Ministry of Higher Education and Scientific Research Scientific Supervision and Evaluation Authority Quality Assurance and Academic Accreditation Department

Academic Program Description For the Department of Electronic Engineering For the academicyear 2023-2024

Academic Program Description Form

University name: University of Nineveh

College/Institute : College of Electronics Engineering Scientific Department: Department of Electronic Engineering Name of academic or professional program : Bachelor of Science in Electronic Engineering

Final Degree Name: Bachelor of Science in Electronic Engineering **Academic system :** Annual with Bologna system for first and second grades

Description preparation date: 24-5-2024 Date of filling the file: 24-5-2024

Signature: Scientific assistant: Bilal A. Jebur Date: Signature: Marith

Head of department: Harith Ahmed Mohammed Date:

The file was checked by the Quality Assurance and University Performance Division.

the date: 16/09/2024 the signature:

Approval of the dean Prof. Dr. Khaled Khalil

16/ 2/2024

1. Program vision

Electronics Engineering should specialize in electronics engineering sciences and be distinguished by its engineering education and scientific research leading to the advancement of knowledge, the development of the profession, and serving the community through partnership with industries, engineering and service institutions, and the graduation of cadres to provide the community with highly qualified cadres.

2. Program message

- 1. Education : Providing specialized engineering educational programs with a precise specialization for undergraduate and graduate studies. Providing a distinguished and recognized educational environment so that its graduates have high professional experience and basic engineering education that enables them to contribute effectively to serving their community and raising the level and progress of their profession. All of this falls within the international standard specifications and is implemented by adopting the ABET quality system in the field of engineering education.
- 2. Research: Providing a high-level research environment so that its professors, researchers and students can conduct research in basic, applied and exploratory engineering fields and disseminate and apply available and new knowledge in a way that serves the community and the region and interacts with the world.
- **3.** :Leadership Developing leadership capabilities for staff and students, and instilling self-learning, reflection, and deduction abilities in those who possess talent in the field of profession.
- 4. Community Service : Interacting with the community and engaging in the field of developing the country's industry and engineering institutions, which leads to the social and economic development of the country through consultations, continuous education, and commitment to industrial problems as research to provide solutions for them.

3. Program objectives

A. Graduation of engineers Specialists in the field of engineering sciences Electronics and its applications with high specifications, they have the ability to work in Public and private sector.

B. Effective contribution to the renaissance and progress of society through holding seminars, conferences and continuous education.

C. Producing solid applied scientific research in the field of electronic engineering for the purpose of solving industrial and service problems in society.

D. Strengthening the leadership aspect among members and graduates and instilling a spirit of cooperation among them.

E. Granting postgraduate degrees in the department's various specializations with high specifications.

F. Adopting the approach of updating the curricula and improving performance in activities and events to ensure achieving the desired goals of the department according to (ABET) quality standards.

4. Program a	4. Program accreditation								
NOTHING	NOTHING								
5. Other exte	rnal influence	S							
NOTHING									
6. Program S	Structure								
* comments	percentage	Study unit	Number of courses	Program Structure					
Basic course	%7.8	12	4	Institutional Requirements					
Basic course	%23.4	36	8	College Requirements					
Basic course	%68.8	106	25	Department Requirements					
essential	ial In the third stage Summer training								
	Other								

* Notes may include whether the course is basic or optional

7.	Progran	n Description		
Credit I	nours			
practi	theoret	Course name	Course code	Academic stage
cal	ical			
-	3	Mathematics I	NVEE206	First / Semester 1
3	3	DC Circuits Analysis	NVEE215	First / Semester 1
-	2	Physical Electronics	NVEE218	First / Semester 1
2	2	Computer science	NVEEEL114	First / Semester 1
-	2	Mechanical engineering principles	NVEE203	First / Semester 1
-	2	Democracy and Human Rights	NV12	First / Semester 1
3	3	AC Circuits Analysis	NVEE216	First / Semester 2
	3	Mathematics II	NVEE207	First / Semester 2
-	2	Physics Of Semiconductor	NVEE219	First / Semester 2
2	2	Digital Techniques	NVEE217	First / Semester 2
3	-	Engineering Drawing	NVEE201	First / Semester 2
	2	English	NVU11	First / Semester 2
				Second / Medical Equipment Electronics
-	2	Engineering Analysis I	NVEE208	Second / Semester 1
2	2	Signal Analysis	NVEEELM211	Second / Semester 1
3	2	Electronic I	NVEEELM212	Second / Semester 1
-	3	Digital design	NVEE223	Second / Semester 1
2	2	Electromagnetic fields I	NVEE215	Second / Semester 1
-	2	Human Physiology	NVEEELM 213	Second / Semester 1
2	2	signals and systems	NVEE210	Second / Semester 2
-	2	Engineering Analysis II	NVEE209	Second / Semester 2
-	2	Electronic II	NVEEELM221	Second / Semester 2
2	2	programming	NVEEELM222	Second / Semester 2
	2	Electromagnetics FieldsII	NVEE221	Second / Semester 2
-	2	The Crimes of the Defunt Baath Party	NVU13	Second / Semester 2
				Second / Industrial
-	2	Engineering Analysis I	NVEE208	Second / Semester 1
3	2	Electronic I	NVEEELI212	Second / Semester 1
2	2	DC Machines	NVEEELI213	Second / Semester 1
2	2	Computer Programming	NVEEELI214	Second / Semester 1
-	2	The crimes of the defunct Baath Party	NVU13	Second / Semester 1
-	2	Fundamentals of Electromagnetics	NVEE221	Second / Semester 1
-	2	Engineering Analysis II	NVEE209	Second / Semester 2
2	2	Electronics II	NVEEELI222	Second / Semester 2

2	2	AC Machines	NVEEELI223	Second / Semester 2
2	2	Computer Languages	NVEEELI224	Second / Semester 2
-	3	Digital Design	NVEE223	Second / Semester 2
2	2	Signals and Systems	NVEE210	Second / Semester 2
-	3	Electronic II	EE3301	the third
-	3	Digital Signal Processing	EE3201	the third
-	3	Control Engineering	EE3302	the third
-	3	Microprocessors	EE3303	the third
		Digital System Design I	EE3304A	
-	3	Digital System Design II	EE3304B	the third
-	3	Communications	EE3305	the third
-	3	ELECTRONIC INSTRUMENTATION	EE3306	the third
6	-	Laboratory	EE3307	the third
-	3	Industrial Electronic	E E4301	Fourth
-	3	DATA TRANSMISSION&	FF 4000	Fourth
	0	COMPUTER ETWORKS	EE4302	F 0
-	3	Microprocessor & Micro Controller	EE4303	Fourth
-	3	Microelectronics	EE4304	Fourth
-	3	Radiation	EE4305	Fourth
		Antenna and Propogation	EE430 8	
-	3	Computer aided design	EE4306	Fourth
3	1	Engineering Project	EE4307	Fourth
6	-	Laboratory	EE408	Fourth

8. Expected learning outcomes of the program

A - Cognitive objectives

A1. Enabling graduate students to gain knowledge, understanding, principles and basic theories in the field of electronics engineering.

A2. Empowering students Graduates will understand and comprehend advanced modern scientific topics in the field of specialization in electronics engineering.

A3. Enabling graduate students to understand the mathematical principles and basics of representing, analyzing, and studying systems and how to design different electronic systems. A4. Helping the student to learn about the most important computer software used in the field of solving engineering problems and to be able to understand the basics of the operation of electronic systems and how to program them to perform specific practical tasks.

B- Program specific skill objectives

B1 Ability to design and implement the assembly components of electronic systems. B2 Ability to design and implement various software, in addition to those related to basic operating systems and information systems, and the ability to use the advanced and various technologies. and use it in different applications.

B3: Ability to understand the basics of designing and operating electronic devices and keeping up with modern technology.

B4: The ability to set appropriate specifications for electronic devices and the basic programs required to operate them, in addition to the technical equipment required to implement automation and e-government operations.

Teaching and learning strategies

- Follow-up through the implementation of duties and accuracy in dealing with them.
- Forming small groups of students to solve a specific problem and exchange opinions with colleagues about it.
- Opening the door to discussion on some issues in a way that ensures everyone's participation and getting used to hearing different opinions.

Evaluation methods

1- Midterm and final exams

2- Short daily exams

3- Conducting laboratory experiments, writing reports and discussing laboratory results.

4- Participation in scientific conferences and classroom activities that include designing some electronic systems.

5- electronic exams and assignments within a specific time on educational platforms.

C- Emotional goals and the value

C1 Developing the student's ability to perform the tasks assigned to him and complete them on time with accuracy and dedication.

- C2 the development of scientific analytical thinking based on basic scientific and logical rules.
- C3 Enabling the student to dialogue and discuss issues related to his specialization in a fruitful manner.
- C4 Exchange views and allow others to clarify different points of view on the issues raised.

Evaluation methods

- ✓ Evaluation and correction of students' joint work (basic and applied).
- Distinguishing those with constructive opinions and a scientific approach to solving various problems.
- Adopting students' opinions and feedback through electronic questionnaires and taking opinions according to the majority

D - General and transferable skills (other skills related to employability and personal (development

(development

- **1.** The ability to conduct scientific and logical analysis based on basic facts or practical experience when hiring.
- **2.** The possibility of using advanced technology of various types to carry out important applications in the field of various electronics engineering.
- **3.** Ability to work within one team and cooperate to accomplish a specific task through active participation and exchange of different opinions to reach the optimal solution.
- **4.** Ability to self-develop and open doors to modern technology and applications Advanced and benefit from information and skills acquired in the academic program.

Teaching and learning methods

- ✓ Continuous follow-up of the academic program and all its activities.
- \checkmark Form groups of students and involve them in solving a real problem and discussing the proposed solutions.

 \checkmark Opening the door to dialogue on some issues and hearing different opinions about the program and its continuous development.

Focus on the nature of the problems addressed by graduation projects. For the past year, and emphasize on the practical aspects of it, which give the student additional experience that will benefit him later in the field of work when employed.

Evaluation methods

- ✓ Student ratings upon graduation.
- Participation rate in various activities and businesses.
- ✓ assessment and comparison with peer and teacher assessment.
- Personal interviews with prospective students Graduation
- ✓ Interviews are not with beneficiaries and recruitment companies.

9. Evaluation methods

- Participation in the classroom, whether in person or online.
- Submitting laboratory reports.
- Evaluation of the practical implementation of experiments.
- Providing various activities.
- Daily, quarterly, and final exams in person and online.

10. Facul	ty				
Specialization	General Specialization	Certificate	Academic title	Full name and surname	Т
PhD	Electronics and communications	Electrical Engineering	Mr	Khaled Khalil Mohammed Jassim	1
PhD	plasma	Physics	Mr	Qais Dhnoon, the star of Abdullah Al Ahmed Jassim	2
PhD	Microelectronics	Electrical Engineering	assistant professor	Ahmed Dhnoon Younis Hussein Al-Naqeeb	3
PhD	communication	Electrical Engineering	assistant professor	Mujahed Fahmy Ibrahim Ismail Al-Azzou	4
PhD	communication	Computer Engineering	assistant professor	Ouss Zuhair Younis Suleiman	5
PhD	Power electronics	Electrical Engineering	assistant professor	Harith Ahmed Mohammed Ahmed Al-Badrani	6
PhD	communication	Electrical Engineering	assistant professor	Ahmed Mohammed Ahmed Salama	7
Modern History	date	PhD	assistant professor	Hisham Suwadi Hashim	8
PhD	Microelectronics	Electrical Engineering	Teacher	Omar Badr Mohammed Khader Al Nuaimi	9
PhD	communication	Computer Engineering	Teacher	Ihab Essam Daoud Suleiman Al-Rawji	10
PhD	Computer and information technology	Computer Engineering	Teacher	Magic is necessary for Qudori Khader Al-Dulaimi	11
PhD	Digital image analysis and processing	Computer Engineering	Teacher	Sarmed Fakhr El-Din Ismail Jassim Al-Mawla	12
Master's	Electronics and communications	Electrical Engineering	Teacher	Sinan Khaled Mohammed Hassan Shanshal	13
Master's	Electronics and communications	Electrical Engineering	Teacher	Nour Talal Mahmoud Aziz Kadawi	14
Master's	Electronics and communications	Electrical Engineering	Teacher	Khaled Fazaa Mahmoud Mohammed	15
Master's	Electronic	Electronic engineering	Teacher	Imad Abdel Halim Abdo Ali Al Mulla Khader	16
Master's	Electronic	Electronic engineering	Teacher	Abdul Hamid Mohammed Jassim Mohammed Al- Jabouri	17
Master's	Solid state	Electrical Engineering	Teacher	A whisper of Fawaz Dhnoon Mohammed Al- Raho	18
Master's	Electronics and communications	Electrical Engineering	Teacher	Heba Abdel Khaleq Hamdoun Abdel Sawaf	19
Master's	Power electronics	Electrical Engineering	Assistant Professor	Shawkat Mohammed Younis Mal Allah	20
Master's	Electronics and communications	Electrical Engineering	Assistant Professor	Zahraa Siddiq Yahya Ahmed Al-Sayegh	21
Master's	Electronics and communications	Electrical Engineering	Assistant Professor	Amna Idris Kanaan Suleiman Hayo	22
Master's	Computer and information technology	Computer Engineering	Assistant Professor	Names of Nabil Khalil Omar	23

Master's	Power electronics	Electrical	Assistant	Mohamed Ibrahim	24
		Engineering	Professor	Mohamed Ahmed	
Master's	Electronic	Electronic	Assistant	Hamam Maher Abdul	25
		engineering	Professor	Shaheen Al-Hamdani	
Master's	Calculators	Computer	Assistant	Younis Saber Othman	26
		Engineering	Professor	Khattab Al-Rifai	
Master's	Electronic	Electronic	Assistant	Harith Hazem Dhnoon	27
		engineering	Protessor	Younis	
Master's	Electronic	Electrical	Assistant	Abdul Mohsen Ahmed	28
		Engineering	Professor	Hussein Al-Shalawi	
Maatada	Els strands	F lastania	Assistant	expresses	00
Master's	Electronic	Electronic	Assistant	Sinan Manmoud Ayoub	29
Mastaria	The sum of a series of single	engineering	Protessor	Mahamoud Al-Rano	00
wasters	i nermai engineering	Iviecnanical	Assistant	Monammed Salen Safar	30
Maataria	Computer and	Eligineening	Assistant	Amer Telel Ali Ahmed	24
waster s	information technology	engineering	Assistant	Amer Talai Ali Anmed	31
Mastar's		Mochanical	Assistant	Hani Mohammod Saloh	22
IVIASIEI S	Thermal engineering	Engineering	Professor	Salman	32
Master's	Electronics and	Electrical		Rasha Walid Hamad	33
Master 3	communications	Engineering	Professor		55
Master's	Electronics and	Electrical	Assistant	Omar Naguib Saadi	34
Madiano	communications	Engineering	Professor	oma nagab caaa	04
Master's	Power and machinery	Electrical	Assistant	Mavsara Abdul Jabbar	35
	, ,	Engineering	Professor	Qasim	
Master's	Power electronics	Electrical	Assistant	Hisham Mohammed	36
		Engineering	Professor	Mahmoud	
Master's	Electronics	Electronic	Assistant	Hajar Khalil Ibrahim Ahmed	37
		engineering	Professor		
Master's	Thermal engineering	Mechanical	Assistant	Mohammed Saleh Safar	38
		Engineering	Professor	Rasool	
Bachelor	engineering	engineering	nothing	Star Obaid Dahwi	39
Bachelor	engineering	engineering	nothing	Tariq Hussein Khader	40
Higher Diploma	engineering	engineering	nothing	Marwa Essam Ahmed	41
Bachelor	engineering	engineering	nothing	Adel Ghazi Sharif	42
Bachelor	engineering	engineering	nothing	Mohammed Muwaffaq Hadi	43
Bachelor	engineering	engineering	nothing	Asaad Abdul Ghani Saleh	44
Bachelor	engineering	engineering	nothing	Yathrib Walid Qasim Khalil	45
Bachelor	engineering	engineering	nothing	Saif El-Din Kamal	46
Bachelor	engineering	engineering	nothing	Ammar Ahmed Abdullah	47
Bachelor	Management and	Management	nothing	Pearl Hazem Fathallah	48
	Economics	and			
		Economics			
diploma	institute	institute	nothing	Idris Mohammed Younis	49
				Ahmed	

11. Acceptance Criteria

The approved admission plan for new students in the department's programs naturally follows the central admission plan of the Ministry of Higher Education and Scientific Research and is implemented by the university and the college. It can be said that the students enrolled in the department's programs represent the highest levels of their grades among applicants to the College of Electronics Engineering, as the principle of comparison is based on the average of the preparatory study and the student's desire to determine the study program within the programs of the College of Electronics Engineering. Therefore, the nature of the students accepted in the department's programs are distinguished by their academic and intellectual levels and their giving throughout the program period.

12. The most important sources of information about the program

Detailed information about the department's programs can be obtained By visiting the official website of the University of Nineveh and browsing the website of the College of Electronics Engineering:

www.uoninevah.edu.iq

Self-evaluation report and annual department guide within the university and college guide .

13. Program development plan

The curriculum is updated annually according to the latest relevant scientific books and labor market requirements, in addition to using the international information network to view the curriculum items of the subject in other leading international universities in this field.

Cu	Curriculum Skills Chart																		
Plea	Please tick the boxes corresponding to the individual learning outcomes of the programme being assessed.																		
Required learning outcomes of the program																			
Gen tran Othe rela emp pers (de	eral a sfera er ski ted to oloyat sonal velop	and ble sl lls) pility a ment	kills and	Emo valu	otiona e goa	al and als		Prog skill	Program specific skill objectives			Cognitive objectives				essential or optional	Course name	Course code	Year/Lev el
D4	D3	D2	D1	A4	A3	A2	A1	B 4	В3	B2	B1	A4	A3	A2	A 1				
*	*	*	*	*	*	*	*		*		*	*	*	*	*	essential	Mathematics I	NVEE206	
*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	essential	DC Circuits Analysis	NVEE215	the first
*	*		*	*	*	*	*	*	*	*	*		*	*	*	essential	Physical Electronics	NVEE218	
*	*		*		*	*	*	*	*	*	*	*	*	*	*	essential	Computer science	NVEEELM111	
*			*		*	*	*	*	*	*	*		*		*	secondary	Mechanical engineering principles	NVEE203	
*	*	*		*		*	*					*			*	secondary	Democracy and Human Rights	NVU12	
*	*		*	*	*	*	*	*	*		*	*	*	*	*	essential	AC Circuits Analysis	NVEE216	
*	*	*	*	*	*	*	*	*		*	*	*		*	*	essential	Mathematics II	NVEE207	
*	*		*	*	*			*	*	*	*	*	*		*	essential	Physics Of Semiconductor	NVEE219	
*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	essential	Digital Techniques	NVEE217	
*	*	*	*	*	*	*	*	*	*	*	*	*		*	*	secondary	Engineering Drawing	NVEE201	
*	*	*		*	*	*	*	*	*		*	*		*	*	secondary	English	NVU11	
]
*			*		*	*	*	*	*	*	*	*	*	*	*	essential	Engineering Analysis I	NVEE208	

	*			*	*		*	*	*	*	*	*	*	*	*	essential	Signal Analysis	NVEEELM211	the
	*	*		*	*	*		*	*	*	*	*	*	*	*	essential	Electronic I	NVEEELM212	/second
	*	*	*		*	*	*	*	*	*	*	*	*	*	*	essential	Digital design	NVEE223	medical
	*	*		*	*	*	*	*		*	*	*		*	*	essential	Electromagnetic fields I	NVEE215	
	*	*	*	*			*		*		*	*		*	*	essential	Human Physiology	NVEEELM 213	
*	*	*	*	*	*	*	*	*	*	*	*	*	*		*	essential	signals and systems	NVEE210]
	*		*		*	*	*		*	*		*	*	*	*	essential	Engineering Analysis II	NVEE209	
*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	essential	Electronic II	NVEEELM221	
	*	*			*		*	*	*	*	*	*	*	*	*	essential	programming	NVEEELM222	
	*	*			*		*	*		*	*	*	*	*	*	essential	Electromagnetics FieldsII	NVEE221	
	*	*			*		*		*	*			*	*		secondary	The Crimes of the Defunt Baath Part	NVU13	
				_	-						_								
*	*	*			*		*	*		*	*	*	*	*	*	essential	Engineering Analysis I	NVEE208	
*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	essential	Electronic I	NVEEELI212	
	*	*			*		*	*	*	*		*	*	*	*	essential	DC Machines	NVEEELI213	Second/
*	*	*	*	*	*	*	*		*	*	*		*	*	*	essential	Computer Programming	NVEEELI214	Industri al
*	*	*	*	*	*	*	*	*	*	*	*	*		*		secondary	The crimes of the defunct Baath Party	NVU13	
*	*	*	*	*	*	*	*	*	*	*	*	*		*	*	essential	Fundamentals of Electromagnetics	NVEE221	
	*	*	*		*	*	*	*	*	*	*	*	*	*	*	essential	Engineering Analysis II	NVEE209	
*	*		*	*	*	*	*	*	*		*	*	*		*	essential	Electronics II	NVEEELI222	
	*	*			*	*	*	*	*	*	*	*	*	*	*	essential	AC Machines	NVEEELI223	
*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	essential	Computer Languages	NVEEELI224	
	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	essential	Digital Design	NVEE223	
*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	essential	Signals and Systems	NVEE210	
	*	*	*	*	*	*	*		*	*		*	*	*	*	essential	Electronic II	EE3301	

*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	essential	Digital Signal Processing	EE3201	the third
*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	essential	Control Engineering	EE3302	
*	*	*	*	*	*	*	*	*	*	*	*		*	*	*	essential	Microprocessors	EE3303	
*			*	*	*	*		*	*			*	*		*	essential	DIGITAL SYSTEM DESIGN	EE3304	
*		*	*	*	*	*	*	*	*		*	*		*	*	essential	Communications	EE3305	
*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	essential	ELECTRONIC INSTRUMENTATIO N	EE3306	
	*	*		*	*	*		*	*	*	*	*	*	*	*	essential	Laboratory	EE3307	
*	*	*	*	*	*	*	*	*		*	*	*	*		*	essential	Industrial Electronic	EE4301	
*	*		*	*	*	*	*		*	*	*		*	*	*	essential	DATA TRANSMISSION& COMPUTER ETWORKS	EE4302	Fourth
*		*	*	*	*	*	*	*	*	*		*	*		*	essential	Microprocessor & Micro Controller	EE4303	
*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	essential	Microelectronics	EE4304	
*	*	*		*	*	*	*	*	*	*	*	*	*	*	*	essential	Microwave Engineering	EE405]
*	*	*	*	*	*	*	*	*		*		*	*	*	*	essential	Computer aided design	EE4306]
*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	essential	Engineering Project	EE4201	
*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	essential	Laboratory	EE4307	

Course Description

For the academic year 2023-2024

University of Nineveh

Faculty of Electronics Engineering

Department of Electronic Engineering

Courses specification for first class (First Course)

Module Information									
Module Title	DC Circuits	a Analysis		Modu	ule Delivery				
Module Type	Base				⊠ Theory				
Module Code	NVEE215				⊠ Lecture □ Lab				
ECTS Credits	5				⊠ Tutorial				
SWL (hr/sem)	125								
Module Level		11	Semester	Semester of Delivery 1					
Administration	Department		College						
Module Leader	Zahraa Siddiq	Yahya	e-mail						
Module Leader's	s Acad. Title	Lecturer assistant	Module Le	ader's	ader's Qualification				
Module Tutor	Zahraa Siddi	q Yahya	e-mail Email						
Peer Reviewer	Name	Name	e-mail Email						
Scientific Comn Approval Date	nittee	06/01/2023	Version N	umber	1.0				

Relation with othe	r Modules		
Prerequisite module		Semester	
Co-requisites module	None	Semester	

Module Aims, Learning Outcomes and Indicative Contents								
Module Aims	 To identify the basic concepts of DC Electrical Eng. circuits. To understand how is the calculation of current, voltage, and power . To understand and cover the basic DC circuit analysis methods and theorems . 							

Module Learning Outcomes	 Explain the function of each element in DC Electrical circuits . Use the basic circuit analysis methods and theorems to simplify the DC Electrical circuits. Explain the difference between transformation methods. Applying the appropriate analysis method to reach the aim in its simplest form.
Indicative Contents	Indicative content includes the following. Part A – BASIC CONCEPTS: Voltage & current; Power & Energy; Dependent and independent sources; Ohm's laws series & parallel connections; Delta-star connections and transformations. [15 hrs] Part B - DC Network Theorems : Source transformation; Linearity & superposition; Thevenin's & Norton's Theorems; Source transportation; source superposition; Nodal analysis; Mesh analysis. [35 hrs]

Learning and Teaching Strategies			
Strategies	Type something like: The main strategy that will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills. This will be achieved through classes, interactive tutorials and by considering types of simple experiments involving some sampling activities that are interesting to the students.		

Student Workload (SWL)			
Structured SWL (h/sem (30	Structured SWL (h/w)	4

		A	
Unstructured SWL (h/sem)	30	Unstructured SWL (h/w)	4
Total SWL (h/sem)	60		

Module E	valuation				
		Time/Numbe r	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	20% (20)	[3,6,9,12]	LO (#1- #12)
Formative assessme	Assignments	1	10% (10)	14	LO #4, #7, #(10-13)
nt	Projects / Lab.	0	0% (0)		
	Report	1	10% (10)	12	LO #11
Summativ	Midterm Exam	1.5 hr	10% (10)	10	LO #(1-8)
assessme nt	Final Exam	3 hours	50% (50)	16	All
Total assessment		100% (100 Marks)			

Delivery	Plan (Weekly Syllabus)
	Material Covered

Week 1	Voltage & current
Week 2	Power & Energy
Week 3	Dependent and independent sources
Week 4	Ohm's laws
Week 5	series & parallel connections
Week 6	Delta-star connections and transformations
Week 7	Kirchhoff's Current & Voltage Laws (KCL), (KVL)
Week 8	Source transformation
Week 9	Linearity & superposition
Week 10	Nodal analysis
Week 11	Mesh analysis
Week 12	Thevenin's Theorem
Week 13	Norton's Theorem
Week 14	Max. power transfer
Week 15	Preparatory week before the final exam

Learning and Tea	ching Resources	
	Text	Available in the Library?
Required Texts	"Engineering Circuit Analysis" By W. Hayt	Yes

Grading Sc	heme			
Group	Grade	Appreciation	Marks %	Definition
	A - Excellent	privilege	90 - 100	Outstanding Performance
Success	B - Very Good	very good	80 - 89	Above average with some errors
Group	C - Good	good	70 - 79	Sound works with notable errors
(50 - 100)	D - Satisfactory	middle	60 - 69	Fair but with major shortcomings
	E - Sufficient	acceptable	50 - 59	Work meets minimum criteria
Fail Group	FX – Fail) Precipitate under processing ((45-49)	More work required but credit awarded
(0 – 43)	F – Fail	Failed	(0-44)	Considerable amount of work required

Module Info	rmation					
Module Title	Compute	Computer science		Mod	ule Delivery	
Module Type	Core				□Theory	
Module Code	NVEEELN	1114			⊠Lecture	
ECTS Credits	4				XLab	
SWL (hr/sem)	100	100			Tutorial Practical ⊡Seminar	
Module Level		Semester of Delivery 1		1		
Administration	Administration Department ELM		College	NE		
Module Leader	Asmaa Nabeel e-n		e-mail	asmaa	.khaleel@uoni	inevah.edu.iq
Module Leader's	s Acad. Title	ad. Title Lecturer Assist Module Le		eader's	Qualification	M.Sc.
Module Tutor			e-mail			
Peer Reviewer	Name	Name	e-mail Email			
Scientific Comn Approval Date	nittee	4/7/2023	Version Number 1.0			

Relation with other Modules			
Prerequisite module	None	Semester	
Co-requisites module	None	Semester	

Module Aims, Lo	earning Outcomes and Indicative Contents
Module Aims	General overview of personal computer architecture Computer peripherals, keyboard, screen, mouse, and storage media Computer buses, ports, interfaces Overview of MSDOS operating system MSDOS internal commands MSDOS external commands Introduction to computer languages Overview of windows operating system Windows desktop, changing settings, starting programs Creating, deleting, copying, moving, searching for files and folders Using my computer, my document, and help facility Using windows control panel Using the windows accessories paint, notepad, word pad,etc Setup applications to windows, remove applications from windows Connecting to the internet, using the windows explorer Using the Microsoft Word Using the Microsoft Excel Using the Matlab
Module Learning Outcomes	 Understanding the important components of the computer and its operating system. Understanding the meaning of MSDOS operating system and its commands. Understanding the windows operating system Understanding the Microsoft office (word, power point, excel). Understanding the high and low level languages Learn about how the strings represented in C language. Introduction to Matlab
Indicative Contents	 explain the components of computer hardware and software Introduction to the types of computers storage media computer ports Computer networks and the types of it The internal and external MSDOS commands windows operating system word office program power point office program Excel program Matlab

Learning and Teaching Strategies		
Strategies	The primary strategy for delivering this module will be to encourage students to participate in the exercises while refining and expanding their critical thinking skills. This will be accomplished through classes, interactive tutorials, and the consideration of simple experiments involving sampling activities that students find interesting.	

Student Workload (SWL)			
Structured SWL (h/sem)	125	Structured SWL (h/w)	4
Unstructured SWL (h/sem)	65	Unstructured SWL (h/w)	2
Total SWL (h/sem)	190		

Module Evaluation

		Time/Numbe r	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	4	10 % (10)	2, 4, 5,6	LO #1, 2, 10 and 11
Formative	Assignment s	1	10 % (10)	14	LO # 3, 4, 6 and 7
assessment	Projects / Lab.	0	0	0	LO # 3, 4, 6 and 7, 5, 8 and 10
	Report	1	20	14	
Summative	Midterm Exam	1.5hours	30 % (20)	10	LO #1-4
ussessment	Final Exam	3 hours	5 0% (4 0)	16	All
Total assessment		100% (100 Marks)			

Delivery Plan (Weekly Syllabus)		
	Material Covered	
Week 1	Introduction to the part of computers in hardware and software, computer types, storage media	
Week 2	Explain the computer ports, computer networks	
Week 3	Introduction to MSDOS operating system and the internal commands of it	

Week 4	External Ms DOS command, file and folder related commands and the editor
Week 5	Windows operating system
Week 6	Windows commands)change the background, screen saver, resolution), change the status of files, printing files, copy and save files, backups, Recycle bin, compressing files, viruses
Week 7	Microsoft office word (creating new word file, bars, types and styles of fonts, copy and select of texts, saving of word file)
Week 8	MS WORD: spell checking, inserting symbols, add borders, change the document setup, insert table, page numbering, insert equations and effects)
Week 9	MS Power point:(how to design professional presentation, change the layout of presentation and background of it, numbering slides, insert charts, insert table and audio)
Week 10	MS Power point(insert an effect to the object in slide, transition between slides, grouping of objects, insert equation, copy, save and print the slides then how to start the presentation)
Week 11	MS EXCEL (getting started with excel, how to create a spreadsheet, copy and rename the work book, entering and deleting of data in sheet, inserting and deleting rows& columns, selecting cells, adding border to sheet)
Week 12	MS EXCEL:how to write a formula in sheet, functions, summation of data in row or column, average function, max& min functions, count& counta, round function, save and print the spread sheet
Week 13	Overview of High & Low level languages
Week 14	Matlah
Week 15	
Week 16	Preparatory week before the final exam

Delivery	Plan (Weekly Lab. Syllabus)
	Material Covered
Wook 1-	The application of each part of the covered drawing subject theoretically and according to
45	the weekly sequence of the curriculum in the AutoCAD laboratory
15	Note: By two hours a week

Learning and Te	eaching Resources	
	Text	Available in the Library?
Required Texts	1." Computer Science"	No
Recommended Texts	2. " MATLAB Handbook"	No
Websites	https://www.tutorialsmate.com/2021/12/parts-of-computer https://www.koenig-solutions.com/matlab-programming	

Grading Scheme				
Group	Grade	Appreciation	Marks (%)	Definition
	A - Excellent	privilege	90 - 100	Outstanding Performance.
Success	B - Very Good	very good	80 - 89	Above average with some errors.
Group	C - Good	good	70 - 79	Sound works with notable errors.
(50 - 100)	D - Satisfactory	middle	60 - 69	Fair but with major shortcomings.
	E - Sufficient	acceptable	50 - 59	Work meets minimum criteria.
Fail Group	FX – Fail) Precipitate under (processing	(45-49)	More work is required, but credit is given.
(0 0)	F – Fail	Failed	(0-44)	A significant amount of work is required.

