1, input2,…); 

NOTE 1: Both the function and main program MUST be saved in the same directory 

or folder; otherwise, calling the function will result in an ERROR. 

NOTE 2: Writing two or more functions in the same m-file is NOT allowed. 

Experiment 

1. Create the following function that generates an impulse sequence n), where: 

     
1, 0 ..., 0, 0, 1, 0, 0, ...

( )
0, 0

n
n

n


  
   

   
 

 

function [x, n] = impseq(n0, n1, n2) %Generate x(n)=delta(n-n0) 
                                     % n1 <= n <= n2 

    n = n1:n2; 
    x = [(n-n0) == 0]; 

Now use this function to create and plot an impulse (n) with n1=-5 and n2=5.  

  

2. Create the following function that generates a unit step sequence, where: 

1, 0 ..., 0, 0, 1, 1, 1, ...
( )

0, 0

n
u n

n

  
   

   
 

   function [x, n] = stepseq(n0, n1, n2) % Generate x(n)=u(n-n0) 

                                         % n1 <= n <= n2 
    n = n1:n2; 
    x = [(n-n0) >= 0]; 

Now use this function to create and plot a unit step u(n) with n1 = -5 and n2 = 5. 
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3. Create the following function that adds two signals: 

function[y,n]=sigadd(x1, n1, x2, n2) %implements y(n)= x1(n)+x2(n) 
%  y = resulting sequence 

%  n = Index vector of y 
% x1 = first sequence over n1 
% x2 = second sequence over n2 (n2 can be different from n1) 

 
n = min(min(n1), min(n2)):max(max(n1), max(n2)); %duration of y(n) 
y1 = zeros(1, length(n));  

y2 = y1;                              % initialization 
y1((n>=min(n1))&(n<=max(n1)))=x1;     % x1 with a new duration 
y2((n>=min(n2))&(n<=max(n2)))=x2;     % x2 with a new duration 
y = y1+y2; 

Now create a unit step u(n) with n1=-5 and n2=5 and u(n-2) with n1=-5 and n2=10, 

then plot the result of adding these two step signals. 

 

4. Modify the function in step (3) so that it performs multiplication instead of addition. 

Use “sigmult” as a name, then use this function to plot the result of u(n)*u(n-2). 

 

5. Create the following function that shifts an input signal: 

function [y,n] = sigshift(x, m, n0)  % implements y(n) = x(n-n0) 
%   m is an index vector of x 
%   n0 is the shifting value 
n = m+n0;  
y = x; 

Now create an impulse signal (n) and apply a shifting by 3 to this impulse. 
 

6. Create the following function that folds an input signal: 
 

function [y,n] = sigfold(x, n)     % implements y(n) = x(-n) 
y = fliplr(x); 
n = -fliplr(n); 

 

7. Write a MATLAB program to generate and plot each of the following sequences: 

(a) x(n) = 2(n+2)- (n-4),                             -5  n  5. 

(b) x(n) = n[u(n)-u(n-10)]+(20-n)[u(n-10)-u(n-20)]       -20  n  20 
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8. Let x(n) = {1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1}, 

                                                 

Write a MATLAB program to generate and plot the following sequences: 

(a)  x1(n) = 2x(n-5) – 3x(n-4) 

(b)  x2(n) = x(3-n) + x(n)x(n-2) 

 

9. Let x(n) = {1, 2, 3, 4, 3, 2, 1}, 

               
Design an experiment to show that signal folding and time shifting are not 

commutative, e.g., TSk(SF(x)) is not equal to SF(TSk(x)), where TSk is time shifting 

by k samples (Assume k = 3), and SF is signal folding. 

 

10.  

A- What is the Matlab function that can be directly used for sample summation? 

B- What is the Matlab function that can be directly used for sample product? 

C- Use the functions in (A) and (B) to determine the sample summation and 

multiplication of the following sequence: 

 x(n) = { 1, -3, 7, 5, 2, 3, 9, -8, 4, 1, 3 }. 

                           

11.  To represent a signal in MATLAB, why do we need 2 sequences instead of only 

one sequence?  
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Introduction to 8086 Microprocessor Emulator 

 

 

Objectives 

To introduce the basic operations and functions provided by the Emulator 

program. 

 

Introduction 

     8086 Microprocessor Emulator, also known as EMU8086, is an emulator of the 

8086 Microprocessor. It is developed with a built-in 8086 assembler. This tool is 

primarily designed to copy or emulate hardware. These include the memory of a 

program, CPU, RAM, input and output devices and even the display screen. 

 

Emulator Window 

     The Emulator window displays all the 8086MP registers, flags and memory 

(addresses and contents). This window is shown in figure 1. It provides a user 

interface that is simple and easy to manage. To open this window from the toolbar, 

click (emulate) and select (show emulator). This window will also be opened 

whenever you select to emulate a code after compilation. 

o You can modify the value of any register directly from the Emulator window 

by double clicking the register, where an Extended Value Viewer window 

will be opened, with value of that register converted to all possible forms. 

Also you can modify the values of registers on runtime by typing over the 

existing values. 

o Double clicking on any memory location opens Extended Value Viewer with 

WORD value loaded from memory at the selected location. LOW BYTE is 

loaded from the selected position and HIGH BYTE from the next memory 

address. You can modify the value of any memory word directly in the 

(Extended Value Viewer) window. Also, dealing with only one byte of the 

memory is also allowed. 

o Flags button allows you to view and modify flags on runtime. 
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Figure 1: Emulator window 

 

Compiling Assembly Language Code 

1. When opening EMU8086 program, select COM file to write your Assembly 

language code, where the window shown in figure 2 will be opened. A COM file 

is a simple tiny executable file, in which assembly language programs can be 

written.  

2. Type your code inside the text area, and click compile button.  

a. If the code contains any errors, a new window will be opened, showing the 

first error, with a description of the error reason and location. An example error 

is shown in figure 3. 

b. If the code contains no error, you will be asked to save the compiled file. The 

compiler converts the program source to a set of bytes, which is called 

Machine Code. Processor understands the machine code and executes it. 

3. After successful compilation, click emulate button to load the compiled file in 

emulator. Two windows will be opened; the first window shows the original 

source code, while the second window is the Emulator window. 
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4. From the Emulator window, click Run button to execute the complete code, or 

Single Step to execute the code step by step. 

 
Figure 2: An opened COM file 

 

 
Figure 3: Compiling an example code containing errors 

Menu bar 
 

Tool bar 



 4  

Other Features 

   Students can also benefit from other features provided by the Emulator program. 

Those include: 

- A table from the Menu bar that contains the ASCII codes and their equivalent 

decimal and hexadecimal values.  

- A calculator from the Tool bar that evaluates multiple mathematical and logical 

expressions in decimal, hexadecimal, octal and binary numbering systems.  

- A converter from the Tool bar that converts numbers from a numbering system to 

another.  

- A complete guide to the Assembly language instructions set with examples, provided 

in the Tool bar from (Help) icon. This guide also contains tutorials on numbering 

systems, memory access, variables, interrupts and other topics. 

- Code examples on several applications, available from (Examples) in the tool bar. 

- Virtual I/O devices at specified port numbers, available in (Virtual devices) menu 

from the menu bar in the Emulator window. Examples on using specific devices 

like the stepper motor, traffic lights and robot controller are included in the 

tutorials.  

Experiment 

1- Display the registers of the 8086 Mp from the Emulator window. 

a. What is the value of the code segment (CS) register? 

 

b. What is the value of the instruction pointer (IP) register? 

 

c. To what physical memory address is the instruction pointer referring? 
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2- Change the value of the data segment register (DS) to (A00H) and the value of the 

extra segment register (ES) to (1A00H). 

a. What is the range of physical addresses for each of those segments? 

 

 

 

 

 

b. Are the data segment and extra segment separated, overlapped, or adjacent? 

 

3- Change the value of BL to (FAH). Find the equivalent value of BL in: 

i. binary:  

ii. decimal signed: 

iii. decimal unsigned: 

(Verify your answers from the Extended Value Viewer). 

4- Display the 8086 Mp registers: 

a. What are the values of the segment registers? 

 

b. Make segmentation by giving different values to the segment registers, then 

give the physical address of the first location of each segment: 

 

 

 

5- Display the 8086 Mp memory: 

A- Go to address (11A H) and find the contents of this memory location as: 

a. Byte: 

b. Word: 
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B- Give two logical addresses that allow you to reach this physical address: 

 

 

C- By double clicking this memory location, change its contents to (1234H). 

a. How many bits does each memory location contain? 

b. Specify the address where each byte of (1234H) is stored: 

 

c. What is the equivalent value of (1234H) in: 

i. binary:  

ii. decimal signed: 

iii. decimal unsigned: 

(Verify your answers from the Extended Value Viewer). 

6- If (ES=0028H), (DS=F100H), (SS=0800H), what is the byte content of the memory 

at offset (0007H) in the extra segment? What is its ASCII equivalent? 

 

7- Enter the ASCII codes of the characters string (*Hello*) into memory, starting from 

address (7A00:0170H). 

Examine Your Knowledge: 

1- What is the physical address of the last memory location in the 8086 Mp (1MByte) 

memory? What logical address do you need to use to reach this location? 

2- If: (DS=0200H), (ES=1300H), (SS=2000H). What is the range of addresses for 

each segment? Are they separated, overlapped, or adjacent?  

3- If: (DS=0372H), (ES=752dH), (SS=3456H), (SP=06d3H), (DI=9af3H), what is the 

physical address of the location that (SP) is pointing to?  
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    Sampling and Reconstruction 

of Analog Signals 
 

 

Objectives 

- To study the sampling principle and its effect on the frequency-domain quantities. 

- To study several reconstruction approaches. 
 

Introduction 

  

           Analog                             Analog 

               input                             output 

              signal                                              signal 

 
                         Digital        Digital 

                              signal                     signal 
 

 In many DSP applications, real world analog signals are converted into discrete signals 

using sampling and quantization operations (collectively called analog-to-digital conversion or 

ADC). These discrete signals are processed by digital signal processors, and the processed signals 

are converted into analog signals using a reconstruction operation (called digital-to-analog 

conversion or DAC).  

 To understand how the DSP system works, we need to know the relation between an analog 

signal and its discrete time sampled version. In time domain, relation between an analog signal 

and a sampled discrete time signal is given by: 

)()( sa nTxnx  ,                               … (1) 

where Ts is the sampling interval. 

However, in the frequency domain, the relation between spectra of an analog signal and its 

discretized version is more complicated. Here, Fourier analysis can be used to explain this 

relation and then address the reconstruction operation as follows:  

The continuous time Fourier transform is given by:  






 dtetxFX Ftj

aa

2)()(  .             … (2) 

The inverse continuous time Fourier transform is given by:  






 dFeFXtx Ftj

aa

2)()( .             … (3) 

 

The discrete time Fourier transform is given by: 







n

fnjenxfX 2)()( .                 … (4) 

   A/D 

Converter 

(ADC) 

Digital 

Signal 

processor 

   D/A 

Converter 

(DAC) 
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The inverse discrete time Fourier transform is given by: 


s

s

F

fnTj

s

dfefX
F

tx
0

2
)(

1
)(


.                … (5) 

The relation between Xa(F) and X(f) is given by: 







k

sas FkfXFfX ))(()( ,            … (6) 

where Fs is the sampling frequency = 1/Ts. In other words, X(f) consists of infinite numbers of 

copies of scaled Xa(F) separated by frequency interval f = 1. From the relation between discrete 

time and analog frequencies: 

sF

F
f                           

we get: 







k

sas

s

kFFXF
F

F
X )()( ,            … (7) 

in which )(
sF

F
X  consists of infinite numbers of copies of scaled Xa(F) separated by interval F = Fs. 

