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Abstract

RSA is highly secure cryptosystem for data transmission but it is
relatively slow algorithm to be used in real time.

In this thesis an analysis, design and  implementation for main
algorithms have been used in RSA focusing on execution time using higher

language (JAVA) and FPGA with results comparison.

The execution time obtained for modular multiplications for FPGA
using interleaved was 142.416us , Montgomery was 109.995us , faster
Montgomery was 85.505us and modified interleaved with 110.819us which

are the core algorithms used in RSA implementation.

The execution time using java implementation was 29.259 ms, using
modified modular algorithm, faster Montgomery multiplication algorithm
and Chinese remainder theorem were 26.057 ms, 14.098 ms and 6.522 ms
respectively. Noticeable speed up was obtained using FPGA as comparison
with JAVA
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Chapter One

Introduction and Literature Review

1.1 Background

With the increase of data communication and expansion of internet
multiple services like electronic commercial transmissions, the most important
thing is security over the networks, one of the most widely used method for
that reason is Rivest Shamir Adleman RSA[1].

RSA is one of the most popular algorithms which was developed in
1977 by Ron Rivest, Adi Shamir, and Len Adleman at MIT and published
first in 1978. The RSA encryption is a block cipher algorithm in which the
plaintext and ciphertext are between 0 and 2" numbers ( where n is the number
of bits ), often the value of n is 1024 bits, so the message and encrypted
number is less than 2'%*. RSA uses modular exponentiation , first , Plaintext
Is encrypted in blocks, with each block having a binary value less than some
number n. That is, the block size must be less than or equal to log2(n) + 1, in

practical , the block size is n bits, where 2" <n < 2"[1].

1.2 RSA Key Generation[1]

The method is to select two large prime numbers p and g with condition

p#q

N =D X g (1.1)
BM) = (P=1) X (= 1) it (1.2)
Select e so that 1<e< @(n) and e co prime to @(n)

d= e TMOD B(N) oot e (1.3)

publickey= (e, N )



private key = (d, @(n))

1.3 RSA Encryption[1]

C=MEMOD N.ooooooeieee e, (1.4)
Where M : message (plaintext) , e : public key , N : public key , ¢ : encrypted
message

1.4 RSA Decryption[1]

M =CEMOD N..oooooooeeee e (1.5)
Where ¢ : encrypted message, d : private key, N : public key, M : message.

1.5 RSA Encryption Decryption Example[1]

For a numeric example :-
1. Select two prime numbers, p =17 and q = 11.
2. Find N Refer to equation (1.1)
N=pXq
N=17x11=187.
3. Find @ (n) Refer to equation (1.2)
P(n) =(p—-1) x(q—-1)
@ (n)=16 x 10 = 160.
4. Select e such that e is relatively prime to @ (n) = 160 , less than @ (n),
let e=7.
5. Refer to equation (1.3)
d= e 1 MOD @(n)
d=7"1mod 160
and d must be less than 160.
The value of dis 23 because 23 x 7 =161 = (1 x 160) + 1.

(d can be computed using extended Euclid’s algorithm)



The keys are public key = (7, 187) and private key = (23, 160) And a
message input M =88 7?

the encryption performed using equation (1.4)

c =M°modN

C =88" MOD 187.

Based on mathematical properties of modular arithmetic the calculation which
can be done like the following

88" MOD 187 = [(88* MOD 187) x (88* MOD 187) x (88" MOD 187)] MOD
187

88' MOD 187 = 88

88* MOD 187 = 7744 MOD 187 = 77

88" MOD 187 = 59,969,536 MOD 187 = 132

88" MOD 187 = (88 x 77 x 132) MOD 187 = 894,432 MOD 187 = 11.
Second: the decryption performed using equation (1.5)

M =C%MOD N

M = 11*° MOD 187

Based on The mathematical properties of MOD operation :

11 MOD 187 = [(11' MOD 187) x (11> MOD 187) x (11* MOD 187) x (11°
MOD 187) x (11° MOD 187)] MOD 187

11' MOD 187 =11

11> MOD 187 = 121

11* MOD 187 = 14,641 MOD 187 =55

11° MOD 187 = 214,358,881 MOD 187 = 33

11%° MOD 187 = (11 x 121 x 55 x 33 x 33) MOD 187 = 79,720,245 MOD
187 = 88.



1.6 RSA Security
There are four possible approaches to attack the RSA algorithm. They

are as follows:

1. Brute force attack: in this approach the attacker tries all possible private
keys.

2. Mathematical attacks: in this approach the attacker is using multiple
methods to factor the product N in two primes p and g, this enables
computation of @(n) using equation(1.2) (B(n) = (p-1) x(g-1), which
enables calculation of d using equation(1.3) (d = e MOD @(n) ).

3. Timing attack: This depends on the execution time of the decryption
algorithm bit by bit and on the modular exponentiation algorithm
design.

4. Chosen cipher text attack: this type of attack is done according to the
properties of the RSA algorithm[1].

1.7 Literature Survey and Related Works

In 2017, Implementation of RSA Algorithm with Chinese Remainder
Theorem for Modulus N 1024 Bit was proposed by Desi Wulansari, Much
Aziz Muslim and Endang Sugiharti [2]. They presented results of the testing
algorithm RSA-CRT 1024 bits , the deign achieved approximately 3 times
faster in performing the decryption speed (that means RSA time
implementation using CRT equal to 3 times RSA time without using CRT ).

In 2014, FPGA Implementation of RSA Encryption Algorithm for E-
Passport Application is proposed by Khaled Shehata, Hanady Hussien and
Sara Yehia [3]. In this paper, the design presented an implementation method
for 1024-bit RSA encryption/decryption algorithm using modular
exponentiation. This method used square and multiply algorithm. The paper



used add and shift algorithm for design modular multiplier. All the designs
implemented using using Xilinx ISE 12.3 software tool, VHDL language
code targeting device Virtex-5 XC5VTX240T-2FF175 FPGA and achieved
speed was 36.3 MHz

In 2012, Implementation of RSA Algorithm on FPGA was proposed by
Ankit Anand and Pushkar Praveen [4]. They presented implementation of
modular exponentiation and Montgomery multiplier, fully described using
VHDL and Xilinx ISE software, Target device 35s1600efg320-4 and would be
possible to implement RSA with key sizes such as 1024 bits, 1536 bits, and
2048 bits with the clock frequency 69.09MHz and consumed 13,779 units of
logic elements.

In 2011, A FPGA implementation of the RSA encryption algorithm
was proposed by P. Gabriel Vasile lanal , Petre Anghelescul and Gheorghe
Serbanl[5]. This paper presented implementation of RSA as a prototype
Xilinx Spartan3 using Montgomery multiplier. The key space was 1024 bit
and the execution time was 212.99ms with a 50 MHz RSA clock system to
achieve 208Kbps bit rate.

