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Abstract

In many applications, the radiating elements of the deployed antenna array
may be configured in the form of a single linear dimensional, or two planar
dimensional or even random distributions. Linear or planar array antennas
are considered uniform when the distances between the array elements are
regular, and random antenna array when the distances are random. In such
applications, a simple optimization algorithm is highly needed to optimally
determine the excitation amplitudes and phases of the array elements and
maximize the system’s performance. In this dissertation, a convex
optimization is used instead of other complex global stochastic
optimizations to synthesize the linear, planar, and random array patterns
under pre-specified constraint conditions. These constraints could be either
fixed beam width when minimizing the sidelobe levels or fixed sidelobe
levels when minimizing the beam width. First, the problem of obtaining a
feasible minimum sidelobe level for a given beam width has been
investigated. Then, the problem was reversed to obtain a feasible minimum
beam width for a given sidelobe level. Both optimization methods were
applied to the linear, planar, and random array configurations. Simulation
results verified the effectiveness of both optimization methods and for all
considered array configurations. Simulation results show that the feasible
minimum sidelobe level can be obtained was (-35.74dB) for 5 deg beam
width in the linear antenna arrays. While for the planar and random arrays,
the feasible minimum side lobe levels were below -8 dB. This is mainly
due to the restriction on the limited aperture area in the planar and random

arrays.



Table of Contents

Acknowledgments
Abstract

Table of Contents
List of Figures

List of Tables

List of Abbreviation
List of Symbols

CHAPTER ONE
Introduction

1.1 Overview
1.2 Literature Survey
1.3 Problem Statement
1.4 Objectives and Aims of the Thesis
1.5 Layout of the Thesis
CHAPTER TWO
Theoretical Background of Array Antennas

2.1 Introduction
2.2Antenna Array Parameters
2.2.1 Radiation Pattern
2.2.2 Radiation Pattern Lobes
2.2.3 Side Lobe Level (SLL)
2.2.4 Directivity
2.2.5 Antenna Beamwidth
2.3 Antenna Array Configurations (Linear, Planar,
Random)
2.3.1 Linear Array
2.3.2 Planar Array
2.3.3 Random Planar Array

IX

Xl

B 2 ON B
=

12
13
13
15
17
17
18
19

20
24
25



CHAPTER THREE
CONVEX OPTIMIZATION

3.1 Introduction 28
3.2 Convex Optimization 29
3.3 Advantages of Convex Optimization 32
3.4 Mathematical Optimization 33
3.5 The Convex Optimized Method 35

CHAPTER FOUR
SIMULATION RESULT

4.1 Obtaining Feasible Minimum Sidelobe Level fora 40
Given Beam Width, with Constant Number of Array
Element

4.2 Obtaining Feasible Minimum Side Lobe Level fora 51
Varied Beam Width, from Qgsw = 3° up to Qsw = 20°

4.3 Obtaining Feasible Minimum Side Lobe Level for a 56
Given Beam Width, with Varied Number of Array
Element

4.4 Feasible Minimum Beam Width for a Given Side 76
Lobe Level SLL

CHAPTER FIVE
CONCLUSIONS AND FUTURE WORK

5.1 Conclusion 88
5.2 Future Work 89
References 90



List of Figures

(2.1)  Plot of Power Pattern and its Associated Lobes 15
and Beamwidth.

(2.2) (@) Planar Uniform Array (a) Linear Uniform 20
Array.

(3.1)  Constraint 1, Obtaining Feasible Minimum Side 38
Lobe Level for a Given Beam Width.

(3.2) Constraint 2, Obtaining Minimum Beam Width 39
for a Given Side Lobe Level.

(4.1) The Optimized Radiation Pattern of the 42
Uniformly Spaced Linear Array with 36x1
Elements for Qgw=>5°.

(4.2) Array Elements Locations. 43

(4.3)  Amplitude Excitation of Uniform and Optimized 43
Array.

(4.4) Phase Excitation of Uniform and Optimized 44
Array.

(4.5) The pattern of the optimized planar array with 45
6x6 elements for Qpw = 5°.

(4.6)  Array Element Location of optimized Planar 46
Array.

(4.7) Amplitude Excitation of Uniform and Optimized 46
Uniform Planar Array with 6x6 Elements for

Qpw = 50.

(4.8) Phase Excitation of Uniform and Optimized 47
Uniform Planar Array with 6x6 Elements for
QBW = 50.

(4.9)  The pattern of the optimized Random planar 48

array with N=36 and Qgw=5°.

(4.10) Random Planar Array Element Location with 6x6 49
Elements for Qpw = 5°

(4.11) Amplitude Excitation of Uniform and Optimized 49
Random Planar Array with 6x6 Elements for
QBW = 50.



(4.12)

(4.13)
(4.14)

(4.15)

(4.16)
(4.17)
(4.18)

(4.19)

(4.20)
(4.21)
(4.22)
(4.23)
(4.24)
(4.25)
(4.26)

(4.27)

Phase Excitation of Uniform and Optimized
Random Planar Array with N=36 elements for
QBW = 50 .

Variation of Directivity (dB) Versus Given
Beam Width.

Variation of Feasible Minimum Side Lobe Level
(SLL )Versus Given Beam Width.

The Optimized Radiation Pattern of the
Uniformly Spaced Linear Array with 49x1
Elements for Qpw=3.7°.

Array Element Location of Optimized Linear
Array 49x1 Elements .

Amplitude Excitation of Uniform and Optimized
Linear Array with 49x1 Elements for Qgw=3.7°.
Phase Excitation of Uniform and Optimized
Linear Array with 49x1 Elements for Qgw=3.7°.
The Optimized Radiation Pattern of the
Uniformly Spaced Linear Array with 64x1
Elements for Qpw=2.84°.

Array Element Location of Optimized Linear
Array 64x1 Element.

Amplitude Excitation of Uniform and Optimized
Linear Array with 64x1 Elements for Qgw=2.84°.
Phase Excitation of Uniform and Optimized
Linear Array with 64x1Elements for Qgw=2.84°.
The Optimized Radiation Pattern of Planar
Uniform Array NxM=49 Element and Qgw=3.7°.
Array Element Location of Optimized Uniform
Planar Array 7x7 Element.

Amplitude Excitation of Uniform and Optimized
Planar Array with 7x7 Elements for Qgw=3.7°.
Phase Excitation of Uniform and Optimized
Planar Array with 7x7 Elements for Qgw=3.7°.
The Optimized Radiation Pattern of the
Uniformly Spaced Planar Array with 8x8
Element for Qgw=2.84°.

VI

50

54

55

S7

58

58

59

60

61

61

62

63

64

64

65

66



(4.28)
(4.29)
(4.30)
(4.31)
(4.32)

(4.33)

(4.34)

(4.35)
(4.36)

(4.37)

(4.38)

(4.39)

(4.40)
(4.41)

(4.42)
(4.43)

(4.44)

Array Element Location of Optimized Uniform
Planar Array 8x8 Element.

Amplitude Excitation of Uniform and Optimized
Planar Array with 8x8 Elements for Qgw=3.7°.
Phase Excitation of Uniform and Optimized
Planar Array with 8x8 Elements for Qgw=2.84°.
The Optimized Radiation Pattern of the Random
Planar Array with N=49 Element for Qgw=3.7°.
Array Element Location of Optimized Random
Planar Array 49 Element.

Amplitude Excitation of Uniform and Optimized
Random Planar Array with 49 Elements for
QBW:3.70.

Phase Excitation of Uniform and Optimized
Random Planar Array with 49 Elements for
QBW:3.70.

The Optimized Radiation Pattern of the Random
Planar Array with 64 Element for Qgw=2.84°.
Array Element Location of Optimized Random
Planar Array 64 Element.

Amplitude Excitation of Uniform and Optimized
Random Planar Array with 64 Elements for
QBW:2.840.

Phase Excitation of Uniform and Optimized
Random Planar Array with 64 Elements for
QBW:2.840.

Array Pattern of Linear Optimized Array for
SLL=-30dB and N=36 Element.

Linear Array Elements Locations.

Amplitude Excitation of Uniform and Optimized
Linear Array.

Phase Excitation of Uniform and Optimized
Linear Array.

Array Pattern of Uniform Planar Optimized
Array for SLL=-30dB and NxM=36 Element.
Planar Array Elements Location.

\l

67

68

68

69

70

70

71

72

73

73

74

77

78
79

79

80

81



(4.45)
(4.46)
(4.47)
(4.48)
(4.49)

(4.50)

Amplitude and Phase Excitation of Optimized
Planar Array with SLL=-30dB and NxM=36.
Array Pattern of Random Planar Optimized
Array for SLL=-30dB and NxM=36 Element.
Array Element Location of Optimized Random
Planar Array 36 Element.

Amplitude and Phase Excitation of Optimized
Random Planar Array.

Variation of Directivity (dB) and Versus Given
Side Lobe Level SLL (dB).

81

82

83

83

84

Variation of Minimum Feasible Beamwidth (deg) 85

and Versus Given Side Lobe Level SLL (dB).

VI



List of Tables

Table Title Page

(4.1)  Optimized Uniform Linear Array with N=36 51
and d=0.5.

(4.2) Optimized Uniform Planar Array with 52

N*M=36 and dy =dx="/,.

