

UNIVERSITY OF NINEVAH

COLLEGE OF ELECTRONICS ENGINEERING

COMPUTER AND INFORMATION ENG. DEPARTMENT

Investigation of Communication Networks and

Infrastructure in the Internet of Everything

By

RAWIA TALAL AZEZ

M.Sc. Thesis

In

Computer and Information Engineering

Supervised by

Dr.Abdulbary Raouf Suleiman

Assistant Prof.

 2021 A.D. 1442 A.H.

Investigation of Communication Networks and

Infrastructure in The Internet of Everything

A Thesis Submitted

By

Rawia Tala Azez

To

The Council of the College of Electronic Engineering

University of Ninevah

As a Partial Fulfillment of the Requirements

For the Degree of Master of Science

In

Computer and Information Engineering

Supervised by

Dr. Abdulbary Raouf Suleiman

Assistant Prof.

 2021 A.D. 1442 A.H.

 سورة العلق

) 5(يةالأ

I

Supervisor's Certification

I certify that the dissertation entitled (Investigation of Communication Networks

and Infrastructure in The Internet of Everything) was prepared by Rawia Talal
Azez under my supervision at the Department of Computer and Information
Engineering, University of Ninevah, as a partial requirement for the Master of
Science Degree in Computer and Information Engineering.

Signature:

Name: Dr.Abdulbarry Raouf Suleiman

Department of Computer and Information Engineering

Date: / /2021

Linguistic Advisor Certification
I certify that the linguistic evaluation of this thesis entitled " Investigation
of Communication Networks and Infrastructure In The Internet Of
Everything" was carried out by me and it is accepted linguistically and in
expression.

Signature:

Name:

Date: / /2021

Post-Graduate Committee Certification
According to the recommendations presented by the supervisor of this

dissertation and the linguistic reviewer, I nominate this dissertation to be

forwarded to discussion.

Signature:

Name: Assistant Prof. Maan A. S. Al-Adwany

Department Head Certification
I certify that this dissertation was carried out in the Department of Computer and

Information Engineering. I nominate it to be forwarded to discussion.

Signature:

Name: Assistant Prof. Maan A. S. Al-Adwany

II

Committee Certification

We the examining committee, certify that we have read this dissertation entitled
(Investigation of Communication Networks and Infrastructure In The Internet Of
Everything) and have examined the postgraduate student (Rawia Talal Azez) in its
contents and that in our opinion; it meets the standards of a dissertation for the degree
of Master of Science in Computer and Information Engineering.

Signature:

Name:

Head of committee

Date: / /2021

Signature:

Name:

Member

Date: / /2021

Signature:

Name:

Member

Date: / /2021

Signature:

Name: Dr. Abd Albarry Aulayman

Member and Supervisor

Date: / /2021

The college council, in its ………… meeting on / /2021, has decided to award
the degree of Master of Science in Computer and Information Engineering to the
candidate.

Signature:
Name:
Dean of the College
Date: / /2021
Signature:

Name:
Council registrar
Date: / /2021
Signature:

I

ACKNOWLEDGEMENTS

"Praise be to ALLAH, Lord of the whole creation"

I would like to express my sincere gratitude and thanks to my

supervisor, Dr. Abdulbarry Raouf Suleiman for his continuous guidance,

helpful suggestions and constant encouragement throughout this work.

Thanks are due to the Dean of the Electronics Engineering College

for his valuable assistance. My appreciation is extended to the Head and

all members of Computer and Information Engineering Department for

their support and assistance.

I dedicate this thesis to the soul of my dear father and brother. Also

i would like to extend my sincere appreciation to my mother , my husband,

my father and mother in law, my lovely son, and my daughter for their

encouragements, support and patience throughout the duration of my

graduate study.

 Researcher

Rawia Talal Azez

 2020

II

Abstract

A competent and structured approach to improve the health and

well-being of humanity is provided by the Internet of everything

technology. One of the practical ways to provide better life quality to

people is based on IoE. Development of applications like monitoring

human health, intelligent management, and decision making in industry

field, smart buildings, road traffic management, and so many other

applications contribute to crystalize the concept of Smart City. This

concept integrates all smart applications and intelligently managing their

data to make better and faster decisions in order to make the dream of

people true of luxury and comfortable life. Initiating such a smart city is

the obsession of the world nowadays.

In this work, we investigated the infrastructure of the internet of

everything concerning the communication technologies, devices, and

protocols. The IoE architecture standard is still under development but

most of the researchers adopt the three-layer architecture. To implement

the IoE infrastructure a smart city prototype is designed including three

platforms which are Healthcare, Environment, and Security.

 To create such a prototype, we developed the codes of all devices

and servers in addition we built our algorithms for intelligent and smart

responses to the systems events. To extend the existing functionality of

the servers and achieve the interactions between servers and cloud the

Application Programming Interface (API) has been used. Python 3.8

programming language is adopted in the software work of our smart city

porotype.

 For enhancing the performance of our system the edge computing

concept is adopted by extending cloud computing service to the edge of the

III

network so Fog Nodes (FN) have been added. The real-time data is

transmitted by the IoT devices to the remote Fog computing node for real-

time, visualization, processing, and analysis making real-time decisions for

each platform in our smart city prototype. This step reduced the system

latency and made systems reliable even if the connection with the cloud

has some discontinuities.

The data generated from the smart city is fuzzy and has many issues

like redundancy and duplicity so we use a data aggregation technique to

enhance the performance of our proposed smart city prototype. The

aggregated data generated from the smart city is uploaded to the Microsoft

Azure cloud storage preparing this data to be ready for analyzing and data

mining.

 Cisco packet tracer 7.2 is used as an effective tool for designing

and implementing the proposed smart city prototype with an easy to use

GUI for all platforms.

IV

TABLE OF CONTENTS

Subject Page
Acknowledgments I

Abstract II
Table of Contents IV

List of Figures IV
List of Tables VIII

List of abbreviations IX

Chapter One
1.1 IoE Definitions and Applications 1
1.2 Literature review 4
1.3 Statement of the Problem 6
1.4 Thesis Objectives 7
1.5 Contribution 7
1.6 Thesis structure 8

Chapter Two
2.1 Introduction 10
2.2 Integration of internet of everything: 11
2.2.1 Things pillar 12
2.2.2 Data pillar 14
2.2.3 People pillar 15
2.2.4 Process as a pillar 16
2.3 Internet of everything Architecture and protocols 17
2.3.1 Thing layer 20
2.3.2 Networking layer 20
2.3.3 Cloud layer 25
2.4 Data Exchanging Formats 27
2.5 Applications of the Internet of Everything 28

Chapter Three
3.1 The Proposed Smart City Prototype 30
3.2 IoE Simulators 33
3.3 GUI -based Implementation of The Proposed Smart Platforms. 34
3.4 Health care system 37
3.4.1 Heart rate recorder 37
3.4.2 Body temperature meter 40
3.4.3 Peripheral oxygen saturation meter (SpO2): 43
3.4.4 Blood Sugar meter 44
3.4.5 Cluster Healthcare server (CHCS) 46
3.5 Security Control System 50

V

3.5.1 Fire detection subsystem 51
3.5.2 Security Subsystem 59
3.6 Environment control system 65
3.6.1 Humidity Monitor 67
3.6.2 Humidifier 68
3.6.3 Dehumidifier 68
3.6.4 Carbon Monoxide Detector 68
3.6.5 Carbon Dioxide Detector 68
3.6.6 Thermostat 69
3.6.7 Furnace 69
3.6.8 Air Conditioner (AC) 70
3.6.9 Cluster Environment control server (CECS) 70

Chapter Four
4.1 Introduction 71
4.2 Link API with Smart City Cluster Servers 72
4.3 Data Aggregation 72
4.4 Data Formatting to JSON 73
4.5 Link API with Azure Microsoft HUB 73
4.6 Centralized Server Functionalities 74
4.7 Results of Aggregation 76
4.8 Microsoft Azur Cloud HUB 79

Chapter Five
5.1 Conclusion 83
5.2 Challenges 84
5.3 Future work 85

References 87
Appendix (A) A
Appendix (B) D
Appendix (C) F

VI

LIST OF FIGURES

Figure Title Page

 1.1 Smart City Applications 2
 1.2 Analogy Between Nervous System and IoE 3
 2.1 IoE Four Pillars 12
 2.2 IoT Embedded Device 13
 2.3 IoE Data processing Phases 14
 2.4 IoE Pillars Connections 16
 2.5 Fog Computing IoE Architecture 18
 2.6 Common wireless communication technologies 21
 2.7 infrastructure and intermediary devices 22
 2.8 Fog Nodes interactions with sensors and actuators 23
 2.9 Domains of IoE Applications 28
 3.1 General block diagram for our proposed Smart City IoT

based prototype
31

 3.2 Smart city Data Flow Structure 32
 3.3 The GUI of designed Smart City Prototype 35
 3.4 Health care system topology 37
 3.5 Heart rate recorder 38
 3.6 Heart Rate Input/output configurations 38
 3.7 Heart Rate alarm 39
 3.8 PDU Information of Heart rate Device Message 39
 3.9 Network configuration of Heart rate reader 40
 3.10 Body temperature Meter 40
 3.11 Body Temp. Meter Input/output configuration 41
 3.12 Network configuration of Body Temp. Meter 41
 3.13 High body temperature 42
 3.14 Message PDU information 42
 3.15 Peripheral oxygen saturation meter (SpO2) 44
 3.16 SPO2 input/output configurations 44
 3.17 Blood sugar meter 45
 3.18 Blood sugar meter input/output configuration 45
 3.19 Email service in Doctor Phone 49
 3.20 Doctor phone connected through 3G to the internet 49
 3.21 Network topology of Fire Detection subsystem 51
 3.22 Web interface for registration server login 52
 3.23 TCP Connection Establishment between devices CSCS 55
 3.24 Fire Monitor and Smoke Detector Send their levels to CSCS 55
 3.25 The Fire Sprinkler state is ON 56

VII

 3.26 Sending Email Message using POP3 protocol to the Fire
Engine

56

 3.27 Email format from Server to Fire engine 57
 3.28 Draining the high-level water mechanism 57
 3.29 Response Time per each status change in the system

environment
58

 3.30 Topology of Smart Security system 59
 3.31 TCP Connection Establishment of Security System 60
 3.32 Motion detector and RAFID reader sending status to server 60
 3.33 CSCS Response to motion detection and invalid card 63
 3.34 Email server sending the email to police car over POP3

protocol
63

 3.35 Alarming Email Format on Security Emergency 64
 3.36 CSCS Controlling the Doors to allowing Valid Persons 64
 3.37 system Response time vs status changes. 64
 3.38 Packet tracer environment elements 66
 3.39 Smart Environment system topology. 67
 3.40 Humidity Monitor 67
 3.41 Thermostat 69
 3.42 input/output configuration of the Thermostat 69
 3.43 GUI interface of monitoring and controlling environment in

CECS
70

 4.1 Centralized Server Functions 71
 4.2 UDP Socket API piece of code 72
 4.3 Effect of Data Aggregation in removing data redundancy 73
 4.4 Message format 73
 4.5 Centralized server Flow chart 75
 4.6 Effect of Aggregation on Number of Messages 77
 4.7 Statistical comparison of Number of Messages Before and

After Aggregation
78

 4.8 IoT hub creation window 79
 4.9 commands of creating a client to the hub in the cloud shell 80
 4.10 The information of the client device in the Azure IoT hub 81
 4.11 deployment of the centralized server in the Azur IoT Hub 81
 4.12 Smart city data at the Azure Hub 82

VIII

List of Tables

Table 2.1 comparison between IoT protocols………………………- 19 -

Table 2.2 Cloud Computing Services…………………………........- 26 -

Table 2.3 Data Exchanging formats………………………………..- 27 -

Table 3.1 The unique code of each Cluster and the maximum number

of systems……………………………………………………………- 32 -

Table 3.2 Nine Qualitative Criteria of Packet Tracer………………..- 33 -

Table 3.3 Effects of decreased oxygen saturation…………………...- 43 -

Table 3.4 Response time of system components to the Fire element state

changes………………………………………………………...……..- 58 -

Table 4.1 Aggregation Percentage for All Platforms……………......- 76 -

Table 4.2 ATM Pressure Aggregation (almost stable Inputs)……….- 76 -

Table 4.3 Blood sugar Meter Aggregation (vary Reads) - 76 -

IX

List of Abbreviations

Abbreviation Name

IoE Internet of Everything

 QoS Quality of Service

 IoV Internet of Vehicles

IoT Internet of Everything

 SoS System of Systems

 P2P People-to-People

M2M Machine-to-Machine

M2P Machine-to-People

PaaS Process as a Service

JSON JavaScript Object Notation

HTTP Hypertext Transfer Protocol

MQTT Message Queuing Telemetry Transport

XML eXtensible Markup Language

RFID Radio Frequency Identification

GSM Global System for Mobile

LTE Long-Term Evolution

LoRaWAN Low Power Wide Area Network

6LowPan
Low-power Wireless Personal Area

Networks

TCP Transmission Control Protocol

X

 FN Fog nods

DM Data Mining

 IT Information Technology

SaaS Software as a Service

PaaS Platform as a Service

IaaS Infrastructure as a Service

XaaS Anything as a Service

NIST National Institute of Standards and Technology

ML Machine Learning

AI Artificial Intelligence

CSV Comma-Separated Values

SoS System of Systems

API Application Programming Interface

GUI Graphical User Interface

IP Internet Protocol

ISP Internet Service Provider

LCD Liquid Crystal Display

GHz GigaHertz

CHCS Cluster Healthcare Server

UDP User Datagram Protocol

DHCP Dynamic Host Configuration Protocol

PDU Protocol Data Unit

XI

SpO2 Peripheral oxygen saturation

4G fourth Generation

CSCS Cluster Security Control Server

IR Infrared Radiation

GPS Global Positioning System

SEM Smart Environment Monitoring

CO Carbon monoxide

CO2 Carbon Dioxide Detector

AC Air Conditioner

CECS Cluster Environment control server

ATM Atmosphere

- 1 -

1 Chapter One

Introduction to the Internet of Everything

This chapter includes the definition, importance, and applications of

the internet of everything (IoE), the related work, the statement of the

problem, thesis objectives and structure, and finally, its contribution.

