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ABSTRACT

An enhancement of resolution for Angle of Arrival (AoA) estimation is
useful for incoming radio waves received by uniform linear arrays (ULA). One
of the modern techniques for determining the angle of any approaching or
receiving target is the Root Eigenvector (R-EV).

The Root Eigenvector (R-EV) algorithm, which in this thesis is compared
to the conventional method of Fast Fourier transforms (FFT), is one of the high-
resolution methods for locating and finding angles. The angle of any
approaching or receiving object’s radiating wave with a small error rate
compared to other methods of AoA.

The high-resolution algorithms concentrate on the distinct properties of the
signal covariance matrix in addition to dividing the observation space into two
subspaces, one for the signal and one for the noise.

Before starting to study the R-EV method, a few determinations for Angle
of Arrival (AoA) parametric methods are present. These determinations
preceded the R-EV in terms of the results achieved and the mathematical
representation such as Pisarenko Harmonic Decomposition (PHD) and Multiple
Signal Classification (MUSIC).

The R-EV and FFT methods are implemented in MATLAB environment. A
range of studies have been simulated with different numbers of antennas,
different values of angles. Different values for the distance between elements
whether single or multiple sources. Also, these simulated results are analyzed to
see the effect of changing these parameters on determining the Angle of Arrival
using R-EV and FFT by calculating the percentage of error in each case.

The results proved the super accuracy of R-EV and achieved exceptionally
low error rates even with the addition of noise the maximum error that got
reached 4 % when M, number of samples (sensors) equal to 8. For the rest of the
cases, the error rate did not exceed 2%,. In contrast, FFT did not achieve the
same efficiency as R-EV because of having higher error rates and requiring a
greater number of elements than R-EV.
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CHAPTER ONE

Introduction and Literature Review
1.1 Introduction

The term "array signal processing" refers to the processing of information
signals obtained from a network of sensors running in different environments
(e.g., at ground level, above ground level, or underwater). There are various
kinds of sensors, such as antennae for radio astronomy, radio communications,
and radar, hydrophones for sonar, geophones for seismology, ultrasound, and X-
ray detectors for medical imaging [1].

The sensors are developed with the same fundamental goal in each of these
incredibly varied array signal processing applications: to act as an interface
between the environment in which the array is embedded and the signal
processing portion of the system [1], [2].

Since Newton's prism experiments with sunlight, spectrum estimation has
involved assessing the power or energy distribution concerning the signal's
frequency. Through these studies, Newton was able to prove that sunlight is
made up of a band of colors, each of which has a unique wavelength[3]. The fast
Fourier transform (FFT), an effective technique for computing the discrete
Fourier transform, was rediscovered in 1965, marking a significant turning point
for the field's future growth [4].

John Burg soon afterward published his work, which presented a
completely novel method of spectrum estimate based on the maximum entropy
concept. Many academics have followed up on his work over the following
three decades, creating a plethora of novel spectrum estimation techniques and
applying them to a wide range of physical processes from different scientific
domains[5].

One of the significant and developing study areas in array signal processing

Is AOA estimation. The term "Angle-of-Arrival (AoA) estimation™ describes the
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procedure of determining the Angle for several electromagnetic radio frequency
waves from the outputs of several receiving antennas that make a sensor array
[6]. Radar, sonar, wireless communications, etc. are just a few of the many
industries where AoA estimation is a significant issue in array signal processing.

The accuracy of this Angle of Arrival prediction significantly influences the
effectiveness of antennas. It utilizes the digital output for each sensor array's
output. A single fixed antenna used for AoA estimate has a low resolution, to
Improve parameter estimation and signal reception a variety of antennas is used.
An array of antenna sensors performs better, increases accuracy, and enhances

the resolution [7].

1.2 Literature Reviews

There are a lengthy history of research into AoA estimate techniques that
reaches more than 40 years. Researchers have been trying to solve the issues
related to AoA, that are accurately estimating the angles of arrival, reducing the

transmitting power, and locating the beam in the desired direction.

In general, angle finding methods are categorized into Conventional
methods and the Subspace methods.

The first method is the Conventional method, also known as the Classical
method. For example, spatial filtering or beamforming was the initial method
used to handle data gathered from an array of sensors in space-time.

The notion of colored space-time waveform transmission serves as the
foundation for space-time coding. It permits the transmission of various
waveforms with a broad angular coverage in various directions [8].

The traditional (Bartlett) beamformer, which goes back to the Second
World War, merely applied spectrum analysis based on Fourier to
spatiotemporally sampled data [9].

However, the spatial filtering strategy has several serious drawbacks,

regardless of the available data collecting time and Signal-to-Noise ratio (SNR),
2



the performance of the device in question is particularly directly influenced by
the physical size of the array (the aperture). The classical methods may be

thought of statistically as spatial expansions of spectral Wiener filtering [10].

After that, the ability to resolve closely separated signal sources was
improved using adaptive beamformers and traditional time delay estimation
techniques [11]. With the expansion of time-delay estimating approaches to
many signals (initially, these methods only employed two sensors), and the
constrained resolution of beamforming, academics' interest in statistical signal

processing has grown.

The output energy in the interference direction can be kept constant while
the output energy in the desired direction is minimized using the Capon
approach in 1969. Although this approach is reliable and does not require many
sources in advance, its resolution falls short [12]. At this point, it is worth
mentioning that the word "resolution” is employed casually. It refers to the

ability to separate between two closely spaced signal sources [9].

The second category of AoA methods is the subspace Method or the High-
resolution method. These methods outperform more traditional algorithms in
terms of performance. The decomposition of the Covariance Eigen matrix into
the Noise Subspace and the Signal Subspace is the foundation of this approach.
The spatial spectrum of the antenna is determined using this method, and the
direction of arrival is determined using the spatial spectrum peaks [13].

In 1973 Vladilen Fedorovich Pisarenko showed that second-order statistics
may be used to retrieve AOAs. Pisarenko made the initial discovery of this
technique while doing research on how to determine the frequencies of complex
signals that are present in white noise. The Pisarenko Harmonic Decomposition
Method try to lower the (MSE) Mean Square Error of the Output Array [14].

The minimal Norm Method, developed by Kumaresan and Tufts in 1982

[15], is an approach that is used to solve the AOA estimation issue in a way like



the MUSIC algorithm and is described as "the vector lying in the noise subspace

whose first element is one having minimum norm”.

The Min Norm approach attempts to solve the issue of high computational
complexity, but it encounters difficulty in that it creates spurious peaks in other
sites, which hinders the algorithm's efficiency [16].

The MUSIC algorithm suggested by Schmidt in 1986, the term "multiple
signal classification™ (MUSIC) referred to theoretical and experimental methods
used to analyze signals received at antenna array elements to extract information
about the characteristics of numerous wavefronts arriving there [17].

The Covariance Matrix was the most important component of the MUSIC
method since it is divided into the noise subspace and the signal subspace using
two separate orthogonal matrices. The covariance matrix is diagonal in this
approach because it assumes that noise is significantly uncorrelated in every
channel [18].

Because of its high-resolution capability, the MUSIC algorithm offers
reliable performance and has been utilized extensively up to this point. Even
though the MUSIC algorithm has many advantages, it is being constrained by
several obstacles and competing with current methods. It is unable to detect the
Direction of Arrival (DoA) of signals that are coupled because it is costly and
computationally hard since it entails looking for peaks.

In 1990, a novel method for estimating direction from noisy multi-
experiment data was presented, based on eigen analysis. This novel technique
which is called the Method of Direction Estimation (MoDE) offers the
performance of the Maximum Likelihood (ML) method (the MoDE and ML
estimators coincide as the number of data samples increases), with a modest
computational effort comparable to other eigen analysis-based techniques like
the MUSIC algorithm [19].



In 1992 Friedlander and Weiss developed the concepts of spatial smoothing
and array interpolation combined to create a computationally efficient estimate
approach [20].

In 1995, by Serebryakov a new article was added to the AoA development
based on examining the capacity of a minimal energy adaptive beamformer for
communication to determine the positions of two narrowband sources with equal

energy but near separation [21].

In 1997 Shaker Verlag released Haardt’s outstanding PhD dissertation on
array signal processing for DOA calculations. It gives a thorough analysis and
investigation of the ESPRIT technique to make it easier for a reader to check on

this important reference without being too confused [22].

In 2000 by Jingging Luo and Zhiguo Zhang a set of extremely basic
arithmetic known as the Eigenvalue Grads Methods (EGMSs) is introduced in
this study following some examination of the eigenvalues of the auto-correlation
matrix, and the simulation results are compared with those of the AIC and MDL
technique [23].

In 2004 new novel methodology by Chong-Ying and Yong-shun which
estimates DoAs with high precision and does not need knowledge of the number
of signal sources, uses the linear prediction (LP) or Pisarenko method in
combination with the adaptive signal parameter estimation and classification
technique (ASPECT). ASPECT is used to locate erroneous peaks in DoAs and
can simultaneously count the number of signal sources. The approach allows for
the reduction of computational complexity and the enhancement of spectral
resolution [24].

In 2007, Zhang Xiaofei, and Lv Wen developed a unique approach for DoA
estimation that fully utilizes the signal and noise subspaces. It performs better
than MUSIC and Improved MUSIC and exhibits superior performance under

low SNR, tiny snapshot, and coherent source circumstances. This approach is



resilient and widely used because, in addition to its low complexity, it is simple
to implement [25].

In 2011, Aifei Liu, and Guisheng Liao proposed an entirely novel DoA
estimation technique based on the eigen decomposition of an array output
vector's conjugate and a covariance matrix created by the dot product of the
array output vector and the latter. A technique provided to concurrently estimate
the DoA and gain-phase errors without joint iteration by fusing the novel DoA
estimation with the traditional gain-phase error estimation. Theoretical research
demonstrates that the suggested approach behaves well regardless of phase

errors and performs without dependence on phase faults [26].

In 2015, Pascal Vallet, Xavier Mestre, and Philippe Loubaton developed
the MUSIC method. In the asymptotic regime, when the number of samples and
sensors approaches infinity at the same rate, this study addresses the statistical
performance of subspace AoA estimation using a sensor array. When the number
of sources and their AoA stay constant, improved subspace AOA estimators
known as developed MUSIC and demonstrated to be consistent and
asymptotically Gaussian-distributed [27].

In 2018, Qingli Yan, Jianfeng Chen, and Geoffrey Ottoy is addressed in this
paper the performance degradation issues of the Angle of Arrival (AoA)-based
acoustic localization methods in the presence of unreliable bearing
measurements (outliers) [28].

In 2020, Chudnikov and Shakhtarin in their paper discussed methods for
the direction of arrival estimation (DoA) in MIMO radar sensors with a small
antenna array with collocated elements. An algorithm for processing a data array
in the “channel-range-speed” coordinates is presented in the context of signal
sources localization with the main digital beamforming methods [29].

In 2023, Tobias Margiani, Silvano Cortesi presented a paper related to
AO0A, this work provided a thorough analysis and evaluation of Angle of Arrival

(AoA) UWB measurements utilizing a small, low power integrated
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a new commercial module with integrated Phase Difference of Arrival
estimate[30].