(4.3)  Optimized Random Planar Array with N=36. 53
(4.4) Compromised for Varied Number of Element 75
for Three Types of Optimized Array Linear,

Planar and Random Planar.

(4.5) Uniform Linear Array with Varied Side Lobe 86
Level (SLL) and N=36.

(4.6)  Uniform Planar Array with N*M=36 and 86
Varied Side Lobe Level SLL.

(4.7) Random Planar Array with Varied Side Lobe 87
Level (SLL) and N=36.



List of Abbreviation

5G Fifth Generation
AF Array Factor
ALO Antlion Optimization
CAA Circular Antenna Array
DE Differential Evolution
EF Element Factor
FA Firefly Algorithm
FNBW Fist Null Beam Width
GA Genetic Algorithm
GOS Grasshopper Optimization Algorithm
HPBW Half Power Beam Width
IWO Invasive Weed Optimization
LAA Linear Antenna Array
OLS Ordinary Least Square
PSO Practical Swarm Optimization
MIQP Mixed Integer Programing Problem
MMW Millimetre Wave
RGA Real coded Genetic Algorithm
SA Simulated Annealing
SLL Sidelobe Level
SOS Symbiotic Organisms Search
WSN Wireless Sensor Network




List of Symbols

D(0,D) Directivity (Dimensionless)
Do Maximum Directivity
dx The Spacing of Element in x -axis
dy The Spacing of Element in y -axis
k The Wavenumber
U Radiation Intensity (W/Unit Solid Angle)
Umax Maximum Radiation Intensity (Watt/Unit Solid
Angle)
Wmn Amplitude Excitation of the Elements
Bx The Progressive Phase Shifts in x —directions
By The Progressive Phase Shifts in y —directions
A The Wavelength in Free Space
Qsw the required first null to null beam

Xl



CHAPTER ONE

Introduction

1.1 Overview

Low sidelobe levels with narrow beamwidth (i.e., maximum directivity)
in radiation pattern are essential in most array antennas applications to
reduce the negative impacts of noise and interfering signals, generating
misleading target indications and affecting overall system performance. To
achieve a minimum sidelobe level, proper antenna array design and
structure are required. Antenna arrays can be arranged as linear arrays,
planar arrays, or random planar arrays, depending on their applicability in
a real-world setting. In the linear and planar arrays, the inter element
spacing is usually regular and uniform, while in the random arrays they are
irregular and nonuniform. Unlike the linear arrays where their radiation
patterns can be scanned either on the azimuth or elevation angles, the
radiation patterns of the planar arrays can be scanned to any angle in the
azimuth and elevation planes simultaneously. Thus, the planar arrays are
widely used in practical application due to their advantages and versatility
[1].

The regularly spaced and uniformly excited linear and planar antenna
arrays have many good radiation characteristics such as narrow
beamwidth, good directivity, and simple excitation weight vector, but they
suffer from high sidelobe levels (SLLs) of about -13.2 dB, which may
cause many false target indications and many other problems. It is possible
to control the beamwidth, sidelobe level, and other array pattern



characteristics by adjusting one or more of the following array design
parameters, the geometrical layout of the array elements, the excitation
amplitudes and phases of the array elements, interelement spacing, and
finally the pattern of each individual element [2].

The process of determining antenna settings to obtain desired radiation
attributes such as null position, sidelobe level, and antenna pattern
beamwidth is known as pattern synthesis. Many methodologies have been
developed for the synthesis of linear and planar arrays. Some of the most
current intelligent optimization methodologies for array antenna synthesis
include the Genetic Algorithm [3], Particle Swarm [4], simulated annealing
[5], the differential evolution algorithm [6], and Touring ant colony [7].
However, the computational complexity of these global optimization
methods is high, especially when dealing with large arrays. Many antenna
problems can be solved analytically or numerically by treating them as or
converting them to convex optimization problems [9].

Convex optimization techniques are useful for offering structural
insights into the best solution as well as finding optimal numerical
solutions to these problems quickly [8]. Convex optimization methods can
be used to effectively solve the problem of array synthesis with a feasible
minimal sidelobe level for a given beam width or feasible minimum beam
width for a given sidelobe level. This chapter includes the literature
survey, problem statement, objectives and the aims of the dissertation. It

also contains the whole organization of dissertation.

1.2 Literature Survey
In the literature, several analytical and optimization strategies were
examined to discover the element excitations or other design parameters

that result in a desired radiation pattern with a low side-lobe level [9].



Many scholars researched these design factors in the literature and
discovered that the SLL may be lowered by tapering the excitation
amplitudes of the array of components. As a result, several tapers based on
deterministic equations, such as Dolph, Taylor, triangular, and raised
cosine, to mention a few [2], were proposed. Dolph-Tschebyscheff
proposed distribution for element excitations such that the appropriate
array pattern has the least amount of beam width widening for a given
sidelobe level. In other words, as the beamwidth decreases, the sidelobe
level increases and vice versa.

In 1997, H. Lebret and S. Boyd ,demonstrated how convex
optimization might be used to create the best layout for any antenna array.
The procedure either identifies a viable point or unequivocally determines
that the issue is infeasible. The major objective was to show how powerful
and efficient convex optimization can be for antenna array design
syntheses [10].

In 2005, M .Khodier and C.Christodoulou, used the particle swarm
optimization (PSO) technique to synthesize linear array geometry with the
lowest sidelobe level and null control. The PSO method was successfully
utilized to optimize array element positions to produce an array pattern
with suppressed sidelobes, null placement in certain directions, or both.
Exploring alternative array geometries and adjusting the excitation
amplitude and phase of each element in the array can give you more control
over the array pattern [11].

In 2007, C. Rocha-Alicano, et al., Combining a binary-coded genetic
algorithm (GA) with a differential evolution (DE) approach allowed for
the sidelobe level problem in planar arrays to be minimized. When
compared to a linear array with uniform inter-element spacing, DE proved
to be an effective approach to lower the side lobe level. The use of a GA

helped to see which factors are most responsible for controlling the



sidelobe levels. When both algorithms are used combined, they
demonstrated that they are extremely well suited to this task [12].

In 2007, N.Petrella, et al., used the Practical swarm optimization (PSO)
method to create a planar array with the least amount of sidelobe and null
control. The method easily met the optimization target in each of the cases
provided. The use of particle swarm optimization to construct planar arrays
was demonstrated in this research. Its goal was to eliminate sidelobe and
insert nulls in certain directions [13].

In 2007, P.J.Bevelacqua and C.A.Balanis, developed a technique for
determining the best sidelobe-minimizing weights for an arbitrary linear
array for each scan direction, beamwidth and kind of antenna element
employed. Using the particle swarm optimization approach, optimal linear
array placements are then discovered. This can provide a global bound on
antenna array sidelobe reduction performance [14].

In 2008, A. Reciouli, et al., discussed the use of genetic algorithms to
create uniformly spaced linear array geometries with low sidelobe levels
and beamforming capacity. Several examples are provided to show the
design's efficacy and adaptability. The Schelkunoff approach, in
combination with Genetic Algorithms, has proven to be effective at
synthesizing any well-designed and achievable intended radiation pattern
[15].

In 2013, J.R. Mohammed, studied the radiation pattern of two extra
elements put at both the edge of the original array provides a null in the
direction of the original array's main beam, and all of the other lobes of the
two-element array are almost at the position of the original array's
sidelobes. The initial array was created with the intention of aligning the
lobes of both designs. For sum patterns, combining the two patterns
reduces sidelobes on one side while increases sidelobes on the other. The
sidelobes on both sides are significantly reduced for different designs [16].



In 2014, J.R Mohammed and K.H Sayidmarie, used convex
optimization to optimize the excitations of only the perimeter elements of
the planar array subject to low asymmetric sidelobe and controlled nulls.
In comparison to fully optimized planar arrays, these outstanding radiation
properties were achieved at a lower cost and with a simpler feeding
network [17].

In 2014, Z.Zhang, et al., showed that the side lobe level of uniformly
spaced linear array geometries with a specific main beam width is
minimized by using the real-coded genetic algorithm (RGA) optimization
approach provided in this research. Utilizing MATLAB, the optimization
procedure is completed. With different numbers of elements and intervals
between each element, it was compared to traditional analytical techniques
like Chebyshev and Taylor. It was discovered to be helpful to use the
genetic algorithm to the synthesis of patterns [18].

In 2016, B.Sun, improved the synthesis sparse array by using a unique
two-step convex optimization approach. The sparse array's goal and
constraints function are eased to make it a convex problem for synthesis of
focused and shaped beam patterns. In both non-uniform and thinned array,
numerical comparisons show that the suggested technique has reduced side
lobe level [19].

In 2016, N. Dib, applied Symbiotic Organisms Search (SOS) that is a
robust method to the synthesis of antenna arrays for the first time. It was
primarily used to create linear antenna arrays with reduced side lobes. The
amplitudes optimization, placements optimization, and phases
optimization situations of linear array design were all examined. The
results were compared to those produced with conventional optimization
approaches, but without the need for modifying parameters [20].

In 2016, A.Safaai-Jazi , et al. , used a novel analytical method for

manufacturing evenly spaced linear arrays. These arrays are constructed so



that their array factor is the m-th power of the array factor of an n-element
uniformly stimulated array. The advantage of technique is that it always
results in a monotonically reducing current taper. By removing far-
out components with low amplitudes, this feature allows for array thinning
[21].