1.1 IoE Definitions and Applications

The 'Internet of Everything (IoE)' is considered the last phase of

internet evolution, this phase links people, processes, data, and things

translating information into activities that build new skills, richer

interactions, and unparalleled opportunities [1]. It describes a world where

trillions of intelligent devices have sensors to verify measure and estimate

their positions, all connected over public or private networks that use

specific protocols[2].

There is a wide range of applications that take the advantage of the

IoE concept including helping in achieving public policy goals, smart

building, smart grid, smart education, economic development,

transportation, and social services as shown in figure (1.1). Flexibility and

high scalability are the prosperities of the IoE Identity Platform to

accommodate billions of IoT devices of all types. This is done by using

secure protocols as core identity mechanisms, so all devices authenticate

as they come online, prove their integrity, and securely communicate with

other devices, services, and users[3].

- 2 -

Figure 1.1 Smart City Applications

Several governments starting from 2009 actively pursuing a smart

city strategy like Amsterdam, Barcelona, Copenhagen, Dubai, London,

and others. Smart cities are the integration of many IoE systems that

uses information technologies to make more efficient use of physical

infrastructures like roads, built environment, and other physical assets

through artificial intelligence and data analytics in order to support a strong

and healthy economic, social, cultural development. Also, take advantage

of learn, adapt, and innovate and thereby respond more effectively and

promptly to changing circumstances by improving the intelligence of the

city[4]. Smart cities evolve towards a strong integration of all dimensions

of human intelligence, collective intelligence, and also artificial

intelligence within the city.

The intelligence of cities "resides in the increasingly effective

combination of digital telecommunication networks (the nerves),

ubiquitously embedded intelligence (the brains), sensors and tags (the

- 3 -

sensory organs), and software (the knowledge and cognitive

competence)[5]. Figure(1.2) show an example of smart city services.

Figure 1.2 Analogy Between Nervous System and IoE

The architecture of IoE is being developed and enhanced to provide

the user with the best services and efficient performance [3]. Remote cloud

servers are used for storing and processing big data that have been collected

from a large number of sensor nodes. Although of huge benefits of cloud

computing such as the capability of large data storage volume and smart

data analysis, still, many challenges exist in these systems concerning

latency sensitivity issues, location awareness, and transmission of large

data[6]. The traditional way of data processing centralization in the Cloud

cannot satisfies most of the current IoE requirements like high availability

and ubiquity with regards to storage and computing capabilities.

Especially, with the growing number of smart objects and the amount of

data produced effects on generating high network traffic which increases

the latency, that degrading the Quality of Service (QoS) for several IoE

applications like the Internet of Vehicles (IoV), industry, and healthcare.

- 4 -

The service latency is very critical and the lag may cause critical issues. To

overcome the previously mentioned challenges, the paradigm of Fog

computing has been proposed to create a distributed computing

infrastructure closer to the network edge which performs easier tasks that

require a quick response. This reduces the data burden on the network and

enhances flexibility by allowing smart devices to operate when network

connections to the cloud are lost. The security is also enhanced by keeping

sensitive data beyond the edge where it is needed instead of being

transported [7]. On the other hand, the rate of generated data is usually

huge for processing and storing, therefore, applying aggregation to the data

from various sites is an efficient technique. The fundamental purpose of

the data aggregation strategy is to aggregate and collect the data packets in

an effective manner to improve the network lifetime, energy consumption,

data accuracy, and traffic bottleneck [8].

1.2 Literature review

In 2014, S.Abdelwahab et al. [9] made a survey on Cloud-assisted

remote sensing for IoE by describing its benefits and capabilities then

presenting its multilayer architecture. Finally, discussing the major design

requirements and challenges.

In 2015, R.Balfour [10] Presented some technological capabilities

that are critical to achieving the IoE, particularly for emergency managers

including security, a global M2M standard, M2M applications, and Data

Privacy and trust.

In 2016, P. Pena and et al. [11] propose a smart system where

security and cognition are reactive modules. using a big-data centric

modular architecture

- 5 -

In 2016, B.Ahlgren and et al. [12] developed a Green IoT system

that includes heterogeneous sensors to collect data and incorporates with

cloud computing technologies to get more interactive and responsive

administration of a city in Uppsala, Sweden.

In 2017, M.Naas and J.Boukhobza [7] presented a data placement

strategy for Fog infrastructures called iFogStor which takes the benefits of

the heterogeneity and location of Fog nodes to minimize the overall latency

of storing and retrieving data in the Fog.

In 2017, S.Clement et al. [13] proposed a reference architecture for

the smart city based on Service Oriented Architecture (SOA) concepts;

integrating IoT, Cloud, and Edge technologies with existing city

infrastructure.

In 2018, C.Badii et al. [14] introduced a platform where

sophisticated IoT applications for controlling city dashboards as well as

IoT mobile applications. Particular attention is paid to the tools and

solutions for monitoring communication performance and to perform the

estimation of scalability of the IoT smart city infrastructure.

In 2018, M.Yang et al. [15] proposed a multifunctional data

aggregation method with differential privacy. Machine learning is the base

of proposed methods and can support a wide range of statistical

aggregation functions.

In 2019, S.Muralidharan [16] build a container-based system in

Seoul port of cloud-based monitoring system for IoT applications with low

latency, reliable and secure communication with a strong focus on

horizontal interoperability among various IoT applications.

- 6 -

In 2019, R.Mahmud and R.Buyya [17] discussed some examples of

Fog environment scenarios and explained how to implement custom

application placement in iFogSim to simulate Fog environment along with

an IoT-enabled smart healthcare case study.

In 2019, P.Naranjo et al. [5] presented a smart city network

architecture called Fog Computing Architecture Network (FOCAN). A

multi-tier structure in which the applications are running on things with

taking into consideration the latency and power through the smart city

environment.

In 2019, M.Masoud et al. [18] attempted to demo the process of

concluding significative data from sensors in smart devices, especially,

smartphones. Also, different useful machine learning applications based on

smartphones’ sensors data are given.

In 2020, S.Ullo and G.Sinha [19], the authors have studied how the

advancements in sensor technology, IoT, and machine learning methods

make environment monitoring a really smart monitoring system.

1.3 Statement of the Problem

The technology of the Internet of Things and the Internet of

everything are ones of the modern technologies that take a wide area in

literature but appointing an IoE standard infrastructure is still in the

research phase. Consequently, it is found that there is a need to investigate

this issue in this work.

Implementing an IoE infrastructure by connecting a large number of

smart devices produces a huge amount of raw data that is difficult to be

managed directly by the cloud. This difficulty is an issue that needs a

solution.

- 7 -

1.4 Thesis Objectives

 To Investigate a standard infrastructure of the internet of
everything concerning the networks, devices, and protocols.

 Creating and implementing a smart city prototype including three
platforms using the most powerful simulator.

 To develop the required programming and algorithms for
networking and devices.

 To use the edge computing concept to extend cloud computing
service to the edge devices.

 To develop a data aggregation algorithm to enhance the
performance of our proposed smart city prototype

 Uploading the aggregated data generated from the smart city to
cloud storage and prepare this data to be ready for analysis and
data mining.

 To address the most effective challenge by trying to give reasons
and solutions.

1.5 Contribution

The process of connecting billions of things to the internet and

provide an interactive environment between them and people, also

managing and processing the data produced is considered a very interesting

subject called IoE. Throughout this work its dived deeply into the

infrastructure and studied the protocols, the data flow, and the common

architectures of IoE. Then implement this architecture by building a Smart

City prototype consists of three systems: Healthcare monitoring,

Environment Monitoring, and Security Control.

The accomplishment of such a prototype required developing the

smart devices algorithms and networking devices programming to get the

better performance of smart city platforms and make them flexible and

extendable. The most critical issue in smart systems is the latency and real-

- 8 -

time response to achieve this we used the edge computing concept to

extend cloud computing service to the network edge and that improves the

latency and real-time response.

 The IoE generates a large amount of data each second collected by

sensors and smart devices as well as the network data, all this raw data

needed organizing and filtering before it is uploaded to the cloud, this

process called data aggregation. An algorithm to aggregate data generated

by our proposed smart city prototype was developed . The aggregated data

is then uploaded to the Microsoft Azure HUB in order to store it in the

Custom storage service.

1.6 Thesis structure

Chapter two introduces the theoretical background of the Internet of

Everything: concepts, Architecture, services, advantages, and applications.

Chapter three of this thesis contains an introduction to our simulated

smart city prototype then discusses in detail the IoT layer contents and the

communication process between them. The implementation of the relation

with the Edge networking sublayer is also described in this chapter. Finally

explaining the algorithms of the cluster server for each of our platforms.

Chapter four explains the implementation of the top-level sublayer

of the networking layer and introduces the proposed algorithm of the

Centralized server. Furthermore, discuss the contribution of the

aggregation process in reducing the amount of data uploaded to the cloud

with results. Finally, this chapter clarifies the process of submission to the

Microsoft Azure cloud and how to manage this data and rout it between

cloud services.

- 9 -

Chapter five includes the conclusions of this work in addition to the

all obstacles of this scientific research and future works.

- 10 -

2 Chapter Two

 Background of IoE Infrastructure

In this chapter, we will explain the theoretical background of the

internet of everything (IoE)

2.1 Introduction

The internet has developed in many distinct phases. Each phase has

a more profound effect on business and society than the previous one.

Nowadays, we are in the world digitizing phase which connects not only

the smart devices but also connects everything in the world as people, data,

and process to originate the key concept of the internet of everything

(IoE)[1]. The huge growth in smart devices industry like smartphones,

smart sensors, smart medical devices, and so on, helps the “Internet of

Everything” (IoE) concept to explore and expand. It describes a world

where trillions of smart devices have sensors for verifying measures and

estimating their position and then turning information into actions. That

enhances our daily lives by creating new capabilities, worthy experiences,

and unprecedented opportunities [20].

A continuous increase in the urban population fatigues the limited

resources of local servers so the use of cloud computing service becomes

necessary to deal with the large amounts of data and to analyze it [21]. This

Cloud-centric approach satisfies the requirements of many IoE applications

like computing and storage capabilities, ubiquity, and high availability. but

for applications that latency service is very critical and the least delay may

cause critical issues such as the Internet of Vehicles (IoV), electronic

healthcare, and smart industry the paradigm of Fog computing has been

proposed that provides a hierarchical and geographically distributed

- 11 -

architecture to store and process data in network equipment located

between smart objects and Cloud data centers[7].

The connection between the internet of everything four pillars thing,

people, data, and process needs a reference architecture and while the IoE

is still in its infancy, its future structure and ingredients must be further

studied and standardized and require the support of many applications,

some of which presently exist and others that will be developed in the

future [3].

Smart cities are the new goal for the integrated System of Systems

(SoS). The computational infrastructure for a smart city will be based on a

combination of distributed computing paradigms, enabling the use of low-

power IoT devices, Cloud computing virtualization, and the use of

localized processing with Edge computing[13].

To establish a smart IoE system many technical requirements should

be taken into consideration such as Standardizations to find out what

technology is required to allow these systems to communicate with other

systems, also check the scalability and Security to verify the best services

and applications need to be installed to simplify the management of these

updated systems. Programming and Data processing also takes big

considerations by the smart system developer to make sure that the system

has the capability of communicating with devices and can forwarding data

to the Cloud for processing or fog computing when data needs to be

processed closer to the source.

2.2 Integration of internet of everything:

The IoE integrates four pillars that lead to making networked

connections more relevant and valuable more than ever before: people,

- 12 -

process, data, and things. The information from these connections leads to

decisions and actions that create new capabilities, richer experiences, and

unprecedented economic opportunity for individuals, businesses, and

countries.

The interactions between the elements in the four pillars create a

wealth of new information. The pillars interact in a way that establishes

three main connections in the IoE environment: people communicate with

people (P2P), machines communicate with people (M2P), and machines

communicate with machines (M2M)[1][22]. Figure (2.1) shows the IoE

four pillars

Figure 2.1 IoE Four Pillars

 Things pillar

This pillar includes all types of objects. Cisco predicts that 99% of

physical objects one day be connected to the internet. These devices have

embedded technologies to communicate with the external environment and

- 13 -

internal servers. The intelligent devices have network capabilities so it can

communicate over a secure, reliable, and on available network platform

[1].

On the IoT embedded devices, the data obtained may be completely

or partially processed. The type of on-board processing procedure depends

on the IoT application. However, data compression methods, signal

processing, feature extraction, and classification are primarily included in

most smart devices. The low-power IoT devices have constraints in

capabilities of computation and memory limitations, so the need to

optimizing the on-board processing has appeared. So, to make the on-board

processing efficient and affordable both software and hardware

optimizations are needed. Three main functions in the proposed techniques

of an IoT device must be considered which are acquisition, computation,

and communication. Figure (2.2) shows the general structure for IoT

embedded devices.

Figure 2.2 IoT Embedded Device

- 14 -

 Data pillar

For all computing systems, data is the core component because the

main goal of them is to process and transmit data. a concerning issue about

data is the volume since a huge number of data is produced by humans

every day. These data are stored in local servers, centralized storage, or

distributed storages where the last two provide the ability of remote access

from multiple devices. In smart systems, the data passes through four non-

overlapping phases: Data Collection, Data Pre-Processing, Data Mining,

and Data Post-processing. These four phases can be organized by data

management centers[11][23]. Figure (2.3) contains a brief explanation of

each data phase.