1.3 Application for AcA

In many aspects of radio communications, direction finding is crucial. Most
of them require determining an emitter's direction in relation to a predetermined
reference direction (such as true north, magnetic north, or the heading of a ship,
car, or airplane).

Fixing the location of emitters is one of the most crucial applications for
direction finders. This may involve finding shipwrecked people, tracking down
unauthorized signals like those from unlicensed base stations, unwanted
emissions from industrial facilities, or even signals used to remotely detonate
improvised explosive devices (IEDs). Radio position fixing is crucial in the field
of military radio reconnaissance because it allows for the acquisition of tactical
structure images, which are then used to evaluate the danger posed by an
opponent.

Single-station locators (SSLs) only employ one direction finder, while two
methods are applied. When using shortwave signals that travel via the
ionosphere for position fixing, direction finders that measure both the azimuth
and elevation of the incident wave must be used. The distance to the emitter may
be calculated using an estimate of the virtual height of the ionosphere's
reflecting layer; the intersection with the line of bearing (LOB) then provides the
emitter location.

1.4 Aim of the Work

This research aims to study a new method for AoA estimation to obtain
high accuracy in determining the angle and direction of the received signals.

The focus will be on a class of Eigenvector algorithms known as Root-

Eigenvector (R-EV), and before starting to study this method, it is necessary to



make a quick study of the principles of AoA methods that led to Root-
Eigenvector.

The study will contain an explanation of the receiving antenna system
(Uniform linear array), the mathematical description of the previous methods
gradually from the classical method: Fast Fourier Transform (FFT) to the
modern method of Root-Eigenvector, and detailed MATLAB simulation results
for each algorithm will be presented.

The thesis will focus on the following points:

1. researching the classical methods for AoA (FFT) and studying the basics
of the high-resolution methods including Root-Eigenvector (R-EV) method and
making a complete study.

2. Studying the eigenvector and eigenvalues of the autocorrelation matrix.

3. Performing the problem analysis for the two methods (Root-Eigenvector,
FFT) and making a simulation using MATLAB.

4. Comparing the performance during changes in the parameters that affect

the response of the methods.



1.5 Thesis Layout

This thesis is made up of several investigations that were conducted with
these objectives. Five chapters provide a comprehensive study of the proposed
method and a comparison to the classical method.

Beyond this introduction chapter, chapter two offers the background theory
of frequency estimation that is separated into two parts: Traditional techniques
DFT or FFT and Subspace approaches like PHD, MUSIC, and R-EV methods.
Those methods of DoA estimate are contrasted with simulation results, as well
as the mathematical description for the DoA estimation approach system
developed in this thesis.

Chapter three and chapter four are demonstrated using the MATLAB
program, Chapter three includes an investigation and comparison between the
two methods of AoA estimations (FFT and Root-Eigenvector) without noise,
Chapter four studies the effect of adding white noise to the signals, finally

chapter five focuses on the conclusions and future works.



CHAPTER TWO

Theoretical Background
2.1 Overview

This chapter explains the basis of the working principles and theoretical
background of the topics considered in this thesis. As a start, frequency
estimation for AoA algorithms was studied, which was classified into two main
parts:

(1) non-parametric like Fourier Transform,

(2) parametric like Pisarenko Harmonic Decomposition (PHD), MUSIC,

and eigenvector.

Finally, the main method for the subject of this research is explained, Root-
Eigenvector (R-EV). After that, Angle of Arrival (AoA) detailed study for the
signal model and data model is illustrated, furthermore, a linear antenna array is
used to describe this model. Finally, the Root-Eigenvector is employed to find

the Angle of Arrival estimation.

2.2 Frequency Estimation

The process of estimating a signal’s spectral density (sometimes referred to
as its power spectral density) from a series of time samples is called spectral
estimation.

Spectral estimation (SE) is one of the most important parts of the
processing and interpretation of signals. It is considered a fundamental analysis
tool with numerous uses. The following statement captures the core of the
spectrum estimation issue: "Determine the distribution of total power over
frequency from a finite record of a stationary data stream".

Most of the signals encountered in applications are such that their variation

in the future cannot be known exactly; instead, it is only possible to make
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probabilistic statements about that variation. The mathematical tool is used to
describe such a signal of random sequence, which consists of an ensemble of
realizations, each one having some associated probability of occurrence. Since
the experimenter often only sees one realization of the signal out of the whole
ensemble of realizations. Unfortunately, this is not feasible as, when seen as
discrete-time sequences, the realizations of a random signal lack Discreate Time
Fourier Transform (DTFT) since they lack finite energy. A random signal's
average power spectral density used to describe it as random signals typically
have finite average powers [31].

To distinguish between stationary and non-stationary signal for a random
process y(m), a process is said to be stationary if every single time the random
variable at this time has the same density function; this signal is said to be strict
sense stationary (SSS) if it is stationary for all orders L >0 and has the same L"-

order joint density functions for processes y(m) and y(m + k).

Also, Wide-Sense Stationary (WSS) is another type of stationarity; and a
random process; y(m) is said to be wide-sense stationary if all three of the

following requirements are met [32]:

1. The mean of the procedure is constant, m,,(m) = m,,.

2. The autocorrelation, r,, (k, I) for the random variables y(k) and y(I) depends
only on the difference, (k— 1), this difference is called the lag, r, (k1) =
Qyk =1

3. The process variance is finite, ¢, (0) < oo.

Additionally, it is supposed that a random process y(m) is ergodic if, with
probability one, all the statistical averages can be calculated from a single
sample according to the function of the procedure. If temporal averages
generated by a single realization are identical to statistical (ensemble) averages,
the random process is effectively ergodic. It is possible to try and estimate group
averages under these circumstances using temporal averages from one

realization [32].The Discrete Fourier Transform (DFT) is a representation for
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finite-length sequences that is an easy function of an integer variable, k, and can
be computed using a digital computer. The M-point DFT for a finite-length
sequence y(m) of length M that equals zero outside of the interval [0, M — 1] is
[32]:

—2Tmjkm

Yo =YM1ly e k=012,....M—1, 2.1

where Y, is the k" coefficient of the DFT that should be complex and y,, refers
to the m®" sample of the time series which consists of M samples and complex
exponential.

For ease of notation 2.1, is frequently written as [32]:

Y =XM1y wok k=0,1,...,M—1, 2.2

—2mj

Where W =e ™M .

Since that y,,, are sometimes values of a function at points for discrete time,
the index Kk is often called the “frequency” of the DFT. The DFT is also known
as the “discrete time, finite range Fourier transform”.

The common inverse of the DFT exists, and as its form is extremely close
to that of the DFT, the inverse of equation (2.1) [32] is:

2mjkm

Yo = — Zhog e ™ 2.3

This equation is called the inverse discrete Fourier transform (IDFT), since
the FFT is an algorithm for efficiently computing the discrete Fourier transform
(DFT) for the estimation of the frequency content of a discrete and finite time
series, it makes use of the possibility of doing an iterative computation of the
DFT's coefficient, which saves a significant amount of computing time [33].

The power spectrum density PSD defined as the DTFT of the covariance
sequence [32]:

P(w) =25 o R(K)e VK, 2.4

Given the power spectrum, the autocorrelation sequence R(k) may be

determined by taking the inverse discrete-time Fourier transform of P(w) [32]:

12



R(K) = — [ P(w)e/"* dw. 2.5

Therefore, the autocorrelation sequence of the Fourier transform is the
power spectrum, estimating the power spectrum of FFT is like estimating the
autocorrelation.

For an autocorrelation ergodic process also detriment using the time
average[32]:

Ry(K) = lim {7=FH_ yy(m +K)y"(m)} . 2.6

—o00  2M+1

As a result, in principle, calculating the power spectrum is simple if y(m) is
known for every m, as all that is required in computing the Fourier transform of
the autocorrelation sequence R, (k) using equation (2.6) to estimate the
autocorrelation sequence. However, there are two drawbacks to this strategy that
make spectrum estimation a difficult issue. First, there is never an infinite
quantity of data to deal with, and it is frequently very little. As is the case, such a
restriction could be a defining feature of the data-collecting process. The second
Issue is that the data is frequently tainted by interference signals or noise, as a
result, the challenge of spectrum estimation entails predicting I3y(ef‘“) given a

limited set of noisy y(m) data.

For example, if y(m) is known and has p" order autoregressive process,
then the values measured from y(m) may be used for estimation of the
parameters of the all-root model, ap(k), and these estimations of the parameters,
a,(k), may then, in turn, be used to estimate of the power spectrum as

follows[32]:

1

|Z£=0 é\p(k)e—jkw |2 .

p,(e®) = 2.7
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Figure 2.1 shows the classification of AoA methods.

AOA methods

non

Parametric

Methods parmetric

(a)
Autoregressive
Spectrum
Estimation

(b) Subspace
Method

|

i.Pisarenko Harmonic Decomposition

ii. Multiple Signal Classification.

iii. Eigen Vector

iii.Root Eigen Vector

Figure 2.1 classification of AoA methods.
2.2.1 Non-Parametric Methods

The foundation of classical Angle of Arrival (AoA) techniques is
beamforming. The beamforming approach's basic concept is to "steer" the array
in a single direction at a time while measuring the output power. The maximum
output power will be seen when the "steered" direction and a signal's AoA line
up. The creation of a suitable output power that will be closely connected to the
A0A is essentially what goes into developing AoA estimate systems[34].

The term "nonparametric" refers to an estimation that makes no
assumptions about the way the data produced. Starting with the provided data, it
estimates the autocorrelation sequence of the random process. Next, a Fourier
transform of an approximated autocorrelation sequence used to determine the

power spectrum. Following are several methods for estimating the
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autocorrelation sequence for the process of an ergodic autocorrelation y(m) that

is only recorded over a finite range, suchasm =0,1, ..., M — 1.

Then, using the following, the estimation of autocorrelation sequence is

calculated:
f, (k) =~ SM=3y(m + k)y*(m) . 2.8
The periodogram was the first type of nonparametric estimate proposed by

Chuster in 1898.

The Fourier transform of the autocorrelation sequence is the wide-sense

stationary random process's power spectrum, as given by the following equation:

P(e/") = X _ 1y (k) ek 2.9

Consequently, the estimate of the spectrum may be thought of as an
autocorrelation estimation issue. Equation (2.9) uses the time average to
calculate the autocorrelation for an ergodic autocorrelation and an infinite

quantity of data.

However, the autocorrelation sequence may be obtained if y(m) is
measured over a limited range, where m = 0,1, ..., M — 1 derived for equation
(2.10).

It expresses as follows to ensure that the values of y(m) that are outside of

the range [0, M — 1] are eliminated from 2.8:
f, (k) =~ SM_3F y(m + k)y* (m) , k=0,1,...M-1, 2.10

The discrete-time Fourier transform of #, (k) yields a periodogram, which

IS an estimation of the power spectrum known as periodogram.
Brer(e™) = X¥=0y 1 By (e Tk 2.10
Thus, y,, (m) is the product of y(m) with a rectangular window wy

yu = wgy(m) 211
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In terms of y,,(m) the autocorrelation sequence estimation may be written

as follows:

7y (k) = = Bmeroo Vs (M + 1)yas" () =33 (k)™ (=) 2.12

Taking the Fourier transform FT and using the convolution theorem, the

periodogram becomes:
Ber (™) = 2 ¥(eM)V* (™) =2|v(e™)f. 213
Y*(e/%) is a complex conjecture of Y (e/V).

