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ABSTRACT

One of the most promising solutions for interference suppression in
the congested spectrum environment of wireless communication
systems such as 5G and beyond is using adaptive antenna arrays.
However, some practical issues might arise when it comes to actual
implementation, such as a high complexity weighting network caused
by the deployment of many of the adaptive controllers, leading to a
slow convergence speed. Therefore, in this dissertation , three new
adaptive array configurations are proposed. The first configurations is
a regular adaptive subarrays. .Whereas in this configuration all array
elements are divided evenly into multiple subarrays, and each
subarray has an equal number of array elements. Subsequently, the
second configuration is called partially adaptive elements where only
certain array elements are made adaptive, while the rest are constant.
The last configuration is called partially adaptive irregular subarrays,
since the adaptive elements are divided into smaller partially adaptive
subarrays. The proposed configurations provide many benefits over
the conventional fully adaptive array, including a reduction in the
number of controllable elements; thus, the optimizer's convergence
speed was dramatically accelerated without the need for sophisticated
array configurations which in turn reduce the manufacturing costs. On
the other hand, Simulation findings demonstrated the effectiveness of
the proposed array weighting configurations in terms of quicker
convergence speed, improved interference suppression and reduction
in interference signals to more than -20 dB, which is adequate for 5G
and future wireless communication systems. Finally, an adaptive
antenna array was simulated using CST 2019 software and fabricated

in order to validate the effectiveness of the proposed work.
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CHAPTER ONE

INTRODUCTION

1.1 Background

In recent years, the demand for better wireless communication
performance in coverage, user capacity, and providing high
transmission quality has constantly increased. To mitigate interference
and improve user capacity, new promising technology is developed

called smart antenna [1].

Smart antennas can steer the main beam toward the intended
direction while placing null at undesired direction and eliminating
interference. A smart antenna is made up of an antenna array and a
Digital Signal Processor (DSP) [2]. The ability to produce adaptive
beams is critical in smart antenna systems. An adaptive antenna array
has been widely employed in a variety of applications, such as
acoustic signal processing, scan and track radar, and cellular systems
such as LTE and 5G [3].

The primary role of antennas is to transmit and receive radio
signals properly [4],[5]; however, smart antennas also perform the

following functions:

1. Estimation of the Direction Of Arrival (DOA): Antennas are
necessary to determine the direction of arrival of the required
incoming signal to offer efficient transmission and reception.

2. Beamforming: Based on the analyses of the DOA, the circuitry
inside the antenna can optimize the beam pattern in a specific

direction to offer the required performance. Beamforming is a



technique that uses an array of antennas to guide a wireless
signal in a specified direction rather than spreading the signal in

all directions.

The directional gain of the antenna is adjusted by changing the
phase or the amplitude individually, or both of them at each single
element .The weighted signals are combined together and passed to
the controller. These weights are calculated adaptively in order to
respond to changes in the signal environment. Several adaptive
beamforming techniques are utilized to decrease the error between the
necessary signal and the array output by adjusting the weights to meet

optimization criteria [3, 6].

Continuous adaptation to any changes in the electromagnetic
environment should be possible by continually updating and
recalculating the optimal array weights. For instance, directing the
array pattern's main beam in the direction of the desired signal and its
nulls in the direction of the interfering signals [7]. Modern wireless
communication is quickly growing as a result of globalization.
Because of continual changes in the channel environment, the required
signal arrival angle in wireless mobile communication systems
changes over time. As a result, ongoing modification of the array's
weights is necessary to obtain the desired signal, which is
accomplished by optimization approaches such as Least Mean Squares
(LMS) algorithm. For each repetition, the reference signal is utilized
to update the weights [8].

1.2 Literature Survey

In 2000, authors presented two methods for adaptable arrays.

The first method, which is used for arrays with many elements, is



based on adjusting the amplitudes of both ends of array elements in
order to direct a null toward the direction of the array's two first side
lobes on each side of the main lobe. The second method was applied
to arrays with few number of elements. And it is based on using an
auxiliary parallel array made up of 2N elements, as well as
controlling the weight coefficients (with equal amplitudes and phases)
of all the elements of this auxiliary array in accordance with certain
criteria to lower the level of side lobe when the interfering signal is
received at its direction. The proposed methods offered a reduction in

number of side lobes and a greater null depth [9].

Authors in 2003 investigated the performance of LMS and
Sample Matrix Inversion (SMI) algorithms. The performance of both
algorithms was evaluated using different interference angles, LMS
step sizes, and SMI block sizes. According to the results of the
simulations, both LMS and SMI are able to cancel out the interference
sources even if the interference sources are close to each other.
Additionally, the SMI method performs better in terms of null depth
than the LMS algorithm [10]. While in 2005, authors proposed
adaptive beamforming by integrating the characteristics of the LMS
and SMI algorithms since the LMS algorithm is simple to construct
and has a low computing complexity. In contrast, SMI has a faster
convergence speed than LMS. The numerical results reveal several
improvements in convergence, accuracy, and computational efficiency
compared to standard LMS and SMI [11].

In 2007, an investigation of Maximum Signal-to-Interference
Ratio (MaxSIR) and Minimum Mean Square Error (MMSE)
beamforming methods was performed. In both methods, 16 elements

of linear array antenna are used. The Simulation results show that both

3



MaxSIR and MMSE can generate a single beam and provide the same
weight and beam pattern. Additionally, both algorithms perform
better when the number of elements increases. Also, MaxSIR and
MMSE can generate multiple beams, but MaxSIR is less reliable and

generate unstable patterns compared to MMSE [12].

In 2009, an effective approach for pattern synthesis of linear
antenna arrays was provided in [7]. The suggested technique relies on
the LMS algorithm. This study presents a design for implementing the
LMS algorithm, which uses an 8 quasi-yagi array and its feeding

system.