In2017, S. Ur Rahman et al, calculated and optimized the inter-element
spacing and excitation amplitude in this study using the PSO algorithm
code. The optimization goals in this work included optimizing the HPBW,
SLL, directivity, and null steering in certain rotational directions. The PSO
approach has utilized the two fitness functions in order to accomplish these
objectives. When using various values for the number of antenna array
elements, one of the fitness functions is utilized to determine the ideal
excitation amplitude and inter-element spacing values that result in a
pattern with the least amount of SLL and HPBW. By maximizing
excitation amplitude, PSO uses the second fitness function to regulate the
nulls in a certain direction and reduce SLL and HPBW [22].

In 2017, J.R Mohammed, showed that because just the final two edge
elements of the huge uniform array are optimized, the directivity and
HPBW are unaffected. With pre-specified width and depth, the optimized
approach may achieve the needed sidelobe nulling. More importantly, the
suggested array requires a fairly simple feeding network to be
implemented. As a result, it might be regarded the most practicable way
for implementation. Additional degrees of freedom must be included in the
optimization process to generate multi-sectors sidelobe nulling [23].

In 2017, S.Saleem, et al., focused on optimizing linear array synthesis
to obtain shorter half-power beam widths, lower side-lobe levels, and nulls
management as required by the design. To achieve these objectives,
researchers looked into optimizing the array's excitation amplitude, phase,
and inter-element spacing. Particle Swarm Optimization (PSO), which



used a fitness function created using null direction and side lobe level
(SLL) restrictions, was used to optimize the design variables [24].

In 2018, G.Sun, et al., examined the synthesizing of the beam patterns
of the linear antenna array (LAA) and the circular antenna array (CAA).
The maximum sidelobe level (SLL) of the beam patterns is first reduced
using an optimization algorithm. The invasive weed optimization (IWO)
algorithm is then used to solve the specified issue. When compared to other
algorithms for SLL reductions, the findings revealed that IWO performs
better in terms of accuracy, convergence rate, and stability [25].

In 2019, J.R. Mohammed, designed an arbitrary array with randomly
distributed components to create the desired beamforming shape
successfully and effectively. Convex optimization used to optimize the
amplitude and phase of each random element. Using the compressed
sensing approach, more research might be done to improve array
performance with a fewer amount of random elements [1].

In 2019, J.R. Mohammed, presented two novel strategies for synthesis
of array patterns that accomplish deep side-lobe reduction. The suggested
approaches, unlike previous sidelobe reduction methods, utilize a novel
process based on the derivation of a cancellation pattern. The method
consists of the following steps: first, the element excitations of an array are
disturbed sufficiently so that the corresponding array factor produces a
specified cancellation pattern; second, the original array is subtracted from
the original, uniformly excited array to get a new array pattern [26].

In 2019, H.Yang, et al., the proper configuration of uniformly
stimulated and evenly spaced arrays is advised in order to produce the
desired amplitude distributions in the main planes. The 9-element array's
SLL in both the E and H planes is less than -27 dB. This approach and
strategy might be useful in situations when high gain and low SLL are
required [27].



In 2020, A. Amaireh, et al., used two metaheuristic algorithms, Antlion
optimization (ALO) and Grasshopper Optimization algorithm (GOA) to
optimize the design of scanning linear antenna arrays. The goal of this work
was to minimize the side lobe level while keeping the major lobe
beamwidth constant. When compared to other approaches such as SOS and
FA, the findings revealed that the suggested hybrid algorithm is quite
competitive in lowering SLL [28].

In 2021, Y.X.Zhang, et al., suggested a solution framework for antenna
array directivity maximization issues based on convex optimization
approaches. The relationship between the problem and the techniques for
solving it has been thoroughly studied. The presented techniques may be
used to optimize arbitrary antenna arrays with fixed element placements
and pre-determined element radiation patterns. The two-stage technique
may lead to extremely good solutions even under very strict SLL constraint
conditions [29].

In 2021, F.Yang et al., provided an effective optimization strategy for
the synthesis of sparse arrays. In which, the directivity was entirely
optimized and the maximum array aperture was restricted. A broad real-
value mixed integer programing problem (MIQP) issue for maximizing the
sparse rate in a constrained array aperture was construct based on the
framework of thinned array synthesis. The iterative convex optimization
approach was then suggest as a solution to this problem [30].

In 2021, M.Khalaj-Amirhosseini, suggested an analytic approach for
designing uniformly spaced arrays with the lowest feasible sidelobe level
and directivity as near to that of uniformly excited arrays was suggested.
The sidelobe levels of the synthesized array may be regulated by the
expansion factor, which is proportional to the beamwidth of the main lobe

of the optimum desired array factor [31].



In 2022, Ayse Miige Zobu et al, to achieve low side lobe levels, the
antenna array with a feeding network proposed in this study .This paper
described the design process for a feeding network that makes use of
Dolph-Tschebyscheff distributed coefficients. This array was designed to
obtain a side lobe level of -20 dB. Coefficients were used to create the
shunt linked series-feeding network. The feeding network’s output has
delay lines added to it, which directs the antenna'’s radiation pattern in the
desired directions. The obtained side lobe level was below -15 dB [32].

In 2022, M.Khalaj-Amirhosseini, designed Linear antenna arrays to
provide the highest possible directivity for a given beamwidth. The
excitation currents were calculated using the Lagrange multiplier approach
and a matrix equation. The effectiveness of the suggested technique is
investigated using several examples. The synthesized arrays' directivity is

proportional to the number of element [33].

1.3Problem Statement
In many applications, the performance of the antenna arrays may be

not appropriate due to high sidelobe level, wide beam width and low
directivity. Thus, the antenna array may suffer from interference and
performance degradation.

The array design should be as simple as possible so that the practical
implementation can be achieved properly.

A simple optimization method is highly wanted to design such antenna
arrays with the requirements to enhance the energy in the main lobe, i.e.,

raise the directivity while lowering the power wasted in the side lobes.



1.4 Objectives and Aims of the Dissertation

To investigate the performance of three configuration of antenna
arrays linear, planar and random planar array.

To study and compare Half Power Beamwidth (HPBW), First
Null Beamwidth (FNBW), Directivity and Side Lobe Level
(SLL).

To use convex optimization to optimize array performance under
certain restrictions for some constants in the radiation pattern.
By optimizing the excitation amplitude and phase of the
individual array elements, the convex optimization was applied
to the linear, planar, and random arrays to generate the required
radiation patterns.

To use two constraint techniques to carry out the optimization
procedure. The first one includes the feasible minimum sidelobe
level for a given beam width, while the other one includes the
feasible minimum beam width for a given sidelobe level. Both
methodologies' efficacy in building linear, planar, and random
arrays was demonstrated and validated.

To employ the convex optimization function within the Matlab

program with CVX_function [34] to meet the research's goals.

1.5 Layout of the Dissertation

The dissertation is divided into five chapters. Chapter two explores

the background and the theory of antenna array types and its parameters.

Chapter three presents convex optimization method and the way to use

It in optimized the three types of antenna arrays. Chapter four presents

the simulation results of optimizing the amplitude and phase excitation
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for each elements in the linear, planner and random planner array first
to obtain feasible minimum sidelobe level for a given beam width, while
the other one includes the feasible minimum beam width for a given
sidelobe level. Chapter five gives the conclusions and some suggestion

for future work.
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CHAPTER TWO
Theoretical Background of Array Antennas

2.1 Introduction

Single antennas are generally limited for many applications because of
the large half power beamwidth and lower Directivity. To satisfy the
demands for long distance communication, high-gain and narrow pencil
beam, it is sometimes required to construct antennas with particularly
directional properties. Increasing the antenna's electrical size is typically
the only way to do this. Because most antennas are on the order of a
wavelength, and because beamwidth is inversely related to antenna size,
many antennas are necessary to sharpen the radiation beam. Without
necessarily increasing the size of the individual pieces, another efficient
method is to arrange the radiating components into an assembly in a
geometrical and electrical structure. An antenna array is a type of multi
element radiation device [30]. An array of antennas that work together to
focus energy reception or transmission in a specific direction might extend
a system'’s usable range [35].

The capacity of a communication system has constraints as a result of the
fast development of communication technology and the explosive
expansion in the number of users. Antenna arrays can help wireless
communication system by increasing capacity and spectrum efficiency.
For example, to increase the system's spectral efficiency and transmission
rate, fifth-generation (5G) communications use millimeter wave (mm-
wave) and beamforming technologies based on antenna arrays.
Additionally, utilizing antenna arrays can improve the energy efficiency of
a communication system [25].

In comparison to a single element, an array provides various benefits.

Before merging the signals, the signals can be weighted to improve
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performance aspects like interference rejection and beam steering without
actually altering the aperture. It is even conceivable to design an antenna
array that can change how it operates based on its surroundings. These
appealing characteristics come with an increased expense and complexity
[36].

In this chapter, the main antenna array parameters as well as the array
geometries are presented. The array parameters may include, array
radiation pattern in both linear and dB scales, directivity, sidelobe level,
and the half power beam width. Where the array geometries will include
single dimensional linear array, two dimensional rectangular planar array,
and random planar array where its elements are randomly distributed along
xy-plane. Moreover, the most significant and well-known relationships

and array design parameters will be discussed and explained in this chapter

2.2Antenna Array Parameters

Definitions of many criteria are required in order to define an antenna's
performance. Not all of the characteristics must be included for a thorough
description of the antenna performance because some of them are

interrelated.