So, Yy (e/™) is the discrete-time Fourier transform of the M-point data
sequence y,,(m) as follows:

Yi(e/) = Yooy (m)eJom = M1y (m)e~Jom 2.14

A crucial idea in the investigation of the performance of spectral estimators
Is resolution, which is the capacity to recognize spectral features, although the
periodogram is straightforward to generate the power spectrum but resolution is
constrained for short data records [35] .

When dealing with sufficiently long data lengths, the periodogram
approach offers a considerable resolution; nevertheless, because of their large
variance, which does not decrease with data length, they are poor spectrum
estimators.

To enhance its statistical features, the periodogram has undergone a few
documented revisions. These include the modified periodogram, the
periodogram averaging Bartlett's approach, the modified averaging periodogram
Welch's method, and the periodogram smoothing Blackman Turkey method
[36]. One of the disadvantages of non-parametric methods for AoA estimation,
the estimating technique is not intended to consider any potential process
information that may be accessible. This feature may have importance in

applications especially when information on how the data samples produced is
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accessible therefore there was a need to a parametric method that estimates a
collection of parameters for the received signal [34].
2.2.2 Parametric Methods

The estimation of frequencies contains two or more close frequencies
signal problem and estimation of 6 angle in AoA.

The following represent a study for some of Parametric Methods:
(a) Autoregressive Spectrum Estimation

This section gives a mathematical description of the Autoregressive (AR)
process corrupted by additive (white) noise. In this section, the special case is
considered in which the signal is sinusoidal corrupted by additive white noise
[2].

In a communication system, the signal transferred to an array antenna is
typically distorted by noise. These disturbances are often uncorrelated, but the
pure signals that various elements receive are associated since they come from

the same sources [37].

The following matrix can be utilized to represent the autocorrelation

sequence. By considering that y is the sampled data vector [32]:

y = [y(0),y(1),y(2),....y @], 2.15

Where the T is the transpose operator Then, the autocorrelation matrix
R, of y isthe correlation matrix becomes[32]:

R, =E{yy"}, 2.16
Where E {} is the statistical expression.

Equation (2.17) defines the degree of correlation of the data signals

received by array elements * denotes complex conjugate transpose[32]:

R, = E{yy"}
y(0)y*(0) yy (1) .. yOy (-1
_g| Y@y (0) yOy' @ .. y@Qy' -1 | 547
yp-1Dy(0) yp-1Dy @) - yp-Dy(p-1)
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rn(0) (D) @) )
(1)  n(0) @ -1
=|n@ M n(0) " r(p-2) 2.18
e Bp-1 nem-2" 50
Taking the expected value and using the property of Hermitian, the

autocorrelation sequence leads to producing the p * p autocorrelation matrix.

The power spectrum related to a pt* order autoregressive process[32]:

Py(ej(l)) = |b(0)|2

14YP_ a (ke ko 2
k=1“P

2.19

Thus, an estimate of the power spectrum may be obtained using the data

provided by b(0) that represent the Autoregressive coefficient, and a,, (k) can be
determined.

50)*

[145P_ a5 (k)eiko|”

Par(e®) = 2.20

Several methods are available for estimating the all-pole parameters, as
autoregressive spectrum estimation necessitates the identification of an all-pole
model for the process.

But each approach produces an estimate of the power spectrum in precisely
the same manner, i.e., by using equation (2.20), once the all-pole parameters
have been obtained. This discussion includes an overview of some of the
characteristics of Autocorrelation modeling approaches and how they relate to
spectrum estimation.

In the autocorrelation method of all-pole modeling, the autoregressive (AR)

coefficients a;(k) in the all-pole modeling autocorrelation approach are found

by solving the autocorrelation normal equations[32]:

18



ry(0) 1 (1) ry(2) ry® 1 1

1
r,(1) r,(0) ry,(1)  r(p-1) a,(1) 0
ry(z) ry(l) ry(O) r;(p — 2) ap(z) = Sp 0 2.21
o He-D ne-2" no el Lo

The autocorrelation sequence of y(m) is known as
r, (k) = %an_zlo_ky(m +k)y*(m),k=0,1,2,...., p. 2.22
Solving Eq. (2.21) for the coefficients a, (k), results in:

. 2
1b(0)|? =&, =1,(0) + X}_, a, A, (k)| 2.23
(b)  Subspace Method

The data for a single signal is constrained to a one-dimensional subspace
that is defined by the steering vector A (8), if y(t)=A(8)x(t) for the L signals, the
observed data vectors y(t)=A(0)x(t) are restricted to L-dimensional signal
subspace is named the signal subspace. An array that receives signals that are
distorted by noise is named the noise subspace. Normally, these disturbances
are uncorrelated, however, the pure signals received by various components are
correlated since they came from the same source. It may be possible to properly
extract the AO0A information by utilizing that property, and the spatial

covariance matrix presented and used to identify AoA [38].

The parametric (subspace) approach, which predicated on the idea that the
process may be characterized by a parametric model, is a conceptually distinct
method of estimating the spectrum of a random process. The process spectrum
then represents in terms of the model's parameters based on the model. The

method therefore has three steps:

(1) choosing a suitable parametric model (typically predicated on prior

information about the process).
(2) estimating the model parameters.

(3) computing the spectrum using the parameters so determined.
19



Because they may attain higher resolution than nonparametric approaches,
parametric spectrum estimating techniques referred to as high-resolution

techniques in the literature [5].

The high-resolution property is often possessed by approaches that rely on
the decomposition of the observation space into signal and noise subspaces.
When two signals, subject to how close they may be in frequency terms, can be
separated (referred to as resolved or detected) despite the signal-to-noise ratio
(SNR), it is say that the method has a high resolution. This is the case when the
model is verified, and the number of samples used for the estimation of the

correlation matrix and the observations tends to the infinite[39], [40].

In summary, these techniques depend on a set of the basic proven

properties of the space matrix defined by R,,,, firstly, the space is classified into

two sections subspace for noise and subspace for signal, the steering A4(6)
vectors approach the signal subspace, finally, the noise subspace is spanned by
the eigenvectors attached with eigenvalues that have a smaller value of the
correlation matrix, unlike the signal subspace that attached with larger
eigenvalues [41]. This section’s focus is on these models, concentrating on the

parameter estimation issue and implementation format.

I. Pisarenko Harmonic Decomposition (PHD) Method

For estimating the frequency and magnitude, Pisarenko Harmonic
Decomposition (PHD) algorithm is proposed [17]. Since it has several uses in
high-resolution spectrum estimation and array signal processing issues, the
Pisarenko harmonic decomposition (PHD) approach has lately drawn a lot of
interest [42]. PHD analysis is mainly used to estimate the frequency and
magnitude parameters of sinusoidal signals exposed to white noise [43].
Pisarenko proved that the frequencies may be obtained from the eigenvector

corresponding to the least eigenvalue of the autocorrelation matrix based on
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carathedory theory [32]. Before solving the matrix's eigenvalues and
accompanying eigenvectors, a correlation matrix made up of the values of all
sample points' autocorrelation functions must first be produced. Following these
steps, the frequency value of each component may be calculated using the
orthogonality between the signal space and noise space as identified by the
eigenvectors. Finally, the equation for the autocorrelation function may be used
to solve the magnitude value [43], [44].

In PHD method, it is assumed that q complex exponentials in white noise
make up x(m), and that g is a known quantity. The eigenvector corresponding to
the lowest eigenvalue spans the noise subspace, which has a size of one, 4,,;,, =
al]z, Assuming that this noise eigenvector is denoted by the symbol wu,,;,, it
follows that each of the signal vectors q;, and they are orthogonal to each
other[32]:

QHUpin = Xk _oUmin(kK)e T*@i = 0; fori =1,2,3,...,L 2.24

let U,,i, be the k™ component of u;;,

Unmin(€7?) = Tk_ g umin(@)e %@ = 0 2.25

for each of the complex exponential frequencies w; wherei = 1,2,...,L Is
equal to zero. The noise eigenvector's z-transform, also known as an eigenfilter

Unin, has L zeros on the unit circle[32]

Unin(2) = Zk=o Umin (k)27 = [Ti=1 (1 — e/**271) 2.26

The roots of the eigen filter may be used to obtain the frequencies of the
complex exponentials. Additionally, a frequency estimate function is explained
as [32]:

ppHD(ejw) _; 227

|qHumin|2
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The powers Ppyp can be obtained from the eigenvalues of R,, by following
the steps below once the frequencies of the complex exponentials have been
identified. Let us assume that the signal subspace Eigenvectors u,, u,,us, ..., U,

so will become[32]:

ulu,=1,i = 1,2,..,L 2.28
Ry u; = /’liui , I = 1,2, ,L 2.29
R, = Ry + R, = Yi-, Piqiqj’ + 071 2.30

The left side of Equation (2.29) is multiplied by the uf,it will result:

quRy u; = Aiuiufl = /‘li 1= 1,2,...,L 2.31

When the formula for R,, is include from Equation (2.30) into Equation
(2.31), the equation get[32]:

ulRyu; = w{¥i_; Peqrqfl + oilju; = 4; 2.32

Equation (2.32) can summarize as:

Yk=1 Pk|qiukH|2 =X — oy, 2.33
lu;q;"|* = |Ui(ejwk)|2 , 2.34

Where:
Ui(e/“F) = Yk gu;(r)e Tire 2.35
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Equation (2.36) may be simplified to:

Sk P|Ui(e79)|" = 2 — o 2.36

A collection of L linear equations with L unknowns:

|G R A GRS | T | R P
v uaeie)]® o Juaeren)*||P2| | = F| 27
v Ju(eren)] - vyt I Lo

The Pisarenko harmonic decomposition computationally requires
determining the least eigenvalue and eigenvector of the signal autocorrelation
matrix This might take a long time to compute for high-order issues, also It

needs to know how many complex exponentials exist in the signal.

ii.  Multiple Signal Classification Method (MUSIC)

In 1979, Schmidt introduced the Multiple Signal Classification technique
(MUSIC), an advancement to the Pisarenko Harmonic Decomposition. Based on
the characteristics of the signal and noise subspaces, it employs the eigenvectors
decomposition and eigenvalues of the covariance matrix of the antenna array to
estimate Angles-of-arrival of sources[45], [46]. Let R, be the M =M
autocorrelation matrix of y(m) with M > L + 1. If R,, eigenvalues are listed in
descending order A, = A, =>--->A; and if the related eigenvectors are
Uy, Uy, ..., Uy, these eigenvectors are split into two groups: the M — L noise
eigenvectors that, in ideal situations, have eigenvalues equal to cﬁ and the L
signal eigenvectors corresponding to the L biggest eigenvalues. It may be
possible to calculate the white noise variance by averaging the M — L lowest

eigenvalues[47], [48]:
1
G% = m = 21¥=L+1 }\k 2.38
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To calculate the complex exponentials' frequency:
Ui(z) = M tuy(kK)z™;i=L+1,..,.M 2.39
The frequency estimation function is used in the MUSIC method to
average down the impacts of these false peaks [32]:

’ISMU (ejw) — 1

M
YizL+1 |qHu;|?