Module Information Subject information						
Module Title	Mathmatics1			Modu	le Delivery	
Module Type	Base				⊠ Theory	
Module Code	NVEE206				⊠ Lecture ⊓ Lab	
ECTS Credits	6	6				
SWL (hr/sem)	150				□ Practical □ Seminar	
Module Level	el 1		Semester	ter of Delivery 1		1
Administration Department		Electronic Eng. Dep.	College	Electro	nics Engineerin	g
Module Leader	Hani MS Saln	nan	e-mail hani.mohamed@uoninevah.edu.iq		evah.edu.iq	
Module Leader's Acad. Title		Assistant Lecturer	Module Le	Module Leader's Qualification MSc		MSc
Module Tutor	Name (if avai	me (if available) e-mail Email				
Peer Reviewer Name		Name	e-mail	Email		
Scientific Committee Approval Date			Version N	umber	1.0	

Relation with other Modules		
Relationship with other subjects		
Prerequisite module	None	Semester
Co-requisites module	None	Semester

Module Aims, Learning Outcomes and Indicative Contents		
Course objectives, learnin	g outcomes and guiding content	
Module Objectives Subject objectives	 Gain proficiency in differentiating trigonometric function, inverse trigonometric function, hyperbolic function, natural logarithm, exponential function, and general exponential function. Master differentiation techniques for various types of jobs. To learn how to sketch curves and deal with the transcendental functions. To increase the skills related to differentiation applications. Develop a strong foundation in Integration of trigonometric function, inverse trigonometric function, hyperbolic function, 	

	natural logarithm, exponential function, and general
	exponential function.
	9. Understand the concept of Application of the definite integral.
	including finding volumes of revolution lengths of curves and
	surface areas of revolution
	10 To learn the methods of Integration – Trigonometric
	Substitutions Quadratics Partial fractions Integration by parts
	and Eurthor Substitutions
	11 Apply calculus principles to calve real world apgingering
	The Apply calculus principles to solve real-world engineering
	problems, developing problem-solving skills and the ability to
	apply calculus concepts to practical situations.
	1. Understand the concept of differentiation as a rate of change
	and slope of the curve.
	2. Understand the basic differentiation rules, chain rule, implicit
	differentiation, higher order differentiation, partial
	differentiation, Differentiation of trigonometric functions and
	Hyperbolic Functions.
	3. Learn the applications of differentiation.
	Solve Maximum and Minimum problems.
Module Learning	5. Learn how to Plot the Curve.
Outcomes	6. Learn Transcendental functions: graphs, and derivative.
outcomes	Understand the concept of integration: types of integrals.
	definite integrals, infinite integrals. Integration of trigonometric
Learning outcomes for the	function, inverse trigonometric function, hyperbolic function,
subject	natural logarithm, exponential function, and general
	exponential function
	8. Apply definite integration to as areas between curves, volumes
	of revolution, length of the curve and surface area of revolution.
	9. Learn Methods of Integration – Trigonometric Substitutions,
	Quadratics, Partial fractions, Integration by parts, and Further
	Substitutions.
	10. Develop critical thinking and problem-solving skills by applying
	calculus.
	Indicative content includes the following
	Part A – Differentiation
	Definitions and notations basic differentiation rules chain rule implicit
	differentiation higher order differentiation partial differentiation
	Differentiation of trigonometric functions and Hyperbolic Functions:
	Applications of differentiation – slope tangents and normal, rate of
Indicative Contents	change, velocity and acceleration, maxima and minima and inflexion
Guidance Contents	pointe and Curve plotting [16 bre]
	The second sector France definitions are set of a more than the second sectors.
	i ranscendental Functions – definitions, properties, graphs, derivative.
	Part B – Integration:
	Definitions and notations, types of integrals: definite integrals, infinite
	integrals. Integration of trigonometric function, inverse trigonometric

function, hyperbolic function, natural logarithm, exponential function, and general exponential function . [12 hrs] Application of the definite integral – areas between curves, volumes of revolution, length of the curve and surface area of revolution. [12 hrs]
Methods Of Integration – Trigonometric Substitutions, Quadratics, Partial fractions, Integration by parts, and Further Substitutions. [16 hrs]

Learning and Teac	Learning and Teaching Strategies		
Learning and teachi	ng strategies		
Strategies	This module's major aim is to foster student engagement, improve critical thinking abilities, and promote collaborative learning. Interactive seminars, interesting tutorials, and exercises active participation, allowing students to hone their critical thinking skills and encourage engineering mathematics principles to problem solving. Moreover, students collaborate on engineering mathematics issues, examine real-world scenarios, and explore the practical applications of the principles acquired through group activities, projects, and conversations. This method not only increases students' comprehension of engineering mathematical concepts, but it also fosters cooperation, communication, and key interpersonal skills that will be useful in their future engineering activities.		

Student Workload (SWL) The student's academic load is calculated for 15 weeks.					
Structured SWL (h/sem)62Structured SWL (h/w)Regular student load during the semester62Regular weekly student load					
Unstructured SWL (h/sem) Irregular student load during the semester	88	Unstructured SWL (h/w) Irregular student load per week	5.9		
Total SWL (h/sem) The student's total academic load during the semester					

Module Evaluation					
Course material evaluatio	n				
	Time/Numbe r	Weight (Marks)	Week Due	Relevant Learning Outcome	

Formative	Quizzes	2	30% (30)	5 and 10	LO #1 #2 #3 and #4, #7, #8
	Assignments	1	10% (10)	12	LO #7 - #9
assessment	Projects / Lab.	-	-	-	-
	Report	-	-	-	-
Summative	Midterm Exam	2hr	10% (10)	7	LO #1 - #6
assessment	Final Exam	3hr	50% (50)	16	All
Total assessment		100% (100 Marks)			

Delivery	Plan (Weekly Syllabus)
Theoretic	al weekly curriculum
	Material Covered
Week 1	Introduction – Differentiation definitions and notations, review of basic differentiation rules ,
	chain rule, and Implicit differentiation.
Week 2	Partial differentiation and higher order differentiation.
Week 3	Differentiation of trigonometric functions and hyperbolic functions. Applications of
WOOK O	differentiation; slope, tangents and normal.
Week 4	Rate of change, velocity and acceleration, maximum and minima, inflexion points and Curve
WCCR 4	plotting
Week 5	Transcendental Functions – definitions, properties, and graphs, derivative.
Wook 6	Definitions and notations of integration, Types of integrals: definite integrals and
Week o	infinite integrals. Integration of trigonometric function.
Week 7	Integration of inverse trigonometric function, hyperbolic function. Mid-term Exam
Wook 8	Integration of inverse trigonometric function, hyperbolic function, natural logarithm,
WEER O	exponential function, and general exponential function.
Week 9	Application of the definite integral – areas between curves volumes of revolution
Week 10	length of the curve and surface area of revolution
Week 11	
Week 12	Mathada Of Integration Trigonometric Substitutions Quadratics Particl fractions
Week 13	integration – mgonometric substitutions, Quadratics, Partial fractions,
Week 14	Integration by parts, and Further Substitutions.
Week 15	

Learning and Teaching Resources Learning and teaching resources				
	Text	Available in the Library?		
Required Texts	G. B. Thomas Jr., M. D. Weir, J. Hass, and F. R. Giordano, "Thomas' Calculus," 12th ed., Pearson, 2019.	Yes		
Recommended Texts				
Websites	Websites https://www.coursera.org/learn/introduction-to-calculus#syllabus https://www.edx.org/learn/calculus https://www.khanacademy.org/math/calculus-1			

Grading Scheme Grading chart				
Group	Grade	Appreciation	Marks %	Definition
	A - Excellent	privilege	90 - 100	Outstanding Performance
Success	B - Very Good	very good	80 - 89	Above average with some errors
Group	C - Good	good	70 - 79	Sound works with notable errors
(50 - 100)	D - Satisfactory	middle	60 - 69	Fair but with major shortcomings
	E - Sufficient	acceptable	50 - 59	Work meets minimum criteria
Fail Group	FX – Fail	Precipitate (in (process	(45-49)	More work required but credit awarded
(0 - 49)	F – Fail	Failed	(0-44)	Considerable amount of work required

Module Information						
Module Title	Physical El	Physical Electronics			le Delivery	
Module Type	Core	Core			⊠ Theory	
Module Code	NVEE218				⊠ Lecture □ Lab	
ECTS Credits	6	6			⊠ Tutorial	
SWL (hr/sem)	150				□ Practical □ Seminar	
Module Level	Module Level 1		Semester of Delivery 1		1	
Administration	Department	Electronic	College	Ninevah University		
Module Leader	Hamsa Fawaz	z Thanoon	e-mail	hamsa	.thanoon@uoni	nevah.edu.iq
Module Leader's	s Acad. Title	Lecturer	Module Le	ader's	Qualification	M.Sc
Module Tutor			e-mail	Email		
Peer Reviewer	Name		e-mail	Email		
Scientific Committee Approval Date		04/07/2023	Version N	umber	1.0	

Relation with othe	r Modules		
Prerequisite module		Semester	
Co-requisites module	None	Semester	

Module Aims, Learning	Outcomes and Indicative Contents
Module Aims	 To develop problem solving skills and understanding of Atomic Structure To understand Energy band structure of metal, insulator, and semiconductor. To understand the properties of intrinsic P and N type semiconductors. To understand Electrical conduction in intrinsic semiconductor. To understand the properties of extrinsic semiconductors. To understand the properties of extrinsic semiconductors. To understand Electrical conduction in extrinsic semiconductors.
Module Learning Outcomes	 Recognize how semiconductors work in electronics circuits. List the various terms associated with electronics circuits. Summarize what is meant by a basic of semiconductors. Discuss the reaction and involvement of semiconductors in generating the currents. Describe mobility of electrons and conductivity in metals. Define Ohm's law. Identify the pure semiconductors. Identify the impure semiconductors Discuss the impure semiconductors N and P types Explain the type of electronic emission.
Indicative Contents	Indicative content includes the following. Part A - Energy Bands in Solids Describe the structure of an atom ◆ Discuss insulators, conductors, and semiconductors and how they differ. [9 hrs] Revision problem classes [3 hrs] Part B - Transport Phenomena in Semiconductor Describe how current is produced in a semiconductor ◆ Describe the properties of n-type and p-type semiconductors. [30 hrs]

Learning and Teaching Strategies		
Strategies	The main strategy that will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills.	

Student Workload (SWL)			
Structured SWL (h/sem)	111	Structured SWL (h/w)	3
Unstructured SWL (h/sem)	65	Unstructured SWL (h/w)	2
Total SWL (h/sem)	176		

Module Evaluation					
		Time/Numbe r	Weight (Marks)	Week Due	Relevant Learning Outcome
Formative assessment	Quizzes	4	10	[2,4,5,6]	LO (#1- #12)
	Assignments	2	10	14	LO #4, #7, #(10-13)
	Projects / Lab.	0	0% (0)		
	Report	1	10% (10)	12	LO #11
Summative	Midterm Exam	1.5 hr	20% (20)	10	LO #(1-8)
assessment	Final Exam	3 hours	50% (50)	16	All
Total assessment		100% (100 Marks)			

Delivery Plan (Weekly Syllabus)				
	Material Covered			
Week 1	Energy Bands in Solids			
Week 2	Fermi-Dirac distribution function			
Week 3	Properties of intrinsic P and N type semiconductors			
Week 4	Mobility and conductivity			
Week 5	Electrical conduction in intrinsic semiconductor			
Week 6	Hall Effect			
Week 7	Generation and recombination of charges			
Week 8	Diffusion current continuity equation			
Week 9	Injection minority carrier charges			
Week 10	N-type semiconductor			
Week 11	Solved problems			
Week 12	P-type semiconductor			
Week 13	Solved problems			
Week 14	Photo-conductivity			
Week 15	Preparatory week before the final exam			

Learning and Teaching Resources				
	Text	Available in the		
		Library?		
	1. "NTEGRATEDELECTRONICS" ByMILLMAN&HALKIES			
Required Texts	2. "SEMICONDUCTOR DEVICES & CIRCUITS", JOHN	Yes		
	WILEY & SONS			
Recommended	1. (Floyed)	Voc		
Texts	2. Theraja Chapter 51	165		

Grading Scheme					
Group	Grade	Appreciation	Marks %	Definition	
Success Group (50 - 100)	A - Excellent	privilege	90 - 100	Outstanding Performance	
	B - Very Good	very good	80 - 89	Above average with some errors	
	C - Good	good	70 - 79	Sound works with notable errors	
	D - Satisfactory	middle	60 - 69	Fair but with major shortcomings	
	E - Sufficient	acceptable	50 - 59	Work meets minimum criteria	
Fail Group (0 – 49)	FX – Fail) Precipitate under processing ((45-49)	More work required but credit awarded	
	F – Fail	Failed	(0-44)	Considerable amount of work required	

Module Information							
Module Title	Mechanical Engineering Principle			Modu	Module Delivery		
Module Type	<u>Base</u>		□Theory				
Module Code	NVEE203		⊠Lec □Lab	│ ⊠Lecture │ □Lab			
ECTS Credits	<u>6</u>			⊠Tutorial □Practical			
SWL (hr/sem)	<u>150</u>			□Seminar			
Module Level		1	Semester o	r of Delivery		1	
Administration Department		Type Dept. Code	College	College Type College Code			
Module Leader			e-mail				
Module Leader's Acad. Title		Lecturer	Module Leader's Qualification		M.Sc.		
Module Tutor			e-mail				
Peer Reviewer Name		Name	e-mail Email				
Scientific Committee Approval Date		07/02/2023	Version Number 1.0				

Relation with other Modules				
Prerequisite module	None	Semester		
Co-requisites module	None	Semester		

Module Aims, Learning Outcomes and Indicative Contents				
Module Aims	 Students will be able to: Students will be able to: Knowing the different methods of making calculations related to forces and their effects on two- and three-dimensional systems Clarify that the subject represents a very important introduction to other subjects for the later stages of the student's study and building a scientific base for the student to ensure the possibility of understanding the relevant topics in the later stages. The student will learn different applications of commonly used mechanical machinery. The student will learn strong basics of Mechanical Engineering fundamentals. 			
Module Learning Outcomes	 Have understood and overcome any misconceptions about basic concepts in physics (force, energy, work etc). Restate existing problem solving skills in a form more suitable for engineering applications . Interpret basic engineering applications of mechanics in more detail. Acquire four basic thinking skills: Perceive, or resolve, contradictions involving their preconceptions about mechanics. Organize the basic ideas of mechanics in a form suitable for problem solving. Apply basic principles in mechanics to realistic engineering situations. 			
Indicative Contents	Indicative content includes the following:- Statics - Introduction [25 hrs] • Vectors • Newton's Laws • Fundamental Units • Types of force • Parallelogram law • Resultant forces • Moment of couples • Free body diagram • Coplanar system • Friction: Nature of friction; Theory of friction; Coefficient of friction Dynamics - Introduction [20 hrs] • Newton's Laws			
 Formulation and solution of problems 				
--				
 Kinematics of Particles 				
 Rectilinear motion 				
 Curvilinear motion 				
 Relative motion 				
 Kinetics of Particles 				
 Newton's second law 				
 Work and energy 				
-				

Learning and Teaching Strategies				
Strategies	The primary strategy for delivering this module will be to encourage students to participate in the exercises while refining and expanding their critical thinking skills. This will be accomplished through classes, interactive tutorials, and the consideration of simple experiments involving sampling activities that students find interesting.			

Student Workload (SWL)							
Structured SWL (h/sem)		25		Structured	SWL (h/w)		2
Unstructured SWL (h/sem)		20		Unstructured SWL (h/w)		1	
Total SWL (h/sem)		45					
Module Evaluation							
As	Time/Nun	nber	Weigh	t (Marks)	Week Due	Relevant Learning	

As		Time/Number	Weight (Marks)	Week Due	Learning
					Outcome
	0		5%(5)	2, 5, 9,	LO #1, 2, 10 and
	Quizzes	0	5 % (5)	12,13,15	11
Formative assessment	Accianmente	6	5%(5)	2, 5, 9,	LO # 3, 4, 6 and
	Assignments			12,13,15	7
	Projects / Lab.	0	0 %		
	Report	0	0%	0	
Summative	Midterm Exam	3hr	30 % (30)	10	LO #1-7
assessment	Final Exam	3 hours	60 % (4 0)	16	All
Total assessment			100% (100 Marks)		

Delivery Pla	n (Weekly Syllabus)
Week	Material Covered
Week 1	Force system; Units system;
Week 2	Parallelogram law; Forces + components
Week 3	Result of coplanar forces
Week 4	Components of force in space
Week 5	Moment of force
Week 6	Moment of force
Week 7	Moment of force
Week 8	Free body diagram; Coplanar system
Week 9	Friction: Nature of friction; Theory of friction
Week 10	Coefficient of friction
Week 11	Coefficient of friction
Week 12	Coefficient of friction
Week 13	Normal and tangential components of acceleration
Week 14	Normal and tangential components of acceleration
Week 15	
Week 16	Normal and tangential components of acceleration

Learning and Teaching Resources			
	Text	Available in the Library?	
Required Texts	 Engineering Mechanics (statics) By : JL MERIAM Engineering Mechanics (Dynamics) By: JL MERIAM 	Yes	
Recommended Texts	A	No	
Websites			

Grading Scheme				
Group	Grade	Appreciation	Marks (%)	Definition
Success Group (50 - 100)	A - Excellent	privilege	90 - 100	Outstanding Performance.
	B - Very Good	very good	80 - 89	Above average with some errors.
	C - Good	good	70 - 79	Sound works with notable errors.
	D - Satisfactory	middle	60 - 69	Fair but with major shortcomings.
	E - Sufficient	acceptable	50 - 59	Work meets minimum criteria.
Fail Group (0 – 49)	FX – Fail	Precipitate (in (process	(45-49)	More work is required, but credit is given.

F – Fail	Failed	(0-44)	A significant amount of work is required.

Module Information						
Module Title	Democracy	Democracy and Human Rights Module Delivery				
Module Type	Basic				⊠ Theory	
Module Code	<u>NV12</u>				□ Lecture □ Lab	
ECTS Credits	<u>2</u>	2			☐ Tutorial	
SWL (hr/sem)	<u>50</u>	<u>50</u>			□ Seminar	
Module Level	1		Semester of Delivery 1		1	
Administration Department		Dept. of Electronic	College	EE		
Module Leader	Husham Swad	li Hashim	e-mail	<u>Hushan</u>	n.hashim@uonin	<u>evah.edu.iq</u>
Module Leader's Acad. Title Assistant Professor		Assistant Professor	Module Leader's Qualification PHD		PHD	
Module Tutor			e-mail			
Peer Reviewer Name			e-mail			
Scientific Committee Approval Date		06/01/2023	Version Nu	mber	1.0	

Relation with other Modules				
Relationship with other subjects				
Prerequisite module	None	Semester		
Co-requisites module	None	Semester		

Module Aims, Learning Outcomes and Indicative Contents					
Course objectives, learning outcomes and guiding content					
Module Aims Subject objectives	Explaining the concepts of human rights and democracy -1 Explaining the importance of human rights in our public life and at all levels -2 (.academic, professional, social, etc) Explaining the importance of creating a conscious concept of the term -3 democracy within governance systems and its impact on political stability. The necessity of understanding the close connection between rights and - 4 building a democratic society that guarantees the freedom of its individuals and safeguards their interests.				

	The necessity of focusing on the fact that building a sound concept of -5
	human rights and a democratic society can only be achieved through laws that
	guarantee this, and the importance of these laws in building a stable society
	that guarantees the rights of all its individuals within a democratic political
	system.
Module Learning	Establishing the values of freedom and equality in the foundations of actual -1
Outcomes	participation in building society.
Outcomes	Working to build a stable , real environment by implementing laws within a -2
	democratic society.
Learning outcomes for the	Seeking to provide the foundations for protecting individuals within - 3
subject	democratic societies.
	- Part One: The Historical Development of Human Rights
	First: Primitive societies
	- Prehistory
	- Eastern civilizations (Mesopotamia and the Pharaonic civilization as an
	(example
) as an example - Western civilizations (Greek and Roman)
	Second: Heavenly laws
	- Christianity
	- Islam (in more detail)
	Third: The development of human rights in positive laws
	Social contracttheory
	- World Wars and their Impact on Human Rights
	- International organization
	Section Two: Human Rights, Definition and Types
	First: Definition and Identification
	- The right in Islamic jurisprudence
	- The right to legal jurisprudence
Indicative Contents	- Definition of human rights
Guidance Contents	Second: Divisions of human rights (this is done through a detailed study and
	(comparison between law and Islamic law
	Collective rights (right to coll determination, right to development, right to a
	suitable environment, right to live in peace)
	, individual rights (economic and cultural rights, civil and political rights
	(personal rights-
	Section Three: Guarantees of respect and protection of human rights
	First: Guarantees in Islamic law Second: Guarantees at the national level
	Third: Guarantees at the international level
	Vocabulary of democracy
	The first course: includes the subject of public freedoms between Sharia and
	law.
	The second course: includes the subject of state administration systems
	between Sharia and law.
	Public freedoms (between Sharia and law)
	First: Introduction
	Second: Definition of public freedoms

- Linguistic origin
- Historical origin
- Legal basis
- The legal basis
Third: Foundations of public freedoms
- Justice
- Equality
- Freedom
Fourth: Descriptive public freedoms
- Freedom of opinion
- Freedom of thought
- Freedom of the media
Goodevening
Fifth: Islamic Sharia and public freedoms
- Islam's position on women (inheritance, marriage, taking up jobs)
- Islam's position on freedom of belief
State management systems
First: - In defining political systems
The idea of the political system
- The legitimacy of political systems
Types of political systems
Second: In the democratic system
- An original introduction
Definition of democracy
- Pillars and foundations of the democratic system
Third: Models of democracy
- Direct democracy

Learning and Teaching Strategies			
Learning and teaching strategies			
Strategies	Following the direct teaching method by presenting and explaining the material and using educational tools to explain it by clarifying the mechanisms of the scientific concept of the terms democracy and human rights.		

Student Workload (SWL)			
Student's academic load			
Structured SWL (h/sem) Regular student load during the semester	16	Structured SWL (h/w) Regular weekly student load	1

Unstructured SWL (h/sem) Irregular student load during the semester	9	Unstructured SWL (h/w) Irregular student load per week	0.5
Total SWL (h/sem) The student's total academic load during the semester	25		

Module Evaluation

Course material evaluation

		Time/Nu mber	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10 % (10)	5, 10	LO #1, 2, 10 and 11
Formative	Assignments	2	10 % (10)	2, 12	LO # 3, 4, 6 and 7
assessment					
	Report	1	10% (10)	13	LO # 5, 8 and 10
Summative	Midterm Exam	2 hours	10 % (10)	7	LO #1-7
assessment	Final Exam	2 hours	5 0% (5 0)	16	All
Total assessment		100% (100 Marks)			

Delivery Plan (Weekly Syllabus)

Theoretical weekly curriculum

	Material Covered
Week 1	Historical development of human rights
Week 2	Heavenly laws
Week 3	The development of human rights in positive laws
Week 4	Human rights, definition and types
Week 5	Guarantees of respect and protection of human rights
Week 6	Guarantees in Sharia and at the national and international levels
Week 7	Mid-term Exam
Week 8	The concept of democracy
Week 9	Public freedoms between Sharia and law
Week 10	Definition of public freedoms and the foundations of freedoms
Week 11	Islamic Sharia and public freedoms
Week 12	State management systems
Week 13	Democracy: An Introduction
Week 14	Pillars and foundations of the democratic system
Week 15	Models of democracy
Week 16	Preparatory week before the final exam

Learning and Tea	aching Resources	
Learning and tead	hing resources	
	Toxt	Available in the
		Library?
Required Texts		Yes
Recommended Texts		No
Websites		

Grading Sc Grading cha	heme Irt			
Group	Grade	Appreciation	Marks (%)	Definition
	A - Excellent	privilege	90 - 100	Outstanding Performance
Success	B - Very Good	very good	80 - 89	Above average with some errors
Group	C – Good	good	70 - 79	Sound works with notable errors
(50 - 100)	D - Satisfactory	middle	60 - 69	Fair but with major shortcomings
	E - Sufficient	acceptable	50 - 59	Work meets minimum criteria
Fail Group	FX – Fail	Precipitate (in (process	(45-49)	More work required but credit awarded
(0 - 49)	F – Fail	Failed	(0-44)	Considerable amount of work required

Courses specification for first class (Second Course)

Module Infor	mation						
Module Title	Digital Tech	Digital Techniques			ule Delivery		
Module Type	Base				⊠Theory		
Module Code	NVEE217				⊠Lecture		
ECTS Credits	5				□Lab		
					⊠Tutorial		
SWL (hr/sem)	125	125			⊠Practical		
					□Seminar		
Module Level	> Level		Semester of Delivery		2		
Administration I	Department		College	Type College Code			
Module Leader	(Younis Saber Othman), (Noor Alhuda Saad Abbas)		e-mail				
Module Leader's Acad. Title Lecturer Assistant		Lecturer Assistant	Module Le	ader's	Qualification	M.Sc.	
Module Tutor	Module Tutor		e-mail				
Peer Reviewer Name Name		e-mail	Email				
Scientific Committee 4/7 Approval Date 4/7		4/7/2023	Version N	umber	1.0		

Relation with other	r Modules		
Prerequisite module	None	Semester	
Co-requisites module	None	Semester	

Module Aims, Learning Outcomes and Indicative Contents				
Module Aims	 To learn new number systems and how to convert between them To identify and learn the logic gates and Boolean algebra How to minimize the Boolean functions using Boolean algebra and Karnaugh maps To understand, draw, and identify the combined logic circuits using the discrete logic To understand, draw, and identify the combined logic circuits using the MSI integrated circuits To use the 3-variables and 4-variables Karnaugh map for Boolean minimization 			
Module Learning Outcomes	 Students will be able to: Learning new number systems and how to convert between them Identify the logic gates and learn the Boolean algebra Minimize the Boolean functions Understand, draw, and identify the combined logic circuits using the discrete logic and MSI integrated circuits Identify and use the 3-variables and 4-variables Karnaugh map 			
Indicative Contents	 NUMBER SYSTEMS:- [10 Hrs] Decimal number system; Binary; Octal and hexadecimal number systems; Conversion from one number to another number system; Addition; Subtraction; Multiplication and division using different number system; Representation of binary number insignia-magnitude ; Sign 1's completion and align 2's complement notation; Rules for addition and subtraction with complement representation; BCD; EBCDIC; ASCII; Extended ASCII; Gray and other codes. LOGIC GATES AND BOOLEAN ALGEBRA:- [10 Hrs] AND; OR; NOT; NAND; NOR; Ex-OR logic gates; Positive and negative logic; Fundamental concepts of Boolean algebra; De-murrage's laws; Principles of duality; Simplification of Boolean expressions; Canonical and standard forms for Boolean function; SOP and POS, forms; Realization of Boolean functions using only NAND and NOR gates. BOOLEAN FUNCTION MINIMIZATION:- [10 Hrs] Objectives of the minimization procedures; Karnaugh map method; The 3- Variable Karnaugh Map; The 4-Variable Karnaugh Map; Karnaugh Map SOP Minimization; Don't care conditions; Karnaugh Map POS Minimization; Converting between POS and SOP Using the Karnaugh Map. COMBINATIONAL LOGIC CIRCUITS USING DISCRETE LOGIC GATES:- [5 Hrs] 			
	Hrs] Parity generator and checker; Code converters; Majority circuits; magnitude comparator.			

COMBINATIONAL LOGIC CIRCUIT USING MSI INTEGRATED CIRCUITS:- [10 Hrs]
Encoder; priority encoder; decoder; Multiplexer and demultiplexer circuits; Implementation of Boolean functions using decoder and Multiplexer; BCD to 7- segment decoder; Common anode and common cathode 7-segment displays; Random access memory; Read only memory and erasable programmable ROMS

Learning and Teaching Strategies		
Strategies	The primary strategy for delivering this module will be to encourage students to participate in the exercises while refining and expanding their critical thinking skills. This will be accomplished through classes, interactive tutorials, and the consideration of simple experiments involving sampling activities that students find interesting.	

Student Workload (SWL)			
Structured SWL (h/sem)	45	Structured SWL (h/w)	4
Unstructured SWL (h/sem)	45	Unstructured SWL (h/w)	4
Total SWL (h/sem)	90		

Module Evaluation

		Time/Numbe r	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10 % (10)	1-14	LO #1-14
Formative	Assignment s	1	5%(5)	6	LO #1-6
assessment	Projects / Lab.	10 Lab	10 % (10)	5-14	LO #5-14
	Report	3	5% (5)	5-14	LO #5-14
Summative	Midterm Exam	1.5hr	20 % (20)	10	LO #1-10
assessment	Final Exam	2 hours	5 0% (5 0)	16	All
Total assessment		100% (100 Marks)			

Delivery	Delivery Plan (Weekly Syllabus)		
	Material Covered		
Week 1	Decimal number system: Binary: Octal and hexadecimal number systems: Conversion		
	from one number to another number system; Addition; Subtraction; Multiplication and		
Week 2	division using different number system; Representation of binary number insignia- magnitude ; Sign 1's completion and align 2's complement notation; Rules for addition		
Week 3	and subtraction with complement representation; BCD; EBCDIC; ASCII; Extended ASCII; Gray and other codes.		
Week 4	LOGIC GATES AND BOOLEAN ALGEBRA:-		
Week 4	AND; OR; NOT; NAND; NOR; Ex-OR logic gates; Positive and negative logic;		
Wook 5	Fundamental concepts of Boolean algebra; De-murrage's laws; Principles of duality;		
MCCK 0	Simplification of Boolean expressions; Canonical and standard forms for Boolean functions: SOP and POS, forms: Realization of Boolean functions using only NAND and		
Week 6	NOR gates.		
Week 7	BOOLEAN FUNCTION MINIMIZATION:-		
	Objectives of the minimization procedures; Karnaugh map method; The 3-Variable		
Week 8	Karnaugh Map; The 4-Variable Karnaugh Map; Karnaugh Map SOP Minimization;		
Week 9	Don't care conditions; Karnaugh Map POS Minimization; Converting between POS and SOP Using the Karnaugh Map.		
Week 10			
Week 11	COMBINATIONAL LOGIC CIRCUITS USING DISCRETE LOGIC GATES:-		
Week 12	Parity generator and checker; Code converters; Majority circuits; magnitude comparator.		
Week 13	COMBINATIONAL LOGIC CIRCUIT USING MSI INTEGRATED CIRCUITS:-		
	Encoder; priority encoder; decoder; Multiplexer and demultiplexer circuits;		
Week 14	Implementation of Boolean functions using decoder and Multiplexer; BCD to 7-		
	Random access memory: Read only memory and erasable programmable ROMS		
Week 15			
Week 16	Preparatory week before the final exam		

Deliver	y Plan (Weekly Lab. Syllabus)
	Material Covered
Week 5-14	Introduction to KL-31001 DIGITAL LOGIC LAB Exp. 1: Logic Gates Exp. 2: NAND, NOR, XOR Gates Exp. 3: AND-OR-INVERTER(AOI) Circuits Exp. 4: Bit Parity Generator Circuits Exp. 5: Comparator Circuits Exp. 6: Decoder Exp. 7: Encoder

Learning and Teaching Resources		
	Text	Available in the Library?
Required Texts	Digital Fundamentals Eleventh Edition Global Edition by Thomas L. Floyd Pearson Education 2015	PDF
Recommended Texts	Logic and Computer Design Fundamentals Fifth Edition Global Edition by Morris Mano • Charles R. Kime • Tom Martin Pearson Education 2016	PDF
Websites	(Telegram Group and Google classroom)	

Grading Scheme				
Group	Grade	Appreciation	Marks (%)	Definition
	A - Excellent	privilege	90 - 100	Outstanding Performance.
Success	B - Very Good	very good	80 - 89	Above average with some errors.
Success Group (50 - 100)	C - Good	good	70 - 79	Sound works with notable errors.
	D - Satisfactory	middle	60 - 69	Fair but with major shortcomings.
	E - Sufficient	acceptable	50 - 59	Work meets minimum criteria.
Fail Group (0 – 49)	FX – Fail) Precipitate under (processing	(45-49)	More work is required, but credit is given.
	F – Fail	Failed	(0-44)	A significant amount of work is required.