Sampling Principle 

In order to avoid aliasing, a band-limited signal xa(t) with a maximum frequency (fm)  can 

be reconstructed from its sample values x(n) = xa(nTs) if the sampling frequency Fs = 1/Ts is 

greater than twice the maximum frequency of xa(t): 

ms fF 2  ,                                        … (8) 

 

otherwise aliasing would result in x(n). The sampling rate of (2fm) for an analog band-limited 

signal is called the (Nyquist Rate). 

 

Reconstruction 

 From the sampling theorem and the above examples it is clear that if we sample band-

limited xa(t) above its Nyquist rate, then we can reconstruct xa(t) from its samples x(n). Using an 

interpolation formula: 

))((sinc)()( ss

n

a nTtFnxtx  




,       … (9) 

where 
x

x
x



 )sin(
)(sinc   is an interpolating function derived from an ideal low pass reconstruction 

filter. However, since an ideal low pass reconstruction filter cannot be implemented, we usually 

estimated the ideal low pass filter by the following methods: 

 

 Zero-order-hold (ZOH) interpolation: In this interpolation, a given sample value is held 

for the sample interval until the next sample is received: 

               
( ) ( ),          ( 1)a s sx t x n nT t n T   

                         … (10) 

 

which can be obtained by filtering the impulse train through an interpolating filter of the form: 
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s

0

1 0 t<T
( )

0 otherwise
h t


 
                                              … (11)   

which is a rectangular pulse. The resulting signal is a piecewise-constant (staircase) waveform 

which requires an appropriately designed analog post-filter for accurate waveform reconstruction. 
 

 

     x(n)             xa(t)          xa(t) 

 
 

 First-order-hold (FOH) interpolation: In this case the adjacent samples are joined by 

straight lines. This can be obtained by filtering the impulse train through: 
 

             

s

1

1 0

( )
1 2

0 otherwise

s

s s

s

t
t T

T

h t t
T t T

T


  


 

  




                                     … (12) 

 

Experiment 

To study the effect of sampling on the spectrum of discrete signals, we will sample at two 

different sampling frequencies and then reconstruct the signals as follows: 

Let 
t

a etx
10

)(


 . The continuous time Fourier transform of this signal is given by: 

  
















22 210

10*2
)(

F
FX a


. 

 

1. Sampling xa(t) at Fs = 50 samples/sec: 
 

clc 

clear all 

close all 

tmin = -1; 

tmax = 1; 

% Analog signal 

t = tmin:0.001:tmax; 

xa = exp(-10*abs(t)); 

% Sampling rate (sample/second): 

Fs = 50; 

% Sample period 

Ts = 1/Fs 

% Discrete time signal 

n = tmin/Ts:tmax/Ts; 

x = exp(-10*abs(n*Ts)); 

%Display signals in time domain 

figure; 

subplot(211) 

ZOH Post-Filter 
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plot(t,xa) 

title('Analog and discrete time signals') 

xlabel('time (sec)') 

ylabel('Analog signal x(t)') 

subplot(212) 

stem(n,x) 

xlabel('n') 

ylabel('Discrete time signal x(n)') 

 

% Computing Fourier transform 

% Analog frequency (Hertz) 

F = -100:0.1:100; 

W = 2*pi*F; 

%Discrete time frequency 

f = F/Fs;  

w = 2*pi*f; 

%Analog spectrum for continuous time Fourier transform 

XaF = 2.*(10./(10^2+W.^2)); 

%Discrete time Fourier transform (implementation of eq.4): 

XF = x*exp(-j*n'*w); 

%Display spectra in frequency domain 
figure; 
subplot(311) 
plot(F,abs(XaF)) 
title('Spectra of signals') 
xlabel('Frequency [Hz]') 
ylabel('Original Xa(F)') 
subplot(312) 
plot(F,abs(XF)) 
xlabel('Frequency [Hz]') 
ylabel('X(F)') 
subplot(313) 
plot(f,abs(XF)) 
xlabel('F/Fs') 
ylabel('X(F/Fs)') 
 

Explain whether experimental results are consistent with theoretical results.  
 

2. Reconstruction of  xa(t): 
   

figure; 

clf 

subplot(211) 

hold on 

stem(n*Ts,x,'r') 

for i = 1:length(n) 

    xsinc(i,:) = x(i)*sinc(Fs*(t -(i+min(n)-1)*Ts)); 

    plot(t,xsinc(i,:)) 

end 

title('Signal Reconstruction') 

xlabel('time [sec]') 
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ylabel('x(n)*Sinc(Fs*(t-nTs))') 

hold off 

xar = sum(xsinc); 

subplot(212) 

plot(t,xar,'b-',t,xa,'r:') 

legend('Reconstructed signal','Original signal') 

ylabel('Reconstructed signal xa(t)') 

xlabel('time [sec]') 

% reconstruction error: 

maxerror = max(abs(xa - xar)); 

 

     Explain the property of sinc function that enables the reconstruction of analog signals without 

overlapping. 

 
3. Repeat steps 1 and 2 using Fs = 10 samples/sec. Explain why using Fs = 50 samples/sec is better 

than using Fs = 10 samples/sec. Locate the area where the spectra are most likely to overlap with 

each other, resulting in aliasing. 

 

4. Consider an analog signal xa(t) = sin(20t), 0  t  1. It is sampled at Ts = 0.01, 0.03, 0.05, 0.07 

and 0.1 sec intervals to obtain x(n).  

 

a. For each Ts plot x(n). 

b. Reconstruct the analog signal ya(t) from the samples x(n) using the sinc interpolation (use t 

= 0.001) and determine the frequency in ya(t) from your plot. 

c. Comment on your results. 

 

 

Discussion 

1. What is the Matlab function that can be used to plot staircase (ZOH) interpolation of analog 

signals?  

2. What is the Matlab function that would be used to plot linear (FOH) interpolation of analog 

signals? 

3. From this experiment, describe why the minimum sampling rate must be at least twice the 

bandwidth of an analog signal. 

4. From the figure in Page 1, explain briefly the function of each part of the DSP system. 

5. For a discrete time signal in the figure below, draw the results of using zero-order-hold and 

first-order-hold interpolation. 
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 Introduction to  

    Assembly Language 
 

              

Objectives 

 To use Assembly language instructions to apply changes and perform simple tasks 

on the 8086Mp registers and memory. 

 To learn the meaning and purpose of machine language. 

Assembly Language 

 Assembly language is a low-level language which is developed to enable the 

programmer to perform various mathematical, logical and/or hardware-manipulation 

operations, using the hardware provided inside the microprocessor. In order to use 

assembly language, the programmer needs to have sufficient knowledge on the 

internal architecture and instruction set of the microprocessor. 

Machine Language 

The microprocessor can only understand the binary language (0’s and 1’s). 

Therefore, the assembler converts assembly language to a binary language called 

(Machine Language). Machine code is stored in a part of the memory called (code 

segment) and it can be executed by the microprocessor to perform the required 

task(s). 

8086Mp instructions vary in the number of bytes used to encode them. Some 

instructions can be encoded with just 1 byte; others can be done in 2 bytes. The 

maximum number of bytes of an instruction is 6.  In order to know the machine code 

of specific instructions, write these instructions in a COM file and click on (emulate) 

from the tool bar. The emulator window will display memory starting from the 

location where the first instruction is stored. The machine code of any instruction is 

stored starting from the higher byte to the lower. Figure 1 shows the emulator 

window displaying the machine code of an example instruction.  
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Figure 1: The emulator window displaying machine code: (89801B43 H) of the 

instruction: (MOV [BX+SI+431BH], AX) 

Procedures 

1- Open a new COM file and assemble the instruction: MOV CL, [BX+DI+2] , then set the 

value of BX to 35H, DI to 212H, CX to 1234H and DS to 1000H. 

a. What is the physical address of the data used in this instruction? 

b. What is the logical address of the memory where this instruction is stored? 

c. What is the length of this instruction? 

d. What is the machine code of this instruction? 

e. Put the value 55H in the memory address specified by the instruction and execute it. 

What is the value of CL after execution and why? 
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f.   Check the value of IP before and after executing this instruction. What is the 

difference between the two values and why? 

2- Open a new COM file and assemble the instruction: ADD AL,4BH , then change AL to 

6EH. 

a. What is the length of this instruction? 

b. What is the machine code of this instruction? 

c. Calculate the result of this instruction: 

i. Manually:  

ii. by executing the instruction and checking the value of AL: 

Are the two results equal?  

d. Check the status of the Overflow flag (OF). What does this status indicate? 

 

3- Convert the following machine codes into Assembly language instructions:  

  89daH 

  00c8H 

  51H 

  04d4H 

  fec9H 

  fec0H 

  80eb05H  

4- Open a new COM file and assemble the following code: 

MOV CL, 19H 
MOV BH, 3 

     RPT:  ADD CL, 5 
DEC BH 
JNZ RPT 
HLT 
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    Run the program one instruction at a time (single step) and fill one row in the 

following table with each step, until the end of the code. 

 IP Executed Instruction BH CL Machine Code 

1      

2      

3      

4      

5      

6      

7      

8      

9      

10      

11      

12      

 

5- Describe the work of the following program: 

MOV    CX , 0AH 

MOV    SI , 300H 

MOV    BX , 520H 

 RPT: MOV    AL , [ SI ] 

     MOV    [ BX ] , AL 

     INC       SI 

     INC       BX 

     DEC      CX 

     JNZ       RPT 

 HLT 
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         8086 Microprocessor 

   Instruction Set 

 

Objectives 

 To learn the interpretation of various 8086Mp instructions. 

 To gain facility in using 8086Mp registers and memory. 

Procedure 

1- The value of the flag bits are usually affected by the result of the last executed 

instruction. What are the initial values of the flag register bits (before executing any 

instruction)? 

 

2- Open a new COM file and assemble the instruction: MOV [DI], CX  ; then set the 

value of DI to C4DH, CX to A254H, and set the value of the parity flag to (Odd). Run 

the instruction and answer the following:       

 

a. What is the addressing mode of the instruction? 

b. After execution, what is the new value of: 

1. CX 

2. DI 

3. PF 

3- Open a new COM file and assemble the instruction:  XCHG AX, CX ; then set AX to 

ABCDH and CX to 1234H. Run the instruction and give the new value of: 
 

a. AX 

b. CX 

4- Open a new COM file and assemble the instruction:  Neg  BX  ; then set BX to 45H and 

set the sign flag to positive. Run the instruction and give the new value of: 
 

a. BX 

b. SF 
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5- A way to allow the programmer to change the default segment into another segment is 

called (Segment Override Prefix). It is an additional byte that is added to the front of an 

instruction to select an alternate segment register. It may be added to almost any 

instruction in any memory addressing mode. 
 

Examples 

MOV  AX, DS:[BP]         ; changing from stack segment to data segment. 

MOV  AX, ES:[BP]         ; changing from stack segment to extra segment. 

MOV  SS:[DI], AX          ; changing from data segment to stack segment. 

 

NOW: Open a new COM file and assemble the instruction:  MOV AL, ES:[04B6H] ; 

then Make segmentation, enter the string: "Good Morning" into memory at ES:4B6H 

and set AX to 0H. Run the instruction and answer the following:   
 

a. What is the new value of AX?  

b. What is the meaning of (ES:) in this instruction? 

6- Write ONE instruction that adds the byte stored at memory location SS:333H with 

the value in BH and saves the result in BH.  

 

7- Open a new COM file and assemble the instructions:   

PUSH BX 

PUSH CX  

Then set BX to 4567H, CX to FEDCH and SP to A59FH. Run the instructions and 

answer the following:   

a. What is the new value of SP ? 

b. Display the memory locations where you pushed the values of BX and CX in 

the stack. 

8- Open a new COM file and assemble the instruction: ADC AX, BX ; then set AX to 5H, 

BX to 8H, and set the carry flag to 1. Run the instruction and give the new value of: 
 

a. AX 

b. CF 
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Discussion 

1- Write an assembly language program to fill a block of data consists of 12 

words with 22H. This block starts at ES:210H. 