Figure 2.3 IoE Data processing Phases

 Data collection phase

 Smart systems data is collected from sensors, smart devices, social

media, and other sources.

- 15 -

 Data Pre-processing phase

In this phase, the system utilizes computational technologies like

edge computing services. In edge computing, data processing is distributed

on edge nodes which have less computation power than what is available

to cloud servers. So, the computation tasks need to be assigned to several

edge nodes to meet the same demands by offloading the computing and

storage to the edge of the networks. Edge nodes also communicate with the

aggregator nodes to avoid sending redundant data in addition to store

collected data in cloud storage[24].

 Data Mining phase

There is a need to store the processed data in a database. Varied

types of data like metadata, historical data, and real-time data are

stored in a distributed database. This PaaS service is used to

process these types of data because it provides tools to access the

data when a user requires it.

 Data post-processing phase:

The applications of system monitoring have a notification service to

the user of an event. Also, the applications of database management

provide the user with accessing and requesting for specific data from the

system. In both systems, the users' requests will be processed through the

system and queried through the database. If requested data is not available

in the cloud, an alert will be sent to data sources to fetch data needed by

users.

 People pillar

People are interacting as data producers and consumers to improve

their well-being and satisfy human needs. The data generated from

- 16 -

connecting people-to-people (P2P), machine-to-people (M2P), or

machine-to-machine (M2M), can be used to enhance the value for people.

 Process as a pillar

The Processes play an important role in how the other pillars work

with each other to evaluate the value of the connected world of IoE. By

merging machine-to-machine (M2M), machine-to-people (M2P), and

people-to-people (P2P) ties, the IoE puts them all together, as seen in figure

(2.4).

Figure 2.4 IoE Pillars Connections

(M2M) connections happen when data is transferred by one device

or 'thing' to another via a network. Sensors, robots, computers, and mobile

devices are considered as devices. These M2M connections are often

referred to as the Internet of Things.

(M2P) connections occur when information is transferred between a

machine and a person. Whether a person gets information from a database

- 17 -

or conducts a complex analysis, this is an M2P connection. These M2P

connections facilitate the movement, manipulation, and reporting of data

from machines to help people make informed judgments. The actions that

people take based on their informed judgments complete an IoE feedback

loop.

(P2P) connections occur when information is transferred from one

person to another. Increasingly, P2P connections happen through video,

mobile devices, and social networks. These P2P connections are often

called Collaboration.

Implementing an IoE solution using M2M, M2P and P2P

connections provides organizations and individuals with actionable

insights and easy automation.

2.3 Internet of everything Architecture and protocols

The standard approach to understanding an IoE framework is to

picture every device being attached to the global network, enabling

everyone to have access to every device. For simpler and faster

communication between these objects, and for the potentiality to manage

them, some models and criteria have been presented that have the

capability to receive and present a special service automatically.

The Fog computing cloud base architecture consists of three main

layers, namely, the IoT, the communication, and the cloud computing

layers[1][7] [25]. Each one of the three fog-computing main layers has its

specific functionality. The IoT layer consists of the sensors and smart

devices that are responsible for collecting persistent data from objects. The

communication layer is composed of two sub-layers, the first one is the

Edge computing sub-layer includes the communication devices like

switches and routers also include the fog nodes that collect the data from

- 18 -

IoT and control actuators with a real-time response. The second is the

aggregation sub-layer which collects the data from the fog nodes and

aggregates it then reorganizes it in JSON format to make it suitable to store

in the cloud warehouse. Finally, the third layer of the Fog computing

architecture is the cloud computing layer where the data warehouses exist,

and where the service of the data mining and smart systems analysis and

monitoring is applied on the big data. Figure (2.5) shows this structure.

Figure 2.5 Fog Computing IoE Architecture

After verifying the structure, it is time to choose what protocol to be

used for going forward in creating our custom IoT platform. While there

are two major protocols HTTP and MQTT, both are very different in

operation and have their pros and cons. Table (2.1) explains the two

protocols differences [26].

- 19 -

Table 2.1 comparison between IoT protocols

 MQTT HTTP
Design orientation Data-Centric Document centric
Complexity Publish/Subscribe Request/Respond
Message Size Simple More Complex
Service Level Small, with a compact

binary header just two
bytes in size

Larger, partly because status detail
is text-based

Extra Libraries Libraries for C (30 KB)
and Java (100 KB)

Depends on application (JSON,). But
typically not small

Data Distribution Support 1 to zero, 1 to 1,
and 1 to n

1 to 1 only

Fog computing architecture encapsulates all physical objects,

machines, and anything that is equipped with computing, storage,

networking, sensing, and/or actuating resources, and that can be connected

to and be part of the Internet [17]. Major functions of fog computing are to

provide[27]:

1) Heterogeneous networking and communication infrastructures

to connect billions of things .

2) Unique identification of all things

3) Data aggregation points to serve as sensing clusters.

Programming is at the core of all computing technologies in the IoE.

While sensors measure a physical property and forward that information

across the network and actuators perform actions based on a received

signal, then a controller must be programmed with a set of instructions to

receive that data and decide if it should be processed and relay that data to

another device. There are many different computer languages used to

program these controllers, for example, C++, Java, Python, and others.

- 20 -

 Thing layer

It is the bottommost layer that encompasses smart mobile or fixed

end-users’ objects such as sensors, RFID, actuators, smart devices, and

other Components. These objects communicate with each other using the

networking layer services as well as to connect with IoE services

implemented in both network and Cloud layers.

The IoT architecture must assure its operations, which bridges the

gap between the virtual and the physical worlds. Infrastructure devices in

IoT are primarily responsible for transferring data between the controllers

and other smart devices, and they provide a variety of services including:

● Wireless and wired connectivity to connect the individual end

devices to the network, and can connect multiple individual

networks to form an internetwork

● Quality of service queuing

● High availability

● Secure transfer.

 Networking layer

The communication between smart devices, sensors, and actuators

is managed by this layer also it is an embodiment of the connectivity with

the cloud. There are several wireless network protocols available today.

The characteristics of these protocols vary greatly. Figure (2.6) shows a

visual representation of a few common wireless protocols and where these

protocols fit in the classification spectrum.

- 21 -

Figure 2.6 Common wireless communication technologies

 The long-range communication technologies are used in this layer

like GSM, LTE, IEEE 802.11P, LoRaWAN, 6LowPan. Furthermore,

which has extra features such as smart analyzing and data aggregation. This

layer consists of two sub-layers to be explained below.

 Edge Networking sublayer

This sublayer consists of communication devices like routers,

switches, wireless routers, and gateways. It supports both wired and

wireless technology using the TCP protocol to associate the connection.

The infrastructure devices or intermediary devices managing the

flowing of data through the network. They use the destination address in

tandem with network interconnection information to decide how messages

should be sent through the network. Figure (2.7) shows the infrastructure

devices.

- 22 -

Figure 2.7 Infrastructure and intermediary devices

The basic trait of an IoE system is the ability to achieve an instant

understanding of its environment, which strongly depends on the efficiency

of data processing. In many practical IoE systems, the nature of the

monitoring or control tasks set by involving machine learning in the forms

of a state classifier or object detector. This processing can be performed

either with a single computing node having spot access to all the sensors

data, such as cloud computing, or the processing workload has to be

reorganized so that it could be adaptively divided among the nodes in the

network which is called Fog nods (FN). FN collects information from

sensors and consolidates the information received and forwards the real-

time smart decisions to change the status of the actuators using the TCP/IP

protocol suite. Small servers or microcontrollers programmed with python

are used to achieve this goal. Figure (2.8) shows how FN interacts with

sensors and actuators[28].

- 23 -

Figure 2.8 Fog Nodes interactions with sensors and actuators

 Using edge distributed processing represented by Fog Nodes allows us

to achieve the following guiding objectives[29]:

 Minimize the amount of traffic to avoid congesting shared wireless

resources and violating requirements on processing latency.

 Minimize the induced processing load on the sensors and

intermediate processing nodes to avoid depletion of their

computational resources.

 Minimize the loss of information in the intermediate stages of

processing resulting in traffic reduction, to avoid deterioration of the

system’s decision-making quality

 Aggregation Networking Sublayer

Data aggregation is one of the influential techniques in the

elimination of data redundancy and improvement of energy efficiency and

the efficient data aggregation technique can reduce network traffic [29].

Data aggregation is done by the integration of incoming packets from

- 24 -

multiple sources without processing them and sending packets.

Computational Intelligence was used for pre-processing and filtering data

in order to conserve bandwidth and processing power. Only relevant

information is then transmitted to the cloud and stored, analyzed, and

visualized there[23]. To evaluate the performance of the network it is

required that environmental parameters are calculated such as data

accuracy, delay, and bandwidth[29].

The important state-of-the-art data count aggregation mechanisms,

as well as their differences, benefits, and weaknesses are divided into three

categories, including tree-based, cluster-based, and centralized aggregation

mechanisms for IoE[8].

 Tree-based mechanism: sensor nodes are organized into a

tree where the aggregation is performed in intermediate nodes

along with the network and aggregated data is transmitted to

the root node.

 Cluster-based mechanism: sensors can send data to a nearby

cluster or aggregator which aggregate the data from all

sensors and transmit the short digest to the sink

 Centralized base mechanism: all sensors transmit their data

packets via the shortest possible path to the central node and

this node performs aggregation of data comes from all node

and the result of this aggregation process will be a single

message.

The format of data generated in real life is not suitable for data

mining (DM) algorithms, also the quality of it is low because different

sensors capture data in different formats. Therefore, using data cleaning is

a critical step towards obtaining positive results. Filtering is another

- 25 -

important preprocessing step to get good performance of IoE applications.

Data deduplication, outlier, entity resolution, and feature selection are

some important preprocessing steps. Feature selection will mean selecting

the observation points that are used as input for the DM algorithms[23].

 Cloud layer

Cloud computing provides shared computing resources and data on

demand, for a distributed environment. Cloud computing build on multiple

data centers that include multiple domains and geographical areas [9].

Nowadays, organizations required a dynamic Information Technology (IT)

infrastructure because of that they shift to cloud computing due to its

features as scalability, accessibility, and pay-per-use features. The most

common services provided by the cloud are known as Software as a Service

(SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS),

all of which are heading towards Anything as a Service (XaaS). However,

data generated from billions of sensors referred to as big data, cannot be

transferred and processed in the cloud directly it needs preprocessing

management[27]. Cloud computing uses a shared pool of computing

resources (e.g., networks, servers, storage, applications, and services) to

provide on-demand network access. Using virtualization in data center

environments, Cloud computing can be rapidly scaled with minimal

management and effort. The National Institute of Standards and

Technology (NIST) has defined four types of cloud deployment models:

private, public, community, hybrid. The IoE requires a variety of cloud

models[1][30]. Table (1) shows a brief detail about these services.

- 26 -

Table 2.2 Cloud Computing Services

Module Definition Managed by Security
level

Public Public clouds are easily available from
Google, Amazon, Microsoft, etc. Public
cloud provides infrastructure and
services to the public or any
organization. Resources are shared by
hundreds or thousands of people

Cloud service
providers

Low

Private works for a defined organization or
business, e.g. cloud for a specific
organization.

Many
organizations
or cloud
service
providers.

High

Community the services and infrastructure are
provided to organizations with similar
interests.

Many
organizations
or cloud
service
providers.

High

Hybrid Is a mixture of a private and public
cloud. Though the clouds are mixed up,
still each has its identity and therefore
aiding multiple deployments.

Public and
organization.

Medium

There are common cloud services for IoE [31] like storage, Big Query,

machine learning (ML) techniques, and others. ML techniques which are

a branch of Artificial Intelligence (AI) are well suited for handling data

stream fuzziness and can be adapted quickly when the environment

changes.

In spite of cloud computing's growing influence, there are some concerns

about it remain as issues. Some common challenges are data protection,

data recovery and availability, management capabilities, regulatory and

compliance restrictions, and time latency.

- 27 -

2.4 Data Exchanging Formats

Whether building a thin client (web application) or a thick client

(client-server application), at some point probably there is a need for

making requests to a web server and need good data format for responses.

As of today, three major data formats are being used to transmit data from

a web server to a client: CSV, XML, and JSON. [32].Table 2.3 describes

the features of the three data Xchanging formats.

Table 2.3 Data Exchanging formats

- 28 -

2.5 Applications of the Internet of Everything

All domains of Smart Cities and digital cities need IoE/IoT applications

that manipulate information in a collaborative environment and store it on

the Internet cloud. Smart Cities and Smart establishments promise to

enhance living conditions, safety, optimize traffic, and economic, social,

and cultural development. A Smart City contains a large number of things,

a set of integrated services, and a bunch of applications[23]. Many smart

city domains like healthcare, e-learning, industrial, and so on are supported

by IoE. Figure (2.9) shows domains of IoE applications.

Figure 2.9 Domains of IoE Applications

- 29 -

The industrial section in many sides makes benefit from IoE capabilities,

for example. The IoE also supports human security applications like using

movement detectors and camera data to detect possible intruders.

Furthermore, the Healthcare applications supported by IoE are considered

as an important sector so eHealth applications can measure blood pressure,

glucose levels, and other patient vitals. A patient has a new fitness tracker

that can add fitness data to the eHealth solution[14].

- 30 -

3 Chapter Three

Programming and Implementation of Smart City Prototype

 Using Fog Computing Architecture

3.1 The Proposed Smart City Prototype

Smart cities are the new goal for the integrated System of Systems

(SoS) and it defines the stringent connectedness between the real and

virtual worlds to improve the life quality of citizens and the sustainability

of cities. There are three important essential services that role direct contact

with people's daily life like Health care services, security control services,

and environment sense services. These sectors need to be accurate and have

an immediate response to accomplish better health and secure society.