2.2.1 Radiation Pattern

An antenna radiation pattern or antenna pattern is defined as “a
mathematical function or a graphical representation of the radiation
properties of the antenna as a function of space coordinates. In most cases,
the radiation pattern is determined in the far-field region and it is
represented as a function of the directional coordinates. Radiation
properties include power flux density, radiation intensity, field strength,

directivity, phase or polarization.” [2].
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In another word diagrammatic representations of the distribution of
radiated energy into space, as a function of direction, known, as radiation
patterns. An antenna's radiation pattern serves as a representation of the
energy it emits. The two- or three-dimensional spatial distribution of
radiated energy as a function of the observer's location along a path or
surface of constant radius is the radiation property of most interest. An
antenna's spatial response may be evaluated qualitatively overall using
three-dimensional antenna patterns. However, two-dimensional cuts are
necessary to get accurate sidelobe levels, null positions, and beamwidth
measurements. The two-dimensional antenna pattern measured on a large
circle surrounding the antenna is known as an antenna pattern cut. It is
common practice to normalize the field and power patterns in relation to
their maximum value, resulting in normalized field and power patterns.
Additionally, the power pattern is sometimes represented in decibels or on
a logarithmic scale (dB). This scale is typically preferred because a
logarithmic scale helps emphasize in greater detail the small lobes, or
extremely low value portions of the pattern. Rectangular plots of these
identical patterns may be seen in (dB) and in (linear). The nulls,
beamwidth, and sidelobe levels are exactly located using the rectangular
plots as show in figure (2.1). In contrast to the dB plot, low side lobes are

more difficult to notice in the linear display [36].
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Figure (2.1): Plot of Power Pattern and its Associated Lobes and

Beamwidth.

2.2.2Radiation Pattern Lobes

The term lobe refers to a number of different components of a radiation

pattern, which can be further divided into major or main, minor, side, and

back lobes, according to the figure (2.1).

A radiation lobe is define as “portion of the radiation pattern bounded

by regions of relatively weak radiation intensity.”

A major lobe (also called main beam) is defined as “the radiation lobe

containing the direction of maximum radiation.” The main lobe or major
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lobe is the largest portion of the radiated field, which extends across a
wider region. This is the area where the amount of radiation is at its highest.
This lobe's orientation reveals the antenna's directivity.

A side lobe is “a radiation lobe in any direction other than the intended
lobe.” A minor lobe is any lobe except a major lobe. Side lobes or minor
lobes refer to the other areas of the pattern where the radiation is spread
side wards. These are the places where energy is being misused.

There is another lobe that faces the main lobe in the exact opposite way.
It is referred to as the back lobe and is a small lobe. A back lobe is “a
radiation lobe whose axis makes an angle of approximately 180° with
respect to the beam of an antenna.”[2] .Even here, a lot of energy is lost.
Additionally, it has been demonstrated that the array creates extra beams
(grating lobes) if the inter-element spacing is equal to or greater than one
wavelength. It is important to understand how a grating lobe varies from a
typical side lobe. Side lobes are a result of both positive and negative
interference from the antenna's many radiating components. A side lobe's
level is always lower than the main beam's. A grating lobe is created in
directions where there is a maximal in-phase addition of radiated fields due
to the periodicity in the radiation pattern. Instead of being compared to a
typical side lobe, a grating lobe should be contrasted with the main beam
[37]. In the linear antenna array has just one beam peak inside the
observable observation angle area (-90°,90°) if the distance between the
neighboring elements is equal to or less than the wavelength A. The
undesirable grating lobe arises whend > A. In order to prevent the
appearance of the grating lobe, the value of the maximum element spacing

Is determined by the observation angle range.
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2.2.3 Side Lobe Level (SLL)

A ratio of the power density of a particular lobe to that of a major lobe is
typically used to represent the level of minor lobes. This ratio is commonly
referred to as the side lobe ratio or side lobe level [38] .The side lobe level
defined as “The maximum relative directivity of the highest sidelobe with

respect to the maximum directivity of the antenna” [39].

2.2.4 Directivity

The directivity is a metric used to compare a given antenna to an isotropic
antenna emitting a similar amount of power. In other words, the directivity
IS the ratio of an anisotropic antenna's power density to that of an isotropic
antenna emitting a given amount of power [40].

Therefore directivity of an antenna defined as “the ratio of the radiation
intensity in a given direction from the antenna to the radiation intensity
averaged over all directions. The average radiation intensity is equal to the
total power radiated by the antenna divided by 4. If the direction is not

specified, the direction of maximum radiation intensity is implied [2].

41U (0,0)
3T o u(6,0)sin(0)dodo

D(6,0) =

(2.1)

The greatest directivity is a fixed quantity and is just Equation
(2.1)maximum . Dy is often used to indicate the highest directivity. As a
result, by slightly altering Equation (2.1), the highest directivity may be
discovered to be

— 4nUmax
3T [ U(6,0)sin(0)dodo

D, (2.2)
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Where

D = directivity (dimensionless)

Do = maximum directivity (dimensionless)
U = radiation intensity (W/unit solid angle)

Umax = maximum radiation intensity (W/unit solid angle)

2.2.5 Antenna Beamwidth

It could be used to compare gains between antennas. The gain, on the other
hand, is a number that simply uncovers information about the maximum
radiation. commonly wonder what the shape of the radiation belt is. It
makes use of the beamwidth for that. It can determine the shape of the main
lobe from the beamwidth. Beamwidth has a variety of meanings [37].

The Half-Power Beamwidth (HPBW) is one of the most used
beamwidths, which is defined by IEEE as: “In a plane containing the
direction of the maximum of a beam, the angle between the two directions
in which the radiation intensity is one-half value of the beam.” However,
in actual usage, the HPBW is typically referred to as beamwidth without
any extra identification. In other words, the beam width is the region where
the peak power, or the majority of the power, is emitted. Half power beam
width is the angle in the antenna's effective radiated field when the relative
power is more than 50% of the peak power. Half power beam width, or
HPBW, is the angle between two vectors when a line is drawn from the
origin of the radiation pattern to the half power locations on the main lobe,
on both sides. As the beamwidth drops, the side lobe grows, and vice versa,
the antenna's beamwidth is a crucial figure of merit that is usually utilized
in trade-offs with the side lobe level.

The angle between the pattern's first nulls, also known as the First-Null
Beamwidth (FNBW), is another significant beamwidth .FNBW is just the

angle measured between the first null points of the radiation pattern on the

18



major lobe and quoted away from the main beam. Drawing tangents on
both sides, tangential to the main beam, commencing at the radiation
pattern's origin, is a sign of FNBW. First Null Beam Width is the angle
formed by those two tangents (FNBW) [38].

2.3 Antenna Array Configurations (Linear, Planar,

Random)

Any geometric shape is possible for arrays of antennas. Linear arrays,
circular arrays, planar arrays, and conformal arrays are some of the array
geometries of importance [40]. The designer must not only choose the
appropriate radiating elements but also take into account the geometry
(placement) and excitation of each individual element in order to
synthesize the overall pattern of an array. The layout of the items and their
kinds also affect how well the array performs. To help the designer choose
an efficient array structure, trade-offs for linear and planar arrays are
described. As was said before, an array of sensors alters the pattern of the
array as well as the gain and bandwidth of a single sensor. The array
resolution and interferometer (grating lobe) effects are determined by the
location of the components within the array. Resolution often rises as array
dimension (or the distance between items) grows [41]. Physical restrictions
determine the geometry, and the designer may have limited in choosing the
array geometry. The linear array with uniform spacing and the rectangular
planar array with uniform and non-uniform inter element spacing will be
the two types of antenna array configurations that will be the subject of this
thesis's study, which will also examine their performance and optimization

using convex optimization .
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Figure (2.2): (a) Planar Uniform Array (a) Linear Uniform Array.

2.3.1 Linear Array

The most fundamental configuration for array elements is the linear
array shown in figure (2.2 b). Since linear arrays are mostly used
in wide application, it is possible to use the same techniques to operate
more intricate array forms. The pattern properties of an array may be
defined for functioning as a transmitter or receiver, depending on which is
most convenient, since antennas often match the reciprocity criterion. The
output of each element may be modified in terms of amplitude and phase.
Amplitude and phase control enable the radiation pattern to be manipulated

and scanned in space [42].
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The element factor (EF) and the array factor (AF) may always be used to
calculate the far field from an array of identical elements. Pattern
multiplication is a characteristic that may be seen in action by the simple
fact that the antenna pattern can be multiplied by the array factor pattern.
As a result, any array of antennas' far field pattern is always given by (EF)
x (AF).

E (total) = [E (single element at reference point)] x [array factor]

The AF is influenced by the electrical phase, spacing, and geometrical
configuration of each element in the array [37].

