Lecture 1: Introduction to 8086 Mp

e A microprocessor (Mp) is a programmable controller on a chip.
The first Mp in the world, Intel 4004 was invented in 1971. 4004 Mp has:

- A memory of 4096 locations, each has 4-bits width.
- Aspeed of 50 KIPS (Kilo Instruction Per Second).
- Aninstruction set that contains 45 instructions.

After 4004, Microprocessors gradually developed in the memory size, speed and no. of
instructions.

e 8086 Mp was released by Intel in 1978. 8086 Mp has:
- A memory of 1 Mega locations, each has 8-bits width.
- Aspeed of 2.5 million KIPS (Kilo Instruction Per Second).
- Aninstruction set that contains over 20,000 instructions.
- Acash memory to speed up instructions execution.
- A 16-line data bus.
- A 20-line address bus.

Ao gite Gliluay bl il gles Aallae JAa) 8ol 8 Lgia Baoate ilileal addind daa ll 48 4868) o llaall
AL A8 e e 3kl g alaladl)
s zigal 4l e (sl Glalleall A 83 ga gall GlIKLY) e oY 4l xa) 8086 Fllae Al o s

)y dae ¢ el de 3 SIAl as § ga Jas (gl A o) Cus alall ca gl 8 33 s gall Cilallaall
) =) Dl P . J o s &

The 8086 Mp Programming Model (or Software Model)

<— 8-bit —><— gbit —>

AX AH AL Accumulator
BX BH BL Base Index
CX CH CL Count
DX DH DL Data
SP Stack Pointer
BP Base Pointer
DI Destination Index
SI Source Index

< 16-bit ——m—>

IP Instruction Pointer
FLAGS register Flags

CS Code Segment Register

DS Data Segment Register

ES Extra Segment Register

SS Stack Segment Register

é&‘)kﬁzﬂs\@m‘wk}m“\é‘;CJM\L_A‘C“J"“MJM&P,CJM‘&‘MJLJM°%\HJ|
3ale & 52 90 8086 ey alall il Jad¥) () syl Slag¥) aladinly LA (ge pellaall dukalie i pellaally pSail
A elE ol S5V Jeadl) A bl

- 8-bit registers are:
AH, AL, BH, BL, CH, CL, DH and DL.
- 16-bit registers are:
AX, BX, CX, DX, SP, BP, DI, SI, IP, FLAGS, CS, DS, ES and SS.
- Multipurpose registers are:
AX, BX, CX, DX, BP, DI and SI.
- Special purpose registers are:
IP, SP, FLAGS, CS, DS, ES and SS.

IP: addresses the next instruction in the code segment.

SP: addresses an area of memory called the stack.

CS: defines the starting address of the section of memory holding code.

DS: points to the starting address of the section of memory holding the data used
by a program.

ES: additional data segment.

SS: points to the starting address of the stack segment.

Segment-Offset Address Combinations

segment offset Special purpose
CS IP Instruction address
SS SP or BP Stack address
DS BX, DI, Sl, 8-bit or 16-bit number Data address
ES

)it e:\g.g;ﬂ\ Jaddl YJ:.JQ\ u;.}cn_).\.d\ oY eﬁ\:d&&g@\ &PJM eﬂ;u&_\g;ubw‘ 93 e3e) Jgaall
Aa Y1 segments e s ge dalaill ie (Offset) i aS

Important notes:

1 Byte = 8-bits

Word = 2 Bytes = 16-bits

Double word = 2 words = 4 Bytes = 32-bits
Nibble = 4-bits (1 Byte= 2 nibbles)

1 K Byte = 2'° Byte = 1024 Byte

1 M Byte = 2'° K Byte = 2'° * 21° Byte

b15 “ee bz b1 bo
\
/\ /I\ X J \ \ /I\ ;\
Higher bit . . .

: {-hgher nibble n Lower nibble} Lower bit
| /I\ Y /]\
Higher byte Lower byte

Requirements:

It is required from students at this level to understand the following:

- Binary numbering

- Hexadecimal numbering

- Converting between Binary, Hexamdecimal and Decimal numbering systems.
- The difference between signed and unsigned numbers.

byl sala A Lind)3 ol G Gy 488 Cladleal) 3ale 8 eadl U oMol Laliill daa) jo dllall o o sllae
Y Cauall 8 A

HW:
1) Count in Hexadecimal from 0 to 100H (Ascending)

2) Count in Hexadecimal from 400H down to 360H (Descending)

*khkhkhkhkhhhkhkkkkkk

Reference text books:

1) “The Intel Microprocessors”, by: Barry B. Brey
2) “The 8088 and 8086 Mp’s programming, interfacing S/W, H/W and Applications”, by:
W. A. Triebel and A. Singh.

Lecture 2: Logical and Physical Addressing

Logical Addressing

e 8086Mp has a 1 MByte memory locations; each size of each location is 8-bits. In order to
reach any location in this memory, we need to know the logical address of that location.

e 8086Mp memory is logically divided into segments. The size of each segment is 64 Kbyte.

e A programmer can reach the 8086Mp memory only by using logical addressing. Logical
Address is written as follows: (Segment : Offset)

e The segment part of the address is fixed for all the memory locations that are in this segment
(which is 1000 H in the below example), while the offset value changes from 0000 H to FFFF
H for each segment.

e Offset is like a pointer that points to a specific location inside the segment.

e The segment value can only be stored in one of the segment registers while the offset is stored
in one of the offset registers associated with that segment (go back to the segment-offset
combinations table given in the previous lecture).

iliall ol gial) 065 bl 4 giall YA (e Y1 Lgaa Jalaiys S (g g (51) oy) grasall (SaY
e Jaly d aame alse I Hd% Al pdisadl dad Jesy Sl (Segment)d) Olsie desy V) Gnend (1
Aad sy @A) dadl Joha o6 o) ey elldg 281 5all 0 64 Kbyte e s5is Segment JS .Segment-)
1Y lw LS (CS, DS, ES, SS) 4 el aal 8 segments) 4ed ¢ 3 b . 16-bit s segment
dad S 1M 4 age JAY (FFFF H) GV segmentd! e adse JsY (0000 H) (s 75l S5 (oed i pal) dadi Ll
Olsislls (BA00 H : 0000 H) s» segment I (e g ge Js¥ laiall o)) siall (d BAO0 H Slia (5 5l segment-
(6A00 H : FFFF H) s segment J (s a8 sa JAY alaidll

S anall (Y) 64 Kbyte ¢sSs 2l) segment 1 aaa o) slizad 16-bit s 5w 41 sk (0ffset) sisall Of ey
(64KDbyte s shw 5516 G 2 8 1] 6 aladinly 4% sic ¢Say 53

Agbuial) (g gliall sl 5 8y (Al (3,51 sl danall) 5 SIAN (pe Tadaie praa gy U a1 3 Janall JUal)
58I mise Jala 8 S Le Ll sl ol el e 5 SIAN Caila) 3050) ibaial) &) g) giad) S 4y afle
8-bits 4l sk (355 Wl gie Ll s (datad) sl) ad sall (5 sina yiind

& dnsall 58 Lesa iga DAL JiuY) B agasall sa Leie age Jsl el asii 3 SIA any e o f4Biadle
had) (e o) Ll A8l 3 jualaal) 8 daxall] a8 gl QUSH 8 daadinall 38 Hhll pe il @l oY)
Al e aadiud

4d ey) o) G iy Ay A el s ddhaiall oy gliall ALS 8 e Gealad) AUkl aladial oy 2 dbadle

& @R Al Ol day ealagl A agiae Gl GY Algdinl Gladle JS5y 5 SIAL HAY) &8 gall LUK &5 23 4hadle
A 5l 5 i)

<—— 8-bits ——>

PH:?H

[1000 H : FFFF H

1000 H : FOOOH

Logical Addresses — 0 [hye S

. 1000 H :0000H

0000 H : 0000 H

Physical Addressing (PA): (Some references call it: effective address (EA))

In order to access any location in the 1 Mbyte memory, the Mp must generate a 20-bit
memory address, which is called a Physical Address (PA). Physical address is calculated from
the logical address as follows:

Physical Address (PA) = Segment * 16 + offset

where multiplying the segment by 16 is simply achieved by shifting it to the left and adding a
zero to the lower digit.

1 s A5 S aaa) o Gppde alsh Q8 e (5Sh @Al Raall)il s (b5l () sl
Jia ALl @y i) o giall JDA (e 4me Jalaill claall 3l 3l (o siall Clusy mllaall 255 (MByte
S Al e duasi) pa g alld offset sdsall dad po ganll &3 (16 (& @i Jalay 3 5) segmentd)

JsY (00000 H) om Sldll o) siall 4ad = 5l 535 (1 hexa digit Jiad <uda) IS oY) 5 hexa digits e
Lie Ol sie AY (FFFFF H) G 3 S (e o)) sie

ExamQIe: Find the PA of the next instruction, if CS =1000 H, DS =A000 H, ES = A80 H, IP
=2000 H.

Solution:

The logical address of the next location is stored in (CS: IP), so that DS and ES will not be
required to calculate the PA of the next instruction.

La3l (CS: IP) (hiall) sindl (A o2y o s (2l U Sl Gl sie O 3 gali s (5) 2855 die el 58
& s 5all Cllall agd (ga 2SE (m jad slara (4 5 dall AL 58 Jged) 830 5 sall 5 AY) SOl a8

PA=10000
2000 +

12000H

ExamQIe: If a segment register value is (2100H), what are the starting and ending physical
addresses of this segment?

Solution:
- For the starting address, the offset value is (0000 H), so PAis:
PA=21000
0000 +

21000H
- For the ending address, the offset value is (FFFF H), so PA is:
PA=21000
FFFF +

30FFFH

ExamQIe: If SS =A022 H, DI =F019 H, BP =2E60 H, IP =1111 H, find the PA of the stack.

Solution:

The stack is addressed using the logical address (SS: BP) or (SS: SP). The value of SP is not
given in the question, so that BP is used, so PA is:

alad AGLd) 8 pualaall (& anall Jsaall (g a0 A ey SSI 8 (55 5% stack b =lal segment)
BP axiiuis Jlgull dslana e SP ded o) Layy i BP 5 SP o dxe dadivivaall <l ydigall ol

PA=A0220
2E60 +

A3080H

ExamQIe: Find a logical address that can take you to the location (255AF H) of the memory.

Solution: There are many logical addresses that lead to the given PA:

ypaad) Al o (g Lina W) (5 slon Lagaas Juala (38 2la¥ Agaliia (o (Sl) (g Galaiall o sial) dla) Alee
e azaa g segmentd O sie (A e s JUA (e Bl Q\#\‘;M}\X&Awﬁiﬂ\g;ﬁoﬂj ROPVEN W
sl bl ol giall ey o) ang (e Sb) o) siall e ladie Juasid offset)

255A H: 000F H

or

2000 H: 55AF H

or

2500 H: O5AF H

(and many other combinations)

More examples can be found in [Ref. 1, table 2-1]

Best Regards

Dr. Zainab Alomari

1)

Lecture 3: Addressing Modes

8086Mp has a group of instructions that are used by the programmer to specify the task
required to be done by the Mp. The language used for programming 8086Mp is called (Assembly
Language).

(MQV) instruction is the most used 8086Mp instruction, and it is used as follows:

MOV AX, BX

In this example: Destination >°Urce

- AXis the destination

- BX s the source

- The value of BX will be moved (copied) to AX

- The old value of AX will be removed and now AX=BX
- BX will not be changed

In all instructions:

- The source and destination MUST have the same length.

- The destination is called so because the result of the operation performed by the
instruction is always stored in the destination.

- The source is NOT changed by the instruction.

A e @l (€55 (Y daadll JOA Lgilalial aled a2 5) 40 doalad) Ll A (e gellaall pe Jalail 2y
Ac siie Gillany 2Ll Lealadind ey Al O3l (10 de gane 4 o mllaall) il

aiss s (destination)dl I (source)d iad fus sl Jii Sl s 5 (MOV) o Lalaind Y15 Jaw¥) 5l
(Addressing Modes) 4 sill (3 4dliaall g 53¥) = J&1 Jag¥) 13 alasial

Addressing Modes

Register Addressing Mode

Jshall ety U o) g (register) daw o= 3 ke (destination))s (source)d) cx JS o5 g 5l a8
(2216 LSS 5 g Laa IS L)

MOV Register, Register

) e g sl 13 e ZBeY) e de sane I Jsaall b

Assembly Language Size Operation

MOV AL,BL 8-bits Copies BL into AL

MOV CH,CL 8-bits Copies CL into CH

MOV AX,CX 16-bits Copies CX into AX

MOV SP,BP 16-bits Copies BP into SP

MOV DS,AX 16-bits Copies AX into DS

MOV SI,DlI 16-bits Copies Dl into Sl

MOV BX,ES 16-bits Copies ES into BX

MQ / ES,DS — Not allowed (segment-to-segment)
MOV BL,DX — Not allowed (mixed sizes)

MOV CS,AX — Not allowed (the code segment register

may not be the destination register)

Al cayall =y [PYRER s Yl Slilia

(G Jsaall g A Jid JUa 8 LS) | e e (destination)d)s (source)d Jsb s of -1
4x,¥) (segment registers)dl (= s ((destination)ds (source)d) o IS sh) culadl S (S of -2
8 Leahaiinl g Aald Ol Ll Cundl s (Gl Jsaall (e 8 JBWl & WS) (CS, DS, ES, SS) 45
he Le (Sas 1368 (segment registers)) (e sa Jadh culad) aal IS 130 el Jadd 5 gase JS5)5Sy & 3layY)
() Jsaall e paY) JEall 8 LS) eae Y 136 (destination)) sa CSAI 05Ss o a5 saals s
Dwad Al g 3800 bl e e s sing g3 segmentd) o) sie Jiai dega dad (5 sing 4)

el (a5 4

AX, BX,) lae Lo Ll cu]6 Ll e g Jabaill iy Lail 5 <l V) L (S o) aas ;4833
(AL, AH, BL, BH, CL, CH, DL, DH) <8 (e G (I age JS 23325 (S &us (CX, DX

2) Immediate Addressing Mode
MOV Register , NUMBER

hrs <ul6 sl a8 L) (destination)d) Jsk i (5% S s Ll (sOUrce) oS g5l 1
L0063 Jsaall e 2 JUL 8 L) H cajall o AT 4 iy ol el (Hexadecimal) s sée (uabod) pUailly L) o8
ol alailly (ol Jsaall e) Ji) L8 W) B waoall o AT 8 iy ol élld s (Binary) (Suil) alaily
Ly Gy T3, OAS 13 Ll (oba) Jsaall (3 45 35 1 ALY 3 L) o0 (5l o AT 8 3 Y ol i35 (decimal)
Jilay g algha ad) (e ke o8 5) el 13 AalAll (ASCH) dad 33 & Ua g (¢) Sedle JAl ana aid
5 Jial) b LeS) 8 I Sas (5580 o) e 535 destination-l e sdac) &ty s (Ll iedle G chaxall el
& ey (S IS CuB) cul6 23 a oline (LY JiaSle JAly (aie gy o 13 (L) Jsaall (e
(U3l saadl (e 6 JE (8 LaS) 916 s Sk 0158 &) e 53 dlestination-)

Assembly Language Size Operation

MOV BL,44 8-bits Copies a 44 decimal (2CH) into BL
MOV AX,44H 16-bits Copies a 0044H into AX
MOV SI,0 16-bits Copies a 0000H into SI
MOV CH,100 8-bits Copies a 100 decimal (64H) into CH
MOV ALSA' 8-bits Copies an ASCII A into AL
MOV AX,'AB' 16-hits Copies an ASCIl BA into AX
MOV CL,11001110B 8-bits Copies a 11001110 binary into CL
Examples: MOV AL, 15H (AL=15H)
MOV BX, 6FOAH (BX=6FOAH) or (BL=0AH and BH=6FH)
MOV CX,1H (CX=1H) or (CL=01H and CH=00H)
MOV 1FH, AL

MOV 47H, DH [NOT ALLOWED ® (Destination CAN NOT be a number!)

MOV 55, DX

3 Jlall xS g ddhia ye dolee g 4l 23 i) ddee Y L) destinationd) osSs o) oSer Y 4l Jaadls
s Y Laan) 13¢8 58) e 5 le destinationdls sourced) e JS oS

MOV DS, 100H NOT ALLOWED ®

It is NOT allowed to use immediate addressing mode with segment registers (CS, DS, ES,
SS). In order to put 100H in DS, we can do the following:

MOV AX, 100H

MOV DS, AX ALLOWED ©

G OAY) Olal) aal aladiuly & 68 Wil 5 das Y1 segment registersd ae < ¥l e g sill s aladiil S Y
ol Lewladinl Sy 45 k) o385 (register addressing mode) Js¥) g sill aladinly dedll Jail oy o)5S
Ll S3LS CSJI lae L segment registers (! dad

3) Direct Addressing Mode
MOV destination , [NUMBER]

MOV [NUMBER], source

Jsmasll day ol 581 aladial oy Cus destinationS sl sources Leehasiul 5 5 SIA1 e doladll oy ¢ 53 138 8
cstaall ol giall W Jsaa gl e Laebuad (ul 5891 038 (e o 5 a5 a5 5 ,SIAN

Example 1:
MOV AL, [1234H]

In this example, an 8-bit value is taken from a memory location and copied to AL.

How can the Mp calculate the physical address and go to the correct memory location? The
physical address is calculated from (segment : offset). The number given in the instruction
inside square brackets is the offset. When the offset is a number, then the segment is always DS.
The Mp will take the offset from the instruction which is 1234H and adds it with DS value after
multiplying DS by 16 to find the physical address. Let DS=1000H, then:

66H 1000H:1235H

</‘ SFH 1000H:1234H
AL

BOH [1000H:1233H

(After execution: AL=5FH)

3 SIAN e 4l e Al o llaall b 5l) giadl Ol 408K

A LS 16 (B 40y 32 DS dad ae pent o5 Offsetd) Jiad Cum Ay jall (al BY) (g 82 53 gl dail) aladiaal o
sl s

Example 2:
MOV AX, [61FFH]

In this example, 16-bits will be moved from the memory to AX. The memory PA will be
calculated in the same way as in example 1. This time two bytes are required to be copied from
the memory to AX, so that: the first byte (lower byte) of AX (which is AL) will be taken from
the specified memory location and the second byte (higher byte) of AX (which is AH) will be
taken from the next memory location. Let DS=2000H, then:

</— D9H 2000H:5200H
AH {/— 33H 2000H:51FFH
AL 1FH 2000H:51FEH

After execution: AX=D933H.
Jaall 3 aats Jlie 3 e o Lin 5 SIAN 3 405 ja) 2l ;ddiadle

Note: in the two previous examples, the memory location was the source so that it is not
changed; only the destination is changed.