Module Information							
Module Title	AC circu	AC circuits Analysis			ule Delivery		
Module Type	Base	Base			⊠ Theory		
Module Code	NVEE216	NVEE216			☐ Lecture		
ECTS Credits	5	5			 ☑ Tutorial ☑ Practical ☑ Seminar 		
SWL (hr/sem)	125	125					
Module Level 1		11	Semester	ster of Delivery		2	
Administration Department Ty		Type Dept. Code	College	Туре С	ollege Code		
Module Leader	Zahraa Siddiq Yahya		e-mail				
Module Leader's Acad. Title		Lecturer assistant	Module Le	Iodule Leader's Qualification			
Module Tutor	Iodule Tutor Zahraa Siddiq Yahya		e-mail	Email			
Peer Reviewer Name		Name	e-mail	Email			
Scientific Committee Approval Date		06/01/2023	Version N	umber	1.0		

Relation with other Modules			
Prerequisite module		Semester	
Co-requisites module	None	Semester	

Module Aims, Lear	ming Outcomes and Indicative Contents
Module Aims	 12. To identify the basic concepts of energy storage elements. 13. To identify the basic of Alternating Current AC. 14. To understand and cover the basic AC circuit analysis methods and theorems .
Module Learning Outcomes	 11. Explain the function of each element in AC Electrical circuits . 12. Use the basic circuit analysis methods to simplify the AC Electrical circuits. 13. Applying the appropriate analysis method to reach the aim in its simplest form.
Indicative Contents	Indicative content includes the following. Part A – energy storage elements: The capacitor; The Inductor; Analysis of RC-transient circuits; Analysis of RL-transient circuits; RLC transient circuits. [15 hrs] Part B - AC circuit analysis : the basic of Alternating Current AC; The Phasor equivalent circuit; series & parallel connections and equivalent impedance; Methods of Ac-circuit Analysis; superposition; Nodal & Mesh analysis; Thevenin's Theorem; Norton's Theorem; Power factor and average power in the sinusoidal Ac-circuits; Complex power; Series & parallel resonance. [35 hrs]

Learning and Teaching Strategies		
Strategies	Type something like: The main strategy that will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills. This will be achieved through classes, interactive tutorials and by considering types of	

simple experiments involving some sampling activities that are interesting to the students.

Student Workload (SWL)					
Structured SWL (h/sem (30	Structured SWL (h/w) A	4		
Unstructured SWL (h/sem)	30	Unstructured SWL (h/w)	4		
Total SWL (h/sem)	60				

Module Evaluation						
		Time/Numbe r	Weight (Marks)	Week Due	Relevant Learning Outcome	
	Quizzes	2	20% (20)	[3,6,9,12]	LO (#1- #12)	
Formative	Assignments	1	10% (10)	14	LO #4, #7, #(10-13)	
assessment	Projects / Lab.	0	0% (0)			
	Report	1	10% (10)	12	LO #11	
Summative	Midterm Exam	1.5 hr	10% (10)	10	LO #(1-8)	
assessment	Final Exam	3 hours	50% (50)	16	All	
Total assessment			100% (100 Marks)			

Delivery Plan (Weekly Syllabus)			
	Material Covered		
Week 1	The capacitor & The inductor		
Week 2	Analysis of RC & RL -transient circuits		
Week 3	Analysis of RLC transient circuits		
Week 4	The basic of alternating current AC		
Week 5	The phasor equivalent circuit		
Week 6	series & parallel connections and equivalent impedance		
Week 7	Methods of Ac-circuit Analysis		
Week 8	superposition		
Week 9	Nodal & Mesh analysis		
Week 10	Thevenin's Theorem		
Week 11	Norton's Theorem		
Week 12	Power factor and average power in the sinusoidal Ac-circuits		
Week 13	Complex power		
Week 14	Series & parallel resonance		
Week 15	Preparatory week before the final exam		

Learning and Teaching Resources				
	Text	Available in the		
		Library?		
Required Texts	"Engineering Circuit Analysis" By W. Hayt	Yes		
Recommended Texts	"Introductory Circuit Analysis" By Boylested	Yes		

Grading Scheme						
Group	Grade	Appreciation	Marks %	Definition		
	A - Excellent	privilege	90 - 100	Outstanding Performance		
	B - Very Good	very good	80 - 89	Above average with some errors		
Success Group	C - Good	good	70 - 79	Sound works with notable errors		
(50 - 100)	D - Satisfactory	middle	60 - 69	Fair but with major shortcomings		
	E - Sufficient	acceptable	50 - 59	Work meets minimum criteria		
Fail Group	FX – Fail) Precipitate under processing ((45-49)	More work required but credit awarded		
(0 – 49)	F – Fail	Failed	(0-44)	Considerable amount of work required		

Module Information Subject information						
Module Title	Engineering Drawing		Modu	ule Delivery		
Module Type	Core			□ Theory		
Module Code	NVEE201			□ Lecture □ Lab		
ECTS Credits	5				□ Tutorial ⊠ Practical	
SWL (hr/sem)	125	125			□ Seminar	
Module Level	vel 1		Semester	Semester of Delivery 2		2
Administration	Department		College			
Module Leader	Noor Yassar		e-mail			
Module Leader's	s Acad. Title		Module Le	ader's	Qualification	
Module Tutor	Name (if available)		e-mail	Email		
Peer Reviewer Name Name		e-mail	Email			
Scientific Committee 06/0		06/01/2023	Version N	umber	1.0	

Relation with other Modules					
Relationship with ot	Relationship with other subjects				
Prerequisite module	None	Semester			
Co-requisites module	None	Semester			

Module Aims, Learning Outcomes and Indicative Contents				
Course objectives, learning outcomes and guiding content				
Module Objectives Students will be able to:				

Subject objectives	 Drawing engineering shapes manually and clearly, including the effective use of the computer-aided drawing program (AutoCAD).
	 Develop a solid understanding of the basic principles of
	engineering drawing, Included the ability to work with concepts,
	how these ideas will manifest in the real world
	8. Determine the strategies to be used and the assumptions to be
	made.
	9. Use both manual and computer approaches in drawing figures.
	 Develop the ability to use engineering tools flexibly and creatively.
	11. Develop an integrated understanding of the AutoCAD module.
	12. Developing their ability to communicate scientific ideas.
	13. Develop expertise in experimental methods.
	15. Define, explain and apply the basics of drawing types of lines.
	16. Understand the basics of drawing an ogee curves
Modulo Loarning	17. Understand and apply the basic idea of central projection theory.
Outcomos	18. Explanation of the central and parallel projection theory to
Outcomes	understand the projection process.
	19. Explain Different Views are
Learning outcomes for the	Top View (TV) and Side View (SV)
subject	FV is a view projected on VP.
	TV is a view projected on HP.
	SV is a view projected on PP.
	20. Ability to draw using AutoCAD.
	Introduction to engineering drawing and its tools
	Introduction to engineering drawing and its tools Introduction and introducing students to the subject of engineering drawing, which includes Identification of engineering tools and how to
	Introduction to engineering drawing and its tools Introduction and introducing students to the subject of engineering drawing, which includes Identification of engineering tools and how to use them
	Introduction to engineering drawing and its tools Introduction and introducing students to the subject of engineering drawing, which includes Identification of engineering tools and how to use them. Engineering shapes and the arcs, lamina, Dimensions:
	Introduction to engineering drawing and its tools Introduction and introducing students to the subject of engineering drawing, which includes Identification of engineering tools and how to use them. Engineering shapes and the arcs, lamina., Dimensions: - Various engineering operations:-
	 Introduction to engineering drawing and its tools Introduction and introducing students to the subject of engineering drawing, which includes Identification of engineering tools and how to use them. Engineering shapes and the arcs, lamina., Dimensions: Various engineering operations:- Drawing a straight line parallel to a known straight line
	 Introduction to engineering drawing and its tools Introduction and introducing students to the subject of engineering drawing, which includes Identification of engineering tools and how to use them. Engineering shapes and the arcs, lamina., Dimensions: Various engineering operations:- Drawing a straight line parallel to a known straight line The division of the rectum into two halves
	Introduction to engineering drawing and its tools Introduction and introducing students to the subject of engineering drawing, which includes Identification of engineering tools and how to use them. Engineering shapes and the arcs, lamina. , Dimensions: - Various engineering operations:- - Drawing a straight line parallel to a known straight line - The division of the rectum into two halves - Angle division is known.
	 Introduction to engineering drawing and its tools Introduction and introducing students to the subject of engineering drawing, which includes Identification of engineering tools and how to use them. Engineering shapes and the arcs, lamina., Dimensions: Various engineering operations:- Drawing a straight line parallel to a known straight line The division of the rectum into two halves Angle division is known. Drawing a straight line parallel to a known straight line from a paint that does not belong to the known straight line
	 Introduction to engineering drawing and its tools Introduction and introducing students to the subject of engineering drawing, which includes Identification of engineering tools and how to use them. Engineering shapes and the arcs, lamina., Dimensions: Various engineering operations:- Drawing a straight line parallel to a known straight line The division of the rectum into two halves Angle division is known. Drawing a straight line parallel to a known straight line from a point that does not belong to the known straight line.
Indicative Contents	 Introduction to engineering drawing and its tools Introduction and introducing students to the subject of engineering drawing, which includes Identification of engineering tools and how to use them. Engineering shapes and the arcs, lamina., Dimensions: Various engineering operations:- Drawing a straight line parallel to a known straight line The division of the rectum into two halves Angle division is known. Drawing a straight line parallel to a known straight line from a point that does not belong to the known straight line. Draw a tangent to a circle from a point that does not belong to it.
Indicative Contents	 Introduction to engineering drawing and its tools Introduction and introducing students to the subject of engineering drawing, which includes Identification of engineering tools and how to use them. Engineering shapes and the arcs, lamina., Dimensions: Various engineering operations:- Drawing a straight line parallel to a known straight line The division of the rectum into two halves Angle division is known. Drawing a straight line parallel to a known straight line from a point that does not belong to the known straight line. Draw a tangent to a circle from a point that does not belong to it. Draw a tangent to two contiguous circles from the outside.
Indicative Contents Guidance Contents	 Introduction to engineering drawing and its tools Introduction and introducing students to the subject of engineering drawing, which includes Identification of engineering tools and how to use them. Engineering shapes and the arcs, lamina., Dimensions: Various engineering operations:- Drawing a straight line parallel to a known straight line The division of the rectum into two halves Angle division is known. Drawing a straight line parallel to a known straight line from a point that does not belong to the known straight line. Draw a tangent to a circle from a point that does not belong to it. Draw a tangent to two contiguous circles from the inside Multi view projection
Indicative Contents Guidance Contents	 Introduction to engineering drawing and its tools Introduction and introducing students to the subject of engineering drawing, which includes Identification of engineering tools and how to use them. Engineering shapes and the arcs, lamina., Dimensions: Various engineering operations:- Drawing a straight line parallel to a known straight line The division of the rectum into two halves Angle division is known. Drawing a straight line parallel to a known straight line from a point that does not belong to the known straight line. Draw a tangent to a circle from a point that does not belong to it. Draw a tangent to two contiguous circles from the inside Multi view projection Perpendicular Projection Theory of Objects:
Indicative Contents Guidance Contents	 Introduction to engineering drawing and its tools Introduction and introducing students to the subject of engineering drawing, which includes Identification of engineering tools and how to use them. Engineering shapes and the arcs, lamina., Dimensions: Various engineering operations:- Drawing a straight line parallel to a known straight line The division of the rectum into two halves Angle division is known. Drawing a straight line parallel to a known straight line from a point that does not belong to the known straight line. Draw a tangent to a circle from a point that does not belong to it. Draw a tangent to two contiguous circles from the outside. Draw a tangent to two contiguous circles from the inside Multi view projection Perpendicular Projection Theory of Objects: Types of projections resulting from vertical projection and
Indicative Contents Guidance Contents	 Introduction to engineering drawing and its tools Introduction and introducing students to the subject of engineering drawing, which includes Identification of engineering tools and how to use them. Engineering shapes and the arcs, lamina., Dimensions: Various engineering operations:- Drawing a straight line parallel to a known straight line The division of the rectum into two halves Angle division is known. Drawing a straight line parallel to a known straight line from a point that does not belong to the known straight line. Draw a tangent to a circle from a point that does not belong to it. Draw a tangent to two contiguous circles from the outside. Draw a tangent to two contiguous circles from the inside Multi view projection Perpendicular Projection Theory of Objects: Types of projections resulting from vertical projection and approved in the projection of various engineering objects
Indicative Contents Guidance Contents	 Introduction to engineering drawing and its tools Introduction and introducing students to the subject of engineering drawing, which includes Identification of engineering tools and how to use them. Engineering shapes and the arcs, lamina., Dimensions: Various engineering operations:- Drawing a straight line parallel to a known straight line The division of the rectum into two halves Angle division is known. Drawing a straight line parallel to a known straight line from a point that does not belong to the known straight line. Draw a tangent to a circle from a point that does not belong to it. Draw a tangent to two contiguous circles from the outside. Draw a tangent to two contiguous circles from the inside Multi view projection Perpendicular Projection Theory of Objects: Types of projections resulting from vertical projection and approved in the projection of various engineering objects Front view
Indicative Contents Guidance Contents	 Introduction to engineering drawing and its tools Introduction and introducing students to the subject of engineering drawing, which includes Identification of engineering tools and how to use them. Engineering shapes and the arcs, lamina., Dimensions: Various engineering operations:- Drawing a straight line parallel to a known straight line The division of the rectum into two halves Angle division is known. Drawing a straight line parallel to a known straight line from a point that does not belong to the known straight line. Draw a tangent to a circle from a point that does not belong to it. Draw a tangent to two contiguous circles from the outside. Draw a tangent to two contiguous circles from the inside Multi view projection Perpendicular Projection Theory of Objects: Types of projections resulting from vertical projection and approved in the projection of various engineering objects Front view Side view. Ton view
Indicative Contents Guidance Contents	 Introduction to engineering drawing and its tools Introduction and introducing students to the subject of engineering drawing, which includes Identification of engineering tools and how to use them. Engineering shapes and the arcs, lamina., Dimensions: Various engineering operations:- Drawing a straight line parallel to a known straight line The division of the rectum into two halves Angle division is known. Drawing a straight line parallel to a known straight line from a point that does not belong to the known straight line. Draw a tangent to a circle from a point that does not belong to it. Draw a tangent to two contiguous circles from the outside. Draw a tangent to two contiguous circles from the inside Multi view projection Perpendicular Projection Theory of Objects: Types of projections resulting from vertical projection and approved in the projection of various engineering objects Front view Side view. Top view
Indicative Contents Guidance Contents	 Introduction to engineering drawing and its tools Introduction and introducing students to the subject of engineering drawing, which includes Identification of engineering tools and how to use them. Engineering shapes and the arcs, lamina., Dimensions: Various engineering operations:- Drawing a straight line parallel to a known straight line The division of the rectum into two halves Angle division is known. Drawing a straight line parallel to a known straight line from a point that does not belong to the known straight line. Draw a tangent to a circle from a point that does not belong to it. Draw a tangent to two contiguous circles from the outside. Draw a tangent to two contiguous circles from the inside Multi view projection Perpendicular Projection Theory of Objects: Types of projections resulting from vertical projection and approved in the projection of various engineering objects Front view Side view. Top view Using AutoCAD Apply everything that has been explained in the engineering
Indicative Contents Guidance Contents	 Introduction to engineering drawing and its tools Introduction and introducing students to the subject of engineering drawing, which includes Identification of engineering tools and how to use them. Engineering shapes and the arcs, lamina. , Dimensions: Various engineering operations:- Drawing a straight line parallel to a known straight line The division of the rectum into two halves Angle division is known. Drawing a straight line parallel to a known straight line from a point that does not belong to the known straight line. Draw a tangent to a circle from a point that does not belong to it. Draw a tangent to two contiguous circles from the outside. Draw a tangent to two contiguous circles from the inside Multi view projection Perpendicular Projection Theory of Objects: Types of projections resulting from vertical projection and approved in the projection of various engineering objects Front view Side view. Top view Using AutoCAD Apply everything that has been explained in the engineering manual drawing on the AutoCAD program and drawing the three-
Indicative Contents Guidance Contents	 Introduction to engineering drawing and its tools Introduction and introducing students to the subject of engineering drawing, which includes Identification of engineering tools and how to use them. Engineering shapes and the arcs, lamina. , Dimensions: Various engineering operations:- Drawing a straight line parallel to a known straight line The division of the rectum into two halves Angle division is known. Drawing a straight line parallel to a known straight line from a point that does not belong to the known straight line. Draw a tangent to a circle from a point that does not belong to it. Draw a tangent to two contiguous circles from the outside. Draw a tangent to two contiguous circles from the inside Multi view projection Perpendicular Projection Theory of Objects: Types of projections resulting from vertical projection and approved in the projection of various engineering objects Front view Side view. Top view Using AutoCAD Apply everything that has been explained in the engineering manual drawing on the AutoCAD program and drawing the three-dimensional models

Learning and Teaching Strategies				
Learning and teaching strategies				
Strategies	The primary strategy for delivering this module will be to encourage students to participate in the exercises while refining and expanding their critical thinking skills. This will be accomplished through classes, interactive tutorials, and the consideration of simple experiments involving sampling activities that students find interesting.			

Student Workload (SWL) The student's academic load is calculated for 15 weeks.					
Structured SWL (h/sem) Regular student load during the semester45Structured SWL (h/w) Regular weekly student load3					
Unstructured SWL (h/sem) Irregular student load during the semester	55	Unstructured SWL (h/w) Irregular student load per week	3.7		
Total SWL (h/sem)The student's total academic loadduring the semester					

Module Evaluation						
Course material evaluation						
		Time/Numbe r	Weight (Marks)	Week Due	Relevant Learning Outcome	
	Quizzes	6	20% (20)	5 and 10	LO #1, 2, 10 and 11	
Formativo	Assignments	3	10% (10)	2 and 12	LO # 3, 4, 6 and 7	
assessment	Projects / Lab.	3	10% (10)	Continuou s	All	
	Report	0	0% (0)	0		
Summative	Midterm Exam	2hr	10% (10)	7	LO #1-4	
assessment	Final Exam	3hr	50% (50)	16	All	
Total assessment 100% (100 Marks)						

Delivery Plan (Weekly Syllabus)

Theoretical weekly curriculum

	Material Covered			
Week 1	Introduction and introducing students to the subject of engineering drawing,			
	which includes identification of engineering tools and how to use them.			
	Teach students how to apply and draw the following engineering operations:			
Week 2	Drawing a straight line parallel to a known straight line, the division of the			
	rectum into two halves, angle division and drawing a straight line parallel to a			
	known straight line.			
Week 3	Teach students how to draw a tangent to two contiguous circles from the outside,			
	Draw a tangent to two contiguous circles from the inside			
Week 4	Draw a tangent to one circle from the inside and the other from the outside and			
	draw a tangent to a circle passing through a straight line.			
	Multi view projection			
Week 5	Perpendicular Projection Theory of Objects:			
	 Types of projection in drawing and its practical importance 			
Week 6	Types of projections resulting from vertical projection and approved in the			
	projection of various engineering objects: Front view, Side view, Top view			
Week 7	Mid-term Exam + Introduction to AutoCAD			
Week 8				
Week 9				
Week 10	Apply everything that has been explained in the engineering manual drawing			
Week 11	on the AutoCAD program and drawing the three-dimensional models			
Week 12				
Week 13				
Week 14				
Week 15	Preparatory week before the final exam			

Delivery Weekly la	Plan (Weekly Lab. Syllabus) ab schedule
	Material Covered
Week 1- 15	The application of each part of the covered drawing subject theoretically and according to the weekly sequence of the curriculum in the AutoCAD laboratory

Learning and Teaching Resources				
Learning and teaching resources				
	Text	Available in the Library?		

Required Texts	EGINEERING DRAWING AND GRAPHIC TECHNOLOGY", Fourteenth Edition, By: THOMAS E.FRENCH, CHARLES VIERCK, ROBERT J.FOSTER,McGRAW-HILL	Yes
Recommended Texts	William D.CallisterJr.&David D.Rethwisch.(2010)"Material Science and Engineering An Introduction", eightEdition.	No
Websites	ENGINEERING DRAWING Any edition	

Grading Scheme Grading chart						
Group	Grade	Appreciation	Marks %	Definition		
	A - Excellent	privilege	90 - 100	Outstanding Performance		
Success	B - Very Good	very good	80 - 89	Above average with some errors		
Group (50 - 100)	C - Good	good	70 - 79	Sound works with notable errors		
	D - Satisfactory	middle	60 - 69	Fair but with major shortcomings		
	E - Sufficient	acceptable	50 - 59	Work meets minimum criteria		
Fail Group (0 – 49)	FX – Fail	Precipitate (in (process	(45-49)	More work required but credit awarded		
	F – Fail	Failed	(0-44) Considerable amount of work required			

Module Information Subject information							
Module Title	Mathematic	MathematicsII			Module Delivery		
Module Type	Base	Base			⊠ Theory		
Module Code	NVEE 207			⊠ Lecture			
ECTS Credits	6			⊠ Tutorial			
SWL (hr/sem)	150	150			─ □ Practical □ Seminar		
Module Level		11	Semester of Delivery		1		
Administration	Department	Electronic Eng. Dep.	College	Electronics Engineering		ng	
Module Leader	Hani MS Salı	Salman e-mail H		hani.mohamed@uoninevah.edu.iq		nevah.edu.iq	
Module Leader's	s Acad. Title	Assistant Lecturer	tant Lecturer Module Leader's Qu		Qualification	MSc	
Module Tutor	Name (if avai	ilable)	e-mail Email				
Peer Reviewer Name		Name	e-mail	Email			
Scientific Committee Approval Date			Version N	umber	1.0		

Relation with other Modules				
Relationship with other subjects				
Prerequisite module	NEEM1211	Semester		
Co-requisites module	None	Semester		

Module Aims, Lear	rning Outcomes and Indicative Contents
Course objectives, I	earning outcomes and guiding content
Module Objectives Subject objectives	 To obtain a good knowledge of dealing with complex numbers. Establish a strong foundation in matrices and their operations, determinants, and inverse matrices. This includes covering definitions, notations, properties, types, and basic operations on matrices, enabling effective application in problem-solving. enhancing students' proficiency in matrix-based solutions for linear systems of equations using Cramer's rule, the inverse method, and the Gauss elimination method To provide the students with the knowledge to deal with vectors and their mathematical operations. To Learn about the polar coordinates, and the graphs of polar equations. Apply calculus principles to solve real-world engineering problems, developing problem-solving skills and the ability to apply calculus concepts to practical situations.
Module Learning Outcomes Learning outcomes for the subject	 Comprehend and utilize complex numbers within the Argand diagram, and master complex number operations (Addition, subtraction, product, quotient, power, and roots) and De Moivre's Theorem. Understand the concept of linear algebra and matrices. Identify the types of matrices such as square matrices, zero matrix and identity. Perform the common matrix operations such as addition, subtraction, scalar multiplication, and multiplication. Find the transpose of a matrix. Compute the determinants. Compute the inverse of the matrix. Identify whether the matrix is invertible or singular. Relate a matrix to a homogenous system of linear equation. Solve a system of linear equations by matrices: using the inverse method. Solve a system of linear equations by matrices: using Gauss Elimination Method. Identify the rank of the matrix and its relationship to the solution of linear equations. Find the eigenvalues and eigenvectors of a matrix.

	27 Compute dat and areas products in vectors
	37. Compute dot and cross products in vectors.
	38. Understand the meaning of del operator, gradient, divergence, and curl
	and to compute the del operation, gradient, divergence, and curl.
	39. Learn about the vector functions.
	40. Convert from Cartesian to Polar coordinates and vice versa.
	41. Sketch in polar system.
	42. Utilize mathematical reasoning and critical thinking skills to analyze
	and interpret mathematical concepts and their applications in
	Electronics engineering.
	43. Develop proficiency in mathematical problem-solving, both
	independently and collaboratively, and communicate solutions
	effectively.
	Indicative content includes the following.
	Part A – Review of Complex Numbers:
	The Argand diagram, Addition, Subtraction; Product, Quotient, power and
	roots and Demoiver's Theorem [4hrs]
	Part B Matricos and Determinants:
	<u>Art D – Matrices and Determinants</u>
	matrices and Determinants. Deminions and notations, 1 topenies, types of
	matrices, proportios of determinants [8 hrs]
	Inverse of the Metrices [4 bro]
	Solution of the system of linear equations solution of the system of linear
	Solution of the system of linear equations-solution of the system of linear equation using
	the inverse method [12 hrs]
	lie inverse method. [12 ms]
	Revision problem classes [4 ms]
Indicative Contents	IIIS] Firenvelues and sigenvector [4 hrs]
Guidance Contents	Eigenvalues and eigenvector. [4 his]
	<u>Part C – Review of Vectors:</u>
	Representation of vectors in space (I; j; k), unit vectors, Scalar product, and
	vector product. [8 nrs]
	Part D. Master Calaulus
	<u>Part D – vector Calculus.</u>
	vectors – dei operator, Parametric Equations of Lines in Space, the distance
	from a Point to a line in Space, plane equation in space, the Distance from the
	Point to a Plane, Angles Between Planes, vector function versus Scalar
	function, del operator, Gradient, Divergence and Curl. [12 hrs]
	Part E – Polar Coordinates:
	Polar coordinates – polar coordinate system, transformation between polar
	and Cartesian coordinates, graphs of polar equations. [4 hrs]

Learning and Teaching Strategies				
Learning and teaching stra	tegies			
Strategies	This module's major aim is to foster student engagement, improve critical thinking abilities, and promote collaborative learning. Interactive seminars, interesting tutorials, and exercises active participation, allowing students to hone their critical thinking skills and encourage engineering mathematics principles to problem solving. Moreover, students collaborate on engineering mathematics issues, examine real- world scenarios, and explore the practical applications of the principles acquired through group activities, projects, and conversations. This method not only increases students' comprehension of engineering mathematical concepts, but it also fosters cooperation, communication, and key interpersonal skills that will be useful in their future engineering activities.			

Student Workload (SWL) The student's academic load is calculated for 15 weeks.					
Structured SWL (h/sem)62Structured SWL (h/w)4Regular student load during the semester62624					
Unstructured SWL (h/sem) Irregular student load during the semester88Unstructured SWL (h/w) Irregular student load per week5.9					
Total SWL (h/sem)The student's total academic loadduring the semester					

Module Evaluation						
Course material evaluation						
Time/Numbe Weight (Marks) Week Due Relevant Learning						
		r	Worght (marks)	Week Due	Outcome	
	Quizzes	2	30% (30)	6 and 14	LO #1 - #11, #16- #19	
Formative	Assignments	1	10% (10)	13	LO #12-#15	
assessment	Projects / Lab.	-	-	-	-	
	Report	-	-	-	-	
Summative	Midterm Exam	2hr	10% (10)	7	LO #1 - #11	
assessment	Final Exam	3hr	50% (50)	16	All	
Total assessment			100% (100			
			Marks)			

Delivery Plan ()	Weekly Syllabus)
Theoretical wee	kly curriculum
	Material Covered
Week 1	The Argand diagram, Addition, Subtraction; Product, Quotient, power and roots,
	and Demoiver's Theorem.
Week 2	Matrices and Determinants: Definitions and notations, Properties, types of
Wook 3	matrices, basic operations on matrices, computation of the determinants of
Week 5	matrices, properties of determinants.
Week 4	Inverse of the Matrices.
Week F	Solution of the system of linear equations-solution of the system of linear equation
week 5	using Cramer's rule.
Week 6	solution of the system of linear equation using the inverse method.
Week 7	solution of the system of linear equation using Gauss Elimination Method.
Week 8	Revision problem classes, Mid-term Exam
Week 9	Eigenvalues and eigenvector. [4 hrs]
Week 10	Representation of vectors in space (i;j;k), unit vectors, Scalar product, and Vector
Week 11	product.
Week 12	Vectors – del operator, Parametric Equations of Lines in Space, the distance from
Week 13	a Point to a line in Space, plane equation in space, the Distance from the Point to
Wook 14	a Plane, Angles Between Planes, vector function versus Scalar function, del
Week 14	operator, Gradient, Divergence and Curl.
Wook 15	Polar coordinates – polar coordinate system, transformation between polar and
WEER IJ	Cartesian coordinates, graphs of polar equations.

Learning and Teachi	ng Resources	
Learning and teaching	resources	
	Text	Available in the Library?
	"Higher Engineering Mathematics", 7 th edition by John Bird	No
Required Texts	G. B. Thomas Jr., M. D. Weir, J. Hass, and F. R. Giordano, "Thomas' Calculus," 12th ed., Pearson, 2019.	Yes

Recommended Texts	"Introduction to Linear Algebra". 4th edition by Strang, Gilbert "Linear Algebra for Everyone". 2020 by Strang, Gilbert Zill, DG, Wright, WS, & Cullen, MR (2011). Advanced Engineering Mathematics. Jones & Bartlett Publishers.	No
Websites	https://ocw.mit.edu/courses/18-06-linear-algebra-spring https://www.khanacademy.org/math/linear-algebra https://www.ohio.edu/mechanical- faculty/williams/html/PDF/MatricesLinearAlgebra.pdf	-2010

Grading Sc Grading cha	heme irt			
Group	Grade	Appreciation	Marks %	Definition
	A - Excellent	privilege	90 - 100	Outstanding Performance
Success	B - Very Good	very good	80 - 89	Above average with some errors
Group	C - Good	good	70 - 79	Sound works with notable errors
(50 - 100)	D - Satisfactory	middle	60 - 69	Fair but with major shortcomings
	E - Sufficient	acceptable	50 - 59	Work meets minimum criteria
Fail Group	FX – Fail	Precipitate (in (process	(45-49)	More work required but credit awarded
(0 – 49)	F – Fail	Failed	(0-44)	Considerable amount of work required

Module Info	rmation					
Module Title	e Physical of semiconductors			Mod	ule Delivery	
Module Type	Core				⊠ Theory	
Module Code	NVEE219				⊠ Lecture □ Lab	
ECTS Credits	6			⊠ Tutorial		
SWL (hr/sem)	150		☐ Practical ☐ Seminar			
Module Level		11	Semester	of Delivery 2		2
Administration	Department	EI	College	NE		
Module Leader Hamsa Fawaz		z Thanoon	e-mail	hamsa	.thanoon@uoni	nevah.edu.iq
Module Leader's Acad. Title		Lecturer	Module Le	Leader's Qualification M.Sc		M.Sc
Module Tutor			e-mail Email			
Peer Reviewer Name			e-mail	Email		
Scientific Committee Approval Date		04/07/2023	Version N	umber	1.0	

Relation with othe	r Modules		
Prerequisite module		Semester	
Co-requisites module	None	Semester	

Module Aims, Learnin	g Outcomes and Indicative Contents
Module Aims	

	1. To develop problem solving skills and understanding of Atomic
	Structure
	2. To understand Energy band structure of metal, insulator, and
	semiconductor.
	3. To understand the properties of intrinsic P and N type
	semiconductors.
	4. To understand Electrical conduction in intrinsic semiconductor.
	5. To understand the properties of extrinsic semiconductors.
	6. To understand Electrical conduction in extrinsic semiconductor
	1. Recognize how semiconductors work in electronics circuits.
	List the various terms associated with electronics circuits.
	Summarize what is meant by a basic of semiconductors.
Module Learning	4. Discuss the reaction and involvement of semiconductors in generating
Outcomes	the currents.
Outcomes	5. Describe mobility of electrons and conductivity in metals.
	6. Define Ohm's law.
	7. Identify the pure semiconductors.
	8. Identify the impure semiconductors
	9. Discuss the impure semiconductors N and P types
	10. Explain the type of electronic emission.
	Indicative content includes the following.
	<u>Part A - Energy Bands in Solids</u>
	Describe the structure of an atom ♦ Discuss insulators, conductors, and
	semiconductors and how they differ. [9 hrs]
Indicative Contents	
	Revision problem classes [3 hrs]
	Part B - Transport Phenomena in Semiconductor
	Describe how current is produced in a semiconductor Describe the
	properties of n-type and p-type semiconductors. [30 hrs]
	<u></u>

Learning and Teaching Strategies		
Strategies	The main strategy that will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills.	