In 2011, hardware algorithm  using 2048-bit  RSA
encryption/decryption was proposed by Song Bo, Kensuke Kawakami, Koji
Nakano, Yasuaki Ito[6] where implementation was designed using one
DSP48E1 using one BRAM and few logic blocks (slices) in the Xilinx Virtex-
6 family FPGA. The execution time results obtained RSA module for 2048-
bit RSA encryption/decryption runs in execution time 277.26ms.

In 2009 Efficient Hardware Implementation of RSA Cryptography was
proposed by Mostafizur Rahman, Igbalur Rahman Rokon and Miftahur
Rahman [7] , presented hardware implementation of modular exponentiation

using interleaved multiplication. The design was modeled using Verilog HDL
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software tool and targeted to Virtex FPGA hardware device. Key size was 8
bits, 1.2ms execution time system and 100MHZ clock speed.

In 2009 RSA Encryption and Decryption using Redundant Number
System on the FPGA was proposed by Koji Nakano, Kensuke Kawakami, and
Koji Shigemoto[8]. The idea of design was to accumulate the modulo
exponentiation using Montgomery multiplication algorithm by embedded
multipliers and embedded 18k-bit block RAMs in . The hardware algorithms
the system has been implemented on Xilinx VirtexIll Pro family FPGA
XC2VP30-6, key size 1024-bit can operate in less than 2.521ms or 1.892ms
execution time .

In 2008, Parametric, Secure and Compact Implementation of RSA on
FPGA was proposed by Ersin Oksiizoglu, Erkay Savas[9]. The design utilized
block multipliers as the main mathematical unit to build Montgomery
multiplier and Block-RAM as storage unit using Xilinx Spartan-3E using a
pipelining method. The execution time was 7.62 us and 27.0 us for 1020-bit
and 2040-bit key sizes modular multiplications respectively. The execution
time for 1024 bit key size modular exponentiation RSA was 7.81 ms.

In 2004, fast Architectures For FPGA-Based Implementation of RSA
Encryption Algorithm is proposed by Omar Nihouche, Mokhtar Nibouche,
Ahmed Bouridane, and Ammar Belatreche[10]. They presented multiple
structures f RSA modules using Montgomery modular multiplier, was
implemented in Xilinx ISE 6.2 Software tool and XC40150XV-8 FPGA
hardware device The execution time of RSA was 27.88 ms.

In 2003, Efficient Architectures for implementing Montgomery
Modular Multiplication and RSA Modular Exponentiation on Reconfigurable
Logic was proposed by Alan Daly and William Marnane[11]. They presented

a pipelined technique using the maximum carry chain length of the FPGA

6



that implemented the modular exponentiation operation required for RSA
using Montgomery multiplication. The operation speed of the system was
49.64 MHZ with 45.8 kb / s data rate.

1.8_Aim of the Thesis

The methodology used in this thesis involved :-

1. Reviewing the theoretical foundation of RSA based on modular

exponentiation algorithms.

no

Implementing different types of modular multiplication emphasizing

on execution speed.

3. Choosing an optimum Modular multiplication algorithm based on
execution time.

4. Designing a modular exponentiation operation that represents RSA

encryption and decryption equations.

5. Discussing the final hardware RSA modules speed and throughput.

1.9 Thesis Layout

Expect the introduction showed in this chapter, the remaining chapters
are organized as following: Chapter Two handles RSA Theoretical
Background and presents hardware architecture algorithms used in RSA
implementation . Chapter Three handles RSA software implementation using
Java . Chapter four deals with FPGA implementation of RSA algorithm.
Finally chapter five presents the conclusion and some suggestions future

works.



Chapter Two

RSA Algorithm Architectures

2.1 Introduction

This chapter provides introduction about hardware algorithms used

for RSA implementation.

2.2 Modular Exponentiation Operation[12]

RSA encryption and decryption is a modular exponentiation
operation can be represented by equation (1.4) and equation (1.5)

representing following equation :-

p :plain text( in encryption) or Cipher text (in decryption)

e : public key( in encryption) or private key(in decryption)

M : modulus (which represented N of RSA algorithm see key generation
process)

C : Cipher text( in encryption) or Plaintext(in decryption)

The equation above is called modular exponentiation. There are
multiple techniques for hardware implementation of modular
exponentiation, The most widely used are:

¢ Right-to-left (RL)

e Left-to-Right (LR)



2.2.1 RL Binary Method

Inputs: p,e, N
Output: C:=p®mod N

K : number of bits in e;

1) C:=1;

2) For i=0 to k-1 do ( where k : number of bits in e)
3) if (e = 1) then (wheree; : i" bitof e)

4) C :=C X pmod N (where x: multiply)

5) End if;

6) p:=p X pmod N ; (square)

7) End for;

8) return C;

The bits of e are scanned from least significant to most significant, if
the bit index i of e is equal 1 it performed two modular multiplications(
multiply and square) else performed only one (square). For (e = 55), RL
algorithm will work as shown below in table 2.1.

Table 2.1 RL Binary Method [12].

When e =55 and k= 6 bit
i €i Step 3(C) Step 6(P)

0 1 1*P=P (P)* = P*

1| 1 | P*P?=pP® | ((P)»*=P*
2| 1 | PPxpi=p’ (PH)?=P°
3 0 P7 (P8)2 — P16

e: = 1, thus C:= P? * P = p*




2.2.2 LR Binary Method
Inputs : p, e, N
Output: C:=p®mod N

K : number of bits in e;

1) C:=1;

2) Fori=k-1downto 0do

3) C:=C x Cmod N (square)

4) if(ej=1)then C:=C X pmod N ;(multiply)
5) End if;

6) End for;

7) return C;

The bits of e are scanned from most significant bit to least
significant bit, if the bit index i of e is equal 1 it performed two modular

multiplications( multiply and square) else performed only one (square).

For (e=55), LR algorithm will work as shown in table 2.2 .

Table 2.2 LR Binary Method [12]
When e =55 and k= 6 bit

i ei Step 3(C) Step 6(P)

50 1 | 1*1=1 1*P=Pp

4| 1 p* P = P? p>*p = p°

0 | P*pP’=p° Pe

1 P6*P6 :P12 PlZ*P — P13
1

1

pL3x pI3_ p2b p2xp = p2’
p27x p2/= p5 pS4xp = po

ol P N W

10



The main points for the two algorithms are

e Both methods require k squarings and an average of %2 (k)
multiplications where Kk is the number of bitsine .

o Both methods require two registers p and C.

e The multiplication and squaring computations in the RL method
are independent of each other so the execution could be done in
parallel[12].

The implementation in this thesis based on RL algorithm because of

parallelism computing possibility in performing in results.

2.3 Modular Multiplication

The efficiency of the modular exponentiation depends basically on
implementing an optimum modular multiplication as seen in RL and LR
binary methods algorithm[13,14,15,16].

Modular multiplication is an essential computation of ( Z = X X
Y mod M where X, Y, M and Z are input integer numbers).
The four known methods for computing modular multiplication are
e Montgomery multiplication,
e Standard Interleaved Multiplication,
e Faster Montgomery multiplication

e Modified interleaved multiplication.