To be able to design a smart system many points should be

considered:

 What services should the system provide?

 How can these services improve this sector?

 What are the physical devices needed to make the topology
and are they available in the market?

 Cost of the smart system.

 The network connection and programming.
 Make suitable APIs to run the system smoothly.

In our smart city prototype Instead of designing a specific smart

establishment, we decided to design smart systems that are flexible to be

installed in any establishment and make it smart. Therefore three clusters

(platforms) are designed to enhance healthcare, security, and the

environment sectors. They are flexible and expandable to be installed in

any organization like homes, offices, factories, markets, hospitals, and

many others.

- 31 -

Figure (3.1) shows a general block diagram for our proposed Smart

City IoT-based prototype. This figure clarifies the expandability of the

prototype since each cluster can handle many copies of the same system

that has been installed in any location in the Smart City. The flexibility is

achieved through the ability to install the proposed system prototype in any

location in the city.

Figure 3.1 General block diagram for our proposed Smart City IoT

based prototype

Each Cluster is identified by unique code (shown in figure 3.1) and

consists of many subsystems lied under the same cluster (such as security

control). Table 3.1, gives unique codes for the clusters. All systems upload

the data collected from their sensors and smart devices to the cluster server

which in turn sends the received data to the centralized server as will be

explained later.

- 32 -

Table 3.1 The unique code of each Cluster and the maximum
number of systems

As you can be seen in Figure (3.2) Cluster servers use Fog

computing technologies to process massive data and information locally

and achieve two main jobs on data, first, it sends back real-time response

to control the actuators and smart devices in the system, and second, it

reformats and arranges the collected data from all subsystems in this cluster

and send it to the Centralized server as a stream of messages. The role of

the Centralized server will be explained in chapter four.

Figure 3.2 Smart city Data Flow Structure

- 33 -

3.2 IoE Simulators

One of the most powerful and widespread evaluation methodologies

is network simulation in the area of computer networks[31]. There are

many simulators to represent the wired and wireless networks for the IoT.

We experiment with four simulators Omnetpp 5.5, Cupcarbon, iFogSim,

and packet tracer. The packet tracer is found to be the best simulating tool

for our proposed system because it includes many qualitative criteria

mentioned in table 3.2.

Table 3.2 Nine Qualitative Criteria of Packet Tracer

- 34 -

3.3 GUI -based Implementation of The Proposed Smart

Platforms.

A prototype of a smart city is designed using the Cisco Packet tracer

7.2 simulator taking in our considerations that this prototype is suitable to

be applied in the reallocation. This is because the connected devices and

links are used to simulate Cisco's real devices like routers, switches, and

wireless gateways. Secondly, the sensors and actuators representing

devices that are available in markets. Finally, the programming language

chosen to program servers is quite common and strong language and

compatible with most devices and servers.

Figure (3.3) shows the GUI of the proposed smart city prototype we can

see there are three systems connected to the cluster servers all systems are

connected to the internet wirelessly and obtain their IPs from the Internet

Service Provider (ISP). The devices are communicating with Fog

Nodes(cluster servers) sending their status. the street region contains smart

streetlight which senses the Motion and Light and on and off if there is

amotion at Night. Also, the police and fire engine cars have connected to

Fog Nods to receive the notification if there are problems.

- 35 -

F
ig

ur
e

3.
3

th
e

G
U

I
of

 d
es

ig
ne

d
Sm

ar
t C

ity
 P

ro
to

ty
pe

- 36 -

 Each system consists of sensors and actuators that have been

programmed with python to be able to simulate the real device. General

algorithms for programing both the sensors and actuators are shown below.

 Sensors General Algorithm Algorithm 3-1

1 Set all the initial values

2
Sets up the IOE API # for the remote monitor from the IoE
server.

3
Sense the Change either in Environmental or in Physical
#according to sensor function

4 Send report to IOE server

5 Delay for 1 second

6 Loop to step (3)

Actuators General Algorithm Algorithm 3-2

1 Set all the initial state

2
Sets up the IOE API # for remote monitor and control from the IoE
server.

3
Check for Input # input can be direct as (digital or analog) or from a
remote server

4 Process the Received input and change state according to it

5 Send the state to the IOE server

6 Delay for 1 second

7 Loop to step 3

Each server in our smart city is also programmed with a python

programming language to meet its dedicated goal. The server’s algorithms

will be explained for each system separately later.

Simulation implementation of the Smart systems in our proposed

smart city is given in the following sections.

- 37 -

3.4 Health care system

Healthcare systems have a wide variety around the world, many

companies have developed different kinds of healthcare systems according

to their requirements and resources. The smart healthcare system

developed by us is an essential health vital indicator measurement of

patients and it allows the doctors and nurses to follow-up their patient's

health condition remotely to provide better healthcare for society.

Our proposed system consists of four devices that are connected to

the patient to sense its health condition. Figure (3.4) shows the Health care

system topology.

Figure 3.4 Health care system topology

The Devices Functionality is explained below:

 Heart rate recorder

Patient heart rate is one of the most important vital indicators of its

health so the medical staff in charge of its condition must receive the

updated patient's heart rate constantly.

- 38 -

The device is connected to the patient's body sensing the heart rate

and displaying it on its LCD screen. Figure 3.5 shows the outer physical

shape of the heart rate recorder.

Figure 3.5 Heart rate recorder

The device is provided with a wireless interface 2.4GHz and has two

digital slots and one analog slot as mentioned in figure (3.6).

Figure 3.6 Heart Rate Input/output configuration

The analog input reads the heart rate from the patient and the digital

input slot (0) reads the patient Identification code, the device analyzes the

analog data if it is less than 60 heartbeats/second and more than 90

heartbeats/sec, it set the alarm state to (1). Also, it displays the heart rate

on the device's LCD and changes the color to red if there is abnormal status

as figure (3.7) shows.

- 39 -

Figure 3.7 Heart Rate alarm

The device then reformats the Data as Colom separated value format

(CSV) to prepare it to send to the Cluster Healthcare Server (CHCS). The

message format below consists of six fields, the first four used to identify

the heart rate reader device to the CHCS, and the last two fields are the

patient ID and heart rate value:

Heart rate Device to CHCS message format:

1 2 3 4 5 6

Cluster Code
(2000HCS)

Local IP
Address

Heart
Rate

Device Serial Patient ID
Heart Rate

value

The Heart rate device uses the wireless interface to send the

produced message to the CHCS. Figure (3.8) shows the message header

format.

Figure 3.8 PDU Information of Heart rate Device Message

- 40 -

The messages are sent over the UDP protocol every 6 seconds so we

predict that the device may send about 600 messages to the server each

hour. This large number of messages are analyzed and filtered in

aggregation sublayer as will be seen in Chapter(4).

The Health care getaway wireless device provides the IP address to

all devices connected to it using the DHCP protocol. Figure (3.9) shows

the network configuration of the Heart rate reader device.

Figure 3.9 Network configuration of Heart rate reader

 Body temperature meter

Measuring body temperature is the basic step in any patient checkup

so a prototype device is developed that senses the patient’s body

temperature and sends it wirelessly to the server. The device is connected

physically to the patient's body as shown in figure (3.10).

Figure 3.10 Body temperature Meter

- 41 -

The device is provided with a wireless interface 2.4GHz and has two

digital slots and one analog slot as explained in figure (3.11).

Figure 3.11 Body Temp. Meter Input/output configuration

The wireless interface is connected to the Health care gateway which

provides the IP address to all devices connected to it using DHCP protocol.

Figure (3.12) shows the network configuration of the Body Temperature

Meter device.

Figure 3.12 Network configuration of Body Temp. Meter

The digital inputs functionalities are to read the patient Identification

code with slot (0) and display the received data on the device Monitor with

slot (1), while the analog input reads the temperature of the patient. The

device analyzes the analog data if it is between 97°F (36.1°C) to 99°F

(37.2°C), it is considered that this is a normal situation and set the alarm

- 42 -

state to (0), otherwise, it sets the alarm state to (1). Figure (3.13) shows the

alarm state of high body temperature.

Figure 3.13 High body temperature

The collected data are organized and formatted as (CSV) data and

then sent as a message to the cluster Healthcare Server (CHCS). the

message format is almost similar to all devices connected to the server just

different in the device name field (5) and record field (6) as can be seen

below.

Body temperature meter to CHCS message format:

This message is sent over UDP protocol to the IoE API in the server

and Fig. (3.14) shows the message PDU information.

Figure 3.14 Message PDU information

1 2 3 4 5 6

Cluster Code

(2000HCS)

Local IP

Address

Body

temperature

Device

Serial
Patient ID

Body temperature

value

- 43 -

The body temperature meter device sends periodic messages to the

CHCS every 6 seconds with a message packet size (64) byte, which means

that in an hour, the server receives about (600) messages to be about (38.5)

kilobyte of data, the CHCS should analyze and respond to it in the real-

time as will be explained.

 Peripheral oxygen saturation meter (SpO2):

Pulse oximetry is a method used to approximate the percentage of

oxygen bound to hemoglobin in the blood. The SPO2 is a small device that

clips to the body (typically a finger) and transfers its readings to a reading

meter using wired or wireless technology. The device uses light-emitting

diodes in conjunction with a light-sensitive sensor to measure the

absorption of red and infrared light in the extremity. The difference in

absorption between oxygenated and deoxygenated hemoglobin makes the

calculation possible.

 Oxygen saturation values for healthy individuals at sea level are

usually between 99% and 96% and should be above 94% [33] as shown in

table 3.3.

Table 3.3 Effects of decreased oxygen saturation

SaO2 Effect

95% and above No evidence of impairment

80% and less Impaired mental function on average

75% and less Loss of consciousness on average

A simulated smart device is designed according to the above

considerations as shown in Figure (3.15)

- 44 -

Figure 3.15 Peripheral oxygen saturation meter (SpO2)

The device has one digital slot to read the Patient’s ID and an analog

input to read the Spo2 value as shown in figure (3.16). these values are

analyzed and then sent as an accumulated message to the CHCS wirelessly

in the same procedure as mentioned in section 3.4.2.

Figure 3.16 SPO2 input-output configurations

 Blood Sugar meter:

Diabetes is described as “a metabolic problem in which the body is

unable to regulate the levels of glucose in the blood”. The cause of this

disorder is the lack of insulin, which is the hormone responsible for

regulating the levels of glucose. the glucose in blood concentration in a

safe range between 54 mg/dL and 120 mg/dL. [34].

- 45 -

Our proposed simulated device lied under the above limits, it tests

the blood glucose if it is under the lower limit or above the upper limit it

alarms the server that there is a critical health situation for this patient.

Figure (3.17) shows the blood sugar meter device.

Figure 3.17 Blood sugar meter

As we can notice from figure (3.17) the device displays the patient

glucose percentage on its Lcd with alarming red led if there is an

emergency.

The Input-output configuration consists of 2-digital slots first one

connected to the patient’s bed to get its ID, the other slot is to display the

glucose value on device Lcd.

Also, the device has an analog input to read the analog input coming

from its sensor pasted on the patient body to detect glucose level. Finally,

the device is provided with a wireless adapter of 2.4GHz to communicate

smartly with the Cluster Healthcare server (CHCS). Figure (3.18) shows

the Blood sugar meter input-output configurations.

Figure 3.18 Blood sugar meter input-output configurations

- 46 -

The device accumulates the incoming data and, then the system

information sending it as a message to the CHCS as explained in section

(3.2.1). This message is sent every 6 seconds using the UDP socket

connection with the Custer server.

 Cluster Healthcare server (CHCS)

This cluster server uses the edge Fog Computing concept to collect

data from the medical devices explained previously analyzes the data and

replies to the system with a real-time response. The data analysis is done

according to the following equations

Halarm = ൝
+1 H > 90
−1 H < 60
0 otherwise

Galarm = ൝
+1 G > 120
−1 G < 54

0 otherwise

SPO2alarm = ൝
+1 SPO2 < 80
−1 SPO2 < 75
0 SPO2 ≥ 95

Talarm = ൝
−1 T < 36.1
+1 T > 37.2

0 otherwise

While:

H: Heart rate value

Halarm: is a heart rate alarm

- 47 -

T: Body Temperature value

Talarm: Body temperature alarm

Spo2: spo2 value

SPO2alarm: SPO2 alarm

G: Blood sugar value

Galarm: Blood Sugar Alarm

It is work according to the algorithm (3.5) below:

 Clustered Health care control server Algorithm 3-3

1 Setup the TCP connection

2 Setup the UDP connection

3 Initiate IOE connection with smart devices

4 Initiate Email configuration:

Email Address: sever@health.com

Incoming/outgoing mail Server: www.health.com

Password: ********

5 Receive inputs from devices

H= heart rate

G=blood sugar

Spo2= SPO2

T=body Temperature

6 Analyze the inputs of each device

7 If (90<H) OR(H<60)

8 Halarm = 1

9 Send Email (

Destination: doctor@health.com

subject: Patient (Patient ID) Heart rate alarm

Body: Heart rate is: H

10 End if

- 48 -

As we can see from the algorithm the centralizes healthcare control

server has two main functionalities

Firstly, it analyzed the inputs by checking their upper and lower

limits if there is any abnormal situation, the server sends an alarming email

to the doctor’s smartphone responsible for this case.

11 If (120< G)OR(G <56)

12 Galarm=1

13 Send Email (

Destination: doctor@health.com

subject: Patient (Patient ID) Blood Sugar alarm

Body: Blood Sugar is: G

14 End if

15 If (94> SPO2)

16 SPO2alarm=1

17 Send Email(

Destination: doctor@health.com

subject: Patient (Patient ID) SPO2 alarm

Body: SPO2 is: SPO2

18 End if

19 If (36.1> T) OR(T>37.2)

20 Talarm=1

21 Send Email (

Destination: doctor@health.com

subject: Patient (Patient ID) Body Temperature alarm

Body: Body Temperature is: SPO2

22 End if

23 Send report to Centralize server as UDP packets

24 Loop to step 5

- 49 -

The email body consists of the abnormal value and the patient ID as

shown in figure (3.19).