2- What are the equivalent instructions of (LOOP  N1)? 

3-Write an Assembly program to set the Flags register bits so that:  

 there is no carry 

 Parity is even 

 no zero 

 Sign is positive 

 and there is no overflow 

 

4- Write an Assembly language program to exchange between two blocks, each 

of them consists of 14 Bytes, the first block starts at SS:27EH and the 

second starts at ES:64BH. 
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 Convolution and Correlation  

           of Discrete-Time signals 
 

Objectives 

- To study the convolution and correlation of discrete-time signals. 

- To learn how to implement the two operations using MATLAB. 
 

Introduction 

Convolution of sequences  

As the mathematical operation, a linear convolution sum is defined as: 

( ) ( )* ( ) ( ) ( )
k

y n x n h n x k h n k




    

  

 In general, the convolution operation is used to describe the response of an LTI 

system. In DSP it is an important operation and has many other uses.  

 If arbitrary sequences are of infinite duration, then MATLAB cannot be used 

directly to compute the convolution. MATLAB does provide a built-in function called 

(conv) that computes the convolution between two finite-duration sequences. The conv 

function assumes that the two sequences begin at n = 0 and it is invoked by:  
 

>> y = conv(x, h); 

 

However, the conv function neither provides nor accepts any timing information of 

the convolved sequences. To solve this inconvenience, a simple extension of the conv 

function, called conv_m, which performs the convolution of arbitrary support sequences 

can be designed as: 

 
function [y, ny] = conv_m(x, nx, h, nh) 

% Modified convolution routine for signal processing 

% ---------------------------------------------------- 

% [y, ny] = convolution result 

% [x, nx] = first signal 

% [h, nh] = second signal 

% 

nyb = nx(1) + nh(1); 

nye = nx(length(x)) + nh(length(h)); 

ny = nyb:nye; 

y = conv(x, h); 

% End of the function 

 

Correlation of sequences  

Correlation is an operation used in many applications in digital signal processing. It 

is a measure of the degree to which two sequences are similar. Given two real-valued 
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sequences x(n) and y(n) of finite energy, the crosscorrelation of x(n) and y(n) is a sequence 

)(lrxy  defined as: 

( ) ( ) ( )xy

n

r l x n y n l




   

 

    The index l  is called the shift or lag parameter. The special case when ( ) ( )y n x n is 

called autocorrelation and is defined by: 

 

( ) ( ) ( )xx

n

r l x n x n l




   

 

     When comparing the convolution operation with the crosscorrelation of two sequences, 

a close similarity can be observed. The crosscorrelation ( )xyr l can be put in the form: 

 

( ) ( ) ( )xyr l x l y l   , 

 

while the autocorrelation )(lrxx in the form: 

 

( ) ( ) ( )xxr l x l x l   . 

 

Therefore, correlation can be computed using the conv function if sequences are of finite 

duration. 

The signal-processing toolbox in MATLAB provides a function called xcorr for 

sequence correlation computations. However, the function does not provide the timing (or 

lag) information, which then must be obtained by some other means. 

 

Experiment 

(Before starting the lab, you’re supposed to have all functions from (DSP-Exp.1) stored in 

your working folder). 

A. Convolution of Sequences 

 Given the following two sequences: 

 

 x1(n) = [ 0, 0, 1, 1, 1, 1, 1] and x2(n) =[0, 0, 0, 1, 1, 1] 

                                   

 

1. Plot x1(k) and x2(k) using the (stem) function. 

2. Write a program to determine:                y(0) = 
10

1 2

10

( ) ( )
k

x k x k


  

3. Write a program to determine:                y(1) = 
10

1 2

10

( ) (1 )
k

x k x k


  
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4. Write a program to determine:               y(-1) = 
10

1 2

10

( ) ( 1 )
k

x k x k


   

 

5. Develop a program to determine: 

1 2 1 2( ) ( )* ( ) ( ) ( ) 15 15
k

y n x n x n x k x n k n




       

 

6. Plot the sequence y(n) obtained in (5). What are the beginning point and end point of 

y(n) that are non-zero values? 

7. Write the following MATLAB commands and plot the result (y versus ny): 
x1 = [0, 0, 1, 1, 1, 1, 1]; nx1 = [-2:4]; 

x2 = [0, 0, 0, 1, 1, 1];    nx2 = [-3:2]; 

[y, ny] = conv_m(x1, nx1, x2, nx2); 

 

8. Compare the plot in (7) with the plot in (6). Are these plots identical? Explain. 

 

B. Correlation of Sequences 

1. Create a MATLAB function called xcorr_m to perform the correlation operation 

based on the convolution operation. 

2. Let:    x(n)=[3, 11, 7, 0, -1, 4, 2] be a prototype sequence, 

                                               

y(n)=x(n-2)+w(n) be its noise-corrupted and shifted version. Write and run the 

following MATLAB code: 

% noise sequence 1: 

x =[3, 11, 7, 0, -1, 4, 2]; nx = [-3:3];    % given signal x(n) 

[y, ny] = sigshift(x, nx, 2);           % obtain x(n-2) 

w = randn(1, length(y)); nw= ny;            % generate w(n) 

[y, ny] = sigadd(y, ny, w, nw);     % obtain y(n) = x(n-2) + w(n) 

[rxy, nrxy] = xcorr_m(x, nx, y, ny);        % crosscorrelation 

subplot(2, 1, 1); stem(nrxy, rxy);           

axis([-5, 10, -50, 250]); xlabel('lag variable l'); 

ylabel('rxy'); title('Crosscorrelation: noise sequence  1'); 

% noise sequence 2: 

x =[3, 11, 7, 0, -1, 4, 2]; nx = [-3:3];    % given signal x(n) 

[y, ny] = sigshift(x, nx, 2);           % obtain x(n-2) 

w = randn(1, length(y)); nw = ny;           % generate w(n) 

[y, ny] = sigadd(y, ny, w, nw);     % obtain y(n) = x(n-2) + w(n) 

[rxy, nrxy] = xcorr_m(x, nx, y, ny);        % crosscorrelation 

subplot(2, 1, 2); stem(nrxy, rxy);           

axis([-5, 10, -50, 250]); xlabel('lag variable l'); 

ylabel('rxy'); title('Crosscorrelation: noise sequence 2'); 

 

3. From the result of the crosscorrelation, what is the value of l at which the 

crosscorrelation got peak? What would it imply?  
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Synthesis of Simple Audio Signals 
 

Objectives 

- To introduce the digital synthesis of simple audio signals using Matlab. 

- To introduce and implement some audio effects. 

 

Introduction 

A. Dual Tone Multi-Frequency (DTMF) 

    Dual Tone Multi-Frequency is a format for transmitting data by telephone and 

radio. The tones you hear when you press the keys on your phone are the DTMF 

tones. It was first designed by engineers at Bell Labs for sending data across long 

distances over a variety of systems. 

    DTMF signal consists of the sum of two pure sinusoids at valid frequencies. Table 

1 shows the format of DTMF. Each digit is represented by two tones, determined by 

the intersection of the row and column where the digit sits. Two tones are used 

instead of only one to provide protection against false digits appearing during 

transmission due to noise.  
 

 

Table 1: Key positions and corresponding DTMF tones 

1 2 3 A 697Hz 

4 5 6 B 770Hz 

7 8 9 C 852Hz 

* 0 # D 941Hz 

1209Hz 1336Hz 1477Hz 1633Hz  
 

 

    An example of DTMF tones in use is when your call is answered by a recorded 

message which instructs you to "press a key" to be transferred to a particular 

department or extension. It is also used to allow users to enter, for example, their 

credit card number to obtain a balance, when calling your credit card company.  

 

B. Musical Notes 

    Musical notes are arranged in groups of twelve, called octaves. The notes that will 

be used in this experiment are in the octave containing frequencies ranging from 

440Hz to 880Hz. The twelve notes in each octave are logarithmically spaced in 

frequency, with each note frequency being 1 122  times the frequency of the next lowest 

note. Thus, a 1-octave pitch shift upwards corresponds to a doubling of the 
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frequencies of the notes in the original octave. Table 2 shows the ordering of notes in 

the octave to be used to synthesize the music in this experiment as well as the 

fundamental frequencies for those notes. 

 
Table 2: Notes in the 440-880 Hz octave 

Note Frequency (Hz) 

A  440  
#A ,Bb

 
1 12440*2  

B  2 12440*2  

C  3 12440*2  
#C ,Db

 
4 12440*2  

D  5 12440*2  
#D ,Eb

 
6 12440*2  

E  7 12440*2  

F  8 12440*2  
#F ,Gb

 
9 12440*2  

G  10 12440*2  
#G ,Ab

 
11 12440*2  

 

C. Sound Effects 

C.1 Echo 
    The echo is one of the simplest effects used in musical signal processing. The echo 

filter adds the current input to a delayed input with a gain that is less than 1 in order 

to produce the output. This is accomplished by using the delay routine shown in 

figure 1. 

 
Figure 1: Illustration of echo system 

 

C.2 Reverb 
    By putting a few echo filters in series, the user can create a reverberating filter, which 

causes the output to sound like a person yelling into the mountains. These filters are also 

known as comb filters. This is one of the main effects that are used on electric guitars to 

make notes last a lot longer and fade out. A schematic for a basic reverb filter is given in 

figure 2. 
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Figure 2: Illustration of reverb system 

 

Working with Audio Signals 

 Matlab has the ability to play an audio signal x at sampling rate Fs using the instruction: 
sound(x,Fs); 

 To save a sound signal x created by Matlab in a wav file called (MYSONG), the 

following instruction is used: 
wavwrite(x,’MYSONG’); 

 To read an audio signal from an existing wav file called (MYSONG), the following 

instruction is used: 
[x,Fs]=wavread(‘MYSONG’); 

Procedures 

A. Musical Notes 

1- Enter the following code to an M-file, then run this M-file and report the result. 
 

Fs = 8000;          % sampling rate 

Ts = 1/Fs; 

ToneDuration = 0.5;    % duration of each tone 

n =0:(ToneDuration/Ts)-1; % calculate the number of samples 

pit = 2*pi*n*Ts;    % calculate the pitch  

 

f = [523.35, 587.33, 659.26, 698.46,... 

783.99, 880.1, 987.77, 1046.50]; 

tone = []; 

for i = 1:length(f); 

tone = [tone sin(f(i)*pit)]; 

end 

sound([tone fliplr(tone)], Fs); 
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2- Write a program that creates a signal representing the notes given in figure (3) and 

then play back the created signal. 

 
Figure 3: Musical Tones 

 

 

3- Using the built-in function ‘wavwrite’, write the song created in step 2 as a wav file. 

 
B. Sound Effects 

1- Using the built-in function ‘wavread’, load the sampled data and sampling rate from 

the wav file available on the desktop of your computer. 

2- What happens when playing back the signal in step 1 using: 

a) half the sampling frequency? 

b) twice the sampling frequency? 

3- Determine the recording time of the signal in step 1. 

4- What is the number of samples needed to create 500ms time delay if Fs=8000Hz? 

5- Write a program that performs the echo system shown in Figure 1 and apply it to the 

signal in step 1 with Gain = 0.5 and delay =500ms. 

6- Write a program that performs the reverb system shown in Figure 2 and apply it to the 

signal in step 1with Gain = 0.5 and delay = 500ms. 

7- Add a silence of 3 seconds at the end of the original signal used in step 6 so that 

reverbs can be heard even after the original signal is completely played. 

8- Fix the delay to 500ms, and then try the program in step 7 with different gains such as 

0.3, 0.8 and 1, etc. What is the effect of the gain value on the resulting signal? 
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9- Fix the gain to 0.5, and then try the program in step 7 with different delays such as 

100ms, 1000ms and 2000ms, etc. What is the effect of the delay value on the resulting 

signal? 

Discussion 

1. With using a sampling frequency of 8000Hz, write a program that generates all 

DTMF tones having 0.4 second length each. 