In 2010 the effectiveness of LMS and NLMS algorithms for
mobile communication was examined in terms of NAF and MSE. The
simulation results reveal that both algorithms have a good ability in
beam formation. Also, it is found that LSM provides better MSE than
NLMS; therefore, it is more efficient for mobile communication than
the NLMS algorithm [13]. In [14], an adaptive beamforming using
LMS was accomplished in 2013. The simulation results show that
LMS optimizes the weights, which in turn guide the beam in the
desired direction and reduce the interference. Later in 2014, authors
investigated several evolutionary algorithms such as LMS, NLMS,
RLS, and CM to optimize the weights of smart antenna arrays.
Additionally, different types of arrays are considered, such as linear,
circular, and planar. The results show that LMS has less convergence
speed compared to NLMS, RLS, and CM [8].

Subsequently, in 2013 researchers analyzed the nulling of
interference for the adaptive array antenna using LMS. Several
parameters are adjusted, such as the array element's phase and beam
steering angle. The results show that LMS algorithm can iteratively

4



update the weights to place deep nulls at the direction of the
interferers and achieve a maximum in the direction of the desired
signal [15].

Authors in 2014 evaluated the performance of the LMS
beamforming in two different cases. In the first case, the performance
of LMS was measured in terms of Normalized Array Factor
(NAF)and Mean Square Error (MSE). The first case results show that
the LMS algorithm reaches the converging after 50 iterations, and its
error is negligible. While in the second case, different numbers of
elements and different distances between the elements were utilized. It
was observed that an increase in the number of elements leads to
narrow beam width of the array factor and raises the number of side
lobes. However, the level of side lobes becomes less than those
created by a small number of array elements. At the same time, the
overall MSE tends to be practically the same for the given antenna

element values [2].

In 2015, an adaptive beamforming optimization was performed
using different algorithms. The adaptive algorithms include Least
Mean Squares (LMS), Sample Matrix Inversion (SMI), Recursive
Least Squares (RLS), and Conjugate Gradient Method (CGM). The
performance of beamforming for each method is investigated by
altering the element spacing and the number of antenna array
elements. The adaptive algorithms were compared in terms of
convergence speed, beamwidth, null depths, and maximum sidelobe
level. The proposed work observed that CGM has a better
convergence speed and greater null depth than other algorithms. It was
also shown that an increase in the number of the element can reduce

the beamwidth, which in turn leads to more obtained array directional

5



and reeducation in SLL [16]. Authors in 2015 presented the effect of
different step size values on beamforming algorithms such as the LMS
algorithm, Normalized Least Mean Square (NLMS) algorithm, and
Sign Least Mean Square (SLMS) algorithm. It shows that the value of
step size has a significant impact on beamforming and proper value is

needed for required results [17].

Additionally, researchers in 2018 investigated the performance of
the LMS in adaptive beamforming. The performance of adaptive
beamforming was analyzed with different spacing between array
elements, an increase in the number of array elements, and different
array types, such as linear arrays, circular arrays, and planar arrays.
The investigation results show that increasing the spacing between the
elements and the number of elements leads to a narrower beamwidth.
It was also observed that the LMS algorithm with a planar array

resulted in a narrower beamwidth than other array types. [1].

Also, authors in 2018 examined several adaptive beamforming
optimizers such as non-blind LMS, blind CMA, and Practical Swarm
Algorithm (PSO). The adaptive beamforming generates different
weights to improve the radiation pattern to direct the main beam in the
desired direction and place null in the interference signal. The average
SLL and directivity were also investigated, and the results indicated

that PSO performs better than other algorithms [3].

In 2019, researchers proposed improving the LMS algorithm
called a Fractional LMS (FLMS). The main objective of FLMS was to
adjust the weights of the uniform circular array, and its result was also
compared with LMS. It is shown that FLMS gives better performance

in terms of convergence speed and side lobe [18].



In 2020, researchers proposed the VSS-LMS algorithm for
adaptive beamforming. VSS-LMS uses a variable step size based on
the normalized sigmoid function. The variable step was determined by
utilizing the mean of instantaneous error and then normalized by the
squared cumulative sum of instantaneous error and predicted signal
power. It was observed that the proposed algorithm could determine
the step size value adaptively without changing any other parameters
[19].

In 2021, adaptive beamforming based on the LMS algorithm was
proposed. The adaption is implemented only on the array elements
located in the center, while other elements are kept uncontrollable.
Different algorithms for adaptive beamforming were utilized, such as
Least Mean Square (LMS), Recursive Least Square (RLS), Sample
Matrix Inversion (SMI), Conjugate Gradient (CG), and Constant
Modulus (CM). The performance of proposed method shows different
improvements in term of convergence speed and less complexity as

compared to the standard method [20].

In 2021, a Uniform Linear Array (ULA) was modified by placing
the first and the last elements at the top and bottom of the array axis.
For adaptive beamforming, the VSSNLMS algorithm is utilized. The
simulation results were compared to the well-known LMS and NLMS
beamformers. The proposed method shows better convergence rate
and data rate in comparison to LMS and NLMS [21].

1.3 Problem Statement

In recent years, the large scales of wireless applications resulted

in a crowded spectrum problem and thus called the researchers to
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study the possible solutions for the 5G and beyond wireless
communication systems [22]. Both Multiple Input Multiple Output
(MIMO) and massive MIMO antenna arrays with adaptive
beamforming capability have been recommended as an efficient
solution for current and future wireless communication systems. One
of the most challenging issues in these mobile systems is the
interfering signals that may originate from the nearby cells that reuse
the same frequency as that of the covered base station. Suppressing
the interfering signals in such systems can be achieved by adequately
reshaping the array patterns of the antenna arrays by steering the
desired nulls into directions of undesired interfering signals to
improve the signal to interference plus noise ratio (SINR) at the
system output. Generally, reshaping array patterns can be synthesized
by five main array design parameters [4,22] which they are the
geometrical layout of the array elements (i.e, linear, circular, and
planar), and the separation distances between their elements, the
excitation amplitude and phase of the individual elements and finally
the elemental beam pattern. These design parameters have been
utilized by many analytical [23] or numerical array synthesis
techniques [5, 24].