Each array's factor is unique. If the elements' amplitudes, phases, and
spacing are the same, the array factor will have a simpler form. The array
factor may be calculated by substituting isotropic (point) sources for the
actual radiating components since it is independent of the directional
properties of the elements themselves. It is assumed that each point source
has the same amplitude, phase, and position as the element it is replacing.
This type of antenna array named as uniform linear array. “uniform linear
array: A linear array of identically oriented and equally spaced radiating
elements having equal current amplitudes and equal phase increments
between excitation currents” [36].The array factor can be distinguished
from the element factor. The array factor may be determined for any array,
regardless of the individual elements used, as long as they are all the same.
As a result, it is simpler to examine arrays of isotropic items first. When
the general array design is finished, the design may be put into practice by
adding the necessary specialized antenna parts. These antenna components
might consist of patch antennas, waveguide apertures, loops, horns,
dipoles, and loops, among others [40].

The array factor of uniform linear array of N elements of isotropic

source and each element has 3 the progressive phase lead current excitation
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relative to the preceding one with space between elements equal to d is
given by [40].

AF =YN_ (=D (2.3)

where Y = kdcos6 + (2.4)
2m

k== (2.5)

The array factor in Equation (2.3) of the isotropic elements were
considered to have a unity amplitude in the preceding calculation for the
array factor. This assumption allows the AF to be reduced to a simple
series. The greatest sidelobes for a linear array with uniform weights are
down around 24% from the highest value. The array is emitting energy in
untended directions if sidelobes are present. Additionally, the array is
getting energy from unexpected directions as a result of reciprocity. The
sidelobes may pick up the same signal from different directions in a
multipath environment. This is the underlying cause of the fading in
communications. It is recommended to direct the beam in the intended
direction and shape the side lobes to exclude unwanted signals if the direct
transmission angle is known [40]. Side lobes may be suppressed by

weighting the array elements as show in the figure (2.3).
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Figure (2.3): Linear Array with Weighting.

The array factor will become as equation (2.6) for the symmetric linear

array with an even number of elements N.

AF, even Zn 1 Wn COS((ZTI - 1)”) (26)

Where u = 7%dsin 0 (2.7)

Where 2M = N = total number of array elements. When the argument is
zero, the array factor is at its maximum, which implies that 6= 0. The total
of all the array weights is thus the maximum.

To obtain the quasi-normalized odd array factor, we may once more add
up all of the exponential contributions from each element of the array
[40].

AF, 54 = Y wy, cos(2(n — Du) (2.8)
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Where 2M+1=N. The weights w, represents the amplitude and phase
excitations of the N element uniform linear antenna and can be uniform or
can be in any form according to the designer’s needs. The array weights
can be optimized by using any optimization algorithm to find the required
array parameters. This issue will be discussed and present in the next

chapter.

2.3.2 Planar Array

Individual radiators may also be arranged in a rectangular grid to create
a rectangular or planar array in addition to arranging elements in a line (to
produce a linear array) as shown in figure (2.2 a). With planar arrays, you
have more control and shaping options for the array's pattern. The
flexibility of planar arrays is greater, and they can produce more
symmetrical designs with smaller side lobes. Additionally, they may be
used to scan the antenna's main beam in any direction. Radar tracking,
search, communications, remote sensing, and many more uses are
examples of applications [2].

Following the investigation of planar arrays may go to a few somewhat
more complicated geometries by determining the pattern for rectangular
planar arrays. An M xN array of elements created when there are M items
in the x-direction and N elements in the y-direction. The weight of the m-
nth element is wy,. Both the x- and y-directed elements are separated by
dx and dy, respectively. It is possible to think of the planar array as either
N linear arrays of M elements or as M linear arrays of N elements. We
begin by assuming that the planar array antenna's elements are arranged on
a regular grid or lattice, just as we did with the linear array antenna.
Although this is not essential for the operation of an array antenna, it will
simplify the conversation and depict the scenario that occurs in real-world

settings the most regularly. We assume the lattice to be rectangular.
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We can use pattern multiplication to identify the pattern of the full M N
element array because we already know the array factor for a M or N

element array operating alone.

By multiplying patterns, we have [2].
AF = AF, X AF,,

_ z z W, e JEH(n=1)(dsin(8) cos(8)+Bx)+(m—1)(dy sin(0) sin(@)+B,]

(2.9)
The weightsw,,,, represents the amplitude and phase excitations of the
(n,m) element and can be uniform or can be in any form according to the
designer’s needs. where A is the wavelength at the operating frequency, 0
and ¢ is the elevation and azimuth angles, respectively, if beam steering is
desired then the phase delays Bx and By are given by [2].
By = —kd,sinf,cos®, (2.10)

By = —kd,sinfysin@, (2.11)

In the above equations, observe that the array weights can be optimized
by using any optimization algorithm to find the required array parameters.

This issue will be discussed and present in the next chapter.

2.3.3 Random Planar Array

A typical planar array of sensors cannot be constructed in many

applications owing to practical reasons. These include the localization of
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tumors in biomedical research, environmental sensing such as water
quality monitoring, traffic management, seismic exploration, radio
telescopes made up of several randomly placed sensors, the detection of
forest fires, and flood control. In recent times, both military and civilian
applications have successfully deployed wireless sensor networks (WSN)
In monitoring regions. These applications include placing sensors across
an area where a phenomenon is to be observed. The sensors are employed
in the military to identify enemy incursion, while in civilian applications,
they are utilized to identify geo-fencing around gas or oil pipelines [43].
The sensor nodes in each wireless sensor network should be configured to
function as a smart array or to collaborate in beamforming in order to get
the best performance in all of the aforementioned applications. If the array
components inside the constrained region exchange information and
broadcast synchronously, a steerable beam may then be produced to scan
the horizon and determine the required direction. The sensors in this system
are randomly arranged across an arbitrarily restricted region, in contrast to
the uniformly distributed planar arrays. An antenna with a single element
makes up each sensor node. It is better to combine these random nodes into
an array than to use a single element antenna or even a straightforward
linear array. The primary goal of the arbitrary arrays, which are made up
of a random collection of sensor nodes, is to enhance the performance of a
wireless sensor network by allowing these random components to
cooperate in beamforming. The coherent or incoherent combination of
each sensor node yields the overall electromagnetic fields of such arbitrary
arrays. As a result, the position, phase, and amplitude excitation of each
array member may be used to control the radiation pattern in the far-field
area of an arbitrary array with randomly dispersed elements [1].

For random arrays, the elements are randomly located along the x and

y-axes and the interelement spacing is irregular. Thus, (can be rewritten as
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(2.12)

Where x,, ,,, and y,, ,,are the random locations of the (n, m) element.The
weights w,,,,, represents the amplitude and phase excitations of the (n,m)
elements of the random planar array which used to optimized the antenna
array pattern [2].

From (2.9) and (2.12), it is clear that the total number of the adjustable
excitation elements,w,,,,,, is N x M which is quite large and ,thus, the use
of global stochastic optimizations such as genetic algorithms is associated
with high complexity and slow convergence. Further, in many cases, the
optimal solution may not require such a highly complex and global
optimization algorithm since the searching spaces may be convex. Instead,
this problem can be solved efficiently by the convex optimization where
the unknown array excitations,w,,,,, , constitutes a set of linearfunctions on
a convex space.

The fundamental benefit of the analysis described in the preceding
paragraphs is that it is straightforward, making it possible to develop a
computer program that can quickly analyze a large number of
configurations and, as a result, optimize designs within certain user-

defined limitations.
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CHAPTER THREE
CONVEX OPTIMIZATION

3.1 Introduction

An effective way to identify and analyze signals coming from many
directions is to use antenna arrays. An array of sensors' beam pattern may
be altered by an amplitude and phase distribution known as the array's
weights, as opposed to a single antenna, which has constrained directivity
and bandwidth. The antenna array beam pattern is produced by summing
and weighting the signals after preprocessing the antenna outputs. Finding
weights that meet a set of requirements on the beam pattern is the core of
the antenna array pattern synthesis challenge. In this study, stress the use
of convex optimization in the planning of antenna arrays. Of course, not
every issue with antenna array design is convex. Nonconvex issues include
those where the antenna weights have a fixed magnitude (i.e., phase-only
weights), those with lower bound constraints (contoured beam antennas),
and situations where the number of nonzero weights is constrained.
However, some significant synthesis issues are convex and may be
resolved by recently developed extremely effective methods. Furthermore,
a particularly strong version of "solution” is meant here: Global solutions
are discovered with computing times that are consistently minimal and
increase smoothly with the size of the issue. Although the quantity and
diversity of issues that may be addressed are substantially greater, the
calculation time is naturally not as short as that required by a "analytical"
technique. On the other end of the spectrum, nonconvex optimization,

which is entirely universal, may be used to formulate any synthesis issue.
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The drawback of using such approaches is that they cannot provide global
optimality, quick computation, or a smooth increase in computation time
as a function of issue size. Convex optimization offers a superior
efficiency/generality tradeoff compared to both the (quick but constrained)
analytical approaches and the (slow but thorough) general numerical
procedures [10]. One of the most significant methods in the area of
mathematical programming, which has several applications, is convex
optimization. It also applies to fields like machine learning, data science,
economics, medicine, and engineering on a far wider scale than just

mathematics.