Figure 3.19 Email service in Doctor Phone

Doctor phone is receiving the email when it is connected to the

internet from any location as an example in the street as shown in figure

(3.20).

Figure 3.20 doctor phone connected through 4G to the internet

The second functionality of the CHCS is to export the data to the

Centralized Fog Server the data is organized in CSV format and send over

the UDP Socket connection between CHCS and the Centralized server.

- 50 -

The message format sends as below:

This message will be uploaded to Microsoft Azure Cloud as will be

explained in Chapter 4

3.5 Security Control System

Ordinary security systems are good but still, have some issues with

the real-time response in the emergency stations, unlike the smart security

systems which inform all the commands to controlling centers within

seconds to halt or minimize the loss.

The main contribution of this system is to design a Security Control

System able to be installed in any location to provide instant notification

to concerned departments to prevent or to minimize the disaster. This is

achieved by remotely control and monitoring the sensors and security

devices during normal conditions to guarantee full control over the

Security Control System at any time and from any place. The system also

can remotely program and configure all these devices. Finally, the Security

Control System collects and analyzes data of all sensors and security

devices to make smart decisions during abnormal situations or an

emergency.

The smart security system consists of two subsystems: the Fire

detection and the building security subsystems so we will explain each

subsystem separately.

Gateway Gateway
port

Cluster
Code

Device
local IP
Address

Patient
ID

Device
Name

Device
Serial

data

1 2 3 4 5 6 7 8

- 51 -

 Fire detection subsystem

In this system, the Network topology consists of a fire monitor

sensor, smoke detector sensor, water level monitor, sprinkler, and water

drain. All these devices are provided with a wireless adapter interface of

2.4GHz band which is suitable for connection to wireless networks or

home gateways.

The devices are wirelessly connected to the home gateway and

obtained their IP addresses by DHCP protocol; the gateway connects the

system to the internet. as shown in figure (3.21).

All devices are registered to the Cluster Security Control Server

(CSCS).

Figure 3.21 Network topology of Fire Detection subsystem

The CSCS collects data from sensors analyzing it according to

algorithm 3-3 which describes smart decisions based on multi-inputs from

more than one sensor which implements the M2M connection and then

- 52 -

responses to the system in the real-time. The CSCS is provided by the user

interface web page as seen in figure (3.22) allowing administrators and

decision-makers to login to the system and program the settings remotely.

Figure 3.22 web interface for registration server login

- 53 -

 Fire Detection Server Algorithm Algorithm 3-4

1 Setup the TCP connection

2 Setup the UDP connection

3 Initiate IOE connection with smart devices

4

Receive inputs

S=smoke Detector Level

IR=Fire Monitor Level

W=Water Monitor Level

5 If (760< IR <1100) AND (S>40)

6 ℱ𝑎𝑙𝑟𝑚= 1

7 Else

8 ℱ𝑎𝑙𝑎𝑟𝑚 = 0

9 End if

10 If ℱ𝑎𝑙𝑎𝑟𝑚 = 1

11 Send ON to sprinkler

12 Setup email (server@security.com)

13
Send Email(Destination: fireEngine@security.com, subject: Alarm,
Body: an unusual situation in system1001, please check the location
urgently address is building number/street name/town

14 Else if ℱ𝑎𝑙𝑎𝑟𝑚 = 0

15 Send OFF to sprinkler

16 End if

17 If W>20

18 Send ON to Water Drain

19 else if w < 2

20 Send OFF to Water Drain

21 End if

22 Send report to Centralize server using UDP packets

23 Loop to step 4

- 54 -

The following equations represent algorithms 3-3 :

𝓕𝐚𝐥𝐚𝐫𝐦 = ቄ
𝟏 (𝟕𝟔𝟎 < 𝐈𝐑 > 𝟏𝟏𝟎𝟎)𝐚𝐧𝐝(𝐒 > 𝟒𝟎)
𝟎 𝐞𝐥𝐬𝐞

………… Equation3.1

𝐒𝐩 = ቄ
𝟏 𝓕𝐚𝐥𝐚𝐫𝐦 = 𝟏
𝟎 𝓕𝐚𝐥𝐚𝐫𝐦 = 𝟎

 …………….….Equation 3.2

𝐖𝐝 = ቄ
𝟏 𝐰 > 𝟐𝟎
𝟎 𝐰 < 𝟐

 ……………….Equation 3.3

While∶

 𝓕𝒂𝒍𝒂𝒓𝒎 is flame detection.

𝐈𝐑 is the input of the Fire Monitor.

𝐒 is the smoke Detector Value.

 𝐒𝐩 is the status of the sprinkler.

 𝐖𝐝 is a water drain status.

𝐒 is the smoke Detector Value.

 𝐰 is water Level.

The communication between devices and CSCS start with sending a

TCP connection establishment message to the cluster security control

server (CSCS) as shown in figure (3.23). The green line represents the

packet path from the device to CSCS. The simulation panel at the right

shows the time, destination and, source devices, and protocol.

- 55 -

Figure 3.23 TCP Connection Establishment between devices CSCS

After the TCP establishment is completed the fire Monitor checking

for flames by testing the IR wavelength in the environment if its value

between 760 nm and 1100 nm it recognizes that there is a fire, it sends the

IR value to the CSCS over TCP. The smoke detector also sends the smoke

level value to the server if its value is more than 40. Figure 3.24 shows this

process.

Figure 3.24 Fire Monitor and Smoke Detector Send their levels to CSCS

When CSCS checks the received data of Fire monitor input (IR) and

if the range from 760nm to 1100nm and if the percentage of smoke in the

system environment is more than 40%, the CSCS considers that there is an

emergency, so an immediate response is going to be taken as below:

- 56 -

First, turn the sprinkler on by sending an IoE-server change status

message over TCP see figure (3.25).

Figure 3.25 The Fire Sprinkler state is ON

Second, sends an email Message to the Fire-engine in order to provide

backup to the local system as shown in figure (3.26).

Figure 3.26 Sending Email Message using POP3 protocol to the
Fire Engine

The Fire-engines Receive an email from CSCS including the system

code and location so it is directed to this location then updates its GPS

location to the server every 5 seconds. Figure (3.27) shows the email

format.

- 57 -

Figure 3.27 Email format from Server to Fire engine

At the same time while sprinkler and fire-engine push a large amount

of water to cool down the flames, the water level increases without control

that may make problems in location so the CSCS checks the water level if

it is more than 20 cm it puts on the water drainer until it is less than 2 cm.

Figure (3.28) shows this mechanism.

Figure 3.28 Draining the high-level water mechanism

As mentioned in paragraph 3.1 that the speed of system response is

very important, so we measure our system response to change of Fire

element and record the time value as shown in table (3.4).

- 58 -

Table 3.4 Response time of system components to the Fire element
state changes.

The whole system response time vs the change in the environment

is shown in figure (3.29).

To calculate the average response time, we use the following

equation is used:

TR=
∑ 𝐓𝐑𝐧𝟎

𝐍ష𝟏

𝐍
 ……………... Equation 3.4

 While:

TR: Time Response.

TRn: Time response per change.

N: Number of changes in the system environment.

Fire detection TR is: 1.091166667 second

1.31
1.0931.0671.101

0.895
1.081

123456

Figure 3.29 Response Time per each status change in the system
environment

- 59 -

 Security Subsystem

The need for life security systems is increased with increment in live

complexity and requirements. The IoT makes connecting smart devices

easier as ever that gives us the ability to design smart Monitoring and

alarming systems that have the flexibility to be installed in any location

and send data further forwarded to fog cloud centralized server which

analyzes a large amount of data and take real-time reactions.

Our proposed system consists of Motion Detector, RAFID reader,

RAFID cards, Webcam, Door, Garage Door, police car, and Siren and all

of these devices are provided with a wireless interface of 2.4GHz band

which is suitable to connecting them to wireless networks through the

home gateway.

The home gateway provides IP addresses to the devices by using

DHCP protocol and connect devices to the cluster security control server

(CSCS) through the internet. Figure (3.30) shows the topology of the

system.

Figure 3.30 Topology of Smart Security system

- 60 -

In this platform, the communication between devices and server is

done by sending TCP connection establishments between devices and

CSCS. Figure (3.31) shows the TCP connection establishment.

Figure 3.31 TCP Connection Establishment of Security System

The motion detector sends any discovered motion to CSCS, the

RAFID reader also sends its status if there is a RAFID card or Not, and if

the card is valid or not, these data are sent on TCP protocol as IoE client’s

data to the IoE sever figure (3.32).

Figure 3.32 Motion detector and RAFID reader sending status to
the server

- 61 -

The CSCS checks the incoming data from the Motion detector and

RAFID reader according to algorithm 3-4 which mimic the following

equations:

Ɽ𝐜𝐚𝐫𝐝 = ൝
𝐍𝐕 𝐈𝐃 = 𝐍𝐔𝐋𝐋
𝐍𝐕 𝟏𝟎𝟎𝟎 > 𝐈𝐃 < 𝟐𝟎𝟎𝟎
𝐕 𝟏𝟎𝟎𝟎 < 𝐈𝐃 > 𝟐𝟎𝟎𝟎

 … … … … … Equation 3.5

𝐒𝐚𝐥𝐚𝐫𝐦 = ൝
𝟏 𝐌 = 𝟏 𝐀𝐍𝐃 Ɽ𝐜𝐚𝐫𝐝 = 𝐍𝐕

 𝟎 𝐌 = 𝟏 𝐀𝐍𝐃 Ɽ𝐜𝐚𝐫𝐝 = 𝐕
𝟎 𝐌 = 𝟎

 … … … … Equation 3.6

While:

 Ɽ𝐜𝐚𝐫𝐝: RAFID card Status

 ID: Identification number of RAFID card.

 NV: Not Valid

 V: Valid

 M: Motion Detection

 Salarm: Security alarm.

Fire Detection Server Algorithm Algorithm 3-5

1 Setup the TCP connection

2 Setup the UDP connection

3 Initiate IOE connection with smart devices

4 Receive inputs

M=Motion Detector

𝐼𝐷=RAFID reader

5 If (1000> 𝐼𝐷 <2000) OR (𝐼𝐷 =Null)

6 Ɽ𝑐𝑎𝑟𝑑= NV

7 Else IF (1000< ID > 2000)

8 Ɽ𝑐𝑎𝑟𝑑 = V

9 End if

10 If ((Ɽ𝑐𝑎𝑟𝑑 = 𝑁𝑉) AND (M=1))

- 62 -

When the Motion detector finds out a motion and the RAFID Reader

read a Not Valid card the CSCS considers that there is an emergency so it

switches the Webcam ON to see the Enterer and close the door and the

garage door to prevent any stranger from entering. The CSCS also puts the

Siren ON to alarm the security guards. Figure (3.33) shows this situation.

11 Salarm = 1

12 Else if ((Ɽ𝑐𝑎𝑟𝑑 = 𝑉) AND (M=1))

13 Salarm = 0

14 Else if (M=0)

15 Salarm = 0

16 End if

17 If (Salarm=1)

18 Send IOE server Message to ON the Siren

20 Send IOE server Message to ON the Webcam

21 Send IOE server Message to LOCK the Door

22 Send IOE server Message to LOCK the Garage Door

23 Send Email(Destination: police@security.com, subject: Alarm, Body:
unusual situation in system1001 , please check the location urgently
address is building number/street name/town

24 Else if ((Salarm = 0) AND(M=1))

25 Send IOE server Message to OFF the Siren

26 Send IOE server Message to OFF the Webcam

27 Send IOE server Message to UNLOCK the Door

28 Send IOE server Message to OPEN the Garage Door

29 else if ((Salarm = 0) AND(M=0))

30 Send IOE server Message to OFF the Siren

31 Send IOE server Message to OFF the Webcam

32 Send IOE server Message to LOCK the Door

33 Send IOE server Message to LOCK the Garage Door

34 End if

35 Send report to Centralize server as UDP packets

36 Loop to step 4

- 63 -

Figure 3.33 CSCS Response to motion detection and invalid card

and lastly, an email sent to the Police cars that there are some

problems in this location, so they go directly to the location and manages

it. Figure (3.34) shows the email sending mechanism

Figure 3.34 Email server sending the email to police car over
POP3 protocol

The alarming Email format received by the Police care is shown in

figure (3.35) .

- 64 -

Figure 3.35 Alarming Email Format on Security Emergency

If the status of received inputs in CSCS is Motion Detected True and

a valid RAFID card placed in the RAFID reader, it sends an order to open

the doors and allow entry for valid persons. The orders are sent using the

IoE server to client service over TCP protocol. This procedure is shown in

figure (3.36).

Figure 3.36 CSCS Controlling the Doors to allowing Valid Persons

The whole system response time vs change in the environment is

shown in figure (3.37).

3.37 system Response time vs status changes.

1.013
1.576

1.103
1.639

1.079

1.992

123456

RESPONSE TIME

- 65 -

To calculate the average response time, The following equation is

used:

TR=
∑ 𝐓𝐑𝐧𝟎

𝐍ష𝟏

𝐍
 ……………... Equation 3.7

 While:

TR: Time Response.

𝐓𝐑𝐧: Time response per change.

N: Number of changes in the system environment.

Fire detection TR is: 1.400333 second

3.6 Environment control system:

Air quality and environmental pollution are the main factors that

pose real environmental challenges. Appropriate supervision is required so

that the world can achieve sustainable growth through the preservation of

a healthy society. Recently, environmental monitoring, with the

developments of the Internet of Things (IoT) and the advancement of

digital sensors, has become a smart environment monitoring (SEM)

system.[19].