Example 3:
MOV [13A9H], DX

In this example, two bytes will be copied from DX to the memory location at offset=13A9H
in DS. Let DS=4000H and DX=8F10H, then:

4000H:13ABH

— 8FH 4000H:13AAH

DL—

— 10H 4000H:13A9H

(after execution DX is not changed, only two memory locations are changed)

MOV [4F00H], [651BH] NOT ALLOWED (memory to memory is not allowed) &

MOV [3A88H],5H This is allowed BUT: the length of the moved data is not clear (16-bit or
8-Dits), therefore we need to specify this length using either (byte ptr) or (word ptr), as follows:

MOV byte ptr[3A88H], 5H One memory location at DS:3A88H will be given the value 05H
MOV word ptr[3A88H],5H Two memory locations will be changed as follows:
DS:3A88H will be given the value (05H)

DS:3A89H will be given the value (O0H)
MOV 5H, [3A88H] NOT ALLOWED (destination can NOT be a number) ®

MOV DS, [3000H] NOT ALLOWED (segment registers can NOT be used with memory) ®

4) Indirect Addressing Mode

5 SIA) a8 pal Offsetd) Jics 4iad (register) daw JS5 Wil g &8) J<G sl offsetd) slae) b g sill 120 &
An ye el 81 G Jad) 138 am gy Cua o gl

MOV Destination, [Register]
MOV [Register], Source

Examples: MOV AX, [BX]
MOV [DlI], AL
MOV [BP], BX
MOV DX, [SI]
(segment-offset combinations)d) Jsaa (4 Basase 25 OffsetS aasind () (Say Baaae Clas cllla
4aliinl (Sad (SP) Ll (BP, BX, S, DI) (ot adl oda (& Jgaall 138 casa s (A 5¥1 8 pualadl) i (ol
JSEY 5 s JS3Y @ Jlag¥) i lillae Hilie IS0 anladind oSan¥ IP oy 3 SIA 1 55 5eS G 5 Jah (S
e

e a4l Lans lllia i offset) anl ade ik 3 SI0 Je il register Jaud) aladiul vie ;Akiada
.(pointer)

5 S0 e 4l Sl o gllaall L 5l) giadl s A

22 segmentd Aad ae aand & offsetd) Jiad Cus Ay jall (ul BV G 25 sall Jad) dad alodin) o4

* b=l (segment-offset combinations)d) Jsas) g sl A (e segmentd 48 jae b (16 (& 420

el H&3all S 135 DS sa segment ¢ sSed DIl ST st BX 5 padioall j85all S 13 A 5Y) 5 palaal
.SS s segment! (sSd BP g2

Example: Let BX=1000H, DS=100H. Find the value of AX after executing the following
instruction (note that the memory is given in the question): MOV AX, [BX]

77H 02003H

ATH 02002H

34H 02001H

12H 02000H

Solution: the Physical Address = DS * 16 + BX
PA=01000

1000 +

02000H
. After execution, AX= 3412H

sl & ailac) &5 Jla 8 0815 meamaa Laa DS L 5il) f lasall JSilly 5 SIAN e o il 5uils oSy A8
Oo A sthall adl sall) sl Joail ilaiall o giall e S 5l) ol siall lua)zl Al) A giall 44y hay
351

o 7 gama 8 AU clAl) JAaada

MOV [1000] , [DI]

MOV [BX], [DI] NOT ALLOWED (no memory to memory operation) @

MOV [100H], [200H]

MOV DS, [DI] NOT ALLOWED (segment registers can NOT be used with memory) ®

Indirect Addressing Moded e 4e siidl ALY (10 de sana Ul Jsaall 3

Assembly Language Size Operation

MOV CX,[BX] 16-bits Copies the wcid contents of the data segment memory
location address by BX into CX

MOV [BP],.DL 8-bits Copies DL into the stack segment memory location
addressed by BP

MOV [DI},BH 8-bits Copies BH into the data segment memory location
addressed by Di

MOV [DI},[BX] — Memory-to-memory moves are not allowed except with

string instructions

5) Register Relative Addressing Mode
Ax pall Ll 8Y) Jas offsetd) eUac Y a8y ae Ja aladind iy ¢ i) 138 4
MOV Destination, [Register + Displacement]
MOV [Register + Displacement], Source
where the displacement is any 16-bit number.

5 SIA e dall AN o glaall 5 3l () il i 34

16 A 4 22 segment) ae 4xes Ji UL 5 offsetdl go Cpma el (o gl (258 50 Le JS e oy

segment-offset) dsas I g sa) DA (e Gawsill G pasinall ol & 55 (e SEgMENt) 48 2 (S

O 135 DS s segmentlé SI 5l DI 5l BX s (0ffset) séseS axdival Jaudl (S 136 (combinations
.SS s» segmenté BP sa (offset) i geS addiuall Jaill

Example: Let BX=100H, DS=200H, find the value of AX after executing the following
instruction (the memory is given in the question): MOV AX, [BX+1000H]

9AH 03102H

70H 03101H

11H 03100H

F5H 030FFH

Solution:
PA=DS * 16 + BX + 1000H
PA= 2000

0100

1000 +

03100H
.. After execution, AX = 7011 H
s e (San Lyl 138 5 day pal) Ll 891 7 A displacementd) g s o slaall (cany d sAdiadla
MOV [BX]+1234H , AL
IS 16 ol i o b Auanll U i i o8 gn Al (5 130 ool Al 8 i

MOV byte ptr[BX+20H], 4AH One memory location at (DS:BX+20H) will be given the
value 4AH.

MOV word ptr[BX+20H],5A12H Two memory locations will be changed as follows:
(DS: BX+20H) will be given the value (12H)

(DS:BX+21H) will be given the value (5AH)

MOV byte ptr[BX+20H],5A12H NOT ALLOWED (can you know why?) ®

6) Base-Plus-Index Addressing Mode (or Base-Indexed Addressing Mode)
:offsetdl elacy (DI 5l SI') LAY 5 (BX 5l BP) Ladaal glas aladiivl o3y g 5ill 138 4
MOV destination , [Base Register + Index Register]
MOV [Base Register + Index Register], source
where:
Base Registers are: BX and BP

Index Registers are: Sl and DI

5 SIA e aall Al gl 5 3l () il il 34

BP4I PNREN PV Jal 29 Bl A lae W PAY Claa 2ie segment= DS aladial a3y @Yl S =
&5 13 e dlial) Jsaall & PAL Glus die segmentd) sa SSI iy isd

Assembly Language Size Operation

MOV CX,[BX+DI] 16-bits Copies the word contents of the data segment memory
location address by BX plus DI into CX

MOV CH,[BP+SI] 8-bits Copies the byte contents of the stack segment memory
location addressed by BP plus Sl into CH

MOV [BX+SI],SP 16-bits Copies SP into the data segment memory location
addresses by BX plus Sl

MOV [BP+DI],AH 8-bits Copies AH into the stack segment memory location

addressed by BP plus DI

Example: Let BX=AF00H
Sl = 1IFABH
DS=8000H
SP=F43EH
SS=15FFH
Give the memory locations that will be changed after executing the following instruction:

MOV [BX+Sl], SP
Solution:

PA= 8CEABH (can you verify this?)

F4H 8CEACH

3EH 8CEABH

Note: if the instruction is modified to: MOV [BP + Sl], SP

then the PA is calculated using SS instead of DS.

7) Base Relative-Plus-Index Addressing Mode

A= offsetd) ellaeY (DI 5 SI) Y15 (BX 5l BP) Lataal (plans alasind o 4553l 00 g 5l 10 (8
Ol e il e dhala s g sill 13 of ol Lagal) Caliay a8 5)

MOV destination , [Base Register + Index Register + displacement]
MOV [Base Register + Index Register + displacement] , source
where:

Base Registers are: BX and BP

Index Registers are: Sl and DI

Displacement is any 16-bit number

5 SIA e 4l Sl o gllaall L 5l) giall s G

BPI alasiul &3 131 & g 3as) Aa e L PAY Glua i segment=s DS alasinl o3y YW JS &
il a5 5 SIA e O 2 5a 50 Le dail g8 Offset dad Ll PAJ Cilua vic segmentS SS) axding Lasiad
(displacement) a3l a3 1331 3 Base Registerd! e 133) Index Register

Example:

Let DS= 1000H, SS= 50FFH, ES= 9A00H, BX= 20H, SlI= 10H, find the value of AX after
executing the following instruction (the memory is given in the question):

MOV AX, [BX + SI + 100H]

67H 10133H

7BH 10132H

ACH 10131H

DH 10130H

81H 1012FH

Solution:
PA=DS * 16 + (BX + Sl + 100H) = 10130 H

- AX = ACODH

Note: if the instruction is modified to: MOV AX, [BP + Sl + 100H]
then the PA is calculated using SS instead of DS as the segment.

*kkkk

Notice that all the tables and some examples are from the reference book (The Intel
Microprocessors)- chapter 3.

Best Regards
Dr. Zainab Alomari

Lecture 4:

Exchange Instruction

Legaans as destinationl s source 3 b sise Jaay Jlag¥) 138 o 58
Xchg Register , Register
Register , Memory
Memory , Register

S s oia ga sall Cpiadl) 0 S Y s Immediate addressing mode! g ¢ aladiul sy Y
OAY) ma i 8 g

Xchg Memory , Memory NOT Allowed ®

Example

Write a piece of code in Assembly language to exchange the contents of DH and DL.
Solution

Xchg DL, DH

Example

Write a piece of code in Assembly language to exchange the contents of DH and DL WITHOUT
using Xchg instruction.

OR: What are the equivalent instructions of Xchg DH, DL?

Solution

MOV AL, DH
MOV DH, DL
MOV DL, AL

Example

Write a piece of code in Assembly language to exchange between the contents of memory
location (FF100H) and AH.

Solution (1)

MOV DX, FFOOH
MOV DS, DX
Xchg [100H], AH
Solution (2)
MOV DX, FFOOH
MOV DS, DX
MOV BX, 100H
Xchg [BX], AH
Solution (3)
MOV DX, FFOOH
MOV DS, DX
MOV AL, AH
MOV AH, [100H]
MOV [100H], AL
Notice that solution (1) is the most efficient solution because:

1. It requires less space in the memory compared to the other two solutions.
2. It uses less number of registers to perform the required operation.

COAL 8 Aalie JUIL 5) Sl (e J) 2o liag a3 elldg o AY) calal) e A) J oY1 Jall o) Jaadl
A slaall Aalaally ALl O al) (e J81 dae adding 43 55 SIA 0
Example

Let DS=1200H and BX= 11AAH, give the new values of all the registers and/or memory
locations that are affected by executing the following instruction:

Xchg [1234H], BX

o . OOH 13235H
(the memory plot is given in the question)
FFH 13234H
Solution
A7H 13233H

We need to find the PA of the memory location:

PA=DS * 16 + 1234H = 13234H

11H 13235H
& BXhew = 00FFH
AAH 13234H
A7H 13233H

Translate Instruction

XLAT instruction has no destination or source.

Ao Ll ad o (g ging Jsaal) 138 53 S 4 (Look up table) sevs Jsan et oy Jlaa¥) 13a aladin) (4
G L) Jseasll 3 55 dad 5l Lelulad a5 g sbon Jsoall (e &l sall (5 5ina 5Ss Se Joaall 8 Lelulis ae
s ,dualedll 138 (5 fime XEAT SV Lnbaay s Jsaall e Juslast (Jand 2 Ha) ey 408 335 530 (585 (o) Jualustl

&b &3 DS seb segment) Wi offset La Jlicl AL s BX (00 JS 4 gans mllaall oy Slag¥) 13 2 vie
LIS AL 8 4iad wam s s Jsanll (e Ome dige) el

[DS*16+BX+AL] > AL

Lid Jalbs (Look up table)d! (& adse Jy) pass Al aill DS 5 BX slhel oy XLAT Olag¥) sleivl J8
(Look up table) ¢ @dge Jsb) cladll o5 0=AL <uilS 1)) Eumy pligall diain AL dad (8 BX A L 13
Lot AL) Ja el aladll ay i) Aall 5 138 5 ad g0 S)) oy AL=1 10

(XLAT) AalS L oo SVl 138 dipa ddaadle
Example

Find the physical address of the memory location that will be used by XLAT instruction
if: DS=3000H, BX=100H, AL=3FH.

Solution
PA= 30000
100

3F +

3033 FH (sothis is the PA of the memory location that contain the value
that will be given to AL after executing XLAT instruction).

Example

Write a piece of code in Assembly language to find: y=x* where (0<x<15), using XLAT
instruction. Assume that x is a value stored in DH, and the look up table is stored at
8000H:2100H in the Data Segment.

Solution

MOV AX, 8000H 10H 82104H

MOV DS, AX

MOV BX, 2100H 09H 82103H

MOV AL, DH 04H 82102H

XLAT

HLT 01H 82101H
00H 82100H

138 alasii) o5 Lo baled s gill Jadd JUa) 138 (S1g Mul Gopall ey alatinly Jsad) o oSadll (e (IS 11488330
Y sl cla o sa (g sinall g Al ad 5 ga Judedll &5 o i (5 simall 5 () sindl Cpu Ale Slllia (Y Laxie SlagYl
Aqdlall

On OS5 Leall il AL axai WY @lly g L a8 256 s 2° » (Look up table)-ll Jsh sadl 1240325
Aadd g

Q) Write a piece of code in Assembly language to find y=2x where (0<x<7), using XLAT
instruction, assuming that x is stored at DS:SI while the look-up table is stored starting at
DS:BX.

DS=4600H, BX=5000H, SI=FFOAH.

3SIA sy any Lailg sl 2 BX 5 DS <dlaadl w5685 Cumy (5)30 A8 yhay JI5ud) 5% o) (S jAdiadka
.DS:BX das 43 y2a (Sas (LOOK up table)d ¢ adsa Js¥ O ginll e 3 5 5al) assl) (e

Questions:

A) Write a piece of code to do each of the following:
1- exchange between AX and the contents of memory locations: 90103H and
90104H.
2- exchange between 2 bytes of data stored at (11000H) in the Stack Segment with
other two bytes of data stored at (50F06H) in the Data Segment.
B) Give the equivalent instructions of XLAT instruction.

Load Effective Address (LEA)

LEA Register(16-bit), Memory 1A Jlagy) 13gd Jald Baa) g Ada 3 g

Example

LEA SI,[100H] ; Slpew = 100H

LEA DI, [BX+DI+ 5H] ; (Let BX=20H, DI=1000H, then: Dl,e=1000H+20H+5H=1025H
(o)A G Lo 3 s sl () gl 38 5 T Lail 5 L) 13 LSIAN W a3 iy 1)

LEA sI,100H NOT ALLOWED ®

Load DS and Load ES (LDS and LES)

LDS Register(16-bit), Memory

LDS instruction loads 2bytes from memory to a 16-bit register, then loads the next 2bytes to DS
register.

LES Register(16-bit), Memory

LES instruction loads 2bytes from memory to a 16-bit register, then loads the next 2bytes to ES
register.

Example

Let DS=1200H, find the values of all the registers that are affected by executing the following
instruction: (the memory plot is given with the question)

LDS SlI, [200H] 1BH
Solution 13H 12203H
12000 OO0H 12202H
200 + O0H 12201H
20H 12200H
12200H

SIneW: OOZOH, DSHEW: 1300H

Notice that in this example, DSq|g is required to reach the memory and bring the new values of
Sl and DS.

Notice that:

LDS AL, [100H] |

LES AL, [100H]

LDS AX, 100H |

LES AX, 100H

—

b

b

—

NOT ALLOWED ® (Destination is an 8-bit register)

NOT ALLOWED ® (source is not a memory)

Best Regards
Dr. Zainab Alomari

Lecture5: FLAGS Reqister

FLAGS register is a 16-bits register that contain 9-used bits while the rest bits are not used.
These bits are as follows:

bis bia bz b1, by big by bg b; bg bs by by by, by b
oD I TS |Z A P C

Status Flags:

1) Carry Flag (CF):
CF=1 when there is a carry-out or a borrow-in after executing the instruction.
CF=0 otherwise.ss
2) Parity Flag (PF):
PF=1 if the number of ones in the result is even.
PF=0 if the number of ones in the result is odd.
3) Auxiliary Carry Flag (AF):
AF=1 if there is a carry-out into the high nibble from the low nibble, or a borrow-in from
the high nibble into the low nibble of the lower byte of the result.
AF=0 otherwise.
4) Zero Flag (ZF):
ZF=1 when the result of executing an instruction is zero.
ZF=0 when the result of executing an instruction is not zeros.
5) Sign Flag (SF):
SF=1 if the MSB (Most Significant Bit) is 1 (negative number).
SF=0 if the MSB (Most Significant Bit) is 0 (positive number).
Or we can directly say (SF=MSB).
Notice that for unsigned numbers, SF value is neglected.
6) Overflow Flag (OF):
OF=1 if the signed result is out of range. This means that there is a carry added to the
sign bit but no carrys out of the sign bit. (when working with usnsigned numbers, OF
value is neglected).
Example:
127 = 7F =01111111
1+ 1+ 00000001 +

=
[0]1000 0000 : NOT CORRECT ®

Control Flags:

1)
2)

3)

Trap Flag (TF):

If TF is set to 1, it permits executing the program step by step (one instruction at a time).
Interrupt Flag (IF):

If IF is O, all interrupt requests are ignored. If IF is set to 1, interrupts are recognized.
Direction Flag (DF):

(Useds with String Instructions).

flagsd e o) s xchgs mov ¢l :Adaad

Best Regards
Dr. Zainab Alomari

Lecture 6: Addition and Subtraction Instructions

1- Addition Instruction

.destinationd 3 4aiill (33 5 Legaiany xe destinations source) b sise geny S 138 o 54

ADD Destination, Source

Example
ADD AX, BX . (AX = AX + BX)

All status flags are affected by his instruction (CF, PF, ZF, SF, AF, OF)
.unsigned sf signed A& Y1 o585 o (S
Example

Set CL to OFH and CH to 1FH, Find the value of CL and CH with the values of the status flags
after executing the following code:

MOV CL, OFH
MOV CH, 1FH
ADD CL, CH
Solution
CL=00001111

CH=00011111 +

00101110
S CLnewz 2EH, CHnewz CHo|d
Status flags:

CF=0
ZF=0
PF=1
SF=0
AF=1
OF=0

Examples

Assembly Language Operation
ADD AL,BL AL = AL + BL
ADD CX,DI CX=CX+DlI
ADD CL,44H CL=CL + 44H
ADD BX,245FH BX = BX + 245FH
ADD [BX],AL AL adds to the contents of the data segment memory location address by BX with the
sum stored in the same memory location
ADD CL,[BP] The byte contents of the stack segment memory location addressed by BP add to CL

ADD BX,[SI + 2]

The word contents of the data segment memory location addressed by the sum of SI
plus 2 add to BX with the sum stored in BX

ADD [BX + DI],DL DL adds to the contents of the data segment memory location addressed by BX plus
DI with the sum stored in the same memory location
:Signed numbers ae Jalaill vie dega cillaadle
e o3 S 8002’5 complement) 33U) vie (1
) 1 ge paall & Jlial M Claal gl g Claal s () Jlia¥) Gl JDA (e 8851 275 complement) a1 &3 (2

(A sk plaxinl (K

LS axad aaal) 8 JI8 Jean 38 43 olinad OF =1 OIS aeal) 205 signed numbers ol) gass o583 LS 131 (3
Al Jegi® unsigned 8)Y) <l 13 Ll Uas 65 Al s MSBYI sl sign bitd) ity dus i) axe

.OF
Example:
+48 00110000
+80 01010000 +

0 10000000 :

s Ky &l &85 LY cu) AN J8 call e carry @llia (Y 1 s sbew OF o) JEA 13 8 JaadU

.overflow A clligd Jully 3 ,LY1 <u (e carry

Alaal 238 carry <lia S 5 signed- pBLY) aea s 4 (4

Example:
+48 00110000
-48 11010000 +

CoD [1]o000 0000 =Co D

/

Discard carry

:signed numbers) dad 4 j2al (5
Jasaill (e A€ dagluny b pilia o 5838 i ga a8) () slina () (5w BLEY) oy o) AV i K1Y g
A e B LAY 5 (g uiall (I AN (e
&) &0 2°s complement-) 22 4 i lls 8501 o sline | 55k a1 o dY)) KN
A 3L (s 05 (5 piall AL 8 el A sl o5 3 (5LEY) iy
P’s A el of Cam 40 QY1 Jiadl &aall dalail) 8 2°s complement adas alaivl oy (6
(Al Jiia g n ge jiia) Gried Al Sua jauall Jid 8 41S4s 40 complement

A figure that shows the difference between 8-bit signed and
unsigned numbers

uUnsigned numbers Signed numbers
255 FFH +127 7FH
254 FEH +126 7EH
— —
/‘—-——/—_- z——-—/——
132 84H +2[02H
131 83H +1 01H
130 82H +0 00H
129 81H -1 FFH
128 80H -2 FEH
__"\a _\'_\a
—____\‘ ___.\4
4 04H -124 84H
3 03H -125 83H
2 02H -126 82H
1 O1H -127 81H
0 00H -128 80H

2- Add with Carry Instruction

ADC destination, source Dbie V) ki CR 4ad 330 ae aaad) oy Jlag¥) 18
Examples:
ADC AX, BX ; (AX = AX + BX + CF)
ADC BL,5H ; (BL = BL + 5H + CF)

Notes:

e All status flags are affected by his instruction (CF, PF, ZF, SF, AF, OF)
e ADC instruction is used when the added numbers are wider than 16-hits.