2.3.1 Montgomery Multiplication

Peter L. Montgomery algorithm invented in 1985 for computing

_ XXY

Z= mod M ( X, Y, M are numbers, n is the number of bits in X).

2‘!1

This algorithm can perform first conversion of numbers to Montgomery

domain and then the result is re-converted into Montgomery domain, This

11



transformation exchanges division by several shift operations, that are

accomplished according to the following equations [14]:

Xm=(X X2M)Mod M ........cocoiiiiiiiiii e, (2.2)
Ym=(Y X2")Mod M ... (2.3)
Z=(X XY)Mod M ......cocooiiiiiiiiiii i (2.4)
Zm=Monpro(Xm,Ym, M) .......cccoiiiiiiiiiiiiiiiiiiiiins (2.5)
Im=X XY X2MMod M ...........cccouiiiiiiii i, (2.6)
Im =17 X2"MOod M ..ot (2.7)

The key concepts of the Montgomery algorithm are the following :

A. Adding a multiple of M to the intermediate results doesn't affect
the value of the final result, because the result is computed
modulo M and M is an odd number.

B. After each addition in the internal loop the least significant bit
(LSB) of the intermediate result is tested. If it equals 1, the
intermediate result is odd then add M to make it even. This even
number can be divided by 2 with zero remainder. The division by
2 reduces the intermediate result to n+1 bits again.

C. After n steps of these divisions one division by 2" can be
performed. This algorithm is very easy to implement since it
operates on least significant bit first and does not require any
comparisons. The hardware implementation is presented in
algorithm 1 and described in Figure 2.1 [13] and [14].

Algorithm 1: Montgomery multiplication[14,13]

Inputs: X, Y, M with X>0,Y <M
Output : Zz)%y mod M
x; © i" bit of X;

n: number of bits in X

12



Zo. LSB of Z

1 1) Z:=0;

(1 2) for(i=0; i<n; i++ ){
1 3)Z=Z+Xx%xY;

1 4)Z:=Z+2zyx M,

1 5)Z:=2Zdiv2;}

6)if (Z>M) thenZ .=7Z-M

Registerl

Register

Loop controller

Adderl

LSB z,

Zo* M

Adder2

Figure 2.1 The Inner Loop Of Montgomery Algorithm [13].

Table 2.3 shows numeric example of Montgomery algorithm.

13



Table 2.3 Montgomery Example

X =11(1011),, Y =7(0111), , M=13(1101),,Z=0

I Xi Z Z Z

1 1 7 20 10

1 1 17 30 15

0 0 15 28 14

1 1 21 34 17
17-13=4

2.3.2 Standard Interleaved Multiplication Algorithm

This algorithm was invented to keep the intermediate results as
short as possible. For n steps the algorithm performs the following
operations:

1. Shiftleft:2xZ

2. Partial product calculation: x; x Y

3. Add step (1) to step (2) results in: 2xZ + x; XY

4. Two subtractions modulus from the result in third step
I[f(Z>M)then Z:=Z-M ;
If(Z>M) then Z:=Z-M ;

The hardware implementation presented in algorithm 2 and

described in Figure 2.2 [13,14].

Algorithm2 : Standard interleaved modulo multiplication[13,14]

Inputs: X, Y, with 0<X,Y<M
output: Z = X X Ymod M

n : number of bits in X;

x;.i" bitin X ;

14



1) Z:=0;
2) For(i=n-1;1>0;i-){

3) Z2:=2%*Z;
4) 1:=x*Y;
5) Z:=Z+1;

6) If (Z>M)then Z:=Z-M ;
7) If(Z>M)then Z:=7Z-M ;}

The main advantages of this algorithm are the following :

e The whole algorithm requires one loop only.

e The intermediate registers are not longer than (n+2) bits.

yet there are some disadvantages as well :

e The algorithm requires one adder and two subtractors in steps (5) ,
(6) and (7) .

e The latency to perform steps (4) and (5) because the addition in
step (5) has to wait for step (4) end.

e The comparisons in steps (6) and (7) are of full bit length of Z and
cannot be pipelined without delay because the result in step (7)
depends on the result of step (6)[13,14].

Later In this thesis the latency problem was solved by modifying the

interleaved algorithm which is a newly added feature by the author.

15



Register (1)

Sub tractor (Z—-M)

Loop
controller

sub tractor(Z—M)

Figure 2.2 Standard Interleaved Multiplication Method[3,4]
Table 2.4 shows numeric example of interleaved algorithm.

Table 2.4 Standard Interleaved Example

X = 11(1011)y, Y =7(0111), , M=13(1101),, Z = 0,

| Z x(i) Z Z Z
3 0 1 7 7 7
2 14 0 14 1 1
1 2 1 9 9 9
0 18 1 25 12 12

16




2.3.3 Faster Montgomery Algorithm

Method to reduce the chip area for practical hardware
implementation of Montgomery Algorithm by computing the four
Intermediate results to be added in the loop of the algorithm that means
reduction in the number of additions from 2 to 1 inside the loop in
Montgomery.

There are four possible scenarios for this method[13]:

A. if the old value of the result is an even number, and if the bit x; of X
is 0, then add none before will be performing the reduction of result
by division by 2 (right shift).

B. if the old value an odd number and if the bit x; of X is 0, then add M
will be to make the intermediate result even and then divide the result
by 2 (right shift).

C. if the old value of the intermediate result in the loop is an even
number, and if the bit x; of X is 1, with the incrimination of x; XY is
even, too, so there is no need to add M to make the intermediate result
even. In the loop add Y before performing the division by 2.

D. The same scenario is necessary if the old value of result is even, and
the bit x; of X is1, and Y is odd, in this case, Z +Y+M will be an
even number, too. The computation of Y+M can be done prior to the
loop. This saves one of the two additions. The hardware
implementation is presented in algorithm 3 and described in Figure 2.3
[14].

Algorithm 3 : Faster Montgomery multiplication[14]
— Inputs : X,Y,M with X>0,Y<M

— Output : Z= )%y mod M
— x; 1 i" bit of X;
— n: number of bits in X.
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— 70. LSB of Z;
— Yo LSB of y;

Z=0,R:=Y+M;

2) for(i=0; i<n; i++){

3) if(x(1))=0)then Z:=Z+zoxm ;
else if ( zoxoryy )then Z=Z+R;
else if (not (zo Xoryp)) then Z:=Z + Y ;
end if;

4)Z:=27Zdiv2;}

5)f(Z>M) then Z:=Z7Z-M

Look up table (0, M, Y, Y+M (R))

Registerl

Register2

Shift right
Loop controller

Figure 2.3 The Inner Loop Of Faster Montgomery Method [13]

Table 2.5 shows numeric example for faster Montgomery algorithm.
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Table 2.5 Faster Montgomery Example

x = 11(1011),, y =7(0111), , M=13(1101), , R=
20,2=0,y(0)=1

| x(i) Z Z
0 1 20 10
1 1 30 15
2 0 28 14
3 1 34 17

Step5:17-13=4

2.3.4 Modified (Contributed) Interleaved Multiplication

An idea contributed in this thesis that modifies interleaved
multiplication algorithm to decrease clock latency from 4 to 3 inside
the loop by computing value (R) which equals (2 x M) prior the loop and
using the following scenarios in step 6 of interleaved algorithm :

1) If the previous value of Z is larger than R then subtract (R) from
z

2) Else if the previous value of Z is larger than M then subtract (M)
from Z.