The packet tracer simulator environment allows us to control many

environment elements like gases, light, wind, radiation, temperature, and

water as shown in figure (3.38). This feature in packet tracer allows us to

have an environment close to real.

- 66 -

3.38 Packet tracer environment elements

Smart cities are planned using wireless networks that assist the

monitoring of effective wastes management, temperature control, vehicle

marking, and pollution control. Therefore, modern methods of

environmental monitoring are known as SEM systems, due to the use of

IoT, and wireless modern sensors which operate on AI base monitoring

and controlling methods. Figure (3.39) shows the smart environment

monitoring system topology.

- 67 -

Figure 3.39 Smart Environment system topology.

The proposed system consists of the smart devices explained below.

 Humidity Monitor:

Keeping the relative humidity of the environment at an ideal level

between 30% and 50% is important for both the health and the condition

of buildings[35]. the humidity monitor device is used for reading

environment values to determine the humidity. Figure 3.40 shows the

device and how it is connected wirelessly to the Home gateway.

Figure 3.40 Humidity Monitor

- 68 -

 Humidifier:

Humidifiers are devices that emit water. Using a humidifier when

relative humidity is too low may help alleviate many of the health

symptoms associated with dry air[35].

 Dehumidifier:

Dehumidifiers work by reducing humidity from buildings, making

it a less hospitable environment for allergens like dust, mold, and mildew.

 Carbon Monoxide Detector:

Carbon monoxide (CO) is a colorless, non-irritant, odorless, and

tasteless toxic gas. It is produced by the incomplete burning of

carbonaceous fuels such as wood, petrol, coal, natural gas, and

kerosene[36].

 If the detector detects a Carbon Monoxide level more than 20%

Alarm will go on. The device updates the Registration server with the alarm

status and the level of CO.

 Carbon Dioxide Detector:

CO2 is a gas produced by exhaling and from the combustion of

carbonaceous fuels. The CO2 detector checks the percentage of the gas in

the environment if it is more than 60%, alarm goes on.

The device is connected wirelessly to the registration server and

update its levels and status continuously.

- 69 -

 Thermostat:

This device is responsible for keeping the temperature levels

comfortable for humans by controlling the conditioner and heater devices.

Figure (3.41) shows the Thermostat.

Figure 3.41 Thermostat

As it can be seen in figure 3.42, the thermostat has three digital

outputs (two of them used to control heat and cool) and the other used to

display the temperature value on the screen it also has a wireless interface

connecting it to the gateway.

Figure 3.42 input/output configuration of the Thermostat

 Furnace

It increases the temperature of typical office space at 10C per hour.

Also, Reduces the humidity by 2% per hour. It is connected to the D1 slot

of the Thermostat to take the control orders ON/OFF.

- 70 -

 Air Conditioner (AC)

Cools the temperature of typical office space at -10C per hour. Also,

Reduces the humidity by 2% per hour.

It is controlled by the thermostat via Connecting it to the D2 slot of

the Thermostate also can be controlled by the registration server by

connecting to it wirelessly.

 Cluster Environment control server (CECS)

Monitoring all the devices of the environment control system is done

by the CECS as shown in figure(3.43). The GUI in this figure shows the

details of the status of the humidity, ATM pressure, smoke, carbon, and

temperature. these environmental details can also be acceded by any smart

device like a laptop or smartphone connected to the internet and have an

authentication. As well as the CESC transmits the collected data to the

Centralized server after adding cluster code to each message.

Figure 3.43 GUI interface of monitoring and controlling environment in
CECS

- 71 -

4 Chapter Four

Implementation of Data Aggregation and Cloud

Computing with Results

4.1 Introduction

Data aggregation is responsible for increasing the network lifetime

and reducing energy consumption. Nevertheless, each node has the

capacity to keep data received from the next nodes or data generated by

itself for some time, aggregate them, and send out the aggregated result [8].

So, redundancy is removed from raw data and the communication cost is

decreased [37]. The Centralized server in this proposed Smart City

platform which lays in the Networking layer of IoE architecture is

responsible for the data aggregation process. It is programmed using

python 3.8 to perform data preprocessing functions as figure (4.1) shows

the blue rectangle represents the centralized server functions and each one

will be discussed in detail.

Figure 4.1 Centralized Server Functions

- 72 -

4.2 Link API with Smart City Cluster Servers

The socket is the software abstraction used to represent the

"terminals" of a connection between two machines. For a given connection,

there is a socket on each machine, working as a virtual hypothetical "cable"

running between the two machines with each end of the "cable" plugged

into a socket. Minute

We used the UDP-Socket connection to make the link between

Cluster servers in the Packet tracer and the Centralized server in Local Host

using Python 3.8 programming. Figure (4.2) shows a piece of code.

Figure 4.2 UDP Socket API piece of code

4.3 Data Aggregation

Data Aggregation as an efficient method helps to improve the

efficiency and accuracy of the information, which is achieved via a whole

network. Specific redundancy exists in the data gathered from nodes, so

this process is required to decrease the unnecessary information. Also, it

decreases the traffic load and saves the energy of the nodes. As it can be

seen in Figure (4.3) in about one minute the server received 11 messages

from the Blood _Sugar Meter for the Same Patient. The Aggregation

reduced all these massages to one message which will be sent to the cloud.

- 73 -

Figure 4.3 Effect of Data Aggregation in removing data
redundancy

4.4 Data Formatting to JSON

The data received from the smart city is in CSV format as mentioned

in Chapter three. After aggregating this data, the result should convert to

the JSON format in order to be understandable in the cloud. Figure (4.4)

shows the message format.

Figure 4.4 Message format

4.5 Link API with Azure Microsoft HUB

In order to upload the messages to the cloud, Microsoft provides a

simple example with Copyright (c) Microsoft contain the uploading

instructions. The useful part of this code that is compatible with our

program is used. Below is the main instruction of this API.

from azure.iot.device import IoTHubDeviceClient, Message # Import
Azure library
CONNECTION_STRING = "HostName=smartcitydata.azure-
devices.net;DeviceId=MyPythonDevice;SharedAccessKey=aT6fbILt//Y/WklB3
ULudJa2RuMYdGC3yoBN3KGlrh4=" # device identification string
client = iothub_client_init() # Identifies Azur-Hub Client
client.send_message(message) # Send Client Message to Hub

- 74 -

4.6 Centralized Server Functionalities

 The flow of data processing in this server is considered as a

sequence of three ordered steps, each possibly involving a series of

activities on these constituents, as follows:

 Preparation of the raw data A data aggregation process starts with

preparing the raw data required for the aggregation. This step may involve

the locating, extraction, transportation, and normalization of raw data, if

necessary.

 Aggregation of the raw data An aggregate function is applied by

the aggregator that transforms the raw data into the aggregated data.

Post-handling of the aggregated data may be further handled by the

aggregator, for instance, saved into persistent storage or provided for other

processes. Figure (4.5) shows the flow chart of the centralized server

algorithm.

The flow chart is based on the algorithm of aggregating data by

removing the duplicity from streaming IoT messages in real-time. The

concept of this algorithm depends on making a comparison between the

Number Of Messages(N) which is called Window, that are stored in

temporary dynamic cash. When the server starts receiving data it sends the

N number of messages directly to the cloud and store a copy in the cash.

After that, each new message, is compared with all N messages in cash and

if matching is found the cash pops the old value and inserts the new

message at the end of the cash. otherwise, the algorithm sends the message

to the cloud and then updates the cash by removing the last reading of the

same device and insert the new reading at the end of the cash.

- 75 -

Figure 4.5 Centralized server Flow chart

- 76 -

4.7 Results of Aggregation

 Our aggregation algorithm is tested to find out the best window size

for the proposed system to gain the best data quality and size.

Table 4.1 Aggregation Percentage for All Platforms

Windows Size Before Aggregation After Aggregation Aggregation Percentage
15 4,314 447 89.64%
20 4,524 541 88.04%
25 4,409 393 91.09%
30 3,636 350 90.37%

As can be noticed from Table 4.1 The best aggregation percentage

was gained at a Window size of 25 messages regarding data integrity. To

test the algorithm of the different types of devices connected to the network

two devices are taken. The first one has almost stable inputs most of the

time (ATM pressure meter) from the environment cluster, and the second

device has varied inputs (Blood-sugar meter) from the health care cluster.

Tables (4.2) and (4.3) contain the aggregation percentages for each device.

Table 4.2 ATM Pressure Aggregation (almost stable Inputs)

Windows Size Before Aggregation After Aggregation Aggregation Percentage
15 280 1 99.64%
20 270 2 99.26%
25 275 2 99.27%
30 239 2 99.16%

Table 4.3 Blood sugar Meter Aggregation (vary Reads)

Windows Size Before Aggregation After Aggregation Aggregation Percentage
15 298 20 93.29%
20 285 19 93.33%
25 285 17 94.04%
30 212 21 90.09%

- 77 -

As can be noticed from the values in the table (4.2) the aggregation

percentage is high, and the best percentage was gained in the window of

size 15. In the case of varied inputs in the table (4.3), the best aggregation

percentage is obtained at window size 25. Meanwhile, most of our devices

provide varied inputs, so a window size of 25 was dependent.

Figure (4.6) shows the number of messages per minute for each of

the designed prototypes before and after aggregation. It can be noticed that

there are considerable reductions in the number of messages sent by the

security cluster and this is due to the fact that events for security are mostly

static .

Figure 4.6 Effect of Aggregation on the Number of Messages

- 78 -

The results of aggregation for the prototype are viewed in figure

(4.7). The proposed algorithm helps in reducing the number of messages

by removing redundancy and duplicity with saving the data integrity.

Figure 4.7 Statistical comparison of Number of Messages Before
and After Aggregation

- 79 -

4.8 Microsoft Azur Cloud HUB

IoT Hub is an Azure service that enables the client to ingest high

volumes of telemetry from IoT devices into the cloud for storage or

processing. To be connected to the cloud hub, some prerequisites must be

fulfilled like creating an Azure account with an active subscription and

Python 3.7+ project, also checking if Port 8883 is open in the client firewall

because the device uses MQTT protocol, which communicates over port

8883.

To create an IoT hub using the Azure portal from the Azure

homepage, the client must select the (Create a resource) button, fill in all

information required as shown in Figure (4.8).

Figure 4.8 IoT hub creation window

After completing this step we submitted our device as a client in this

Hub by using the cloud shell command line. Figure (4.9) shows the

commands of creating a client to the hub.

- 80 -

Figure 4.9 commands of creating a client to the hub in the cloud shell

After that, the device information in the hub such as the (connection

string) was retrieved by us. Figure (4.10) shows the information of the

centralized server device. This information is important for identifying the

local device to the IoT Hub.

- 81 -

Figure 4.10 The information of the client device in the Azure IoT
hub

Finally, The cloud subscription for the smart city data got an IoT hub

containing one client as shown in Figure (4.11).

Figure 4.11 deployment of the centralized server in the Azur IoT
Hub

Now, the hub starts to receive the messages sent by the Smart city

Centralized server as shown in figure (4.12).

- 82 -

Figure 4.12 Smart city data at the Azure Hub

These messages can be routed to any cloud service in our case we

rout it to the cloud storage in order to be ready for more analysis and

mining.

- 83 -

5 Chapter Five

Conclusions and Challenges

5.1 Conclusion

After finishing this work and after overcoming challenges, the

following conclusions can be deduced.

1. Today the world lives the four phases of the Internet Where this

phase is called Internet of Things/Internet of Everything (IoT/IoE).

The Smart City is one of the major fields still the research tackling

it to complete the standards, develop the technologies, enhance the

performance, and to extend the applications. This work comes to

contribute to this direction.

2. The proposed smart city prototype which includes three service

platforms is flexible and scalable. Flexible because services and

functions within each platform can be easily monitored, controlled

and managed. Scalable because any other platforms and any other

services within the platform can be added without interrupting the

whole system.

3. Enhancing the performance is achieved by programming an

aggregation algorithm and appling it to be as the edge computing in

the IoE infrastructure. This results in saving bandwidth and reducing

latency in networking.

4. Machine to Machine (M2M) and Person to Machine (P2M) are two

IoE pillars realized in this smart city prorotype.

- 84 -

5. The IoE architecture is applied with its three layers, IoT layer,

network layer, and cloud layer, satisfying the software and hardware

requirements for real-time operation.

6. fog computing provides notification service at the edge of the

network which contributes to avoid critical situation.

7. Advantages like availability, low cost, and scalability are gained

since fog computing stores the aggregated information in distributed

storage.

8. The Packet Tracer 7.2 is used to design the three platforms because

it is an efficient tool to simulate different network topology using

wired and wireless connections and run the different protocols

simultaneously. The high degree of accuracy in simulating Cisco’s

IOS by packet tracer enables efficient simulation for many

information systems, like servers and terminals, in addition to

simulating the concept of the Internet of Everything (IoE). Packet

tracer support three programming languages JavaScript, python, and

Blockly programming. All that is customized by a graphical user

interface (GUI) and allows contribution for multi-users activities.

All of this makes it a powerful tool to simulate complex and inter-

protocols scenarios.

5.2 Challenges

1. Choice of the suitable simulator to perform efficiently the proposed

smart city. Four simulators were tried: CupCarbon , Ifog Sim,

Omnet-5, and Packet tracer. its found that the most suitable

simulator for this work is packet tracer as mentioned in chapter three

.

- 85 -

2. Exporting the real time data from packet tracer to local host was an

issue because there are no references tackeld this process. So many

methods were tried to achieve this step and it is found that the best

solution to this issue is using TCP-Socket API.