Example

Add two 32-bit numbers using assembly language instructions, the first number is stored
in (BX AX) and the second number is stored in (DX CX).

Solution
ADD AX, CX
ADC BX, DX

HLT

Example

BX AX

+
DX CcX
BX = AX

Add a 32-bit number with 16 bit number, where the first number is in (BX AX) and the
second number is in CX.

Solution V]
BX AX
ADD AX, CX +
CX
ADC BX, 0
HLT BX — AX
Examples
Assembly Language Operation
ADC AL,AH AL = AL + AH + carry
ADC CX,BX CX=CX+ BX + carry
ADCDH,[BX] The byte contents of the data segment memory location addressed by

ADC BX,[BP + 2]

BX add to DH with carry with the sum stored in DH

The word contents of the stack segment memory location address by
BP plus 2 add to BX with carry with the sum stored in BX

3- Increment Instruction

This instruction adds 1 to a register or memory contents.

Examples

Assembly Language Operation
INC BL BL=BL +1
INC SP SP=SP+1
INC BYTE PTR [BX] Adds 1 to the byte contents of the data segment memory location
addressed by BX
INC WORD PTR [SI] Adds 1 to the word contents of the data segment memory location
addressed by S|

4- Subtraction Instruction

.destinationd) - Aaxiill ¢ 32 5 destination! (s source 4l b sisa = slay Sl 13a o 68

SUB Destination, Source

Example
SUB CL, BL ; (CL=CL-BL)
All status flags are affected by his instruction (CF, PF, ZF, SF, AF, OF)

Instead of holding carry:

e CF is used to hold the borrow.
e AF is used to hold the half-borrow.

Example

Write the instructions required to subtract 44H from 22H and put the result in CH.
Solution

MOV CH, 22H

SUB CH, 44H

HLT

Examples

Assembly Language Operation

SUB CL,BL CL=CL-BL
SUB AX,SP AX=AX-SP

SHID MU occd NU - il ccd

5- Subtract with Borrow Instruction

SBB destination, source (borrow la_jlicly) e W) jlai CFA dad) aa z shall oy Jlag¥) 138 8
Examples:
SBB CL, BL ; (CL=CL-BL-CF)
SBB BX,5H ; (BX=BX-5H-CF)
Examples
Assembly Language Operation
SBB AH,AL AH = AH — AL - carry
SBB AX,BX AX = AX -BX —carry
SBB CL,2 CL=CL-2-carry
SBB BYTE PTR[DI],3 Both a 3 and carry subtract from the contents of the data segment
memory location addressed by Di
SBB [DI],AL Both AL and carry subtract from the data segment memory location
addressed by DI
SBB DI,[BP + 2] Both carry and the word contents of the stack segment memory

location addressed by the sum of BP and 2 subtract from DI

Example

Write a piece of code in Assembly language to compute: Z=X -, where:
X is a 32-bit number stored at 92200H,
Y is a 32-bit number stored at 94200H,

Z is stored at 96200H.

Solution

Let: 92200H - 9000H:2200H
94200H - 9000H:4200H
96200H -> 9000H:6200H

The three numbers are stored in the data segment with the value of DS equal to 9000H.

MOV AX, 9000H

MOV DS, AX

MOV AX, [2200H]

MOV BX, [2202H]

SUB AX, [4200H]

SBB BX, [4202H]

MOV [6200H], AX

MOV [6202H], BX

HLT

For the same example, if X is stored in the stack segment while Y and Z are in the data segment
(using same addresses):

MOV AX, 9000H
MOV DS, AX
MOV SS, AX
MOV BP, 2200H
MOV AX, [BP]
MOV BX, [BP+2]
SUB AX, [4200H]
SBB BX, [4202H]

MOV [6200H], AX

MOV [6202H], BX

HLT

6- Decrement Instruction

This instruction subtracts 1 from a register or memory contents.

Examples
Assembly Language Operation

DEC BH BH=BH -1

DEC CX CX=CX-1

DEC BYTE PTR [DI] Subtracts 1 from the byte contents of the data segment memory
location addressed by DI

DEC WORD PTRI[BP] Subtracts 1 from the word contents of the stack segment memory
location addressed by BP

Notice that the example tables in this lecture are taken from Reference text book 1.

Best Regards
Dr. Zainab Alomari

Lecture 7: Multiplication and Division Instructions

1- Multiplication Instruction

A Gl aladinly o ually Sl 138 o sy
MUL operand (for UNSIGNED numbers multiplication)
IMUL operand (for SIGNED numbers multiplication)

where: operand can be a register or a memory.

e If operand is 8-bits, multiplication is performed between AL and the operand and the result
will be 16-bits stored in AX. This is called (8-bits multiplication)

Example:
MUL BL ; (AX=BL*AL) Cu]6 (sl CuB* Cu8 pa Juals
IMUL DH ;. (AX=DH*AL)

e If operand is 16-bits, multiplication is performed between AX and the operand and the result
will be 32-bits stored in (DX AX). This is called (16-bits multiplication)

Example:

MUL BX ; (DX AX=BX* AX) 032 (b] 6* 0] 6 i Juals
IMUL BP ; (DX AX =BP * AX)
NOTE:
MUL 12H NOT Allowed ® (NO immediate multiplication)
MUL DS NOT Allowed @& (NO segment registers multiplication)
Examples
Assembly Language Operation
MUL CL AL is multiplied by CL; the unsigned product is in AX
IMUL OH AL is multiplied by DH; the signed product is in AX
IMUL BYTE PTR[BX] AL is multiplied by the byte contents of the data segment memory

location addressed by BX; the signed product is in AX

Assembly Language Operation

MUL CX AX is multiplied by CX; the unsigned product is in DX-AX
IMUL DI AX is multiplied by DI; the signed product is in DX-AX
MUL WORD PTRI[SI] AX is multiplied by the word contents of the data segment memory

location addressed by SI; the unsigned product is in DX-AX

Example

Find the result of x* using Assembly language, if x is an 8-bits signed number stored in the stack
segment at offset (500H). Store the result in CX.

Solution
MOV BP, 500H
MOV AL, [BP]
IMUL AL
MOV CX, AX

HLT

2- Division Instruction

AU gaall aladiily ey Slaa¥) 13a o 68y
Div operand (for UNSIGNED numbers division)
IDiv operand (for SIGNED numbers division)

where: operand can be a register or a memory.

e |f operand is 8-bits: AX is divided by the operand (Opiﬁ). Result will be stored in AL

and remainder will be stored in AH.
Example:
AX
Div BL ; (AL = 3L and AH = remainder)

AX
IDiv DH 7 (AL = on’ and AH = remainder)

e If operand is 16-bits: (DX AX) is divided by the operand (

DX AX)
-). Result will be stored

operand
in AX and remainder will be stored in DX.
Example:
. DX AX i
Div BX ; (AX = , and DX = remainder)
A
IDiv SI ; (AX = DX AX , and DX = remainder)
NOTE
Div 12H NOT Allowed @& (NO immediate division)
IDiv DS NOT Allowed ® (NO segment registers division)
Examples
Assembly Language Operation
DIV CL AX is divided by CL; the unsigned quotient is in AL and the remainder
is in AH
IDIV BL AX is divided by BL,; the signed quotient is in AL and the remainder is
in AH
DIV BYTE PTR[BP] AX is divided by the byte contents of the stack segment memor
location addressed by BP; the unsigned quotient is in AL and the
remainder is in AH
Assembly Language Operation
DIV CX DX-AX is divided by CX; the unsigned quotient is in AX and the
rem.vnder is in DX
IDIV SI DX-AX is divided by SI; the signed quotient is in AX and the remainder
is in DX

1daga s

Lo a0t cagd (BL Ao AL asei glhall (158 o Sia) 8 o cuf sl b isthaall of Ala B (1
Al 48y plally el a9 AX M AL
1- For unsigned numbers: put zeros in AH.
2- For signed numbers: use CBW.
(CBW=Convert Byte to Word): This instruction extends AL to AX by repeating the MSB
of AL (sign bit) in AH.

e iy AH 5253 sal)) Lo DDA (pa ld g AX) AL (B 52 53 sall Al 3308 2 58 CBW ey
JaaYU AH i i S 135 calaal sl AH i aal s call s GS 13 U AL Ga A Y1l

AAAAARAN

AH AL

L0 ad (BX e AX asedl qusllaal) (168 ¢f i) Cul6 Ao 16 amai 98 qisllaal) of s By (2
A 48y pally A3 g DX AX M AX dad
1- For unsigned numbers: put zeros in DX.
2- For signed numbers: use CWD.
(CWD=Convert Word to Double word): This instruction extends AX to DX AX by
repeating the MSB of AX (sign bit) in DX.

DX AX

dad ity DX 4835 sall il e J3A (e elld s DX (A AX 852 sall el vady o 8 CWD Sl
¥l DX liai jtea S 1315 Silasd b DX gbiad aal 5 caall 138 (IS0 Julls AX e i))

Example

Write the Assembly language instructions required to find the result of dividing the byte stored at
DS:BX by the byte stored in the next location. Store the result and remainder in the locations
next to the two numbers. Assume the two numbers are:

1) Unsigned
2) Signed

Solution

1) If numbers are unsigned:

MOV AL, [BX]
MOV AH, OH
DIV Byte ptr[BX+1]
MOV [BX+2], AX
HLT
2) If numbers are signed:

MOV AL, [BX]
CBW

iDIV Byte ptr[BX+1]

MOV [BX+2], AX

HLT

Note: Some of the applications that may need the division operation are: calculating the average,
checking if a number is even, checking if a number is prime, etc.

Example

What is the result of executing the following code:

MOV DX, 99H
MOV AL, 0A1H
CBW

CWD

HLT

Solution

AXpew = FFAIH, DXpew = FFFFH

Q1) Write the equivalent instructions of:

1) CBW
2) CWD

Q2) Write the Assembly language instructions required to find: Z=X/Y, where X and Y are 16-
bit numbers stored in BX and CX, respectively. Store the result at 91FO0H in the data segment,
and store the remainder at 55A80H in the stack segment. Assume that X and Y are:

1) Unsigned numbers
2) Signed numbers

Notice that the example tables in this lecture are taken from Reference text book 1.

Best Regards
Dr. Zainab Alomari

Lecture 8: JUMP Instruction

1- Unconditional Jump

JMP operand(16-bits) ; operand can be any 16-bit value (immediate, register or memory)
This instruction is used to specify the location of the next instruction to be executed.

DAY S) 58 ey I o365 s (53 U1 Slas¥) 50 o3 el e sk el 138 o5y

flagsd e) o ¥ 13 Sy jdiadla
Types of Jump operation:

1) Intrasegment Jump

In this type, the value of the new IP is directly given by the instruction. CS is not changed.

Examples
JMP 1234H i (IPnew = 1234H)

IMP BX . (IPpew = BX)
mpBL NOT Allowed ® (operand must be 16-bits)

mp bs NOT Allowed ® (operand can’t be a segment register)

Examples

Let BX= 1000H, IP=100H, find the value of IP after executing the following instruction:
1342H:0100H JMP [BX] ; notice that 1342H:0100H is the location (CS:IP) where
the instruction is stored.

Solution

02H DS: 1001H
IPrew= 200H

O00H DS: 1000H

. The next location is stored at (1342H:0200H).
A7H DS: OFFFH

NOTE: any type of memory addressing modes can be used here, example:
IMP [SI+1]
JMP [DI+BX+3]

[FYEXEY] ‘Fﬂ\ addressing modes! g5 (e g 5 o) alaainlyg [P sl dadll alad 3 SIAN aladiin oK dBaa N
Oy 33 2l jmp sa Ola¥) Wla 4 (word ptr)= 5SIAN (e 53 salall Aall ana apas 1 dalal) ¢y Tl

2) Intersegment Jump

Ol iy Hlall gaa) aladiuly Ald g [P SCS Al (e JS st o g il 128 &
(ol Girpall gaslyellyy SVl (8 il S5 |P 5 CS Aed sllac) o5y (]
JMP FAR CSpew: IPrew

JMP FAR PTR CSpew: IPnew

Example:
JMP FAR 4000H:200H ; CSpew=4000H, IPpew=200H
AU dapall aladinly 3 SN e [P 5 CS 4 331 o5 (2
JMP Dword ptr [] ; any addressing mode can be used here.
Examples:

JMP Dword ptr [71FFH]
JMP Dword ptr [BX]
JMP Dword ptr [SI+500H]
(CSA an iy Pl [P ot e (3l b 3800 (e iy @) 280 s Alal 038 6 sAAMA
Example

Let BX= 4000H, DS= 2000H, find the new values of CS, IP and BX after executing the
following instruction (the memory is given in the question):

8000H:0100H JMP Dword ptr[BX]

Solution __ 90H 2000H:4003H
CShi </
IPpew = 1000H __ OOH 2000H:4002H
CSIow{/
10H 2000H:4001H
Py,
00H 2000H:4000H
II:)Iow

CSpew = 9000H

BXhew= BXold

1- Conditional Jump

s
T

i stlaall a8 gall N A3) s Al Conin s e) Jale Aad e e A i £) 5l

Conditional Jump Instructions

Assembly Language Tested Condition Operation

JA Z=0andC=0 Jump if above

JAE C=0 Jump if above or equal

JB C=1 Jump if below

JBE Z=1orC=1 Jump if below or equal

JC C=1 Jump if carry

JE or JZ Z=1 Jump if equal or jump if zero

JG Z=0andS=0 Jump if greater than

JGE S=0 Jump if greater than or equal

JL Si=0 Jump if less than

JLE Z=10rS1=0 Jump if less than or equal

JNC C=0 Jump if no carry

JNE or JNZ Z=0 Jump if not equal or jump if not zero

JNO O=0 Jump if no overflow

JNS S=0 Jump if no sign (positive)

JNP or JPO P=0 Jump if no parity or jump if parity odd

JO 0=1 Jump if overflow

JP or JPE P=1 Jump if parity or jump if parity even

JS S=1 Jump if sign (negative)

JCXZ CX=0 Jump if CX is zero

JECXZ ECX=0 Jump if ECX equals zero

JRCXZ RCX=0 Jump if RCX equals zero (64-bit mode)
Note:

(Above and Below) are used with Unsigned numbers.

(Greater and Less) are used with Signed numbers.

Example

Write the assembly language instructions required to copy the contents of 10 memory locations
(from 9A000H to 9A009H) to the memory locations that start at 96050H.

Solution

MOV AX, 9000H

MOV DS, AX

MOV BX, A0OOH

MOV SI, 6050H

MOV CX, 0AH
N1: MOV AL, [BX]

MOV [SI], AL

INC BX

INC SI

DEC CX

INZ N1

HLT

ANOTHER SOLUTION:

MOV AX, 9000H
MOV DS, AX
MOV BX, OH
MOV CX, 0AH

N1: MOV AL, [BX+A000H]
MOV [BX+6050H], AL
INC BX
DEC CX
INZ N1
HLT

Loop Instructions:

1) LOORP instruction:
LOOP N1

This instruction decrements CX and jumps if (CX # 0) to N1.

(s 3N Lagh cpllil) e 5 Lal Allal) (g o gllaall Jadd g2 JoOp i Jla) (i Jg¥) £ 51 s Alaadla)
2) LOOPE and LOOPZ instructions:
LOOPE N1
LOOPZ N1
These instructions decrement CX and check both of CX and ZF as follows:

if (CX#0 and ZF = 1) jump to N1.

3) LOOPNE and LOOPNZ instructions:

LOOPNE N1

LOOPNZ N1
These instructions decrement CX and check both of CX and ZF as follows:
if (CX#0 and ZF =0) jump to N1.

Questions:

1) Re-solve the last example, with replacing (JNZ) instruction with (LOOP)

instruction.
2) Write the equivalent instructions of (LOOP NXT).

Best Regards
Dr. Zainab Alomari

Lecture 2. Logic Instructions

1- OR Instruction 4 D
Z
OR destination, source B

Inputs | Output
A | B Z
00 0
0|1 1 =A
110 1 =1
1|1 1

Aagill 3A s sourced! o Al g3 el ae destinationd (e < IS G Logic OR Jer Slas¥) 13a a5
4y Laa3l OR &) s 4alall Truth Tabled) &Y kil e destinations) &

A2l haae AJOR dee e -
lgﬁr‘éﬂjﬂ\ﬁh\}cAAJORdAcm -

Gy Gl AL Je ddilaall aa (set))y st e Cu Jas Lol D OR ey (e 32l8LY) LSy Al e
(Sl el A LS| s

Example
Set the MSB and LSB of BX using Assembly language.