2.40

- 1
Pru(6) = @ a 241

The AoA of wave fronts cannot be obtained directly using the MUSIC
method. It must compute an average over all vectors of an orthonormal basis of
the noise space to determine the precise angles of arrival of the signals. To put it
another way, this function's speed and processing capacity are limited since it is
necessary to compute the pseudo-spectral on the whole parameters space and

look for its minima [28].

iii.  Eigen Vector Method (EV)

For determining the frequencies of complex exponentials in noise, Johnson
[49] presented the Eigen Vector (EV) approach in 1982 in addition to the
Pisarenko and MUSIC methods.

The MUSIC algorithm and the EV have a close relationship. The EV
technique specifically calculates the exponential frequencies from the eigen
spectrum peaks [32]:

1

M 1
Zi=L+17\_i|qH“i|2

2.42

iSEV (elw) ==

The wu;is the eigen-vector related to the eigen-value 2; ,if the
autocorrelation and the White Gaussian Noise are known perfectly for then the

eigen-values in the equation above are like the white noise variance o7 [32]:
Ai = op 2.43

To a precise degree, the MUSIC pseudospectrum and the EV eigen

spectrum will be identical, but with estimated autocorrelations the eigenvector
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method differs from the MUSIC algorithm and appears to produce fewer

spurious peaks.

Iv.  Root-Eigenvector Method (R-EV)

The EV and MUSIC technique have passed through several modifications
to simplify, improve performance, and improve resolution. This is the situation
with the linear and equidistant antenna array[50].

The benefit of R-EV is that it directly calculates the AoA by searching for
polynomial zeros, eliminating the need to look for maxima in the case of
MUSIC and Eigen Vector. This technique is only applicable to networks of
regularly spaced linear antennas. Additionally, it makes use of certain
characteristics of the received signals to shorten computation time and enhance
angular resolution[40].

The input data covariance matrix R,,,, is written as[50]:
Ry, = AR A" + 621y 2.44
Where R, is the signal correlation matrix, %2 IS the noise common

variance, and I,, is the identity matrix of rank M, A is a matrix formed by M
steering vectors of sources, Suppose that the eigenvalues of R, are {A;, ..., Ay}
so that.
|Ryy — A Iy| =0 2.45
Then, the substitution of 2.44 into 2.45 results:
|AR A" + 021y — A Iy | = 0 2.46
Assume that AR, A" has eigenvalues e; then:
e; =02 — \; 2.47
A has full column rank since it consists of an array's linearly independent
steering vectors, and if the incident signals are not significantly correlated, the

signal correlation matrix R,., is nonsingular.
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It can be demonstrated that the matrix AR, A" is positive semidefinite
with rank L when the number of incident signals (L) is smaller than the number
of elements (M) due to a complete column rank A and a nonsingular R,,.

This suggests that e; of AR,,A", or M — L of eigenvalues, are zero.
According to Equation (2.47), M — L of the R,,, eigenvalues are the least and

equal to the noise variance 002.

As1 = Ain = Ay = 07 2.48

However, not every eigenvector corresponding to the noise space will be
precisely the same when the autocorrelation matrix R,, is computed from a
limited data sample set of the received signals. Instead, as the number of
samples used to get an estimate of R,,,, increases, they will appear as a closely
spaced cluster with a decreasing variation in their spread.

Each eigenvector q; is linked to a certain eigenvalue A; as follows:

(Ryy =N Iy)q;=0 i=L+1,L+2,..,M 2.49
Regarding of these eigenvectors linked to the M — L lowest eigenvalues,

can obtain:
(Ryy — 0ZIy)q; = AR AP q; + 671yq; — 021yq; 2.50

= AR, Aq; =0 2.51

Since R,,is nonsingular and A has full rank, this implies that:
Alq; =0 2.52
This indicates that the L steering vectors that comprise A are orthogonal to
the eigenvectors linked to the M — L lowest eigenvalues.
So, the Root-Eigenvector is based on the idea of an orthogonal vector
method that considers there is a vector, orthogonal to a matrix A (i.e.,A¥q; =
0), 9 = 90,91, ---, -1 Which means that q is located in the noise subspace

given that the structure of the columns of A for the uniform linear array is
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known and that the dot product of g with any of the i columns of A is zero, the
dot product expansion that follows may be expressed as:

qa(B;) = qo+ qre P+ qe™Fi 4 o 4 qy_e /M VB =0 253

The polynomial of u(z) is defined as:

q(2) =qo+q1z+ qz* + -+ qu_12""1 =0 2.54

This analysis indicates that the covariance matrix R,, eigenvectors
correspond to two orthogonal subspaces: the non-principal eigen subspace
(noise subspace) and the principal eigen subspace (signal subspace).

The steering vectors corresponding to the AoA are in the signal subspace
and orthogonal to the noise subspace.

The AoAs may be found by looking through all potential array steering
vectors to identify those that are perpendicular to the space that the non-
principal eigenvectors span.

The noise eigenvectors must be arranged in a matrix to create the noise
subspace Q, = [qLJr1 ....... ) qM] ,the projection of the steering vector on the noise

subspace for a linear antenna array with uniform spacing may be described by
taking the inverse of «” (B) @, @ a(B) = 0,[32]:

f’\Ev(ﬁ) = -

— 2.55
3@ (B)Q Q," oi(B)}

The Root-Eigenvector algorithm's basic idea is to create a polynomial of

degree 2(M — 1) and retrieve its roots[51].

The Root-Eigenvector technique calculates all the roots, and it then uses
the largest-magnitude roots inside the unit circle to estimate the signal AoAs
[52].

As mentioned previously, Q, is the noise eigen vector.
_ H
r,=Q,Q, 2.56

-1 1 H H
Priev(B) = N {a; (B)Q, Q" a;()} 2.57
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H
Piley (B) =5~ (o (BT, au(B)) 2.58
Using the representation of analytical expression for the steering vector
ar(B) = e JBK=Dd of the k" clements of the linear network (k=1,2 ..., M),

equation 2.58 can rewrite to be:

- 1 o .
Prlev(B) = Zﬂ“zlk—sz“lee jB(k=1)ar,  giB(h-1)d 559

e is the element of the k" line and the A" column of T. By merging the

two sums in 2.59, the following representation are obtain:

_ _ 1 _;
PR—lEV(B) = lgl=—1M+1Z {I'ce ]Cﬂd} 2.60

And I, = Xy _n=c Ik ;Equation 2.94 can be written into R-EV polynomial
which is a function of z represents by:
R(z)=XM"1,1 Dcz® 2.61
and

z = e Jdb 2.62
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2.3 Angle of Arrival (AoA)Estimation

The main goal of Angle-of-arrival estimation, also known as Angle finding,
Is to determine the angle at which electromagnetic (radio or acoustic) or auditory
signals will impinge on a sensor or antenna array [53], [54]

In both military and civilian applications, such as search and rescue,
seismology, and other fields, it is necessary to locate and monitor signal sources,

this necessitates the use of AoA estimation.

Regarding AOA estimates, several theories and methods have been
established for array signal processing that will be discussed until explain the

main method in this thesis, known as the Root-Eigenvector method.

2.3.1 Data model for AoA

Most modern techniques for signal processing are model- based, meaning
they make assumptions about the data that is seen in the actual world [34].

The following assumptions are:

e Far-field assumption

The far-field approximation assumes that the L signal sources are spaced
apart from the array. So that, the signals formed by each source propagate to
each element in an equal direction. Thus, the propagating fields of the L signals

arriving at the array are parallel to each other.

This assumption can, in general, be realized by making the distance

between the signal sources and the array much larger than the dimension of the

2
antenna array. As a rule of thumb, the distance should be more than d > %

where D is the array's size and vy is the wavelength of the signals.
e AWGN channel
A complex Additive White Gaussian Noise (AWGN) has been suggested to

be the source of the noise in the AWGN channel. Additive, because it is
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combined with any possible inherent information system noise, a zero means
that a spatially uncorrelated random process that is uncorrelated with the signals
Is used to generate the additive noise. White refers to the notion that the
information system's power spectral density is constant over the whole
frequency range [55].

The noises are uncorrelated between all elements and have a common

variance o7 Throughout the whole array.
e Transmission Medium

The signals are produced by L sources, pass through a medium, and then
meet an M-element antenna or sensor array. It is assumed that the transmission
medium between the sources and the array is linear and isotropic, meaning that
the medium's physical characteristics are the same in all directions; signals or
waves at any given place may be superimposed linearly; the position of the
target in relation to the antenna system and the direction of signal transmission
have no effect on the medium's characteristics[29].

A signal traveling through the medium and then impinging on or being
received by any element of the M-element array can be computed as a linear
superposition of signals wavefronts produced by the L source element because

the medium'’s isotropic and linear characteristics, which guarantees two things,

First, the propagation property of the waves does not change with the
DOAs of signals, and second, the DOAs of the signals do not affect the wave
propagation properties of the waves. Additionally, it is assumed that each

receiver elements piece has a gain of one.
e Narrowband Approximation
The signals come from various sources, but since they share a carrier
frequency f;, their frequency contents are concentrated close to that frequency.
Any one of the instantaneous signals with respect to r that refer to narrowband
coming from the sources can be described mathematically as[40]:

xj (t) = a;(t)cos[2nf.t +F;(t)], 1<i<L 2.63
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The signals are narrowband as long as their amplitudes a; (t), and
information-bearing phases B; (t) vary slowly with respect to =, where is the
propagation time of the wave signals between elements[40]. Otherwise:

a;(t — 1) = q;(t) and B;(t — 1) = B;(t), 2.64

The Fourier transform in equation 2.63 has most of its frequency
components close to the carrier frequency fc ensured by the slow varying of
a;(t) and phases B;(t). A phrase that works well can get a mathematical

analysis by defining the complicated signal's or phasor's envelope[40]:
xEW(t) = a;(t)elhi® 2.65
Such that
x! (t) = Real{xf™" (t)e/*™ct}, 2.66
Most receivers, which divide the received signals into in-phase (the real

portion) and quadrature (the imaginary part) components, enable this type of

complex (or analytical) signal.

Figure 2.2 represents the configuration of the system and explains the four
assumptions, d acts the distance between the source and the first (antenna)

element.
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Figure 2.2 Data model for AoA with some assumption [56]

2.3.2 Linear Antenna Array

A collection of antennas located in a certain arrangement used for sending
or receiving the same signals is known as an antenna array. When the distance
between elements is equal, it is also known as a Uniform Linear Antenna array
(ULA). A common term for each antenna in an array is an element transducer or
sensor [57], [58].