Student Workload (SWL)

Structured SWL (h/sem)	111	Structured SWL (h/w)	3
Unstructured SWL (h/sem)	65	Unstructured SWL (h/w)	2
Total SWL (h/sem)	176		

Module Ev	Module Evaluation				
		Time/Numbe r	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	4	10	[2,4,5,6]	LO (#1- #12)
Formative	Assignments	2	10	14	LO #4, #7, #(10-13)
assessment	Projects / Lab.	0	0% (0)		
	Report	1	10% (10)	12	LO #11
Summative	Midterm Exam	1.5 hr	20% (20)	10	LO #(1-8)
assessment	Final Exam	3 hours	50% (50)	16	All
Total assess	ment		100% (100 Marks)		

Delivery Plan	(Weekly Syllabus)
	Material Covered

Week 1	PN junction in equilibrium
Week 2	Volt Ampere characteristics; Temperature dependence
Week 3	diffusion capacity
Wook 4	Non-linear properties; Ideal diode; Basic theory and analysis of simple diode circuit; DC
WEER 4	load line; Small signal analysis and concept of dynamic resistance; AC load line
Week 5	Diode capacitance;Temperature effects of diode
Week 6	Different types of diodes (Zener; schottckey);
Week 7	(Varactor diode; Tunnel and negative resistance diodes).
Week 8	Circuit analysis of half wave and full wave rectifiers
Week 9	Bridge rectifier; Ripple and form factor calculations
Week 10	Types of filters; C filters , L filter , L .C. filter, PIE filter; Analysis of filter and calculation of
Week IV	ripple and regulation.
Week 11	Solved problems
Week 12	Clipping and Clam Ping Circuit:
Week 13	Transistors: PNP; NPN
Week 14	The BJT as an Amplifier
Week 15	Preparatory week before the final exam

Learning and Teaching Resources

	Text	Available in the Library?	
Required Texts	1: "SOLID STATE DIVICES" ,PHI; 4TH EDITION ,		
	1995.By STREETMAN ,		
	2: "SEMICONDUCTOR DEVICES & CIRCUITS", JOHN	Ves	
	WILEY & SONS ,1992.By: MS TYAGI	165	
	3: "ELECTRONICS DEVICES & CIRCUITS THEORY",		
	HI; By BOYLSTED & NASHELSKY		
Recommended	3. (Floyed)	Ves	
Texts	4. Theraja Chapter 51	103	

Grading Scheme					
Group	Grade	Appreciation	Marks %	Definition	
Success Group (50 - 100)	A - Excellent	privilege	90 - 100	Outstanding Performance	
	B - Very Good	very good	80 - 89	Above average with some errors	
	C - Good	good	70 - 79	Sound works with notable errors	
	D - Satisfactory	middle	60 - 69	Fair but with major shortcomings	
	E - Sufficient	acceptable	50 - 59	Work meets minimum criteria	
Fail Group (0 – 49)	FX – Fail) Precipitate under processing ((45-49)	More work required but credit awarde	
	F – Fail	Failed	(0-44)	Considerable amount of work required	

Module Information Subject information						
Module Title	<u>English</u>	English			le Delivery	
Module Type	Basic				⊠ Theory	
Module Code	<u>NV U 11</u>	<u>NV U 11</u>			☐ Lecture ☐ Lab ☐ Tutorial ☐ Practical	
ECTS Credits	2					
SWL (hr/sem)	<u>50</u>			□ Seminar		
Module Level		1	Semester o	of Delivery 2		2
Administration Department		Dept. of Computer and Information	College	College of Electronics Engineering		ngineering
Module Leader	Noor Mothafar	Hamid	e-mail noorm.hame@duoninevah.edu.iq		ah.edu.iq	
Module Leader's Acad. Title			Module Lea	odule Leader's Qualification		MA
Module Tutor			e-mail			
Peer Reviewer Name			e-mail			
Scientific Committee Approval Date		06/01/2023	Version Number 1.0			

Relation with other Modules			
Relationship with other subjects			
Prerequisite module	None	Semester	
Co-requisites module	None	Semester	

Module Aims, Learning Outcomes and Indicative Contents Course objectives, learning outcomes and guiding content		
Module Aims Subject objectives	 To develop skills, reading, writing and understanding of English language through the application of teaching techniques. To understand scientific subjects and technical terms through reading and comprehension. This course deals with the basic concepts of scientific subjects. This course handles how to write simple research and how to make a successful presentation. To understand the scientific language in English. 	

Module Learning Outcomes Learning outcomes for the subject	 Recognize parts of speech and tenses in English language. List the various terms associated with scientific texts. Summarize what is meant by a basic electric circuit. Discuss Electric currents, series and parallel circuits. Describe electrical power, charge, and current. Discuss computers, communication and the future of computers Identify the basic circuit elements and their applications. Explain energy types and forms. Discuss the various properties of radio waves and vacuum tubes. Explain modulation. Discuss Electromagnetism. 	
Indicative Contents Guidance Contents	Indicative content includes the following. 1.parts of speech _verb _noun _ pronoun 2.Tenses _Past _Present _future 3. Electric currents and circuits _AC/DC _parallel, serious _Grounding, fuse, short circuit 4.Radio waves and vacuum tubes 5. Electromagnetism. 6. The future of computers, communication applicationsfiber optics. 7. InductionElectric generator _Electric generator _Self-induction _servomechanism 8. Incandescent lamp. 9. Energytypes of energy _forms of energy 10. Introduction to electron and electricity. 11.Electricity and electronics.	
Learning and Teaching Strategies		
Learning and leaching st		
Strategies	The main strategy that will be adopted in delivering this module is to encourage students' participation by reading, writing and comprehension in the exercises, while at the same time refining and expanding their critical thinking skills. This will be achieved through classes, presentation, interactive tutorials, by considering type of simple experiments involving some sampling activities that are interesting to the students.	

Г
Student Workload (SWL) Student's academic load			
Structured SWL (h/sem) Regular student load during the semester	33	Structured SWL (h/w) Regular weekly student load	2
Unstructured SWL (h/sem) Irregular student load during the semester	17	Unstructured SWL (h/w) Irregular student load per week	1.4
Total SWL (h/sem) The student's total academic load during the semester	50		

Module Evaluation

Course material evaluation

		Time/Nu mber	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	20 % (20)	4.6	LO #1, 2, 3,4,5and 6
Formative	Assignments	2	5% (5)	9, 12	LO # 7,8,9,10,and 11
assessment	Presentation	1	10 % (10)	Continuous	
	Report	1	5% (5)	13	LO #6,10
Summative	Midterm Exam	2 hours	10 % (10)	7	LO #1-8
assessment	Final Exam	2 hours	5 0% (5 0)	16	All
Total assessment		100% (100 Marks)			

Delivery Plan (Weekly Syllabus)

Theoretical weekly curriculum

	-Servomechanism
Week 9	Incandescent lamp.
	Energy.
Week 10	-types of energy
	-forms of energy
Week 11	Introduction to electron and electricity.
Week 12	Electricity and electronics
Week 13	The cathode ray tube
Week 14	Propagation
Week 15	Modulation
Week 16	Preparatory week before the final exam

Learning and Teaching Resources							
Learning and tead	hing resources						
	Text	Available in the Library?					
Required Texts	English in electrical engineering and electronics. The language of electrical and electronic engineering in English.	Yes					
Recommended Texts	English for electrical engineering and computing.	No					
Websites	https://www.askoxford.com/betterwriting/succesfulcv/applicatio	n/?view=uk					

Grading Scheme Grading chart							
Group	Grade	Appreciation	Marks (%)	Definition			
	A - Excellent	privilege	90 - 100	Outstanding Performance			
Success	B - Very Good	very good	80 - 89	Above average with some errors			
Group (50 - 100)	C – Good	good	70 - 79	Sound works with notable errors			
	D - Satisfactory	middle	60 - 69	Fair but with major shortcomings			
	E - Sufficient	acceptable	50 - 59	Work meets minimum criteria			
Fail Group	FX – Fail	Precipitate (in (process	(45-49)	More work required but credit awarded			
(0 - 43)	F – Fail	Failed	(0-44)	Considerable amount of work required			

Courses specification for Second class Medical Engineering (First Course)

Module Information							
Module Title	Engineering	analysisl		Modu	ule Delivery		
Module Type	Base				□Theory		
Module Code	NVEE208				⊠Lecture		
ECTS Credits	6				□Lab		
					⊠Tutorial		
SWL (hr/sem)	150				□Practical		
		-			□Seminar		
Module Level			Semester of Delivery		1		
Administration	Department	Electronics dept	College	Electronics engineering college		g college	
Module Leader Dr. Omar B M		lohammed	e-mail	omar.mohammed@uoninevah.ed		oninevah.edu.iq	
Module Leader's Acad. Title		Lecturer	Module Le	odule Leader's Qualification		Ph.D.	
Module Tutor			e-mail				
Peer Reviewer Name			e-mail				
Scientific Committee Approval Date			Version N	umber			

Relation with other Modules

Prerequisite module	Mathematics II	Semester	1
Co-requisites module	None	Semester	

Module Aims, Lo	earning Outcomes and Indicative Contents
Module Aims	This course covers the following topics: Multiple Integrals, Vectors Functions, Numerical Analysis, Statistics and Probability. Those areas of mathematics which are most important in connection with practical problems for modeling different areas of science, computer can be easily utilized to find the properties of such systems.
Module Learning Outcomes	 Upon successful completion, students will: Improve their problem-solving skills. Apply that knowledge toward practical problems in different areas of science. Utilize the computer capabilities to solve such problems using proper methods. Learn how to deal with geometry in 3D; Find areas and volumes. Solve ordinary and differential equations numerically. Learn the importance of probability and statistics in everyday use.
Indicative Contents	Vectors Functions Multiple Integrals Numerical Analysis Statistics Probability

Student Workload (SWL)									
Stru	ctured S	SWL (h/sem)			Structured SWL (h/w)				
Uns	tructure	d SWL (h/sem)			Unstructured SWL (h/w)			
Tota	al SWL (I	n/sem)							
Мо	dule Ev	aluation		. <u> </u>					
			Time/Nu r	Weight (Marks)		Week Due	Relevant Learning Outcome		
		Quizzes							
		Assignment							
Forn	native	S							
asse	essment	Projects /							
		Lab.							
		Report							
0		Midterm							
Sum	mative	Exam							
asse	essment	Final Exam							
Tota	l assessi	nent							
Learning and Teaching Strategies									
	Strategies The prime to particip thinking s and the c students		nary st pate i skills. consic find i	trategy f n the ex This wi leration nterestin	for delivering xercises while Il be accompl of simple exp ng.	this module wil refining and ex lished through o periments involv	l be to encou xpanding the classes, inter ving samplin	irage students ir critical active tutorials g activities tha	

Delivery	Plan (Weekly Syllabus)							
	Material Covered							
Week 1	Vectors:							
Week 2	Vector in space, dot and cross product.							
Week 3	Lines and planes in space. Vector functions valued and motion in space: position, velocity and acceleration							
Week 4	Vector functions valued and motion in space: position, velocity and acceleration, tangential vectors, curve and normal vector.							
Week 5	Multiple Integrals:							

Week 6	Double Integral in rectangular coordinates, areas and volumes.							
Week 7	Double Integral in Polar Coordinates, areas and volumes.							
Week 8	Triple Integrals in rectangular, cylindrical, and spherical coordinates, volumes.							
Week 9	Numerical Analysis:							
Week 10	Solution of non-linear equations by iteration: bisection and Newton-Ranbson							
Week 11	Numerical Integration: trapezoidal rule.							
Week 12	Numerical solution of 1st order ordinary differential equations; Euler's method.							
Week 13	Statistics and Probability:							
Week 14	Definitions, mutually exclusive and conditional probability, permutations and							
	combinations							
Week 15	Probability distribution: binomial, normal and Poisson distributions.							
Week 16	Preparatory week before the final exam							

Learning and Teaching Resources			
	Text	Available in the Library?	
Required Texts	Advanced Engineering Mathematics By KREYSIK	Yes	
Recommended Texts	Calculus By Finney& Thomas	Yes	
Websites			

Grading Scheme				
Group	Grade	Appreciation	Marks (%)	Definition
	A - Excellent	privilege	90 - 100	Outstanding Performance.
Success	B - Very Good	very good	80 - 89	Above average with some errors.
Success Group (50 - 100)	C - Good	good	70 - 79	Sound works with notable errors.
	D - Satisfactory	middle	60 - 69	Fair but with major shortcomings.
	E - Sufficient	acceptable	50 - 59	Work meets minimum criteria.
Fail Group (0 – 49)	FX – Fail) Precipitate under (processing	(45-49)	More work is required, but credit is given.
	F – Fail	Failed	(0-44)	A significant amount of work is required.

Module Information						
Module Title	Signal Analy	Signal Analysis			ule Delivery	
Module Type	Core				Theory	
Module Code	NVEEELM2	11			⊠ Lecture Lab	
ECTS Credits	6	6			□ Tutorial	51
SWL (hr/sem)	150	150			□ X Practica □ Seminar	a I
Module Level		11	Semester	Semester of Delivery 1		1
Administration	Department	Type Dept. Code	College	Туре С	ollege Code	
Module Leader			e-mail			
Module Leader's	s Acad. Title	Assistant Professor	Module Le	odule Leader's Qualification Ph.I		Ph.D.
Module Tutor	r Name (if available)		e-mail	Email		
Peer Reviewer Name		Name	e-mail	e-mail Email		
Scientific Committee Approval Date		06/25/2023	Version N	umber 1.0		

Relation with other Modules			
Prerequisite module	None	Semester	
Co-requisites module	None	Semester	

Module Aims, Learning Outcomes and Indicative Contents				
Module Aims	Student will be able to: 15. identify signals concepts. 16. Understand the classification of signals.			
	17. understand the different operations on signals. 18. perform Fourier and Laplace transformations of signals.			
Module Learning Outcomes	 44. Definition of the signal concept. 45. Introduction of mathematical models. 46. Explain continuous time signals. Discrete time signals. 47. Categorize the signals. 48. Achieve operations on signals. 49. Introduction of basic signals. 50. Define convolution operation between two signals. 51. Introduction of frequency domain and Fourier analysis. 52. Laplace Transformation. 			
Indicative Contents	Indicative content includes the following. Introduction to signals: Definition and mathematical models. Categorization of signals. Operation on signals. Basic types of signals. Convolution operation: Introduction to convolution. Convolution properties. Signal transformation: Fourier series and transform. Laplace Transform.			

Learning and Teaching Strategies			
Strategies	To make students interesting with both types of signals: continuous and discrete. Also with classifications of signals and operations on them. To make them familiar with time and frequency range and analysis of a signal. Also to make them familiar with different types of transforms of signals. Also to make them have an experience with solving different problems and examples.		

Student Workload (SWL)					
Structured SWL (h/sem (64	Structured SWL (h/w) A	4		
Unstructured SWL (h/sem)	86	Unstructured SWL (h/w)	1		
Total SWL (h/sem)	150				

Module Evaluation					
		Time/Numbe r	Weight (Marks)	Week Due	Relevant Learning Outcome
Formativ	Quizzes	6	10% (10)	2, 5, 9, 12,13,15	LO #1, 2, 10 and 11
e assessm ent	Assignments	Assignments 6		2, 5, 9, 12,13,15	LO # 3, 4, 6 and 7
	Projects / Lab.	6	20% (20)	2, 5, 9, 12,13,15	LO #3, 4, 6 and 7, 5, 8 and 10
	Report	0	0% (0)	0	
Summati	Midterm Exam	1.5hr	20% (20)	10	LO #1-4
ve assessm ent	Final Exam	3hr	40% (40)	16	All
Total assessment		100% (100 Marks)			

Delivery Plan (Weekly Syllabus)			
	Material Covered		
Week 1	Basic definitions. Mathematical models.		
Week 2	Continuous time signals		
Week 3	Discrete time signals		
Week 4	Signal classifications		

Week 5	Energy and power of signals
Week 6	Basic operations on continuous signals.
Week 7	Basic operations on discrete signals.
Week 8	Time domain representation of continuous signals; sinusoidal and complex exponential signals
Week 9	singularity function signals
Week 10	Convolution definition and operation
Week 11	Convolution properties
Week 12	Frequency domain representation of continuous signals. Spectra and bandwidth of the signal
Week 13	Fourier series representations of periodic signals.
Week 14	Fourier transform representations of non periodic signals.
Week 15	Laplace Transform of continuous signals. Laplace properties.

Learning and Teaching Resources			
	Text	Available in the Library?	
Required Texts	Signals and systems. Simon S. Haykin	Yes	
Recommended Texts	Signals and linear systems. G. E. Carlson		

Grading Scheme					
Group	Grade	Appreciation	Marks %	Definition	
	A - Excellent	privilege	90 - 100	Outstanding Performance	
	B - Very Good	very good	80 - 89	Above average with some errors	
Success Group (50 - 100)	C - Good	good	70 - 79	Sound works with notable errors	
	D - Satisfactory	middle	60 - 69	Fair but with major shortcomings	
	E - Sufficient	acceptable	50 - 59	Work meets minimum criteria	
Fail Group (0 – 49)	FX – Fail) Precipitate under processing ((45-49)	More work required but credit awarded	
(0 – 43)	F – Fail	Failed	(0-44)	Considerable amount of work required	

Module Information						
Module Title	Electronic	Electronic I				
Module Type	core				□Theory	
Module Code	NVEEELM2	12			⊠Lecture	
ECTS Credits	5				□Lab	
					⊠Tutorial	
SWL (hr/sem)	125				⊠Practical	
				□Seminar		
Module Level			Semester o		very	1
Administration	Department	Electronics	College Electronic Engineering		g college	
Module Leader			e-mail			
Module Leader's	s Acad. Title	Assistant Prof.	Module Leader's Qualification		Qualification	PhD
Module Tutor			e-mail			
Peer Reviewer Name		Name	e-mail Ahmad.younis@u		.younis@uonin	evah,edu,iq
Scientific Committee Approval Date		12/06/2023	Version Number 1.0			

Relation with other Modules					
Prerequisite module	NEEI2212	Semester			
Co-requisites module	None	Semester			

Module Aims, Learning Outcomes and Indicative Contents					
	12. To understand the basic analysis of bipolar transistor amplifier				
	13. To be familiar with the dc and ac analysis of transistor amplifier				
	14. To understand the dc and ac analysis of FET amplifier				
	15. To illustrate and to understand the frequency response of the amplifier				
	16. To understand the basic concept of feedback concept				
Module Aims	17. To be able to deal with different feedback amplifier topologies				
	18. To study the advantages of negative feedback on amplifier performance				
	19. To be familiar with feedback amplifier ac analysis				
	20. To understand the construction and ideal characteristic of operational amplifier				
	21. To study and analyze op-amp equivalent circuit				
	22. To be familiar with basic op-amp applications				
	23. To start with studying power electronic devices				
	16. Understand and apply the basic theory and operation of transistor amplifiers				
	17. Define and explain the frequency response of bipolar transistor amplifier				
	18. Understand the basic concept of negative feedback				
Module Learning	19. Understand and analyze the feedback amplifier				
Outcomes	20. Understanding the operation of ideal operational amplifier 21. Dealing with dc and ac op-amp equivalent circuit 22. Understanding the basic application of op-amp 23. Power electronic devices principle overview				

	Transistor and FET amplifier analysis:					
	Small signal model analysis, low frequency and high frequency analysis,					
	hybrid model, hybrid-Pi model analysis.					
	Amplifier with negative feedback:					
	Basic concept, feedback analysis, feedback configurations,					
	Feedback effects on gain, bandwidth, input and output resistances					
	Operational amplifier:					
	Ideal Op-amp equivalent circuit; Operational Amplifier Specification;					
	Circuit analysis of an Op-amp;					
Indicative	Closed loop Op-amp Circuit (Inverting and Non-Inverting Circuit).					
Contents	Op-amp Applications: Summation & subtraction Circuit, Differential circuit Buf circuit.					
	Ideal and practical Integrator circuits,					
	Ideal and practical Integrator circuits, ideal and practical Differentiator circuits, Examples .					
	Ideal and practical Integrator circuits, ideal and practical Differentiator circuits, Examples . Power electronic devices:					
	Ideal and practical Integrator circuits, ideal and practical Differentiator circuits, Examples . Power electronic devices: UJT Construction, operation and characteristics;					
	Ideal and practical Integrator circuits, ideal and practical Differentiator circuits, Examples . Power electronic devices: UJT Construction, operation and characteristics; Thyrsistor Equivalent Circuit; Thyrsistor Characteristics and operation;					
	Ideal and practical Integrator circuits, ideal and practical Differentiator circuits, Examples . Power electronic devices: UJT Construction, operation and characteristics; Thyrsistor Equivalent Circuit; Thyrsistor Characteristics and operation; Application of the devices.					
	Ideal and practical Integrator circuits, ideal and practical Differentiator circuits, Examples . Power electronic devices: UJT Construction, operation and characteristics; Thyrsistor Equivalent Circuit; Thyrsistor Characteristics and operation; Application of the devices.					
	Ideal and practical Integrator circuits, ideal and practical Differentiator circuits, Examples . Power electronic devices: UJT Construction, operation and characteristics; Thyrsistor Equivalent Circuit; Thyrsistor Characteristics and operation; Application of the devices.					
	Ideal and practical Integrator circuits, ideal and practical Differentiator circuits, Examples . Power electronic devices: UJT Construction, operation and characteristics; Thyrsistor Equivalent Circuit; Thyrsistor Characteristics and operation; Application of the devices.					

Learning and Teaching Strategies				
Strategies	The primary strategy for delivering this module will be to encourage students to participate in the exercises while refining and expanding their critical thinking skills. This will be accomplished through classes, interactive tutorials, and the consideration of simple experiments involving sampling activities that students find interesting.			

Student W	orkload (SW	/L)						
Structured SWL (h/sem)			74		Structured SWL (h/w)			3
Unstructured SWL (h/sem)			101 Unstructu		red SWL (h/w)		1	
Total SWL (h/sem)			175					1
Module Ev	aluation							
Time/Nu r		mbe	Weigl	nt (Marks)	Week Due	Relevant Learning Outcome		
	Quizzes 6			10 %	(10)	2, 5, 9, 12,13,15	LO #1, 2, 1 11	0 and
Formative	Assignment s	6		10 %	(10)	2, 5, 9, 12,13,15	LO # 3, 4,	6 and 7
assessment	Projects / Lab.	6	6		(20)	2, 5, 9, 12,13,15	LO # 3, 4, 5, 8 and 10	6 and 7,)
	Report	0		0% (0)	0		
Summative	Midterm Exam	1:30hr		20 %	(20)	10	LO #1-4	
ussessment	Final Exam	3 hours		4 0%	(40)	16	All	
Total assessment				100% Marks	(100 .)			

Delivery Plan (Weekly Syllabus)				
	Material Covered			
Week 1	Small signal model analysis			
Week 2	Low and high frequency response of transistor amplifier			
Week 3	Hybrid and hybrid-Pie equivalent circuit analysis			
Week 4	Negative feedback concept and analysis			
Week 5	Advantages of negative feedback on amplifier			
Week 6	Amplifier feedback topologies			
Week 7	Feedback effect on amplifier gain, bandwidth, and on input-output resistances			
Week 8	operational amplifier construction and operation			
Week 9	ideal and practical op-amp equivalent circuit			
Week 10	Inverting and non-inverting closed loop amplifier			

Week 11	Integration and differentiation active circuits
Week 12	Summation and subtraction op-amp circuits
Week 13	UJT transistor construction
Week 14	Thyristor equivalent circuit and characteristics
Week 15	Subject review
Week 16	Subject review

Delivery Plan (Weekly Lab. Syllabus)				
	Material Covered			
	Practical experiments in transistor amplifier frequency response at low and			
Week 1-	high frequency			
15	To measure the effect of feedback on amplifier performance			
	To measure the performance of different op-amp circuits.			

Learning and Teaching Resources				
	Text	Available in the Library?		
Required Texts	Electronic Devices By Millmann Electronic Devices By Floyd	yes		
Recommended Texts	SOLID STATE DIVICES", PHI; 4TH EDITION , 1995.By Streetman, Semiconductor devices & circuits", John Wiley & Sons, 1992.By : MS tyagi	Yes		
Websites	Electronic circuits			

Grading Scheme					
Group	Grade	Appreciation	Marks (%)	Definition	
Success	A - Excellent	privilege	90 - 100	Outstanding Performance.	
Group (50 - 100)	B - Very Good	very good	80 - 89	Above average with some errors.	

	C - Good	good	70 - 79	Sound works with notable errors.
	D - Satisfactory	middle	60 - 69	Fair but with major shortcomings.
	E - Sufficient	acceptable	50 - 59	Work meets minimum criteria.
Fail Group	FX – Fail) Precipitate under (processing	(45-49)	More work is required, but credit is given.
(0 - 43)	F – Fail	Failed	(0-44)	A significant amount of work is required.

Module Information Subject information						
Module Title	Digital Design			Modu	ule Delivery	
Module Type	Core				⊠ Theory	
Module Code	NVEE223				⊠ Lecture	
ECTS Credits	4				🗆 Lab	
SWL (hr/sem)	100			⊠ Tutorial □ Practical □ Seminar		
Module Level			Semester	nester of Delivery 1		1
Administration	Department	Electronic Eng. Dep.	College	Electronics Engineering		ng
Module Leader	Amer Talal A	Amer Talal Ali e-mail				
Module Leader's Acad. Title		Lecturer assistant	Module Le	eader's	Qualification	
Module Tutor	Tutor Amer Talal Ali		e-mail			
Peer Reviewer Name		Name	e-mail			
Scientific Committee Approval Date		06/01/2023	Version N	umber		

Relation with other Modules						
Relationship with other subjects						
Prerequisite module	Semester					
Co-requisites module	Semester					

Module Aims, Learning Outcomes and Indicative Contents

Course objectives, learning outcomes and guiding content

Module Objectives Subject objectives	 To understand Advanced Minimization techniques for large numbers of bits to simplify the large designs. Understand how to Design an Arithmetic and Logic unit. Understand how to Design using programmable logic device. To understand the sequential Logic Circuits. To understand how to Design synchronous and asynchronous counters. To understand the Design of Registers. 				
Module Learning Outcomes	 Using Advanced Minimization techniques for large numbers of bits to simplify the large designs. Design an Arithmetic and Logic unit. Design using programmable logic device. 				
Learning outcomes for the subject	 Design sequential Logic Circuits synchronous and asynchronous. Design Registrations. Design synchronous and asynchronous counters. 				
	Indicative content includes the following.				
	Part A – minimization techniques for large numbers of bits [14 hrs]				
Indicative Contents Guidance Contents	<u>Part B</u> – Initialization to design and Design an Arithmetic and Logic unit . [14 hrs]				
	<u>Part C</u> – Design using programmable logic device . [6 hrs]				
	Part D – sequential Logic Circuits. [18 hrs]				

Learning and Teaching Strategies

Learning and teaching strategies

	The main strategy that will be adopted in delivering this module is to
	encourage students' participation in the exercises, while at the same time
Strategies	refining and expanding their critical thinking and digital designing skills. This
	will be achieved through classes and interactive tutorials.

Student Workload (SWL)

The student's academic load is calculated for 15 weeks.

Structured SWL (h/sem) Regular student load during the semester	60	Structured SWL (h/w) Regular weekly student load	4
Unstructured SWL (h/sem) Irregular student load during the semester	60	Unstructured SWL (h/w) Irregular student load per week	4
Total SWL (h/sem) The student's total academic load during the semester	120		

Module Evaluation Course material evaluation							
		Time/Numbe r	Weight (Marks)	Week Due	Relevant Learning Outcome		
	Quizzes	2	20% (20)	[3,6,9,12]	LO (#1- #12)		
Formative assessment	Assignments	1	10% (10)	14	LO #4, #7, #(10-13)		
	Projects / Lab.	0	0% (0)				
	Report	1	10% (10)	12	LO #11		
	Midterm Exam	1.5 hr	10% (10)	10	LO #(1-8)		

Summative assessment	Final Exam	2 hours	50% (50)	16	All
Total assessment		100% (100 Marks)			

Delivery	Plan (Weekly Syllabus)
Theoretic	cal weekly curriculum
	Material Covered
Week 1	Introduction to Digital Design
Week 2	The 5-Variable Karnaugh Map; The 5-Variable Karnaugh Map with don't care conditions
Week 3	Map Entered variable Karnaugh Map
Week 4	ADDITIONAL MINIMAZATION TECNHNIQUES: Tabular method; Quine-McCluskey
Week 5	Design using multiplexer: - Shannon Expansion
Week 6	top-down design of combined CIRCUITS: - Gate Level: Adders; Subtractor
Week 7	Design an Arithmetic and Logic unit
Week 8	memory and type of memories
Week 9	Design using programmable logic device (PLD): - PROM; PAL; PLA;
Week 10	sequential LOGIC: - Type of flip-flops; Timing Diagram; Basic concepts of counters; Binary counters; BCD counters; Up down counter
Week 11	sequential LOGIC: -Design of counters using state diagrams and tables;
Week 12	sequential LOGIC: -Mealy and Moore Circuits;
Week 13	synchrous CIRCUITS: Shift left and right register; Registers with parallel load; Serial –in parallel-out (SIPO) and parallel-in-serial-out (PISO).
Week 14	synchrous CIRCUITS: Shift Registers; Twisted Ring Counter; Maximum Length Shift Counter.
Week 15	Preparatory week before the final exam

Learning and Teaching Resources						
Learning and teach	Learning and teaching resources					
	Text	Available in the Library?				
Required Texts	"Digital and analog communication" 2001 By LW Couch Sixth Edition	Yes				
Recommended Texts	 Digital Communications Fifth Edition, 2008, John G. Proakis, and Masoud Salehi. Introduction to Communication Systems" 1992 By F. Stremler. ELEMENTS OF INFORMATION THEORY" 2006 By THOMAS M. COVER and JOY A. THOMAS -Digital Communication, 2004 by Abbas Kattoush. 	Yes				
Websites						

Grading Scheme							
Grading chart							
Group	Grade	Appreciation	Marks %	Definition			
	A - Excellent	privilege	90 - 100	Outstanding Performance			
Success	B - Very Good	very good	80 - 89	Above average with some errors			
Group	C - Good	good	70 - 79	Sound works with notable errors			
(50 - 100)	D - Satisfactory	middle	60 - 69	Fair but with major shortcomings			
	E - Sufficient	acceptable	50 - 59	Work meets minimum criteria			
Fail Group	FX – Fail	Precipitate (in (process	(45-49)	More work required but credit awarded			
(0 – 49)	F – Fail	Failed	(0-44)	Considerable amount of work required			

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The

University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

Module Information							
Module Title	Electromagr	Electromagnetic Fields I			ule Delivery		
Module Type	Core				□Theory		
Module Code	NVEE215				⊠Lecture		
ECTS Credits	4				□Lab		
					 ⊠Tutorial		
SWL (hr/sem)	100		□Practical				
					□Seminar		
Module Level			Semester	of Delivery 1		1	
Administration	Department	Type Dept. Code	College	Type College Code			
Module Leader	SINAN KHAL	ID SHANSHAL	e-mail	ail sinan.mohammed@uoninev edu.iq		uoninevah.	
Module Leader's Acad. Title		Lecturer	Module Le	dule Leader's Qualification		M.Sc.	
Module Tutor			e-mail				
Peer Reviewer Name		Name	e-mail	mail Email			
Scientific Committee Approval Date		02/07/2023	Version Number 1.0				

Relation with other Modules

Prerequisite module	None	Semester	
Co-requisites module	None	Semester	

Module Aims, Learning Outcomes and Indicative Contents					
Module Aims	To develop knowledge of the laws governing the behavior of electrical fields, and to relate the laws governing the fields to applications in a range of electrical and electronic engineering application.				
Module Learning Outcomes	 On completion of the course the students should be able: to have detailed knowledge of the physical background and terminology of the electrostatic field theory for electrical engineering problems to understand the electrostatic field behavior to select and use appropriate theoretical models for analysis, problem solving and finding solutions related to the electrostatic fields to understand how laws of electrostatic can be applied to problems arising in engineering. 				
Indicative Contents	Electric charge and the electric field Electric flux density and Gauss's Law Electric potential Electric field in matter and boundary conditions Capacitance				

Learning and Teaching Strategies			
Strategies	Through the presentation of a theoretical explanation with the aid of white board and 'Data Show', to illustrate syllabus (examples and exercises) and using text books.		

Student Workload (SWL)	

Structured SWL (h/sem)	45	Structured SWL (h/w)	4
Unstructured SWL (h/sem)	?	Unstructured SWL (h/w)	1
Total SWL (h/sem)	?		
Module Evaluation			

		Time/Numbe r	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	4	15 % (10)	5,8,10,12	LO #1-5, 9 and 11
Formative assessment	Assignment s	4	15 % (10)	6,9,11,13	LO #1-5, 6, 10 and 12
	Projects	0	0%(0)		
	Report	0	0% (0)		
Summative	Midterm Exam	1.5hr	20 % (20)	10	LO #1-8
ussessment	Final Exam	3 hours	5 0% (4 0)	16	All
Total assessment		100 <mark>% (100</mark> Marks)			

Delivery Plan (Weekly Syllabus)				
	Material Covered			
Week 1	Review of Vector Calculus			
Week 2	Review of Vector Calculus			
Week 3	Experimental law of coulomb; Electric field intensity;			
Wook 4	Field of a continuous and volume charge distributions; line charge and sheet			
WEER 4	charge;			
Wook 5	Field of a continuous and volume charge distributions; line charge and sheet			
charge;				
Week 6	Electric flux density; Gauss's law;			
Week 7	Application of Gauss's law; some symmetrical charge distributions.			
Week 8	Energy expanded in moving a point charge in an electric field;			
Week 9	Definition of potential difference and potential;			
Week 10	Potential field of a point charge and system of charges; Potential gradient.			