 

2. Draw the block diagram and equation of an echo system that introduces 2 echo sounds 

to an input sound signal at the same time, delayed by 100ms and 200ms. 
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Subroutines and  

       Interrupt 21h Tasks 
 

Objectives 

- To examine various tasks performed by Interrupt 21h using 8086Mp Emulator. 

- To learn how to write and call subroutines in 8086Mp Emulator. 

 

Introduction 

The MSDOS operating system contains many built-in subroutines for accessing the 

input and output devices which are connected to the computer (keyboard, screen, etc.). 

The interrupt instruction (INT) is often used to access some of these routines. 

The instruction (INT 21h) will cause the computer to access the subroutines that 

perform various tasks depending on the value of (AH) register at the moment that the 

(INT 21h) instruction is performed. Some of those tasks are given in table 1. 

 

Table 1: Various Interrupt 21h Tasks 

AH The task performed by Interrupt 21H 

1 Read a character from keyboard and load it into (AL) register 

2 Print the character that has its ASCII code stored in (DL) register on screen 

9 Print the string stored starting at (DS:DX) on screen and stop when ‘$’ is reached 

10 

Read a string from keyboard and store it in memory starting at (DS:DX+2), where 

the two bytes at (DS:DX) contain the total available storage and the actual number 

of entered bytes, respectively. (Enter) indicates the end of the string. 
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Subroutines 

To write a subroutine and call it in the Emulator program, the following template can 

be used: 

ORG 100H 

    ……. 

……. 

……. 

    CALL   FUNC1                 Main Program 

    CALL   FUNC2 

……. 

……. 

……. 

    RET 

 

    FUNC1   PROC 

    ……. 

…….                               A subroutine called (FUNC1) 

……. 

    RET 

    FUNC1   ENDP 

     

    FUNC2   PROC 

    ……. 

…….                               A subroutine called (FUNC2) 

……. 

    RET 

    FUNC2   ENDP 

 

NUM    DW   8888H 

ARRAY1   DB   ? 

 

END 
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Procedure 

Write a code in Assembly language to do the following: 

1. Enter a character. 

2. Make sure that the entered character is between 0 and 9. After that print the 

following message: (the user requested service number:  ) where the entered 

number must be printed at the end of the message.  

3. If the character is out of that range, print the following error message: (ERROR, 

the number must be between 0 and 9, try again:  ), then the user is allowed to enter 

a character again. 

4. Modify the code above so that if the entered character is between 0 and 9, print 

stars with the same number (for example: if the entered number is 4, then four stars 

are printed). 

5. Modify the code so that each star is printed by calling a subroutine called 

(STARPRINT).  

6. Repeat step (4) with the stars printed in a column and not in a row. 



 

 

Applications on Interrupt 21H 

 
Procedure 

1. Write a code in Assembly language to read a number in Hexadecimal consisting of 

2 digits. Put this number in BL register. Use only capital letters. 

(NOTE: read the first digit, store it, then read and store the second digit) 

2. Rewrite the code in step 1 to read a number in Hexadecimal consisting of 4 digits 

(16-bit number). Put this number in BX. 

(NOTE: use loops instead of repeating your code four times) 

3. Rewrite the code in step 2 with reading the 4 Hexadecimal digits of the number 

first, storing them in a buffer, then put the value of the entered number in BX. 

4. Rewrite the code in step 3 with giving the user the ability to enter both capital and 

small letters. 
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Discrete Fourier Transform (DFT) 
 

Objectives 

- To study and implement Discrete Fourier Transform (DFT) using MATLAB. 

- To learn the analysis and synthesis of discrete-time signals using DFT and IDFT, 

respectively. 

Introduction 

     The discrete-time Fourier transform (DTFT) provides frequency-domain 

representation of sequences. DTFT is a function of the continuous variable (), which is 
defined for infinite-length sequences. This is impractical because it makes DTFT a 

numerically incomputable transform.  

     Therefore, attention is turned to a numerically computable transform, obtained by 

sampling DTFT in the frequency domain. When applied to finite-duration sequences, it 

gives us a new transform called Discrete Fourier Transform (DFT), which is the ultimate 

numerically computable Fourier transform. 

     The Discrete Fourier Transform of an N-point sequence is given by: 

 







1

0

)1(10,)()(
N

n

nk

N NkWnxkX  

where N
j

N eW

2


 . Note that )(kX  (which is the result of DFT) is also an N-point 

sequence, where: .10  Nk   

     The inverse discrete Fourier transform (IDFT) of an N-point signal )(kX  is given by: 

 






 
1

0

)2(10,)(
1

)(
N

k

nk

N NnWkX
N

nx  

 

     In MATLAB, an efficient implementation of DFT and IDFT would be to use a matrix-

vector multiplication for the relations in equations (1) and (2). If )(nx and )(kX are 

arranged as row vectors x and X, respectively, then from equations (1) and (2) we have: 

 

NxWX                                                                    (3) 

 N
N

XW
1

x   ,                                                           (4) 

where NW  and 


NW  are the DFT matrix and its conjugate, respectively. The following 

MATLAB functions are used to implement the above equations: 
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function [Xk] = dft(xn, N) 

 
n = [0:1:N-1];      % row vector for n 
k = [0:1:N-1];       % row vector for k 
WN = exp(-j*2*pi/N); % Wn factor 
nk = n'*k;           % creates a NxN matrix of nk values 
WNnk = WN .^ nk;     % DFT matrix 
Xk = xn * WNnk;      % row vector for DFT coefficients 
% End of function 

  
function [xn] = idft(Xk, N) 
 

n = [0:1:N-1];      % row vector for n 
k = [0:1:N-1];       % row vector for k 
WN = exp(-j*2*pi/N);    % Wn factor 
nk = n'*k;          % creates a NxN matrix of nk values 
WNnk = WN .^ (-nk); % IDFT matrix 
xn = (Xk*WNnk)/N;       % row vector of IDFT values 
% End of function 

Experiment 

1. For the sequence 1] 1, 1, [1,)( nx , use the following MATLAB commands to compute 

DFT: 
 

 x = [1, 1, 1, 1]; N = 4; 

 X = dft(x, N); 

 magX = abs(X); 
 phaX = angle(X)*180/pi; 
 

2. Plot the magnitude and phase of the DFT signal in step (1). 

3. Apply zero-padding operation, which is a technique that allows us to sample at dense (or 

finer) frequencies, to get an 8-point sequence. Then compute its DFT. Use the following 

MATLAB commands: 
 

 x = [1, 1, 1, 1, zeros(1,4)]; N = 8; 
 X = dft(x, N); 

 magX = abs(X); 

 phaX = angle(X)*180/pi; 
 

4. Plot the magnitude and phase of the 8-point DFT signal in step (3). 

5. Treat )(nx  in step (1) as a 16-point sequence by padding 12 zeros instead of 4 zeros. Plot 

the magnitude and phase of the resulting 16-point DFT signal. 

6. For the sequence: )52.0cos()48.0cos()( nnnx   , use the following MATLAB 

commands that determine the 10-point DFT of )(nx to obtain an estimate of its DTFT: 
 

 n = [0:1:99]; x = cos(0.48*pi*n)+cos(0.52*pi*n); 
 n1 = [0:1:9]; y1 = x(1:1:10); 
 subplot(2, 1, 1); stem(n1, y1);  
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 title('signal x(n), 0 <= n <= 9');  
 xlabel('n'); 
 Y1 = dft(y1, 10); magY1 = abs(Y1(1:1:6)); 
 k1 = 0:1:5; w1 = 2*pi*k1/10; 
 subplot(2, 1,  2); plot(w1/pi, magY1); 
 title('DTFT Magnitude'); 
 xlabel('Frequency in pi units'); 
 

7. Use the following commands that pad 90 zeros to )(nx  in step (6) to obtain a dense 

spectrum: 
 

 n2 = [0:1:99]; y2 = [x(1:1:10) zeros(1,90)]; 
 subplot(2, 1, 1); stem(n2, y2);  
 title('signal x(n), 0 <= n <= 9 + 90 zeros'); 
 xlabel('n'); 
 Y2 = dft(y2, 100); magY2 = abs(Y2(1:1:51)); 
 k2 = 0:1:50; w2 = 2*pi*k2/100; 
 subplot(2, 1, 2); plot(w2/pi, magY2); 
 title('DTFT Magnitude'); 
 xlabel('Frequency in pi units'); 

 

8. Use the following commands to determine DTFT for the first 100 samples of )(nx : 
 

subplot(2, 1, 1); stem(n, x);  
title('signal x(n), 0 <= n <= 99'); 
xlabel('n'); 
X = dft(x, 100); magX = abs(X(1:1:51)); 
k =  0:1:50; w = 2*pi*k/100; 
subplot(2, 1, 2); plot(w/pi, magX); 
title('DTFT Magnitude'); 
xlabel('Frequency in pi units'); 

 

9. Use the following commands to synthesize the sequence )(nx using the Inverse Discrete 

Fourier Transform (IDFT): 
 

x1 = idft(X, 100); 
subplot(2, 1, 2); stem(n, x1); 
title('Synthesized x(n)'); 
xlabel('n'); 

 

Questions 

1. How can you improve the spectrum density?  

2. How can you improve the spectrum resolution? 

   3. What are the differences between DFT and IDFT? 

   4. What are the differences between DFT and DTFT? 
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Fast Fourier Transform (FFT) 
 

Objectives 

1. To study and investigate the Fast Fourier Transform algorithm. 

2. To learn the analysis and reconstruction of discrete-time signals using FFT and IFFT, 

respectively. 

 

Introduction 

 The DFT introduced previously is the only transform that is discrete in both time and 

frequency domains, and it is defined for finite-duration sequences. Although it is a computable 

transform, its straightforward implementation is very inefficient, especially when the sequence 

length N is large. In 1965 Cooley and Tukey showed a procedure to substantially reduce the 

amount of computations involved in DFT. This led to the explosion of applications of the DFT, 

including digital signal processing area, and also led to the development of other efficient 

algorithms. These algorithms are collectively known as Fast Fourier Transform (FFT) 

algorithms. 

 In an efficiently designed algorithm, the number of computations should be constant per 

data sample, and therefore the total number of computations should be linear with respect to N. 

The number of DFT computations for an N-point sequence depends quadratically on N, which 

will be denoted by the notation: 

)( 2NCN  . (1) 

FFT algorithms can reduce the quadratic dependence on N of the DFT. Theoretically, the 

number of computations used in the FFT algorithms could be as small as, depending on the radix 

used in the algorithm, 

)log( 2 NNCN   (2) 

MATLAB provides a function called fft to compute the DFT of a vector x. It is invoked 

by x = fft(x, N), which computes the N-point DFT. If the length of x is less than N, then x is 

padded with zeros. If the argument N is omitted, then the length of the DFT is the length of x. If 

x is a matrix, then fft(x,N) computes the N-point of each column of x. 

 Notice that the FFT algorithm is not a different mathematical transform, it is simply an 

efficient means to compute the DFT. fft function is written in machine language and not using 

MATLAB commands (i.e., it is not available as a .m file). Therefore it executes very fast. The 

inverse DFT is computed using the ifft function, which has the same characteristics as fft. 
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The execution time for FFT depends on the length of the transform. It is fastest for 

powers of two. It is almost as fast for lengths that have only small prime factors. It is typically 

several times slower for lengths that are prime numbers or which have large prime factors. It is 

important to notice that the spectrum of FFT is always displayed between 0 and fs as shown in 

figure 1. In addition, the signal after 0.5fs is only a repetition of the first part and can be 

neglected. 

 
Figure (1): N-point FFT spectrum amplitude. 