Numerical techniques employ an adaptive optimizer to improve
and optimize the array patterns in an online processing manner which
can directly account for any changes in the directions of the
interfering signals [25]. Such adaptive optimizer forms a vital part of
the 5G wireless communication systems to adaptively upgrade the
array amplitudes and phases to track any changes in the environment.
Accordingly, the demand array patterns can be reformed based on
steered nulls. In the literature, subarray weighting techniques were

performed at the array elements level, where the array elements are

8



divided equally or unequally into a certain number of subarrays, for
example, in [26, 27] such synthesis techniques are usually associated
with some undesirable distortions in their array patterns since the
obtained patterns were not subject to any constraints during the

synthesis process.

1.4 Objectives

The objectives of this research are:

1. To design an adaptive antenna arrays with simplified array
weighting configurations to make it easier in practical
implementation. Moreover the adaptive array should be able to
adaptively suppress the undesired interfering signals. Further, it
IS intended to accelerate the adaptive controller of the antenna
array in order to improve the convergence speed, which is a
very important factor in practice for better tracking of
environmental changing. All of these advantages should be
obtained under a satisfactory performance of the used antenna
array.

2. To study various array configurations in the excitation
weighting network and propose some new configurations that is
competitive.

3. To simulate the proposed array designed configurations using
MATLAB simulation and CST full wave simulators. Also to
measure the radiation pattern of the designed array antenna to
verify the idea. In simulation, the performances of the
considered antenna arrays in terms of beam pattern, excitation
weights, Mean Square Error (MSE), and the Signal to
Interference plus Noise Ratio (SINR) have been studied and

compared.



4. To suggest most efficient array weighting configurations that

enjoys simplicity in its construct stage and still performs well.

1.5 Research Aim

This research aims to investigate various adaptive array
configurations that help to simplify the design of the array feeding
network. At the same time makes the adaptive controller of the
antenna array faster by changing the weights of the array elements to
cope with environmental changes. Many other advantages can be
shown which make the large arrays easy to be implemented in practice

for 5G and beyond applications.

10



CHAPTER TWO

BACKGROUND THEORY

2.1 Introduction

Wireless communications system designers and engineers have made
an effort to address issues including co-channel interferences,
multipath fading, and Inter-Symbol Interference(ISI). These
challenges are all major issues that reduce the qu ality of service and
restrict the number of subscribers that can be provided by a system
[28]. If two or more signals with the same frequency reach the
receiver at the same time, the interference known as co-channel
interference can occur. This interference occurs because of the re-
assignment of similar spectrum bands to other distant cells, resulting

in unwanted signals mixed in with the desired ones [29].

It has been proven that classic methods such as Omni-directional and
diversity systems are insufficient for today's wireless systems and the
requirement to lessen infrastructure and maintenance expenses.
Because of the interference initiated by multiple tracks of signal
reception, known as multipath fading, the system's performance is also
affected and getting worse [24]. Only smart antenna systems, which
have gone through numerous rounds of research before becoming
commercially accessible, take advantage of this issue to increase
reception by applying direction spatial processing, which sets this
system excluding the rest [30]. The development of algorithms for
"smart antenna systems,"” which can regulate power, improve quality
of service, and increase capacity, has been a major focus of current
research efforts. As a result of its increased capacity and enhanced

data rate, this system outperformed traditional ones in terms of
11



spectral efficiency, allowing it to serve more subscribers while also

expanding its coverage area.

2.2 Concept of Smart Antenna

The hardware section of a smart antenna system is made up of an
array of antennas, also known as an antenna array, while the digital
signal processing unit serves as the brains of the system [28].
Beamforming algorithms have been developed in recent years as
means of directing the main beam of the antenna toward the desired
target and avoiding unwanted nulls in other directions. The
beamforming would greatly reduce noise and increase antenna
directivity, as the antenna directs its main beam toward the desired

direction and place nulls in other directions [31].

Smart antenna systems may be introduced as smart technologies
that can increase the gain of antenna array systems while minimizing
interference, boosting the quality of service and the performance for

the system, and attaining spectral efficiency.

2.2.1 Analogy for Adaptive Smart Antenna

The human brain is often used as a model for many intelligent
systems that attempt to approximate human processes, and this was

the case with the smart antenna system as well.

Researches show that humans can recognize and locate a certain
sound even while other speakers or sound sources are moving around
them. For this reason, it can be argued that ears are like radiation
elements in an antenna array. At the same time, the brain operates as
software in a smart antenna system by calculating the delay time
between the two ears to find the target speaker [32]. The two ears and

the brain work together to create a system that can locate and suppress
12



other voices in a dark room and simultaneously receive and transmit
signals in an adaptive spatial manner and this is similar to the concept
of a smart antenna system that can receive and transmit signals in an
adaptive spatial way, while simultaneously maximizing reception
toward the target and minimizing interfering signals [33]. The
blindfolded guy in a dark room with two speakers in the analogy for

the adaptive smart antenna is shown below in Figure 2.1.

Figure 2.1. Smart antenna analogy [33].

2.3 Smart Antenna System Categories

A smart antenna system'’s capacity to increase service quality and
decrease interference is defined by its ability to evaluate the system's
performance based on the kind of antenna array used. The following
are the categories of smart antenna and their comparison in term of

levels of intelligence, structural, and performance.

2.3.1 Switched-beam System

Beam switching is the simplest method for implementing smart

antennas. This system employs a dynamic cell-sectoring strategy
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defined by fixed, predetermined lobe patterns as shown in the Figure
2.2. Due to its ability to transition between many fixed beams,
generated by phase adjustment only, dependent on the user's direction
and movement. In order to increase gain, these systems can surpass
"sectorized antenna systems" in terms of their capacity to choose the
proper beam and achieve directivity without requiring a set of metallic

physical designs [28].

Despite the system'’s ability to reduce interferences, it is unable to
totally eliminate them. Therefore, it cannot achieve maximum gain if

the user is not in the center of the primary beam [31].