Solution XXXX XXXX XXXX XXXX
OR BX, 8001H 1000 0000 0000 0001 OR
HLT IXXX XXXX XXXX XXX1

.(don’t care condition) =3 s X JS& LS 13gls | iy BX da <l Laga 4 g Jal) :4diadla

Examples
Assembly Language Operation
OR AH,BL AH = AH OR BL
OR SI1,DX Sl = 81 OR DX
OR DH,0A3H DH = DH OR A3H
OR SP,990DH SP = SP OR 980DH
OR DX,[BX] DX is ORed with the word contents of the data segment memory

location addressed by BX

) AND
2- AND Instruction

== 2
AND destination, source B —

Inputs | Output

A | B Z

010 0

0|1 0 =0
110 0 A
1|1 1

O ahs sourced) x allsy Al <l ae destinationd) (e <u IS om Logic AND Jem Sl 138 68
radly Baadls AND 4 s 2l Truth Tabled) Y kil (e destinationl 8 dagill

0 2 Aagill jiia sa ATAND doc die -
A o2 Al aal g ae ATAND dee 2ie -

05 il Bl e Akl a (reset) sia s sba Cnme < Jra B 13 AND Dl (e 5aliin] LSy 43l inay
:)) 5 LS s

Example
Reset the MSB and LSB of AX using Assembly language.

Solution XXXX XXXX XXXX XXXX
AND AX, 7FFEH 0111 1111 1111 1110 AND
HLT OXXX XXXX XXXX Xxx0

.(don’t care condition) (s 5 X ISy WLES 13gly | 5y AX da CilS Loge 4usii s Jall :43ada

Examples
Assembly Language Operation
AND AL,BL AL = AL AND BL
AND CX,DX CX = CX AND DX
AND CL,33H CL = CL AND 33H
AND DI, 4FFFH Dl = DI AND 4FFFH
AND AX,[DI] AX is ANDed with the word contents of the data segment memory

location addressed by DI

Exclusive OR

3- XOR Instruction 4 —) D
Z
XOR destination, source B —

Inputs | Output

A | B Z

010

0|1 1 =A
110 1 A
1 |1 0

A alis sourced) (e 4l Al cull aa destination! (e <w IS Gn Logic XOR Jems Sl 138 a6
il a3l XOR 4l s 4l Truth Tabled!) kil e destination) 3 dagil)

A o» aiild g ae ATXOR dee e -
A o Aagiilld aal s ae ATXOR dee 2ie -

JEall A LS| yaad e Gl BL e il jo (pra G i La) 130 XOR Sl (e BlELY) WiCay a8 eas
;gﬂﬂ\

Example
Complement the MSB and LSB of DX using Assembly language.

Solution XXXX XXXX XXXX XXXX
XOR DX, 8001H 1000 0000 0000 0001 XOR
HLT XXX XXXX XXXX XXXX

.(don’t care condition) a3 i) s X JS& LK 13gly | 55 DX da CilS Laga 4 g Jall :ABiadla

Examples
Assembly Language Operation
XOR CH,DL CH = CH XOR DL
XOR SI,BX Si = SI XOR BX
XOR AH,0EEH AH = AH XOR EEH
XOR DI.ODDH DI = DI XOR 00DDH
XOR DX,[S!] DX is Exclusive-ORed with the word contents of the data segment

memory location addressed by Sl

4- NOT Instruction

NOT operand

; (this instruction takes the 1°s complement of the operand)

where: operand can be a register or a memory.

Example

%

What is the value of AL after executing the following code:

MOV AL, 55H
AND AL, 1FH
OR AL, 0COH
XOR AL, OFH
NOT AL

HLT

Solution

AlLew = 25H

5- Negaitve Instruction

NEG operand

; (this instruction takes the 2’s complement of the operand)

where: operand can be a register or a memory.

1ot 5 Neg Jlad dead (8IS Jaally oLl (55l S 2a 50 :NEG Jlag¥ Alsal) e jlayy)

| go el SNOT -1
| & geall 5 FFFFH oo XOR -2
Al sl dal) () pSi Julld jdiall e o8) (SUD) ok dlee -3

TABLE 5-18 NOT and NEG instructions

Assembly Language Operation
NOT CH CH is one’s complemented
NEG CH CH is two’s complemented
NEG AX AX is two’s complemented

NOT BYTE PTR[BX]

The byte contents of the data segment memory location addressed
by BX is one’s complemented

6- Test Instruction

TEST destination, source

This instruction performs AND between destination and source, WITHOUT affecting destination
(only flags are affected by the result):

Examples

L e e

Assembly Language Operation

TEST DL,DH DL is ANDed with DH
TEST CX,BX CXis ANDed with BX
TEST AH,4 AH is ANDed with 4

NOTE: Test instruction is usually used to test a bit or more, depending on the Zero Flag (ZF):
ZF=0 if the bit under test is not zero.
ZF=1 if the bit under test is zero.

The required bit is usually tested against immediate number, example:

1 to test bit 0 (TEST AL, 01H)
2 to test bit 1 (TEST AL, 02H)
4 to test bit 2 (TEST AL, 04H)
8 to test bit 3 (TEST AL, 08H)
and so on.
Example

Find the value of the ZF after executing the following instruction:

TEST byte ptr[1000H], 80H

Solution 5AH DS:1001H

ZF=0 90H DS:1000H

This result means that the value of the bit under test is 1 (which is the MSB or by).

Example

Find the number of even values in a block of 50 16-bit signed numbers stored in the memory
starting at DS:DI. Store the result in BL.

Compare Instruction

CMP destination, source

This instruction performs SUB (destination — source) without affecting the destination (only
flags are affected). CMP is usually followed with a conditional jump.

flags e dagill jigs L il 5 destinations) sa¥ (S5 SUB Sl dee (i 51 7 sk Jamy V) 13 i

Examples
TABLE 5-7 Comparison instructions
Assembly Language Operation
CMP CL,BL CL-BL
CMP AX,SP AX - SP
CMP AX,2000H AX — 2000H
CMP [DI],CH CH subtracts from the contents of the data segment memory location
addressed by DI
CMP CL,[BP] The byte contents of the stack segment memory location addressed

by BP subtract from CL

A ALY LS o g el) ol layl (e Slags CMIP) iy e Bale ;ddaadla
Examples
CMP AX, BX
JE N1
CMP CX, 10H

JA N1

Write the assembly language instructions required to copy the contents of 10 memory locations
(from 9A000H to 9A009H) to the memory locations that start at 96050H.

(CMP) alasinly Jall spains i G805 A8Ll1 3 juialaall (2 g 50 JLiall 120)
Solution

MOV AX,9000H
MOV DS, AX
MOV BX, 0
N1: MOV AL, [BX+A000H]
MOV [BX+6050H], AL
INC BX
CMP BX, 0AH
INZ N1
HLT

Example

Write the assembly language instructions required to find the square of 20 8-bits signed numbers
stored in the memory starting at address 8EO00H,. Store the results in memory locations starting
at 81000H.
Solution

MOV AX, 8000H

MOV DS, AX

MOV BX, OH

MOV SI, OH
NEXT:MOV AL, [BX+EO00H]

IMUL AL {(AX=AL*AL)

MOV [SI+1000H], AX

ADD SI, 2

INC BX

CMP BX, 14H ; or CMP BX, 20

JNZ NEXT

HLT

Notice that the example tables in this lecture are taken from Reference text book 1.

Best Regards
Dr. Zainab Alomari

ecture 10: Stack Instructions

The stack instructions are important instructions that store and retrieve data from the LIFO
(last-in, first-out) stack memory. Stack instructions are: PUSH and POP instructions.

1- PUSH Instruction

PUSH operand AL B Cu16 Ooa Sl 1 o s
This instruction stores the (operand) value in the stack, where (operand) is any 16-bit value.

Operand can be: 16-bit register
Segment register (CS, DS, ES and SS)
Immediate value
Memory

Examples:

Push BX
Push [DI]
Push 15H
Push DS

(IS 5 SIAN 8 il) 53 &y sAdiadla

Stack

SS:SP

SS:SP-1| High Byte

SS:SP-2| Low Byte

After storing the 16-bits into the stack, SP is decremented by 2 (SPpey = SP-2).

£ Ll 8 0530 3 Y sl o sell 050 33y 0160 035 o SSISP kil Lgsle 5l 8 SIN plasily
elgidy) S, ,IOWJ\ i\-’,u‘ U 2\:\3\5 3y])i SP (au ?3 hlth\ duu\ LA é Yﬁ 1 J‘M sp)J}d‘ s
(SP-2) & 33320l SP 4ad () S Push ey 245 (1

Example

Stack segment

12FFF
~
03800
B \ 6 A 037FF
AX 6 AB 3 6 A 3
|/ B 3 037FE —+—
— e
__/-_-\-—.-—
Sp 07 FE
Cs 03000
DS
Y
SS 0300 {+)
3000
—-‘-'_h.._—--'_

The effect of the]PUSH AXJinstruction on SP and stack memory location

37FFH and 37FEH. This instruction is shown at the pointjafter execution.

Example:
Push AX

Solution
AH - SS:[SP-1]
AL - SS:[SP-2]

SPnew = SP = 2

SS:SP

SS:SP-1

AHj

SS:SP-2

Example:

Let BX=100H, SP=500H, SS=1FFOH what is the result of executing the following instruction
(the memory is given with the question):

Push [BX]
33H DS:101H
AOH DS:100H
1FH DS:FFH
75H DS:FEH
Solution (Data Segment)

2 bytes will be taken from (DS:BX) to the stack.

These two bytes are (33A0H)

SPneW = 500H -2 =4FEH 1FFOH:500H

33H | 1rFoH:aFFH

AOH 1FFOH:4FEH

(Stack Segment)

2- POP Instruction

POP operand operand 4 Jala L ja 5 i) e <n]6)AL Sl s & 58

This instruction takes 16-bits from the stack, and puts it in the operand.

Operand can be: 16-bit register 8-bit registers are NOT allowed
Segment register (DS, ESand SS) CS is NOT allowed
Memory

Examples:

POP BX

POP [DI]

POP DS

POP 15H NOT Allowed ®

O 1 LE A R LY IR S ~E0

Stack

SS:SP+2

SS:SP+1 High Byte

SS:SP Low Byte

After taking the 16-bits from the stack, SP is increased by 2 (SPpew = SP+2).

& Sl @8 sall e lowdl) 341 oy A 0ul 43, 5l 0] 6 331 &5 SSISP aladiuls Lele jigall 3 SIAN alaiuly
35 e olgBY) Says A5 5e 1 ey SP el 835 a5, highl culdl 380 2 o 1 laies SP dall 3345 o

(SP+2) (s 33221 SP 4aif (y 5Siv POP =
Example:

POP BX

SS:SP+2

e SS:5P+1

Solution

BL < SS:[SP]

BH & SS:[SP+1]

SPhew = SP + 2

Example:

Stack segment

OFFFF
__—
N
AX 01008 —=—
A | 39 01007
BX 392F 392F > F 01006
N
-'-“—'-______,_...—--'
T S
SP 1008
P
CS
DS 00000
Y
SS 0000 :@
00000
-—\-ﬂ\—\\’-

The POP BX instruction, showing how data are removed from the stack. This
instruction is shown after execution.

Example:
Push AX

POP DX = MOV DX, AX

NOTE: the Push and POP instructions can be used to save the values of registers before using
them in some tasks.

Example:

If we are required to use AX and DX in Div or Mul instructions, and they contain important
information, we can use stack instructions as follows:

Push AX
Push DX

------ (perform required task here using AX and DX)
POP DX

POP AX

Example:

Exchange between AX and BX using stack instructions.
Solution
Push AX
Push BX
POP AX
POP BX

HLT

3- PUSHF and POPF Instructions

PUSHF saves the two bytes of the FLAGS register into the stack.

POPF takes two bytes from the stack and puts them in the FLAGS register.

Example:
Save the contents of FLAGS register in DX.

Solution
PUSHF
POP DX

HLT

Example:
Clear all the bits of the FLAGS register.

Solution
MOV DX, 0
PUSH DX
POPF

HLT

Example:
Clear the high byte of the FLAGS register.

Solution
PUSHF
POP DX
MOV DH,00
PUSH DX
POPF

HLT

Example:

Write the required instructions to set the interrupt flag:
Solution:

PUSHF

POP AX

OR AX, 0200H

PUSH AX

POPF

HLT

Flags Control Instructions

LAHF (AH < FLAGS register lower byte)
SAHF (AH > FLAGS register lower byte)
Example:

Save the current contents of the low byte of the FLAGS register into ES:BX, then load this byte
with a new value from DS:SI.

Solution

LAHF

MOV ES:[BX], AH
MOV AH, [SI]
SAHF

HLT

Other instructions that allow changing a single bit in the FLAGS reqgister without affecting other
bits:

CLC (clear carry flag CF)

STC (set carry flag CF)

CMC (complement carry flag CF)
CLlI (clear Interrupt flag IF)

STI (set interrupt flag IF)

Notice that some examples in this lecture are taken from Reference text book 1.

Best Regards
Dr. Zainab Alomari

Lecture 11: Shift and Rotate Instructions

1- Shift Instructions

1) Logical Shift

Shifting to the left:

SHL Operand, shift ; shifting the operand to the left
(Shift) saasy o 5 il ye dae 5) Y (Operand) o8 83 5o sall il Cam 50 5lag¥) 138 o 5y

216 s w8 Jshas 058 o) (Sans 381 5l Slaw Operand s of ¢S -
Jyas CL Jaws 8 L35 5l (immediate value) W) o sSo shiftd) e -
ol Aga (e § s) il 8 lbeal Al oy -

-

CR Gadnjiaicy Al aasal -
Example:
Let AX=877FH , what is the new value of AX after executing the following instruction:
SHL AX, 1

Solution
MSB LSB

N\
o

LI

CF AX

AXqg¢ = 1000 011101111111 b

AXpew = 0000 11101111 1110 b

=0EFEH

ZF=0, CF=1 (CF = last shifted bit)

Example:

Let AX=877FH , what is the new value of AX after executing the following instructions:

MOV CL, 10H
SHL AX,CL

Solution

AXog = 1000 011101111111 b

AXpew = 0000 0000 0000 0000 b
= OH
ZF=1, CF=1 (CF = last shifted bit = LSB)

Note: shifting a number to the left by n bits equals to multiplying the number by 2" (used with
unsigned numbers)

SV ABY) 3 LS s il iy 230 e ading ey o8l (e Jalad ol) i Alee

SHL AX, 1 ;to multiply AX by 2
SHL AX, 2 ; to multiply AX by 4
SHL AX, 3 ; to multiply AX by 8

Shifting to the right:

SHR Operand, shift ; shifting the operand to the right
L(Shift)d) saasy Caua 3l i) je 230 5 sl I (Operand)) (8 52 sa gall il Caua 3 Sl 138 o 4

16 s a8 sk 058 O oSas 3813 5l Slas Operandl o5& of (S -
Jas CL s 85 3a 5l (immediate value) Wl o sSs shiftd) Jlaie -
Dbl A e f e Nl A Jheal ddlal 2y -
CR Gadnfiacy Alpasal -
Example:
Let AX=8F01H , what is the new value of AX after executing the following instruction:
SHR AX, 3H

Solution

AXoig = 1000 1111 0000 0001 b

AXpew = 0001 0001 1110 0000 b
= 11EO0H

ZF=0, CF=0 (CF = last shifted bit)

Example:

Let AX=8F01H , what is the new value of AX after executing the following instruction:
SHR AX, 11H

Solution

(11H = 17d)

AXqg = 1000 1111 0000 0001 b

AXnew = 0000 0000 0000 0000 b
=0H
ZF=1, CF=0 (CF = last shifted bit)

Note: shifting a number to the right by n bits equals to dividing the number by 2" (used with
unsigned numbers)

ALY AR 8 LS a5l iy 3o e aaiag ey o)) and ol Opadl) Cashl lee

SHR AX, 1 ;todivide AX by 2
SHR AX, 2 ;todivide AX by 4
SHR AX, 3 ;to divide AX by 8

2) Arithmetic Shift
signed s} as Jaladll die a2a%08

Arithmetic Shift to the Left:

SAL = SHL (exactly the same)

Arithmetic Shift to the Right:

SAR operand, shift
signed-l oY ae pasion 15 sV e cpadl () a5 o3 Liaf
16 s a8 sk 058 O oSass 3813 5l Slas Operand o5& of S -
J s CL Jaws 8 Ls3ae 5l (immediate value) W) o sSo shiftd) e -
ol dga (e g e (Al A 8 (MSB) LY) e) SS oy jleall dea (M) bl iy Ju -
BoaY) cu e dadladis Alaal) 22 ()8 signed A3l oS 13 Jull
CF fada iaicy Alaagal -

Example:

Let AX=8000H , what is the new value of AX after executing the following instruction:
SAR AX, 10H

Solution

(10H = 16d)

AXqig = 1000 0000 0000 0000 b

AXpew = 11111111 11111111 b
=FFFFH
ZF=0, CF=1 (CF = last shifted bit)

Lo il axe (e S) sl e IS 13 CF 8 s giagy s dmg,¥) i) Ol ey qoas ol a3l
CFJ 8 5,LaY) Ca aa g3 a5k SAR Sladl e

Example:

Let AX=FC44H , what is the new value of AX after executing the following instruction:
MOV CL, 12H

SAR AX, CL

Solution

(12H = 18d)

AXog = 1111 1100 0100 0100 b

AXpew = 11111111 11111111 Db
=FFFFH
ZF=0, CF=1 (CF = last shifted bit)

(In this example, Let AXqq = 7TFFFH 2 AX,ew = 0000H, CF=0, ZF=1)

Examples
Assembly Language Operation
SHL AX,1 AXis logically shifted left 1 place
SHR BX,12 BX is logically shifted right 12 places

SAR Sl,2 Sl is arithmetically shifted right 2 places

2- Rotate Instructions

1) Rotate L eft:

ROL operand, rotation ; Rotating the operand to the left
L(rotation)! eaxsy caus 31l) je 23e 5 bl N (operand)-) (A 53 g gall UL g g2 lag¥) 138 o 68

216 s w8 Jshas 058 o) (Sans 381 sl Sl Operand s of ¢Sar -

Jyas CL daws 8 U 3ae 5l (immediate value) W) oS rotationd) Jlaie -

el Aga (ge & i A QU S B sl (e A Sall I a B Cumy il -
CFJ\@bﬁjﬁ(ﬁdg)i\@'Aj(ﬂa -

C]

Example
Let AX=CO010H, what is the new value of AX after executing the following instruction:
ROL AX,3
 S—
Solution |— 1100 0000 0001 0000 <~|

AXpew = 0000 0000 1000 0110 B

=0086H

CF=0, ZF=0

Example

What is the new value of AL after executing the following instruction:
ROL AL, 8

Solution

ALpew = Algyg

CF = last rotated bit = LSB

Example

What is the new value of AX after executing the following instruction:
ROL AX, 10H

Solution

AXpew = AXold

CF = last rotated bit = LSB

2) Rotate Right:

ROR operand, rotation ; Rotating the operand to the right
.(rotation)! saasy cas 3l) ye 2o 5 el () (Operand)d) (8 82 s gall QLI o ooty Slay¥) 138 & 54

u16 sl <8 sk 58 o) OSars 381 5 Sl Operandd) o5& o) oSar -

Jyas CL s 3 G535 5 (immediate value) Wl o s<: rotationd) Jlaie -

ol R 0 i 31 I S 3 () 0 b) il i s gl
CF o ysfi i Al g oy -

Example

Let AL=FOH, what is the new value of AL after executing the following instruction:

ROR AL, 4

Solution

ALgg= 11110000 b

ALpew = 00001111 b= OFH
CF=0

S aladiuly Xcohg bl aladind dalall ¢ AH ae AL diasi (8 Slagl) 138 (e 30l oSy 43 Jaa3l
(ROL Ax, 8) s/ (ROR AX, 8) :u

3) Rotate with Carry Left:

RCL Operand, rotation

aim L lall) La 08 s)) e (pe CR T pine ysailly o sdy 43l 58 ROL o Jlea¥) 128 (358
)333.\.&4.}\.@_.\!‘@Jbﬁ}&éuﬁd"‘m\‘;&:\ﬁ:}ﬂ\we‘&u\

FRPCIKICgEE - PP

CF

N

4) Rotate with Carry Right:

RCR Operand, rotation

i AL)) L 908w) L) e (e CR) T pine 531l a5y 43l 58 ROR o Jlag¥l 138 58
oonsN ol Sy AN Aad o (g siatin Al G50 s ol Cu J) Ll e dapaill Lgtiad alasiiul

—

>

CF

-

Example

Let AX=FF05H, CF=0, CL=3, what is the difference between the results of the following

instructions:

RCR AX, CL
ROR AX, CL
Solution

[1] RCR AX, CL

AXog = 1111 1111 0000 0101

AXpew = 0101 1111 1110 0000
. AXpew =5FEOH, CF=1
[2] ROR AX,CL

AXqg =1111 1111 0000 0101

AXpew = 1011 1111 1110 0000

S AXnew=BFEOH, CF=1

Examples

Assembly Language Operation
ROL SlI,14 Sl rotates left 14 places
RCL BL,6 BL rotates left through carry 6 places
RCR AH,CL AH rotates right through carry the number of places specified by CL

ROR WORD PTR[BP],2 The word contents of the stack segment memory location addressed
by BP rotate right 2 places

Notice that example tables in this lecture are taken from Reference text book 1.