The hardware implementation is presented in algorithm 4 and described
in Figure 2.4 .

Algorithm4 : Modified interleaved modulo multiplication[16]
Inputs: X, Y, with 0<X,Y<M

output: Z = X X Ymod M

n : number of bits in X;

x;: iT bitin X
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1) Z=0,R =2 x M;

2) For(i=n-1;i>0 ; i-){

3) Z:=2x%x7,;
4) | :=x; XY;
5) Z:=Z+1;

6) If(Z>R)then Z:=Z-R;

elseif(Z>M)then Z:=Z2-M ;}

Shift left

Register (1)

Register (R)

Loop
controller

Subtracted M Subtracted R from Z
from Z

Figure 2.4 Modified Interleaved Multiplication Method.
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Table 2.6 shows numeric example for algorithm .

Table 2.6 Modified Interleaved Example

X =11(1011),, Y =7(0111), , M=13(1101),, Z=0, R = 26
I VA x(i) z Z
3 0 1 7 7
2 14 0 14 1
1 2 1 9 9
0 18 1 25 12
Final result equal to 12

2.4 Chinese Remainder Theorem(CRT)[18]

New method is used to decrease time of implementation of RSA by
using strategies to dividing the width of the numbers by 2 then perform
implementation. These strategies are described in algorithm 5 and figure
2.5

Algorithm 5 : RSA CRT Algorithm[18]

Input: m,e , RSA privatekeys=(p,q)

m : plaintext or message

e : public key

p, g : two prime numbers are randomly chosen

Output : C = m® mod N where

N : public key calculated from key generation process (p x q)
C : cipher text
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1) Calculate

2) Calculate

AP = @ MOD (D = 1) oo
AG = eMOD(Q = 1) cuiii e

3) Calculate

XL = CLP MOD Do e

x2 = C2% MOD q
4) Find

Find C1 and C2

Find dp and dq

Find x1 and x2

Find Cp and Cq

Figure 2.5 CRT Flow Chart
22




To illustrate the algorithm a numerical example applied as shown :

Suppose valuesof p=37,0=89,N=pxq=3293, m=2494,e=
2987, how to compute 2494%°®” mod 3293 ?
Input : m= 2494, e= 2987, p= 37, =89 .

1. C1 = 2494 mod 37 =15,C2 = 2494 mod 89 = 2.

2. dp = 2987 mod 36 =35,dq = 2987 mod 88 = 83.

3. x1= 153mod37 =5, x2 = 2% mod 89 =64.

4. Cp = 89"1mod37 =5, Cq = 37" mod 89.

5. C= (89 x5x5 + 37 x77 X 64) mod 3293 = 153.
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Chapter Three

Software Implementation

3.1 Introduction

This chapter explains RSA implementation using Java high level

language .The implementation is tested using 1024 bits key size.

3.2 Java libraries used

e java.math.Biginteger
Java.math.Biglntegers library has a collection of instructions for
executing long number widths arithmetic .
e java.util.Random
java.util.Random library used for random number generation.
e java.io.
e java.util.concurrent. TimeUnit
java.util.concurrent. TimeUnit library is used to find execution time

of encryption and decryption algorithms.

3.3 RSA in Java

Figure 3.1 shows a flow chart of RSA algorithm :
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Key generation process

input string

string to bytes transformation

Bvtes encryption

Bytes decryption

Bytes to string transformation

Figure 3.1 RSA Flowchart In Java

Figure 3.2 shows a flow chart for key generation process :

Random prime generation p and q

Calculate (n .@(n) )

Choose e is relatively prime to ©
(n)=160 and less than ® (n)

Calculate d

25



Figure 3.2 RSA Key Generation In Java

The key generation steps are

Select p, q p and q both prime, p#q
e Calculate n=p*q

® (alculate o (n)=(p-1)(g-1)

® Select integer e gcd(o (n),e)=1; 1<e< o (n)
e Calculate d d = e (mod o (n))

e Public key PU={e,n}

® Private key PR={d,n}

The string was entered using DatalnputStream then converted to bytes
using GetBytes() , before encryption process the start time was stored using
System.nanoTime(), the encryption equation( ¢ = p® mod m ) was done
using encrypted number .modpow(e ,n) then end time stored using
System.nanoTime().

The encryption time was calculated by subtracting start time from end
time.

The decryption process started also done by decrypted number

.modpow(d ,n) , and then the bytes converted to string bytes to string().

3.4 Encryption and Decryption Results

The plaintext was ( zaid abdulsatar ), and bit length equal to 1024
bits the results of execution ( see Appendix a). The encryption and

decryption time in ms are shown in Table 3.1.
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Key generation process :

p:
122360419624752940707411248877507935392516063870262534888749
354480751978044699622321990799752354024349166112949211176950
90934302550586941987540609690795959

g.
811143629541408134563713496397988544007150000228359403524526
979449880898998910218784599378719436538473380639657816791046
5990227511580944707777144934386197

Nis:
992518748866318450873020774167306610089790198341613603818386
972268353778600310209819239046044856790264874961073581459207
572837922417465472678920848325319112023900101328752644279653
347337759266362293440469743137660637860435380493366516138553
071227407983653189406443253773735497711469691732746198052780
32977923

Public key is :
123941905330847381651165934046520193149044230227802628987058
364819854220953422125858384770560068571421892723122795681601
43901695852984457750571111138235723

private key is :
503821427454265638388353584957392449662638167253293551602468
805769088972166827662772060618077345312519038816029360737100
057597057375633845288929049904761444319377066951413923779889
829040483134936994457305359971458943952212425361425220460590
800463118905659192577814773729233928352992543345173605756338
17154043

Plaintext(p) : zaid abdulsatar

String in Bytes(p) :
122971051003297981001171081159711697114

Encrypted String in Bytes (C) : 67-13198-63-391262-83-3011-
798424102120-1213114-84-31-8014-18114189955-861154166-
881051187218-12112649-7-14-41-1217711910438-4-11622-1-
25-3820-6-9412982-1256455-116-422182-6028-47113-5335-
116119-78-6192-56-6927-121-8382-17-5781-103-2432-3261-
109126-84779-1149373-11294-37-6634912451-103125-67117-
86372-8461127-10796-109-2436-20-106-22-105
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Elapsed time of RSA enryption in nanoseconds : 29259186

Decrypted String in Bytes:
122971051003297981001171081159711697114

Elapsed time of RSA decryption in hanoseconds : 19264425

Decrypted String: zaid abdulsatar

Table 3.1 Encryption and Decryption Time in Java

Encryption time(ms) Decryption time(ms)

29.259186 19.264425
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Chapter Four

FPGA Implementation

4.1 Introduction

This chapter presents an implementation of RSA algorithms using
Spartan-6 SP601 evaluation board XC6SLX16 device CSG324 package -2
speed XST based on VHDL language.