Figure 2.2. Switched-beam coverage pattern [33].

2.3.2Adaptive Arrays System
Adaptive array systems are considered asthe most intelligent
smart antenna systems due to their capacity to alter their radiation

pattern in real time. In order to place null in all undesirable directions,

this system tracks the Signal of Interest (SOI) by using the spatial
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signal signature to predict the position of the intended
user. Additionally, this technique utilizes a signal processing unit that

modifies the system's parameters in real-time to enhance performance.

The adaptive array coverage pattern may adjust the radiation
pattern for each unique target in the system and insert nulls in
interference directions, and providing a great degree of freedom, as

illustrated in Figure 2.3.

Desired 53

user !g

l W

Interfering
user

Figure 2.3. Coverage of adaptive array

The ability to form the main beam is the major differentiator
between adaptive antenna and switched-beam antenna systems. The
adaptive array system has the ability to regulate the phase and the
amplitude of radiation patterns to obtain optimal gain in the intended
direction and to reduce other interferences. In contrast, the second
method is limited to selecting the suitable fixed beam and switching
between predetermined beams based on the circumstances. On the
other hand, the adaptive array system is more complicated and costly
[34].
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2.4 Architecture of Smart Antenna System

Typically, a smart antenna system comprises an antenna array, a
radio unit, and a software component. The subsection that follows

describes in depth the components of an adaptive system.

2.4.1 Antenna Array

The antenna array is a group of "antenna™ sensors with the same
orientation and radiation pattern which are all connected and used to
send or receive signals [32]. Since the elements of this array are
connected to the signal processing unit, it mostly affects the shape of
the radiation pattern in adaptive systems [31]. These elements of the
antenna array are arranged so that there are no variances in the
received signal amplitude. Additionally, the number of antennas must
be the minimum number of required for designed system in order to

avoid complexity.

2.4.2 Geometry of Antenna Arrays

Types of antenna arrays are varied according to the geometrical
arrangement of elements for example the term "uniformly spaced"
refers to an antenna array in which adjacent elements are separated by
identical spaces; whereas, the term "non-uniformly spaced” refers to
an antenna array in which the distances between adjacent elements are
irregular spaces [35]. Moreover, the radiation pattern is influenced by
the separation of the elements. The beamwidth decreases as the space
between the elements increases. Figure 2.4 shows four different types
of arrays, including circular, planner, and uniform linear arrays [22],
[32], whereas (a) represents a uniform linear array with one-
dimensional beamforming, (b) is a uniform circular array, (c) shows

two-dimensional beamforming in both azimuthal and elevation angles.
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The Figure 2.4 (d) illustrates a cubic array with Ax, Ay, and Az
separation. This structure can be represented as a three-dimensional

array.

{a)

{c) (d)

Figure 2.4: Four distinct array types [38].
2.4.3 Radio Unit

For a smart antenna system, a radio unit must have the necessary
down/up converters to convert radio signals into low-frequency
signals to be processed [35]. The required total number of converters
should be the same as number of array elements in the antenna array.
Figure 2.5 depicts the block of the hardware component consisting of
antenna parts that receive signals and inject them into a low-noise
amplifier that amplifies a very low-power signal without altering its
signal-to-noise ratio. The second component of the hardware is a

down/up converter, and the last component is an analog-to-digital
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block that digitizes the signal before its preparation for digital signal

processing.
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Figure 2.5. Radio unit for smart antenna [37].

2.4.4 Signal Processing Unit

The primary function of the signal processing unit in an adaptive
system is to improve performance and turn it into a smart system. This
system collects data to derive knowledge, which is then applied using
algorithms for adaptive signal processing [31]. Additionally, signal
processing is responsible for identifying the location of the signal after
it has been captured, trucking it in order to maximize reception in the
desired direction, and removing out the interferences from
undesirable directions. This process is carried out via the DOA

estimator and adaptive beamforming.

2.4.5 Direction of Arrival (DOA)

The DOA is a method that uses the delays between elements in
an array to make estimations about the direction of the analog arrival
of received signals. In the beginning, the signals in the array are
correlated, then the eigen analysis and and signal noise subspace

formation are performed [31].
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DOA estimation strategies seek to construct a function that
indicates the angles of arrival based on maxima versus angle. This
function is typically referred to as the pseudo spectrum, and its units
can be expressed in energy or watts. There are alternative strategies
for defining the pseudo spectrum. Generally, the DOA estimating
methods may be divided into four groups: traditional, subspace,

maximum likelihood, and integrated techniques [35].

2.5 The Goal of Smart Antenna

The smart antenna system has made a big change in the
communication world because it can solve problems and has features
that make it better than other wireless systems. The following are the

features of smart antenna

2.5.1 Expanding the coverage

Due to the fact that the smart antennas are more directing with
comparison with other conventional systems such as omnidirectional
antennas or sectoring systems, they can achieve superior coverage.
The coverage area is defined where communication between a user
and the base station is accessible. In addition, it proved that the smart
antennas provides coverage that is (N) times more than the traditional
systems. In contrast, the number of base stations required has been
lowered by (1/N) when employing a smart antenna system with N
antenna elements [36]. Additionally, It is important to note that the
directivity of smart antenna systems reduce the amount of power for

mobile devices, hence extending battery life [31].
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2.5.2 Increasing Capacity

Interference rejection helps the system to enhance the signal-to-
interference, which in turn increases the capacity of the system and the

total number of subscribers [31].

2.5.3 Enhancing bit-rate

A smart antenna system is able to minimize the delay spread of
the channel, reject multipath, and maintain the bit rate. Since smart
antenna system utilizes the spatial variation of the signals in order to
reject signals originating from multipath by employing an equalizer to

recover the signal which in turn enhance the bit rate.

2.5.4 Security

In communication systems, security is considered a critical issue.
The smart antenna system has the ability to avoid intruding on users'
network data as the transmission of signals is not in all directions
which results in reducing the likelihood of data snooping and

increasing security [33].