Best Regards
Dr. Zainab Alomari

Lecture 12: Subroutine Instructions

1- Call Instruction

Alee aie Al &5 (Al Sl any e gl) JSY B2 sall o 0258 oy o 5 el o M 58I o 8 Call Sl
AP CS (e dS s 51 Lt [P e s 5 gali jalls alad) ylisall juad s ddl)

E1000H:500H cwnusms

............ (1)
1000H:200H CALL 500H- (2)

1000H:203H uevnsens <«
............ 3)

Subroutine

Main Program

(1) IP of the next mstruction (203H) 1s pushed mto the stack, then the new value
(500H) 1s loaded to IP, which 1s the address of the first instruction in the subroutine.
(2) The microprocessor executes the subroutine.

(3) When RET mstruction 1s executed at the end of the subroutine. the
microprocessor POPs the old value of IP (203H) from the stack and retums to the
main program.

Call Instructions are divided into two types: Intersegment and Intrasegment Calls.

1) Intrasegment Call
In this type of Call, only IP is changed within the same CS.
CALL operand

Operand can be: immediate value
16-bit register
memory

Examples:

CALL 1234H i IPhew= 1234H
CALL BX ; IPrew= BX
CALL [BX] ; IPhew= 8A60H (the memory is given in this example)

77H DS: BX+2

[Py
\— 8AH DS: BX+1
II:)Iow
\— 60H DS: BX

In this type of Call, the following happens:

(IP) of the instruction that follows call is pushed into the stack, with decrementing SP by 2.

Ol dae 485k ity dUdl (8 Call Sl am ol 3 3B P dad o 50 Calld) e g sil) 13 o)
5 (o35 ol o il i) (b Slant I 355 A15) Baal Al) [P sz o 0 <l push
2)May SP dad (il o sy

o= A malindl 25 e lgBY) amy Lol sasall Ja¥ e il 8 oda [P dedy LaliiaY)
.(subroutine)

Example
What is the result of executing the following instruction?

CALL [1234H]

_ e IPoq
Solution
Py > SS:[SP-1] Hi Low
IPLoy > SS:[SP-2] |
= Py
SP= SP-2
I IPLOW

(IPgyq is the IP of the instruction that follows CALL instruction in the main program)

SS: SP

SS: SP-1

SS: SP-2

2) Intersegment Call

ahg ki [P) Gl CALL Sl (B IP 5 CS (e JS Aad st o Cusy segmentd! @ s 5l b o gil) a8
Al ALY 3 LS 3 ,SIAl (e Lagad 3355 5l 5 pilaa L) [P 5 CS adf elac)

Examples

CALL 1000H:2000H
CALL DWORD PTR[DI]
CALL FAR PTR [SI+5]

In this type of Call, the following happens:

Both of CS and IP of the instruction that follows call are pushed into the stack, with
decrementing SP by 4, and then CS and IP are loaded with the new values.

Dl 8 1P Lo o 1Py o5 CSLow o5 CSpi ens ¢ CALLY G sill 3 b idaadle

CSui = SS:[SP-1]
CSiow = SS:[SP-2]
IPi > SS:[SP-3]
IPiow = SS: [SP-4]
SP=SP-4

Example

Give the new values of all the given registers with drawing all the memory locations (addresses
and values) that are affected or used by the following instruction (memory is given with the
question):

Data Segment

CSpi
x" 26H 8088DH

CALL FAR PTR [BX]

Let BX=88AH

CSLow
SP= 100H S | sossc
DS= 8000H [Phi
<\— 12H 8088BH
CS: 2000H IPIow X
IP= 30H — ABH 8088AH
SS= BOOH 22H 80889H

80888H

Solution
80000
88A +

8088AH

.. From the given memory:

CSnew = 26CCH

IPhew = 12ABH

SPrew = SPoig —4 = 00FCH
BXhew = BXoid

DSnew = DSoiq

SShew = SSoid

Example

Stack Segment

20H

OOH

O0H

30H

BOOH:100H

BOOH: FFH

BOOH: FEH

BOOH: FDH

BOOH: FCH

Give the new values of all the given registers with drawing all the memory locations (addresses
and values) that are affected or used by the following instruction:

CALL FAR PTR[SI]

Let BX=1000H
SI=200H
DI= F100H
SP=7E90H
DS= 5A00H
CS=6400H
IP=5A0H
SS=19F0H

You are given that (IPpew = 6F7BH, CSyey = A590H).

Solution

Data Segment Stack Segment
ASH 5A00H:203H 19FOH:7E90H
90H 5A00H:202H 64H 19FOH:7E8FH
6FH 5A00H:201H 00H 19FOH:7E8EH
7BH 5A00H:200H O5H 19FOH:7ESDH
AOH 19FOH:7E8CH

SPhew= 7E90H — 4 = TES8CH
Slhew = Sloig

Dlpew = Dloig

DShew = DSoig

BXnew = BXold

SShew = SSoig

2- Return Instruction

Every subroutine must end by executing (RET) instruction to return control to the main program.

Gy g CALL Jle) b ol Slaa¥) () dasally g 4ie 580 5 o3 a5l geali)) gellaall sl eV 138 o 58
POP Jla) Jae fase iy il e [P 5 CS (e IS 5l 1P A g la il A (e

After executing RET instruction the following happen:

A new value for IP is fetched from the stack (if the CALL was intrasegment) with increasing
SP by 2, or a new value for CS and IP are fetched from the stack (if the CALL was intersegment)
with increasing SP by 4.

1) RET in Intrasegment CALL Stack Segment
IPLow € SS:[SP]

SS: SP+2
IPyi & SS:[SP+1] Pui|ss: 5P+l

SPrew = SP + 2 Plow |55 5p

2) RET in Intersegment CALL

Stack Segment
IP.ow € SS:[SP] SS: SP+4
IPyi < SS:[SP+1] CShi SS: SP+3
CSLOW ya SS[SP+2] CsLow SS: SP+2
P SS: SP+1
CSyi ¢ SS:[SP+3]
IPLow SS: SP

SPrew =SP +4

Best Regards
Dr. Zainab Alomari

Lecture 13: Delay Loops

Each instruction in 8086Mp takes a specific number of clock cycles for execution.
The time required to execute any instruction = the no. of required clock cycles * clock time (T)
where T is (1/f), where f is the Microprocessor frequency. For 8086Mp, f=5MHz or 10MHz.

& L ¥ Lalisg 3 clock cycles A1 axe s gllaall 0 (e a2 il Slay) (g) 48 iy g2l 8)
A0MHz st 5MHz W) 23 51) 53 8086 zllae 5 .02 51l caslia sa (T) e ll 138 5 5280 5l clock I (e

S a3l alad o) S ellaal) 22 3 IS g (Qlall daxy g8 5) Sl S Laliagy 31 clock cyclesd) aae Lidle 134
ow#w@h}ﬁfﬁuﬁéﬂ\

Examples

XOR - 3T
Push - 11T
POP - 8T
MOV - 4T
INZ - 16/4T

CALL - 19T

RET - 16T

Loop = 17/5T

(where T is the clock time)

Example

Calculate the delay time taken by the following instructions:

MOV CX, 3
N1l: LOOP N1

(if: MOV - 4T, Loop -> 17/57)
Solution
MOV instruction: 1 time

LOOP instruction: 3 times (2 times: jump is done, 1 time: jJump is not done)

. Delay = 4T + (3-1)*17T + 5T
=(4+34+5)T =43T

Let frequency = 5SMHz

. Delay = 43*1/(5*10°) = 8.6 pisec

NOW if the code is changed to:

N1: MOV CX, 3
LOOP N1

Delay time = o

Example
Write a subroutine that generates a delay of 200msec if 8086Mp frequency is 5SMHz.

Soluti
outon XOR > 3T
CS:300H PUSH CX
f Push > 11T
CS:IP CALL 300H MOV CX, N
RPT: LOOP RPT POP = 8T
POP CX MOV - 4T
RET INZ > 16/4T
CALL > 19T
Delay time = 19T RET = 16T
+11T Loop = 17/5T
+4T

+ (N-1)*17T + 5T
+8T
+ 16T
200msec = 58T + 5T — 17 T + 17NT
200msec/T =46 + 17N

N=58821d - N=E5C5H

Example

For the code in the previous example, what is the value of N that maximizes the delay? And what
is this maximum delay?

Solution

Nimax= FFFF H

delay / T =46 + 17 Npmax

. delay = 223msec

Notice that this subroutine is not enough when the required delay time is greater than 223msec.

Example

Write a subroutine that generates a delay of 500msec:

Solution

XOR > 3T
CS:500H PUSH CX
f Push = 11T
CS:IP CALL 500H MOV CX, N
RPT: NOP POP = 8T
PUSH AX MOV > 4T
POP AX INZ - 16/4T
HOOP RET CALL > 19T
POP CX
RET RET > 16T
Delay time= 19T Loop > 17/5T
+11T NOP > 3T
+4T

+ N (3T + 11T + 8T)
+ (N-1)*17T + 5T
+8T

+16T

500msec /T =63 — 17 +17N + 22N

N=64101d - N =FA65 H

Example
Write a subroutine that generates a delay of 10sec if the 8086Mp frequency is 5SMHz:

Soluti
olHon XOR > 3T
CS:A0OOH PUSH CX Push = 11T
PUSH AX
CS:IP CALL AOOH MOV AX,N POP = 8T
LP2: MOV CX,0FFFFH | MOV > 4T
LP1: NOP INZ > 16/4T
PUSH AX CALL > 19T
PUSH AX
bOP AX RET > 16T
POP AX Loop = 17/5T
LOOP LP1 NOP = 3T
DEC AX DEC = 2T
IJNZ LP2
POP AX
POP CX
RET

Delay time = 19T
+ 11T
+ 11T
+4T
+ N[4T + 65535 * (3T + 11T + 11T + 8T + 8T) + 65534 * (17T) + 5T + 2T]
+ (N-1)*16T + 4T
+8T
+8T
+16T

10 sec = 65T + 3801040 NT

At f=5MHz:

N=13.15 ~13d > N=0CH

In order to perform a delay of 40seconds using the same code, only the value of N is changed.
At delay = 40sec

40 sec = = 65T + 3801040 NT

N=52.6 ~53d > N=35H

Example

Find the delay time of the following subroutine:

CS:600H PUSH CX

PUSH AX
CS:IP CALL 600H MOV CX, 800H
NXT: MOV AX, 01H

PUSH AX
POP CX
LOOP NXT
POP AX
POP CX
RET

Solution

All the instructions of this subroutine will be executed only one time.

Delay time = 19T + 11T + 11T + 4T +4T + 11T + 8T + 5T + 8T + 8T + 16T

=105T = 105/(5*10°%) = 21 psec

Example

What happens to the delay time of the previous subroutine if instruction 4 is changed to:

MOV AX, 2

Solution

Delay time = o

Example

What happens to the delay time of the previous subroutine if instruction 5 is changed to:
PUSH CX

Solution

The instruction (Loop NXT) and the 3 instructions before it will be executed 800H times.
Delay time = 16.4 psec

Example

Find the delay time of the following subroutine:

CS:1ABCH PUSH CX
MOV CX, 400H

CS:IP CALL 1ABC NXT: PUSH AX
POP AX
LOOP NXT
POP CX
RET
Solution

Delay time = 7.382 msec

* * * * % k% * *

Best Regards
Dr. Zainab Alomari

Lecture 1: In/Out Instructions

To deal with input/output devices, 8086Mp programmer needs to know three things:

1- Type of device: it is important to know if the device is an input or output device, in
order to use the suitable instruction. Some devices are (input/output) devices.

2- Port number: This is a number given to the 1/0O device during manufacturing. Each 1/0
device has its own unique port number. Port numbers can be 8-bits or 16-bits number.

3- Data Length: An I/O device will send/receive a piece of information to/from 8086Mp.
This information is of 8-bits or 16-bits length (depending on the type of the device).

Notel: These three parameters are fixed for each device and can’t be modified.

Note2: the length of the port number and data of any device are not related together, there can be
a device with a data length of 16-bits and a port number of 8-bits length, or a device with 8-bits
data length and 16-bits port number.

Note3: some devices can be input and output in the same time, i.e. you can read data from such a
device and also you can send data to it using its port number.

58 Lo TLaadlS ol 1A o Ja) Slea sa Sleall b 1 el G 4 yra cony 1 AV 5 JLA0Y1 5 el ae Jalail) 2ic
O i Clasleall 028 $Cu]6 o 08 s Sleall 13¢d data lengthd) Ja s 45 s=ladl (Port number) sl a8)
el b laa

In instruction:

This instruction transfers data from external 1/O device to AL or AX.
In AL, port no. ; used when the data length is 8-bits

In AX, port no. ; used when the data length is 16-bits

Out Instruction:

This instruction transfers data from AL or AX to external I/O device.
Out portno., AL ; used when the data length is 8-bits
Out port no., AX ; used when the data length is 16-bits
Note: only AL or AX is used by the 8086Mp to send/receive data to/from I/O devices:

AL if the data length of the device is 8-bits.
AX if the data length of the device is 16-bits.

Fixed and Variable Port Addressing

If the device has an 8-bits port number, then it is used directly in the In/Out Instruction, as in
the above examples. This is called (Fixed Port Addressing).

ALYI 3 LS QUL I Sl o8 B pilon 81 138 lasind atd 1 o8 (g o sS Sleall (aldl) &yl oy IS 13)
Al

Examples
In AL, 96H ; an 8-bit data is copied from an input device that has a port no.= 96H to AL.

In AX, 7AH ; a 16-bit data is copied from an input device that has a port no.= 7AH to AX.
Out 3FH, AL ; an 8-bit data is sent from AL to an output device that has a port no.= 3FH.
Out 19H, AX; a 16-bit data is sent from AX to an output device that has a port no.= 19H.

While if the port number of a device is of 16-bits length, it must be given to DX, and then DX is
used in the In/Out Instruction. This is called (\Variable Port Addressing).

b 4nams om0y OULs N Slal (o35 stle a0 sma S8 16 (n 0558 Sleadle palal oyl 5 (IS 131 Ll
A ALY 3 LS oyl 48 Ll e DX p2iiasi ey s MOV gl aladinls DX

Examples
Mov DX, 3FAOH
In AL, DX

Mov DX, 99A3H
In AX, DX

Mov DX, 51BCH
Out DX,AL

Mov DX, 972H
Out DX,AX

Example

(THE INTEL MICROPROCESSORS) \Example 4-12 (Page 140)
Write the required instructions to set the right most two bits of the speaker (port no.= 61H),
then clear them after a specific delay time. (The speaker has an 8-bit register).

Solution

IN AL, 61H
OR AL, 3
OUT 61H, AL

MOV CX, 1000H
L1: NOP
LOOP L1

IN AL, 61H
AND AL, OFCH
OUT 61H, AL
HLT

NOTE: You can also find some help on this topic from the tutorials available in the Emulator
program.

Best Regards
Dr. Zainab Alomari

Lecture 2: Interrupts (Part 1)

Interrupts are special type of (CALL) instruction. If any interrupt occurs while the Mp is
executing a program, it breaks the execution and starts executing a subroutine called Interrupt
Service Routine (ISR). After executing the ISR, the Mp returns to the main program and
continues from the point it stopped at.

cbas Angldall Jia (z) Y15 jeal s JAaY) 3 3eal) o Jad) 3362y ae Jalaill e 3508l 8086 gellanll clliag
S As gl el (ulie | Lkl (i AL | ED ALY

e deod llal allaall dalaay a6y o Jlea (g1 558 A5 Aadaliall 408 3 a5 3 5eaY) 38 ae Jalaill (allaiy

Dl g s 2dnill (e B g Cua Gama el 2 a5 435S Jla G s Aadaliall o3e] LV mllaall 6 8y

On JaSa s gealinll W 3 pm 13 3may (ISR) ramst s 5 Sl Vign) Aasl gl s 34k s collall sl
(CALL Jlng) e 1asas Agnd (nti Sl el 1525 25 Sl fant) 8yl o3 5 Laie (i 5) il

a2 o Aima < Jla) e (g gimg aellaal) 3813 (8 (05 530 5 Wi 538 oo 5 mali 0 5ke 58 S(ISR) sala
L gald ISR Gilakaliall (e dakalie JS ane dadalie llal Alatiny) die allaadl J8 (e

There are 256 interrupts in the 8086Mp:
From Interrupt O > to Interrupt 255 (or: from Interrupt OH - to Interrupt FFH).
These interrupts are divided into two types:

1- Interrupts that are reserved for the present and future products and system errors.
They are: (from Interrupt OH - Interrupt 1FH), i.e. the first 32 interrupts.

2- Interrupts available for user. These are the interrupts from Interrupt 20H - Interrupt
FFH.