4.2 Montgomery Modular Multiplier

As shown in figure 4.1 Montgomery multiplier was designed with
seven states :-
SO0: assign (start ='0") , initialize the system with inputs (x ,y, m) , flag
counter =1 , p =0, then make (start="1"), goto S1.
S1:if (x(i) ='1") then load adderl with values of p , y then go to S2.
S2:if (p(0) ='1") : load adder2 with values of values of p , m then go to
S3.
S3: shift value of p then go to S4.
S4: check the counter if finished make flag counter =0 , and go to S5 else
go to S1.
S5:if (p>=m) decrement p by m, goto S6.
S6: go to SO.

Loop not finished

Loop finished

G (s )17 (52
<>

Figure 4.1 States Of Montgomery
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The simulation result of Montgomery multiplier is presented in
figure 4.2 The size of each number is 4 bit (where x =11 ,y=7, m=13),
the start input signal controls the state of the multiplier, at first (start
signal= “0” ), which means the multiplier in loading state ( storing the
value of inputs in registers ) , then start input signal changed to “1”, the
multiplier becomes in running state (processing the data ) until done signal
has become 1 ( done signal = “1” ) that means the multiplier has finished
running. It is found that the multiplier needs 18 clock cycles for finishing

the calculation.

Vi Ims . b f mg
ITIT||IT| IR

Figure 4.2 Montgomery Multiplier Timing(4 bits )

As in simulation result of Montgomery multiplier presented in
figure 4.3 the size of each number is 8 bit where x =88 ,y=7, m =187, it

is found that the multiplier needed 34 clock cycle to finish its calculation.

£ dor
b N5

Figure 4.3 Montgomery Multiplier Timing (8 bits )
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Table 4.1 shows Device utilization of Montgomery multiplier, the

size of each number is 8 hit .

Table 4.1 Device Utilization Montgomery Multiplier (8 bits)

Logic Utilization Used | Available | Utilization
Number of Slice Registers 98 18224 0%
Number of Slice LUTs 153 9112 1%
Number of Fully LUT-FF Pairs 74 177 41%
Number of Bounded 10Bs 35 232 15%
Number of BUFG / BUFGCTRL/BUFHCEs 1 16 6%

The simulation result of Montgomery multiplier presented in figure
4.4, the size of each number is 32 bit where x =88 ,y=7, m =187, it is

found that the multiplier needed 130 clock cycle to finish its calculation.

Figure 4.4 Montgomery Multiplier Timing (32 bits)

If the size of numbers in Montgomery was n, the number of clocks
will be (n x 4 + 2). Table 4.2 shows number of clocks, maximum

frequency and clock period for different size of bits.
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Table 4.2 Montgomery Clocks And Operating Frequency

Number of bits(n) Number of clocks Maximum frequency in| Minimum period in
required(nx4 +2) MHZ ns

4 18 200.521 4.987
128 514 129.076 7.747
256 1026 111.290 8.986
512 2050 66.946 14.937
1024 4098 37.256 26.842
2048 8194 19.743 50.650

4.3 Interleaved Modular Multiplier

As shown in figure 4.5 interleaved multiplier was designed with
seven states :-
SO : assign (start ='0"), initialize the system with inputs (x,y, m) ,
make flag counter =1 , p =0, then make the ( start="1") declaring that data
is ready, goto S1.
S1: shift the value of (P), if ( x(i) ='1") then load | register with Y else
clear I register , go to S2 .
S2 : load adder with values of p, I registers then go to S3.
S3: if the value of P larger than M decrement M from this value, go to S4.
S4 : if the value of P again larger than M decrement M from this value, go
to S5.
S5 : check the index of bits if finished make the flag counter = 0 and then
finish else go to state S1 .
S6 : goto SO.
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Loop finished P Loop not finished

i X

Figure 4.5 States Of Interleaved

simulation result of interleaved multiplier presented in figure 4.6
The size of each number is 4 bit (where x =11 ,y=7, m = 13), the start
input signal controls the state of the multiplier, at first (start signal=“0"),
which means the multiplier in loading state ( storing the value of inputs in
registers ) , then start input signal changed to “1”, the multiplier becomes
in running state (processing the data ) until done signal has become 1 (
done signal = “1” ) that means the multiplier is finished running. It is found

the multiplier need 20 clock cycles for finished the calculation.

Figure 4.6 Interleaved Multiplier Timing (4 bits)

The simulation result of interleaved multiplier presented in figure
4.7 in which the size of each number is 8 bit where x =88 ,y=7, m = 187.

It is found that the multiplier needed 40 clock cycle to finish its calculation.

33



Figure 4.7 Interleaved Multlpller Tlmlng (8 blts )

Device utilization of interleaved multiplier presented in Table 4.3,

the size of each number is 8 bit .

Table 4.3 Device Utilization Interleaved Multiplier (8 bits)

Logic Utilization Used | Available | Utilization
Number of Slice Registers 78 18224 0%
Number of Slice LUTs 142 9112 1%
Number of Fully LUT-FF Pairs 78 142 54%
Number of Bounded I0Bs 36 232 15%
Number of BUFG / BUFGCTRL/BUFHCES 1 16 6%

The simulation result of interleaved multiplier presented in figure
4.8 where the size of each number is 32 bit and where x =88 ,y=7, m=
187, it is found that the multiplier needed 160 clock cycle to finish its

calculation.
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Figure 4.8 Interleaved Multiplier Timing (32 bits )

If the size of numbers in interleaved was n, the number of clocks
will be (n x 5). Table 4.4 shows number of clocks, maximum frequency

and clock period for different size of bits.

Table 4.4 Interleaved Clocks And Operating Frequency

No. of bits No. clocks Maximum frequency | Minimum period

(n) required(nx5) in MHZ in ns

4 20 240.790 4.153
128 640 135.612 7.374
256 1280 110.253 9.070
512 2560 66.569 15.022
1024 5120 37.139 26.926
2048 10240 19.710 50.735
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4.4 Faster Montgomery Modular Multiplier

As shown in figure 4.9 Faster multiplier which was designed with

six states :-

SO : assign (start ='0"), initialize the system with inputs (x ,y, m) ,

make flag counter =1 , p =0, then make the ( start="1"), goto S1 ..

S1: load adder with values of p (getting it from look up table) and m then
goto S2.

S2 : shift right value of p, go to S3.

S3 : check the counter if finished make flag counter =0 , and go to S4 else
goto S1

S4 :if (p >=m) decrement p by m, then go to S6 .

S5:goto SO.