2.6 Adaptive Beamforming

Adaptive beamforming employs antenna arrays and powerful
signal processing to autonomously modify the beam pattern in
response to changing signal conditions. Creating a beam in the desired
direction while canceling the pattern in the interference direction. The
desired radiation pattern is obtained by continually multiplying the
incoming signal with complex weights and then adding them together.
These weights are calculated using various adaptive beamforming
approaches. As a result, adaptive algorithms are essential for adaptive
beamforming [16,37].
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The outputs of antenna elements are combined in an adaptive
antenna array. The antenna's directional gain is regulated by either
controlling the phases and amplitudes, or both at each element. The
weighted signals are added together, and the result is sent to a
controller. To respond to changes in the signal environment, these
complex weights are calculated adaptively [3]. Weights in the
adaptive antenna are adaptively adjusted using different algorithms,
resulting in an output beam pattern optimal for system enhancement
[8]. The adaptation is accomplished by multiplying the incoming
signal by complex weights and then summing them to generate the

desired radiation pattern, as seen in the Figure 2.6.
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Figure 2.6: The structure of adaptive antenna [9].

The complex weights are computed using various algorithms
such as LMS, CM, RLS, and SMI. The algorithms are used in
beamformer optimization to reduce interferences, side-levels, and
noise. Most popular optimization algorithms are discussed in the

following subsection
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2.6.1 Recursive Least Square (RLS)

RLS is a well-known adaptive beamforming technique based on
recursive least square. This approach does not require matrix inversion
because the correlation matrix is immediately determined. The
summation of squared errors for the inputs is used to update the
complex weights in place of the mean square error minimization. The
initial adaption of this technique was developed for the Kalman filter
to be used in multi-tap transversal filtering with variable time frame
sampling. Nonetheless, this approach applies to various systems with
inputs derived from distinct sources. During adaptation, the algorithm

employs the required signal and correlation matrix [38].

2.6.2 Constant Modulus (CM)

The Constant Modulus method is a blind algorithm due to the
absence of the desired signal. Each round of the algorithm involves
the execution of three separate stages. In the initial phase, the
processed signal is computed using real weights. The second step
consists in generating an error from the calculated signal. In the last

stage, the weights are updated with fresh error data [38].

2.6.3 Least Mean Square (LMS) Algorithm

The LMS algorithm, developed by Widrow and Hoff in 1959, is
an adaptive algorithm that employs a gradient-based steepest descent
strategy.

The LMS algorithm runs with prior knowledge about the signal's
direction of arrival and spectrum but no knowledge of the noise and
interference in the channel. It takes advantage of the given data to
estimate the gradient vector. LMS includes an iterative technique that

makes successive modifications to the weight vector in the direction
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of the gradient vector's negative, resulting in the minimum mean
square error. A least mean square algorithm adaptive beamforming
system comprises several antennas, complicated weights that amplify
(or attenuate) and delay the signals from each antenna element, and a
summer that adds all of the processed signals to tune out the signals of

interest, as shown in Figure 2.7.
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Figure 2.7. Adaptive antenna based on LMS

Because certain incoming signals from specific spatial directions
are filtered out while others are amplified, thus, it is frequently
referred to as spatial filtering. The incident waves in the narrow band

are known as s(t).
S(t)= A exp(2n f. t + @) [2.1]

A: defines the signal amplitude, f. is the carrier frequency, @:
phase difference between incoming waves at consecutive elements
=(2m/A) dsin(8), d: is the distance between successive antenna phase

centers in the array, and 6 is the angle of arrival w.r.t normal. [1]

The waves are transformed to electrical signals x(t) when they reach
the antenna elements. The input signals are denoted as
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Xo(t),Xl(t), ........... XN-1 (t) [22]

1
exp(—jkd sin(@))

X(t) = ; 5() [23]

lexp(—jk(N - 1)dsin(0)).
xi(t)=a(6)s(t) [2.4]

Where N is the number of antenna elements and a(8) is the
steering vector that governs the antenna beam's direction. For adaptive
beamforming, each element's output x;(t) is multiplied by weights
Wo,W1,W,......Wn.1, Which adjust the phase and amplitude of the
incoming signal correspondingly. These weighted signals are added
together to produce output. The antenna array's output signal y(t) is

thus given by [1].

yO=ZiZox: (OHw; [2.5]

1
exp(—jkd sin(8))

y(t) =[wo w1 .. .. W] s(t) [2.6]

exp(=jk(N — 1)dsin(6))]

y(t)=wi x'(t) [2.7]

The error e(t) between a desired signal d(t) and the array output
y(t) is then minimized using an adaptive technique . By altering the
weight vector, the entire antenna design is continually updated. This is
a classic Weiner filtering problem for which the LMS method may be

used to iteratively find a solution.
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Therefore, the LMS algorithm can be summarized in following

equations.
Output: y(n)=w"(n) x(n) [2.8]
Error: e(n)=d(n)-y(n) [2.9]
Weight ,w(n+1)=w(n)+ue (n)x(n) [2.10]
Step size (u) is considered as 1/(real(trace(Rx))). [2.11]

The radiation pattern of the linear array for far field is represented in

terms of array factor (AF) . The array factor is given by
AF=YN_ w(n)exp(j(n — 1)(kd sin(8))) [2.12]

The knowledge of the received signal eliminates the need for
beamforming, but the reference can also be a vector that is partly

known or correlated with the received signal [39].

To arrive at the optimal weight values, the LMS algorithm
employs the steepest descent approach. However, this method must
undergo several rounds before reaching convergence. The Least Mean
Square algorithm's convergence speed is determined by the step size
(u) and the correlation matrix. In a dynamic channel environment, it
converges slowly due to the dispersion of eigenvalues. The
normalized least mean square and recursive least square methods
tackle this problem [8].