Week 11	Conductor Properties and boundary conditions;
Week 40	Nature of Dielectric Materials; Boundary Conditions for Perfect dielectric
Week 12	Materials;
Week 13	Capacitance; Several Capacitance Examples.
Week 14	Poisson and Laplace's equations; Examples of the solution of Laplace equation
Maak 45	Examples of the solution of Laplaceequation; Examples of the solution of
Week 15	Poisson's equation.
Week 16	Preparatory week before the final exam

Delivery Plan (Weekly Lab. Syllabus)

	Material Covered
Week 1-15	

Learning and Teaching Resources				
	Text	Available in		
		the Library?		
Required Texts	1-ENGINEERING ELECTROSTATICES, Mc- Graw Hill, By WILLAIM H. HAYT. 2-Elements of electrostatic engineering, Prentice Hall, By Matthew NO SADIKU	No		
Recommended Texts	1-Electrostatics (Schaum's Outlines), McGraw-Hill Education By Edminister, Joseph_ Nahvi, Mahmood.	No		
Websites				

Grading Scheme					
Group	Grade	Appreciation	Marks (%)	Definition	
	A - Excellent	privilege	90 - 100	Outstanding Performance.	
Success	B - Very Good	very good	80 - 89	Above average with some errors.	
Group	C - Good	good	70 - 79	Sound works with notable errors.	
(50 - 100)	D - Satisfactory	middle	60 - 69	Fair but with major shortcomings.	
	E - Sufficient	acceptable	50 - 59	Work meets minimum criteria.	
Fail Group (0 – 49)	FX – Fail) Precipitate under (processing	(45-49)	More work is required, but credit is given.	

	F – Fail	Failed	(0-44)	A significant amount of work is required.		
Note: Marks De example a mark University has a original marker(ecimal places abo c of 54.5 will be ro a policy NOT to co s) will be the auto	ve or below 0.5 will b ounded to 55, wherea ondone " near-pass fa omatic rounding outlir	e rounded to s a mark of { ails" so the o ned above.	o the higher or lower full mark (for 54.4 will be rounded to 54. The nly adjustment to marks awarded by the		

Module Information						
Module Title	Human Phy	siology		Module Delivery		
Module Type	Support			□Theory		
Module Code	NVEEELM 2	213		⊠Lecture		
ECTS Credits	5					
SWL (hr/sem)	125			□Practical □Seminar		
Module Level	Module Level		Semester of Delivery 1			
Administration E		Electronics dept	College	Electronics engineering college		
Module Leader			e-mail			
Module Leader's Acad. Title		Module L Qualifica	eader's tion			
Module Tutor		e-mail				
Peer Reviewer	Name		e-mail			

Scientific Committee	Version	
Approval Date	Number	

Relation with other Modules						
Prerequisite module	None	Semester				
Co-requisites module	None	Semester				

Module Aims	s, Learning Outcomes and Indicative Contents
Module Aims	This subject introduces engineering students to human anatomy and physiology, with direct application of the knowledge to considerations for designing and manufacturing medical devices and equipment to assist in overcoming physical disabilities.
Module Learning Outcomes	 Upon To complete this unit, the student should be able to: 1. Demonstrate correct usage of the terminology used to describe anatomical structures. 2. Describe the organ zation of cells and tissues. 3. Describe the principles relating to the structure of connective tissues, skeletal muscle, bones and joints. 4. Describe the principles of excitable tissues. 5. Describe the structure and function of the human eye and ear and the mechanisms of vision and hearing. 6. Describe the principles of sensorimotor control. 7. Describe the application of technologies and techniques to investigate the structure and function of the body.
Indicative Contents	Anatomical terminology. The structure and appearance of cells and tissues.

The appearance of bone and cartilage, the organi zation of dense connective tissues.
Principles of excitable tissues.
The structure and function of sensory systems, including the eye and vision and the ear and hearing. Principles of sensory motor control.
Cardiac mechanics and cardiac biophysics. Technologies, quantitative measurements and experimental techniques used to investigate the structure and function of
different tissues, organs and organ systems.

Learning and Teaching Strategies					
Strategies	The primary strategy for delivering this module will be to encourage students to participate in the exercises while refining and expanding their critical thinking skills. This will be accomplished through classes, interactive tutorials, and the consideration of simple experiments involving sampling activities that students find interesting.				

Student Workload (SWL)								
Structured SWL (h/sem)			Structured SWL (h/w)					
Unstructured SWL (h/sem)				Unstructured SWL (h/w)				
Total SWL (Total SWL (h/sem)							
Module Ev	aluation							
		Time/Nu	ımb	Main	ht (Marka)	Week Due	Relevant	
er			weig	nt (warks)	week Due	Outcome		
Formative	Quizzes							
assessme nt	Assignment s							

	Projects /			
	Lab.			
	Report			
Summativ	Midterm			
е	Exam			
assessme nt	Final Exam			
Total assessment				

Delivery	Delivery Plan (Weekly Syllabus)					
	Material Covered					
Week 1	Cells and their function					
Week 2	Tissues, glands & membranes					
Week 3	Muscle tissue					
Week 4	The skeleton					
Week 5	Nervous system					
Week 6	Sensory					
Week 7	Respiration					
Week 8	The eye					
Week 9	The joints					
Week 10	The skin					
Week 11	Digestive system					
Week 12	The urinary system and body fluids					
Week 13	The heart					
Week 14	Blood					
Week 15	Blood vessels Blood clotting					
Week 16	Preparatory week before the final exam					

Learning and Teaching Resources					
	Text	Available in the Library?			
Required Texts					
Recommended Texts					

Websites		
----------	--	--

Grading Scheme						
Group	Grade	Appreciation	Marks (%)	Definition		
	A - Excellent	privilege	90 - 100	Outstanding Performance.		
Success	B - Very Good	very good	80 - 89	Above average with some errors.		
Group	C - Good	good	70 - 79	Sound works with notable errors.		
(50 - 100)	D - Satisfactory	middle	60 - 69	Fair but with major shortcomings.		
	E - Sufficient	acceptable	50 - 59	Work meets minimum criteria.		
Fail Group (0 – 49)	FX – Fail	Precipitate (in (process	(45-49)	More work is required, but credit is given.		
	F – Fail	Failed	(0-44)	A significant amount of work is required.		

Courses specification for Second class Medical Engineering (Second Course)

Module Information							
Module Title	Module Title Signals and Systems Module Delivery						
Module Type	Core		□ Theory				
Module Code	NEEM210	NEEM210					
ECTS Credits	6			🗆 Lab			
				🗆 Tutorial			
SWL (hr/sem)	150			🗆 X Practica	al		
				🗆 Seminar			
Module Level		11	Semester o	f Delivery	4		

Administration Department Type		Type Dept. Code	College	Туре С	college Code	
Module Leader			e-mail			
Module Leader's Acad. Title		Assistant Professor	Module Leader's Qualification Ph.			Ph.D.
Module Tutor	Name (if available)		e-mail	Email		
Peer Reviewer	Peer Reviewer Name Name		e-mail	Email		
Scientific Comn Approval Date	nittee	06/25/2023	Version Number 1.0			

Relation with other Modules				
Prerequisite module	None	Semester		
Co-requisites module	None	Semester		

Module Aims, Learning Outcomes and Indicative Contents					
	Student will be able to: 25. identify systems concepts.				
Module Aims	26. understand the properties of systems.				
	27. Understand the mathematical relationship between input and output of a system.				
	28. deal with Fourier and Laplace analysis of systems.				
	29. perform z-transform of discrete signals.				
Module Learning	53. Definition of the system concept.				
Outcomes	54. Introduction of mathematical models.				
	55. Explain continuous time systems. Discrete time systems.				

	56. Introduction of frequency response of systems.				
	57. Definition of filters.				
	58. Explain Ideal filters, Non ideal filters, and Butterworth filter design.				
	59. Define Z-transform of discrete signals. 60. Analyze of continuous system using Laplace Transform. System transfer function.				
	61. Definition of transfer function of a discrete system.				
	Indicative content includes the following.				
Indicative Contents	 Introduction to systems: Definition and mathematical models. Properties of systems. Transformation used with continuous systems Fourier transforms. Filters. Laplace transform. Z-transform: Introduction of z-transform of discrete time signal. Z-transform used with discrete systems. Convolution used for Continuous systems. Discrete systems 				

Learning and Teaching Strategies					
Strategies	To make students interesting with both types of systems: continuous and discrete. Also with properties of systems and operations. To make them familiar with time and frequency domain and analysis of a system. Also to make them familiar with different types of transforms of systems. Also to make them have an experience with solving different problems and examples.				

Student Workload (SWL)			
Structured SWL (h/sem (62	Structured SWL (h/w) A	4
Unstructured SWL (h/sem)	88	Unstructured SWL (h/w)	1
Total SWL (h/sem)	150		

Module Evaluation						
		Time/Numbe r	Weight (Marks)	Week Due	Relevant Learning Outcome	
Formative assessment	Quizzes	6	10% (10)	2, 5, 9, 12,13,15	LO #1, 2, 10 and 11	
	Assignments	ignments 6		2, 5, 9, 12,13,15	LO # 3, 4, 6 and 7	
	Projects / Lab.	6	20% (20)	2, 5, 9, 12,13,15	LO #3, 4, 6 and 7, 5, 8 and 10	
	Report	0	0% (0)	0		
Summative	Midterm Exam	1.5hr	20% (20)	10	LO #1-4	
assessment	Final Exam	3hr	40% (40)	16	All	
Total assessment		100% (100 Marks)				

Delivery Plan (Weekly Syllabus)

	Material Covered
Week 1	Basic definitions. Mathematical models.
Week 2	Continuous time systems.
Week 3	Discrete time systems.
Week 4	System properties.
Weeks 5	Mathematical system representation in time domain: Convolution representation.
Week 6	Convolution properties.
Week 7	System description by linear constant coefficient differential equations.
Week 8	Frequency domain analysis of continuous system.
Week 9	Frequency response of a system.
Week 10	Frequency response of electrical circuits.
Week 11	Ffilters. Distortion less transmission.
Week 12	Ideal filters. Non ideal filters. Butterworth filter design.
Week 13	Analysis of continuous system using Laplace Transform.
Week 14	System transfer function.
Week 15	Analysis of discrete system using z-Transform. System transfer function.

Learning and Teaching Resources

	Text	Available in the Library?
Required Texts	Signals and systems. Simon S. Haykin	Yes
Recommended Texts	Signals and linear systems. G. E. Carlson	

Grading Scheme

Group	Grade	Appreciation	Marks %	Definition
	A - Excellent	privilege	90 - 100	Outstanding Performance
Success	B - Very Good	very good	80 - 89	Above average with some errors
Group (50 - 100)	C - Good	good	70 - 79	Sound works with notable errors
	D - Satisfactory	middle	60 - 69	Fair but with major shortcomings
	E - Sufficient	acceptable	50 - 59	Work meets minimum criteria
Fail Group (0 – 49)	FX – Fail) Precipitate under processing ((45-49)	More work required but credit awarded
	F – Fail	Failed	(0-44)	Considerable amount of work required

Module Information							
Module Title	Engineering Analysis II			Module Delivery	Module Delivery		
Module Type	Core	Core			□Theory		
Module Code	NVEE209	NVEE209			⊠Lecture		
ECTS Credits	3			□Lab			
SWL (hr/sem)	75		⊠Tutorial ⊡Practical ⊡Seminar				
Module Level	<u> </u>		Semester	of Delivery	2		
Administration	Department	nt Electronics dept College		Electronics engineering college			
Module Leader	Dr. Omar B Mohammed e-mail		omar.mohammed@uoninevah.edu.iq				
Module Leader's Acad. Title Lecturer		Module Le	eader's Qualification	Ph.D.			

Module Tutor			e-mail		
Peer Reviewer N	lame		e-mail		
Scientific Committee Approval Date			Version N	umber	

Relation with other Modules			
Prerequisite module	None	Semester	
Co-requisites module	None	Semester	

Module Aims, Learning Outcomes and Indicative Contents		
Module Aims	This course covers the following topics: ordinary differential equations, sequences and series, solution of differential equations by power series, and matrix analysis. Those areas of mathematics which are most important in connection with practical problems for modeling different areas of science, computer can be easily utilized to find the properties of such systems.	
Module Learning Outcomes	 Upon successful completion, students will: 7. Improve their problem-solving skills. 8. Apply that knowledge toward practical problems in different areas of science. 9. Utilize the computer capabilities to solve such problems using proper methods. 10. Learn how to represent any function as a power series, then use computer to solve it. 11. Learn the importance of differential equations for modeling almost any system, and how to solve it to find the properties of that system. 12. Learn the linear algebra and its importance in science. 	
Indicative Contents	Ordinary Differential Equations. Sequences and Series. Solution of Differential Equations by Power Series.	
------------------------	--	
	Matrix Analysis.	

Learning and Teaching	Strategies
Strategies	The primary strategy for delivering this module will be to encourage students to participate in the exercises while refining and expanding their critical thinking skills. This will be accomplished through classes, interactive tutorials, and the consideration of simple experiments involving sampling activities that students find interesting.

Student Workload (SWL)								
Structured SWL (h/sem)					Structured	SWL (h/w)		
Unstructured SWL (h/sem)			Unstructured SWL (h/w)					
Total SWL (h/sem	1)							
Module Evaluation								
		Time/Nu r	mbe	Weigł	nt (Marks)	Week Due	Relevant Learning Outcome	
	Quizzes							
Formative	Assignment s							
assessment	Projects / Lab.							
	Report							
Summative assessment	Midterm Exam							
	Final Exam							
Total assessment								

Delivery	Plan (Weekly Syllabus)
	Material Covered
Week 1	Ordinary Differential Equations:
Week 2	1. First order (variables separable, homogeneous, linear and exact).
Week 3	2. Second order homogeneous.
Week 4	 Second order nonhomogeneous; indeterminant coefficients, variation of parameters.
Week 5	Infinite Sequences and Series:
Week 6	1. Limit laws, indeterminate forms and L'hospital rule.
Week 7	2. Infinite series; convergence test.
Week 8	3. Power series; Taylor and Maclaurin series.
Week 9	
Week 10	Solution of Differential Equations by Power Series:
Week 11	Power series method, Legendre's equation; Legendre's polynomials.
Week 12	
Week 13	Matrix Analysis:
Week 14	1. Review of matrix theory, solving system of equations; Cramer's rule,
Week 15	 2. Eigen values and eigen vectors. 3. Diagonalization of matrices 4. Application of matrices to electrical circuits.
Week 16	Preparatory week before the final exam

Learning and Teaching Resources

	Text	Available in the Library?
Required Texts	Advanced Engineering Mathematics By KREYSIK	Yes
Recommended Texts	Calculus By Finney& Thomas	Yes
Websites		

Grading Sc	heme			
Group	Grade	Appreciation	Marks (%)	Definition

	A - Excellent	privilege	90 - 100	Outstanding Performance.
Success	B - Very Good	very good	80 - 89	Above average with some errors.
Group	C - Good	good	70 - 79	Sound works with notable errors.
(50 - 100)	D - Satisfactory	middle	60 - 69	Fair but with major shortcomings.
	E - Sufficient	acceptable	50 - 59	Work meets minimum criteria.
Fail Group	FX – Fail) Precipitate under (processing	(45-49)	More work is required, but credit is given.
(0 - 49)	F – Fail	Failed	(0-44)	A significant amount of work is required.

Module Infor	mation				
Module Title	Electronic I	Electronic II			
Module Type	Core			□Theory	
Module Code	NVEEELM2	NVEEELM221			
ECTS Credits	6			□Lab	
				⊠Tutorial	
SWL (hr/sem)	em) 150			⊠Practical	
				□Seminar	
Module Level	Nodule Level		Semester	of Delivery	2
Administration Department Electronics		Electronics	College	Electronic Engineering	g college

Module Leader			e-mail			
Module Leader's	s Acad. Title	Assistant Prof.	Module Leader's Qualificat		Qualification	PhD
Module Tutor			e-mail			
Peer Reviewer	lame Name		e-mail	Ahmad	.younis@uonin	evah,edu,iq
Scientific Committee Approval Date		12/06/2023	Version N	umber	1.0	

Relation with other Mo	odules		
Prerequisite module	Electronic I	Semester	1
Co-requisites module	None	Semester	

Module Aims, Learning Outcomes and Indicative Contents						
	24. To understand the basic theory and operation of bipolar transistor					
	25. To be familiar with current mechanism in an npn and pnp transistors					
	26. To concentrate transistor physical and electrical characteristics					
	27. To illustrate and design different dc biasing circuits					
Module Aims	28. To understand the biasing stability conditions					
	29. To be able to deal with the mathematical behavior of transistor model					
	30. To understand small signal analysis of transistor amplifier					
	31. To deal with different transistor amplifier configuration					
	32. To be able to deal with the frequency response of transistor amplifier					
	33. To understand the basic operation of field effect transistor and MOS device					

	34. To understand the dc and ac behavior of FET and MOS amplifiers
Module Learning Outcomes	 24. Understand and apply the basic theory and operation of transistor amplifiers 25. Define and explain the electrical characteristic of bipolar transistor 26. Understand the basic structure of npn and pnp transistors 27. Understand and analyze the electrical transistor model 28. Understanding the dc and ac analysis of transistor amplifier 29. Dealing with dc biasing and ac amplifiers 30. Understanding the effect of frequency on amplifier response 31. Familiar with other FET and MOS circuits

	Bipolar junction transistors, Transistor construction, transistor operation, NPN & PNP Bipolar Transistor; Current Flow Mechanism in Transistor Junctions; Trans configurations; Current Gain Calculation [Alpha] and [Beta]; Transistor input/output characteristics; DC Load line; Operating point; Different DC circuit biasing. Bias circuit, voltage divider circuit, dc bias with feedback
	DC biasing,
	Operating point, fixed bias circuit, emitter bias circuit, voltage divider circuit, dc bias wit feedback.
	Biasing stability Stability factor analysis due to temperature variation (Effect of Ico, Vbe and Beta); Temperature compensation using diode biasing.
	Small signal analysis,
Indicative	Small signal equivalent circuit for CB, CE and CC configuration; Input/Output resistanc Calculation of current and voltage Gain in small signal amplifier; Graphical Analysis for voltage gain; Hybrid parameters to analyze transistor circuits.
Contents	Field Effect Transistor (FET) and MOS transistor: FET biasing configurations, Depletion and Enhanced mode operation, Introduction to the theory and operations of JFFT & MOSFET; FET Transistor configurations; Transistors transfer characteristics; Amplifier Circuit Biasing; transisto Equivalent circuit; Small signal analysis of FET transistor.
	FREQUENCY RESPONSE: Definition and Concepts; Gain in decibel; Bode plot for the gain; The effect of the Coup capacitor; Low frequency analysis due to the RC Coupled amplifier in BJTs; the Effect emitter bypass capacitor ; Calculation of the Low cut-off frequency. Transistor amplifier high frequencies; Hybrid PIE equivalent circuit at high frequency; High frequency beha of CB & CE amplifier; High cut-off frequency; Gain Band-Width products for the above circuits; FET at high frequencies; CD and CS amplifier at high frequency;

Learning and Teaching Strategies		
Strategies	The primary strategy for delivering this module will be to encourage students to participate in the exercises while refining and expanding their critical thinking skills. This will be accomplished through classes, interactive tutorials, and the consideration of simple experiments involving sampling activities that students find interesting.	

Student Workload (SWL)			
Structured SWL (h/sem)	88	Structured SWL (h/w)	3
Unstructured SWL (h/sem)	76	Unstructured SWL (h/w)	1
Total SWL (h/sem)	164		

		Time/Numbe r	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	6	10 % (10)	2, 5, 9, 12,13,15	LO #1, 2, 10 and 11
Formative assessment	Assignment s	6	10 % (10)	2, 5, 9, 12,13,15	LO # 3, 4, 6 and 7
	Projects / Lab.	6	20 % (20)	2, 5, 9, 12,13,15	LO # 3, 4, 6 and 7, 5, 8 and 10
	Report	0	0% (0)	0	
Summative	Midterm Exam	1:30hr	20 % (20)	10	LO #1-4
ussessment	Final Exam	3 hours	4 0% (4 0)	16	All
Total assessment		100% (100 Marks)			

Delivery	Plan (Weekly Syllabus)	
	Material Covered	
Week 1	Transistor construction and operation	
Week 2	Bipolar transistor current flow mechanism	
Week 3	Transistor configurations, current gain calculation, and input and output resistances	
Week 4	Dc biasing circuits, operating point calculation	
Week 5	Biasing stability, stability factor calculation	
Week 6	Temperature compensation using diode biasing	
Week 7	k 7 Small signal equivalent circuit for CB, CC, CE configurations	
Week 8	Calculation of voltage and current gains	
Week 9	Hybrid model ac analysis of transistor amplifier	

Week 10	FET and MOS transistors operation
Week 11	FET biasing configurations
Week 12	Depletion and enhancement mode operation
Week 13	Definition and analysis of amplifier frequency response
Week 14	Low frequency and high frequency analysis
Week 15	Hybrid-Pie equivalent circuit at high frequency
Week 16	Subject review

Delivery	Plan (Weekly Lab. Syllabus)
	Material Covered
	Practical experiments in transistor amplifiers to measure the current and
Week 1-	voltage gains.
15	To measure the input and output amplifier resistances
	To measure the amplifier frequency response.

Learning and Teaching Resources			
	Text	Available in the Library?	
Required Texts	Textbook1: INTEGRATEDELECTRONICS"MCGRAWHILL;9THREPRINT,1 995 . B yMILLMAN&HALKIES 2: "ELECTRONICS DEVICES AND COMPONENTS", PITMAN, 1995 By MOTTERSHED , .	yes	
Recommended Texts	3: "SOLID STATE DIVICES", PHI; 4TH EDITION , 1995.By STREETMAN, 4"SEMICONDUCTOR DEVICES & CIRCUITS", JOHN WILEY & SONS, 1992.By : MS TYAGI	Yes	
Websites	Electronic circuits		

Grading Scheme				
Group	Grade	Appreciation	Marks (%)	Definition
	A - Excellent	privilege	90 - 100	Outstanding Performance.
Success Group (50 - 100)	B - Very Good	very good	80 - 89	Above average with some errors.
	C - Good	good	70 - 79	Sound works with notable errors.
	D - Satisfactory	middle	60 - 69	Fair but with major shortcomings.
	E - Sufficient	acceptable	50 - 59	Work meets minimum criteria.
Fail Group	FX – Fail) Precipitate under (processing	(45-49)	More work is required, but credit is given.
(0 +0)	F – Fail	Failed	(0-44)	A significant amount of work is required.

Module Information							
Module Title	Programming	Programming			Module Delivery		
Module Type	Core			🖾 The	eory		
Module Code	NVEEELM22	22		🛛 Leo	cture		
ECTS Credits	6			🖾 Lal	0		
					torial		
SWL (hr/sem)	150			🗆 Pra	Practical		
	□ Seminar						
Module Level		UGx11 2	Semester o	ster of Delivery 2		2	
Administration Department		Dept. of Electronic Eng. (Med. Ele)	College	College of Electronic Engineering		gineering	
Module Leader	Qais Thanon		e-mail	Qais.najim @uoninevah.edu.iq		.edu.iq	
Module Leader's Acad. Title		Porf.	Module Lea	ader's Qualification Ph.D.		Ph.D.	
Module Tutor Name (if available)		ble)	e-mail	Email			
Peer Reviewer Name		Name	e-mail	Email			
Scientific Commi Date	Scientific Committee Approval Date		Version Nu	umber 1.0			

Relation with other Modules				
Relationship with other subjects				
Prerequisite module	None	Semester		
Co-requisites module	None	Semester		

Module Aims, Learning Outcomes and Indicative Contents			
Course objectives, learning outcomes and guiding content			
Module Objectives			
Subject objectives1. Learning about the algorithms types and how to build the algorithms.			

	2. Learning how to command computers to perform tasks using C++ language (Programming/coding)
	3. Become acquainted with the designed programming including sequencing,
	condition and iteration.
	4. Learn about the 1d and 2d arrays in C++ language.
	5. Learn about the functions in C++ language.
	6 . Learn about the strings in C++ language.
	1. Understanding the meaning of the algorithms in programming languages.
	2. Understanding the basics concepts of C language programming such as
Medule Leensing	variables, data types, operators, control
Nodule Learning	 Understanding the utilities of each one of sequencing, condition, and loops, and basic input/output operations.
Outcomee	4. Understanding how to represent the data in 1d arrays and 2d arrays.
	5. Learn about how the strings represented in C language.
Learning outcomes for the	6. Learn about divide any problem in sub-program and execute this problem
subject	by using function.
	7. In advance practical experience by working on programming exercises
	and projects.
	Indicative content includes the following.
	Visualization via flowchart and pseudocode [4 hrs]
	Keyworks, identifier, format specifier, and naming variables and constants
	[8 hrs]
	 Use standard libraries to take input and display output [8 hrs]
Indicative Contents	Operators in C++ programming [10 hrs]
Guidance Contents	Priorities in C++ programming [4 hrs]
Guidance Contents	Math functions [4 hrs]
	Conditional operations [8 hrs]
	Iterations (Loop operators) [10 hrs]
	Arrays [10 hrs]
	Functions [8 hours]
	 Review classes and problem solving [8 hrs]

Learning and Teac	ching Strate	gies		
Learning and teach	ing strategie	S		
Strategies	The main strategy being focused on is developing conceptual programming thinking, meanwhile refining and expanding their mathematical thinking skills. This will be achieved through classes, online lectures, interactive tutorials. Additionally, working on complex projects that challenge students' skills and require to apply advanced concepts. Such projects would help students explore various aspects of C++ programming and gain hands-on experience in solving complex problems. Some sampling activities that are interesting to the students.			
Student Workload	Student Workload (SWL)			
The student's acade	emic load is	calculated	for 15 weeks.	
Structured SWL (h/se	m)			
Regular student load d	uring the	77	Structured SWL (h/w)	5.1
semester				
Unstructured SWL (h	/sem)			
Irregular student load during the		73	Unstructured SWL (n/w)	4.8
semester			inegulai student load per week	
Total SWL (h/sem)		150		

-

Course material evaluation

As		Time/Number	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5 and 10	LO #1, #2 and #10, #11
Formative assessment	Assignments	2	10% (10)	2 and 12	LO #3, #4 and #6, #7
	Projects / Lab.	1	10% (10)	Continuous	All
	Report	1	10% (10)	13	LO #5, #8 and #10
Summative	Midterm Exam	2hr	10% (10)	7	LO #1 - #7
assessment	Final Exam	3hr	50% (50)	16	All
Total assessment		100% (100 Marks)			

Delivery Plan (Weekly Syllabus)

Theoretical weekly curriculum

Week	Material Covered
Week 1	Introduction to computer languages and the structure of C program
Week 2	Flowchart and Pseudo-code
Week 3	Introduction to C++ programming: Declare variables and constants
Week 4	Take input and print output
M/2 - 1- 5	Assignment and Increment, Decrement, Arithmetic, Logical, and Bitwise
Week 5	operators
Week 6	Standard math functions in math header <math.h></math.h>
Week 7	Priorities of operators in C++ programming
Week 8	Relational and conditional operators
Week 9	Mid-term Exam
Week 10	If statement versus switch case statement
Week 11	Examples of structured programming (sequencing and condition)
Week 12	Loop operators (For, while, do-while)
Week 13	Arrays
Week 14	Functions
Week 15	String of characters
Week 16	Preparatory week before the final exam

Delivery P	Plan (Weekly Lab, Syllabus)
Weekly la	b schedule
Week	Material Covered
Week 1-2	Learn the C++ language program complier.
Week 3-4	Declare variables and constants and <iostream.h> including standard functions</iostream.h>
Week 5-6	Arithmetic, logical, and bitwise operators
Week 7-8	Math header for math functions <math.h> and Assignment and increment & decrement operators</math.h>
Week 9-10	Relational and conditional operators and Loop operators
Week 11-12	Examples about the Arrays
Week 13-14	Examples about Functions and string

Learning and Teaching Resources

	Text	Available in the Library?
Required Texts	C Programming Absolute Beginner's Guide, 3rd Edition 2014. BY: Greg Perry and Dean Miller.	Yes
Recommended Texts	C How to Program with an introduction to C++, ^{8th} Edition 2016. <i>BY: Paul Deitel and Harvey Deitel.</i> Global Edition Contribution by Piyali Sengupta	No
Websites	1- https://www.programiz.com/c-programming 2- <u>https://www.coursera.org/specializations/c-programming</u>	

Grading Scheme

Grading cha	irt			
Group	Grade	Appreciation	Marks %	Definition
	A - Excellent	privilege	90 - 100	Outstanding Performance
Success	B - Very Good	very good	80 - 89	Above average with some errors
Group	C - Good	good	70 - 79	Sound works with notable errors
(50 - 100)	D - Satisfactory	middle	60 - 69	Fair but with major shortcomings
	E - Sufficient	acceptable	50 - 59	Work meets minimum criteria
Fail Group	FX – Fail	Precipitate (in (process	(45-49)	More work required but credit awarded
(0 – 49)	F – Fail	Failed	(0-44)	Considerable amount of work required

Module Info	mation					
Module Title	Electroma	Electromagnetic Fields II			ule Delivery	
Module Type	Core	Core			□Theory	
Module Code	NVEE221				⊠Lecture	
ECTS Credits	6				□Lab	
					⊠Tutorial	
SWL (hr/sem)	150				□Practical	
			□Seminar			
Module Level		Semester	of Deliv	ery	2	
Administration	Department Type Dept. Code College Type College Code					
Module Leader	SINAN KHAL	INAN KHALID SHANSHAL e-mail sinan.mohammed@uoninevah.		uoninevah.edu.		
Module Leader's	s Acad. Title	Lecturer	Module Leader's Qualification M.Sc.		M.Sc.	
Module Tutor			e-mail	nail		
Peer Reviewer	Name	Name	e-mail	nail Email		
Scientific Comm Approval Date	nittee	02/07/2023	Version N	umber	1.0	

Relation with other Mo	odules		
Prerequisite module	None	Semester	

Co-requisites module	None	Semester	

Module Aims, Lo	earning Outcomes and Indicative Contents
Module Aims	To develop knowledge of the laws governing the behavior of magnetic and electro-magnetic fields, and to relate the laws governing the fields to applications
	In a range of electrical and electronic engineering application.
Module Learning Outcomes	 On completion of the course the students should be able: to have detailed knowledge of the physical background and terminology of the electromagnetic field theory for electrical engineering problems to understand the electromagnetic field behavior to select and use appropriate theoretical models for analysis, problem solving and finding solutions related to the electrostatic, magnetostatic and electromagnetic fields to understand how laws of electromagnetism can be applied to problems arising in engineering.
Indicative Contents	Magnetic field and Ampere's Law Magnetic flux and Gauss's Law for magnetic fields Faraday's Law Inductance Maxwell's equations
	Applications of Electromagnetics

Learning and Teaching Strategies	
Strategies	Through the presentation of a theoretical explanation with the aid of white board and 'Data Show', to illustrate syllabus (examples and exercises) and using text books

Student Workload (SWL)			
Structured SWL (h/sem)	45	Structured SWL (h/w)	4
Unstructured SWL (h/sem)	?	Unstructured SWL (h/w)	1
Total SWL (h/sem)	?		