Loob not finished

AN

(sa )
)

v

Loop finished

Figure 4.9 States Of Faster

The simulation result of Faster multiplier presented in figure 4.10

where the size of each number is 4 bit (where x =11 ,y=7, m = 13), the
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start input signal controls the state of the multiplier, at first (start signal=
“0” ), which means the multiplier in loading state ( storing the value of
inputs in registers ) , then start input signal changed to “1”, the multiplier
becomes in running state (processing the data ) until done signal has
become 1 ( done signal = “1” ) that means the multiplier is finished
running. It is found that the multiplier needs 14 clock cycles for finishing

the calculation.

Figure 4.10 Faster Multiplier Timing (4 bits)

In the simulation result of Faster multiplier presented in figure 4.11
where the size of each number is 8 bit where x =88 ,y=7 , m =187, it is

found that the multiplier needed 26 clock cycle to finish its calculation.

Figure 4.11 Faster Multiplier Timing (8 bits)
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Device utilization of Faster multiplier presented in Table 4.5, the

size of each number is 8 hit .

Table 4.5 Device Utilization Faster Multiplier ( 8 bit)

Logic Utilization Used | Available | Utilization
Number of Slice Registers 69 18224 0%
Number of Slice LUTs 62 9112 0%
Number of Fully LUT-FF Pairs 32 99 32%
Number of Bounded I0Bs 36 232 15%
Number of BUFG / BUFGCTRL/BUFHCEs 1 16 6%

In the simulation result of Faster multiplier presented in figure 4.12
where the size of each number is 32 bit and where x =88 ,y=7, m = 187.

it is found that the multiplier needed 98 clock cycle to finish its calculation.

Mﬂlﬂlﬂﬂﬂlﬂlﬂﬂﬂlﬂﬂlﬂlﬂﬂlﬂﬂﬂlﬂﬂlﬂﬂlﬂlﬂ”ﬂlﬂlﬂﬂﬂlﬂﬂlﬂlﬂﬂlﬂﬂw
é----------

[ T N A

Figure 4.12 Faster Multiplier Timing (32 bits )

If the size of numbers in Faster is n, the number of clocks will be (
n X 3+ 2). Table 4.6 shows number of clocks, maximum frequency and

clock period for different size of bits.
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Table 4.6 Faster Multiplier Clocks And Operating Frequency

No. of bits No. of clocks required | Maximum frequency | Minimum period

(n) (n*3+2) in MHZ in ns

4 14 188.893 5.294

128 386 136.091 7.348

256 770 100.406 9.960

512 1538 62.848 15.911

1024 3074 35.951 27.816

2048 6146 19.371 51.624

4.5 Modified(Contributed) Interleaved Modular Multiplier

As shown in figure 4.13 Modified interleaved multiplier was

designed with six states :-

SO : assign (start ='0"), initialize the system with inputs (x ,y, m) ,

make flag counter =1 , p =0, then make the ( start="1") declaring that data

is ready, find R ('shift left m), goto S1.
S1: shift the value of (P), if ( x(i) ='1") then load | register with Y else

clear I register , go to S2..

S2 : load adder with values of p, | registers then go to S3.

S3 : if the value of P is larger than M decrement M from this value, else if

the value of P again is larger than R decrement R from this value, go to S4.

S4 : check the index of bits if finished make the flag counter = 0 and then

go to S5 else go to state S1..

S5:goto SO.

Loop not finished

Loop finished

Fiaure 4.13 States Of Modified
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The simulation result of Modified interleaved multiplier presented in
figure 4.14 The size of each number is 4 bit (where x =11 ,y=7, m=13),
the start input signal controls the state of the multiplier, at first (start
signal= “0” ), which means the multiplier in loading state ( storing the
value of inputs in registers ) , then start input signal changed to “1”” and the
multiplier becomes in running state (processing the data ) until done signal
becomes 1 ( done signal = “1” ) that means the multiplier has finished
running. It is found that the multiplier needs 16 clock cycles for finishing

the calculation.
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Figure 4.14 Modified Interleaved Multiplier Timing (4 bits)

In the simulation result of Modified multiplier presented in figure
4.15 where the size of each number is 8 bit where x =88 ,y=7, m = 187,
it is found that the multiplier needed 32 clock cycle to finish its calculation.
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Figure 4.15 Modified Interleaved Multiplier Timing (8 bits)

Device utilization of modified multiplier presented in Table 4.7, the

size of each number is 8 bit.

Table 4.7 Device Utilization Modified Multiplier ( 8bits)

Logic Utilization Used | Available | Utilization
Number of Slice Registers 34 18224 0%
Number of Slice LUTs 45 9112 0%
Number of Fully LUT-FF Pairs 24 60 40%
Number of Bounded I0Bs 20 232 8%
Number of BUFG / BUFGCTRL/BUFHCES 1 16 6%

In the simulation result of Modified multiplier presented in figure
4.16 where the size of each number is 32 bit where x =88 ,y=7, m =187,

it is found that the multiplier needed 128 clock cycle to finish its

calculation.
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If the size of numbers in Modified interleaved multiplier was n, the

number of clocks willbe (n X 4).
Table 4.8 shows the number of clocks, the maximum frequency and

the clock period for different size of bits.

Table 4.8 Modified Multiplier Clocks And Operating Frequency

No. of bits Number of clocks required | Maximum frequency | Minimum period
(n) (nx4) in MHZ in ns
4 16 231.054 4.328
128 512 133.726 7.478
256 1024 108.701 9.200
512 2048 66.000 15.151
1024 4096 36.961 27.056
2048 8192 19.660 50.864

4.6 Multipliers Analysis

Table 4.9 and figure 4.17 shows operation frequency differences

among multipliers knowing that :

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Where ( Mp : minimum period , Mf : maximum frequency ).

It can be found that Montgomery multiplier is the fastest clock frequency.

Table 4.9 Frequencies Of Different Sizes Multipliers

No. of bits Montgomery | Faster Montgomery | Interleaved | Modified interleaved
256 111.290 100.406 110.253 108.701
512 66.946 62.848 66.569 66.000
1024 37.256 35.951 35.951 36.961
2048 19.743 19.371 19.710 19.660
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Figure 4.17 Differences Among Multipliers frequencies

The table 4.10 and figure 4.18 showed that the “Faster method” is

the fastest multiplier because it needed a less number of clocks.

Table 4.10 No. of Clocks For Each Multiplier

No. of bits Montgomery | Faster Montgomery Interleaved | Modified Interleaved
256 1026 770 1280 1024
512 2050 1538 2560 2048
1024 4098 3074 5120 4096
2048 8194 6146 10240 8192
N nx4+2 nx3+4+2 nx5 n x4
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Figure 4.18 Number Of Clocks Needed By Each Multiplier

In FPGA hardware execution time can be calculating using the

following equations:

Ht:NxM_f ................................................................. (42)
Or
HE = N X MD oo e, 4.3)

Where ( Ht : Hardware time , N : number of clocks , Mf : maximum
frequency , Mp : minimum period) .