Each transducer changes the received electromagnetic wave or mechanical
vibration into a voltage. The signals that all the array members in ULA have

received will be processed for several purposes, including the AoA estimates.

The reason for using this type of antenna is to offer several advantageous
characteristics, such as the ability to apply fast subspace algorithms, like Root-
Eigenvector (R-EV), to improve computing efficiency. Typically, increasing the
array aperture is preferred to increase resolution. When the ULA's inter-element

spacing is fixed, this can be accomplished by adding more sensors.
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The uniform linear array geometry consists of M elements numbered O, 1,
..., M-1. The numbers and spacing of a ULA's components have a significant
impact on the array performance. More electromagnetic fields can be collected
by a big array than by a small array. So, the array performance of a ULA is
strongly influenced by the numbers of sensors and spacing of its elements [59].

The Nyquist sampling theorem states that two samples are needed for each
period of the signal's highest-frequency Fourier component. In this instance,
every wavelength requires two spatial samples, resulting in an element spacing
of d=0.5Y.

For numbering items, the right antenna is known as element-1 and
represents the reference item; the second and third antennas are known as
element-2 and element-3, respectively, from right to left until reach the last

antenna, element-M.

The distance between any two antennas is represented by d, and the waves
received by the array at the angle are represented by 6.

The receiving path from the source to the second and third element is

longer than the path of the source to the first element (reference) and equal to:

Cp =(m—1)d.sin6 ,m=1,2,3 2. 67
c, = d.sinf 2. 68
c3 = 2d.sin6 2. 69
In this case, let's suppose that the reference element received a wave signal:
y1=x(t) 2.70
The signals obtained by antenna 2 and 3 may therefore be expressed as
follows:
i - 'ﬂsine
y, = xe 192 = xe v 2. 71
Yo = xeI9% = xe I3y o0 2.72

Here ¢ = 27“ Is the phase shift constant for propagating waves in air with

the wavelength of propagating v .
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Figure 2.3 three antennas array configuration

The signals received by the three components may be expressed in a more

generic form as:

V1
y=[3’2

V3

1

- jZsing t
=le v x=|e H|x= alwx 2.73
e_jzﬂ

—jzmsine
e 14

2nd . : . : :
Let u= %sm@ and asmentioned previously a(u) is the steering vector.

An M-element array can be included in equation 2.73 it may be written as

follows:
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—]—sme e—lill
xX= x = a(wx 2. 74
ym

—](M 1)—sm9J e_j(M_l)l'l
and the steering vector for M-elements:

a(u) =[1e ... e‘j(M‘l)“]T 2. 75

2.3.3 Signal Model of AcA

A signal model suppose a radar system with an array of M sensors
y1,¥2, -, ¥YMm (@ntenna components) that receives signals in all directions from L
sources Xxq,X,, ..., Xy, (targets),M > L The signals detected can be represented
as[40] :

y(O=A@)x(D)+ 1 (1) 2.76
where y(t) is the Mx1 received elements data vector[38]:

y®) =y, vz o yml’ 2.77
X(t) is the Lx1 source signal vector[38]:

X(O=1[ x4, x5, oo, x,]T 2.78

noise vector n (t) is an Mx1 uncorrelated zero-mean white noises with

spatial a covariance matrix that equals to

I) (t): [I]li )2, ""I]M]T 2.79
A (u) is an M*L matrix that of steering vectors:
A (”l) = [a(uul)) a(#Z)l ey a(.uL)]! 1 SLS L 2.80

a(u;) is the geometric phase shift defined at the element of the network
and signal depending on the angles of arrival (9;).
So,

—jamdsin(8;) —jemdM-1)sin(6;)]T

a(u;)) =11,e Y - Y , 2.81
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Where d is the Array Element Spacing, y is the wavelength of propagating

signals, 6; is the angle of arrival of the target signal from the Lt" source.

2.3.4 AoA Problem Formulation

To simplify the problem, suppose the system have a plane wave result from
source L falls on array at an angle 6, as shown in fig.2.3. The received signals
are propagated on all the elements (antennas) of the array and archive an extra
distance comparing with the reference element [38].

To find the distance, the following equation can be used:

Cpj = (m — 1)dsin®; , 1 <;< L 2. 82
Notice that the signal received by the M elements is the same as the

transmitted signal by L elements, but there is a phase shift with amount of

e_j(m_l)ui .
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Figure 2. 4 M- antennas array configuration
These factors affected by two functions:
1. spatial frequency y; thatis limitedby - m < py; < m
2.element’s position with respect to the first element.
For each incoming signal there is an angle 6; that limited by -90< 6; < 90
and this angle have a special frequency y; .

Also, the element spacing should be less than % if this condition does not

achieve, solutions put for the angle that is determined special frequency u;
The received M signal and their noises nyare deliver from L source x;,
1 <;< L can be represent as:
Y, =Sk xedmDui 4y m=1,2,.. M 2.83
The symbol Y used to distinguish between the pure signals created by the

sources and the noise-added or corrupted signals received or identified. The

matrix representation of Equation (2. 83) is as follows[38]:
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X

Y = [a(u), a(u,), alus), .., a(u,)] xz +py =Ax+y 2.84

XL
Where Y= [y, 5, ..., ym]" i the data vector received by the arrays, the
array steering vector that is dependent on spatial frequency y; is define as:
a(uy) = [1e M eT2Hi e‘j(M‘l)“L]T, 2.85

They contain the steering matrix M*L.:

A=[ a(py), .. ,alu)], 2.86
1 1. 1
_ el elhz e/l | 5 87
e M-Dpy oI M-Dpz  @i(M-Dpy

Figure 2.5 represents angle of arrival flow chart that act the procedure for
the process followed in this work starting from receiving the signals by uniform
linear array until getting the required estimated angle by using Root eigen

vector.
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Figure 2.5 The flow chart for AoA
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2.3.5 Root-Eigenvector Method for AoA Estimation

In this section of the thesis, the method of root eigenvector to find the angle
of arrival estimation is employed.

For i =0,1,..,r —1, the polynomial u(z) evaluated at e™/“i is zero,
according to equations (2.53) and (2.54). The roots of q(z) may be used to drive
0; since the angles, w;, of these roots are functions of the AoAs (given that
w; = 2mdsin(6;)).

The orthogonal vector methods are summarized as:

1. The first thing to do is to compute any vector that is in the noise

subspace.

2. The components of that vector then become the coefficients of a

polynomial that is created.

3. The AoAs are calculated using the roots of the polynomial that lie on

the unit circle.

Using the representation of analytical expression for the steering vector

a,(B) = e 1FU=Dd where g = 2™1°  qbstituting S into the equationa (8)
—j2m(k—1)dsin6;
results a;,(0;) = e Y of the k' elements of the linear network (k =

1,2,...,M), y is the wavelength for the signals received by ULA and d is the
spacing of elements.

Equation 2.58 can rewrite to be:

M 1 M —j2m(k—1)dsin® j2m(h—1)dsin®
Pr-gv(0) = Zk:1 A—kthl e Y [xne Y 2.88

Wi is the element of the k" line and the h*" column of I'. By mix the two

sums in Equation 2.88, we obtain the following representation:

—j2mtNdsin®

(Tye. ¥} 2.89

1

Pr_gv(0) = XN=2mat ™
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and Ty = Yx_nh=~nTxn ,EqQuation 2.89 can be written into Root-EV
polynomial which is a function of z represent by:
R@=IN= w15 (T2} 2.90

—j2mdsin®

andz=e v

Angle-of-arrival of received signals being functions of z, calculating the
polynomial's (M-1) double roots, whose usable zeros are so on the unit circle, is
the issue. These intricate roots' phases line up with the anticipated variations in
electric phase. The following equation may then be used to calculate the angles

of arrival of signals:
O, = —sin™?! [Zl—d arg(zk)] 2.91

where is the m closest roots to the unit circle.

41



CHAPTER THREE

Simulation Results without Noise

3.1 Overview

In this chapter, the simulation results for Angle of Arrival (AoA) estimation
methods using MATLAB program are presented, which focus on non-parametric
method (FFT) and parametric methods Root_Eigenvector (R-EV) and Eigen
Vector (EV).

Various cases are studied using single source and double sources without
noise with a different number of antennas that form the uniform linear arrays.
For every case the results, discussion, and a comparison will be presented.

Also, a comparison between Root_Eigenvector (R-EV) and the classical
method Fourier Transform (FFT) in terms of resolution, accuracy, and

complexity. Also, EV is used to implement the spectrum of the signals.

3.2 Simulation Results for Single Source AoA Estimation without Noise

As a start, the simulation is presented for a single source without noise
using the two methods of FFT and R-EV, the following variables' values are
used in MATLAB program: the spatial sampling interval d is equal to 0.8 cm,
the wavelength is equal to 2, the numbers of elements are variable, and the

values of angles are variable in different cases.
Firstly, when (FFT) method is used, the angle theta (8) is set to 20° as
shown in Fig. 3.1 and another angle theta (8) is set to 50° in Fig. 3.2.

The angles in these figures are clear but there is a group of sidelobes that
affect the accuracy of the required angles. In Fig. 3.1-the number of elements M
Is limited to 8 in the ULA receiving system, and in Fig. 3.1-b M is equal to 16,
the beam is wide because of the uncertainty in estimating AoA. The uncertainty
causes problem in estimating AoA for the application that requires precise

angles values like military. As the number of elements increases the width of the
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required peak becomes less but at the expense of complexity and the same

illustration applies to the case in Fig. 3.2.
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Figure 3. 1 Single-source simulation using FFT using a © =20° without
noise at (a) M =8 and (b) M = 16.
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Figure 3.2 Single-source simulation using FFT using © =50° without noise at
(a) M =8and (b) M = 16.

After that, the efficiency of FFT method using a negative angle (-20) in
Fig. 3.3 -a and Fig. 3.3 -b is examined. Moreover, it is possible to find the angles
values, but with the presence of a group of small peaks in addition to the

required peak that may cause some confusion in the resulted information of the

signal.
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Figure 3.3 Single-source simulation using FFT using 6 =-20° without noise
at (a) M =8 and (b) M = 16.

Then, the high-resolution method Root-Eigenvector (R-EV) is used, the
required angle is equal to 20° and maintained an accurate value for the estimated
angle that equal to 20°, that is mean it achieved error percentage equal to zero
with several elements of less than 10.

In Figure 3.4, using Eigen Vector (EV) method the spectrum is plotted, A
comparison between the two forms in Figs. 3.4-a and 3.4-b are presented; there
IS no noticeable difference, and a number of antennas of less than 9 is enough to

get the true value. Also, there are no sidelobes beside the highest peak, and there
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IS no need to increase the number of elements more than ten, because 8 elements

give an acceptable result.
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Figure 3.4 Single-source simulation using EV using © =20° without noise at
(a) M=8 (b) M=16

The performance of Root Eigenvector method (R-EV) is examined but on
the negative angle by specified the angle to -20° and also we maintained an
accurate value for the estimated angle that equal to -20°, with error equal to zero
%.
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Therefore, the eigenvector (EV) spectral estimation method is implemented
for the negative angles in Figs. 3.5-a and 3.5-b are obtained, and the negative
angle value -20 directly and with a small number of antennas that is equal to 8

elements.
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Figure 3.5 Single-source simulation using EV using 6 =-20° without noise at
(a) M=8 (b) M=16
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Figure 3.6 shows the implementing performance of the FFT and R-EV
methods to estimate an accurate value for the required angles. It represents a
relation between a number of elements (receiving antenna) that are changeable
and the percentage error.