3. The large number of messages produced by the smart city prototype

results in overlapping between messages at the Tcp server, because

TCP is a stream of bytes protocol . So, an attempts to fix this

problem was made by implementing some forms of message

framing, but it did not work. Finally, we turn to use UDP Socket

because dose not cuse such problem.

4. The Google Cloud Platform (GCP) as a service provider was tried

and after establishing an account in the cloud console and activated

it by Turkish address because GCP service is not supported in Iraq,

a problem was faced when loading a large number of telemetry

messages, and to overcome this a MAC Client must be used. So the

cloud services changed to the Azure Microsoft which supports

windows and achieve the goal.

5.3 Future work

1. Deep analysis, Data Mining ,and Machine Learning can be applied

to the smart city data platforms uploaded to cloud to provide statistical

on the interacting performance among city platforms. This statistical

supporting and enhancing decisions were made in the city control

center.

2. As a result of this work, any platform of the smart city can be applied

practically in Mosul city as a first step toward establishing smart city

to enhance the quality of citizen life.

- 86 -

- 87 -

References

[1] Cisco, “Internet of Everything,” cisco internet of everything course.

pp. 1–11, 2017, doi: 10.1007/978-3-319-55405-1_1.

[2] F. Garzia and L. Papi, “An Internet of Everything based integrated

security system for smart archaeological areas,” Proceedings -

International Carnahan Conference on Security Technology, vol. 0,

2016, doi: 10.1109/CCST.2016.7815684.

[3] Z. Nezami and K. Zamanifar, “Internet of Things/Internet of

Everything: Structure and Ingredients,” IEEE Potentials, vol. 38, no.

2, pp. 12–17, 2019, doi: 10.1109/MPOT.2018.2855439.

[4] S. T. Gao, Xiao-zhi and M. C. T. K. K. Mishra, Advances in

Computational Intelligence and Communication Technology.

Springer Nature Singapore Pte Ltd. 2021, 2019.

[5] P. G. V. Naranjo, Z. Pooranian, M. Shojafar, M. Conti, and R. Buyya,

“FOCAN: A Fog-supported smart city network architecture for

management of applications in the Internet of Everything

environments,” Journal of Parallel and Distributed Computing, vol.

132. pp. 274–283, 2019, doi: 10.1016/j.jpdc.2018.07.003.

[6] T. N. Gia, M. Jiang, A. M. Rahmani, T. Westerlund, P. Liljeberg, and

H. Tenhunen, “Fog computing in healthcare Internet of Things: A

case study on ECG feature extraction,” Proceedings - 15th IEEE

International Conference on Computer and Information Technology,

CIT 2015, 14th IEEE International Conference on Ubiquitous

Computing and Communications, IUCC 2015, 13th IEEE

International Conference on Dependable, Autonomic and Se, pp.

- 88 -

356–363, 2015, doi: 10.1109/CIT/IUCC/DASC/PICOM.2015.51.

[7] M. I. Naas, P. R. Parvedy, J. Boukhobza, and L. Lemarchand,

“IFogStor: An IoT Data Placement Strategy for Fog Infrastructure,”

Proceedings - 2017 IEEE 1st International Conference on Fog and

Edge Computing, ICFEC 2017, pp. 97–104, 2017, doi:

10.1109/ICFEC.2017.15.

[8] B. Pourghebleh and N. J. Navimipour, “Data aggregation

mechanisms in the Internet of things: A systematic review of the

literature and recommendations for future research,” Journal of

Network and Computer Applications, vol. 97, no. November, pp. 23–

34, 2017, doi: 10.1016/j.jnca.2017.08.006.

[9] S. Abdelwahab, B. Hamdaoui, M. Guizani, and A. Rayes, “Enabling

smart cloud services through remote sensing: An internet of

everything enabler,” IEEE Internet of Things Journal, vol. 1, no. 3,

pp. 276–288, 2014, doi: 10.1109/JIOT.2014.2325071.

[10] R. E. Balfour, “Building the ‘Internet of Everything’ (IoE) for first

responders,” 2015 IEEE Long Island Systems, Applications and

Technology Conference, LISAT 2015, 2015, doi:

10.1109/LISAT.2015.7160172.

[11] P. A. Pena, D. Sarkar, and P. Maheshwari, “A big-data centric

framework for smart systems in the world of internet of everything,”

Proceedings - 2015 International Conference on Computational

Science and Computational Intelligence, CSCI 2015, pp. 306–311,

2016, doi: 10.1109/CSCI.2015.62.

[12] B. Ahlgren, M. Hidell, and E. C. H. Ngai, “Internet of Things for

Smart Cities: Interoperability and Open Data,” IEEE Internet

- 89 -

Computing, vol. 20, no. 6, pp. 52–56, 2016, doi:

10.1109/MIC.2016.124.

[13] S. J. Clement, D. W. McKee, and J. Xu, “Service-Oriented Reference

Architecture for Smart Cities,” Proceedings - 11th IEEE

International Symposium on Service-Oriented System Engineering,

SOSE 2017, pp. 81–85, 2017, doi: 10.1109/SOSE.2017.29.

[14] C. Badii et al., “Snap4City: A scalable IOT/IOE platform for

developing smart city applications,” Proceedings - 2018 IEEE

SmartWorld, Ubiquitous Intelligence and Computing, Advanced and

Trusted Computing, Scalable Computing and Communications,

Cloud and Big Data Computing, Internet of People and Smart City

Innovations, SmartWorld/UIC/ATC/ScalCom/CBDCo, no. 688196,

pp. 2109–2116, 2018, doi: 10.1109/SmartWorld.2018.00353.

[15] M. Yang, T. Zhu, B. Liu, Y. Xiang, and W. Zhou, “Machine Learning

Differential Privacy With Multifunctional Aggregation in a Fog

Computing Architecture,” IEEE Access, vol. 6, pp. 17119–17129,

2018, doi: 10.1109/ACCESS.2018.2817523.

[16] S. Muralidharan, “Monitoring and Managing IoT Applications in

Smart Cities Using Kubernetes,” in CLOUD COMPUTING 2019 :

The Tenth International Conference on Cloud Computing, GRIDs,

and Virtualization Monitoring, no. Venice, Italy, pp. 1–6.

[17] R. Mahmud and R. Buyya, “Modeling and Simulation of Fog and

Edge Computing Environments Using iFogSim Toolkit,” Fog and

Edge Computing, pp. 433–465, 2019, doi:

10.1002/9781119525080.ch17.

[18] M. Masoud, Y. Jaradat, A. Manasrah, and I. Jannoud, “Sensors of

- 90 -

smart devices in the internet of everything (IOE) era: Big

opportunities and massive doubts,” Journal of Sensors, vol. 2019,

2019, doi: 10.1155/2019/6514520.

[19] S. L. Ullo and G. R. Sinha, “Advances in smart environment

monitoring systems using iot and sensors,” Sensors (Switzerland),

vol. 20, no. 11, 2020, doi: 10.3390/s20113113.

[20] A. Raj and S. Prakash, “Internet of Everything: A survey based on

Architecture, Issues and Challenges,” 2018 5th IEEE Uttar Pradesh

Section International Conference on Electrical, Electronics and

Computer Engineering, UPCON 2018, pp. 1–6, 2018, doi:

10.1109/UPCON.2018.8596923.

[21] Z. Khan, A. Anjum, and S. L. Kiani, “Cloud based big data analytics

for smart future cities,” Proceedings - 2013 IEEE/ACM 6th

International Conference on Utility and Cloud Computing, UCC

2013, pp. 381–386, 2013, doi: 10.1109/UCC.2013.77.

[22] M. H. Miraz, M. Ali, P. S. Excell, and R. Picking, “A review on

Internet of Things (IoT), Internet of Everything (IoE) and Internet of

Nano Things (IoNT),” 2015 Internet Technologies and Applications,

ITA 2015 - Proceedings of the 6th International Conference, pp. 219–

224, 2015, doi: 10.1109/ITechA.2015.7317398.

[23] P. Wlodarczak, M. Ally, and J. Soar, “Data mining in IoT data

analysis for a new paradigm on the internet,” Proceedings - 2017

IEEE/WIC/ACM International Conference on Web Intelligence, WI

2017, no. August, pp. 1100–1103, 2017, doi:

10.1145/3106426.3115866.

[24] W. Yu et al., “A Survey on the Edge Computing for the Internet of

- 91 -

Things,” IEEE Access, vol. 6, pp. 6900–6919, 2017, doi:

10.1109/ACCESS.2017.2778504.

[25] Y. Mehmood, F. Ahmad, I. Yaqoob, A. Adnane, M. Imran, and S.

Guizani, “Internet-of-Things-Based Smart Cities: Recent Advances

and Challenges,” IEEE Communications Magazine, vol. 55, no. 9,

pp. 16–24, 2017, doi: 10.1109/MCOM.2017.1600514.

[26] T. Kurian and G. C. CEO, “HTTP vs. MQTT: A tale of two IoT

protocols,” INSIDE GOOGLE CLOUD.

https://cloud.google.com/blog/products/iot-devices/http-vs-mqtt-a-

tale-of-two-iot-protocols.

[27] R. K. Naha et al., “Fog computing: Survey of trends, architectures,

requirements, and research directions,” IEEE Access, vol. 6, pp.

47980–48009, 2018, doi: 10.1109/ACCESS.2018.2866491.

[28] I. Burago, D. Callegaro, M. Levorato, and S. Singh, “Intelligent data

filtering in constrained IoT systems,” Conference Record of 51st

Asilomar Conference on Signals, Systems and Computers, ACSSC

2017, vol. 2017-Octob, pp. 928–935, 2017, doi:

10.1109/ACSSC.2017.8335485.

[29] S. Abbasian Dehkordi, K. Farajzadeh, J. Rezazadeh, R. Farahbakhsh,

K. Sandrasegaran, and M. Abbasian Dehkordi, “A survey on data

aggregation techniques in IoT sensor networks,” Wireless Networks,

vol. 26, no. 2, pp. 1243–1263, 2020, doi: 10.1007/s11276-019-

02142-z.

[30] J. Gibson, R. Rondeau, D. Eveleigh, and Q. Tan, “Benefits and

challenges of three cloud computing service models,” Proceedings of

the 2012 4th International Conference on Computational Aspects of

- 92 -

Social Networks, CASoN 2012, pp. 198–205, 2012, doi:

10.1109/CASoN.2012.6412402.

[31] A. Rashid and A. Chaturvedi, “Cloud Computing Characteristics and

Services A Brief Review,” International Journal of Computer

Sciences and Engineering, vol. 7, no. 2, pp. 421–426, 2019, doi:

10.26438/ijcse/v7i2.421426.

[32] P. S, “Introduction - XML, JSON. In: Pro RESTful APIs. Apress,

Berkeley,” in In: Pro RESTful APIs. Apress, Berkeley, Apress,

Berkeley, CA, 2017, p. 136.

[33] M. Clarke, “A reference architecture for telemonitoring,” Studies in

Health Technology and Informatics, vol. 103, pp. 381–384, 2004,

doi: 10.3233/978-1-60750-946-2-381.

[34] C. Estela, “Blood Glucose Levels,” Blood Glucose Levels, vol. 3, no.

2, 2019, doi: 10.5772/intechopen.73823.

[35] CHRISTINA VANVUREN, “What’s an Ideal Level for Your

Home?,” CONTRIBUTOR, 2018. https://molekule.science/what-is-

relative-humidity/.

[36] et al. Penney D, Benignus V, Kephalopoulos S, “Carbon monoxide.

In: WHO Guidelines for Indoor Air Quality: Selected Pollutants.,”

World Health Organization, 2010.

https://www.ncbi.nlm.nih.gov/books/NBK138710/.

[37] H. R. Dhasian and P. Balasubramanian, “Survey of data aggregation

techniques using soft computing in wireless sensor networks,” IET

Information Security, vol. 7, no. 4, pp. 336–342, 2013, doi:

10.1049/iet-ifs.2012.0292.