By using above equation it can be found that the hardware execution
time for each multiplier as in table 4.11 and figure 4.19. The results showed

faster multiplier has the fastest speed among the others.
Table 4.11 Hardware Execution Time For Each Multiplier(ps)

Number of bits | Montgomery | Faster Montgomery | Interleaved | Modified Interleaved
256 9.219 7.668 11.609 9.42
512 30.621 24.471 38.456 31.03
1024 109.995 85.505 142.416 110.819
2048 415.033 317.278 519.533 416.683
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Figure 4.19 Hardware Execution Time For Each Multiplier(us)

4.7 RSA Implementation

Optimum speed Modular multiplication is the core to design less

time implementation of modular exponentiation.

The thesis selected right to left modular exponentiation algorithm( RL)
and modified , faster modular multiplication methods with a key size (
1024 bit) for design with three methods RSAM, RSAF, RSACRT.

4.7.1 RSA using Modified Interleaved Multiplication( RSAM)

As shown in figure 4.20 this model was designed with five states :
SO : Start initialize the input data and make the counter of bits equal 0.
S1: Initialization Modified multipliers.
S2 : If Modified multipliers finished initialization go to S3
else waiting.
S3: Modified multipliers starts running .

S4 : check counter if finished declare done else go to S1.
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Reading p, e, count =0

Initialization Modified multipliers

Running of Modified multipliers

Count finished

Figure 4.20 Flow Chart Of RSAM

Table 4.12 shows device utilization of RSAM encryption. The
simulation result of RSAM encryption presented in Figure 4.21 where the
values of keys were found ( return to Appendix A “results of Java” ), and
the result was written to a text file(see Appendix B1 “Results of FPGA
Implementation of RSAM Encryption-Decryption™).

1,000,000.200,000. 000 ps 2,000,000,000,000,000 i 3.000,000.000,000.000 ps

VUV U UG PR VUV UL UV

Figure 4.21 RSAM Encryption Timing
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Table 4.12 Device Utilization Of RSAM Encryption

Logic Utilization Used | Available | Utilization
Number of Slice Registers 54 18224 0%
Number of Slice LUTs 81 9112 0%
Number of Fully LUT-FF Pairs 54 81 66%
Number of Bounded 10Bs 3 232 1%
Number of BUFG / BUFGCTRL/BUFHCEs 1 16 6%

The simulation result of RSAM decryption presented in Figure

4.22. The message after decryption was the same

plaintext ) .

om0

SR

PV U

original message (

s (3,000,000,000,000,000 ps
- ¥ ¥ L W W

St i L D

Figure 4.22 RSAM Decryption Timing

Table 4.13 shows encryption-decryption model utilization.

Figure 4.23 shows encryption-decryption timing, done4 signal equal 1

when the plaintext equal to plaintext after encryption and decryption

process .
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Table 4.13 Device Utilization Of RSAM Encryption-Decryption Timing

Logic Utilization Used | Available | Utilization
Number of Slice Registers 38053 18224 208%
Number of Slice LUTs 37078 9112 406%
Number of Fully LUT-FF Pairs 13616 81 22%
Number of Bounded 10Bs 5 232 2%
Number of BUFG / BUFGCTRL/BUFHCEs 1 16 6%

001p4d76ebf431e51c3004

Figure 4.23 RSAM Encryption Decryption Timing
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RSA Keys :

N modulus(m) is :
992518748866318450873020774167306610089790198341613603818386
972268353778600310209819239046044856790264874961073581459207
572837922417465472678920848325319112023900101328752644279653
347337759266362293440469743137660637860435380493366516138553
071227407983653189406443253773735497711469691732746198052780
32977923

Public key e is :
123941905330847381651165934046520193149044230227802628987058
364819854220953422125858384770560068571421892723122795681601
43901695852984457750571111138235723

private key d is :
503821427454265638388353584957392449662638167253293551602468
805769088972166827662772060618077345312519038816029360737100
057597057375633845288929049904761444319377066951413923779889
829040483134936994457305359971458943952212425361425220460590
800463118905659192577814773729233928352992543345173605756338
17154043

Plaintext (P) : 122971051003297981001171081159711697114

Cipher text after encryption(cipher)(C) :
3833324203417103168193069940320990115298670855525727
0023861648164977449888834073390014056183115979419686
8527650999088406470105624701443041115653183294003731
8495168409426087611483038819482088459213611440231859
7240300943204672344804101077221063392683023329778111
046147982925509167821995325663363215103282260309.

Plaintext after Decryption(decipher)(P) :
122971051003297981001171081159711697114
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The speed up of RSAM can be calculated using equation :

Where (S : Speed up, St: Software execution Time( Java time), Ht:
Hardware execution Time(FPGA time))

St = 29259186 ns = 29.259 ms (see Table 3.1)

By using equation (4.3) to find hardware execution time

Ht = No X Mp = 4199424 x 6.205 ns = 26.057 ms

_29.259ms _

= =1.122
26.057 ms

The throughput ( number of modular multiplications achieved by RSAM

per second ) was calculated using following equation:

NMM

]h ...................................................................... (I.I)

Where ( Th : Throughput, NMM : number of modualr multiplications)

h= —222% - 78506 MMPS( Modular Multiplication Per Second ).

26.057 X103

Table 4.14 shows Plaintext, Cipher text and decrypted Plaintext

numeric values of RSAM

Table 4.14 RSAM Plaintext , cipher text and decrypted Plaintext

Plaintext P cipher text C Decrypted P
12297105100329798100117 | 3833324203417103168193069940320990115 | 12297105100979810011
1081159711697114 2986708555257270023861648164977449888 7108115971169714

8340733900140561831159794196868527650
9990884064701056247014430411156531832
9400373184951684094260876114830388194
8208845921361144023185972403009432046
7234480410107722106339268302332977811
1046147982925509167821995325663363215
103282260309
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4.7.2 RSA using Faster Montgomery Multiplication RSAF

Before Faster Montgomery multiplications RSAF began with
mapping to Montgomery domain.

As shown in figure 4.24 this model was designed with five states :
SO : Start initialize the input data and make the counter of bits equal 0.
S1: Initialization Faster multipliers.
S2 : If Faster multipliers finished initialization go to S3

else waiting.

S3 : Faster multipliers starts running .

S4 : check counter if finished declare done else go to S1.

Reading p, e, count =0

Initialization Faster multipliers

Running of Faster multipliers

Count finished

Figure 4.24 Flow Chart Of RSAF

Table 4.15 shows device utilization of RSAF encryption through
which the simulation result of RSAF encryption presented in Figure 4.25
where the values of keys were found in Chapter Three ( see Appendix A
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“Results of Java ) and the result was written to a text file(see Appendix
B2 “Results of FPGA Implementation of RSAF”), the results were written

to a text file.