Because it employs a training or reference signal, the LMS
algorithm is a form of the non-blind algorithm. During the training
time, the training signal is sent from transmitter to receiver. It employs
a gradient-based steepest descent algorithm. It uses an iterative

technique to make successive corrections to the weight vector in the

25



gradient vector's negative direction, resulting in the minimum mean
square error. The LMS algorithm is quite straightforward; it does not

need the computation of correlation functions or matrix inversions [24

[2].

The LMS algorithm is often called the Stochastic Gradient
Descent (SGD). It is a straightforward beam-producing technique.
Because the channel in a wireless connection changes over time, the
weight vector must be adjusted regularly; therefore, using the Minimal
Mean Square Error (MMSE) or Least Square (LS) approach is not
recommended. As a result, LMS utilizes the previous weight to
generate the next weight set. LMS is a gradient-based beam forming
technique that uses a repeating procedure to produce consecutive
adjustments in the negative gradient direction, resulting in the smallest
MSE [40].

LMS technique is a straightforward adaptive beamforming
algorithm that works well in continuous transmission networks. The
LMS algorithm is notable for its simplicity; it does not need
measurements of the relevant correlation functions or matrix
inversion. The LMS algorithm was driven by three primary factors:
u, the number of weights and the Eigen-value of the correlation matrix

of the input vector data [11].
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CHAPTER THREE

ADAPTIVE ARRAY CONFIGURATIONS

3.1 Introduction

This section presents and discusses the proposed adaptive array
configurations. The proposed configurations are comprised of three
configurations. The first configuration presents a regular fully
adaptive subarray, which aims to reduce the complexity and mean
square error. The regular subarrays are formed by dividing all the
array elements into several subarrays and each subarray contains equal
number of elements.

Subsequently, the second configuration is partially adaptive
elements that aims to more reduction in complexity and mean square
error. The main different between fully adaptive subarray and partially
adaptive elements is that in partially adaptive elements only a certain
number of the array elements are chosen to be adaptive. In contrast,
the remaining elements are made constant.

Finally, the third configuration is partially adaptive irregular
subarray, which aims to achieve more reduction in the feeder
complexity and maintain good performance for interference
suppression. The configuration of the third approach is achieved by
dividing the partially adaptive elements into smaller partially adaptive
subarrays. Furthermore, the outcomes of all three approaches
mentioned above are developed to reduce the feeder complexity,
improve the algorithm's convergence speed, and maintain good
interference suppression performance.

The three design configurations during this research are

modeled and simulated in order to verify the effectiveness of the
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proposed configurations. Furthermore, The three configurations in

this research are discussed in the following section.

3.2 Regular Fully Adaptive Subarray

In this proposed configuration, regular subarrays are formed by
dividing all the array elements, N, into several equal subarrays, Q, and
each subarray, g, contains M elements. Note that M is always less than
N, and N should be even so that the remainder of the division Q=N/M
is always an integer number. Figure.3.1 shows the configuration of the
proposed regular fully adaptive subarray. For N=12 elements and to
get equal subarrays, the value of M in each subarray may contain any
of the following numbers: 2, 3, 4, and 6. Note that as the number of
elements in the subarray, M, increases, the complexity of the feeder
decreases, the shape of the obtained radiation pattern may encounter
more distortion. Thus, the tradeoff between the complexity and the

array pattern shape should also be considered.

The array factor of such subarray is calculated as follow

. 2T .
AF garay(0) = $2_ TM_  wilt - /lAm= D7 sIn(®) [3.1]

While, the equation of updating weight is written as following

Weup (K + 1) = Wey, (k) + p e (k)x(k) [3.2]
Wsup = [Wawy ....wg]” [3.3]

These subarray weights are updated adaptively during the
adaptation process of the LMS algorithm. Note that the number of the
adaptive elements has been reduced from N to only Q where Q < N

which improves the optimizer's convergence speed.
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Figure 3.1. Fully adaptive subarray configuration

3.3 Partially Adaptive Elements

The second proposed configuration is the partially adaptive
elements where only a certain number of the array elements are
chosen to be adaptive, while the remaining elements are made
constant as shown in Figure.3.2 Let's assume that the number of the
adaptive elements is P, thus the number of fixed elements is N-P. P
should be chosen to be smaller than N and it should also sufficient
enough to steer the desired nulls, then both the complexity and the
interference cancellation can be improved. The array factor of such

configuration can be written as following

AFpartially(e) =
—p _i(*=E)Ea since (p-1)2Zd sin(0
N S P

constant element v
adaptive element
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As seen from this equation, the feeder complexity was reduced from N
to only P adaptive elements where P < N . The adaptive weight vector

can be written as

Wpartlallyz[wl Wy ... Wp]T [3-5]

Here, the value of P can be pre-specified by the designer to

compromise feeder complexity and finer radiation pattern.
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Figure 3.2. Partially adaptive array configuration.

3.4 Partially Adaptive Irregular Subarray

As mentioned in the previous section, the main array elements
are partitioned into adaptive and fixed elements. The adaptive
elements, P, can be further divided into smaller partially adaptive
subarrays to achieve more feeder complexity reduction, improve the
convergence speed of the algorithm, and maintain good performance

for interference suppression. However, to keep a good beam pattern
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shape without distortion, especially in desired null directions, the
number of the created subarrays should be equal to or more than the
total number of the interfering signals. The proposed configuration is

shown in Figure 3.3.

~ ~ B
Planec wave >

y(k)l

Figure 3.3. Partially adaptive subarray configuration.

3.5 Modeling and Simulation
In this section, the simulation software, simulation setup, and
performance parameters are explained. The simulation results and

discussion of the proposed configurations are presented in section 3.6.

3.5.1 Simulation Software

In the simultion, MATLAB software is used to implement the
proposed approaches to evaluate the performance of all the proposed
approaches. Since it contains complicated data structure, built-in
editing, debugging tools, and support object-oriented programing.

Making MATLAB an excellent tool for teaching and research.