Experiment 

1. Compute the FFT of x[n], which is a cosine wave with a frequency of 10Hz and sampled 

using a sampling frequency of 100Hz. N (the number of points in the FFT) must be at least as 

large as the number of samples in x[n]. Use the following code to plot the spectrum 

amplitude: 

clc 

clear all 

close all 

fs=100; 

Ts=1/fs; 

n = 0:29; 

x1 = cos(20*pi*n*Ts);  

N = 30; 

X1 = abs(fft(x1,N)); 

F = [0:N-1]/N *fs; 

figure 

stem(F,X1,'*');title('Amplitude of spectrum'); 

2. To demonstrate the effect of N on the spectrum, repeat the previous code with using three 

different values of N: 64, 128 and 256, then plot the resulting spectrum amplitudes in one 

figure using subplot. 

Theoretically, sinusoid should transform to an impulse in the frequency domain, why do we 

have sincs in the frequency domain? When FFT is computed with an N larger than the number 

of samples in x[n], it fills in the samples after x[n] with zeros (as happened in step 2, where 

Matlab computed FFT with filling the spaces after n =30 with zeros). This is like taking a sine 

wave and multiplying it with a rectangular box of length 30. A multiplication of a box by a 
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sine wave in the time domain equals to the convolution of a sinc and impulse in the frequency 

domain. The previous Matlab experiment in step (2) supports this conclusion. 

3. Reduce the execution time of FFT to the minimum by using N that equals to the next power of 

2 from the length of x[n], using nextpow2 as follows: 

  N_FFT = 2^nextpow2(L); % L is the number of samples in x[n] 

4. Compare the execution time of FFT with that of DFT for the signal in step (1) using N=2048 

and 2039. Justify your results. Use the functions clock, etime and tic toc. 

5. When the region between 0 and fs is examined, it can be seen that there is even symmetry 

around the center point 0.5fs, where the data between 0.5fs and fs is a mirror image of the data 

between 0 and 0.5fs. Remove the redundant information in step (3) by displaying only half the 

spectrum amplitude. 

6. A common use of Fourier transforms is to find the frequency components of a signal buried in 

a noisy time domain signal. For the signal in step (3), use a length of 1000 for x[n] and add 

random noise to x[n] using the function randn with an amplitude of 2, then plot both the 

noisy time domain signal and its spectrum amplitude in one figure using subplot.  

o Can you distinguish the frequency of the original signal in time domain?  

o Can you distinguish the frequency of the original signal in frequency domain? 

7. Add a noise signal that has a single frequency of 40Hz (sine wave) to x[n], then remove this 

frequency from the spectrum and synthesize the original signal using ifft, as follows:  

clc 

clear all 

close all 

fs=100; 

Ts=1/fs; 

N=1000; 

n = [0:N-1]; 

x1 = cos(20*pi*n*Ts)+sin(80*pi*n*Ts); 

subplot(211); 

stem(n*Ts,x1); 

title('Signal + noise'); 

xlabel('nTs') 

ylabel('x(nTs)') 

X1 = abs(fft(x1,N)); 

F =[0:N-1]/N *fs; 

subplot(212); 

stem(F,X1); 

title('Amplitude of spectrum'); 

xlabel('F (Hz)'); 
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ylabel('|X(F)|'); 

%%%%%%%%%%%%%% IFFT %%%%%%%%%%%%% 

x3=[X1(1:N/4)  zeros(1,N/2)  X1(N*3/4+1:end)]; 

figure ; 

subplot(211); 

stem(F, x3); 

xlabel('F (Hz)') 

ylabel('|X(F)|') 

xr=ifft(x3, length(x3)); 

subplot(212);  

stem(n*Ts, xr) 

xlabel('nTs') 

ylabel('x(nTs)') 

title('Original signal') 
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FIR Filter Design  

   Using Window Techniques 
 

Objectives 

1. To determine the specifications needed for FIR filter design. 

2. To learn how to design FIR filters using window techniques. 

3. To learn how to implement the designed FIR filters in MATLAB.  
 

Introduction 

 In order to process signals, we have to design and implement systems called filters. The filter 

design issue is influenced by factors such as the type of the filter and the form of its implementations. 

Two types of digital filters can be identified, FIR and IIR filters. FIR filters are characterized by 

finite-duration impulse response. IIR filters are characterized by infinite-duration impulse response. 

In this experiment, the design and Matlab implementation of FIR filters are studied. 

 An FIR filter is a recursive filter that has a transfer function of the form: 
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Hence the impulse response )(nh is: 
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and the difference equation representation is: 
 

)1()1()()( 110   Mnxbnxbnxbny M   (3) 
 

 Essentially, an FIR filter is designed based on specifications. Absolute and relative 

specifications of a lowpass filter are shown as: 
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where 1 is passband ripple, Rp is passband ripple in dB, 2 is stopband ripple, As is stopband ripple in 

dB, p is passband edge frequency, and s is stopband edge frequency. The parameters given in the 

above two specifications are obviously related by: 
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Note: Rp and As are in decibel (dB). By the meaning of attenuation, we always have positive values 

for Rp and As. 
 

 The basic idea behind the window design is to select an appropriate window function and an 

appropriate ideal filter that provides a linear-phase and causal FIR filter. 

 

We will denote an ideal lowpass filter by Hd(e
jω

), which has a unity magnitude gain and linear-

phase characteristics over its passband, and zero response over its stopband. An ideal LPF of 

bandwidth ωc < π is given by: 

 
where ωc is also called the cutoff frequency, and α is called the sample delay. The impulse response 

of this filter is of infinite duration and is given by: 

 
 

 Let )(nw  and )(nhd  be the window function and the impulse response of the ideal filter, 

respectively. The impulse response of the designed filter can be formed by: 
 

)()()( nwnhnh d   (5) 
 

 There are several window functions available. Each of those window functions has different 

characteristics in both time-domain and frequency-domain. We now briefly describe various well-

known window functions: 

1. Rectangular Window: This is the simplest window function but it provides the worst 

performance from the viewpoint of stopband attenuation. It is defined by: 
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2. Bartlett Window: Since the Gibbs phenomenon results from the fact that the Rectangular 

Window has a sudden transition from 0 to 1 (or 1 to 0), Bartlett suggested a more gradual transition in 

the form of a Triangular Window, which is given by: 
 



























otherwise

Mn
M

M

n

M
n

M

n

nw

,0

1
2

1
,

1

2
2

2

1
0,

1

2

)(

 (7) 
 

3. Hanning Window: This is a raised cosine window given by: 
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4. Hamming Window: This window is similar to the Hanning Window except that it has a 

small amount of discontinuity and is given by: 
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5. Blackman Window: This is also similar to the previous two but contains a second 

harmonic term and is given by: 
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       Given the transition width and minimum stopband attenuation of the desired filter, we can select 

a suitable window type and widow size based on the information in Table 1. 
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6. Kaiser window:  
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where  = (M-1)/2 and I0 = the zero
th

 order Modified Bessel Function.  

 

If spsp AR and,,,   are given, then the following equations are needed for the design: 
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Table 1. Summary of commonly used window function characteristics 

 

MATLAB provides several routines to implement window functions. These routines are: 

 w = boxcar(M) returns the M-point Rectangular Window function in array w. 

 w = triang(M) returns the M-point Bartlett (triangular) Window function in array w. 

 w = hanning(M) returns the M-point Hanning Window function in array w. 

 w = hammimg(M) returns the M-point Hamming Window function in array w. 

 w = blackman(M) returns the M-point Blackman Window function in array w. 

 w = kaiser(M,betta) returns the M-point Kaiser Window function in array w. 

Window Name 
Transition Width  Min. Stopband  

Attenuation Approximate Exact Values 

Rectangular 
4
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Blackman 
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11
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To display the frequency-domain plots of digital filters, the Matlab function freqz is used to 

return the magnitude response H and the frequency samples w over which, frequency response is 

plotted. freqz finds H and w from the transfer function of the filter. The following example uses 

freqz to find the 1000 points frequency response of a digital filter: 

[H,w] = freqz(b,a,1000,'whole');%freqz returns the frequency response  

                                   of a filter from its transfer function. 

% b = numerator polynomial of H(z) (for FIR: b=h). 
% a = denominator polynomial of H(z) (for FIR: a=[1]). 

% w = frequency samples between 0 to 2π. 

% H = frequency response vector. 

 

Experiment 

1. To design FIR filters based on the window technique, an ideal lowpass impulse response )(nhd  is 

required. Therefore it is convenient to have a simple routine that creates )(nhd  as shown below: 

function hd = ideal_lp(wc, M) 
% Ideal LowPass filter computation 
% ---------------------------------------- 
% [hd] = ideal_lp(wc, M) 
%   hd = ideal impulse response between 0 to M-1 
%   wc = cutoff frequency in radians 
%    M = length of the ideal filter 
 

alpha=(M-1)/2; 
n=[0:1:(M-1)] 
M = n-alpha + eps;  % add smallest number to avoid division by zero 
hd = sin(wc*M) ./ (pi*M); 

 

2. With the given specifications: 
dBdB 50,25.0,4.0,3.0  spsp AandR

, use the 

following commands as design steps of the FIR lowpass filter using Hamming Window: 
  wp = 0.3*pi; ws = 0.4*pi; 
 tr_width = ws-wp; 

 M = ceil(6.6*pi/tr_width)+1; 

 n = [0:1:M-1]; 

 wc = (ws+wp)/2; 

 hd = ideal_lp(wc,M); 

 w_ham = (hamming(M)); 

 h = hd .* w_ham'; 

 [H,w] = freqz(h,[1], 1000, 'whole'); 

 H=(H(1:1:501))'; %taking half of the frequency response samples. 
 w=(w(1:1:501))';%taking half the frequencies (between 0 and π radians). 

 mag=abs(H); %mag =absolute magnitude computed over 0 to π radians. 
 db = 20*log10((mag+eps)/max(mag));  %db = Relative magnitude in dB.  

 pha = angle(H); %Phase response in radians over 0 to pi radians. 
 figure; 
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 subplot(2,2,1); stem(n,hd); title('Ideal Impulse Response') 
 xlabel('n'); ylabel('hd(n)') 
 subplot(2,2,2); stem(n, w_ham); title('Hamming Window') 
 xlabel('n'); ylabel('w(n)') 

 subplot(2,2,3); stem(n,h); title('Actual Impulse Response'); 
 xlabel('n'); ylabel('h(n)'); 
 subplot(2,2,4); plot(w/pi, db); title('Magnitude Response in dB'); 
 grid on 
 xlabel('frequency in pi units'); ylabel('Decibels') 

 
3. Find the values of M, Rp, and As of the filter designed in step (2). 

4. Using a MATLAB function called filter, apply the filter designed in step (2) to signal x, 

where x is a sine wave with w=0.3π, distorted with a random noise of amplitude 0.1 using rand 

function. Then plot the input signal and the filtered output signal in one figure. Use the following 

code: 
t=0:0.001:10; 

x=sin(0.3*pi*t)+0.1*rand(size(t)); 

y=filter(h,1,x); 

figure;  

plot(t,x,'r') 

hold on; 

plot(t,y) 

legend('noisy signal','filtered signal'); 

 

5. Design an FIR highpass filter using Kaiser Window with the following specifications: 
 wp = 0.3*pi; ws = 0.4*pi; As = 50; 

   tr_width = (ws-wp)/(2*pi); 

6. Kaiser Window:  

6.1 Write your own equation to compute the filter order M for Kaiser Window: 
M =  

n = [0:1:M-1]; 

wc = (ws+wp)/2; 

hd = ideal_lp(pi, M)-ideal_lp(wc,M); 

6.2 Write your own equation to compute parameter  for Kaiser Window: 
betta =  

6.3 Write your own equation to compute Kaiser Window coefficients: 
w_kaiser =  
h = hd .* w_kaiser; 
[H,w] = freqz(h,[1], 1000); 

mag=abs(H);  

db = 20*log10((mag+eps)/max(mag));  

figure; 
subplot(2,2,1); stem(n,hd); title('Ideal Impulse Response') 
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xlabel('n'); ylabel('hd(n)') 
subplot(2,2,2); stem(n, w_kaiser); title('Kaiser Window') 
xlabel('n'); ylabel('w(n)') 
subplot(2,2,3); stem(n,h); title('Actual Impulse Response'); 
xlabel('n'); ylabel('h(n)'); 
subplot(2,2,4); plot(w/pi, db); title('Magnitude Response in dB'); 
grid 
xlabel('frequency in pi units'); ylabel('Decibels') 
 

Discussion 

1. Given the specifications for a digital bandpass filter as below: 

          

dB60,8.0:edge stopbandupper 

dB1,65.0:edge passbandupper 

dB1,35.0:edge passbandlower 

dB60,2.0:edge stopbandlower 
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Design the filter using Blackman Window. 