By changing the number of antennas of ULA (M) from 8 to 26 and
computing the percentage error, when using FFT method, the value of error is
constant for all value of M being 6.3% at angle is equal to 15°. This value is
considered large by considering the absence of noise too Furthermore, the same
relation between error and number of elements is applied for Root-Eigenvector
R-EV in the same figure , the error are compute and as its clear the percentage
error is zero for all values of M, that is prove R-EV method estimate the exact
angle for all the impacting singles to ULA without any difference with the real

value.

== = |Jsing rooteig
==mun Using fit

%] E=2 o

error percentage

A
T

0 o | S | f — I  — I r—

8 10 12 14 16 18 20 22 24 26
no.of samples(N)

Figure 3.6 Relation between error and number of elements using FFT and
R-EV using 6 =15 for single source without noise
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3.3 Simulation Results for Double Sources AoA Estimation without Noise

Previously, a study for the receiving signals using a single source was
studied for the two methods R-EV and FFT. In this section, the same steps were
repeated but using multiple sources.

First, the two angles and the difference between them are set to 10°, these
values are applied to the FFT method. As shown in Fig 3.7-a when the number
of elements is 8 it looks like there is only one source contrary to the fact that
there are two sources and two angles (the signals overlap with each other).

Again, in Figures. 3.7-b, as the number of elements increased to 16, the
two angles appeared. This is represented by the two maximum peaks in the
figure. Although the two angles appeared. This required many elements, and
there is a group of side lobs on the side of the two real angles that made some
uncertainty in the results achieved. The percentage error equal to 8.7% and 5.6%

respectively for the two used angles.
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Figure 3.7 Double- sources simulation using FFT at ©6:=20 ° and 6,=30 °
without noise (a) M=8 (b) M=16

The same case is implemented but using negative angles. When the number
of elements was small (8 element), it is not able to distinguish between the two
angles, as it is clear in Fig. 3.8-a.

In Fig. 3.8-b the numbers of elements are increased to 16 elements, the

angles values reached -17.1° and -30.6° for -20°and -30° respectively. The
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percentage error is equal to 15 % for thetal (thl) equal to -20° and minor error

rate for the second angle when (theta2) th2 equals to -30°.
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Figure 3.8 Double- sources simulation using FFT at 61 =-25 ° and 62=-35
without noise (a) M=8 (b) M=16

Figure 3.9 the difference between the two angles is increased to 15° one of
them 20° and the other is 35°.When M is equal to 8, FFT distinguishes the two
angles, however, the signals are almost overlapping, there is a need to either

increase the number of elements or increase the difference between the two

angles to recognize between them.
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Figure 3.9-b when M is equal to 16 and the difference between the two
angles is equal to 15° it can distinguish between the two angles easily but the
sidelobe problem still appears. Also, the percentage error for the two angles (20°
and 35°) that is equal to 2.9 % and 3.33% respectively. In figure 3.9-b when M
Is equal to 16 and the difference between the two-angles equal to 15° it can
distinguish between the two angles easily but the sidelobe problem still happens
also the percentage error for the two angles (20° and 35°) that equal to 2.9 %

and 3.33% respectively.
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Figure 3.9 Double- sources simulation using FFT at 61 =20 ° and 62=35
without noise (a) M=8 (b) M=16

After FFT failed to distinguish the angles that the difference between them
is five degrees, the same values are repeated, but using the high-resolution
method of R-EV. This method achieved super results. Although the two angles
are convergent, the difference between them is equal to 5° (6,:=25 ° and 6,=30),

and the numbers of elements do not exceed 10, it detects the two angles that run
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into uniform linear array and estimate exact values of angles equal to 6, =25 °
and 6,=30.
In figure 3. 10 using Eigen vector method by implement the spectrum at

number of elements M equal 8, there are no side lobes, there are no need to

increase number of elements.
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Figure 3.10 Double- sources simulation using EV 61 =25 ° and 62=30
without noise (a) M=8 (b) M=16

A comparison between the two figures 3.10 and 3.11 is presented, we

observe that whether the difference between the angle is 5° or 10° this method
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could distinguish between signals but in the next case when the difference

between angles equal 10° the waveform has a better performance.
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Figure 3.11 Double- sources simulation using EV 61 =25° and 62=35°
without noise (a) M=8 (b) M=16

In contrast to the FTT, the EV succeeded in distinguishing the negative

angle with an error rate of zero, as see in Fig. 3.12.
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The figures 3.13-a and 3.13-b represent a relation between the number of

elements and the percentage of error for FFT and R-EV methods when the

sources are double. The number of antennas (M) varies from 8 to 26 and the

percentage error is computed also the two angles are set to 20° and 35°.

For FFT method , the error has different values and reaches a maximum

15% when M is equal to 9 elements while the percentage error is zero for all

values of M. This means that the R-EV method estimates the exact angle for all
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the impacting singles to ULA without any deviation from the real value as
shown in the comparison table 3.1.

Table 3.1 comparison between the percentage error for FFT and R-EV without noise for
different number of elements.

FFT method R-EV method
01 Number of error (=) Number of error
elements elements

20° 8 8.5806% | 35° 8 0%
20° 9 14.4768% | 35° 9 0%
20° 10 11.5335% | 35° 10 0%
20° 11 8.5806% | 35° 11 0%
20° 12 5.6175% | 35° 12 0%
20° 13 2.6439% | 35° 13 0%
20° 14 0.3406% | 35° 14 0%
20° 15 3.3366% | 35° 15 0%
20° 16 3.3366% | 35° 16 0%
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Figure 3.13 Relation between error and number of elements using FFT for
double sources without noise (a) 61=20 (b) 62=35
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CHAPTER FOUR
Simulation Results with Noise

4.1 Overview

In this part the noise is generated using MATLAB software for AoA
Estimation. The MATLAB function AWGN additive white Gaussian) noise to a
data array of inputs up to the appropriate final signal to noise ratio (S/N) power
level, which by default is set in dB. The method used by the function AWGN to

produce an array that represents the noise at a specified noise power level.

4.2 Simulation Results for Single Source AoA Estimation with Noise

Root eigenvector (R-EV) and FFT methods will be used to represent AcA
initially under the assumption that there is a single source with noise, by setting
the values of the variables for the spatial sampling interval to 0.8 cm, the
number of elements M is variable, the angles have different values and as a start,
the value of the signal to noise ratio (S/N) is set to 10 dB.

First, the noise is added to the signal, the angles are determined, and the
resulting wave is observed. Therefore, by adjusted the angle (thl) in Figs. 4.1
and 4.2 to 20° and -20° respectively. The number of elements used in the
uniform linear array receiving system is set between 8 and 16 in the two figures.
As expected, adding noise causes an increase in the inaccuracy of AoA
estimating.

For example, in the case of the number of elements equal to 8, the obtained
value of the angle is equal to 21.66°. By calculating the error rate, it equaled
8.33%, and this is not a small percentage, considering this case is the simplest
case, which is having only one source. Furthermore, when the number of
elements increase to 16, we noticed that the value of the resulting angle did not
change, and we obtained the same error value, also the width of the desired peak

Is less but the error is still high.
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Figure 4.1 Single source simulation using FFT using © =20° with noise at
(a) M=8 (b)M=16
Likewise in the case of the negative angle, thl equal to -20 as shown in Fig

4.2 the angle, it should be noted the resulted angle is equaled to -18, and the

error percentage equaled to 11% and, as we increase the number of antennas to
M equal to 16 the beam width is decrees.
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Figure 4.2 Single source simulation using FFT using a negative angle of -20°
with noise at (a) M=8 (b) M=16

On the other hand, to demonstrate the Root Eigenvector (R-EV) method,
the noise is added and by setting the angle to 20 ° we get a value of 19.93°, so
the error percentage is equal to 0.35 %. After increasing the value of M to 16 the
resulting value is equal to 19.98° and the error rate decreased to 0.1%.

The spectrum is implemented using Eigen Vector (EV) as shown in Fig. 4.3
(a&Db).
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Figure 4.3 Single source simulation using EV using 6=20° with noise at
(a) M=8 (b) M=16

Likewise, for the negative angle, the modern method R-EV also succeeded to
distinguishing the angle with the lowest error rates, reaching a limit to 0.3%
which is considered a very small percentage, compared to the previous
percentages at the same angle when FFT was used.

The spectrum is implemented using Eigen Vector (EV) as shown in Fig. 4.4
(a&Db).
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Figure 4.4 Single source simulation using EV using 6= -20° with noise at
(a) M=8 (b) M=16

4.3 Simulation Results for Double Sources AoA Estimation with Noise

An equally significant aspect is applied to both methods for double sources
with additional noise and in the same conditions.

When the number of elements M is equal to eight, the FFT fails to
distinguish between the two signals, and it’s assumed that there is only one
source, as shown in Fig. 4.5-a.

After increasing the number of elements, as it is clear in Fig 4.5-b, the

appearance of two peaks one of them 23° representing the angle 25° and the
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other is 38.1° representing the angle 35°, and the errors for them are 8.1365%
and 8.7% respectively.
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Figure 4.5 Double- sources simulation using FFT at 61 =25° and 62=35°
with noise (a) M=8 (b) M=16

In the last case of dual-source FFT, using negative angles, we can see in Fig. 4.6

the detection of the negative angle is like the positive angle in terms of the
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inability to detect when the number of elements is small, but when the number
of elements increases, it is able to distinguish between the two signals and the

percentage error equal to 9% and 6% when M equal to 16.
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Figure 4.6 Double sources simulation using FFT at ©1 =-25° and
©2=-35° with noise (a) M=8 (b) M=16
Moreover, after the dual sources with noise using FFT according to
different values of M are studied, all the previous steps of FFT are applied to the
Root eigenvector methods.

The R-EV method has a high ability to distinguish between two angles 20°
and 30° even when the angle is less than 9. Therefore, the angles values are
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simulated and found their values are closed to the true values (20° and 30°), and
when calculating the error percentage, we get 1.6% and 0.5% for the two angles
nonetheless M equal to 8, the same step for M is equal to 16 are maintained,
errors reached to 1.1% and 0.02% for the same angle also the sidelobes

insignificant values close to zero.
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Figure 4.7 Double sources simulation using EV at ©1=20 ° and 62=30° with
noise(a) M=8 (b) M=16
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The second case for R-EV is using negative angles for the two angles
therefore this method succeeded in distinguishing between the two negative
angles at M is equal to 8, and we also calculated the error rate for both angles.

The resulted angles values are equal to -20.0418°, -30.3413° for the two
angles and the error is equal to 1.12% and 0.2% for M is equal to 16 and less
than 3% for M is equal to 8.