31



3.5.2 Simulation Setup

This section presents the default simulation setup used to
measure the performance of the proposed approaches. the default
simulation parameters chosen in this study are summarized in table
3.1

Table 3.1. Simulation Parameters.

parameter name Value
number of element 12,40,80
Step size for 12 elements 0.006
Step size for 40 elements 0.0125
Step size for 80 elements 0.02
interelement spacing 0.51
desired signal direction 0°
interfering signals directions —45°,25°
number of iterations 100
noise variance 0.0001
signal variance 0.001
interferer 1 variance 0.5
interferer 2 variance 0.5

3.5.3 Performance Parameters

To determine the efficiency of the proposed approaches against
the specified objectives, the following performance parameters are

used, as listed in the following subsection.

3.5.3.1 Minimum Mean Square Error
Mean Square Error (MSE) is the difference between the array output
and the reference signal. Minimum Mean Square Error (MMSE)

minimizes the error while iterating the array weight. An alternative
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means for optimizing the array weights is found by minimizing the
MSE. Figure 3.4 shows the MSE adaptive system.
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Figure 3.4. MSE for the adaptive system [31].

The reference signal is the d(k) signal. the reference signal is
preferably either identical to the desired signal s(k) or substantially
correlated with s(k) while being uncorrelated with the interfering
signals in the system i,(k). If s(k) is not distinguishable from the
interfering signals, the minimal mean square method will not function

correctly. error signal is the signal such that (k) [31].
(k) =dk) — w" x(K) [3.6]

It can be demonstrated by some elementary algebra that the MSE is
given by the following [41].

le(k)? = [d(K)]> — 2d(k) w" (k) + " x(K) £"(K) W [3.7]

3.5.3. 2 Maximum Signal to Interference Plus Noise Ratio
Maximizing the Signal to Interference Plus Noise Ratio (SINR)
IS one criterion that may be used to improve the received signal and

reduce interference and noise signals. If we can eliminate all
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interference and noise by placing nulls at their angles of arrival, the
SINR will be maximized automatically. From Figure 3.5, it can be
noticed that the certain number of elements and a number of desired
signal with a number of interference signal [31]. The array output y
may be expressed as follows [41].
95 s(k)
xp(k) 5

va(k)

A i (k) % wa
L]

\

% D am(k)

6y

WM

Figure 3.5. M number of elements with number of desired signal and
interference signal [31].

y(k) = w" - %(K) [3.8]
where
i, (k)
i, (k)
%(K)=do S(K)#a@ ...l | +7K) [3.9]
i, ()]
= %, (K) + %, (K) + 7(K) [3.10]
With
W = [y w, -+ Wy]" = array weights [3.11]

Xs(K) = desired signal vector
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x;(K) = interfering signals vector
n(k) = zero mean Gaussian noise for each channel
a; = M-element array steering vector for the 01 direction of arrival

We may rewrite Eq:[3.8] and Eq.[3.10] to get

y(K) = w" - [%:(K) + x;(K) + A(K)] = w" - [%s(K) + u(K)] [3.12]
where
u(K) = x;(k) + (k) = undesired signal [3.13]

The calculation for both the desired signal (R) and the undesired
signals (R,,,) for array correlation matrices and the formula for the

weighted array output power for the desired signal are as follow:

o2, =E[[W" - %P =w" - Ry, - W [3.14]
Where
R, = E [x, x[] = signal correlation matrix [3.15]

The weighted array output power for the undesired signals is given by

o2, =E[W" - uf]=w"-R,, -w [3.16]

Ryw = Ry + Rpp [3.17]
With

R;; = correlation matrix for interferers

R,,, = correlation matrix for noise

The SINR is the ratio of desired signal power to undesired signal [41].
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0% _wHR.
SINR = == =—— [3.18]

o2, wHR,, W

3.5.3. 3 Weights

The combination of each antenna's relative amplitude and phase
shift is known as its complex weight. Various algorithms are used to
determine these weights. The LMS adaptation process starts updating
the complex weights in terms of amplitudes and phases with respect to
the iteration number. The initial values of the amplitude weights are
assumed to start from zero and are gradually adjusted according to the

LMS sense until reaching their optimum final values.

The adaptation process of the complex array weights (amplitude

and phase) are based on least mean squares as follows
wk+1)=wk)+ue (k) xk) [3.19]

Where w = [w; w, ... . wy]" are the complex weights, p is the step
size of the adaptive algorithm, Kk is the discrete time, x(k) is the overall

input signals

3.5.3. 4 Array Factor

The antenna array includes adaptive beamforming algorithms
for identifying, tracking, and mitigating interference. By combining
the signals incident on the linear antenna array and knowing their
arrival directions, it is possible to optimize the radiation pattern by
adjusting a set of weights. A smart antenna has the ability to focus its
radiation beam toward the desired user while reducing the beam
pointed toward the undesired user and rejecting interference [31]. The

beam pattern of the designed array can be found by

. 2T .
AF(6) = IN_, wH ¢/ (- D7rasin(6) [3.20]
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3.6 Simulation Results and Discussion

To verify the effectiveness of the proposed adaptive array
configurations, various numbers of numerical results have been
presented and compared. The performance of the proposed
configurations in terms of convergence speed, signal to interference
plus noise ratio (SINR) at the output of the system, adaptation process
of the adaptive complex (amplitudes and phases) weights and the
shaping required for array pattern with desired nulls have been
studied. In all simulation, we have considered 12,40 and 80 elements
linear array with interelement spacing set to 0.5A an optimum value to
avoid grating lobes. Also, it is assumed that there is one desired signal
arriving from direction 0°, and two interfering signals from directions
—45° and 25°, respectively, and number of iterations is 100 , w;(0) is
the zero vector. The step size value of the adaptive algorithm is
chosen to be p = 0.006 which ensures that the LMS algorithm
converges and performs well. The results are arranged into three

subsection.

3.6.1 Adaptive Array With 12 Elements
In this subsection, the number of the elements are 12, the
following subsections show the results in term Updating Weights,

LMS Errors, SINR and array pattern.