 

2. What is a built-in MATLAB function that can be used to design FIR filters? Explain how to use 

that function. 
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IIR Digital Filter Design 
 

Objectives 

1. To determine the specifications needed for IIR filter design. 

2. To learn how to design and implement IIR filters using MATLAB.   

 

Introduction 

 IIR filters have infinite-duration impulse responses; hence they can be matched to 

analog filters, all of which generally have infinitely long impulse responses. Therefore, the 

basic technique of IIR filter design transforms well-known analog filters into digital filters. 

Typically, specifications of IIR filters are shown in the relative linear scale as below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The parameters Ɛ and A are related to parameters Rp and As, respectively, of the dB scale. 

These relations are given by: 

 

110
1

1
log10

10/

210 


 pR

pR 


 

20/

210 10
1

log10 sA

s A
A

A   
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In MATLAB, there are 4 functions to design digital lowpass filters. These same functions 

can also be used to design highpass, bandpass and bandstop filters. For purpose of illustration, 

the function butter will be used. It can be used with the following variations in its input 

arguments. 

 [b,a]= butter(N,wn) designs an N
th

-order lowpass filter with the cutoff frequency 

wn in units of  . 

 [b,a]= butter(N,wn,‘high’) designs an N
th

-order highpass filter with the cutoff 

frequency wn in units of  . 

 [b,a]= butter(N, wn) designs an order 2N bandpass filter if wn is a two-element 

vector, wn= [w1,w2], with 3-dB passband ( w1 < w < w2 ) in units of  . 

 [b,a]= butter(N, wn, ‘stop’) designs an order 2N bandstop filter if 

wn=[w1,w2] with 3-dB stopband ( w1 < w < w2 ) in units of  . 
 

To design any frequency-selective Butterworth filter, we need to know the order N and the 

3-dB cutoff frequency vector wn. With its Signal Processing toolbox, MATLAB provides a 

function called buttord to compute these parameters. Givens the specifications: 

spsp AR and,,  , this function determines the necessary parameters. Its syntax is: 

[N, wn] = buttord(wp, ws, Rp, As) 

 

The parameters wp and ws have some restrictions, depending on the type of filter: 

 for lowpass filters:   wp < ws, 

 for highpass filters:   wp > ws, 

 for bandpass filters:  wp and ws are two-element vectors: 

wp = [wp1, wp2] and  ws = [ws1, ws2], such that: 

      ws1 < wp1 < wp2 < ws2 

 for bandstop filters:   wp1 < ws1 < ws2 < wp2. 

 

Now using the buttord function in conjunction with the butter function, we can 

design any Butterworth IIR filter. Similar discussions apply for cheby1, cheby2, and 

ellip functions corresponding to Chebyshev-I, Chebyshev-II and Elliptic IIR filters, 

respectively. 
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Experiment 

1. For the following specifications: 

dBAdBR spsp 15and,1,3.0,2.0    

Enter the following commands as design steps of the digital Butterworth lowpass filter: 

wp = 0.2*pi; 
ws = 0.3*pi; 
Rp = 1; 
As = 15; 
[N, wn] = buttord(wp/pi, ws/pi, Rp, As); 
[b, a] = butter(N, wn); 

   

2. Find the order and the cutoff frequency of the filter designed in step (1), then use the 

function freqz to plot the magnitude response, phase response and magnitude in dB of 

the filter. 

3. Using the MATLAB function filter, apply the filter designed in step (1) to 

signal x, where x is a sine wave with w=0.3π, distorted with a random noise of 

amplitude 0.1 using rand function. Plot the input signal and the filtered output signal in 

one figure. Use the following code: 

t=0:0.001:10; 

x=sin(0.3*pi*t)+0.1*rand(size(t)); 

y=filter(b,a,x); 

figure;  

plot(t,x,'r') 

hold on; 

plot(t,y) 

legend('noisy signal','filtered signal'); 

 
4. For the following specifications: 

dBAdBR spsp 15and,1,4586.0,6.0    

Enter the following commands as design steps of the digital Chebyshev-I highpass filter: 

 wp = 0.6*pi; 

 ws = 0.4586*pi; 

 Rp = 1; 

 As = 15; 

 [N, wn] = cheb1ord(wp/pi, ws/pi, Rp, As); 

 [b, a] = cheby1(N, Rp, wn, 'high'); 
 



  

 4  

5. Find the order and the cutoff frequency of the filter designed in step (4), then use the 

function freqz to plot the magnitude response, phase response and magnitude in dB of 

the filter. 

 

6. For the following specifications: 
dBAdBR spsspp 40and,1,7.0,4.0,8.0,25.0 2121    

Enter the following commands as design steps of the digital Chebyshev-II bandstop 

filter: 
 ws = [0.4*pi 0.7*pi]; 
 wp = [0.25*pi 0.8*pi]; 
 Rp = 1; 
 As = 40; 
 [N, wn] = cheb2ord(wp/pi, ws/pi, Rp, As); 
 [b, a] = cheby2(N, As, ws/pi, 'stop'); 

7. Find the order and the cutoff frequency of the filter designed in step (6), then use the 

function freqz to plot the magnitude response, phase response and magnitude in dB 

of the filter. 

 

 

Discussion 

1. Design a digital Elliptic lowpass filter with the following specifications: 

dBAdBR spsp 40and,1,4.0,3.0    

 

2. Explain the advantages and disadvantages of IIR Filters compared to FIR filters. 
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Objective 

 
This assignment is about controlling the speed of a motor using both 

analogue and digital speed sensors. 

  

The experiments in this assignment are:  

  

1. A speed control system using an analogue sensor.  

  

2. A speed control system using a digital sensor. 
 

 

Speed Servo Mechanisms  
  

A speed control system using feedback is used when it is necessary to 

have a shaft rotating at a certain speed independent of load. In some 

applications the speed may be fixed but in others it may need to change in 

response to a varying set value.  

  

As in positional control this experiment uses a simple proportional 

feedback system with the error signal controlling the motor. It follows 

that there must always be an error in the system or the motor would stop.  

  

Multiplying the actual error by a gain and using this to drive the motor 

can help reduce the required minimum error. However, there is a limit to 

how much gain can be applied before instability occurs.  

  

As well as instability there are other problems which can occur such as 

poor performance due to tachometer ripple.  

  

More complex systems solve some of these problems by using other 

methods like integral control which does allow the motor to keep running 

with zero error; this is explained later. 
 

 

 

 
 
 
 
Tachometers  
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Various types of sensor can be found in control systems, the most 

commonly used are sensors for position, velocity, and acceleration.  

  

A frequent requirement in a mechanical control system is to measure the 

speed of a motor. Various methods are available, such as to measure the 

shaft position and then differentiate this signal. This method tends to be 

erroneous when the position measurement contains high frequency noise 

(the amplitude of the noise changes rapidly). 

  

The differentiation will increase the amplitude of this noise since the 

differentiator output is equal to the rate of change of signal amplitude, 

therefore resulting in corruption of the data.  

  

A better method is to measure the velocity of the motor directly using a 

device called tachometer, which is a dc voltage generator. The generator 

is a permanent magnet motor which produces a back e.m.f proportional to 

the shaft speed. The polarity of the tachometer output voltage changes 

with the shaft rotation direction.  

  

An ideal tachometer (more properly called a tachogenerator) produces a 

dc output, but in practice there is a superimposed ac ripple. Specialised 

designs can minimise this unwanted effect.  

  

In a control system, tachometer ripple may be amplified sufficiently so as 

to cause performance deterioration, and a filter to remove it may be 

required. However, this filter can cause further problems by introducing 

delays in the response.  
 

 

Digital to Analogue Converters  
  
A digital signal is a sequence of pulses, where each pulse is represented 

by a digital word which has a finite number of bits (binary digits).  

  

Digital signals derived from a computer may be required in a continuous 

(analogue) form, for various applications. Typical examples are motor 

control or audio signals in a digital communication system.  

  

A D/A converter (or simply DAC), is a circuit that provides an analogue 

voltage (or current) that is the weighted sum of the bits in the digital 

word.  
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In an A/D conversion, the analogue waveform is sampled and the 

resulting discrete-time analogue samples are quantised (see quantisation) 

by truncating or rounding, and finally these quantised values are encoded 

into a digital word.  
  

Therefore, unlike the A/D conversion, the D/A conversion process is 

unique; that is, there is a one-to-one correspondence between a given 

digital word and an analogue value.  

  

However, there are gaps between levels, arising from the existing 

quantised values. Thus, the converted signal has abrupt discontinuities 

and presents a  

 

staircase type of pattern. Hence, low pass filtering is often required to 

smooth the restored analogue signal by removing the high-frequency 

content.  

 

An eight bit device gives 256 levels and a 10 bit one 1024 levels. The 

output voltage is often passed through a buffer to obtain the range 

required for a particular application.  

  

The D/A converter in the Digital Unit is an eight bit converter and the 

output is buffered to give a range of +10 to -10 volts 
 

Digital Shaft Position Sensing  
  

 The advanced shaft position or speed measurements can be obtained by 

employing digital techniques.  

  

In this case, a rotary encoder is used as a position or speed sensor. There 

is Two encoders The absolute encoder and the incremental encoder that 

will be dealt with in this assignment. 

 
 
 

 
 

 

Digital Shaft Encoders  
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Digital Shaft Encoders are relatively more complex and more expensive 

than a potentiometer used for shaft position sensing .However, the 

advantages of the digital encoders over a potentiometer are numerous: 

less prone to noise and error, easy determination of the direction of 

rotation and of the absolute position, including the number of complete 

disc revolutions.  

  

Also, if digital computer control is required, there is no need for an A/D 

converter with its associated calibration problems.  

  

Moreover, it is easy to measure speed by counting encoder pulses 

whereas in an analogue system with a potentiometer, a separate 

tachometer would be needed.  

 

Incremental Encoders  
  

The Optical Incremental Encoder is less complex than the absolute 

encoder. It consists of a rotating disc having a track of transparent 

windows. On one side of the disc, there is a light source, and just opposite 

to it, on the other side of the disc there is a light sensor.  

  

A photograph of the sensor that is used with the hardware is shown 

below:  
  

 
 

The encoder outputs a voltage pulse every time a transparent window 

passes the light source. With this sensor, electronic circuitry must be 

available to count the pulses, in order to determine the angle of rotation.  

  

This encoder is called an incremental encoder, because the generation of 

a pulse indicates an incremental change in position, and not the actual 

(absolute) position.  
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A reference window is required to determine absolute position. The 

reference window is used for initialisation, representing zero position.   

In order to be able to determine the direction of rotation, a second light 

sensor is placed at a different window of the encoder track and is offset 

from the first sensor. The second sensor points at the edge of a window, 

when the first sensor points at the centre of a window.  

 Thus, for movement at a constant velocity, sensor 1 square wave output 

leading sensor 2 output by 90
o
 indicates one direction of rotation; sensor 

1 output lagging sensor 2 output by 90
o
 indicates the other direction of 

rotation. You can see the two encoders in the mechanical unit . Most 

encoders are of the incremental type, because these can have greater 

resolution due to the simpler track arrangement and they are much 

cheaper. 