3.2 Convex Optimization

Searching for variables that reach the global maximum or minimum of
the sum function is known as optimization. Convex optimization is a subset
of optimization where you work with "convex" functions, which simply
mean "bowl-shaped" functions. This makes finding maxima and minima
easy since you can just get there by walking on the bowl's surface in the
direction with the most slop. Convex uses the common comparison
operators =, <, and > to specify constraints. They outline the relationships
that two expressions must have [44].
Convex optimization problems are of the following two types:
1. Constrained convex optimization: The convex function to optimize is
subject to convex constraints.
2. Unconstrained convex optimization: The convex function to optimize is

not subject to any convex constraints.
The convex optimization algorithm is optimization for convex function

in the condition of convex constraint. Both equality constraints and

inequality constraints are applied to the objective function. While equality
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constraints demand that the answer reside precisely at a certain location,
inequality constraints suggest that the solution should be in some range.
An inequality constraint for a convex problem states that all variables must
be bigger than or equal to zero (or alternatively less than or equal to zero).
filx) <0, i=1,....m (3.1)
hi(x)=0, i=1,.... , P (3.2)

Where f;(x) are the inequality constrain function, and h; (x) are the equality
constraint function .

This kind of convex function can never become trapped at a local
minimum that isn't a global minimum since its gradient always points
upward. Two gradients on opposing sides of the graph cannot slope up and
down simultaneously because they are not differentiable at the point of
junction. This means that when utilizing convex optimization techniques
there is no need for iterations because they just move downbhill until they
reach the optimal value. Convex minimization or convex maximization
problems can be used to tackle convex challenges. An algorithm may be
improved via convex optimization, which will optimize the rate at which it
converges to the answer.

Convex optimizations include convexity, which is crucial. The first
derivative of a convex function's continuity is referred to as convexity. It
makes sure that convex optimization problems are smooth and have
specified derivatives so that gradient descent may be used. Linear,
guadratic, absolute value, logistic, and exponential functions are a few
examples of convex functions.

As a result, changing the element excitations and setup to have control
over the aforementioned parameters creates a complicated issue that may
be solved using a variety of techniques. In order to identify the right

solution with the necessary properties without thoroughly examining all
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the alternatives in the solution space, numerical optimization methods are

frequently utilized

Convex sets are the most significant for convexity. Any set that has all
of the points on or inside of its boundary and all convex combinations of
points in its inside is said to be convex. A collection of all convex functions
Is referred to as a convex set. The convex function, to put it simply, is
shaped like a hill. The global maximum or minimum of a convex function
IS hence what constitutes a convex optimization problem. Because convex
sets may be used to modify a convex function through certain sorts of
operations to maximize or minimize a convex function, convex
optimization approaches frequently employ convex sets. A convex hull,
which is the smallest convex set that may contain a certain convex set, is

an illustration of a convex set.

On every convex interval, a convex function only takes the value
between its minimal and maximal values. This indicates that this convex
function has no local extremes (on the convex region). Additionally, it
shows that just one point in this group of points that are on the convex hull
iIs closest to the minimum.

Convex optimization is widely used in both combinatorial optimization
and global optimization to determine boundaries on the optimal value and
approximations of solutions [45].

Convex objective function and constraint function optimization
problems have both of these characteristics. The fact that every local
optimum solution is also the global optimal solution is a key and significant
characteristic of the unconstrained convex optimization problem. This
optimization method is only applicable to the problems that can be

specified as a convex and its solution is with such convex cone. Convexity
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Is essential for both objective functions and constraint functions. In the case
of objective functions, convexity ensures that any local optimal solution is
also the global optimal solution if the feasible region is a convex set. In the
case of constraint functions, convexity ensures that the feasible region is a
convex set and that neither is dispensable. On the other hand, will not be
able to acquire the significant property that the local optimal is also the
global optimal if just the objective function is convex but the constraint
functions are not.

There are several contexts in which convex optimization issues are
used: A fundamental class of unconstrained convex optimization problem
Is the ordinary least square (OLS) regression in statistics [46].

The wanted an algorithm whose performance is unaffected by the initial
situation and quickly approaches the ideal outcome. Normally, this would
be challenging to estimate, however because its convexity, can assess

constraints on how far from optimum the result is.

3.3 Advantages of Convex Optimization

Recognizing or expressing an issue as a convex optimization problem has
several benefits as follows:

. contains particular examples of least-squares issues and linear programs
that can be solved precisely and have a comparable level of complexity as
linear programs [45].

. Itistrue that the inverse image of a convex set under a linear transformation
Is also convex, and vice versa [45].

. The most fundamental benefit is that convex optimization techniques may
then be used to address the issue in a highly efficient and reliable manner.
These problem-solving techniques are trustworthy enough to be included
into real-time reactive or automated control systems as well as computer-

aided design or analysis tools.
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4. If a convex set consists of more than one point, it is linked and has feasible
directions at every point. This is essential for optimization since it enables
a calculus-based comparison of the cost of x with the cost of its near
neighbors and serves as the foundation for several crucial algorithms.
Furthermore, convexity eliminates a large portion of the complexity that is
frequently related to discrete constraint sets (arising, for instance, in
combinatorial optimization) [47].

5. The formulation of an issue as a convex optimization problem also has
theoretical or conceptual benefits. When the corresponding dual problem
Is taken into account, for instance, the original problem might sometimes
be interpreted in an intriguing way that leads to an effective or widespread
solution [45].

6. It can see that convexity is more inclusive than linearity since inequality
takes the role of the more constrained equality and only applies to certain
values of and. It may think of convex optimization as an extension of linear
programming as each linear program is a convex optimization issue [45].

7. Tractable, both in theory and practice [45].

3.4 Mathematical Optimization
A convex optimization problem is one of the form [45].
Minimize f;, (x)
Subjecttof;(x) <b;, i=1,.......,m
Where the functions fy, ....., f;: R™ = R are convex, i.e., satisfy
filax + By) < afi(x) + Bfi (¥)
Forall x,y € R" andalla,f € Rwith a+f =1,a = 0,8 = 0.
In this work, the function f(x) will be considered as an array factor of the
antenna array and the optimization conditions will be representing the

desired constraints such as sidelobe level or main beam width.
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Gain in the direction of the desired signal must be enhanced while gain in
the direction of the interfering signals must be lowered in order to improve
the reception of a desired signal. By correctly changing the signal
amplitude or phase at all or part of the components, this objective is
achieved. An array that has its amplitude tapered or thinned results in low
side lobes at the necessary angles. The amplitude of interference entering

the side lobes is proportional to the sidelobe level.

Optimal multichannel filtering is an issue in optimal array processing.
In a signal environment with many interference signals, the goal of array
processing is to improve the receipt (or detection) of a desired signal, which
may be random or deterministic. It may be useful to estimate one or more
unknown properties that the desired signal may include, such as its
geographical position, signal energy, or phase. The employment of
complementary techniques, such as the insertion of restrictions, minimizes
any performance loss caused by departure of the actual operating
circumstances from the expected ideal ones. Vector weighting of the input
data successfully matches the desired signal when used under the
aforementioned ideal circumstances [41].

In many circumstances, the cost per sensor is substantial due to the
sensor and related electronics. As a result, even if space is available, prefer
to enhance processing complexity in order to limit the number of sensors.
There is a significant incentive to optimize processing performance.

In many circumstances, the "optimal array processor" will use one of the
beamforming designed using deterministic methodologies as a

fundamental building component in its implementation [48].
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3.5 The Convex Optimized Method

A regularly spaced two dimensional rectangular planar array composed
of N rows and M columns of isotropic elements is considered. The
elements are distributed uniformly on the xy plane with separation
distances d, = ’1/2 and d,, = A/Zon the x and y directions, respectively.
For uniformly spaced linear arrays, the array size will be either N x 1 or M
x1
according to the considered axis. In general, the array factor of two-

dimensional elements can be given by:

_ z Z W o j%”[(n—ﬁ(dxsin(e)cos(®)+ﬁx)+(m—1)(dysin(@)sin(®)+ﬁy]
- nm

(3.3)
B, = —kd,sin8,cosd, (3.4)
By = —kd,sinfysin@, (3.5)

Where ,,,5, are the progressive phase shifts in the x and y directions,
respectively, 0 and ¢ is the elevation and azimuth angles, respectively, and
A 1s the wavelength at the operating frequency

Finally, w,,,,, represents the amplitude and phase excitations of the (n,m)
element. For random arrays, the elements are randomly located along the

x and y-axes and the interelement spacing is irregular.

Thus, (3.3) can be rewritten as
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AF(6,9)

N
n=1

M
w ejz%[(n—l)(xn,mSin(e) cos(0)+Lx)+(m—1)(yn,m sin(6) Sin(®)+ﬁy]

nm
m=1

(3.6)

Where x,, ,,and y,, ,,, are the random locations of the (n,m) element. From
(3.3) and (3.6), it is clear that the total number of the adjustable excitation
elements, w,,,,, , IS N x M which is quite large and ,thus, the use of global
stochastic optimizations such as genetic algorithms is associated with high
complexity and slow convergence. Further, in many cases, the optimal
solution may not require such a highly complex and global optimization
algorithm since the searching spaces may be convex. Instead, this problem
can be solved efficiently by the convex optimization where the unknown
array excitations,w,,,,, , constitutes a set of linear functions on a convex
space.