Q1) How many interrupts are available for user?
1o 5 e 8086 mllae (85 siall Cilalaliall

Y Aaklid)l Be Lel dalad)l die laddih mleall asiys (ablie 32 Jsf A5) 3sman leblie -]
Sl a8 Cua 0 Ao dad J pas Als 8 alladd) 8 (0 Lo &) SR 285 23 (Interrupt 0)
0da (pe pary A4Sl e error dclia 4ia CJ_)Q\J Sl gl) 28w Calaly SR 12 3 33 g sl
o8 Aa2d] b Jan & mllaall e &l ghat Adlial a8 gl (e (IS Cun addiin g 4K) saaa Giladalial)
Shitise <l y ghatl)

G psis FRH () 20H (e o Lpbany 5 Aigme dadalia i jad o) padiiosall (S taadiunall 5 gie cilabalia -2
Jlaal ladinly asali y DA oS e dadaliall o2 sledinly agiyg 5 SIA & (ISR) dadaliall 0da dadd zali
psiy 138 dadaliall eyl) maliyall 2k JMA bl Joay (a5 Fadalially (alall 28 1) aslal i3Sy 5 (INT)
sl el JUaSY 52 sal o 0355 o stlaal) ISR 1 iy
(ISR 033 a8 5e mllaal) alag o g dadaliall o) padiusal) jlia; oS Taay L)

Interrupt Vectors:

Each interrupt has an interrupt vector, which is a 4-byte vector containing the address (CS &
IP) of the ISR. The first 2-bytes contain the IP and the second 2-bytes contain the CS.

e The interrupt vector of Interrupt O is stored in the first 4-bytes of the memory
(addresses: 00000H - 00003H).

e The interrupt vector of Interrupt 1 is stored in the second 4-bytes of the memory
(addresses: 00004H - 00007H).

e The interrupt vector of Interrupt 2 is stored in the third 4-bytes of the memory
(addresses: 00008H - 0000BH).

and so on.

@Y ISR @) sie waas (Kaa Julld 00000H a8 sall (pe &1l 3 SIA & Judiia S8 45 33 ISR G sbie o)) Lesd

e The interrupt vector of Interrupt 7 is stored in the seventh 4-bytes of the memory.
7*4=28d =1CH
.. The interrupt vector is stored at addresses: (0001CH - 0001FH)

The Mp multiplies the interrupt number of the interrupt by 4 to find the address where the
interrupt vector (CS and IP) is stored.

Thus for 256 interrupts, there are 256 interrupt vectors.

Interrupt Vector Table (1VT):

IVT is the part of the memory where the interrupt vectors of all the interrupts are stored. IVT
is located at the beginning of the 8086Mp memory.

Q2) What is the size of IVT?
Q3) What are the first and last addresses of the IVT?

oY g 4 e dandll Jiy clabiia JS (Interrupt vectordl l) CS&IP 4 ¢ ay sl o siadl ol L3l
A_Jﬂ\.ﬁ aé\}“ @_)\ ‘;\ CU;,J dzhlae KT ISR A o) sie

ot 8 Ll 5 (o nalialy al 1) ISR g L (35530 5 S 5o o sie sl costlaal) IS 1Y -]
o8 LS (4 8 i Joba Laa) AL il W 4l a5l ol (o jhm Rl i35 4 3 Gadliall o
LGabaad) JE)

Cilas iy 4 o o sinl) panis o558 Les Gald) [T) sie 4 n (g el 585 sl s stlaall (S 131 -2
(4 e Aandll Jalay Las) (AU QUi) aly a5 day o8 50 Cppan (0 (i

Example

If an interrupt vector is stored in the IVT starting at address: (001A8H), find the number of the
interrupt. Also give the addresses of the IVT where CS and IP of this interrupt are stored.

Sol: 001A8H

}

0000 0000 0001 1010 1000 4 o Al Guadd) dga e (1 e IS

- The interrupt number is 6AH.

The four addresses of the IVT where CS and IP are stored are:

001A8H, 001A9H, 001AAH, 001ABH. CSw | OO1ABH

CSiow 001AAH

IPow is stored at: 001A8H and IPy; is stored at: 001A9H
Py 001A9H

CSjow is stored at: 001AAH and CSy; is stored at: 001ABH IP, 001A8H

Interrupt Priorities:

Interrupts are served on a priority basis. Interrupt 0 has the highest priority, while interrupt
255 has the lowest priority.
For example: Interrupt 60H has lower priority than interrupt SAH.
daxdy mllaall gt aal gl Cgll 8 dadalia call e S clllia 05Ky Levie Agiand) allaly Ciladaliall e deall a3y

B) 3 Al danad i Lgiedd (ye s leii¥) any s OBl Lginlalia o) Ll a5 oY1 2] il dadalial

Q4) Sort the following interrupts according to their priorities, from the highest priority to the
lowest:
Interrupt ABH, Interrupt AOH, Interrupt BAH and Interrupt BCH.

Answers:

Q1_Ans: There are 224 interrupts available for user.

Q2_Ans: 256 * 4 = 1024 Byte = 1Kbyte.

Q3_Ans: The first address is 00000H and the last address is 003FFH.

Q4_Ans:

1- Interrupt AOH
2- Interrupt ABH
3- Interrupt BAH
4- Interrupt BCH

Best Regards
Dr. Zainab Alomari

Lecture 3: Interrupts (Part 2)

There are three types of Interrupts:

1- Software Interrupts:

This interrupt uses the instruction (INT n), where n is the interrupt number and it can be any
number between (OH->FFH).

OHDFFH ¢ i) 510 4 05855 (INT 1) Slaa¥) phasidy adle sl padtondl gy ladliall o g 5l 13
When (INT) instruction is executed, 8086Mp performs the following 5 steps:

1) The Flags register (2bytes) is pushed onto the stack.
2) TFand IF are cleared (TF=0 and IF=0).
3) CS is pushed onto the stack.
4) 1P is pushed onto the stack.
(SPnew= SPoi4-6)
5) New values for CS and IP are fetched from the IVT.

s (psmall Jud) 8 L) dadaliall o8) n Jidi Cus (INT) Sbaal Qo s e gl o 2adity ellaall o 5y Laic
OISl I J o o) ki o3) Aglae 5 Aadaliall 52 Lgadi 3l Aadid) i Jlayl 5 sy 3 ISR Il el
ALl 5 bl b m 58 LS dxdaliall B) s VTS Jsaa e lele Jsand) oty il 5 ISR 138 438 () 5 35l
CS (e IS Aagail) ally Lliia) W Aalay llaall (8 [SR) 258y L) dmy oussi M) gmali pall)83 5al) i sl g
CS,IP & I (5e JSI Push dee &3 . Flags oke Y1 allay Llia YU Lyl o iy LS (Call Sl o3 doany LS) &IP

.6)i (SP) il alall Hhisall dad (alds)) o lee Al) Flags register

main program: / CSpelPy o
_ 5 steps —

INT n ; (Nn=0->FFH)

ISR,

IRET .

Each ISR ends with (IRET) instruction. When IRET instruction is executed, the Mp performs
the following 3 steps:

1) IP takes its value back from the stack.

2) CS takes its value back from the stack.

3) Flags register takes its value back from the stack.
(SPnew= SPoiq+6)

A Sl Al e CS, IP & Flags register ¢ JS af salains o s 3l 5 (IRET) b ISR S 68 @
otie Ui 55 (52 Sl (a (mati Sl gealial) 35 JLSY 52 52l (el clla g | (INT 1) Slag) i vie g3 5a

alaliall a8)y o 68 Aadaliall Jlay) 3 Ll e LA O Gus (Call)s (INT) qsobal G Sl bl Uia LSl o
¥ 85 il CS&IP dad clhac) 2t Call Jleal 8 Wl VT (30 CS&IP I 20 iy

Q) What are the benefits of INT instruction compared to Call instruction?
Answer:

1- No need to remember the address of the system call.

2- Each time INT instruction is used instead of Call instruction, 3 bytes are saved (because INT
is 2 bytes long, while Call is 5 bytes long).

¢ Call Jxl e Y INT alasind (e 52300 Lo
Ay

381 e @l ga s Lee s 5 s Calll Dbl Jsha O g 8 i oty 8 INT Slas¥) sk o) 29
i alalial) 8, S35 W g b e all eyl Galad) ol gia) dad S) dslay L Lt

2- Hardware Interrupts:
There are three pins used for hardware interrupts in 8086Mp: (NMI, INTR and INTA).

NM| &
INTR jc—

INTALH——— >

8086Mp

Steps for hardware interrupt:

1) The I/O device requests a service by activating INTR pin (INTR=1).

2) The Mp accepts the request by pulsing INTA pin to 0 logic. If the Mp was busy, he
finishes his task and then pulses INTA to 0 logic.

3) The 1/O device puts the number of the interrupt on the first 8-bits of the data bus
(DO>D7).

4) The Mp pushes the Flags register on to the stack.

5) TFand IF are cleared.

6) CS and then IP are pushed onto the stack.

7) New CS and IP values are fetched from the IVT.

Interrupt Flag (1F):

Hardware interrupts are disabled when interrupt flag (IF) is 0. When interrupt flag is set to 1,
it enables hardware interrupts to be received. By default hardware interrupts are enabled (IF=1).
Hardware interrupts are disabled (IF=0) automatically when software or hardware interrupt is in
the middle of the execution.

There are two instructions that can be used to clear or set IF:
CLI ; Clear Interrupt Flag (IF=0). This disables INTR pin (no hardware interrupt is received).
STI ; Set Interrupt Flag (IF=1). This enables INTR pin (enables receiving hardware interrupts).

Non-Maskable Interrupt (NMI):

NMI is a special type of hardware interrupt that the system can’t ignore. NMI is used to report
important issues to the Mp such as errors or power failures. When this interrupt occurs, the Mp
stores all the internal registers in a battery-backed up memory or an EEPROM. This interrupt is a
system error and it is given a high priority (INT 2).

Al 5 Ly asiy Al Glleal) (e ellaal) dadalia b Callais AlSe 3 ga 5 iny 13g3 (1 lOgic) JWSa¥! 138 zaay Laxic
Lalall 2 o8) dekaliall o2 JIA e Al 1385 Aaald 5 SI0 8 Gl aies a8 (53 Leatl) 5aY) (e e sanay
NMI3G

3- Internal Interrupts:
These interrupts are executed without the need to use INT instruction, due to a specific
system event or error, like: divide by zero (which resumes INT 0). These interrupts are: INT
0, INT 1, INT 3 and INT 4.

Table 1 describes all the interrupts available in 8086Mp.

Table 1: Description of the function of each of the 8086Mp interrupts

Interrupt Description
INT O Division by zero
INT 1 Single step
INT 2 NMI
INT 3 Break point
INT 4 Overflow
INT5-> INT 31 Not used
(or: INT 5 = INT 1FH)
INT 32 > INT 255 User defined
(or: INT 20H - INT FFH)
Best Regards

Dr. Zainab Alomari

Lecture 4: Directives

Directives are included in the source code that contains assembly language code. Directives
are used to give directions to the compiler (compilers convert the com file in the Emulator to
machine code). Unlike assembly language instructions, directives have no machine code.

Examples

e (Org 100h) is a directive used to tell the compiler to load the program at offset 200H in the
code segment.
e (END) is a directive to stop the compiler.

Note: in the com file, directives are given in violet color while instructions are written in blue.

Mpd)) Agase ds Assemblyd) Aals @ giSall zals il aa compilerdl el Slga s e ke A
O pie oA a8 gall 235y (3 (Org 100h) 4 55 Llis machine coded) () et ot ¥ JUlld &l jlagIS
Ol et Cilga il () a3l compilerdl GlaL 58 53 (END) 4535 ,code segment (s 4 gl)

Go0Y) sl Assembly-) Aad &) ast cpa 8 i)

il 5 eyl ge com filed) (B asiSa Le Jy s s daa i sl (53 aliall 56 compilers) ;Adiada

Variables and Arrays

A) Variables:
A variable needs to have name, length (byte or word) and value:

Name DB Value
DW

Notel: Variables are defined at the end of the source code (in com files) after RET instruction.
Note2: DB means define byte, DW means define word.
Examples
1) To define a variable word named k1, which has the value (5FOH), we write:
k1 DW 5FOH
2) To define a variable byte named NUM, which has the value (70d), we write:
NUM DB 70
3) To define a variable word named Varl, which has the value (6AH), we write:

Varl DW 6AH

Note: It is also possible to give the value of the variable in binary as:
Varl DW 11010b (Dia s sbad Jlaall dga e i) L o)) Al o2a 8 JaaDl)

4) To define a variable byte named K2, which has no initial value, we write:
K2 DB ?

NOTE: Defining a variable or array is a directive (not an instruction).

When a variable is defined, it is possible to use it in the Assembly language instructions,
where a byte (or word) is allocated in the memory for this variable.

Example

emus086 - assembler and microprocessor emulator 4.08 — O ot

file edit bookmarks assembler emulator math asciicodes help

D = e . H > w 3] » ? 18
new open examples save compile emulate | calculator convertor | options help about
(53] —

; You may customize this and other start—up templates; 1=

B3 ; The location of this template is c:semu8B86<inc~B_com_template.txt

U5 org 188h

47 MOU AL, vardl
U8 MOU BR, var2
49 RET

1% varli DB ?

11 var2 DWW 1234H
12 END

14 |

Example

{8 emus086 - assembler and microprocessor emulator 4.08 — O X

file edit bookmarks assembler emulator math asciicodes help

D & % . | . > B @ 2 7 m®m
new open examples save compile emulate | calculator convertor | options help about
B1 —
B2 53 You may customize this and other start-up templates; -
W2 3 The location of this template is c:Nemu8BB6Ninc\B_com_template.txt
B4
U5 org 188h
b6

U7 mov num,?7h
U8 mov ax,num

18 ret

12 num dw ?
12 end

B) Arrays:
It is possible to define an array by giving the array name, length of each element (byte or
word) and elements values.

Example
A DB 48h, 65h, 6¢h, 6¢ch, 6fh, Oh (A[0]=48h, A[1]=65h, ...)
B DB ‘Hello’, 0 (B[0]=48h, B[1]=65h, ...)

(Note that array B is an exact copy of A, where each character in the string (Hello) is stored as a
byte with the equivalent ASCII code).
oY) g sl ol o) Characters Jses e gudbadl (g pdall | SUEH 4G jla e SISL aill elae | 40K4) Jaadl
.(Characterd) 13d ASCIIJ (A& ¢ &
Now we can access any element in array A as:
MOV AL, A[4] ; AL=6fH

Or by using one of the pointers: BX, Sl or DI as:
MOV SI, 4
MOV AL, A[SI]
o3 s adsall 48 pal dalall (s g il Al A Ledy ot &5 ANl) e 5l A8l Ll el) DS
Ol sy plall (gaaly dlld g 5 SIAN e 4 Led3A
Getting the address of variables

Two ways can be used to access a variable address:
1) Using LEA instruction:
LEA BX, varl ; BX = the offset address of varl
2) Using OFFSET:
MOV BX, OFFSET varl ; BX = the offset address of varl
NOTE1: Any 16-bit register can be used instead of BX in these two examples.
NOTEZ2: when com file is loaded, the value of DS is set to the same value of CS.

o o) (58) aaly Gl 25 5 S (e 4 Game e 03 a3 @A O i) () Jsea sl dalad) Al 3
16-bit 4 sk Jas 8 4553 Gany il 5 16-bit offset o 3 ke ¢ sSoms 4ile daaninn 53 Gl sl ()) oliiaY)
$ juiall 138 ()34 b Ca g Segment gl 8 /o
O phatall Gadi) LaaBIS il Cusy DS&CSH! (v S A s 6 oy 4ild com filed) Jiead o Ladie 1l sal)
Legia ol (3 Uip e paall e LSy Uil 5 5 1A

Example

8 emus086 - assembler and microprocessor emulator 4.08 — O X

file edit bookmarks assembler emulator math ascii codes help

~ = o s 22 - -
0O = vw . & > R» ?
new open examples save compile emulate | calculator convertor | options help

a1
-~

; You may customize this and other start—-up templates; et
5 The location of this template is c:\emu8B86\inc\B_com_template

45 org 186h

' MOU AL, UAR1
LEA BX, VUAR1 ; OR: MOU BX.OFFSET UAR1

1 MOU hyte ptr[BX]1,44H
| MOU AL, VAR1

ret
UAR1 DB 22H
END

s DA e sl Jgean (e U 35 44h) 220 0o VAR siall dad s a3 o2ke| Jid) &
BSIA 6 4 ai A a3 o) adsall) QLA YA e el 138 dadh it Loadl oS oS0y AL B sriall G
bl 2 amy 220 () dail) et AdaaSla 5 (DS:BX) = Sk 53l

Note:

MOV AX, offset VARL

In this instruction, if the variable VARL is an array, then AX will be the offset of the first
element of this array, i.e. :

MOV AX, offset VAR1 = MOV AX, offset VAR1[0]

= LEA AX,VAR1 = LEA AX, VAR1[0]

Best Regards
Dr. Zainab Alomari

Lecture 5: DOS Interrupts

The interrupt types 20h-3Fh are serviced by DOS routines that provide high-level service to
hardware as well as system resources such as files and directories. The most useful is INT 21H,
which provides many functions for doing keyboard, video, and file operations.

INT 21H (INT 33)

This interrupt performs various operations depending on the value of AH.

1) Reading a Character
After executing (INT 21h), if AH is equal to (1) then a character is read from keyboard with its

ASCII stored in AL.

Example

MOV AH, 01
INT 21H

If the number 4 is inserted by keyboard after execution, then AL will be equal to (34H).

2) Printing a Character
After executing (INT 21h), if AH is equal to (2) then a character is printed on screen, the

ASCII code of this character is taken from DL.
NOTE: after printing the character on screen, the value of DL is also copied to AL.

Example

MOV DL, 52H
MOV AH, 02
INT 21H

After execution, the letter (R) is printed on screen and AL = DL = 52H.

3) Printing a String
After executing (INT 21h), if AH is equal to (9) then a string of characters is printed on
screen. The printed string must be stored starting at (DS:DX), i.e. the offset of the first
character in the string is stored at offset = DX. The printing is stopped when it reaches $.

Example
org 100h

MOV DX, OFFSET msg
MOV AH, 9

INT 21H

RET

msg DB “Hello World$”

4) Reading a String

After executing (INT 21h), if AH is equal to (10) then a string of characters is read from
keyboard and stored starting at (DS:DX+2), where the bytes at DX and DX+1 are reserved for
the buffer size and the number of characters stored in the buffer, respectively.

®se Jsl e DS:DX s o) g)5 lase (Buffer) 5,813 43 Gaag 210 dxdalia (e g i) 138 alasin) J
Dsai Y o) cang sl g) LAl 880 sa gl al) dae Jiay (U il g il aaa ey) 38 e W)) L
DS:DX+2 (e &l 0335 Ledlaal iy (Al s 0 Ml (Yl (& lasal) J skl

(enter)d dad o A Jis panadd S @l JAaY) e oL@l Aadle aadiuall Jd e (enter) Jia) Jlbe) &4
() Jaadl 83 e sall Jshall Gania canny W 43815 (ODH) (5 sk o315

1= dY A e SN Culll A ol oS5 L

NOTE: This function does not add $ at the end of the string. So to print this string using INT
21h at AH=9, you must store $ at the string end first, then start printing from DS:DX+2.

Example
Write a program in Assembly language to read a string that has a maximum length of 10

characters, then print this string on the screen.
Solution

org 100h

MOV DX, OFFSET BUFFER
MOV AH, 0AH

INT 21H

MOV BH,00

MOV BL, BUFFER[1]

MOV BUFFER[BX+2], $’
MOV DX,0FFSET BUFFER+2
MOV AH, 9

INT 21H

ret

BUFFER DB 10, ?