Module Ev	aluation				
		Time/Numbe r	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	4	15 % (10)	5,8,10,12	LO #1-5,6-7, 9 and 11
Formative assessment	Assignment s	4	15 % (10)	6,9,11,13	LO #1-5, 6, 10 and 12
	Projects	0	0%(0)		
	Report	0	0% (0)		
Summative	Midterm Exam	1.5hr	20 % (20)	10	LO #1-8
assessment	Final Exam	3 hours	5 0% (4 0)	16	All
Total assess	ment		100% (100 Marks)		

Delivery	Plan (Weekly Syllabus)
	Material Covered
Week 1	Review of Vector Calculus
Week 2	Review of Vector Calculus
Week 3	Boit – Savart law
Week 4	Amperes law; Magnetic Flux & Magnetic Flux Density
Week 5	Inductance
Week 6	Force on Moving Charge; Force on Differential Current. Elements
Week 7	Force and Torque on a Closed Circuit
Week 8	Magnetization and Permeability; Magnetic Boundary Conditions; Magnetic
Wook 9	Faraday's Law
Week 10	Maxwell's Equations
Week 11	Example of Maxwell's Equations
Week 12	Wave Equations; Wave Propagation in Lossy Dielectrics
Week 13	Plane Waves in Lossless Dielectrics; Plane Waves in Free Space
Week 14	Plane Waves in Good Conductors;
Week 15	Power and the Pointing Vector.
Week 16	Preparatory week before the final exam

Delivery Plan (Weekly Lab. Syllabus)

	Material Covered
Week 1-	
15	

Learning and Te	eaching Resources	
	Text	Available in the Library?
Required Texts	1-ENGINEERING ELECTROMAGNETICES, Mc- Graw Hill, By WILLAIM H. HAYT.2-Elements of electromagnetic engineering, Prentice Hall, By Matthew NO SADIKU	No
Recommended Texts	1-Electromagnetics (Schaum's Outlines), McGraw-Hill Education, By Edminister, Joseph_ Nahvi, Mahmood.	No
Websites		

Grading Sc	heme			
Group	Grade	Appreciation	Marks (%)	Definition
	A - Excellent	privilege	90 - 100	Outstanding Performance.
Success	B - Very Good	very good	80 - 89	Above average with some errors.
Group	C - Good good	good	70 - 79	Sound works with notable errors.
(50 - 100)	D - Satisfactory	middle	60 - 69	Fair but with major shortcomings.
	E - Sufficient	acceptable	50 - 59	Work meets minimum criteria.
Fail Group (0 – 49)	FX – Fail) Precipitate under (processing	(45-49)	More work is required, but credit is given.
	F – Fail	Failed	(0-44)	A significant amount of work is required.

Module Infor	r mation mation						
Module Title	<u>English</u>	English			Module Delivery		
Module Type	<u>Support</u>			⊠Theory			
Module Code	<u>NVU11</u>	<u>NVU11</u>			□Lecture □Lab		
ECTS Credits	3						
SWL (hr/sem)	<u>75</u>			□Seminar			
Module Level	lodule Level UGx11 1 Semest		Semester o	of Delivery 1		1	
Administration D	epartment		College NV				
Module Leader			e-mail				
Module Leader's	Acad. Title	Noor Mothafar Hamid	Module Leader's Qualification MS.D.		MS.D.		
Module Tutor	Name (if availal	ble)	e-mail noorm.hame@duoninevah.e		ah.edu.iq		
Peer Reviewer Name Name		e-mail	Email				
Scientific Commi Date	ttee Approval	06/01/2023	Version Number 1.0				

Relation with other Modules				
Relationship with other subjects				
Prerequisite module	None	Semester		
Co-requisites module	None	Semester		

Module Aims, Learning Outcomes and Indicative Contents Course objectives, learning outcomes and guiding content				
Module Aims Subject objectives	 35. To develop skills, reading, writing and understanding of English language through the application of teaching techniques. 36. To understand scientific subjects and technical terms through reading and comprehension. 37. This course deals with the basic concepts of scientific subjects. 			

	38. This course handles how to write simple research and how to make a			
	successful presentation.			
	39. To understand the scientific language in English.			
Module Learning Outcomes Learning outcomes for the subject	 32. Recognize parts of speech and tenses in English language. 33. List the various terms associated with scientific texts. 34. Summarize what is meant by a basic electric circuit. 35. Discuss Electric currents, series and parallel circuits. 36. Describe electrical power, charge, and current. 37. Discuss computers, communication and the future of computers 38. Identify the basic circuit elements and their applications. 39. Explain energy types and forms. 40. Discuss the various properties of radio waves and vacuum tubes. 41. Explain modulation. 42. Discuss Electromagnetism. 			
	Indicative content includes the following.			
Indicative Contents Guidance Contents	 parts of speech _verb _noun _pronoun Tenses _Past _Present _future 3. Electric currents and circuits _AC/DC _parallel, serious _Grounding, fuse, short circuit 4.Radio waves and vacuum tubes 5. Electromagnetism. 6. The future of computers, communication applications. _fiber optics. 7. Induction. _Electric generator _self-induction _servomechanism 8. Incandescent lamp. 9. Energy. _types of energy _forms of energy 10. Introduction to electron and electricity. 11 Electricity and electronics 			

Learning and Teac	hing Strategies
Learning and teaching	ing strategies
Strategies	The main strategy that will be adopted in delivering this module is to encourage students' participation by reading, writing and comprehension in the exercises, while at the same time refining and expanding their critical thinking skills. This will be achieved through classes, presentation, interactive tutorials, by considering type of simple experiments involving some sampling activities that are interesting to the students.

Student Workload (SWL) Student's academic load			
Structured SWL (h/sem) Regular student load during the semester	30	Structured SWL (h/w) Regular weekly student load	2
Unstructured SWL (h/sem) Irregular student load during the semester	70	Unstructured SWL (h/w) Irregular student load per week	5
Total SWL (h/sem) The student's total academic load during the semester	100		

Course	material	eva	luation
000100	matoria	ovu	addion

As		Time/Nu mber	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	3	10 % (10)	4.6	LO #1, 2, 3,4,5and 6
Formative assessment	Assignments	2	10 % (10)	9, 12	LO # 7,8,9,10,11and 12
	Projects / Lab.				
	Report	1	10% (10)	13	LO # 13,14
Summative	Midterm Exam	2 hours	10 % (10)	7	LO#
assessment	Final Exam	2 hours	5 0% (5 0)	16	All
Total assessm	ent		100% (100 Marks)		

Delivery	Delivery Plan (Weekly Syllabus)		
Theoretic	al weekly curriculum		
Week	Material Covered		
Week 1	Parts of speech		
Week 2	Tenses		
Week 3	Electric currents and circuit		
Week 4	Radio waves and vacuum tubes		
Week 5	The future of computers, communication applications.		
	Induction		
Week 6	-Electric generator		
	-Electric transformer		
Week 7	Mid-term Exam		
	Induction		
Week 8	-Self-induction		
	-Servomechanism		
Week 9	Incandescent lamp.		
	Energy.		
Week 10	-types of energy		
Week 44	-forms of energy		
Week 11	The triate and electricity.		
Week 12			
Week 13	I he cathode ray tube		
Week 14	Propagation		
Week 15	Modulation		
Week 16	Preparatory week before the final exam		

Delivery	Delivery Plan (Weekly Lab. Syllabus)		
Weekly la	Weekly lab schedule		
Week	Material Covered		
Week 1			
Week 2			
Week 3			
Week 4			
Week 5			
Week 6			
Week 7			

Learning and Tea	Learning and Teaching Resources		
	Text	Available in the Library?	
Required Texts	English in electrical engineering and electronics. The language of electrical and electronic engineering in English.	Yes	
Recommended Texts	English for electrical engineering and computing.	No	
Websites	https://www.askoxford.com/betterwriting/succesfulcv/application/	?view=uk	

Grading Sc Grading cha	heme Irt			
Group	Grade	Appreciation	Marks (%)	Definition
	A - Excellent	privilege	90 - 100	Outstanding Performance
Success	B - Very Good	very good	80 - 89	Above average with some errors
Group	C – Good	good	70 - 79	Sound works with notable errors
(50 - 100)	D - Satisfactory	middle	60 - 69	Fair but with major shortcomings
	E - Sufficient	acceptable	50 - 59	Work meets minimum criteria
Fail Group	FX – Fail	Precipitate (in (process	(45-49)	More work required but credit awarded
(0 – 49)	F – Fail	Failed	(0-44)	Considerable amount of work required

Courses specification for Second class Industrial Electronic Engineering (Second Course)

Module Information					
Module Title	DC Machine	DC Machines		Module Delivery	
Module Type	Core			⊠Theory	
Module Code	<u>NEEI2313</u>			□Lecture ⊠Lab	
ECTS Credits	<u>6</u>		⊠Lab ⊠Tutorial		
SWL (hr/sem)	<u>114</u>			□Practical □Seminar	
Module Level		2 2	Semester	of Delivery	1
Administratior Department	1	Electronic Dept.	College	Electronics collage	
Module Leader			e-mail		
Module Leader Title	r's Acad.		Module L Qualificat	eader's ion	
Module Tutor			e-mail		
Peer Reviewer Name			e-mail		
Scientific Com Approval Date	mittee		Version Number		

Relation with other Modules			
Prerequisite module	DC Circuit Analysis	Semester	1
Co-requisites module	None	Semester	

Module Aims, Learning Outcomes and Indicative Contents			
	40. Understanding DC Machine Principles		
	41. Analyzing DC Machine Behavior		
	Control Strategies		
	System Integration		
Module Aims	44. Practical Applications		
	45. Problem-Solving Skills		
	46. Laboratory Skills		
	47. Teamwork and Communication		
	48. Professional Development		
	43. Understand how voltage is induced in a rotating loop		
	44. Understand how curved pole faces contribute to a constant flux,		
	and thus		
	45. More constant output voltages.		
	46. Understand how curved pole faces contribute to a constant flux,		
	and thus		
Modulo Loarning	More constant output voltages.		
	47. Understand the power flow diagram for de machines		
Outcomes	48. Know the types of motors in general use.		
	49. Understand the equivalent circuit of a motor.		
	50. Understand how to derive the torque-speed characteristics of		
	separately excited, shunt, series, and compounded de motors.		
	51. Understand how to control the speed of different types of motors.		
	52. Understand the special characteristics of series de motors, and		
	their applications.		

п

	53. Understand the methods of starting dc motors safely.
	54. Understand the equivalent circuit of a dc generator.
	55. Understand the purpose of a transformer in a power system.
	56. Understand now real transformers approximate the operation of
	an ideal
	transformer
	57. Be able to explain now copper losses, leakage liux, hysteresis,
	Introduction A Simple Poteting Lean between Curved Pole Faces. The
	Voltage Induced in a Detating Loop between Curved Fole Faces. The
	Voltage Induced in a Rotating Loop / Getting DC voltage Out of the
	Rotating Loop / The Induced Torque in the rotating loop.(12 hrs.).
	Commutation and Armature Construction in Real DC Machine(8 hrs.).
	Power Flow and Losses in DC Machines. (6 hrs.).
	Introduction to DC Motors. The Equivalent Circuit of a DC Motor. The
	Magnetization Curve of a DC Machine. Separately Excited and Shunt
	DC Motors.(10 hrs.).
	Permanent-Magnet DC Motor. The Series DC Motor. The Compounded
	DC Motor. (6 hrs.).
	Motor Starters. Solid-State Speed Controllers. (12 hrs.).
Indicative Contents	DC Motor Efficiency Calculations. (4 hrs.).
	Mid-term Exam(3 hrs.).
	Introduction to DC Generators. The Separately Excited Generator. (12
	hrs.).
	The Shunt DC Generator. The Series DC Generator.(4 hrs.).
	The Cumulatively Compounded DC Generator. The Differentially
	Compounded DC Generator. (4 hrs.).
	Types and Construction of Transformers. The Ideal Transformer. (10
	hrs.).
	Theory of Operation of Real Single-Phase Transformers. The
	Equivalent Circuit of a Transformer. (18 hrs.).
	Transformer Voltage Regulation and Efficiency. (12 hrs.).
	Instrument Transformers. (4 hrs.).

Learning and Teaching Strategies		
	Visual Aids	
	Problem-Solving Exercises	
Strategies	Real-World Applications	
	Group Projects	
	Simulations and Virtual Labs	

Multimedia Resources
Real-Life Examples

Student Workload (SWL)			
Structured SWL (h/sem)	74	Structured SWL (h/w)	4
Unstructured SWL (h/sem)	40	Unstructured SWL (h/w)	1
Total SWL (h/sem)	114		

As		Time/Nu mber	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10 % (10)	5, 10	
Formative	Assignments	2	10 % (10)	2, 12	
assessment	Projects / Lab.	1	10 % (10)	Continuous	
	Report	1	10% (10)	13	
Summative	Midterm Exam	2 hours	10 % (10)	7	
assessment	Final Exam	2 hours	5 0% (5 0)	16	
Total assessment		100% (100 Marks)			

Delivery	Plan (Weekly Syllabus)
Week	Material Covered
	Introduction - A Simple Rotating Loop between Curved Pole Faces. The Voltage
Week 1	Induced in a Rotating Loop / Getting DC Voltage Out of the Rotating Loop / The
	Induced Torque in the rotating loop.
Week 2	Commutation and Armature Construction in Real DC Machine.
Week 3	Power Flow and Losses in DC Machines.
Wook 4	Introduction to DC Motors. The Equivalent Circuit of a DC Motor. The Magnetization
Week 4	Curve of a DC Machine. Separately Excited and Shunt DC Motors
Week 5	Permanent-Magnet DC Motor. The Series DC Motor. The Compounded DC Motor.
Week 6	Motor Starters. Solid-State Speed Controllers.
Week 7	DC Motor Efficiency Calculations.
Week 8	Mid-term Exam.
Week 9	Introduction to DC Generators. The Separately Excited Generator.

Week 10	The Shunt DC Generator. The Series DC Generator
Week 11	The Cumulatively Compounded DC Generator. The Differentially Compounded DC Generator.
Week 12	Types and Construction of Transformers. The Ideal Transformer.
Week 13	Theory of Operation of Real Single-Phase Transformers. The Equivalent Circuit of a Transformer.
Week 14	Transformer Voltage Regulation and Efficiency.
Week 15	Instrument Transformers.
Week 16	Preparatory week before the final exam

Learning and Teaching Resources		
	Text	Available in the Library?
Required Texts	Electrical Machinery Fundamentals" edited by Stephen J. Chapman.	NO
Recommended Texts	electrical machines and transformer by: Ancieron and Macneiil	NO
Websites	https://www.coursera.org	

Grading Scheme				
Group	Grade	Appreciation	Marks (%)	Definition
	A - Excellent	privilege	90 - 100	Outstanding Performance
Success	B - Very Good	very good	80 - 89	Above average with some errors
Group	C - Good	good	70 - 79	Sound works with notable errors
(50 - 100)	D - Satisfactory	middle	60 - 69	Fair but with major shortcomings
	E - Sufficient	acceptable	50 - 59	Work meets minimum criteria
Fail Group	FX – Fail	Precipitate (in (process	(45-49)	More work required but credit awarded
(0 - 49)	F – Fail	Failed	(0-44)	Considerable amount of work required

Module Info	rmation	
Module Title	Electronic I	Module Delivery

Module Type	core			□The ⊠Lec	□Theory ⊠Lecture		
Module Code	e <u>NVEEELI212</u>			□Lab			
ECTS Credits	<u>7</u>			⊠Tute ⊠Pra	⊠Tutorial ⊠Practical		
SWL (hr/sem)	<u>164</u>			□Seminar			
Module Level	dule Level 1		Semester o	emester of Delivery		1	
Administration D	Iministration Department Electronics		College	Electronic Engineering college			
Module Leader			e-mail				
Module Leader's	Acad. Title	Assistant Prof.	Module Leader's Qualification PhD		PhD		
Module Tutor			e-mail				
Peer Reviewer Name		Name	e-mail	e-mail Ahmad.younis@uoninevah,edu		ah,edu,iq	
Scientific Committee Approval Date		12/06/2023	Version Number 1.0				

Relation with other Mo	dules		
Prerequisite module	NEEI1223	Semester	
Co-requisites module	None	Semester	

Module Aims, Learning Outcomes and Indicative Contents				
Module Aims	 49. To understand the basic theory and operation of bipolar transistor 50. To be familiar with current mechanism in an npn and pnp transistors 51. To concentrate transistor physical and electrical characteristics 52. To illustrate and design different dc biasing circuits 53. To understand the biasing stability conditions 54. To be able to deal with the mathematical behavior of transistor model 55. To understand small signal analysis of transistor amplifier 56. To deal with different transistor amplifier configuration 57. To be able to deal with the frequency response of transistor amplifier 58. To understand the basic operation of field effect transistor and MOS device 59. To understand the dc and ac behavior of FET and MOS amplifiers 			

Module Learning Outcomes	 58. Understand and apply the basic theory and operation of transistor amplifiers 59. Define and explain the electrical characteristic of bipolar transistor 60. Understand the basic structure of npn and pnp transistors 61. Understand and analyze the electrical transistor model 62. Understanding the dc and ac analysis of transistor amplifier 63. Dealing with dc biasing and ac amplifiers 64. Understanding the effect of frequency on amplifier response 65. Familiar with other FET and MOS circuits
Indicative Contents	 Bipolar junction transistors, Transistor construction, transistor operation, NPN & PNP Bipolar Transistor; Current Flow Mechanism in Transistor Junctions; Transistor configurations; Current Gain Calculation [Alpha] and [Beta]; Transistor input/output characteristi DC Load line; Operating point; Different DC circuit biasing. Bias circuit, voltage divider circuit, d with feedback DC biasing, Operating point, fixed bias circuit, emitter bias circuit, voltage divider circuit, dc bias with feedbac Biasing stability Stability factor analysis due to temperature variation (Effect of Ico, Vbe and Beta); Temperature compensation using diode biasing. Small signal analysis, Small signal equivalent circuit for CB, CE and CC configuration; Input/Output resistanc Calculation of current and voltage Gain in small signal amplifier; Graphical Analysis for voltage gain; Hybrid parameters to analyze transistor circuits. Field Effect Transistor (FET) and MOS transistor: FET biasing configurations, Depletion and Enhanced mode operation, Introduction to the theory and operations of JFFT & MOSFET; FET Transistor configurations; Transistor. FREQUENCY RESPONSE: Definition and Concepts; Gain in decibel; Bode plot for the gain; The effect of the Coupling capa: Low frequency analysis due to the RC Coupled amplifier in BJTs; the Effect of emitter bypass capacitor; Calculation of the Low cut-off frequency. Transistor amplifier at high frequencies; Hy PIE equivalent circuit at high frequency; High frequency behavior of CB & CE amplifier; High pu frequency; Gain Band-Width products for the above circuits; FET at high frequencies; CD and C amplifier at high frequency;

Learning and Teac	hing Strategies
Strategies	The primary strategy for delivering this module will be to encourage students to participate in the exercises while refining and expanding their critical thinking skills. This will be accomplished through classes, interactive tutorials, and the consideration of simple experiments involving sampling activities that students find interesting.

Student Workload (SWL)								
Structured SWL (h/sem)			88 Struc		Structured S	Structured SWL (h/w)		
Unstructured SWL (h/sem)		76		Unstructured SWL (h/w)			1	
Total SWL (h/sem)			164					
Module Ev	Module Evaluation							
							Relevant	
٨٩		Time/Number		Weight (Marks)	t (Marks)	Week Due	Learning	
~3						Outcome		
	Quizzos	6		10 % (10)	2, 5, 9,	LO #1, 2, 10) and
	QUILLES	0				12,13,15	11	
	Assignments	anto 6	10.9/ /	10 % ((10)	2, 5, 9,	LO # 3, 4, 6	and
Formative	Assignments	0	0 10		10)	12,13,15	7	

Formative	Assignments	6	10 % (10)	2, 5, 9, 12,13,15	LO # 3, 4, 6 and 7
assessment	Projects / Lab.	6	20 % (20)	2, 5, 9, 12,13,15	LO # 3, 4, 6 and 7, 5, 8 and 10
	Report	0	0% (0)	0	
Summative	Midterm Exam	1:30hr	20 % (20)	10	LO #1-4
assessment	Final Exam	3 hours	4 0% (4 0)	16	All
Total assessment		100% (100 Marks)			

Delivery Plan (Weekly Syllabus)					
Week	Material Covered				
Week 1	Transistor construction and operation				
Week 2	Bipolar transistor current flow mechanism				
Week 3	Transistor configurations, current gain calculation, and input and output resistances				
Week 4	Dc biasing circuits, operating point calculation				
Week 5	Biasing stability, stability factor calculation				
Week 6 Week 7	Temperature compensation using diode biasing				

Week 8	Small signal equivalent circuit for CB, CC, CE configurations
Week 9	Calculation of voltage and current gains Hybrid model ac analysis of transistor amplifier
Week 10	FET and MOS transistors operation
Week 11	FET biasing configurations
Week 12	Depletion and enhancement mode operation
Week 13	Definition and analysis of amplifier frequency response
Week 14	Low frequency and high frequency analysis
Week 15	Hybrid-Pie equivalent circuit at high frequency
Week 16	Subject review

Delivery Plan (Weekly Lab. Syllabus)

Week	Material Covered
Week 1-15	Practical experiments in transistor amplifiers to measure the current and
	voltage gains.
	To measure the input and output amplifier resistances
	To measure the amplifier frequency response.

Learning and Teaching Resources					
	Text	Available in the Library?			
Required Texts	Textbook1: INTEGRATEDELECTRONICS"MCGRAWHILL;9THREPRINT,1 995.B yMILLMAN&HALKIES 2: "ELECTRONICS DEVICES AND COMPONENTS", PITMAN, 1995 By MOTTERSHED , .	yes			
Recommended Texts	3: "SOLID STATE DIVICES", PHI; 4TH EDITION , 1995.By STREETMAN, 4"SEMICONDUCTOR DEVICES & CIRCUITS", JOHN WILEY & SONS, 1992.By : MS TYAGI	Yes			
Websites	Electronic circuits				

Grading Scheme					
Group	Grade	Appreciation	Marks (%)	Definition	
Success	A - Excellent	privilege	90 - 100	Outstanding Performance.	
	B - Very Good	very good	80 - 89	Above average with some errors.	
Group	C - Good	good	70 - 79	Sound works with notable errors.	
(50 - 100)	D - Satisfactory	middle	60 - 69	Fair but with major shortcomings.	
	E - Sufficient	acceptable	50 - 59	Work meets minimum criteria.	

Fail Group	FX – Fail	Precipitate (in (process	(45-49)	More work is required, but credit is given.	
(0 – 49)	F – Fail	Failed	(0-44)	A significant amount of work is required.	
Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.					

Module Information						
Module Title	Fundementals of Module Delivery Electromagnetics Module Delivery					
Module Type	<u>Base</u>			⊡The	orv	
Module Code	NVEEELI221 Lab			ture		
ECTS Credits	4 DPractical			ctical		
SWL (hr/sem)	45 □Seminar					
Module Level		2	Semester of	f Delivery 1		1
Administration Department		Type Dept. Code	College	Type College Code		
Module Leader SINAN KHALID		SHANSHAL	e-mail sinan.mohammed@u vah.edu.iq		nohammed@uo u.iq	nine
Module Leader's Acad. Title		Lecturer	Module Leader's Qualification		ualification	M.S c.
Module Tutor			e-mail			
Peer Reviewer Name		Name	e-mail	Email		
Scientific Committee Approval Date		02/07/2023	Version Number 1.0		1.0	

Relation with other Modules			
Prerequisite module	None	Semester	

Co-requisites module None Semester

Module Aims, Lo	Module Aims, Learning Outcomes and Indicative Contents					
Module Aims	To develop knowledge of the laws governing the behavior of electric and electro-magnetic fields, and to relate the laws governing the fields to applications in a range of electrical and electronic engineering application.					
Module Learning Outcomes	 On completion of the course the students should be able: to have detailed knowledge of the physical background and terminology of the electromagnetic field theory for electrical engineering problems to understand the electromagnetic field behavior to select and use appropriate theoretical models for analysis, problem solving and finding solutions related to the electrostatic, magnetostatic and electromagnetic fields to understand how laws of electromagnetism can be applied to problems arising in engineering and biomedical sciences. 					
Indicative Contents	Electric charge and the electric field Electric flux density and Gauss's Law Electric scalar potential Electric field in matter and boundary conditions Capacitance Magnetic field and Ampere's Law Magnetic flux and Gauss's Law for magnetic fields Faraday's Law Inductance Maxwell's equations Applications of Electromagnetics					

Learning and Teaching Strategies		
Strategies	Through the presentation of a theoretical explanation with the aid of white board and 'Data Show', to illustrate syllabus (examples and exercises) and using text books.	

Student Workload (SWL)					
Structured SWL (h/sem)	45	Structured SWL (h/w)	4		
Unstructured SWL (h/sem)	?	Unstructured SWL (h/w)	1		
Total SWL (h/sem)	?				
Module Evaluation					
-------------------------	--------------	-------------	------------------	-----------	---------------------------------
As		Time/Number	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	4	15 % (10)	5,8,10,12	LO #1-5, 9 and 11
Formative assessment	Assignments	4	15 % (10)	6,9,11,13	LO #1-5, 6, 10 and 12
	Projects	0	0%(0)		
	Report	0	0% (0)		
Summative	Midterm Exam	1.5hr	20 % (20)	10	LO #1-8
assessment	Final Exam	3 hours	5 0% (4 0)	16	All
Total assessment			100% (100 Marks)		

Delivery Plan (Weekly Syllabus)			
Week	Material Covered		
Week 1	Review of Vector Calculus		
Week 2	Review of Vector Calculus		
Week 3	Experimental law of coulomb; Electric field intensity;		
	Field of a continuous and volume charge distributions; line charge and sheet		
WEEK 4	charge;		
March 5	Electric flux law density; Gauss's law; Application of Gauss's law; Some		
Week 5	symmetrical charge distributions.		
Week 6	Energy expanded in moving a point charge in an electric field		
Week 7	Definition of potential difference and potential		
Week 8	Potential field of a point charge and system of charges; Potential gradient;		
Week 9	Boit – Savart law		
Week 10	Amperes law		
Week 11	Magnetic Flux and Magnetic Flux Density		
Week 12	Force on Differential Current Elements; Force and Torque on a Closed Circuit;		
Week 13	Faraday's Law; Maxwell's Equations		
Week 14	Example of Maxwell's Equations		
Week 15	Wave Equations.		
Week 16	Preparatory week before the final exam		

Delivery Plan (Weekly Lab. Syllabus)		
Week	Material Covered	
Week 1-15		

Learning and Teaching Resources		
	Text	Available in the Library?
Required Texts	 1-ENGINEERING ELECTROMAGNETICES, Mc- Graw Hill, By WILLAIM H. HAYT. 2-Elements of electromagnetic engineering, Prentice Hall, By Matthew NO SADIKU 	No
Recommended Texts	1-Electromagnetics (Schaum's Outlines), McGraw-Hill Education, By Edminister, Joseph_ Nahvi, Mahmood.	No
Websites		

Grading Scheme				
Group	Grade	Appreciation	Marks (%)	Definition
	A - Excellent	privilege	90 - 100	Outstanding Performance.
Success	B - Very Good	very good	80 - 89	Above average with some errors.
Group (50 - 100)	C - Good	good	70 - 79	Sound works with notable errors.
	D - Satisfactory	middle	60 - 69	Fair but with major shortcomings.
	E - Sufficient	acceptable	50 - 59	Work meets minimum criteria.
Fail Group (0 – 49)	FX – Fail	Precipitate (in (process	(45-49)	More work is required, but credit is given.
	F – Fail	Failed	(0-44)	A significant amount of work is required.

Module Information						
Module Title	Engineering	analysisl		Modu	le Delivery	
Module Type	Base				□Theory	
Module Code	NVEE208				⊠Lecture	
ECTS Credits	6				□Lab	
					⊠Tutorial	
SWL (hr/sem)	150				□Practical	
					□Seminar	
Module Level			Semester of Delivery		1	
Administration	Department	Electronics dept	College	Electronics engineering college		g college
Module Leader	Dr. Omar B Mohammed		e-mail	omar.	mohammed@u	oninevah.edu.iq
Module Leader's Acad. Title		Lecturer	Module Le	eader's Qualification Ph.D.		Ph.D.
Module Tutor	Tutor		e-mail			
Peer Reviewer Name			e-mail			
Scientific Committee Approval Date			Version N	umber		

Relation with other Modules			
Prerequisite module	Mathematics II	Semester	1
Co-requisites module	None	Semester	

Module Aims, Lo	earning Outcomes and Indicative Contents
Module Aims	This course covers the following topics: Multiple Integrals, Vectors Functions, Numerical Analysis, Statistics and Probability. Those areas of mathematics which are most important in connection with practical problems for modeling different areas of science, computer can be easily utilized to find the properties of such systems.
Module Learning Outcomes	 Upon successful completion, students will: 13. Improve their problem-solving skills. 14. Apply that knowledge toward practical problems in different areas of science. 15. Utilize the computer capabilities to solve such problems using proper methods. 16. Learn how to deal with geometry in 3D; Find areas and volumes. 17. Solve ordinary and differential equations numerically. 18. Learn the importance of probability and statistics in everyday use.
Indicative Contents	Vectors Functions Multiple Integrals Numerical Analysis Statistics Probability

Learning and Teaching Strategies		
Strategies	The primary strategy for delivering this module will be to encourage students to participate in the exercises while refining and expanding their critical thinking skills. This will be accomplished through classes, interactive tutorials, and the consideration of simple experiments involving sampling activities that students find interesting.	

Student Workload (SWL)		
Structured SWL (h/sem)	Structured SWL (h/w)	
Unstructured SWL (h/sem)	Unstructured SWL (h/w)	
Total SWL (h/sem)		

Module Evaluation

		Time/Numbe r	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes				
	Assignment				
Formative	s				
assessment	Projects /				
	Lab.				
	Report				
Summative assessment	Midterm				
	Exam				
	Final Exam				
Total assessment					

Delivery	Plan (Weekly Syllabus)		
	Material Covered		
Week 1	Vectors:		
Week 2	Vector in space, dot and cross product.		
Week 3	Lines and planes in space.		
Week 4	acceleration, tangential vectors, curve and normal vector.		
Week 5	Multiple Integrals:		
Week 6	Double Integral in rectangular coordinates, areas and volumes.		
Week 7	Double Integral in Polar Coordinates, areas and volumes.		
Week 8	i riple integrals in rectangular, cylindrical, and spherical coordinates, volumes.		
Week 9	Numerical Analysis:		
Week 10	Solution of non-linear equations by iteration; bisection and Newton-Raphson.		