Motor Static Friction (Stiction)  
  

An ideal motor will turn very slowly for a small applied voltage. In 

practical motors there is a constant friction due to the brushes which 

prevent the motor rotating with small voltages. In specially designed 

motors this can be much reduced.  

  

The effect of this friction is that if the voltage applied to the motor is 

slowly increased from zero, the motor remains stationary and then 

suddenly rotates at a significant speed when the torque overcomes the 

brush friction.  

  

This effect is called stiction and impairs precise system control. It can be 

reduced by using PWM because the motor vibrates, or as in the Digital 

Unit, a drive amplifier with a non-linear response at low drive voltages. 
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Practical 1: Speed Control with Analogue Sensor  
  

In this practical the computer is used, together with the tachometer, to 

make a simple closed loop speed control system.  

 

Step 1: 
1-Connect the close loop circuit show in the computer screen, Set  SW1 

up to +10 and Adjust the magnitude of the. set value change with the 

disturbance control on the digital unit and the frequency control on the 

mechanical unit. To run the motor at 1000 r/min (31.25 r/min at output) 

with no brake. Observe the behavior of the error and measured value for 

different values of gain using the drop-down box to change between the 

two outputs.  
 

 

For different value of brake measure and fill the following table: 

 
Brake Noload Full load Gain 

Speed  

(rpm) 
  1 

Speed droop 

(rpm) 
  3 

 

2- Connect the open  loop circuit show in the computer screen, Set  SW1 

up to +10 and Adjust the magnitude of the. set value change with the 

disturbance control on the digital unit and the frequency control on the 

mechanical unit. To run the motor at 1000 r/min (31.25 r/min at output) 

with no brake. Observe the behavior of the error and measured value for 

different values of gain using the drop-down box to change between the 

two outputs.  
  

 
 
For different value of brake measure and fill the following table: 

 
Brake No load Full load Gain 

Speed  

(rpm) 
  1 

Speed droop 

(rpm) 
  3 

 
 

3-return to the close loop circuit and change the set value to triangle wave 

generator with 0.1Hz ( is used to provide an input to the system that the 
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output shaft attempts to track). The input (called the set value) is 

connected to the A/D. converter and on to the computer. Let the motor 

running at 500RPM then observe the response and the error.  

 

4- Change the set value to square wave with 0.1Hz  then let the motor 

running at 500RPM then observe the response and the error.  

 

Note 1: 

 

The actual speed of the shaft (the measured value) is sensed by the 

tachometer and this is also sent to the computer via the same A/D 

converter using a controlled switch to multiplex the A/D input. 

  

 Note 2: 
 

The difference between the two inputs (called error) is calculated and the 

result used to drive the motor via the D/A converter. 

  

This diagram shows how the system blocks are configured for this 

practical.  
  

 
 

  

  

 Practical 2: Speed Control with Digital Sensor 

 
This practical shows that a positional servo control system can be 

implemented using a digital shaft encoder instead of the tachometer and 

A/D converter 
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 Note 3: 
The concept is the same as in the previous practical, the only difference is 

that the measured value is derived by counting pulses from the 

incremental shaft encoder. 

 Note 4: 
  

The response time of this system is slow because of the fixed time taken 

to count the pulses. 

 

  Step 2: 
 
1- Connect the close loop circuit show in the computer screen, Set  SW1 

up to +10 and Adjust the magnitude of the. set value change with the 

disturbance control on the digital unit and the frequency control on the 

mechanical unit. To run the motor at 1000 r/min (31.25 r/min at output) 

with no brake. Observe the behavior of the error and measured value  

 

 

for different values of gain using the drop-down box to change between 

the two outputs. 

 
Brake No load Full load Gain 

Speed  

(rpm) 
  1 

Speed droop 

(rpm) 
  3 

 
 

2- Change the set value to square wave with 0.1Hz and let the motor 

running at 500RPM then observe the response and the error.  

 

 3- Change the set value to triangle wave with 0.1Hz and let the motor 

running at 500RPM then observe the response and the error. 

 

Note 5: 
 

In order for the actual error to be small the error signal that drives the 

motor must be magnified so that small errors still correct the output, this 

magnification factor is called gain. 
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This diagram shows how the system blocks are connected for 

this practical.  

  

 

 

Note 6: 

 

The gain value has a large effect on the behaviour of the system and too 

much or too little both cause problems. Note that with low gain the error 

is large, but with high gain the system becomes unstable.  

 

 

Questions in class work: 

 

1- Why does increasing the load have little effect on the speed when 

using the proportional control system? 

 

 2-What effect does increasing the rate of change of the input signal have 

on the error signal? 

 

3- What other factors involving the motor will affect the accuracy of 

control? 

 

4- Compare the advantages and disadvantages of the two methods of 

speed measurement (tachogenerator and shaft encoder). 
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College of Electronics Engineering                             Experiment sheet No.(  )  

Communication Engineering Dept.                             

Electrical First Order System Analysis and Block diagram reduction 

 

 Object:  
 

1. To derive the transfer function of the linear first order electric system, to 
plot simulated step response by using MATLAB program and Simulink, to 
study and investigate the experimental step response characteristics, and 
to compare it with the simulated step response .    

2. To use the MATLAB program for the reduction of block diagram that 
represents complicated control system and then to transform this system 
to the standard or canonical form.  

 
 Theory: 
 
Part A: Electrical First Order System Analysis 

One of the most important tasks in the analysis of control systems is the 
mathematical modeling of the systems.  
A mathematical modeling of a dynamic electric system is defined as a set of 
equations that represents the dynamics of the system accurately or, at least, 
fairly well. 
 
The dynamics of electrical systems may be described in terms of differential 
equations. Such equations may be obtained by using Kirchhoff's laws. For any 
input the output response is obtained by solving these differential equations. 
However, this method is difficult. For these reasons the linear differential 
equation method is replaced by the transfer function concept. 
 
The transfer function is defined as the ratio of the Laplace Transform of the 
output variable from the system to the Laplace Transform of the input signal 
causing that output, in this case all initial conditions must be zero. 
The simplest electric first order control system can be represented by the passive 
filter (R–C) or (L–R) circuits shown in fig. (3-1) and (3-2). 

 
Fig. (3-1) R-C circuit 
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Fig. (3-2) L-R circuit 

 
By applying Kirchhoff's laws to the (L-R) circuit yields 
 

)()( tV
dt

di
LtV oi      

 

RitVo )(      

 
Applying the Laplace Transform on both sides 
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Where  
)(

)(

sV

sV

i

o

  is the transfer function of (L-R) 

And τ is the electric time constant 
 
The transient response to a unit step for a first order control can be represented 
as shown in fig. (3-3). 
 

......................................... (3-1) 

......................................... (3-2) 

......................................... (3-3) 

......................................... (3-4) 

......................................... (3-5) 

......................................... (3-6) 

......................................... (3-7) 
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Fig. (3-3) transient response 

 
 
The Simulink representation for (L-R) circuit transfer function is shown in fig(3-4). 
 

             Step Function    Transfer Function               Scope    
 
 

 
 

Fig. (3-4) simulink representation (block diagram) 
 
 

The MATLAB program below is used to plot the step response of first order 
system. 
 
num=1, den=[τ 1] 
sys=tf(num,den) 
printsys=(num,den) 
step(sys) 
 
Where: 
num = numerator of the transfer function 
den = denominator of the transfer function 
tf =transfer function 
sys = system 
printsys(NUM,DEN,'s') or printsys(NUM,DEN,'z') prints the transfer function as a 
ratio of two polynomials in the transform variable 's' or 'z'. 

INPUT 

1

1

s  
OUTPUT 
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Part B: Block diagram reduction 

Block diagram is a pictorial representation of a control system showing inter-
relation between the transfer function of various components. The block diagram 
is obtained after obtaining the differential equation and transfer function of all 
components of a control system. Fig. 3.5 shows an element of the block diagram. 
The arrowhead pointing towards the block indicates the input R(s) and the one 
pointing away from the block indicates the output C(s). The term G(s) is the 
transfer function, i.e.  
                                                
 
 
 

Fig. 3.5 
 
After obtaining the block diagram for each and every components, all blocks are 
combined to obtain a complete representation. It is then reduced to a simple form 
with the help of simple block diagram algebra.  
 
The following block diagram reduction algebra is often used: 
 

1. Blocks in Cascade (Series): 
Any finite number of blocks in series may be algebraically combined by 
multiplication. 

   
    ≡ 

 
 

Fig. 3.6 blocks in series 
 

2. Blocks in Parallel (eliminating forward loop): 
Any finite number of blocks in parallel may be algebraically combined by 
Addition or Subtraction 

 
Fig. 3.7 blocks in parallel 

 
 
 
 
 

G1(s) 

G2(s) 

G1(s) ± G2(s) 

 

R(s) C(s) ≡ + 

± 

R(s) 

G2(s) 

 

G1(s) 

 

G1(s)G2(s) R(s) R(s) C(s) C(s) 

C(s) 

C(s) G(s) 

 

R(s) )(
)(

)(
sG

sR

sC

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3. Eliminating a feedback loop 
The standard form of block diagram for a control system with feedback is 
shown below, where 

C(s) = G(s) E(s)  and E(s) = R(s) ± C(s) H(s) 
 
 
 
 

where 

)(

)(

sR

sC  is the closed–loop transfer function which is also called the control ratio. 

 
 
 
 
 
 

 

Fig 3.8 feed back 

Apparatus: 
1. Bread Board 
2. Resistors, Capacitors, and Inductors 
3. Function generator and oscilloscope 
4. Computer and MATLAB program 

 
Procedure: 
 
Part A: Electrical First Order System Analysis 

1. Connect the circuit shown in fig. (3-1) and apply a square wave input 
signal of 2 V peak to peak and a frequency of 125 Hz, using a value of R 
equal to 270Ώ  and C equal to 1μF. 

2. Plot the output response Vo(t) and find the time constant, rise time, settling 
time, and steady state final value 

3. Plot the output response Vout(t) on personal computer using MATLAB 
program and Simulink. 

 
Part B: Block diagram reduction 

For the block diagrams which are shown below Find the transfer function for 

the following applications: 
 

1. Application of the series function 

 
The series function that is used in Matlab program as: 
>>[num,den]=series(numg1,deng1,numg2,deng2]; 

2

1
1






s

s
G  R(s) C(s) 22
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1

s
G   
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)(

)(

sHsG

sG

sR

sC




≡≡ 
C(s) 

R(s) G(s) 

H(s) 

E(s) 

± 

+ 
C(s) R(s) 

)()(1

)(

sHsG

sG


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2. Application of the parallel function  
 
 
 
 
  
 
 
 
 
The parallel function that is used in Matlab program as: 
>>[num,den]=parallel(numg1,deng1,numg2,deng2); 
 

3. Application of the Conv Function 
 

 
The convolution function that is used in Matlab program as: 
num=conv(numg1,numg2);den=conv(deng1,deng2);   
 

4. Application of the Cloop Function 
 

 
 
The  close loop function that is used in Matlab program as: 
[num,den]=cloop(num1,den1,sign) 
note  +1 , for positive feedback and -1 for negative feedback 
 

5. Application of the Feedback Function 
  
 
. 
 
 
 
 
  
 
The feed back function that is used in Matlab program as: 

2

1
1






s

s
G  C(s) 22

500

1

s
G   + 

_ 

2

1
1






s

s
G  R(s) C(s) 22

500

1

S
G   

R(s) 

2

1
2






s

s
G  

s
G

1
1   

R(s) 

C(s) +  + 

+ 

2500

1

s
G   R(s) C(s) _ + 

2

1






s

s
H  



Microprocessors Laboratory 
 

 7  

44

1
2

2

3





ss

s
G

2

1
1






s

s
H

1

1
2




s
G  6

1
4






s

s
G  

22 H  13 H  

>>[num,den]=feedback(numg,deng,numh,denh,sign); 
6. Application of the Minreal Function 

                                         s (s-1) 
                                    ------------------- 
                                 (s-1) (s^2 + s + 1) 
 
Minreal function is Minimal realization or pole-zero cancellation and it's used in 
matlab program as: 
>>[num,den]=minreal(numg,deng) 
 

Discussion: 
 

1. Derive the transfer function of the electric circuit shown in fig. 3.1 
2. Compare the experimental response with simulated response (time 

constant, rise time, settling time, and steady state final value). 
3. Reduce the following block diagram shown below to a standard form using 

MATLAB program and find: 
 

a. Forward transfer function 
b. Feedback transfer function 
c. Open loop transfer function 
d. Closed loop transfer function 
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Speed Control System 
 

Objective 
 

 Velocity feedback can be used to enable a speed to be closely 

regulated. The polarity of the feedback is important.  