The present work develops an innovative methodology for convex
optimization problem is formulated as the determination of the excitation
amplitudes and phases of the array elements such that the resulting

radiation pattern obeys one of the following two constraints:
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Constraint 1: Obtaining Feasible Minimum Sidelobe Level for a Given
Beam Width

In this case, the convex optimization minimizes the sidelobe level
outside the beamwidth of the array pattern and it has a unit sensitivity at
target direction to avoid any distortion in the main beam. These constraints

are written as follows:

|AF (6, ®)| is minimum (3.7)
Subject to AF (B, By) = 1 (3.8)
|AF(6;,0;)| < SLL (3.9)

'900 S Hi S _'QBW y and 'QBW S Hi S 900

Where SLL, is the feasible starting value of the sidelobe level in the
elevation plane for fixed value of azimuth angle,25,, and is the required
first null to null beam width in the elevation plane. The constraint in (3.8)
aims at preserving the unit gain in the target direction, while the constraint
in (3.9) is for obtaining the feasible minimum sidelobe level for a given

beam width. The constraint 1 can be seen in figure (3.1)
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Figure (3.1) :Constraint 1, Obtaining Feasible Minimum Sidelobe Level for a Given Beam Width.

Constraint 2: Obtaining Minimum Beam Width for a Given Sidelobe
Level

In this case, the optimized array pattern is designed such that it has unit
sensitivity at desired target direction, obeys the constraint on the sidelobe
level outside the main beam, and minimizes the beamwidth of the array
pattern. The constrain two can be seen in the figure (3.2).The results of

applying these two cases are shown in the chapter four.
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CHAPTER FOUR
SIMULATION RESULT

The implementation of the convex optimization theories suggested in
the previous chapters will be covered here, also with comparisons and
comments on the results.

The convex optimization used to optimizing three-antenna array
configuration, linear array with uniform inter element space, uniform
rectangular planar array and random planar array. The convex optimization
problem is formulated as the determination of the excitation amplitudes
and phases of the array elements such that the resulting radiation pattern
obeys one of the following two constraint the first constraint, which state
obtaining feasible minimum sidelobe level for a given beam width ,and the
second constraint, which state obtaining minimum beam width for a given
sidelobe level .Numerous examples are given and evaluated using
simulations in order to evaluate the effectiveness of the provided

optimization strategy.

4.1 Obtaining Feasible Minimum Sidelobe Level for a
Given Beam Width, with Constant Number of Array

Element

In this case, the excitation amplitudes and phases are optimized such
that the corresponding array factor complies with the imposed constraints
in chapter three according to (3.7), (3.8), and (3.9). Note that the total
number of the array elements in all array configurations (linear, planar, and

random) was fixed to 36 elements.
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In the first, a uniformly spaced linear array having a total number of
elements equal to 36 (i.e., N=36 and M=1) that are spaced by ’1/2 IS

considered (selected an inter-element spacing equal to half a wavelength
to prevent grating lobe effects from obscuring the results of the amplitude
weighting or tapering [37])

The required first null to null beam width (Qgw) of the optimized array
pattern was chosen to be equal to that of the standard uniformly excited
linear array with 36 elements which is 5°, (Qgw = 5°). Note that the FNBW
of the optimized array is restricted to be as narrow as that of the standard
uniformly excited linear array while solving for feasible minimum sidelobe
level. The target direction is assumed to be known and equals to 0°. Fig
(4.1) shows the radiation pattern of the optimized linear array. For
comparison purposes, the radiation pattern of the standard uniformly
excited linear array is also shown in this figure. The elements locations,
optimized excitation amplitudes and phases are shown in Fig (4.2), (4.3)
and (4.4).
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Figure (4.4): Phase Excitation of Uniform and Optimized Array .

In the figure (4.1) the optimization radiation pattern of the uniformly
spaced linear array satisfy the constraint one, obtaining feasible minimum
sidelobe level for a given beam width, perfectly when obtain the minimum
SLL equal to (-35.74dB) in comparison with (-13.2dB) and directivity
equal to (34.363 dB) which is higher than (32.2524 dB) ,directivity of
standard uniformly excited linear array with 36 elements ,with fixed
HPBW .

From figure (4.2) ,it can be seen that the array element location along line
with uniform space d = A/2 which mean L=17.5(L is the overall length
of the array) [38].The array element location can be implement easy for

this situation.
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Magnitude (dB)

In the second, a uniformly spaced planar array with NxM =6 x 6

elements is considered again, the same optimization constraints as in the

previous example was imposed to obtain the feasible minimum sidelobe

level for a given narrow beam width, Qgw = 5° . The pattern of the

optimized planar array shown in Figure (4.5)
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Figure (4.5): The Pattern of the Optimized Planar Array with 6x6
Elements for Qgw = 5°.
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Figure (4.8): Phase Excitation of Uniform and Optimized Uniform Planar
Array with 6x6 Elements for Qgw = 5°.

It can be seen from the figure (4.5), the pattern of the optimized planar
array with 6x6 elements for (Qgw = 5°), and from the MATLAB code result
the SLL equal (-8.59 dB) which is higher than that of the standard
uniformly excited linear array, -13.2 dB. The directivity equal to (23.526)

which is lower than of the standard uniformly excited linear array, (32.2524
dB), because of the space between elements chosen to be fixed to (’1/2)

which means that aperture of the uniform planar array is lower than the
optimized linear array in first step.
The planar array element distribution uniformly on rectangular with

(2.5%2.5) can see the elements location in figure (4.5).
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In the third, a randomly spaced planar array with also N x M =6 x 6
elements is considered. Again, the beam width constraint was Qgw = 5° as
in the previous examples. The results for the optimized random array are
shown in Fig4.9. From this figure, it can be seen that the feasible minimum
sidelobe level was -7.7 dB, which is also higher than that of the standard

uniformly excited linear array, -13.2 dB.
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Figure (4.9): The Pattern of the Optimized Random Planar Array with
N=36 and Qpw=5°.
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Planar Array with N=36 Elements for Qg = 5°.

50



4.2 Obtaining Feasible Minimum Sidelobe Level for a
Varied Beam Width, from Qgw = 3° up to Qsw = 20°

Nevertheless, much lower SLL can be obtained for wider beam width

for this reason the beam width was varied from Qgw = 3° up to Qgw = 20°,

all theories for the previous case are still valid, and the corresponding
feasible minimum SLL and the directivities of the three array
configurations was recorded in three table (4.1),(4.2)and (4.3). For these
values of beam widths, the directivities of the three array configurations
were plotted as shown in Figure(4.13) and feasible minimum SLL of the

three array configurations were also plotted as shown in Figure(4.14) .

Table (4.1) Optimized Uniform Linear Array with N=36 and
d=A/,.
2

2° -10.84 29.373
40 -27.37 35.2
Sh -35.74 34.363
6° -44.13 33.545
8° -60.99 32.244
10° -77.96 31.258
12° -95.09 30.469
14° -112.4 29.817
16° -129.91 29.266
18° -147.39 28.7886
20° -163.4 28.3556

o1



Table (4.2) Optimized Uniform Planar Array with N*M=36 and
dy =dx=~/,,

20 -1.86 14.306
40 -6.63 21.71
50 -8.59 23.526
6° -11.12 25.517
8° -18.74 27.565
10° -25.68 27.161
120 -32.08 26.407
140 -37.52 25.631
16° -43.75 25.021
18° -50.68 24.507
20° -53.75 23.817
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Table (4.3) Optimized Random Planar Array with N=36

20 -1.38 13.515
40 -5.34 19.683
50 -7.68 22.406
6° -9.88 24.258
8° -15.42 26.344
100 -21.18 26.463
120 -26.41 25.715
140 -31.34 25.006
16° -34.72 24.205
18° -41.28 23.790
20° -49.20 23.501
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From these two figures and three tables it can be seen that the linear
array gives the feasible minimum SLL and higher directivity. This is
mainly because the linear array configuration has wider space diversity
than the planar and random arrays, thus, narrower beam width and better
directivity can be obtained. Moreover, the feasible minimum SLL can be

significantly reduced with an increase in the given beam width value.
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4.30btaining Feasible Minimum Sidelobe Level for a
Given Beam Width, with Varied Number of Array

Element

Firstly, a uniformly spaced linear array changing a total number of
elements from 36 to 49 (i.e., N=49 and M=1) that are spaced by /1/2 IS
considered .The required first null to null beam width (FNBW) of the

optimized array pattern was chosen to be equal to that of the standard
uniformly excited linear array with 49 elements which is equal to 3.7°,
(Qew =3.7°%). When optimizing for a feasible minimum sidelobe level, it
should be noted that the FNBW of the optimized array is constrained to be
as narrow as that of the standard uniformly excited linear array. The target
direction is considered to be known and equal to 0°.In this case, the
excitation amplitudes and phases are optimized such that the corresponding
array factor with constraint one, Obtaining feasible minimum sidelobe
level for a given beam width, its methodology in chapter three in (3.7),(3.8)
and (3.9).Figure (4.15) shows the radiation pattern of the optimized linear
array.

For comparison purposes, the radiation pattern of the standard uniformly
excited linear array also shown in these figures. From this figure, it is found
that the FNBW of the optimized array is exactly equal to that of the

standard uniformly excited linear array and the feasible minimum sidelobe

level was (-37.46dB) which is much lower than that of the standard

uniformly excited linear array, -13.2 dB and the lower than optimized
uniform linear array with number of element equal to 36 . The directivity

IS become more higher than the optimized uniform linear array with
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number of element equal to 36 ,which is varied from (34.363dB) t0(36.907
dB).
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Figure (4.15) The Optimized Radiation Pattern of the Uniformly Spaced
Linear Array with 49x1 Elements for Qgw=3.7°.
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Figure (4.18): Phase Excitation of Uniform and Optimized Linear Array
with 49x1 Elements for Qgw=3.7°.