Week 11	Numerical Integration; trapezoidal rule.
Week 12	Numerical solution of 1st order ordinary differential equations; Euler's method.
Week 13	Statistics and Probability:
Week 14	Definitions, mutually exclusive and conditional probability, permutations and
Week 15	combinations Probability distribution: binomial, normal and Poisson distributions.
Week 16	Preparatory week before the final exam

Learning and Teaching Resources					
	Text	Available in the Library?			
Required Texts	Advanced Engineering Mathematics By KREYSIK	Yes			
Recommended Texts	Calculus By Finney& Thomas	Yes			
Websites					

Grading Scheme					
Group	Grade	Appreciation	Marks (%)	Definition	
	A - Excellent	privilege	90 - 100	Outstanding Performance.	
Success	B - Very Good	very good	80 - 89	Above average with some errors.	
Group	C - Good	good	70 - 79	Sound works with notable errors.	
(50 - 100)	D - Satisfactory	middle	60 - 69	Fair but with major shortcomings.	
	E - Sufficient	acceptable	50 - 59	Work meets minimum criteria.	
Fail Group (0 – 49)	FX – Fail) Precipitate under (processing	(45-49)	More work is required, but credit is given.	
	F – Fail	Failed	(0-44)	A significant amount of work is required.	
1					

Module Information Subject information					
Module Title	Compute Programming			Module Delivery	
Module Type	Core			⊠ Theory	
Module Code	NVEEELI214			⊠ Lecture	
ECTS Credits	5		⊠ Lab		
				□ Tutorial	
SWL (hr/sem)	150		□ Practical		
				□ Seminar	
Module Level UGx11 2			Semester of Delivery 2		2
Administration Department Dept. of Electronic Eng. (Med. Ele)		College College of Electronic Engineering		gineering	
Module Leader	Qais Thanon		e-mail	Qais.najim @uoninevah.edu.iq	

Module Leader's Acad. Title		Porf.	Module Leader's Qualification		Ph.D.	
Module Tutor	Name (if availal	ole)	e-mail Email			
Peer Reviewer Na	ime	Name	e-mail	Email		
Scientific Committee Approval Date		06/20/2023	Version Nu	ımber	1.0	

Relation with other Modules

Relationship with other subjects

Prerequisite module	None	Semester	
Co-requisites module	None	Semester	

Module Aims, Learning Outcomes and Indicative Contents							
Course objectives, learning outcomes and guiding content							
Module Objectives Subject objectives	 Learning about the algorithms types and how to build the algorithms. Learning how to command computers to perform tasks using C++ language (Programming/coding). Become acquainted with the designed programming including sequencing, condition and iteration. Learn about the 1d and 2d arrays in C++ language. Learn about the functions in C++ language. Learn about the strings in C++ language. 						
Module Learning Outcomes Learning outcomes for the subject	 Understanding the meaning of the algorithms in programming languages. Understanding the basics concepts of C language programming such as variables, data types, operators, control Understanding the utilities of each one of sequencing, condition, and loops, and basic input/output operations. Understanding how to represent the data in 1d arrays and 2d arrays. Learn about how the strings represented in C language. Learn about divide any problem in sub-program and execute this problem by using function. In advance practical experience by working on programming exercises and projects. 						
Indicative Contents Guidance Contents	 Indicative content includes the following. Visualization via flowchart and pseudocode [4 hrs] Keyworks, identifier, format specifier, and naming variables and constants [8 hrs] Use standard libraries to take input and display output [8 hrs] Operators in C++ programming [10 hrs] Priorities in C++ programming [4 hrs] 						

•	Math functions [4 hrs]
•	Conditional operations [8 hrs]
•	Iterations (Loop operators) [10 hrs]
•	Arrays [10 hrs]
•	Functions [8 hours]
•	Review classes and problem solving [8 hrs]

Learning and Teaching Strategies				
Learning and tea	aching strate	gies		
Strategies	The main strategy being focused on is developing conceptual programming thinking, meanwhile refining and expanding their mathematical thinking skills. This will be achieved through classes, online lectures, interactive tutorials. Additionally, working on complex projects that challenge students' skills and require to apply advanced concepts. Such projects would help students explore various aspects of C++ programming and gain hands-on experience in solving complex problems. Some sampling activities that are interesting to the students.			
Student Worklo	ad (SWL)			
The student's ac	ademic load	is calcula	ted for 15 weeks.	
Structured SWL (h/sem) Regular student load during the semester		77	Structured SWL (h/w) Regular weekly student load	5.1
Unstructured SWI Irregular student loa the semester	_ (h/sem) ad during	73	Unstructured SWL (h/w) Irregular student load per week	4.8
Total SWL (h/sem The student's total load during the sen) academic nester	150		

Module Evaluation

Course material evaluation

As		Time/Number	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5 and 10	LO #1, #2 and #10, #11
Formative assessment	Assignments	2	10% (10)	2 and 12	LO #3, #4 and #6, #7
	Projects / Lab.	1	10% (10)	Continuous	All
	Report	1	10% (10)	13	LO #5, #8 and #10
Summative	Midterm Exam	2hr	10% (10)	7	LO #1 - #7
assessment	Final Exam	3hr	50% (50)	16	All
Total assessment			100% (100 Marks)		

Delivery	Plan (Weekly Syllabus)
Theoretic	al weekly curriculum
Week	Material Covered
Week 1	Introduction to computer languages and the structure of C program
Week 2	Flowchart and Pseudo-code
Week 3	Introduction to C++ programming: Declare variables and constants
Week 4	Take input and print output
Week 5	Assignment and Increment, Decrement, Arithmetic, Logical, and Bitwise operators
Week 6	Standard math functions in math header <math.h></math.h>
Week 7	Priorities of operators in C++ programming
Week 8	Relational and conditional operators
Week 9	Mid-term Exam
Week 10	If statement versus switch case statement
Week 11	Examples of structured programming (sequencing and condition)
Week 12	Loop operators (For, while, do-while)
Week 13	Arrays
Week 14	Functions
Week 15	String of characters
Week 16	Preparatory week before the final exam
Delivery	Plan (Weekly Lab. Syllabus)
Weekly la	ab schedule
Week	Material Covered
Week 1-2	Learn the C++ language program complier.
Week 3-4 Declare variables and constants and <iostream.h> including standard functions</iostream.h>	
Week 5-6 Arithmetic, logical, and bitwise operators	
Week 7-8	Math header for math functions <math.h> and Assignment and increment & decrement operators</math.h>
Week 9-10	Relational and conditional operators and Loop operators
Week 11-12	Examples about the Arrays
Week 13-14	Examples about Functions and string
Learning	and Teaching Resources

Learning and teaching resources

	Text	Available in the Library?			
Required Texts	C Programming Absolute Beginner's Guide, 3rd Edition 2014. BY: Greg Perry and Dean Miller.	Yes			
Recommended Texts	C How to Program with an introduction to C++, ^{8th} Edition 2016. <i>BY: Paul Deitel and Harvey Deitel.</i> Global Edition Contribution by Piyali Sengupta	No			

W۵	heitae	
vve	DSILES	

1- https://www.programiz.com/c-programming2- https://www.coursera.org/specializations/c-programming

Grading Sc	Grading Scheme					
Grading cha	nrt					
Group	Grade	Appreciation	Marks %	Definition		
Success Group	A - Excellent	privilege	90 - 100	Outstanding Performance		
	B - Very Good	very good	80 - 89	Above average with some errors		
	C - Good	good	70 - 79	Sound works with notable errors		
(50 - 100)	D - Satisfactory	middle	60 - 69	Fair but with major shortcomings		
	E - Sufficient	acceptable	50 - 59	Work meets minimum criteria		
Fail Group	FX – Fail	Precipitate (in (process	(45-49)	More work required but credit awarded		
(0 – 49)	F – Fail	Failed	(0-44)	Considerable amount of work required		

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

Courses specification for Second class Industrial Engineering (Second Course)

Module Information						
Module Title	AC Machin	AC Machines			ule Delivery	
Module Type	Support or	related learning a	ctivity		⊠Theory	
Module Code	NVEEELI22	23			□Lecture	
ECTS Credits	6				⊠Lab	
					⊠Tutorial	
SWL (hr/sem)	175				□Practical	
· · ·					□Seminar	
Module Level		2	Semester	Semester of Delivery		2
Administration Department	nistration Intment		College	Electro	onics Collage	
Module Leader			e-mail			
Module Leader's Acad. Title			Module L Qualificat	eader's ion	5	
Module Tutor	utor		e-mail			
Peer Reviewer Name			e-mail			
Scientific Committee Approval Date			Version Number			

Relation with other Modules			
Prerequisite module	DC Machine	Semester	1
Co-requisites module	None	Semester	

Module Aims, Lear	ning Outcomes and Indicative Contents			
	60.AC Understanding Machine Principles			
	61. Analyzing AC Machine Behavior			
	62. Control Strategies			
	63. System Integration			
Module Aims	64. Practical Applications			
	65. Problem-Solving Skills			
	66. Laboratory Skills			
	67. Teamwork and Communication			
	68. Professional Development			
	66. Understand how voltage is induced in a rotating loop			
	67. Understand how curved pole faces contribute to a constant flux, and thus			
	68. More constant output voltages.			
	69.Understand how curved pole faces contribute to a constant flux, and thus			
	More constant output voltages. 70. Understand the power flow diagram for Ac machines			
	71. Know the types of Ac machines in general use.			
Module Learning Outcomes	72. Understand the equivalent circuit of a three phase induction motor.			
	73. Understand how to derive the Torque speed characteristic of three phase induction motor.			
	74. Understand how to control the speed of different types of AC motors.			
	75. Understand the starting torque, condition for maximum torque, condition for maximum starting torque of the Ac motors.			
	76. Understand the methods of starting AC motors safely.			
	77. Understand the equivalent circuit of an AC generator.			

	78. Understand of Single phase Induction motor. Construction, theories of operation, torque speed characteristic, Equivalent circuit .			
	79. Understand how Test of single phase induction motor, no load test, blocked rotor test, power flow diagram, applications.			
	80. Understand how Three phase synchronous generator, Construction, Equivalent circuit, applications.			
	81. Understand how Single phase synchronous motors, Reluctance motor, Construction of motor reluctances, applications.			
	82. Understand how Hysteresis motor, Construction of Hysteresis motor, application .			
	83.Be able to explain how copper losses, leakage flux, hysteresis, and eddy currents are modeled in Ac machines circuits.			
	Introduction - The module further develops students'			
	understanding of electrical machines by introducing the			
	operational principles and characteristics of AC machines, three			
	phase circuits and complex power. It introduces the principles,			
	operation and design of common electronic power converter			
	Circuits.(12 nrs.)			
	induction motor (8 brs.)			
	Introduction of The Equivalent Circuit of a Tree phase induction			
	motor. (10 hrs.).			
Indicative Contents	Power Flow and Losses in Tree phase induction motor. (6 hrs.)			
	Torque speed characteristic, starting torque, condition for			
	maximum torque, condition for maximum starting torque.(12 hrs.)			
	Test of three phase induction motor, no load test, blocked rotor			
	test, power flow diagram, applications.(12 hrs.)			
	Mid-term Exam(3 hrs.).			
	Single phase induction motor.(4 hrs.).			
	Introduction of Single phase Induction motor. Construction,			
	theories of operation, torque speed characteristic, Equivalent			
	circuit, (12 hrs.).			
	Test of single phase induction motor, no load test, blocked rotor			
	test, power flow diagram, applications.(12 hrs.).			

Three phase synchronous generator, Construction, Equivalent circuit, applications. (12 hrs.).
Single phase synchronous motors, Reluctance motor, Construction of eluctance motor, applications.(10 hrs.).
Hysteresis motor, Construction of Hysteresis motor, application.(9 hrs.).
AC Commutator machine, Universal motor.(12 hrs.).

Learning and Teaching Strategies		
	Visual Aids	
	Problem-Solving Exercises	
	Real-World Applications	
Strategies	Group Projects	
	Simulations and Virtual Labs	
	Multimedia Resources	
	Real-Life Examples	

Student Workload (SWL)			
Structured SWL (h/sem)	74	Structured SWL (h/w)	5
Unstructured SWL (h/sem)	101	Unstructured SWL (h/w)	4.6 4
Total SWL (h/sem)	175		

Module Evaluation					
		Time/Nu mber	Weight (Marks)	Week Due	Relevant Learning Outcome
Formative	Quizzes	2	10 % (10)	5, 10	
assessment	Assignments	2	10 % (10)	2, 12	

	Projects / Lab.	1	10 % (10)	Continuous	
	Report	1	10% (10)	13	
Summative	Midterm Exam	2 hours	10 % (10)	7	
assessment	Final Exam	2 hours	5 0% (5 0)	16	
Total assessment		100% (100 Marks)			

Delivery	Plan (Weekly Syllabus)
	Material Covered
	Introduction - The module further develops students' understanding of
Week 1	electrical machines by introducing the operational principles and
	characteristics of AC machines, three phase circuits and complex power.
Week 2	Commutation and Armature Construction in AC Machine.
Week 3	Introduction of The Equivalent Circuit of a Tree phase induction motor.
Week 4	Power Flow and Losses in Tree phase induction motor.
Week 5	Torque speed characteristic, starting torque, condition for maximum torque,
Meek 0	condition for maximum starting torque in Tree phase induction motor.
Week 6	Test of three phase induction motor, no load test, blocked rotor test .,
HOOK U	applications
Week 7	Mid-term Exam.
Week 8	Introduction of Single phase Induction motor. Construction, theories of
	operation .
Week 9	Torque speed characteristic, Equivalent circuit , of single phase induction
	motor .
Week 10	Power flow diagram of single phase induction motor & applications .
Week 11	Test of single phase induction motor, no load test, blocked rotor test of single
WOOK IT	phase induction motor .
Week 12	Three phase synchronous generator, Construction, Equivalent circuit,
	applications.
Week 13	Single phase synchronous motors, Reluctance motor, Construction of
HOOK IC	reluctances motor, applications.
Week 14	Hysteresis motor, Construction of Hysteresis motor, application
Week 15	AC Commutator machine, Universal motor

Learning and Teaching Resources				
	Text	Available in the Library?		
Required Texts	Electrical Machinery Fundamentals" edited by Stephen J. Chapman.	NO		
Recommended Texts	electrical machines and transformer by: Ancieron and Macneiil	NO		
Websites	https://www.coursera.org			

Grading Scheme						
Group	Grade	Appreciation	Marks (%)	Definition		
	A - Excellent	privilege	90 - 100	Outstanding Performance		
Success Group (50 - 100)	B - Very Good	very good	80 - 89	Above average with some errors		
	C - Good good		70 - 79	Sound works with notable errors		
	D - Satisfactory	middle	60 - 69	Fair but with major shortcomings		
	E - Sufficient	acceptable	50 - 59	Work meets minimum criteria		
Fail Group (0 – 49)	FX – Fail	Precipitate (in (process	(45-49)	More work required but credit awarded		
	F – Fail	Failed	(0-44)	Considerable amount of work required		

Module Information						
Module Title	Electroni	cs II		Module Delivery		
Module Type	core			□Theory		
Module Code	NVEEELI	222			⊠Lecture	
ECTS Credits	7				□Lab	
					⊠Tutorial	
SWL (hr/sem)	175				⊠Practical	
				□Seminar		
Module Level			Semester of Delivery		very	1
Administration	Department	Electronics	College Electronic Engineering		g college	
Module Leader	le ler		e-mail			
Module Leader's Acad. Title		Assistant Prof.	Module Leader's Qualification		Qualification	PhD
Module Tutor			e-mail			
Peer Reviewer Name		Name	e-mail Ahmad.younis@uonineval		evah,edu,iq	
Scientific Committee Approval Date		12/06/2023	Version Number 1.0			

Relation with other Modules				
Prerequisite module	NEEI2212	Semester		
Co-requisites module	None	Semester		

Module Aims, Learning Outcomes and Indicative Contents						
	69. To understand the basic analysis of bipolar transistor amplifier					
	70. To be familiar with the dc and ac analysis of transistor amplifier					
	71. To understand the dc and ac analysis of FET amplifier					
	72. To illustrate and to understand the frequency response of the amplifier					
	73. To understand the basic concept of feedback concept					
Module Aims	74. To be able to deal with different feedback amplifier topologies					
	75. To study the advantages of negative feedback on amplifier performance					
	76. To be familiar with feedback amplifier ac analysis					
	77. To understand the construction and ideal characteristic of operational amplifier					
	78. To study and analyze op-amp equivalent circuit					
	79. To be familiar with basic op-amp applications					
	80. To start with studying power electronic devices					
	84. Understand and apply the basic theory and operation of transistor amplifiers					
Module Learning	85. Define and explain the frequency response of bipolar transistor amplifier					
Outcomes	86. Understand the basic concept of negative feedback					
	87. Understand and analyze the feedback amplifier					
	88. Understanding the operation of ideal operational amplifier 89. Dealing with dc and ac op-amp equivalent circuit					

Learning and Teaching Strategies				
Strategies	The primary strategy for delivering this module will be to encourage students to participate in the exercises while refining and expanding their			

critical thinking skills. This will be accomplished through classes,
interactive tutorials, and the consideration of simple experiments
involving sampling activities that students find interesting.

Student Workload (SWL)								
Structured SWL (h/sem)			74		Structured SWL (h/w)			3
Unstructured SWL (h/sem)			101		Unstructured SWL (h/w)			1
Total SWL (h/sem)			175					•
Module Ev	aluation							
Time/Nu r		mbe	Weigl	nt (Marks)	Week Due	Relevant Learning Outcome		
	Quizzes	6		10 %	(10)	2, 5, 9, 12,13,15	LO #1, 2, 1 and 11	0
Formative	Assignment s	6		10 % (10)	2, 5, 9, 12,13,15	LO # 3, 4, 6 7	6 and	
	Projects / Lab.	6		20 %	(20)	2, 5, 9, 12,13,15	LO # 3, 4, 6 7, 5, 8 and	6 and 10
	Report	0	0% (0)	0		
Summative	Midterm Exam	1:30hr	20 % (2		(20)	10	LO #1-4	
	Final Exam	3 hours		4 0%	(40)	16	All	
Total assessment				100% Marks	(100)			

Delivery Plan (Weekly Syllabus)			
	Material Covered		
Week 1	Small signal model analysis		
Week 2	Low and high frequency response of transistor amplifier		
Week 3	Hybrid and hybrid-Pie equivalent circuit analysis		
Week 4	Negative feedback concept and analysis		
Week 5	Advantages of negative feedback on amplifier		
Week 6			

Week 7	Amplifier feedback topologies
Week 8	Feedback effect on amplifier gain, bandwidth, and on input-output resistances
Week 9	operational amplifier construction and operation ideal and practical op-amp equivalent circuit
Week 10	Inverting and non-inverting closed loop amplifier
Week 11	Integration and differentiation active circuits
Week 12	Summation and subtraction op-amp circuits
Week 13	UJT transistor construction
Week 14	Thyristor equivalent circuit and characteristics
Week 15	Subject review
Week 16	Subject review

Delivery Plan (Weekly Lab. Syllabus)

	Material Covered
	Practical experiments in transistor amplifier frequency response at low
Week 1-	and high frequency
15	To measure the effect of feedback on amplifier performance
	To measure the performance of different op-amp circuits.

Learning and Teaching Resources				
	Text	Available in the Library?		
Required Texts	Electronic Devices By Millmann Electronic Devices By Floyd	yes		
Recommended Texts	SOLID STATE DIVICES", PHI; 4TH EDITION , 1995.By Streetman, Semiconductor devices & circuits", John Wiley & Sons, 1992.By : MS tyagi	Yes		
Websites	Electronic circuits			

Grading Scheme

Group	Grade	Appreciation	Marks (%)	Definition
	A - Excellent	privilege	90 - 100	Outstanding Performance.
Success	B - Very Good	very good	80 - 89	Above average with some errors.
Group	C - Good	good	70 - 79	Sound works with notable errors.
(30 - 100)	D - Satisfactory	middle	60 - 69	Fair but with major shortcomings.
	E - Sufficient	acceptable	50 - 59	Work meets minimum criteria.
Fail Group	FX – Fail) Precipitate under (processing	(45-49)	More work is required, but credit is given.
	F – Fail	Failed	(0-44)	A significant amount of work is required.

Module Information Subject information						
Module Title	Digital Design			Mod	ule Delivery	
Module Type	Base				⊠ Theory	
Module Code	NVEE223				⊠ Lecture	
ECTS Credits	3				🗆 Lab	
SWL (hr/sem)	60			⊠ Tutorial □ Practical □ Seminar		
Module Level			Semester	r of Delivery 1		1
Administration	Department	Electronic Eng. Dep.	College	Electronics Engineering		ng
Module Leader	Amer Talal A	li	e-mail			-
Module Leader's	s Acad. Title	Lecturer assistant	Module Le	eader's	Qualification	
Module Tutor	dule Tutor Amer Talal Ali		e-mail			
Peer Reviewer Name		Name	e-mail			
Scientific Committee Approval Date		06/01/2023	Version N	umber		

Relation with other Modules					
Relationship with ot	Relationship with other subjects				
Prerequisite module		Semester			

Module Aims, Learning Outcomes and Indicative Contents					
Course objectives, I	Course objectives, learning outcomes and guiding content				
Module Objectives Subject objectives	 30. To understand Advanced Minimization techniques for large numbers of bits to simplify the large designs. 31. Understand how to Design an Arithmetic and Logic unit. 32. Understand how to Design using programmable logic device. 33. To understand the sequential Logic Circuits. 34. To understand how to Design synchronous and asynchronous counters. 35. To understand the Design of Registers. 				
Module Learning Outcomes Learning outcomes for the subject	 Using Advanced Minimization techniques for large numbers of bits to simplify the large designs. Design an Arithmetic and Logic unit. Design using programmable logic device. Design sequential Logic Circuits synchronous and asynchronous. Design Registrations. Design synchronous and asynchronous counters. 				
Indicative Contents Guidance Contents	Indicative content includes the following. <u>Part A</u> – minimization techniques for large numbers of bits [14 hrs] <u>Part B</u> – Initialization to design and Design an Arithmetic and Logic unit . [14 hrs] <u>Part C</u> – Design using programmable logic device . [6 hrs]				

Learning and Teaching Strategies				
Learning and teach	ing strategie	S		
Strategies	The main strategy that will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking and digital designing skills. This will be achieved through classes and interactive tutorials.			
Student Workload	(SWL)			
The student's acade	emic load is o	calculated	for 15 weeks.	
Structured SWL (h/sem) Regular student load during the semester		60	Structured SWL (h/w) Regular weekly student load	4
Unstructured SWL (h/sem) Irregular student load during the semester		60	Unstructured SWL (h/w) Irregular student load per week	4
Total SWL (h/sem)120The student's total academic load during the semester120				
Module Evaluation				

Course material evaluation					
		Time/Numbe r	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	20% (20)	[3,6,9,12]	LO (#1- #12)

Formative assessment	Assignments	1	10% (10)	14	LO #4, #7, #(10-13)
	Projects / Lab.	0	0% (0)		
	Report	1	10% (10)	12	LO #11
Summative	Midterm Exam	1.5 hr	10% (10)	10	LO #(1-8)
assessment	Final Exam	2 hours	50% (50)	16	All
Total assessment			100% (100 Marks)		

Delivery	Delivery Plan (Weekly Syllabus)				
Theoretic	al weekly curriculum				
	Material Covered				
Week 1	Introduction to Digital Design				
Week 2	The 5-Variable Karnaugh Map; The 5-Variable Karnaugh Map with don't care conditions				
Week 3	Map Entered variable Karnaugh Map				
Week 4	ADDITIONAL MINIMAZATION TECNHNIQUES: Tabular method; Quine- McCluskey				
Week 5	Design using multiplexer: - Shannon Expansion				
Week 6	top-down design of combined CIRCUITS: - Gate Level: Adders; Subtractor				
Week 7	Design an Arithmetic and Logic unit				
Week 8	memory and type of memories				
Week 9	Design using programmable logic device (PLD): - PROM; PAL; PLA;				
Week 10	sequential LOGIC: - Type of flip-flops; Timing Diagram; Basic concepts of counters; Binary counters; BCD counters; Up down counter				
Week 11	sequential LOGIC: -Design of counters using state diagrams and tables;				
Week 12	sequential LOGIC: -Mealy and Moore Circuits;				

Week 13	synchrous CIRCUITS: Shift left and right register; Registers with parallel load; Serial –in parallel-out (SIPO) and parallel-in-serial-out (PISO).
Week 14	synchrous CIRCUITS: Shift Registers; Twisted Ring Counter; Maximum Length Shift Counter.
Week 15	Preparatory week before the final exam

Learning and Teaching Resources

Learning and teaching resources

	Text	Available in the Library?
Required Texts	"Digital and analog communication" 2001 By LW Couch Sixth Edition	Yes
Recommended Texts	 Digital Communications Fifth Edition, 2008, John G. Proakis, and Masoud Salehi. Introduction to Communication Systems" 1992 By F. Stremler. ELEMENTS OF INFORMATION THEORY" 2006 By THOMAS M. COVER and JOY A. THOMAS Digital Communication, 2004 by Abbas Kattoush. 	Yes
Websites		

Grading Scheme					
Grading chart					
Group	Grade	Appreciation	Marks %	Definition	
	A - Excellent	privilege	90 - 100	Outstanding Performance	
Success	B - Very Good	very good	80 - 89	Above average with some errors	
Group (50 - 100)	C - Good	good	70 - 79	Sound works with notable errors	
. ,	D - Satisfactory	middle	60 - 69	Fair but with major shortcomings	
	E - Sufficient	acceptable	50 - 59	Work meets minimum criteria	

Fail Group (0 – 49)	FX – Fail) Precipitate under processing ((45-49)	More work required but credit awarded
	F – Fail	Failed	(0-44)	Considerable amount of work required
Note: Marks Decimal places above or below 0.5 will be rounded to the bigher or lower full mark (for				

Module Information						
Module Title	Signals and S	<u>Systems</u>		Modu	le Delivery	
Module Type	<u>Core</u>			🗆 The	□ Theory	
Module Code	<u>NVEE210</u>			⊠ Leo □ Lai	cture o	
ECTS Credits	<u>6</u> □ Tutorial					
SWL (hr/sem)	<u>150</u> □ Seminar					
Module Level		UGx11 1	Semester	Semester of Delivery 4		4
Administration D	epartment	Type Dept. Code	College	Type College Code		
Module Leader			e-mail			
Module Leader's	Acad. Title	Assistant Professor	Module Le	odule Leader's Qualification Ph.		Ph.D.
Module Tutor	Name (if available)		e-mail	Email		
Peer Reviewer Name		Name	e-mail	ail Email		
Scientific Committee Approval Date		06/25/2023	Version Nu	imber 1.0		

Relation with other Modules			
Prerequisite module	None	Semester	
Co-requisites module	None	Semester	

Module Aims, Lea	rning Outcomes and Indicative Contents
	Student will be able to:
	36 identify systems concepts
	37 understand the properties of systems
Module Aims	38 Understand the mathematical relationship between input and output of
	a system
	30 deal with Fourier and Laplace analysis of systems
	40 nerform z-transform of discrete signals
	62. Definition of the system concept.
	63. Introduction of mathematical models.
Modulo Loarning	64. Explain continuous time systems. Discrete time systems.
	65. Introduction of frequency response of systems.
Outcomes	66. Definition of filters.
	67. Explain Ideal filters, Non ideal filters, and Butterworth filter design.
	68. Define Z-transform of discrete signals.
	69. Analyze of continuous system using Laplace Transform. System
	transfer function.
	70. Definition of transfer function of a discrete system.
	Indicative content includes the following.
	Introduction to systems:
	Definition and mathematical models
	- Deminicon and mathematical models.
	- Properties of systems.
	I ransformation used with continuous systems
	- Fourier transforms.
Indiactive Contents	- Filters.
indicative Contents	- Laplace transform.
	Z-transform:
	 Introduction of z-transform of discrete time signal.
	- Z-transform used with discrete systems.
	Convolution used for
	- Continuous systems.
	- Discrete systems

Learning and Teaching Strategies		
Strategies	To make students interesting with both types of systems: continuous and discrete. Also with properties of systems and operations. To make them familiar with time and frequency domain and analysis of a system. Also to make them	

familiar with different types of transforms of systems. Also to make them have
an experience with solving different problems and examples.

Student Workload (SWL)			
Structured SWL (h/sem (62	Structured SWL (h/w) A	4
Unstructured SWL (h/sem)	88	Unstructured SWL (h/w)	1
Total SWL (h/sem)	150		

Module Evaluation					
As		Time/Number	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	6	10% (10)	2, 5, 9, 12,13,15	LO #1, 2, 10 and 11
Formative	Assignments	6	10% (10)	2, 5, 9, 12,13,15	LO # 3, 4, 6 and 7
assessment	Projects / Lab.	6	20% (20)	2, 5, 9, 12,13,15	LO #3, 4, 6 and 7, 5, 8 and 10
	Report	0	0% (0)	0	
Summative	Midterm Exam	1.5hr	20% (20)	10	LO #1-4
assessment	Final Exam	3hr	40% (40)	16	All
Total assessment			100% (100 Marks)		

Delivery	Plan (Weekly Syllabus)
Week	Material Covered
Week 1	Basic definitions. Mathematical models.
Week 2	Continuous time systems.

Week 3	Discrete time systems.
Week 4	System properties.
Weeks 5	Mathematical system representation in time domain: Convolution representation.
Week 6	Convolution properties.
Week 7	System description by linear constant coefficient differential equations.
Week 8	Frequency domain analysis of continuous system.
Week 9	Frequency response of a system.
Week 10	Frequency response of electrical circuits.
Week 11	Ffilters. Distortion less transmission.
Week 12	Ideal filters. Non ideal filters. Butterworth filter design.
Week 13	Analysis of continuous system using Laplace Transform.
Week 14	System transfer function.
Week 15	Analysis of discrete system using z-Transform. System transfer function.

Learning and Teaching Resources				
	Text	Available in the		
		Library?		
Required Texts	Signals and systems. Simon S. Haykin	Yes		
Recommended	Signals and linear systems, G. E. Carlson			
Texts	Signals and inteal systems. G. E. Canson			

Grading Scheme						
Group	Grade	Appreciation	Marks %	Definition		
	A - Excellent	privilege	90 - 100	Outstanding Performance		
Success	B - Very Good	very good	80 - 89	Above average with some errors		
Success Group (50 - 100)	C - Good	good	70 - 79	Sound works with notable errors		
	D - Satisfactory	middle	60 - 69	Fair but with major shortcomings		
	E - Sufficient	acceptable	50 - 59	Work meets minimum criteria		
Fail Group	FX – Fail	Precipitate (in (process	(45-49)	More work required but credit awarded		
(0 – 49)	F – Fail	Failed	(0-44)	Considerable amount of work required		

Module Information						
Module Title	Engineering	Analysis II	Module Delivery			
Module Type	Core			□Theory		
Module Code	NVEE209			⊠Lecture		
ECTS Credits	3			□Lab		
SWL (hr/sem)	75	75			□Practical	
			□Seminar			
Module Level			Semester of Delivery 2		2	
Administration	Department	Electronics dept	College	Electronics engineerir	ng college	
Module Leader	Dr. Omar B Mohammed		e-mail	omar.mohammed@uoninevah.edu.i		
Module Leader's Acad. Title		Lecturer	Module Leader's Qualification		Ph.D.	
Module Tutor	r		e-mail			
Peer Reviewer Name			e-mail			

Scientific Committee Approval Date	Version Number	
---------------------------------------	----------------	--

Relation with other Modules			
Prerequisite module	None	Semester	
Co-requisites module	None	Semester	

Module Aims, Lo	earning Outcomes and Indicative Contents
Module Aims	This course covers the following topics: ordinary differential equations, sequences and series, solution of differential equations by power series, and matrix analysis. Those areas of mathematics which are most important in connection with practical problems for modeling different areas of science, computer can be easily utilized to find the properties of such systems.
Module Learning Outcomes	 Upon successful completion, students will: 19. Improve their problem-solving skills. 20. Apply that knowledge toward practical problems in different areas of science. 21. Utilize the computer capabilities to solve such problems using proper methods. 22. Learn how to represent any function as a power series, then use computer to solve it.

	23. Learn the importance of differential equations for modeling almost any system, and how to solve it to find the properties of that system.24. Learn the linear algebra and its importance in science.
Indicative Contents	Ordinary Differential Equations. Sequences and Series. Solution of Differential Equations by Power Series. Matrix Analysis.

Learning and Teaching Strategies				
Strategies	The primary strategy for delivering this module will be to encourage students to participate in the exercises while refining and expanding their critical thinking skills. This will be accomplished through classes, interactive tutorials, and the consideration of simple experiments involving sampling activities that students find interesting.			

Student W	orkload (SW	/L)						
Structured SWL (h/sem)				Structured SWL (h/w)				
Unstructured SWL (h/sem)			Unstructured SWL (h/w)					
Total SWL (I	n/sem)							
Module Evaluation								
		Time/Nu r	mbe	Weigł	nt (Marks)	Week Due	Relevant Learning Outcome	
	Quizzes							
	Assignment							
Formative	s							
assessment	Projects /							
	Lab.							
	Report							
Summative Midterm								
assessment	Exam							
	Final Exam							
Total assessment								

Delivery	Plan (Weekly Syllabus)
	Material Covered
Week 1	Ordinary Differential Equations:
Week 2	4. First order (variables separable, homogeneous, linear and exact).
Week 3	5. Second order homogeneous.
Week 4	Second order nonhomogeneous; indeterminant coefficients, variation of parameters.
Week 5	Infinite Sequences and Series:
Week 6	4. Limit laws, indeterminate forms and L'hospital rule.
Week 7	5. Infinite series; convergence test.
Week 8	6. Power series; Taylor and Maclaurin series.
Week 9	
Week 10	Solution of Differential Equations by Power Series:
Week 11	Power series method, Legendre's equation; Legendre's polynomials.
Week 12	
Week 13	Matrix Analysis:
Week 14	5. Review of matrix theory, solving system of equations; Cramer's rule, inverse
Week 15	 6. Eigen values and eigen vectors. 7. Diagonalization of matrices 8. Application of matrices to electrical circuits.
Week 16	Preparatory week before the final exam

Learning and Teaching Resources				
	Text	Available in the Library?		
Required Texts	Advanced Engineering Mathematics By KREYSIK	Yes		
Recommended Texts	Calculus By Finney& Thomas	Yes		
Websites				

Grading Scheme					
Group	Grade	Appreciation	Marks (%)	Definition	
Success	A - Excellent	privilege	90 - 100	Outstanding Performance.	
--------------------------------------	----------------------------	--	----------	---	
	B - Very Good	very good	80 - 89	Above average with some errors.	
Group	C - Good	good	70 - 79	Sound works with notable errors.	
(50 - 100) Fail Group (0 – 49)	D - Satisfactory	middle	60 - 69	Fair but with major shortcomings.	
	E - Sufficient	acceptable	50 - 59	Work meets minimum criteria.	
	FX – Fail) Precipitate under (processing	(45-49)	More work is required, but credit is given.	
	F – Fail	Failed	(0-44)	A significant amount of work is required.	