  

 The effectiveness of the Control depends mainly on the gain 

employed.  

 

Closed-Loop Control System  
  

The difference or error signal may be thought of as producing effects 

which move forward, from the point of comparison to the resulting 

action. The comparison itself depends on a signal which is fed back from 

the output of the process to be compared with the reference or input 

signal. The forward flow and feedback of signals form a loop around 

which information flows, fig 1.1 

 

Such a system is therefore called a closed-loop system.  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

It is usual for control engineers to describe their systems in a block 

diagram form. The block diagram Fig (1.2) describes the type of system 

we shall be using in the assignments. Here there is a comparison by the 

error channel of the input and output, the error is then amplified to drive a 

motor and gearing in the forward path so that the speed or position of the 

output shaft can be modified.  

 

Fig 1.1 - The Closed Control Loop 
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Speed Control – Introduction  

 
 

  

An important aspect of closed-loop control is speed control, which has 

many industrial applications, varying from heavy industrial, such as paper 

mills or steel rolling mills, to tape or video transport mechanisms 

 

 

 

 

 

 

 

 

 

 

 

 

 

The essential principle of closed-loop speed control is that the feedback 

signal is now an output velocity signal Vs, normally from a 

tachogenerator, which is compared with a reference voltage Vr to give an 

error:  

Ve = Vr - Vs 

  

In operation the reference is set to a required value, which drives the 

motor to generate Vs, which reduces the error until the system reaches a 

steady speed. 

F 

B 

Fig 1.2 - Block Diagram of an Analogue Closed-Loop System.  

 

Fig 1.3 - Essential features of a Closed Loop Speed Control 
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If the motor is loaded, e.g. with the magnetic brake on the 33-100, 

 the speed falls; this tends to increase the error, increasing the motor drive 

and thus reducing the fall of speed for a given load. Note that this implies 

negative feedback around the loop.  

  

The speed fall with load, sometimes termed droop is a very important 

characteristic in speed control systems.  

  

The rotation direction can be reversed by reversing the reference voltage, 

though many industrial speed control systems are required to operate in 

one direction only.  

 

A speed control system which can be made with the 33-002 

corresponding to fig 1.3 is shown below in fig 1.4. Connect the board as 

shown in the diagram below for this practical. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Motor, Tacho generator and Brake Characteristics  
Motor and Tacho generator 
  

The motor and tachogenerator were used to display the speed response 

characteristics. 

  

The motor is a permanent magnet type and can be represented in 

idealized form as in fig 1.5 (a), where Ra is the armature resistance and 

T1, T2 are the actual motor terminals. 
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Fig 1.4 - Speed Control System 
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If the motor is stationary and a voltage Va is applied, a current Ia flows 

which causes the motor to rotate. As the motor rotates a back emf Vb is 

generated. As the motor speeds up the back emf increases and Ia falls.  

  

In the 33-100 the armature voltage Va is provided by a power amplifier. 

A power amplifier is necessary, because although the voltages in the error 

channel may be of the same order as Va, the motor current may be up to 

1A, while the error channel operates with currents of less than 1mA and 

could not drive the motor directly. The amplifier has two input sockets, 

enabling the motor rotation direction to be reversed for a given input.  

  

The tachogenerator is a small permanent magnet machine and hence 

when rotated produces an emf proportional to speed which can be used as 

a measure of the rotation speed.  

 

Brake Characteristics  
  

The magnetic brake consists of a permanent magnet which can be 

swung over an aluminum disc. When the disc is rotated eddy currents 

circulate in the area of the disc within the magnet gap, and these react 

with the magnet field to produce a torque which opposes rotation. This 

gives an adjustable torque speed relation of the form of fig 1.6, and 

provides a very convenient load for the motor.  

  

 

 

 

 

 

Fig 1.5 - Representation of a Motor in terms of an Ideal Motor. 
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The overall characteristics of a motor may be considered from two 

aspects, both of which can be related to the idealized representation of fig 

1.7 (a). These aspects are:  

  

o Steady-state, which are concerned with Constant or very slowly 

changing operating conditions, and  

  

o Transient, corresponding with sudden changes.  

  

Both are important in control system applications 

 

Tacho generator 
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Fig 1.6- Characteristic of Magnetic Brake 

Fig 1.7 - Characteristics of Motor (a) and Tacho generator (b) 
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The tacho generator provides a voltage proportional to speed, 

 which is required for various aspects of control system operation.  

Plot of  tacho generator characteristics should be a straight line with the 

general form of fig 1.7 (b).   

An important parameter in the use of tachogenerators is the tacho 

generator factor in volts per 1000 r/min.   

The factor should be approximately 2.5V per 1000 r/min. 

 

Motor speed 

To plot the speed against amplifier input, make the scale of the 

vertical axis in units of 1000 r/min. The plot should have the general 

shape of fig 1.7 (a). Initially the motor speed increases substantially 

linearly with the voltage to the amplifier because the motor back emf Vb, 

see fig 1.7 (a), approximately equals the amplifier output, but finally the 

amplifier limits before the full ±10V input is reached.  

Note: Since the reduction to the output shaft is 32:1, the motor speed is 

calculated by multiplying the r/min reading by 32. e.g. a reading of  

31.25 = a motor speed of 1000 r/min. 

 

Steady-State Characteristics – Brake Load  
  

Considering the idealized motor shown in fig 1.8(a), when the motor is 

unloaded the back emf Vb substantially equals the applied voltage Va, the 

armature current being very small. 

  

   

 

 

 

 

 

 

 

 

 

 

 

When the motor is loaded the speed falls, the back emf falls, and the 

armature current increases and the voltage drop in the armature resistance 

Vr (= IaRa) added to Vb matches Va, that is:    

Va = Vr + Vb 

      = IaRa+ Vb  

F 

B 

Fig 1.8a and Fig1.8b - Motor Characteristics Related to Load 
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Hence, if the motor is loaded so that the speed falls, the armature  

current increases, the general characteristic being as the solid lines in fig 

1.8(b). If the armature resistance is low, which is the situation for a 

normal motor, the current increases greatly, as shown dotted, for a small 

change in speed. The proper operating range of the motor would be up to 

load corresponding with a few percent drops in speed, perhaps to the 

point when the dotted current line crosses the speed. 

 

Practical Aspects  
  

A problem that may arise in speed control systems, where the full 

feedback signal is obtained from a tachogenerators that the generator 

output may have an appreciable ripple component due to commutation. 

This component may be amplified in the system and cause saturation. The 

ripple can be reduced by filtering in the system or better by specialized 

design of the generator. 

If the armature resistance is low, as for a normal motor the initial 

armature current may be very large (dangerously so). Thus some starting 

equipment (a starter) is used to limit the current while the motor is being 

run up to speed. This applies especially with large motors.  

 

Note 1: The armature current, which increases with loading, can be 

measured by correcting the DVM to the Armature Current socket on the 

Mechanical Unit. 

Note 2: The brake include 6 levels. 

 

Practical step 
 

1-By using Analogue Unit: 33-110 .Connect the circuit as shown in the 

control block diagram as the following: 

 

 

 

 

 

 

 

 

 

 

 

P3 Ke PA 
Mechanical 

Unit P1 

Tacho 

Generator 
P2 

Reference 

input 

Output 

Speed + 

_ 
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1-Connect the open loop part from the black diagramed, By Set P2 

(tacho) to zero and set the amplifier feedback resistor to 100KΩ, this 

gives G = 1=Ke. Set P1 to 100. Set SW1 up to +10 and adjust P3 to run 

the motor at 1000 r/min (31.25 r/min at output) with no brake. 
 

 

For different value of brake measure and fill the following table: 

 
Brake No brake One level  Tow level Three level Four level Fife level Six level 

Full load 

Speed  

(rpm) 
       

armature 

current (A) 
       

Error 

voltage (V) 
       

Speed droop 

(rpm) 
       

 

how much Reference input so you have 1000 r/min. 

 

2-Repeat the same steps but when Ke=3.3. 

 

3-Repeat the same steps but when Ke=10. 

 

4- Connect the close loop part from the black Diagram , By Set P2 (tacho) 

to 100 and set the amplifier feedback resistor to 100KΩ, this gives  

G = 1 = Ke. Set P1 to 100. Set SW1 up to +10 and adjust P3 to run the 

motor at 1000 r/min (31.25 r/min at output) with no brake. 
 

For different value of brake measure and fill the following table: 

 
Brake No brake One level  Tow level Three level Four level Fife level Six level 

Full load 

Speed  

(rpm) 
       

armature 

current (A) 
       

Error 

voltage (V) 
       

Speed droop 

(rpm) 
       

 

5-Repeat the same steps but when Ke=3.3. 
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6-Repeat the same steps but when Ke=10. 

            

 

7- The tacho generator output contains a ripple Component so, With  

G = 10, set the speed to 1000 r/min on no load and examine the ripple 

Error amplifier using the oscilloscope. then connect the 0.1µF capacitor 

across the Output resistor, then plot the ripple. 

 

8- With G = 10, apply a square wave at 0.1Hz and Adjust P3 to give a 

steady speed of ±1000 r/min With no load and remove the 0.1µF 

capacitor Across the Output resistor,  

 

a- Plot the input and the step Response of the system. 

    Then connect  the 0.1µF capacitor across the Output resistor. 

b- Plot the input and the step Response of the system. 

      

  Conclusion 
  

 This assignment shows the general principle of speed control.  

  

 Increasing the gain would give the system less speed fall at full 

load.  

  

 Theoretically an infinite gain would give zero speed fall, but this is 

impractical. However, good results can be achieved with a different 

control technique in the error channel. 

 

 The motor, with no load, runs at a speed almost proportional to the 

applied voltage.  

  

 The armature current increases with increasing load torque, causing 

a volt drop in the armature resistance. This effectively reduces the 

applied voltage, causing a drop in speed.  

  

 The magnetic brake provides a torque proportional to speed and 

dependent also on the overlap between the magnet and the disc.  

  

 If the applied voltage is suddenly changed, the motor does not 

respond instantly. Its time constant is defined as the time it would 

take to reach its final speed if the initial acceleration were 

maintained.  
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Question 

 

1- Plot speed, (Ia), (Ve) against brake in one figure. From each tables you 

filled up in open loop steps (Make 3 plot figure from 3 tables when 

Ke = 1 , 3.3  and 10). 

 

 
2- Plot speed, (Ia), (Ve) against brake in one figure.  From each tables you 

filled up in close loop steps (Make 3 plot figure from 3 tables when 

Ke = 1 , 3.3 and 10). 

 

3-  From the step response you plot in step 8-b Find the following :- 

 

 

   A - close loop transfer function of the system. 

 

   B - Maximum overshot, Maximum undershot. 

 

   C - tmax , tr and ts. 

 

   D - Fine the operating point for open loop system 

 

   E - using MATLAB simulink to connect the block diagram of the close 

loop speed control system and plot step response ,and compare 

with practical. 

 

4- Explain influence of increasing Gain (Ke) on your Experiment To the 

response, error signal, speed of Motor and Stability of the system.  

 

5- Practically how you can make the motor running in the opposite 

direction and the system is still stable (negative feedback) . 

 

6- How you can make check that the system is negatively feedback 

practically. 
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