A

6 Appendix (A)

Centralized Server Code

Cloud Link API Copyright (c) Microsoft. All rights reserved.

import time
import socket
import sys

from azure.iot.device import IoTHubDeviceClient, Message # Using the Azure
CLI

The device connection string to authenticate the device with your IoT hub.

az iot hub device-identity
CONNECTION_STRING = "HostName=ioeData.azure-
devices.net;DeviceId=MyPythonDevice;SharedAccessKey=vnuYNICd7hIvmVVx5y+wgDhIT
QlpJswQCPR2p1iDxvo=" # az iot hub device-identity

Define the JSON message to send to IoT Hub.
MSG_TXT = '{{"getway": {getway},"port": {port},"systemType":
{systemType},"localIP": {localIP},"systemCode":
{systemCode},"deviceName":{deviceName},"deviceSerial":{deviceSerial},"read":{
read}}}'

tcp socket inti__
HOST=''
PORT=1235
s=socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
r=0
list=[]
data=[]
print('socket greated')
s.bind((HOST,PORT))
print("socket bind compleate")

def ReceveData():

 global list
 global data
 global r
 data,addr = s.recvfrom(1024)

 temp = str(data)
 beforefilter=open("beforefilter.txt","a+")
 beforefilter.write(temp + "\n")
 beforefilter.close
 data=temp.split(',')
 if r<20:
 list.append(data)
 print("msg no is : "+ str(r) + "message is:" + str (data) +
str(sys.getsizeof(data)))

B

 r+=1
 return data

 if r>=20:
 state=False
 for i in range(len(list)):
 if list[i][4] == data[4] and list[i][6] == data[6] and list[i][7]
== data[7]:
 print("find element: " + str(data))
 state=True
 return None
 break
 if state is False:
 for i in range(len(list)):
 if list[i][4] == data[4] and list[i][6]==data[6]:
 list.remove(list[i])
 list.append(data)
 print("removed item position = " + str(i) + "and replaced
with: " + str (data))
 state=False
 return data
 break

def iothub_client_init():
 # Create an IoT Hub client
 client =
IoTHubDeviceClient.create_from_connection_string(CONNECTION_STRING)
 return client
def iothub_client_telemetry_sample_run():

 try:
 client = iothub_client_init()
 print ("IoT Hub device sending periodic messages, press Ctrl-C to
exit")
 while True:
 mylist=[]
 mylist=ReceveData()
 print("inside first while true")
 if mylist != None:
 print ("filterd Message is: "+ str(mylist))
 afterfilter=open("afterfilter.txt","a+")
 afterfilter.write(str(mylist) + "\n")
 afterfilter.close
 getway=mylist[0]
 port=mylist[1]
 systemType=mylist[2]
 localIP=mylist[3]
 systemCode=mylist[4]
 deviceName=mylist[5]
 deviceSerial=mylist[6]
 read=mylist[7]

 msg_txt_formatted =
MSG_TXT.format(getway=getway,port=port,systemType=systemType,localIP=localIP,
systemCode=systemCode,deviceName=deviceName,deviceSerial=deviceSerial,read=re
ad)
 message = Message(msg_txt_formatted)
 # Send the message.
 print("Sending message: {}".format(message))

C

 client.send_message(message)
 print ("Message successfully sent")

 except KeyboardInterrupt:
 print ("IoTHubClient sample stopped")

if __name__ == '__main__':
 print ("IoT Hub Quickstart #1 - Simulated device")
 print ("Press Ctrl-C to exit")
 iothub_client_telemetry_sample_run()

D

7 Appendix (B)

Cluster Health care system server (CHCS) Code

from time import *
from physical import *
from udp import *
from realtcp import *
from email import *

def onUDPReceive(ip, port, data):
 temp =str(data)
 list=temp.split(',')
 device=list]0[
 read =float(list[2])
 patiant=list]1[
 d1 = "heart rate recorder"
 d2 = "blood sugar recorder"
 d3 = "SPO2"
 d4 = "body temerature"
 print(read)

 if device == d1:
 if read > 90:
 print ("alarm high beart rate")
 EmailClient.send("doctor@health.com", "heart alarm for : " +
patiant, "heart rate is : " +str(read))

 elif read < 60 :
 print ("alarm low heart rate")
 EmailClient.send("doctor@health.com", "heart alarm for : " +
patiant, "heart rate is : " +str(read))
 else:
 print("normal heart rate")

 elif device == d2:
 if read > 180:
 print ("alarm high blood sugar")
 EmailClient.send("doctor@health.com", "blood sugar alarm for : " +
patiant, "blood sugar is : " +str(read))

 elif read < 60:
 print ("alarm low blood suger")
 EmailClient.send("doctor@health.com", "blood sugar alarm for" +
patiant, "blood sugar is : " +str(read))
 else:
 print("normal blood suger")

 elif device == d3:
 if read > 100:
 print ("alarm high SPO2")

E

 EmailClient.send("doctor@health.com", "SPO2 alarm for" + patiant,
"SPO2 is : " +str(read))

 elif read < 74:
 print ("alarm low SPO2")
 EmailClient.send("doctor@health.com", "SPO2 alarm for" + patiant,
"SPO2 is : " +str(read))
 else:
 print("normal SPO2")

 elif device == d4:
 if read > 37.5:
 print ("alarm high body temerature")
 EmailClient.send("doctor@health.com", "body temerature alarm for"
+ patiant, "body temerature is : " +str(read))

 elif read < 36.5:

 print ("alarm low body temerature")
 EmailClient.send("doctor@health.com", "body temerature alarm for"
+ patiant, "body temerature is : " +str(read))
 else:
 print("normal body temerature")

 else:

 print("not connected")

def main:()
 socket = UDPSocket()
 EmailClient.setup)
 "server@health.com,"
 "10.0.0.250,"
 "server,"
 "123"
 (
 delay)7000(
 socket.onReceive(onUDPReceive)
 print(socket.begin(1234))

 count = 0

if __name__ == "__main:"__
 while True:
 main()
 delay)7000(

F

8 Appendix (C)

Heart rate meter smart device code

The following code is written with python 3.8.

from physical import *
from gpio import *
from environment import Environment
from ioeclient import IoEClient
from pyjs import *
from udp import *
from networking import *

ALARM_LEVEL_MIN = 60
ALARM_LEVEL_MAX = 90
socket=None

state = 0
level = 0
 #Top left position and the clip area size for the text.
textPos = JsObject({"x": 16, "y": 20})
textAreaSize = JsObject({"w": 230, "h": 52 })

def setup :()
 global state,socket
 IoEClient.setup})
 " type": "Heart Rate,"
 " states}] :"
 " name": "Alarm,"
 " type": "bool,"
 " controllable": False
 ,{

 }
 " name": "Level,"
 " type": "number,"
 " controllable": False
 [{
 ({

 state = restoreProperty("state", 0)
 setState(state)
 sendReport()

 socket=UDPSocket()
 socket.onReceive(onUDPReceive)
 print(socket.begin(1234))

def onUDPReceive(ip, port, data):
 print("received from "

G

 +ip + ":" + str(port) + ":" + data;(

def restoreProperty (propertyName, defaultValue):
 value = getDeviceProperty(getName(), propertyName)
 if value != "" and value != None:
 if isinstance(defaultValue, (int, float)):
 value = int(value)

 setDeviceProperty(getName(), propertyName, value)
 return value

 return defaultValue

def loop :()
 detect()
 socket.send("10.0.0.249", 1234,"2000," + str(localIP()) +","+
str(customRead(0)) + ","+ "Heart Rate," + str(getSerialNumber()) +"," +
str(255 * analogRead(A0) / 1023))
 socket.send("10.0.0.250", 1234, "heart rate recorder," +
str(customRead(0)) + "," + str(255 * analogRead(A0) / 1023))
 setCustomText(textPos.x, textPos.y, textAreaSize.w, textAreaSize.h,
str(255 * analogRead(A0) / 1023))
 setDeviceProperty(getName(), "text",str(255 * analogRead(A0) / 1023))
 delay)0060 (

def detect :()
 value = 255 * analogRead(A0) / 1023
 if value >= 0 :
 setLevel(255 * analogRead(A0) / 1023)

def sendReport :()
 report = str(state) +","+str(level); # comma seperated states
 IoEClient.reportStates(report)
 setDeviceProperty(getName(), "state", state)
 setDeviceProperty(getName(), "level", level)

def setState (newState):
 global state
 if newState == 0:
 digitalWrite(1, LOW)
 else:
 digitalWrite(1, HIGH)

 state = newState

 sendReport()

def setLevel (newLevel):
 global level
 if level == newLevel:
 return

 level = newLevel
 if level > ALARM_LEVEL_MAX:
 setState)1(
 elif level < ALARM_LEVEL_MIN:
 setState)1(
 else:

H

 setState)0(

 sendReport()

if __name__ == "__main:"__
 setup()
 while True:
 loop()
 sleep)0(

I

 "الخلاصة"

يتم توفير نهج مختص ومنظم لتحسين صحة) IoE(من خلال تقنية إنترنت كل شيء

 ، IoE علىتعتمد أفضل للناس ة ذات جود الطرق العملية لتوفير حياة العديد من ورفاهية البشرية.

واتخاذ القرار في مجال الذكية، والإدارة الإنسان،يساهم تطوير تطبيقات مثل مراقبة صحة حيث

والعديد من التطبيقات الأخرى في الطرق،وإدارة حركة المرور على الذكية،والمباني الصناعة،

بيقات الذكية ويدير بياناتها بذكاء لاتخاذ بلورة مفهوم المدينة الذكية. يدمج هذا المفهوم جميع التط

ا عن الرفاهية والحياة المريحة. إن بدء مثل قرارات أفضل وأسرع من أجل جعل حلم الناس حقيقيً

 الذكية هو هاجس العالم في الوقت الحاضر. هذه المدينة

تصال ما يتعلق بتقنيات الافيكل شيء البنية التحتية لإنترنت تم استقصاء العمل،في هذا

قيد التطوير ولكن معظم الباحثين لاتزال IoE ايير معمارية مع حيث انتوكولات والأجهزة والبرو

اولي لتمثيل تم تصميم نموذج ، لأنترنيت كل شيءة يتبنون بنية ثلاثية الطبقات. لتنفيذ البنية التحتي

ً للمدينة الذكية واقعي ثلاث منصات هي الرعاية الصحية والبيئة والأمن. متضمنا

جميع الأجهزة والخوادم بالإضافة إلى أننا برامجقمنا بتطوير النموذج،لإنشاء مثل هذا

توسيع الوظائف الحالية من اجل لأنظمة.لاستجابات الذكية لأحداث اا لتوفير قمنا ببناء خوارزميات

 .) APIتم استخدام واجهة برمجة التطبيقات (والسحابة،للخوادم وتحقيق التفاعلات بين الخوادم

لغة برمجة عتماد التي صممت من قبلنا تم ا بنمط المدينة الذكية ةالخاص التطبيقات برمجة من اجل

Python 3.8 .

مفهوم الحوسبة المتطورة من خلال توسيع خدمة الحوسبة ب العملتم نظامنا،لتعزيز أداء

أجهزة من). يتم نقل البيانات FNبحيث تمت إضافة نقاط الضباب (السحابية إلى حافة الشبكة

المراقبة الفورية من أجل خلال الزمن الحقيقي إنترنت الأشياء إلى عقدة حوسبة الضباب البعيدة

في لتحليل وا السريعة والمعالجة للنظام يسهم الذي في الدقيق قرارات الحقيقي اتخاذ الزمن

الثلاث الذكية. المدين في للمنصات الخطوة أسهمت ة زمن التقليلفي هذه النظام استجابةمن

 وجعلت الأنظمة موثوقة حتى إذا كان الاتصال بالسحابة يعاني من بعض التوقفات.

ولديها العديد من المشكلات مثل التكرار مةمنظالبيانات الناتجة من المدينة الذكية غير

لتحسين أداء النموذج .)data aggregation(ع البيانات تقنية تجمي تم استخدام لذلك والازدواجية،

J

المقترح للمدينة الذكية. يتم تحميل البيانات المجمعة الناتجة عن المدينة الذكية إلى التخزين السحابي

Microsoft Azure cloud المعلومات د هذه البيانات لتكون جاهزة للتحليل واستخراج لإعدا .

 .كأداة فعالة لتصميم وتنفيذ النموذج الأولي Cisco packet tracer 7.2 تم استخدام

K

 البحوث المنشورة

[1] Rawia Talal and Abdulbarry Raouf Suleiman, “IoT/IoE Smart Health

Care System using Fog Computing Features", 2nd Annual
International Conference on Information and Sciences AICIS 2020,
Iraq, Fallujah for the period from (24-25) November, 2020. The
conference will publish the papers in IEEE..

L

 المقترح للمدينة الذكية.

 إقرار المشرف

 " الॻʯʲʯة لإنʙʯنʕ ؕل شيءالʲʯقȖʻ في شȜॺات الاتʶالات والॻʹʮة " بان الرسالة الموسومة ب اشهد
 .الحاسوب والمعلوماتية هندسةالماجستير في شهادةجزء من متطلبات نيل يي وهاشراف تمت تحت

 : التوقيع

 عبد الباري رؤوف سليماند. : فالمشر

 2020 / /: التاريخ

 إقرار المقيم اللغوي

اسʯقʶاء شȜॺات الاتʶالات والॻʹʮة " باني قمت بمراجعة الرسالة الموسومة ب اشهد

من الناحية اللغوية وتصحيح ما ورد فيها من أخطاء لغوية "ʕʻ ؕل شيء الॻʯʲʯة لأنʙʯن

تعلق الامر بسلامة الأسلوب وصحة للمناقشة بقدر مؤهلة وتعبيرية وبذلك أصبحت الرسالة

 .التعبير

 :التوقيع

 :المقوم اللغوي

 2020 / / :التاريخ

 إقرار رئيس لجنة الدراسات العليا

المقدمة من قبل المشرف والمقوم اللغوي أرشح هذه الرسالة بناء على التوصيات
 .للمناقشة
 :التوقيع

 معن أحمد شحاذة العدواني .م .أ :سم الا
 2020 / / :التاريخ

 إقرار رئيس القسم

بناء على التوصيات المقدمة من قبل المشرف والمقوم اللغوي ورئيس لجنة الدراسات العليا

 .للمناقشة ةأرشح هذه الرسال

 :التوقيع

 أ . م . معن أحمد شحاذة العدواني :سم الا

 2020 / / :التاريخ

 والॻʹʮة الॻʯʲʯة لأنʙʯنʕʻ ؕل شيءاسʯقʶاء شȜॺات الاتʶالات

 رسالة تقʙم بها

 ʚȂʚلال عʟ ةȂراو

 إلى

 مʳلʝ ؗلॽة هʙʻسة الالʛʱؔونॽات
 Ȑʨʻʽجامعة ن

 الʺاجʛʽʱʶ كʜʳء مʧ مʢʱلॼات نʽل شهادة
 في

 هʙʻسة الʴاسʨب والʺعلʨماتॽة

 Ǻإشʙاف
 عبد الباري رؤوف سليماند.

 أستاذ مساعد

 م2020 ه ـ 1442

 نȎʦʹʻ جامعة

 هʹʗسة الالʙʯؒونॻاتكلॻة

 قʤʴ هʹʗسة الʲاسʦب والʸعلʦماتॻة

 ʕʻنʙʯة لأنॻʯʲʯة الॻʹʮالات والʶات الاتȜॺاء شʶقʯاس

 كل شيء

 بها رسالة تقʙم

 راوية طلال عزيز

 رسالة ماجستير علوم في هندسة الحاسوب والمعلوماتية

 بإشراف

 عبد الباري رؤوف سليماند.

 أستاذ مساعد

 م 2021 هـ 1442