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

Courses Table For Third Class

Electronic Engineering Deparatement								
Undergraduate Third Class								
	Subject	Hou	rs/We	ek				
Code		First Term			Second Term			Units
		Th	Pr.	Tut	Th	Pr	Tut	
EE3301	Electronic – II	2	-	1	2	-	1	4
EE3201	Digital Signal Processing	2	-	1	2	-	1	4
EE3302	Control engineering	3	-	1	3	-	1	6
EE3303	Microprocessor	2	-	1	2	-	1	4
EE3304A	Digital System Design I	2	-	1				2
EE3304B	Digital System Design II				2	-	1	2
EE3305	Communication	2	-	1	2	-	1	4
EE3306	Electronic Instrumentation	2	-	1	2	-	1	4

EE3307	Laboratory	-	6	-	-	6	-	4
		15	6	7	15	6	7	24
Total		28			28			34

Total Theoretical: 15 Hour/Week Total Practical :6 Hour/Week Total Summer Training 4 Hour/Week Total Tutorial :7 Hour/Week Total Units:34

Weekly classes categories for the department

Third Year

- Course Number: EE3301
- Course Name: Electronics II
- Credit Hours: (4,2,1,0) (Units, Theory, Tutorial, Practical)

Course Content: The electronics course covers the area of analog electronic circuit design: Non linear application of op-amp, Filter design theory and approximation, Active filter design, Waveform generator theory and classification, Power amplifier classification.

- Course Number: EE3201
- Course Name: Digital signal processing
- Credit Hours: (4,3,0,0) (Units, Theory, Tutorial, Practical)

Course Content: This course covers the following topics: review of discrete signals and systems, discrete fourier series, discretefourier transform, convolution and correlation, discrete and fast fourier transform, z-transform, framework for digital filter design, realization of digital filter, finite impulse response digital filter design, infinite impulse response digital filter design

- Course Number: EE3302
- Course Name: Control Eng.
- Credit Hours: (6,3,0,0) (Units, Theory, Tutorial, Practical)

Course Content: This course covers the following topics: i-continuous control system (System representation, Time domain analysis, State space analysis, Stability of system, Frequency response analysis, Design of control system) II-DIGITAL CONTROL SYSTEM (Z-transform, Sampled data control system, Time response analysis, Stability of system).

- Course Number: EE3303
- Course Name: Microprocessor I
- Credit Hours: (4,2,1,0) (Units, Theory, Tutorial, Practical)

Course Content: This course covers the following, Studying the 8086 microprocessor from software point of view, Studying the 8086 microprocessor from hardware point of view.

- Course Number: EE3304A
- Course Name: Digital system design I
- Credit Hours: (2,2,1,0) (Units, Theory, Tutorial, Practical)

Course Content: This course covers the following topics: Standard buses, programmable logic devices, PLC . Inductive proximity sensors: ultrasonic, optical, Basic Elements of PLC, PLC inputs and outputs interfaces, Ladder programming, PLC Instructions: Latching, Comparisons, Timers, Counters, Sequencers, Shift Registers

• Course Number: EE3304B

- Course Name: Digital system design II
- Credit Hours: (2,2,1,0) (Units, Theory, Tutorial, Practical)

• Course Content:Programmable Logic Devices, GAL, SPLD, CPLD, OLMC, ISP, FPGA

• Introduction to VHDL, Modeling flip-flops using VHDL process, Compilation and simulation of VHDL code, Modeling a sequential machine, Variables, Signals and Constants, Arrays

- Course Number: EE3305
- Course Name: Communication
- Credit Hours: (4,2,1,0) (Units, Theory, Tutorial, Practical)

Course Content: the course cover transmission lines, Analog input analog output schemes, Digital input analog output schemes, analog input digital output schemes, Digital input Digital output schemes.

- Course Number:EE3306
- Course Name: Electronic Instrumentation
- Credit Hours: (4,2,1,0) (Units, Theory, Tutorial, Practical)

Course Content: This course covers the following topics: instrumentation errors, transducers, signal conditioning, signal conversion, instrumentation amplifier, analog electronic instruments, digital instruments, and interface buses.

- Course Number: EE3307
- Course Name: Laboratory
- Credit Hours: (4,0,0,6) (Units, Theory, Tutorial, Practical)

Course Content: The objective principle is to ensure that the student has the ability to integrate concepts and achieve the practical works for the different topics he attends in the theoretical classes. Each student should submit a written technical report for each experiment.

University of Ninevah College of Electronics Engineering

Electronic Engineering Department

Class	Third			Theory:	2Hrs/wk
Subject	Electronic II			Tutorial	1 hour/week
Code	EE3301	Unit	4	Practical	Hrs/wk

Article	Hrs
OP-AMP Applications:	12

inverting, non-inverting amplifier, buffer, summing amplifier, difference amplifier, integrator and differentiator, comparator, sample and hold, zero crossing detector, peak detector, precision diode and fast rectifier, analog computation.		
Filters: Filter approximations, passive RLC design, active filter design methods (ladder, and cascaded design technique).	9	
Oscillators: BarkHausen's criteria for oscillators; Satiability concept Three pole amplifier; Nyquist criteria; Stabilizing networks; frequency compensation and sinusoidal oscillator; Phase shift, Wien bridge, Colpitts, Hartley, Crystal and Tune circuit type oscillator (AF & RF Range).	9	
Tuned Amplifier : Introduction to single tuned amplifier; GB response calculations & design ; cascade amplifier; Neutralization methods; Synchronously tuned amplifier ; Elementary treatment of stagger tuned and double tuned amplifiers.	9	
Audio Frequency Linear Power Amplifiers: Introduction to Class A, B, AB, a, C operation, Class A – common – emitter power amplifier; Transformer coupled amplifier ; Class push -pull power amplifier ; Amplifiers using complementary symmetry ; Class C amplifier.	12	
Comparators and Converters : Zero crossing detector, Schmitt trigger, Comparator, Voltage limiters and window detector, Clippers and clampers, Peak detector, introduction to A/D and D/A converters and sample and hold circuit.	9	
Multivibrators: Astable, monostable, 555 timer, and bistable	12	
Integrated Circuits and Devices: Introduction of IC families; Fabrication Steps		
and evolving transistor, diode and resistor; capacitors families.	5	
Specialized ICApplications : phase locked loops, ICL 8038 function generator, Voltage Controlled Oscillator, XR 2240 programmable timer / counter.	9	
Total	90	

Text book:
1: Integrated electronics by Milmann
2: Microelectronics by Milma

Class	Third			Theory:	2 hours/week
Subject	Digital Signal Processing			Tutorial	1 hour/week
Code	EE3201	Unit	4	Practical	Hrs/wk

Article

Hrs

Review of Discrete Signals and Systems		6		
Discrete Fourier Series:		٥		
Spectra of periodic digital signals , Properties of series.		9		
Direct Fourier Transform:				
Properties , Frequency response of LTI systems .		9		
Convolution and Correlation		6		
DISCRETE AND FAST FOURIER TRANSFORM		9		
Z-Transform:		0		
Review ,Z-plane poles and zeros .		9		
Framework for Digital Filter Design		6		
Finite Impulse Response Digital Filter Design:		10		
window method ,frequency sampling method ,realization of FIR.		12		
Infinite Impulse Response Digital Filter Design:		10		
Pole-zero method ,Bilinear Z-transform ,Realization of IIR .		12		
Applications of Filter Banks in DSP		12		
	Total	90		

Text book:
1: "Digital Signal Processing ", by Emmanuel and Barrie
2: " Digital Signal Processing with Computer Applications", John Wiley & Sons,
1997 By PAULA. LYNN

Class	Third			Theory:	3 hours/week
Subject	Control Engineering			Tutorial	1 hour/week
Code	EE3201	Unit	6	Practical	Hrs/wk

Article		Hrs	
Introduction And Basic Definition:		2	
Closed Loop And Open Loop, Control Systems		3	
Transfer Function : Electrical System; Mechanical System; Servo	System.	6	
Block Diagram: Block Diagram Reductioin Algebra.			
Signal Flow Graph: Mason Gain Rule.		6	
Time Response: Typical Test Signals & Types Of System; Steady Transient Responseof 1st and 2nd ^{Order} System.	StateErrors;	9	
Stability Of Control System : Routh-Hurwtiz Criterion:		3	
Root Locus Analysis: Root Locus Plot;General Rules Of Constructing Root Loci;			
Root Locus Analysis Of Control Systems			
Frequency Response : Introduction To Frequency Response.			
Bode Plot: Bode Analysis ; Rules For Sketching The Bode Plots; Phase And Gain			
Margins; Relative Stability.		0	
Controll System Design By Frequency Response: Proportional	Gain Only;	12	
Lead Compensation; Lag Compensation.		12	
The PID Controller; Definition; Tuning By Ziegler-Nichols Meth	ods.	6	
Digital Control Systems: Z-Trans Form &Inrevse Z-Transfrom;			
PulseTransferFunction ; Open Loop And Closed Loop Responses (Of Discrete-	45	
TimeSystems;Decretization Methods; Stability Test For Digital Con	trol System	15	
(Jury's Test).	-		
State-Space Analyses: State Equation; Solution Of State		6	
Equation;Controlabilityand Observability.		O	
	Total	90	

Text book:
1: "AUTOMATIC CONTROL SYSTEM" By B. KUO 2001
2: "MODERN CONTROL SYSTEM" ByK.OGATA 2001

Class	Third			Theory:	2 hours/week
Subject	Microprocessors I			Tutorial	1 hour/week
Code	EE3303	Unit	4	Practical	Hrs/wk

Article	Hrs	
Introduction to 16bit Microprocessor :		
8086 /8088 Architecture, Machine language, instruction, Internal execution and	6	
timing.		
8086/8088 Family Assembly Language Programming :		
Data Transfer instructions;Arithmetic instructions, logical, shift and rotate	12	
instructions; Branch instructions ; Loop instruction;NOP; HLT and flag		
manipulation instructions; Assembler directives.		
8086System Connections and Timing :		
8086 Hardware overview; Basic Signal flow on 8086 buses; Analyzing a minimum	12	
mode system; 8086 addressing and address decoding; 8086 timing parameter.		
Interrupts and Interrupt Service Procedure :		
8086 interrupts and interrupt response; 8086 interrupt types ; Hardware and	12	
software consideration for using interrupt.		
I/O Programming :		
Fundamentals I/O consideration ;Programmed and interrupted I/O ; Block		
transfers and DMA, I/O design example.		
Interfacing :		
Programmable Parallel ports and handshake input/output ; Interfacing		
microprocessors to keyboard and display ; D/A converter operation; Interfacing	12	
and applications ;A/D converter ; Specifications and interfacing; Serial		
communication interfaces.		
Parallel I/O and Interfacing Application		
Basic interfacing concepts 8255 Program Peripheral Interface ; Interfacing	12	
displays ; Keyboards;, 8279 Programmable keyboard interface;, interfacing		
memory; Memory ; Mapped I/O.		
General Purpose Programmable Peripheral Devices	12	
8253 Programmable Timer 8257 controller, 8259 interrupt controller.		
Total	90	

Text book:			
1: "The Intel Microprocessor " By B ARRY B. B REY,			
2: " The 8088 & 8086 mp`s programming, interfacing S/W, H/W & applications",			
PrenticeHall, 2003 ByW. A. Triebel& A. Singh			

Class	Third			Theory:	2 hours/week
Subject	Digital System Design I			Tutorial	1 hour/week
Code	EE3304A	Unit	2	Practical	Hrs/wk

Article		Hrs
Programmable Logic Controller PLC		
Basic Components & Their symbols		3
Control Transformer switches, relays, time delay relays		1
References Designators: on, off, Run, stop, cycle		3
Inductive proximity sensors: ultrasonic, optical		1
Analog Input / Output		3
Basic Elements of PLC		3
PLC inputs and outputs interfaces		3
Ladder programming		6
PLC Instructions: Latching, Comparisons,		
Timers, Counters,		6
Sequencers, Shift Registers		2
Math Instructions: ADD, SUB, MUL, DIV, CLV, CLR, SQR Move & Logic Instructions: MOV, MVM, AND, OR, NOR, NOT, CLR		
Standard Buses		
Internal, External buses, Serial, Parallel buses		
	Total	45

Text book:
1: Digital Fundamental, Floyd
2: PLC Software Manual

Class	Third			Theory:	2 hours/week
Subject	Digital System Design II			Tutorial	1 hour/week
Code	EE3304B	Unit	2	Practical	Hrs/wk

Article		Hrs
Programmable Logic Devices		g
GAL, SPLD, CPLD, OLMC, ISP, FPGA		0
V-Hardware Description Language (VHDL)		3
Introduction to VHDL		3
VHDL description of combined network		3
Modeling flip-flops using VHDL process		3
Compilation and simulation of VHDL code		3
Modeling a sequential machine		3
Variables, Signals and Constants		3
Arrays		3
VHDL operators, functions, procedures Packages and Libraries		3
Memory Expansion, RAM, ROM		3
System Projects		6
	Total	45

Text book:
1: Digital Fundamental, Floyd
3: Digital System Design using VHDL By Charles H

Class	Third			Theory:	2 hours/week
Subject	Communication			Tutorial	1 hour/week
Code	EE3305	Unit	4	Practical	Hrs/wk

Article	Hrs	
Transmission lines: Equivalent circuit, characteristic impedance, phase velocity, reflection coefficient, standing waves, quarter – wave transformer, smith chart calculation and stub matching.	15	
Analog Input Analog Output Schemes: AmplitudeModulation; Equation for AM, modulation index, spectrum of AM, DSB transmission with and without carriers, VSB transmission, DSB, C amplitude modulators, Envelope detectors, Balanced Modulator, SSB signal generation and Demodulation schemes.	15	
Frequency modulation: Equations for FM, modulation Index, spectrum calculation for sinusoidal waveform and Bessels function table, phase modulation, relationship between FM and PM, NBFM, frequency modulators (Armstrong method) Types of noise in AM and FM systems.		
Digital Input Analog Output Schemes: ASK, FSK, QAM, BPSK, QPSK, Transmitter and receiver block diagrams.	15	
Analog Input Digital Output Schemes: Various pulse modulation methods, pulse code modulation PCM, Delta modulation DM. Comparison between PCM and DM, Compounding method, Noise in digital systems.		
Digital Input Digital Output Schemes: Line encoding methods: NRZ, RZ, Manchester, and multilevel encoding methods and comparison of these schemes		
Total	90	

Text book: 1: Principle of communication engineering by Anokh Singh

Class	Third			Theory:	2 hours/week
Subject	Electronic Instrumentation			Tutorial	1 hour/week
Code	EE3306	Unit	4	Practical	Hrs/wk

Article	Hrs			
INSTRUMINTATION ERRORS	6			
TRANSDUCERS:	0			
Resistive, Capacitive, Inductive. Active Transducers.	9			
SIGNAL CONDITIONING:				
Input signal modification, scaling of measuring variables, delay lines, noise, signal				
averaging, interference, grounding, shielding, signal filtering, signal correlation,	14			
current-mode amplifier.				
SIGNAL CONVERSION:				
Conversion by transducer bridge, electronic multipliers, signal generator, ac to dc	12			
signal conversion, logic elements, sample & hold, A/D and D/A signal conversion,				
isolation amplifier				
INSTRUMENTATION AMPLIFIER:	9			
Circuit design, characteristics, CMMR				
ANALOG ELECTRONIC INSTRUMENTS:				
Analog (voltmeter, multi-meter, vector impedance meter, frequency meter,	15			
distortion analyzer, spectrum analyzer.				
DIGITAL INSTRUMENTS:				
Digital indicator, voltmeter (dual slop, multi-slop, successful approximation, and				
voltage to frequency converter, ammeters, ohmmeters, multi-meters, counters	15			
(frequency, frequency ratio meter, time-interval meter, energy meter), digital				
multiplexers, microprocessor-based meters				
INTERFACE BUSES:	12			
Parallel port, RS-232, GPIB.				
Total	90			

Text book:
1: "Electronic Instrumentation and Measurement Techniques" ByWilliam David
Cooper and Albert D. Helfrick.
2: Principles of Measurement systems By John P. Bentley
3: Electrical and Electronic Measurement By Ahmed A.Montaser and Karam
A.sharshar

Class	Third			Theory:	Hrs/wk
Subject	Laboratory			Tutorial	Hrs/wk
Code	EE2307	Unit	4	Practical	6 hours/week

Article		Hrs
The main objective is to ensure that students have a good quality ca design & experience to integrate concepts from a range of classes is The students are to apply modern engineering practices and technic student should submit a written technical report for each experiment experiments cover the related topics in electronic circuit analysis, communication system and microprocessor technology.	apstone in the core. ques. Each t. The	
	Total	180

Text book:	
1:	
2:	
3:	

Courses Table for Fourth Class

Electronic Engineering Deparatement								
Undergraduat	Undergraduate Fourth Class							
		Hours/Week						
Code	Subject	First Term			Second Term			Units
		Th	Pr.	Tut	Th	Pr	Tut	
EE4301	Industrial Electronic	2	-	1	2	-	1	4
EE4302	Data Transmission&ComputerNet work	2	-	1	2	-	1	4
EE4303	MicroController(*)	2	-	1				2
EE4309	Microprocessor II(*)				2	-	1	2
EE4304	Microelectronics	2	-	-	2	-	-	4
EE4308	Antenna & Propagation(*)				2	-	1	2
EE4305	Radiation(*)	2	-	1				2
EE4306	Computer aided design	2	-	1	2	-	1	4
EE4201	Engineering Project	1	3	-	1	3	-	4
EE4307	Laboratory	-	6	-	-	6	-	4
		13	9	5	13	9	5	20
Total		27			27			32

Theoretical: 13 Hour/Week Total Practical :9 Hour/Week Total Tutorial :5 Hour/Week Total Units:32

Weekly classes categories for the department

Fourth Year

- Course Number: EE4301
- Course Name: Industrial Electronic

• Credit Hours: (4,2,1,0) (Units, Theory, Tutorial, Practical) Course Content: This course covers the power semiconductor devices, Phase control converters, Thyristor commutation techniques, Inverters, PWM and speed control.

- Course Number: EE4302
- Course Name: Data Transmission and Computer Networks
- Credit Hours: (4,2,1,0) (Units, Theory, Tutorial, Practical)

Course Content: Definitions and standards, Transmission media, OSI and TCP/IP models, Connecting devices. Data link control and data link protocols, LAN technologies, WLAN standards and devices, WAN and Wireless WAN.

- Course Number: EE4309
- Course Name: Microprocessor II
- Credit Hours: (2,2,1,0) (Units, Theory, Tutorial, Practical)

Course Content: Introduction to Advanced Microprocessors, The 80386 and 80486 Microprocessor, Assembly language and Programming,

- Course Number: EE4303
- Course Name: Microcontroller
- Credit Hours: (2,2,1,0) (Units, Theory, Tutorial, Practical)

Course Content: Microprocessors and Microcontrollers, The MCS-51 Architecture, Basic Assembly Language Programming Concept, An MCS-51 Microcontroller Design

- Course Number: EE4304
- Course Name: Microelectronics
- Credit Hours: (6,3,0,0) (Units, Theory, Tutorial, Practical)

Course Content : The microelectronics course covers the area of integrated circuit design. The fabrication of electronic devices, and design and analysis of analog and digital integrated circuits.

- Course Number: EE4305
- Course Name: Radiation
- Credit Hours: (2,2,1,0) (Units, Theory, Tutorial, Practical)

Course Content: Give the students an overview of microwave technology and introduction to Microwave devices.

- Course Number: EE4308
- Course Name: Antenna and Propagation
- Credit Hours: (2,2,1,0) (Units, Theory, Tutorial, Practical)
- **Course Content:** Antenna Theory (Principles of radiation and equivalent circuit)

, Dipole antenna, Array antenna, Reflector Antenna (Parabolic antenna), Ground wave propagation (Direct and Reflected), Ionspheric Propagation, Radar theory (Circuits and equations)

- Course Number: EE4306
- Course Name: Computer aided design
- Credit Hours: (4,2,1,0) (Units, Theory, Tutorial, Practical)

Course Content: This course covers the following topics: Numerical solution for Linear and nonlinear circuit, DC and AC matrix analysis, two port analysis, graph theory, Simulation, State variable analysis, Sensitivity, Optimization, CAD for integrated circuits, Genetic Algorithm.

- Course Number: EE4201
- Course Name: Engineering Project
- Credit Hours: (4,1,0,3) (Units, Theory, Tutorial, Practical)

Course Content: Collaboration team work in research environment is expected including extensive interaction with other students. Each group should submit a written report and should attend the final oral examination.

- Course Number: EE4307
- Course Name: Laboratory
- Credit Hours: (4,0,0,6) (Units, Theory, Tutorial, Practical)

Course Content: The objective principle is to ensure that the student has the ability to integrate concepts and achieve the practical works for the different topics he attends in the theoretical classes. Each student should submit a written technical report for each experiment.

Class	Fourth			Theory:	2Hrs/wk
Subject	Data Transmission & Computer Networks			Tutorial	1 hour/week
Code	EE4302	Unit	4	Practical	Hrs/wk

Article		Hrs
Introduction and Definitions:		
Data Communication ,Networks ,Protocols ,Standards ,and Star	ndard	3
organizations.		
BASIC CONCEPTS:-		6
Line configuration ,Topology ,Categories of networks.		U
Transmission Media:		, I
Electromagnetic spectrum.,Guided media: Unshielded Twisted Pai	r (UTP) Cable.,	9
Shielded Twisted Pair (STP) Cable., Coaxial Cable., Optical Fiber.	, Unguided	Ŭ
media: Radio Transmission., Microwave Transmission., Satellite M	licrowave.	
Interfaces and Modems:		
Data transmission: parallel ,serial ,synchronous and asynchronou	IS.,DIE-DCE	6
interface and standards., Modems.]
The OSIand TCP/IP Models		6
Networking and Internetworking Devices:		
Networking devices: NICs ,Hubs ,Repeaters ,Bridges and		
Switches.,Internetworking devices: Router and Gateways.		
Data Link Control: Link Discipline ,Flow control ,Error control.		
Data Link Protocols: Asynchronous protocols, Synchronous protocols.		
Local area network (LAN):		
Ethernet, Token Bus, project 802, Token Ring, FDDI.		12
TCP/IP Model and Protocols		9
Wireless LAN (WLAN):		
Introduction and history of (WLANs), Standardization and frequen	cy bands,	9
IEEE 802.11 standard ,WIFI ,WIMAX ,Bluetooth.		
Wide Area Network (WAN)		6
Wireless WAN		6
Internet Working and Internet		3
	Total	90

Text book:	
1: "Introduction to Data Comm. And Networking", By PehrouzForouzan.	
2: "Computer Networks and Internets", Douglas By E. Comer (4th edition)	

Class	Fourth			Theory:	2 hours/week
Subject	Industrial Electronic			Tutorial	1 hour/week
Code	EE4301	Unit	4	Practical	Hrs/wk

Article	Hrs	
Introduction: Scope of power electronics, power converter specification. Power Semiconductor Devices: Thyristor families, VI characteristics of SCR, Triac, GTO, Diac, Source of thyristor triggering, turn On \ turn Off characteristic and Gate triggering requirements, series/parallel operation, device ratings.	12	
Power Transistor devices: Basic structure and VI characteristics of power MOSFET,IGBT,SIT. Switching characteristic, Gate/Base drive circuits, Safe operating area, di/dt / dv/dt limitation, series/parallel operation, ratings.	12	
Phase Control Converters: Signal phase central taped transformer connection, half controlled and fully controlled Bridge configuration, three phase half controlled Bridge converters, Use of flywheeling diode operation with resistive, inductive and Back EMF load, line commutated inverter, effect of source inductance on converter performance, power factor, ripple factor calculation, firing scheme, linear alpha and cosine angle control, application of DC motor speed control, regulated power supply, battery charger	18	
ThyristorCommutation Techniques: Natural commutation, Force commutation, Voltage / Current commutation, DC chopper, Principle of Voltage control, analysis of Morgan chopper circuit, Johns chopper circuit, regenerative chopper circuit.	15	
Inverters: Single phase series and parallel inverters, classification of CSI and VSI inverters, single phase and three phase inverter circuit, methods of voltage controlled inverter circuits, comparison of thyristor and transistor, based inverters, application to speed control of AC motors, uninterrupted power supply, Induction melting, heating furnaces.		
Industrial Applications: DC Motor Control, Induction Motor Control, Pulse width Modulation & Speed Control, Static Relays & Contactors.	12	
Total	90	

Text book:	
1: Power Electronics by: Muhammad Rashid	

Class	Fourth			Theory:	2 hours/week
Subject	Subject Microprocessor II			Tutorial	1 hour/week
Code	EE4309	Unit	2	Practical	Hrs/wk

Article	Hrs	
• Introduction to Advanced Microprocessors: Overview of 80186,80286, 80386, 80486 Architecture, Descriptor table, Privilege levels, paging. Detail study of Pentium, Pentium MMX architecture, Pentium II, Memory and Microprocessor, The Programming Model, Real mode and protected mode Memory addressing, Data formats.	12	
• The 80386 and 80486 Microprocessor: Architecture – Real mode and Protected mode, 80386 Memory Management, Memory segmentation, Memory paving Mechanism. On chip cache organization.		
Assembly language and Programming concepts: The instruction set, Addressing modes, Data movement instructions, Arithmetic and logic instructions, programming the Microprocessor.		
• Interfacing and Applications: Memory interfacing, Basic I/O interfacing.		
Total	45	

Text book:
1: "The 80386-80486 and Pentium processor" By Walter A. Tribel;
2: "The Intel Microprocessors" By Barry B. Bery
3: "The 8051 micro-controller" By I. Scott Mackenzie.

Class	Fourth			Theory:	2 hours/week
Subject	Microcontroller			Tutorial	1 hour/week
Code	EE4303	Unit	2	Practical	Hrs/wk

Article	Hrs
Microprocessors and Microcontrollers: Comparing Microprocessors and Microcontrollers, The Z80 and MCS 51, Microcontroller survey.	6
Microprocessor & Micro Controller: Comparing Microprocessors and Microcontrollers, Micro Controller survey.	9
The MCS-51 Architecture: Introduction, MCS-51 family microcontrollers hardware, Input/output pin, ports and circuits, external memory interfacing, counter, timer, serial data input/output, Interrupts.	9
Basic Assembly Language Programming Concept: Addressing mode, External data, move, Code memory read – only data moves, Push and Pop opcodes, Data Exchanges, Logical operations, Arithmetic operations, Branching Instructions, Interrupts and Returns.	12
An MCS-51 Microcontroller Design: Microcontroller Specification, External memory and Memory space Decoding, Expanding I/O, Memory map I/O, Memory address decoding, Testing the Design, Lookup table for the 8051, Serial data Transmission.	9
Total	45

Text book:	
1: "The 80386-80486 and Pentium processor" By Walter A. Tribel;	
2: "The Intel Microprocessors" By Barry B. Bery	
3: "The 8051 micro-controller" By I. Scott Mackenzie.	

Class	Fourth			Theory:	3 hours/	week
Subject	Microelectronics			Tutorial	Hrs/wk	
Code	EE4304	Unit	6	Practical	Hrs/wk	
Article			<u> </u>		•	Hrs
Semiconduct extrinsic semi- concentration diffusion, the o	conductor, free carrier de and Fermi level. Carrier t drift current, Hall effect. M	/ band model nsity in semic ransport and IIS, MOS, Scl	of solic conduct recomi hottky b	d, intrinsic and tor, carrier bination, carrie parriers, magn	a er ietic	6
ellect, bipolai						
IC fabrication photo masking mounting, pac	n processes: Crystal grow g, lon implementation, Thi ckage, and hybrid integrat	wth, diffusion, in and thick fi ed circuits .	, doping Im fabr	g, evaporation ication, sputte	s, and ering,	12
LSI and VLSI Design and Application: Discrete device design, bipolar transistor fundamentals, technology, and miniaturization. Linear I.C's: fabrication, and general consideration. Current sources,. LSI oriented bipolar technology. Logic Families based on bipolar transistor (RTL, DTL, TTL, ECL, TRL, I ² L). TTL gate circuit analysis. Metal-Semiconductor junction, Metal-Oxide Semiconductor junction.				18		
MOS Transistor Fundamentals and MOS IC Technology: MOS capacitor, static characteristics of the MOS transistor, MOS device fabrication. MOSFET's. Logic circuits based on MOSFET, PMOS, NMOS, CMOS,DMOS, SOS, VMOS. NMOS inverter and gate circuit analysis. CMOS inverter and gate circuit analysis. Charge-coupled devices and non-volatile memory devices, software applications.				18		
ASIC Design methodologies and system design consideration				9		
LCA, Standard cell, Gate array, Structured array]			9			
Full-Custom and Semi-Custom Design :Design motivations; design either discrete component, full-custom and semi-custom design approaches .			9			
Field programmable gate arrays FPGA and Field programmable analog arrays FPGA			9			
				Total		90

Text book:	
1: Microelectronic By Millmann	
2:Principle of CMOS VLSI Design By Neil Weste and KarmranEshrahian	

Class	Fourth			Theory:	2 hours/week
Subject Radiation			Tutorial	1 hour/week	
Code	EE4305	Unit	2	Practical	Hrs/wk

Article		Hrs	
Various applications of Microwaves, Review of Maxwell's Equations			
Review of Electromagnetic Theory: (Plane wave incidence on bour	idaries,	3	
Reflection & transmission)			
Waveguide Theory		3	
Rectangular Waveguides		3	
Circular Waveguides		3	
S-parameters and the scattering matrix		3	
Tee junctions & Magic Tee		3	
Attenuators, Directional couplers		3	
Propagation into Ferrites, Ferrites Devices		3	
Active Microwave Device, Two cavity Klystron		3	
Velocity Modulation, Power and Efficiency		3	
The Reflex Klystron, Power and frequency characteristics, Magnetr	on	3	
Passive Microwave Devices, Detector Diodes, power sensing diode	ə,	3	
Varactor diodes, PIN diodes, BARITE & IMPATT diodes		3	
Microwave Transistor circuit		3	
	Total	90	

Text book:	
1: "Microwave Circuits and devices" by Liao	
2: Microwave Engineering" by Pozar	

Class	Fourth			Theory:	2 hours/week
Subject	Antenna and Propagation	1		Tutorial	1 hour/week
Code	EE4308	Unit	2	Practical	Hrs/wk

Article		Hrs		
Antenna Theory (Principles of radiation and equivalent circuit)				
Antenna Parameters (Gain, Directivity, Bandwidth, Beam width, and Radiation Pattern)				
Radiation Intensity and Power Density of Antennas		3		
Monopolar antenna		3		
Dipole antenna		3		
Array antenna		3		
Reflector Antenna (Parabolic antenna)		3		
Microstrip antenna		3		
Free space propagation		3		
Friis Transmission Formula		3		
Ground wave propagation (Direct and Reflected)		3		
Ionspheric Propagation		3		
Radar theory (Circuits and equations)		3		
Satellite communication				
Mobile and 2-Ray model				
	Total	90		

Text book:
1: "Microwave Circuits and devices" by Liao
2: Microwave Engineering" by Pozar

Class	Fourth		Theory:		2 hours/	week		
Subject	Computer Aided Design		Tutorial		1 hour/week			
Code	EE4306		Unit	4	Practica	I	Hrs/wk	
Article								Hrs
Introduction Linear circuits, AC circuits, AC circuits matrix analysis, two port analysis, graph theory. Numerical solution for nonlinear network simple search algorithm convergence properties, secant method					graph	12		
Simulation Algorithms, stability and accuracy in Eulers methods, higher-order, Runge-cut Algorithms.				15				
State variable analysis Generation of state equation from topological data, finding a tree, solution of state equations.				18				
Sensitivity analysis Sensitivity measures, sensitivity calculation tolerance analysis.					9			
Optimization Gradient algorithms, numerical solution of gradient algorithm, stability, search methods.					12			
CAD for integrated circuits Layout algorithm routing algorithm, testability analysis.				15				
Genetic algorithms Application of GA in electronics.				9				
					T	otal		90

Text book: 1: Computer Assisted Network and System Analysis by: by Mastacusa

Class	Fourth			Theory:	1 hour/week
Subject	ENGINEERING PROJECT			Tutorial	Hrs/wk
Code	EE4201	Unit	4	Practical	3 hours/week

Article	Hrs
Collaborative team work of the nature in a research environment is expected, including extensive interaction with other students. Each student should submit a written technical report and should attend the final oral examination. The students apply verbal written and oral technical skills to document the design process.	
Total	120

Text book:	
1:	

Class	Fourth			Theory:	Hrs/wk
Subject	Laboratory			Tutorial	Hrs/wk
Code	EE4307	Unit	4	Practical	6 hours/week

Article		Hrs
The objective principle is to ensure that students have a good qual design & experience to integrate concepts from a range of classes The students are to apply modern engineering practices and techn student should submit a written technical report for each experimer	ity capstone in the core. iques. Each nt.	
	Total	180

Text book:	
1:	

Course description for the first and second stages according to the Bologna system and the third and fourth stages annually

Courses specification for second, third, and fourth class

For the academic year 2023-2024

University of Nineveh

College of Electronics Engineering

Department of Electronic Engineering