3.6.1.1 Analysis of the Updating Weights

The LMS adaptation process starts updating the complex
weights in terms of amplitudes and phases of the four configurations
with respect to the iteration number as shown in Figures 3.6- 3.13.
The initial values of the amplitude weights are assumed to start from
zero and they are gradually adjusted according to the LMS sense until

reaching their optimum final values. From these figures, it can be seen
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that the standard fully adaptive array has 12 adaptive elements and the
LMS algorithm optimizes the amplitudes and phases of all of these
elements without any exception, whereas the regular fully adaptive
subarray has 6 adaptive elements which is clearly lower than that of
the original fully adaptive array. In this case, we used 6 subarrays and
each of them contains 2 elements. For the third configuration, the
number of the adaptive elements was chosen to be 4 among a total
number of 12 elements. Then, these 4 adaptive elements are divided
into 2 subarrays as the final configuration. Note that due to a very
small number of adaptive subarray elements (i.e., only 2) with the last
configuration, the optimum values cannot be reached. It is noted from
Figures that standard fully adaptive array takes high number of
iterations to reach the conversing state, this is because that all the 12

array elements are adaptive.

While the regular fully adaptive subarray. It can be seen that the
required number of iterations to reach the conversing state is less
compared to the standard fully adaptive. The reason behind this is that
the number of array elements is reduced to 6 array elements by the
configuration of a regular fully adaptive subarray which in turn
reveals the benefit of this configuration. Additionally, it can also be
seen from Figure 3.8 that the partially adaptive elements provide more
reduction in the number of iterations to get the conversing state
compared to the standard fully adaptive array and regular fully
adaptive. While in the partially adaptive subarray, the conversing
state is not reached; this is because the number of adaptive elements

is equal to the number of the interference signal.
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Figure 3.6. Amplitude weights of the standard fully adaptive array.
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Figure 3.7. Amplitude weights of the fully adaptive subarray.
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Figure 3.8. Amplitude weights of the partially adaptive elements.
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Figure 3.9. Amplitude weights of the partially adaptive subarray.
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Figure.3.10. Phase weights of the standard fully adaptive array.
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Figure.3.11. Phase weights of the fully adaptive subarray.
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Figure.3.12. Phase weights of the partially adaptive elements.
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Figure.3.13. Phase weights of the partially adaptive subarray.
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3.6.1.2 Analysis of the LMS Errors

In this subsection, the mean square error (MSE) of the output
signal for the three proposed configurations with standard fully
adaptive array is plotted versus the iteration number as shown in
Figure.3.14. It is found that the partially adaptive elements
configuration has the fastest convergence among all other
configurations. This is mainly due to the fact that the number of its
adaptive elements is reduced from 12 to only 4 adaptive elements
which is quite enough to control the required two nulls and reduces

the feeder complexity.

On the other hand, the LMS error of the partially adaptive
irregular subarray is relatively larger than that of other three
configurations. This is mainly because of having only 2 adaptive
subarrays which are not enough for dealing with scenario of two
interfering signals. Nevertheless, good convergence and lower LMS
error can be obtained with the last configuration if the number of
adaptive subarrays is larger than the total number of the interfering
signals. Also, it is found that the convergence speed of the standard
fully adaptive array is relatively slow with compared to second and

third configurations.
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Figure.3.14. Convergence speeds of different array configurations for
two interferer signals with 12 elements.

3.6.1.3 Analysis of the SINR

To illustrate the capability of the proposed configurations for
interference cancellations, the signal to interference plus noise ratio at
the output of those four configurations with respect to the SINR at the
input is plotted as shown in Figure. 3.15. The SINR at the output of

any considered configuration is computed according to the following

equations

wHRos w
SINRoutput:WuuW [321]
Whereas R, =E[s5"] R, = E[u"], and R,,,, = E[n 7i"] [3.22]

are the correlation matrices for the desired signal, interferers, and

noise respectively.

From this figure, it can be observed that the output of SINR of the

standard fully adaptive array configuration much better than all other
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configurations. Clearly, this is due to the availability of all array
elements as adaptive for interference cancellation by placing deep
nulls toward interfering signals. Although there are fewer number of
adaptive elements with the other proposed configurations, they are
still able to provide acceptable SINR at their outputs which fully

confirm the effectiveness of the proposed configurations.
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Figure.3.15: Variations of the output SINR versus input SINR with
12 elements.
3.6.1.4 Analysis of the Array Patterns
In order to see clearly the placed nulls toward the interfering
directions and verify the proposed ideas, the array patterns of the
above mentioned four configurations and comparisons are depicted in
Figures. 3.16, 3.20. For comparison purpose, the beam pattern of the

uniformly excited linear array is also included. It is found that all the
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array configurations have the ability to place deep and accurate nulls
at the interfering directions without any distortions in the array
patterns. Also, it has been noted that they are able to steer the main
beam toward desired signal direction. More important, the first three
configurations (i.e., standard fully adaptive array, regular fully
adaptive subarray, and the partially adaptive elements) which they
have 12, 6, and 4 adaptive elements respectively have better ability to
place deep nulls than that of the last configuration which has only two

adaptive subarrays

U [ T T : T T T : T T T ]
1 1
1 1
5t : : .
i i
A0k i i -
i i
18y | : 1
_ I L
S 20t i i i
— el 11
1] L] I
= 1 1
2 1 : : b
= n 1
= 1 1 L
E -30 : : 1
1 1
1 1 1
35 H P -
----- Uniform Array Pattern
40 E Fully Adaptive Array Pattern
' Desired Direction
45 - T B L E L First Interferer Direction
T T I S Second Interferer Direction
-50 1Nl
] 60 -40 -20 0 20 40 60 Gl

Figure.3.16. Array patterns of the fully adaptive array.
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Figure.3.17. Array patterns of the fully adaptive subarray.
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Figure.3.18. Array patterns of the partially adaptive element.
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Figure.3.19. Array patterns of partially adaptive subarray.
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Figure.3.20. Array patterns of different array configurations for two
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