As shown in Fig. 4.8 (a & b), the spectrum is implemented using the Eigen
Vector method (EV), and the two angles are represented by the two peaks as it is

clear in the figure.
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Figure 4.8 Double sources simulation using EV at ©61=-20 ° and 62=-30°
with noise (a) M=8 (b) M=16

68



12 -

10 =

magnitude

(D .\ |

0] 10 20 30 40 50 60 70 80
Angle (degree)

(@)

15 | -

10 -

magnitude

LN U

10 20 30 40 50 60 70 80 90
Angle (degree)

(b)

Figure 4.9 Double sources simulation using EV at ©61=20° and 62=43° with
noise (a) M=8 (b) M=16

After we studied the response for a range of angles using the two methods
(R-EV and FFT), we studied the relation between the error rate of angles by

changing the number of elements from 8 to 26.

In simulation of figure 4.10, the angles are set to 25° and 35° the

difference between angles fixed to 10°, the distance between element d is equal
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to 0.8 cm and SNR equal to 10 dB, also the number of antennas was variable
between 8 to 26 and the behavior of the methods are observed.

In figure 4.10-a when thetal (©1) is equal to 25°, the error rate of R-EV
does not exceed 1% except at no. of samples M equal to 10 achieved 2% which
Is also considered a small percentage that means we obtained accurate angle
values with high accuracy and a negligible error rate.

On the contrary, when the same mentioned values are set but for FFT
method, we observed error values ranging between 8% to 2%.

An important point must be pointed out if we look closely at the FFT
curve, it starts from M is equal to 10, that means when the number of antennas
M equal to 8 FFT could not differentiate between the angles.

The same applies to figure 4.10-b. The error values for R-EV are less than
one, except for M is equal to 10 the error value is 3%. As for the FFT, the error

rates range between 12% to 3%.
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Figure 4.10 Relation between error and number of elements for double sources
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Table 4.1 comparison between the percentage error for FFT and R-EV for different number of
elements with noise.

(a)©1=25°
FFT method R-EV method
Theta 1 Number of error Theta 2 Number of error
elements elements
25° 8 un-define | 25° 8 0.6446%
25° 10 5.1967 25° 10 2.0000%
25° 12 7.6449 25° 12 1.1199%
25° 14 5.1967 25° 14 0.0788%
25° 16 2.7370 25° 16 0.5051%
25° 18 0.2654 25° 18 0.1220%
25° 20 2.2188 25° 20 0.6802%
plss 22 2.2188 25° 22 0.0483%
25° 24 2.2188 25° 24 0.1657
(b)©2=35°
FFT method R-EV method
Theta 1 Number of error Theta 2 Number of error
elements elements
35° 8 un-define | 35° 8 0.1319%
35° 10 8.9843% 35° 10 3.3615%
35° 12 11.0352% | 35° 12 0.1399%
35° 14 8.9843% | 35° 14 0.9613%
35° 16 6.9535% 35° 16 0.0222%
35° 18 4.9417% 35° 18 0.3892%
35° 20 2.9482% SN 20 0.0006%
35° 22 2.9482% 35° 22 0.1936%
35° 24 2.9482% | 35° 24 0.1216%
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We repeated the same operations, but for the negative angles -35° and -45°,
at Fig. 4.11 a and b, FFT could not distinguish between the two angles except
when the number of elements reached to 14 with error range between 11% to
3%, while using R-EV the curve starting with M is equal to 8 and low error less
than 2%.

In figure 4.11 ,the curve of R-EV it is still limited to a small value of error
not exceed 2% from M values between 8 to 26 , notes in the case of FFT there
Is an ups and down of the curve and there is no stable state , for example the
errors when the number of elements equal to 14 is equal to the error when the

numbers of elements equal to 26 and reached around 4%.
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Figure 4.11 Relation between error and number of elements using FFT for

double sources with noise (a)©61=-35° (b) ©62=-45°
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Table 4.2 comparison between the percentage error for FFT and R-EV for different
number of elements with noise.

(a) ®1=-35
FFT method R-EV method
Theta 1 Number of error Theta 2 Number of error
elements elements
-35° 8 un-define | -35° 8 1.5957%
-35° 10 un-define | -35° 10 0.8513%
-35° 12 un-define | -35° 12 0.0523%
-35° 14 10.5544 -35° 14 0.0372%
-35° 16 10.5544 -35° 16 0.1219%
-35° 18 8.6694 -35° 18 0.0808%
-35° 20 6.7707 -35° 20 0.0609%
-35° 22 4.8578 -35° 22 0.0977%
-35° 24 4.8578 -35° 24 0.0024%
(b) ©2=-45
FFT method R-EV method
Theta 1 Number of error Theta 2 Number of error
elements elements
-45° 8 un-define | -45° 8 1.3723%
-45° 10 un-define | -45° 10 0.1556%
-45° 12 un-define | -45° 12 0.0207%
-45° 14 3.3548% | -45° 14 0.0395%
-45° 16 3.3548% | -45° 16 0.0069%
-45° 18 3.8000% | -a5° 18 0.0565%
-45° 20 3.0000% | -45° 20 0.0848%
-45° 22 2.5000% | -45° 22 0.0476%
45° 24 1.9706% | -a5° 24 0.0347%
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The last case for the relation between the error rate of angles and the
variable number of elements (M) is using two angles, one of them is positive
(20°), and the other is negative (-20°).

The error curve for FFT starting from M is equal to 8, by comparing this
result with the previous case in Figures 4.10 and 4.11, we notice in Fig 4.10 (two
positive angles) that FFT distinguishes between the two angles when M is equal
to 10, also in Fig. 4.11 (two negative angles) until M is equal to 14 FFT
distinguish between the two angles, so we consider this result in Fig. 4.12 is
better than others.

In Figures 4.12-a R-EV reached less than 1% when the angle was equal to -
20° and 2% when the angle was equal to 20°, also in Fig. 4.12-b R-EV reached

3% when the angle was equal to-20°.
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Figure 4.12 Relation between error and number of elements for double sources
with noise (a)th1=-20° (b) th2=20°
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4.4 Simulation for The Relation Between Error Rate and The Difference

Between Angles with Noise.

This relation is based on fixing some elements and making others variable
for double sources. In each case, we fixed the SNR to 10 dB, the number of
elements M changed in different values, and fixed the first angle to 20° but set
the second angle variable so that the difference between the two angles 5°, 10°,
15°....,30°.

Start analysis with a number of elements equal to 8 in Fig. 4.13, firstly, the
R-EV was able to distinguish between the two angles despite the difference
between the two angles being the smallest value, which is 5° and M is equal to 8
the resalted error rate reached 5%, we can consider it an acceptable percentage if
we notice the small difference between the angles (5°), After that, as the
difference between the two angles increases, we notice the error rate disappears,
reaching a value close to 1%. As for FFT, if we observe the curve in the same
figure, we will find that when the difference between the two angles began to
increase to the point of 15°, this method was able to differentiate between the

two angles with an error reached to 14%.

1§-Source With Noise 10 db at th1=20,th2=25 to 50 , M=8 and d=0.8

—f—— using Eign
—&—— using fft

error percentage
o
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[6)]
xd

- - e
5 10 15 20 25 30
diffrence between angles

[0}

Figure 4.13 Relation between the error and the difference between angles at

M=8
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In the same manner and with the same variables, except that we increased
the number of elements to 12 and observed the behavior of both methods. In the
case of the difference between the two angles was 5°, the error rate was equal to
4%, and compared to the previous case when M was 8, the error rate began to
decrease gradually, so, the greater the difference between the angles, the lower
the error rate.

The FFT shows a significant improvement, when the difference is equal to

10°, it begins to distinguish between the two angles with an error rate of 13 %.

1§-Source With Noise 10db at th1=20,th2=25 to 50 and M=12 ,d=0.8
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Figure 4.14 Relation between the error and the difference between angles at

M=12

Afterward, the number of elements are increased to 14, In R-EV there is a
significant change compared to M is equal to 12, and the error rate is less than
2% at a difference equal to 5°, However, for FFT, it still couldn’t differentiate
between the two angles at a difference 5° but differentiate at a difference 10°

with error rate higher than 10% as shown in Fig 4.15..
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1%-Source With Noise 10db at th1=20,th2=25 to 50 and M=14 ,d=0.8
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Figure 4.15 Relation between the error and the difference between angles at

M=14

Finally, we increased the number of elements to 16, the error reached
around 1% and less for Root  Eigenvector method, also FFT couldn’t
recognized when difference equal 5° and the error at difference 10 starting with
9% as shown in Fig. 4.16.

This relation prove that it is possible to increase accuracy and reduce the
error rate by increasing the number of antennas, but at the expense of cost and
complexity, also it is possible to use a little number of antennas but instead of
increasing the difference between angles at the expense of less ability to detect

the angles of the close signals.
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Figure 4. 16 Relation between the error and the difference between angles at

M=16

4.5 The effect of Inter-Elements Distance Between Elements on AoA

This section indicates the effect of changing the distance between elements
d and the influence of increasing and decreasing this value on the relation
between the error rate and the number of elements.

The study is conducted at a fixed angle difference equal to 10° and the
number of elements M ranging between 8 to 24, in all previous cases, we fixed
the value of d to 0.8 cm, in this case, the value of d changed between 0.8 cm and
0.6 cm. Figure 4.17 -a simulation for the relation between error rate and
difference between angles at d is equal to 0.8 cm, If we start analyzing this
curve, a low level of error is achieved when the number of elements (M) equals
8, and it continues to decrease until M is equal to 16. There is a slight increase

when the number of elements equals 20, but the error rate is still less than 0.5%.
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Figure 4. 17 Relation between the error and number of elements at a difference

between angles equal to10 and d=0.8 cm

Also, the results are represented in a table 4.3 as shown:

Table 4.3 The results for the Relation between error and number of elements at
a difference between angles equal to10 and d=0.8 cm.

12

16

20

22
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0.41%

0.13%

0.2%

0.09 %



The second case represented in Figure 4.18, in which d is equal to 0.6 cm if
we start comparing this extent with the previous result (d equal to 0.8 cm), we
notice the error rate starts from 3.5% when the number of elements are equal to
8, and then it begins to decrease gradually, and this is the effect of reducing the

distance between the elements to this extent.

error percentage
N
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()}

0.5

0 1 1 1 1 1
8 10 12 14 16 18 20 22 24

Number of elements (M)

Figure 4. 18 Relation between the error and number of elements at a difference

between angles equal to10 and d=0.6cm.
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Also, the results are represented in a table 4.4 as shown:
Table 4.4 The results for the Relation between error and number of elements at

a difference between angles equal to10 and d=0.6 cm.

Distance Number of elements Percentage error

Between Elements

0.6 cm 8 3.6%
0.6 cm 12 29%
0.6 cm 16 1.9%
0.6 cm 20 0.1%
0.6 cm 22 0.4%

4.6 The Relation Between the Error Percentage and the Distance Between

Elements

These simulations are based on the relation of the distance between
elements (d) and the error rate. In this section, the effect of changing the values
of d from 0.5 cm to 0.9 cm are studied, also by fixing the number of elements to
16, and changing the values of the difference between the angles once when the
difference is equal to 5°, another case when the difference is equal to 10°, and
finally when the difference is equal to 15°.