END

Example
Write a program in Assembly language to print the value of an 8-bit number on the screen

IN BINARY.
Solution

(To solve this question, it is important to notice that printing on screen starts from the left,
therefore the number should be printed from the higher bit to the lower. Also remember that we
need to know the ASCII code of any character in order to print it on screen.)

ASCIl Hexadecimal
0 30h
1 31h

org 100h

MOV CL,8 ; counter for printing times

MOV BL,NUM
RPT:MOV DL,30H ; the value of DL will be printed on screen

SHL BL,1 ; checking if the bitis 1 or 0

JNC PRNT ; if the bit is zero, go directly to print

INC DL ; if the bit is one, add one to DL and then print
PRNT:MQOV AH,2

INT 21H

DEC CL

JNZ RPT

RET
NUM DB 45H ; example number to be printed on screen in binary

Example
Write a program to print the value of any 16-bit number on screen IN HEXADECIMAL.

Solution

(To write this program, we need to check the digits of the number starting from the higher digit
to the lower, if the digit is between 30H and 39H (after adding 30h to the digit) then we print the
value directly on screen. Otherwise if the digit is more than 39H (then it is a value between A
and F), then we need to add a shift of 7 to the value before printing. Why seven? This can be
explained by looking at the ASCII codes list, we can see that there are 7 characters between
numbers and letters.)

ASCIl Hexadecimal
30h

31h

32h

33h

34h

35h

36h

37h

38h

3%h
(other seven characters whose ASCII codes are: 3Ah,3Bh,3Ch,3Dh,3Eh,3Fh,40h)
41h

42h

43h

44h

45h

46h

oo ~NOoOOUOTrWNEO

TmMmQUOm@>

org 100h
MOV CL,16
RPT:SUB CL,4
MOV BX,NUM
SHR BX,CL ; shifting the number by 12, 8, 4 and 0 (to take one digit each time)
AND BX,000FH ; to make sure that only one digit is there after shifting
ADD BX,30H
CMP BX,39H ; checking the number
JBE PRNT ; iIf the number is between 30h and 39h, go directly to print
ADD BX,7 ; 1If the number is between A and F, add 7 before printing
PRNT:MOV DL,BL ; the number is only 8-bits long
MOV AH,2
INT 21H
CMP CL,0
JNZ RPT
RET
NUM DW 8E1FH ; example number to be printed on screen in hexadecimal

Example
Write a program to print the value of any 16-bit number on screen IN DECIMAL.

Solution

(When converting a number from Hexadecimal to decimal, we divide the number by 10 and the
remainder represents the decimal number. This method will be used in the code so that the
remainder is printed on screen after adding 30h. The remainder is stored in an array in the
memory so that it is printed from the last number to the first).

Simple example:

10|Dh remainder
10|1 3
0 1
\ 4
Divide the whole
number by 10
A
Store remainder
Yes No

A
Add 30h to all remainders
stored in the memory

A 4

Print them from the end
(from the last to the first)

End

org 100h

MOV SI, 00 ; counter for the number of remainders

MOV BX, OFFSET REMS

MOV CX, 0AH ; to divide by 10

MOV AX, NUM ; the number to be converted from Hexa to decimal
RPT: MOV DX, 00 ; DXis cleared for the division

DIV CX ; dividing the number by 10

MOV [BX], DL ; storing remainder (which is always between 0 and 9)

INC Sl

INC BX

CMP AX,00 ; division is repeated until the result of division is 0

JNZ RPT
PRNT: DEC BX ; if division result is zero, start printing

DEC SI

MOV DL, [BX]

ADD DL, 30H ; each number must be added with 30h before printing

MOV AH, 2

INT 21H

CMP SI, 0

JNZ PRNT

RET
NUM DW OFFFFH ; example number to be printed on screen in decimal
REMS DB ? ; an empty array of bytes for storing division remainders

Example

Write a program to convert a character named (char):
1) from small to capital letter
2) from capital to small letter

3) if capital > small, if small - capital

Best Regards
Dr. Zainab Alomari

Lecture 6: 8086Mp Pin-out Diagram

MAX { MIN]

MODE | MODE
GND [1 ~ 00 vec
AD14 [2 39[7] AD15
AD13 [] 3 38 [7] A16/S3
AD12 [] 4 37 [A17/S4
AD11 [] 5 36 7] A18/S5
AD10 [6 351 A19/56
AD9 [} 7 34) BHE/S7
aos s %% sy MR
AD7] 9 CPU-— o] RD
ADs [10 31 [] RQ/GTO (HOLD)
AD5 [11 30 [RQ/GT1 (HLDA)
AD4 [12 29[J LOCK (WR)
AD3 [] 13 28 [1 52 (M/IO)
Aap2] 14 277 St (DT/R)
aD1 [15 26[] 50 (DEN)
ADO [16 25[] QS0 (ALE)
Nl [17 2411 QSt1 (INTA)
INTR [18 2317 TEST
cLK (] 19 2211 READY
GND [20 21 [] RESET

There are 3 buses in 8086Mp:

e Data bus: 16 data lines (D0 — D15)
e Address bus: 20 Address lines (A0 — A19)
e Control bus: 3 lines (M/10, RD, WR)

Multiplexing in 8086Mp

e Multiplexing is the use of one line for two different signals.

e Address/Data lines (ADO — AD15) are multiplexed.

e Address/Data Multiplexing means that the same pin carries an address bit at one time and a
data bit at another time.

e Multiplexing is used to minimize the number of pins.

8086Mp Signal Descriptions

The following signal descriptions are common for both Minimum and Maximum Modes:
AD15-AD0: (Bidirectional signals)

These are the time multiplexed memory 1/O address and data lines. Address remains on the
lines during T1 state, while the data is available on the data bus during T2, T3, Tw and T4.

110315 36 513 SIA s Jalxil) wie Lealasiind oy 5 (data and address) o 4S jide lasha o -
gV A Jad) cualasl a6l bidirectional signals 2 sba 16 s bshall sl a2 -
datall p235u5 (T2, T3, Tw and T4) & Wiv (address) o) siall slacy o ghdll oda a0aid T A4 -

A16/S3
A17/s4
A18/S5

A19/S6
(Status lines are output signals)

Status lines (S3-S6) are multiplexed with address lines (A16-A19). During addressing they
contain the address, while during data transmission they contain status information.

S3 and S4: When data is transmitted through data lines, S3 and S4 lines give the segment used to
transfer data to/from the microprocessor, as in the following table:

S4 S3 Segment Description

0 0 ES Data transfer is to/from ES
0 1 SS Data transfer is to/from SS
1 0 CS/ none* Data transfer is to/from CS
1 1 DS Data transfer is to/from DS

* if this data is not for memory (Ex: Input/Output), then S4 S3 = 10 (none).
NOTE: status lines (S0-S2) are used during maximum mode.
S5: this status line gives the condition of the IF bit as:

When IF=0 - S5=0
When IF=1 - S5=1

S6: this status line is always ‘0’ logic, indicating that 8086 is controlling the system bus.
BHE/S7 (Bus High Enable/S7)

BHE line is used to enable or disable transferring data over the high data lines (D15-D8),
according to the following table:

BHE A0 Description
0 word
0 1 One byte is transferred using (D8-D15)
1 0 One byte is transferred using (D0-D7)
1 1 None

*S7 is always at ‘1’ logic.

CLK: is an input signal used for supplying the Microprocessor with the clock signal.
2 GND: input signals that are connected to ground.

VCC: input signal that receives the supply voltage, which must be +5 V.

MN/MX: input signal to specify the mode of operation:

1 - Minimum mode: in this mode, the Microprocessor works alone.
0 - Maximum mode: in this mode, the Microprocessor works with one or more other
MICroprocessors.

Control Signals (M/10 , RD , WR): (output signals)

RD: (READ pin) when this pin is at logic “0’, it indicates that the Mp is performing memory or
I/0 read operation.

WR: (WRITE pin) when this pin is at logic ‘0’, it indicates that the Mp is performing memory or
I/0 write operation.

M/IO: this pin is used to specify if the read or write operation performed by the Mp is with the
memory or the 1/O device.

M/10 RD WR Description
0 0 1 1/0 read
0 1 0 1/0 write
1 0 1 memory read
1 1 0 memory write

Hardware Interrupt Lines (INTA, INTR and NMI): explained previously.

ALE: (Address Latch Enable) is an output signal used to inform the memory or 1/0O device when
a valid address is on the address bus.

DEN: (Data ENable) is an output signal used to inform the memory or 1/0 device when they
should read/write data on data bus.

HOLD and HLDA: Direct Memory Access Signals (DMA).

External devices can request to take control of the system bus by making HOLD signal =1.
When 8086Mp accepts this request, it makes signal HLDA=1 and enters idle state (or z-state).

TEST: isinstruction (wait) is executed, this input is tested as follows:
If TEST =1 - execution will continue.

This output is used to decide the direction of data flow through the transreceivers
If TEST =0 > Mp remains in idle state until TEST becomes =1.

READY: if a device that is performing a read or write operation with the Mp was not ready for
next data transition, READY signal will be used by this device to tell the Mp to wait
(READY=0) by inserting additional clock cycles between T3 and T4 in read/write bus cycles,
until READY input becomes =1, which indicates that the device is ready to transfer data.

RESET: to reset the Mp. If RESET=1 -> all registers will be initialized and reset service routine
is executed.

DT/R: (Data Transmit/Receive) this output is used to decide the direction of data flow. ‘1° logic
means data is transmitted from the microprocessor, ‘0’ logic means data is received by the
microprocessor.

8086Mp Bus Cycles

8086Mp uses memory and I/O devices in periods called (Bus cycles). Each bus cycle
takes 4 system clocks (4T). 8086 Mp Bus Cycles are:

1- Memory Read Bus Cycle
2- Memory Write Bus Cycle
3- Input Bus Cycle

4- Output Bus Cycle

\‘\,‘\\,\»} I\\Rb(Dy\) L»L ,\X - A L"%’,‘;f,,,,,,

L/““\ Y, —‘\-__/*\J_/““‘

T L —

RD /) /77 //X S /144//.

During T1: the address is put on the address/data bus, with ALE=1.

During T2: DEN becomes logic 0, to signal the memory or 1/O device when to put data on to the
bus, with RD=0.

During T3: 8086Mp reads data from address/data bus.

During T4: all bus signals are deactivated in preparation for the next clock cycle.

NOTE: Input bus cycle of 8086Mp is equal to Memory read bus cycle, with only one difference:
M/I10 is equal to logic 0 during the four cycles (exactly the opposite).

Memory Read bus cycle }Jb (=il s s3el au 1 slus (Input bus cycle of 8086Mp)-) avy sdage ddiadle
el an)l e o Lea (uSall (5S35 (M/10) 3131 G s 5 2805 (33 Iae (0f 8086Mp

J‘:‘—\‘_ﬂid.hi‘;i JATRY C\\:&— {_\3& RIS A

N AP /A N A
ripgel —adivess X —
R/ N ; _
DEP 7/ Z/ S /:{/\ LS
TR TN J/////:

NI I T N

NOTE: Output bus cycle of 8086Mp is equal to Memory write bus cycle, with only one
difference: M/10 is equal to logic 0 during the four cycles (exactly the opposite).

Memory Write bus b o=lalls o3el au)l slus (Output bus cycle of 8086Mp)d! av sdaga dliadle
el o)l Aadde o laa GuSall (5 5S5 (M/1O) 38 O 585 2805 (558 lae (cycle of 8086Mp

Best Regards
Dr. Zainab Alomari

Lecture 7: Demultiplexing, Buffering and Latching

Wio « M/IO | Buffered
RD ! - RD control
WRi— + WR bus

OEl
BHE/ST — I o« BHE

l"IBl.l'ﬁﬁ 1 . '.3”'”

Awgs —1 373 A

Ajrsa o

BOR6 Arwssy 1 G OE — iu.
. A
j;_ T - - . Ay
) . Ay
= AI:‘

* Au | Buffered

* A address

- = - S S — A, bus
& A“
- Ay
Ay
* Ay
. A,
* A
r - .'"._»
| A
I
ALE G =
33 UEP 373 OE o

A | .,

AD,, b

Abis — D,

AD,, D

. R} 12
ADy, 245 D,
ADI(P I

] L. D,
A GDIR[" D

Tl

AD, D,

AD, = >

AD; — D

AD, » D

Ay 745 b,

AD, — D:

AD, — D

A *16oR [D

DEN _ —

DT/R

Fully Buffered 8086 Microprocessor

Demultiplexing is the operation of splitting multiplexed signals, like separating Address/Data
lines into address lines and data lines.

e Data bus requires demultiplexing and buffering.
e Address bus requires demultiplexing, latching and buffering.
e Control bus requires only buffering.

7415245

It is a bidirectional buffer used for demultiplexing and buffering data bus. It has 8-lines so
that two buffer are required.

Bus A Bus B
(8 lines) (8 lines) G | DIR Operation
: ‘245 : ‘ : 0 0 Transfer data
from bus B to bus A
0 1 Transfer data
G DIR from bus A to bus B
DEN J 1 X Isolation
DT/R

G = Gate (works as enable)
DIR = Direction of data transfer

74L.S373

It is a unidirectional buffer used for demultiplexing, buffering and latching address lines and
BHE. It has 8 inputs and 8 outputs, so that three buffers are required. (OE = Output Enable)

Input Output
(8 lines) (8 lines)
: ‘373 :
G OE

ALE

741.5244

It is a unidirectional buffer used for buffering the signals of the control bus, so that one buffer
is required.

Input Output
(8 lines) (8 lines)
: 244
OE

Best Regards
Dr. Zainab Alomari

Lecture 8: Memories (part 1)

Every Microprocessor-based system has a memory system. There are two main types of
memories:

- Random Access Memory (RAM)
- Read Only Memory (ROM)

The size of the memory device is indicated as follows:

Memory device name (No. of Memory Locations X Bits per Location)

S gy Al el 5 il slaall Jrany) 380 Lgalasiinl 5 clallaally Leday) ail 5 SIAN 3318) aoial oy

Z\J}SSAUJSJL;IS‘(‘:GJY\ dhwﬁ)ﬂ\ﬂ\ﬁﬁ)#ﬂﬂu@j MXJ;A(«BALJM\&}“L;E)S\J]\&_\&&)UA

ool Gany A A8)0 Lal s i) (o) 1) a8 gl aaa 845 e aBl gall e elac) s oDle| Ay Hhll; Leale
el el ey 5 BB (g g 5 IS aa o) 5ed

Example (1)

7216 (2K x 8) memory

This memory device contains 2K locations, 11 address lines and 8 data outputs.

‘(ZNﬁé“}AﬂJJ‘;o\S\MNg}uwaddreSSJ\.k#Jm)é‘ﬂ‘ﬂmdmw&#‘k#lmﬁﬂéﬂ °
_Cé}.edﬂa\:\,\]\ammdataj\.hjksamﬁ)ug °

Example (2)
62256 (32K x 8) memory
This memory device contains 32K locations, 15 address lines and 8 data outputs.

Note: If only one number is mentioned for a memory device, this number represents the total
number of memory bits and it is called (bit capacity).

e A jre (e Julld | KU Gl aae a s Gl 8Y) Jala 8 casa sall (el a Jusla iy bt capacity-)
sl 3l sae 48 jaa e ol aal sl aBsall 8 i) dae 48 jaa Sy &l gall Sac 5 (DIt capacity) SIS <L)
(S) gall 23c 28 y2a Wiy bt capacityl s a5l

Example (3)

(1K x 8) memory is listed as an 8K memory device, while (64K x 4) memory is listed as a
256K memory device.

Types of Memory Devices

There are two main memory devices:

e Random Access Memory (RAM)
¢ Read Only Memory (ROM)

The main differences between these types are:

1- A RAM is written under normal operation. A ROM can be programmed, but normally it is only
read.
2- RAMs are used to store temporary data, while ROMs are used to store permanent data.

General block diagram of RAM memory devices

Jiay Jaa) I Ll zUas Cas Lgaas S Lege RAM 48, 1 Jiay 53 block diagramd) die) J<al

Jal of Al Jadd 5e] 8 of AUS dglec 386 1 Jasi s datadl bsha Jia 3 Input/Outputd) Lo sha 5 o)) siall

DA (g 438 jra i 4 giall Lo shady 43 gic dasall @ sall LUK A 56) 3 4 Ja Llexd) Ll (0 logic) Jzie CSJ
(0 logic kel &f) J2ie el WE 5 RE (abadll

JE— Ao OO |
1 1
—A o—
N-Address Lines K-Data Lines
(Input) | | (In/Out)
— AN OK |
CS RE WE CS= Chip Select

T RE= Read Enable
WE= Write Enable

General block diagram of RAM memory devices

General block diagram of ROM memory devices

4l LS (output) 2al s slaily 4 ROMA! 8 datadl b shaa () ass)l (e LaaSlall 5 e sill cp ad Sl (3 30
(RE) Lsé 3¢) jall Wil g (WE) 4USH o aa 0¥

— 1% O

1 1
A2 02 —

N-Address Lines : ' K-Data Lines
(Input) (Output)

B ol

N K

CS RE

General block diagram of ROM memory devices

8086Mp Memory Organization and Interfacing

8086Mp 1MByte memory is implemented using 2 independent 512Kbyte banks:

- Low Bank (Even Bank)
- High Bank (Odd Bank)

:512Kbyte Legie JS aaa (p€ sl alainly U 3l o3 Ll L 5 8086M -l dualal) 3 ,SIA aaanat I (s

¢ 5 00000H a8 5alls oy 5 (Even bank) s (Low bank) csass s dom s 311 c sbindl <3 a8l sall (5 siny 1 JgY)
. FFFFEH & 54l

it s 00001H a8 salls a5 (Odd bank) s (High bank) ceemss G il o sbiall i3 a8l sall (5 siny il g
FFFFFH e sall

High Bank Low bank
FFFFFH
'8
AgAr =D (51K x8) T (51K x3)
RAM RAM
RD ——RE RD —dREF
WR——dWE WR———dWE
—dcs —qCS
00007H
00005H
00003H
00001H
AN
Dis-Dg D7Dy
BHE A,

High and Low Banks of 8086Mp Memory

Sl Ly bshall ol e 19 sa pSol e JST Aigiall laghad axe lé 512Kbyte 5o sk OS aas o L
>0 al @ Ol sl da sy aBE Ay Wl Agg N Ay (e 2 25 8086Mp-) ¢ addresstl dalal) L shal)
ipe 5 0 8 bt 0580 AD (8 55 el (s w3l (ol sinll (S 136 Low bankcll CS s il Sl Ly 58
UL 1) CS 3kl Jpis

Ll Ladls BHE 25 a8 o) siadl 058 3L aellaall Lelady 3)L80 @llligh (5358 oo sllaall ()l siadl (IS 131 Ll
.High banklL =il CSAL ey) b el 5 (52 8 o il IS 131 () (5 5badt rnal

A AERY) 8 LS Tadh aal g s A 5 _SIAN 8 LS ol Ll 5 Cosllaall Wlall 0 6 Jla 8 58 23S 138 JS

e Mov AL, [200H]
e Mov [201H], AL

ohef ol e Tas dage cillaadle

FFFFEH

00006H
00004H
00002H
00000H

BHE A0 Memory operation
0 0 Word (Both banks are enabled)
0 1 High byte (Only high bank is enabled)
1 0 Low byte (Only low bank is enabled)
1 1 No operation (Both banks are disabled)

Note:

e If address is even (ex: MOV AX,[300H]), then both of BHE and A, are logic 0, and the
data transfer from low bank takes 1 bus cycle (4 clocks).

e |If address is odd (ex: MOV AX, [301H]), then the first byte (lower byte) in high bank
takes 1 bus cycle (4 clocks), where (BHE =0, A;=1).and then the second byte (high byte)
in low bank takes 1 other bus cycle (4 clocks), where (BHE =1, Ay=0).