The second case for linear optimized array changing the array element
number only to become N=64, M=1 and the FNBW become (Qsw=2.84°),
that is equal to the uniform linear array FNBW. The figures
(4.19),(4.20),(4.21) and (4.22) shown the results for this case.
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Figure (4.19): The Optimized Radiation Pattern of the Uniformly Spaced Linear Array with 64x1

Elements for Qgw=2.84°.
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Figure (4.21): Amplitude Excitation of Uniform and Optimized Linear
Array with 64x1 Elements for Qgw=2.84°.
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Figure (4.22): Phase Excitation of Uniform and Optimized linear Array
with 64x1 Elements for Qgw=2.84°.
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e Foruniform planar array the first case changing the array elements to

N=7,M=7 and Qgw=3.7° the results for this case are shown in figures

from (4.23) to (4.26)
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Figure (4.23): The Optimized Radiation Pattern of Planar Uniform Array

NxM=49 Element and Qgw=3.7°.
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Figure (4.24): Array Element Location of Optimized Uniform Planar
Array 7x7 Element.
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Figure (4.25): Amplitude Excitation of Uniform and Optimized Planar
Array with 7x7 Elements for Qpw=3.7°.
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Figure (4.26): Phase Excitation of Uniform and Optimized Planar Array
with 7x7 Elements for Qgw=3.7°.
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Magnitude (dB)

Figure (4.27):The Optimized Radiation Pattern of the Uniformly Spaced Planar Array with 8x8

e For uniform planar array in second case changing the elements
number to N=8,M=8 and Qgw=2.840 and the results shown in figures
from(4.27) to (4.30).
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Figure (4.28): Array Element Location of Optimized Uniform Planar
Array 8x8 Element.
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Figure (4.29):Amplitude Excitation of Uniform and Optimized Planar
Array with 8x8 Elements for Qgw=3.7°.
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Figure (4.30): Phase Excitation of Uniform and Optimized Planar Array
with 8x8 Elements for Qpw=2.84°.
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e For Random planar array the first case changing the array elements to
N=49 and Qgw=3.7° the results for this case shown in figures from
(4.31) to (4.34).
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Figure (4.31): The Optimized Radiation Pattern of the Random Planar Array with N=49 Element for
g)ng:3.7o.
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Figure (4.32):Array Element Location of Optimized Random Planar
Array 49 Element.
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Figure (4.33):Amplitude Excitation of Uniform and Optimized Random
Planar Array with 49 Elements for Qgw=3.7°.
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Figure (4.34): Phase Excitation of Uniform and Optimized Random
Planar Array with 49 Elements for Qgw=3.7°.
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Magnitude (dB)

e For Random planar array the second case changing the array elements

to N=64 and QBW:2.840
from (4.35) to (4.38)

the results for this case shown in figures
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Figure (4.36): Array Element Location of Optimized Random Planar
Array 64 Element.
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Figure (4.37): Amplitude Excitation of Uniform and Optimized Random
Planar Array with 64 Elements for Qgy=2.84°.
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Phase Excitations (degrees)
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Figure (4.38): Phase Excitation of Uniform and Optimized Random
Planar Array with 64 Elements for Qgw=2.84°.
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Table (4.4) Compromised for varied number of element for
three types of optimized array Linear ,planar and random planar

NxM  Qsw  SLL(dB) Directivity(dB)

(deg)
0 -
Optimized 36 5 35.74 34.363
uniform linear 49 3.7° -37.46 36.907
arey 64 284 3753 39.248
Optimized 36 50 -8.59 23526
uniform planar—— 4 3.7° 7.44 22.879
array
64 2.84° 5.81 22.074
Optimized 36 50 7.68 22.406
random planar 3.70 5.25 19.563
array
64 2.84° 3 17.458

From the figures for varying the number of elements for three types
the linear ,planar and random planar antenna array and table (4.4) only for
linear array when increasing the number of element the SLL lowering and
the directivity increase but in uniform and random planar array the reverse

occurred.
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4.4 Feasible Minimum Beam Width for a Given SLL

In this example, a feasible minimum beam width for a given SLL is
investigated where the SLL was fixed at -30 dB and a feasible minimum
beam width for linear, planar, and random arrays was computed . In all
cases the number of element fixed to (36 element) and target angle to 0°
.The results for uniform linear array ,uniform planar array and random
planar array with a feasible minimum beam width for a given SLL are
shown in figures(4.39) to(4.48) . From these figures, it can be seen

that the feasible minimum beam width for linear, planar, and random arrays
was Qgw =5° Qgaw = 11°, and Qaw = 13° respectively for getting
SLL=-30 dB.

76



1
(@]
|

N
o
T

N
(&)
T

] l:l
flll.n

" ama ow
%l-l-l.l
"y l:l.l ]

[ B I ] L]
:--l'lll .

Magnitude (dB)
T

Uniformly Excited Array Pattern
Optimized Array Pattern
SLL Constraint

|
0

|
|
i
1
1
1

0 (degrees)

Figure (4.39): Array Pattern of Linear Optimized Array for SLL=-30dB and N=36 Element.
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Figure (4.41): Amplitude Excitation of Uniform and Optimized Linear
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Figure (4.42): Phase Excitation of Uniform and Optimized Linear Array.
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e Planar uniform Array with SLL=-30dB and NxM=36
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Figure (4.43): Array Pattern of Uniform Planar Optimized Array for SLL=-30dB and NxM=36
Element.
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Figure (4.45): Amplitude and Phase Excitation of Optimized Planar Array

with SLL=-30dB and NxM=36.
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Random planar array with SLL=-30dB and N=36
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Figure (4.46): Array Pattern of Random Planar Optimized Array for SLL=-30dB and NxM=36
Element.
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Figure (4.47): Array Element Location of Optimized Random Planar
Array 36 Element.
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Figure (4.48):Amplitude and Phase Excitation of Optimized Random
Planar Array.
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Finally, the two figures (4.49) and (4.50) and tables (4.5),(4.6)(4.7) show
the variations of the minimum feasible beam width and the directivities for
different values of the SLL start from -10 to -45 for three types of array
(linear ,planar and random planar array). It can be seen that the higher SLL
results in narrower beam width. These results fully confirm the
effectiveness of the convex optimization algorithm for linear, planar, and

random array configurations.
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Figure (4.49): Variation of Directivity (dB) and Versus Given SLL (dB)
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Table (4.5): Uniform Linear Array with Varied Side Lobe Level
SLL and N=36.

-10 34.407 2
-15 36.073 3
-20 35.827 4
-25 35.432 4
-30 34.9586 3)
-35 34.439 3)
-40 33.933 6
-45 33.469 7

Table (4.6): Uniform Planar Array with N*M=36 and Varied
Side Lobe Level (SLL).

-10 24.804 6
-15 26.968 7
-20 26.955 9
-25 25.507 12
-30 26.821 11
-35 24.780 15
-40 25.720 14
-45 25.575 15

86



Table (4.7): Random Planar Array with Varied Side Lobe Level
(SLL) and N=36.

-10 23.574 7

-15 23.20 7

-20 24.607 12
-25 25.935 11
-30 25.484 13
-35 25.232 14
-40 24.569 16
-45 24.299 17
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CHAPTER FIVE

CONCLUSIONS AND FUTURE WORK
5.1 CONCLUSIONS

In this thesis, the three antenna array configurations uniform linear array,
uniform planar array, and random planar array have all been successfully
optimized using convex optimization to achieve the desired radiation
patterns of each type to obtain the desired characteristics, which in most
applications is to have the lowest side-lobe level with increased directivity
and without changing half power beam width . The excitation amplitudes
and phases of the array components are subjected in the optimization
approach to either minimize sidelobe levels for a given beam width or
minimize the beam width for a given sidelobe level. It has been
demonstrated from the outcomes of the linear, planar, and random array
topologies that a much lower SLL may be achieved for greater beam width
values at the expense of poorer directivities. Moreover, the performance of
the linear arrays was found to outperform in terms of minimum feasible
SLL for a given narrow beamwidth compared to other two configurations.
When the number of elements was raised in proportion to the first case's
maximum directivity and minimize side lobe level, the uniform linear array
outperformed the uniform planar array and random planar array in terms
of performance.

This is mainly due to the fact that the linear array has wider space
diversity. On the other hand, the three array configurations perform well
and provide feasible minimum beam width for relatively high SLL. These
results fully confirm the capability of the proposed two optimization

methods.
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5.2. FUTURE WORK

Future research can expand on and go deeper into the methodologies
outlined in this thesis. The following are some ideas:
1. Inthis thesis, the element excitation amplitudes and phases are
only optimized to obtain the minimum side lobe level with fixed half
power beam width and obtain minimum half power beam width with
fixed side lobe. The distance between the elements, their number, and
other parameters can be employed in optimization to get the same or
different characteristics.
2. The array configuration not only uniform linear ,planar array ,and
random planar array there are another configuration like circular
array and conformal array which can also be optimized with convex

optimization.
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