In the first case in figure 4.19, the difference was equal to five degrees, and
it is considered little value, we notice that when d is equal to 0.5 cm the error
rate reaches 10 %. After that, as the value of d increases, the error rate decreases

to a limit of 2%, and at 0.8 cm it stays in the same range.
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Figure 4.19 Relation between error and distance between elements at a

difference between angles equal to 5° and M=16

The results of this relation are represented in table 4.5:

Table 4.5 The results for the Relation between error and distance between
elements at a difference between angles equal to 5° and M=16

In the second case at figure 4.20 when the difference is equal to 10°, we
have obtained better results with a small error rate, this is the case when the

number of elements is equal to 16.
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When d is equal to 0.5cm, the error rate is around 2%, as d increased to a
value of 0.6cm, the error rate decreased to a limit of 0.2% and finally at a value

of d equal to 0.8cm the error rate remains in the same region near 0.2%.
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Figure 4.20 Relation between error and distance between elements at a

difference between angles equal to 10° and M=16

0.9cm 0.4 %

Table 4.6 The results for the Relation between error and distance between

elements at a difference between angles equal to 10° and M=16
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In the third case in Figure 4.21, we have been increasing the difference
between

the angles to 15° to observe the effects of this increase with changing
values of d, we noticed that the value of the error rate is between 1.4% and
0.1%.

When the value of d is equal to 0.5 cm the error rate will become around

1.4% as the value of d increases the error value decreases to a value of 0.1%.

We obtained an error rate equal to 1.4%, which is a small error rate,
however if we compare it with 0.1%, we realize that there will be a difference of
1.3%, wherefore we can rely on d equal to 0.5 cm, nevertheless our goal is to
reduce the error rate to the lowest value. Therefore, in our research to determine
the angle of arrival, we depend on the value equal to 0.8 cm which is why we

obtained a small error rate.
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Figure 4.21 Relation between error and distance between elements at a
difference between angles equal to 15° and M=16
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In the previous cases, when the values of M were equal to 16, as we
changed the values of d, the highest error value of 10% was obtained when the
difference was equal to 5° and d was equal to 0.5 cm, therefore, we reduce the
number of elements to 8 and increase the difference to 10° for observation the
effect of these values on the error rate.

In Figure 4. 22, the value of error reached 19% when d is equal to 0.5 cm,
in the rest of the cases, we notice that the error rate decreases to 4% and then to

a value less than 1% when d is equal to 0.7cm and 0.8cm.
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Figure 4.22 Relation between error and distance between elements at a

difference between angles equal to 10° and M=8
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CHAPTER FIVE

Conclusions and Future Works
5.1 Conclusion
This thesis presents a robust comparative analysis of the performances of
the two methods: the classical fast Fourier transform (FFT) and,high-resolution
Root_Eigenvector (R-EV) for the Angle-of-Arrival (AoA) electromagnetic

waves, so the performance and resulted for the two methods are compared.

Conclusions for all circumstances of noise and noiseless are presented. The
FFT method's percentage errors are significantly larger than those of the
Root_Eigenvector, probably this error results from presence a group of
sidelobes around the required peaks, sometimes, if we have two angles with two
different signals, they can overlap each other and result as there is only one
angle also to achieve reasonable error rates, we need more than 12 elements
(sensors) in the uniform linear array as a result, increasing these elements leads
to increased complexity and cost.

Consequently, the Root-Eigenvector’s performance in the presence of noise
has superior results, from the simulation figures in chapter 4, the maximum error
reached 4 % when M, number of samples (sensors) equal to 8. For the rest of the
cases, the error rate did not exceed 2%, that is a great example of the ability of
this method to detect angle with low level errors.

As mentioned earlier in the disadvantage of FFT that the side lobes are
obvious, but it is important to mention when using Root_Eigenvector there are
no sidelobes except when using a small number of elements, they may appear
(sidelobes), but it is very small proportions (negligible).

From the simulation of the difference between angles and the error rate in
chapter 4, R-EV have the ability to distinguish between the angles even the
difference between angles reached to 5 degrees (very low) and number of
elements not exceeding 8 elements , while for FFT, the minimum acceptable

difference between the angles must be exceeded 15 in order to be able to
89



distinguish between adjacent angles when the number of antennas are equal to 8
elements. Also exceed difference between angles to 10° when M is equal to 12,
14, and 16 elements. Despite the increase in the number of elements, it was not

possible to differentiate between signals whose angle difference was equal to 5°.

Therefore, the proposed method R-EV could improve the poor angular
resolution provided by a small number of antenna components. Through our
study of the relation between the distance between elements d and the
percentage error, concluded when d is equal to 0.5 and 0.6, and using number of
elements equal to 16, the value of the error ratio does not exceed 2%, and
whenever the values of d increase to 0.7, 0.8 and 0.9, the error values do not
exceed 0.4%.

The suggested strategy (Root_Eigenvector) will be an effective and straight
forward way to enhance AOA estimation. Moreover, the proposed method
(Root_Eigenvector) would improve AoA estimation in a simple and effective
manner.

5.2 Suggestion for future work

- Doing some experimental set to get experimental data and compare it

with noisy data.

- Studying the problem for different wavelengths.
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Appendix

Matrices
A (z =k ) matrix is an array of numbers or mathematical functions

containing z rows and k columns,

vi1 bz -+ by
v b .« b

V={way= 2 "7 (1)
Vz1 Vypz v bzk

Is a z * k matrix of v, ,if z = k then the resulted matrix is a square matrix
of z rows and k columns.

If V is a z * k matrix, then the transpose represented by V7, is the k x z
matrix that is contained by replacing rows by columns of V. Thus, the element
{z, k} becomes the element {k, z} and vice versa.

If V is square, then the transpose VT is easily by reflecting the element of V
around the diagonal. For a square matrix if V is equal to its transpose, then V is
a symmetric matrix.

v=yT (2)

For a matrix that is formed by a complex number, the Hermitian transpose

is the complex conjugate transpose of V represented by V¥ Thus.
vE = (r)T=(vT)* 3)

When a square matrix (complex values) is equal to its Hermitian transpose,

V = VH then the matrix is said to be Hermitian.
Eigenvectors and Eigenvalues
The eigenvalues and eigenvectors of a matrix can provide the most

valuable and significant information about the matrix. It is feasible to tell

whether the matrix is positive definite based on the eigenvalues. The matrix's
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invertibility and the sensitivity of the calculation of the inverse to numerical
error may both be determined using the eigenvalues [60].

Two subspaces, the signal subspace and the noise subspace can be formed
from the signal. To achieve this decomposition, eigenvectors are used. They
offer a crucial eigenvalue decomposition representation for matrices. Pisarenko
Harmonic Decomposition (PHD), Multiple Signal Classification (MUSIC),
Eigenvector spectrum estimation, and Root-Eigenvector will all be explained
using this decomposition[28].

Let D be a nxnmatrix and consider the following set of linear equations
Ds = A s Where A is a constant, it can also be stated as a set of homogeneous
linear equations of the following form:

(D-ADs=0 (4)

The matrix D - A1 must be singular (a matrix is said to be unique if it does
not have an inverse) for a nonzero vector to be a solution to this equation,
therefore, the determinant of the singular matrix (D - A I) must be zero.

Det(D-A1)s=0 (5)

Equation (5) is called the characteristic equation of the matrix D and its m
roots, A, for A; = 1,2,...,m are the eigenvalues of D.

For every eigenvalue A; the matrix (D - A I) will be singular and at least
one nonzero vector will be present, s;, that act as the solution of Equation 5, i.e.

Ds; = A s; (6)

The term "eigenvectors of D refers to these vectors, s;. It is obvious that
as; will also be an eigenvector for any constant for every eigenvector a. As a
result, eigenvectors are frequently normalized to have a unit norm[32]

Eigen Decomposition of Autocorrelation Matrices

While it is theoretically feasible to calculate the frequencies of complex

exponents from the peaks of the spectrum calculated using any method, this

strategy would not fully use the process's presumed parametric shape. Utilizing

100



frequency estimate techniques while taking into consideration the process's
characteristics is an alternative. These techniques are built on the autocorrelation
matrix's eigen decomposition into a signal subspace and a noise subspace.
Consider The first-order process as a method for frequency estimate [32], [61],
[62]:
y(m) = A1e/*M + 1 (m) (7)
y(m) = x(m) + n(m) (8)
That consists of a single complex exponential in white noise, The
amplitude of the complex exponential A1 = |A1 |e/®t @, is a uniformly random

distributed variable, the autocorrelation sequence of y(m) is:
r,(k) = Pie/* +026(k) k=0,%1,....,.+L—-1) (9)
where P, = |A1|?is the power in the complex exponential. The M * M

autocorrelation matrix for y(m) is, therefore, the sum of the autocorrelation

matrices for the signal, R,, and the noise, R, as shown below:

R,=R,+R, (10)
where the signal autocorrelation matrix is:
[ 1 e_jwl e_jzwl oee e_j(M_l)wl_
elw1 1 e Jw1 o e IM=2)w,
R, =Pl pj2w: elw1 1 o e JM=3)w, (11)
_ef(M—l)ah ej(M—Z)wl ef(M—3)0)1 1

and has a rank of one, and the autocorrelation matrix of the noise is

diagonal,
R, =01, (12)
and has full rank. Note that if we assume:
q1 = [1,e/91, 87291, ...,ef(M‘l)“)l]T, (13)
then R,, can be written in terms of g, as follows:

Ry =P, Q1CI1H, (14)
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Since the rank of R, is equal to 1, then R, has only one nonzero

eigenvalue. With:

R.q1 = P(q19:")q1 = Pa1(q:"q1) =M P,q4 (15)
it follows that the nonzero eigenvalue is equal to MP;, and that g, is the

corresponding eigenvector.

In addition, since R, is Hermitian then the remaining eigenvectors, u,, us,

..., uz, will be orthogonal to g,

q:" u; = 0 where i=2,3,4,.... M (16)

Finally, note that if it allow to make A} be the eigenvalues of R, then:
Ryu; = (R, + 02Du; = A w; + o2 w; = (A + 02 )y (17)

Therefore, there is a similar between the eigenvectors of R, and R, ,but
the eigenvalues of R,, are:

A=A +oy (18)

As a result, eigenvalue of R,, are represent by:

Anax = MPy + o (19)
and the remaining M-1 eigenvalues are equal to o;7 so, all information
about 'y (m) from the eigenvalues and eigenvectors of R,, are got as shown:

1. Achieving an eigen-decomposition of the autocorrelation matrix, R,, the
largest eigenvalue is equal to MP, + %2 and the eigenvalues that remain will be
equal to oy}

2. Using the eigenvalues of R,, to find a solution for the power P; and the

noise variance as follows:

Amin = 0-1]2 (20)
P = %O\max - )\min) (21)
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3. Determining the frequency w from the eigenvector u,,,, that is deal

with the largest eigenvalue.

w = arg{umax} (22)
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