Do) s) gl JAE 0y 16) WOrd (b 5,81 3 L i Ll 8 G stiad datadl of Al b
lenl) s 0 L 35 s Lo G5 i s pma 5 LSS (on n US Y 0S50 S

(0= eaans La3IS) BHE 5 Ag (e JS Jani wisd (MOV AX,[300H] :3e) (a5 ol sinll 58 Ala & 2Y ol
@Al Gl b S 5 300H o) siadl 8 o550 o) 8 OV 5 SIA (e (pamd sl i elae) ol 38T s L
301H ol siall

Sl dad ellel 5 315 BHE 3,4 Jindi wisd (MOV AX[301H] :Se) (a8 ol siall 058 Alla 3 1l
& sy 3 (4 clock cycles) (s LSl i 3ol ill AlS 5)53 3 aiu 35 high bank) o= (lower byte) JsY)
other 4) f AlalS 43 5 550 3 iissns 138 5 Jow bankd) e Il culdl elae) 5 320 2 Cuay Ag 53 Jieds

.(clock cycles

IANPPIN e L LY o sl 8l * &)= (4 clock cycles) Lﬁ;i 32 5 bus cycle Gaiu 3 S aa Salatl) -12)
8) ¢l (2bus cycles) daleall (3 ainius AMal oda 88 (63 8 o siall 5 Cu]6 S 5l 5ol B sa gl (o 4
.(clock cycles

Best Regards
Dr. Zainab Alomari

Lecture 9: Memory Devices (Part 2)

Address Decoding

1) Simple NAND gate Decoding

Example

Design the hardware required to implement (128K x 8) RAM starting at address 20000H, using

(64K x 8) RAMs.

4 ra plinid Laas 4t Ji RAM @S sl alasinly mlleadl) (ama ana 3 SI0 Loy) 5 asanald J sl 138 3 o slladll
Al Ak e i gl s Ld lall () sic 48 jaa g5 SIAl aaall

Solution

128K/64K = 2

. No. of (64K x 8) RAMs =2
No. of RAMs in each bank =1
Total no. of address lines (for the 128Kbyte memory) = 17
No. of address lines for each (64K x 8) RAM = 16

.0dd bank G s even bank Ledaal (pand N clS gLl Jaad 2 Lails Akaadl

NSa s Sl e (gsia il IS ST sllaal) 5,813 el S a ol Liadal Sa) e

el 138 8 Lia &gl JS aaa o ey ol il () Leday 5 zling) da shadd) dae (o e aad gl) & gld) ans (00 Y1
O Cun AL6= i Jilis AL (e Toas) ginll o glad aladinly o it ol JUdad 16) lias Jullé 64K s
Al18 5 Al7 25 8086 gllaall (3 daddll kishadll <5 even bankdb alall CSAI s Ll e aday; 23 AQ
NAND 4 5 e Leda) oy 4iiall Lo ghasll a2 A19 5

Ao Ais A7 Ate Ais Ais Az A At AnAsAs At AcAs As As A Al Ay
001}\0 0O 0 0 O 0O 000 0O0O0OO0OTUO 000}0=20000H

\ I
to NAND to address input

gate to CS of even bank

\

(20000H is the starting address of the designed memory).
e 16 bits of this address (from A; to Ase) are used as the address input of the two RAMSs.
e A is connected to the CS of the low (even) bank with (Ajg A1 A17) using NAND gate.
 BHE is connected to the CS of the high (odd) bank with (Ais Aig A7) using NAND gate.

e Qi) Dl g i Ll a3 ,SIA aildac | (o glaall Gl il o Ty 53 (Agg Agg Agy) O siall Jashad o Jaadls
e dedldll Gl gial) Lo ghad e 3 sa gall ol giall o olinad 001 DA) LIV o285 a1 13 MilLd Agg 5 Agg (e IS
CSA il L) Jamii iy N | gy (il x5l e Canad (613 ,SIA 038 (i3 Y ellacall

Alﬁ - Al
High Bank Low Bank
(Odd Bank) (Even Bank)
16 ;ndd ress (64K x 8) 16 ;dd ress (64K x 8)
lines RAM lines RAM
RD ——dRE RD——dRE
WR—dWE WR——dWE
|—< cs |—< s
BHE —[>0—| ‘ A, —>o— ‘
A
Ai; —po— Dy5-Dg i” D;-Dy
18 —DO—
A —o— A —Do—
NAND gate NAND gate
NAND Output CS state
1 CS is not active
0 CSis active

Q) What is the ending address of the designed memory in the above example?
Answer: we fill the bits of the address from Aq to A with ones and this is the ending address,
(=0011 1111121111111 1111 = 3FFFFH)

2) 74L.S138 Decoder

When more than one memory device is used in each bank, a decoder is needed to select
the correct memory device from each bank.

741.5138 decoder has 3 inputs, 8 outputs and 3 enable inputs. When the enable inputs are
all active, one output is activated according to the input. The work of this decoder is summarized
in the following truth tables.

w >

Selection
Inputs

O
w N - O

74L.S138 r Outputs

—a G2A
—a G2B
Gl

Enable
Inputs

~N Sy B

Outputs

—
S

— o | — | —]

4
1
]
1
|
]
|
1

0

]
1

1

—_——_— === == | =]~ |

(=1 N E I el el B B Y 5 B

—l=loc]—=|—|=}=|=]—=]=]= |uwl

—_— ===l]|=]=]=]=|= |~

o
—
fol
—
—_—f—_—] === =l—=]—- |-
—
ol

el el el o S

The Block Diagram and Truth Table of 74LS138 Decoder

Example

Design the hardware required to implement a (64K x 8) RAM start at address AOOOOH, using
(16K x 8) RAMs.
Solution
64K/16K =4
.. No. of (64K x 8) RAMs =4
No. of RAMs in each bank =2
Total no. of address lines (for the 64K byte memory) =16
No. of address lines for each (16K x 8) RAM = 14

Ao Ais A1z Ate Ais Ais Az A At AnAsAs At AsAs Ay As A Al A
1 0 1 0 0O 0 0 O 0O 00O 0O0OO0OTPO 0 0 0 0 =A0000H

\ Y J (Y J
to AND gate to address input
of decoder to the first to the enable
input of decoder of the decoder
High Bank (Odd Bank) Low Bank (Even Bank)
14-Iine/s !

A14-At
14-|in?/ (16K x 8) Baines (16K x 8)

RAM RAM .
7D - re RD—0] Re 8-lines
WR—(| we WR—(| WE

—(Jcsa —(jJcs2
(16K x 8) (16K x 8)

RAM RAM
RD—] RE RD—] Re
WR— (| we WR— we

—(Jcs —(JJcso

D15-D8 D7-Do

A |
At Opl—CS1 A15 A Oo—CS0
B B
O4—_CsS3 04 —cCs2
E C E C
- 138 - 138
BHE——dG2A Ao—dG2A
M/E)*DO—C G2B M/@«Do_c G2B
G1 G1

A16 — >o— A16 — >o—f
AT ————— A7
A8 > A8 >
A9~] N P—

Example

Design the hardware required to implement a (128K x 8) RAM start at address 00000H, using
(32K x 8) RAMs.

Solution

128K/32K = 4

.. No. of (64K x 8) RAMs =4

No. of RAMs in each bank =2

Total no. of address lines (for the 128K byte memory) =17
No. of address lines for each (32K x 8) RAM =15

A Ais A17 Ate Ais Aus Az A At AnAsAs At AsAs Ay As A Al A
0O 0 0O O \0 0O 0 O 0O 000 O0OOOTPDO 00 0} 0 = 00000H
' | |
to AND gate to address input
of decoder to the enable

to the first of decoder
input of decoder

High Bank (Odd Bank)

Low Bank (Even Bank)

1 5-Iimy

A15-At
15‘""§/ (32K x 8) S-ines (32K x 8)
RAM RAM _
RD ~ re RD—0 re 8-lines
WR— (| we WR—(| WE
—(Jcss —(jJcs2
(32K x 8) (32K x 8)
RAM RAM
RD—] Re RD—(J Re
WR— (| we WR— we
—(Jcs1 —0 CSo
D15-Ds D7-Do
A
04— CSs3 B 01 cCs2
C c
- 138 - 138
BHE—C G2A A0—(] G2A
MIIO—DO—C G2B MIE—DO—C 628
G1 G1
A17*Dk A17$ﬁ
A184D0— A18—{>o—
A19 D@— A19__|>°_
Best Regards

Dr. Zainab Rami Alomari

Lecture 10: Basic Input/Output Device Interfacing (Part 1)

1) Basic Input Devices Interfacing

74L.S244 Buffer is used to interface input devices to the 8086Mp.

Example

The hardware required to connect 8 switches to 8086Mp is as follows:

Vce
111
S=TT==77
8-lines { r
Data bus Il
Il
Il
8086Mp 244 Cl—
Il
CIll—
OE
M/10 —[>0—| p—
L RD —>0— -
BHE or Ay ——[>0——
Address _| —
(portno.) | -

NOTEL: I/O address (port no.) can be 8-bits or 16-bits. However, all 16 address lines (A0-A15)
of the 8086Mp are used to enable 1/0 devices.

If address is 8-bits, the Mp puts zeros on (A8-Al5). This is to differentiate between (for
example): port no. 1F3AH (16 bits) and 3AH (8 bits).

Therefore, NAND gate has 19 inputs (M/10, RD, BHE or A0 + 16 address lines).

NOTEZ2: I/O device data can be 8-bits or 16-bits.
1) If data is 16 bits: address is always even.
Low byte is transferred over (D0-D7) and high byte is transferred over (D8-D15).
2) If data is 8 bits: address can be:
a. Even: data is transferred over DO-D7.
b. Odd: data is transferred over D8-D15.

Example

Design the hardware required to interface 8 switches to the 8086Mp at port number F301H.

Solution

8086Mp

Ais Ais Az Az Ain Aig Ag Ag A7 As As Ay Az A A Ao

1 1 11

0011 0000 OO0OO0T1

8-lines Data bus
D8 - D15

‘244

OE

= F301H

:.LL
-
==

2) Basic Output Devices Interfacing

741L.S373 Buffer and latch is used to interface output devices to the 8086Mp.

Example

The hardware required to connect 8 LEDs to 8086Mp is as follows:

8 LEDs l |
8-lines v TT17T
Data bus |<] 7/
— —<—
|<]
_|<]7
_|<]7
<
Clk OE
M/10 —>0—
__ WR—0—
BHEorAQ—Doi__
Address | — e _
(portno.) | Logic0=ON

Logic 1 = OFF

NOTE: OE of ‘373 is always active (Logic 0). When OUT instruction is executed, the output
data are latched (on LEDs) until the next OUT instruction is executed.

Example
Design the hardware required to interface 16 LEDs to 8086Mp at port no. F300H.

Solution

Ais Ais Az A At A Ag Ag Ar As As Ay Az Ar Ar Ag
1 1 1 1 0 01 1 0000 OO0OO0O = F300H

8086Mp

8-lines Data bus
DO—-D7

Vcc

‘373
M/I0 —[>o—
WR clk OE
Ay
AL — 00—
Az >0
A3 ——
pri— v
A5 —0——— —
Af =
R
AR —
o —]
All
a1 |
Al3
Ald
AlS
8-lines Data bus
D8—-D15
‘373
M/I0 —[>o—
WR — o ck OF
BHE ——|>o——
—Po—
a2 >0
A3
Ad g— —
AS >0 —
Ap —
p _§:

AlO E
All

a2 |
Lk
Ald
AlS

Example

Write a code in Assembly language to control the LEDs in the previous example so that
the first LED turns on for a specific delay, then the second LED is turned on for same delay and
S0 on.

Solution

MOV DX, 0F300H

MOV AX, OFFFEH
RPT: OUT DX, AX

CALL DELAY1

ROL AX,1

JMP RPT

HLT

Best Regards
Dr. Zainab Alomari

Lecture 11: Basic Input/Output Device Interfacing (Part 2)

2) Basic Output Devices Interfacing

Single Pole Double Through Relay (SPDT)
SPDT is an electrically operated switch, used to control a circuit by a low power signal.

Ol Us 1 ae L) Lyl wie SPDTA aladi) caand (Output Device) zloal Sles) pladial vie
O Aeldll 3L <l 13 (Output Device)d)) Voo dua sis o sty g suS Jasd Cus (A dals 38 LEDs
0= gellaa) (e Lol 5 LY Cuil€ 13 e sil) ol 5 [= ellaal)

) Al el 3 jeaY) ZUiss cpa 8 (‘17 Logic = SVolt) dikal s 4l gy 5S35 aellaadl (o daalall 3 LY o) 1)
(220Volt) Jobss Al

Example

Design the hardware required to control a traffic light system (at port no. F300H) of four-road
intersection. Write a code in Assembly language to control it as follows:
Green time = 2 minutes
Yellow time = 20 seconds

Solution
X R|]Y |G |X|R|Y |G |X|R|]Y |G |X |R |Y |G

4441H=/0 |1 |0 |O |O (1 |O (O |O |1 |O |O (O |O |O |1 |2min
4442H=(0 |1 |0 |O |O (12 |O (O |O |1 (O |O (O |O |1 |0O |20sec
4414H=/0 |1 |0 |O |O (1 |O (O |O |O (O |1 (O |1 |0 |O |2min
4424H=/0 |1 |0 |O |O (1 |O (O |O |O (1 |O (O |1 |0 |O |20sec
4144H=/0 |12 |O |O (O (O /O |2 /O (2 (O |O |O (1 |O |0 |2min
4244H=(0 |1 |0 |O |O (O |1 (O |O |1 (O |O (O |1 |0 |O |20sec
1444H=|{0 |0 |0 |1 |0 |1 |O |O (O |21 |0 |O |O |21 |0 |O |2min
2444H=/0 |O |12 |0 (O |12 |O |O |O |1 |O |O |O |1 (O |O |20sec

8086Mp

8-lines Data bus

®

LI

SPDT
DO—- D7
SPDT
SPDT
373 SPDT
4| SPDT
— SPDT
M/i0 —[>o—
WR —>0—— Clk OE I
Ag o
Al —0——
Ay —]
A3
A4 ——
AS 0 —
Ap —
AT
Ag —mm——
ag —
Ala_gz
All
A
A3
Ald
AlS
8-lines Data bus SPDT
D8—-D15
—| spDT
4| SPDT [
[
3 ot
4| SPDT [
— SPOT
M/IO
_ WR _—|>o—_|>°— ck OF -
BHE o
Al >0
A7 —]
A3
Al
As —D0—— —
-
AT
AB
g —
All
Al2
Al3
Ald
AlS

Software:

RPT:

MOV DX, 0F300H
MOV BX, 0
MOV CX, 4

NXT: MOV AX, Array[BX]

RET

OUT DX, AX

CALL DELAY1 ;20 min delay
MOV AX, Array[BX+1]

OUT DX, AX

CALL DELAY2 ;20 sec delay
ADD BX,2

LOOP NXT

JMP RPT

HLT

Array DW 4441h, 4442h, 4414h, 4424h, 4144h, 4244h, 1444h, 2444h

END

Solution 2 (A 48y yay 3 ¢Sl LS (S0

RPT:

MOV DX, 0F300H
MOV CX, 4
LEA BX, Array

NXT: MOV AX, [BX]

RET

OUT DX, AX
CALL DELAY1
MOV AX, [BX+2]
OUT DX, AX
CALL DELAY?2
ADD BX, 4
LOOP NXT

JMP RPT

HLT

Array DW 4441h, 4442h, 4414h, 4424h, 4144h, 4244h, 1444h, 2444h

END

Example

Design the hardware and software required to interface a transducer, fan and heater to
8086Mp. The Mp reads the temperature from the transducer (8-bit signed data), and according to
this temperature, it derives the fan and heater to keep temperature between 18°C and 25°C.
Connect the transducer to port no. E300H and connect the fan and heater to port no. A401H.

FAN ON
HEATER OFF

FAN OFF
HEATER OFF

FAN OFF
HEATER ON

Solution

8086Mp

8-lines Data bus

DO-D7 :

8-lines

SPDT

Transducer

Heater

i

SPDT

Fan

244
OE
M/io _M_
RD——{>0——
——Po——
an —Po——
Ay ——]
prp— s —
AS
AS —;—
Ab
R
A8
A9
ALD
All
Al2
AL3
Als
ALS
8-lines Data bus
D8-D15
‘373
M/i0 —[>o—]
WR ——>0— Clk OE
ﬁ__[)o__
Al >0
a2 —
" ——
Ay ——
A5 ——] —
pef— - —
A7 ——
s ———
ag ——|
PN —
A12
S ——
a14 ——>0—
als————|

Software:

START: MOV DX, E300H

IN AL, DX
CMP AL, 18
JG N1
MOV AL, 01 ; Heater is ON, Fan is OFF
MOV DX, 0A401H
OUT DX, AL
JMP START

N1:CMP AL, 25
JG N2
MOV AL, 00 ; Heater is OFF, Fan is OFF
MOV DX, 0A401H
OUT DX, AL
JMP START

N2: MOV AL, 02 ; Heater is OFF, Fan is ON
MOV DX, A401H
OUT DX, AL
JMP START
HLT

RET

Best Regards
Dr. Zainab Alomari

	‎C:\Users\Mohanad\Downloads\Lecture1_introduction_to_8086MP.pdf‎
	‎C:\Users\Mohanad\Downloads\Lecture2_Logical_and_physical_addressing.pdf‎
	‎C:\Users\Mohanad\Downloads\Lecture3_Addressing_Modes.pdf‎
	‎C:\Users\Mohanad\Downloads\Lecture4_Xchg.pdf‎
	‎C:\Users\Mohanad\Downloads\Lecture5_FLAGS.pdf‎
	‎C:\Users\Mohanad\Downloads\Lecture6_Add_and_Sub_Instructions.pdf‎
	‎C:\Users\Mohanad\Downloads\Lecture7_Mul_and_Div_Instructions.pdf‎
	‎C:\Users\Mohanad\Downloads\Lecture8_JUMP_instruction.pdf‎
	‎C:\Users\Mohanad\Downloads\Lecture9_Logic_Instructions.pdf‎
	‎C:\Users\Mohanad\Downloads\Lecture10_Stack_instructions.pdf‎
	‎C:\Users\Mohanad\Downloads\Lecture11_Shift_Rotate_Instructions.pdf‎
	‎C:\Users\Mohanad\Downloads\Lecture12_Subroutine_Instructions.pdf‎
	‎C:\Users\Mohanad\Downloads\Lecture13_Delay_Loops.pdf‎