Figure 4.25 RSAF Timing

Table 4.15 Device Utilization Of RSAF

Logic Utilization Used | Available | Utilization
Number of Slice Registers 33 18224 0%
Number of Slice LUTs 68 9112 0%
Number of Fully LUT-FF Pairs 32 69 46%
Number of Bounded I10Bs 3 232 1%
Number of BUFG / BUFGCTRL/BUFHCESs 1 16 6%
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RSA Keys :

N modulus(m in model) is :
992518748866318450873020774167306610089790198341613603818386
972268353778600310209819239046044856790264874961073581459207
572837922417465472678920848325319112023900101328752644279653
347337759266362293440469743137660637860435380493366516138553
071227407983653189406443253773735497711469691732746198052780
32977923

Public keyeis:
123941905330847381651165934046520193149044230227802628987058
364819854220953422125858384770560068571421892723122795681601
43901695852984457750571111138235723

private key d is :

503821427454265638388353584957392449662638167253293551602468
805769088972166827662772060618077345312519038816029360737100
057597057375633845288929049904761444319377066951413923779889
829040483134936994457305359971458943952212425361425220460590
800463118905659192577814773729233928352992543345173605756338

Plaintext (P) : 122971051003297981001171081159711697114

Plaintext after mapping(P) :
3609222534566718105116232463627691392183488716495971
6240179302923377706862868952205349034058803872592428
4807525042030699041938001769160666553286248739189139
6380940360363299560767442797031210352864715155286911
0461138899735608968293526950532808588245679091213470
665980231699590456437652158031077747478502908533

Cipher text mapping(C) :
4283016840323968335101270677530533569878705466688718
9041324562179181437074897598778738227682108848514692
6599262092689161281495169811953947799584551382716218
0404752705846986800468678996557251043956478963707708
4389930087504395279071223180308908865251347676857812
454624108093891531065233923953604647762971520818
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Cipher text After performing k Faster Montgomery
Multiplications (R) :
3713629310501366674687444102309836540647288253564587
8026379178741958047470452480036938688583345806477983
0305390847914605444585504976634193358538836869634624
5011805936845527657063442280895131328143704912557284
0482659863582727806824665879267217407352132051667620

Cipher text after remapping from Montgomery domain (C) :
3833324203417103168193069940320990115298670855525727
0023861648164977449888834073390014056183115979419686
8527650999088406470105624701443041115653183294003731
8495168409426087611483038819482088459213611440231859
7240300943204672344804101077221063392683023329778111
046147982925509167821995325663363215103282260309

The cipher text has the same result of Table 4.13 RSAM cipher text.

The speed up of RSAF calculated using equation (4.3) :

St
Ht

S=
St = 29259186 ns = 29.259 ms (see Table 3.1)

find hardware execution time found using equation (4.3)

Ht = N X Mp =3151872 x 4.473 ns = 14.098 ms

_ 29.259ms
14.098 ms

=2.075

The throughput calculated using equation (4.4):

Th=NMM_ __20%8 _ _ 145268 MMPS.

Ht 14.098 x10~3
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4.7.3 RSA using Chinese Remainder Theorem (RSACRT)

This model is designed by RSAM modular exponentiation involved
finding x1 and x2 of size 512 bits equations (2.1) and implemented RSA
with 1024 bit. This model was designed As shown in figure 4.26. Table
4.16 shows device utilization of RSACRT encryption. The simulation
result of RSACRT encryption presented in Figure 4.27 where the result
was written to a text file(see Appendix B3 “Results of FPGA

Implementation of RSACRT”), the result was written to a text file.

Inputs(m, e, p,q)

Find C1

Find x1 using RSAM Find x2 using RSAM

Find Cipher text (C)

Figure 4.26 Flow Chart Of RSACRT
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Table 4.16 Device Utilization Of RSACRT

Logic Utilization

Used

Available

Utilization

Number of Slice Registers

1016

18224

0%

Number of Slice LUTSs

149

9112

1%

Number of Fully LUT-FF Pairs

106

149

71%

Number of Bounded 10Bs

4

232

1%

Number of BUFG / BUFGCTRL/BUFHCESs

16

6%

Figure 4.27 RSACRT Timing

RSA Keys :
p:

6749032513800971877572069788650487713921402763574526
4109796816698934947477571765284539470452754194534503
94070240782273265062631247817900883156324084515213

g:

7033592116616602594327115635049407643567210337427488
6111525846518686016061523539548799111896539340034048
00686415949516793073627986105586498442848620640529

public key (e) :

9147413694506669615431534967/461352480512917218690980
8337140362098971674802651257254445686473821978581732
81812107432543162910770816045269826866687658184251
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Plaintext Message (m):
122971051003297981001171081159711697114

cl=mmodp:
122971051003297981001171081159711697114
C2=mmodq:
122971051003297981001171081159711697114

dp:

2 398 381 180 705 697 737 859 465 178 810 864 766 591 514
455 116 454 422 734 354 540 003 672 732 507 949 196 990 621
602 106 778 404 722 887 741 866 650 269 897 848 139 568 227
368 943 710 363 573 669 039

dg: 2113821577 890 067 021 104 419 332 411 944 836 945
706 881 263 492 222 561 451 558 028 565 874 112 771 770 564
657 457 728 263 854 768 481 125 691 483 026 369 837 142 829
939 683 328 423 839 037 543 723

X1 calculated using 512 bit RSAM :
3650202307544262627873628649245060748909072948055155
5677699935808562570490134277257610939151009727126638
12783578396408958317885768088879175740639663440662
X1 calculated using 512 bit RSAM :
5526234160609859652059919831278155736156770947417732
4325451284786830295420653959785293808335577014484118
65713980313017191713991470095722060080820602102214

Cp:
3619619789143849862522590541201874727962945606118436
1343437901418877918868509806441387201887992284932512
38622607946123894029238089339066955993348151448587
Cq:
3261358220571334206532928808075419829867449241190989
8407352757233632427920320438306999615083258357053084
82050231155028997494910127506624778111509473597935
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Ciphertext(C)= (g X Cp X x1 + p X Cq X

x2)MOD (p X q)

27 700 721 744 276 189 079 503 123 767 937 526 151 253 235
821 022 147 733 863 498 363 850 464 122 808 798 235 456 299
931 110 070 807 541 406 704 411 111 462 997 153 453 153 148
850 041 808 762 911 196 666 402 621 530 349 573 453 377 013
817 261 882 726 440 526 018 242 828 602 432 904 258 522 059
585 721 787 700 967 777 261 219 423 012 270 319 505 122 970

The speed up of RSACRT can be calculated using equation (4.3) :

St
s= >
Ht

St = 29259186 ns = 29.259 ms (see Table 3.1)
Hardware execution calculated using equation (4.3)
Ht = N X Mp =1051136 x 6.205ns = 6.522 ms

S = 29.259 ms = 4.486

6.522 ms

Throughput was calculated using equation (4.4):

Th="MM_ 204 — = 314014 MMPS( Modular Multiplication Per
Ht 6.522 x1073
Second ) .

4.7.4 RSA architects analysis

Return to Appendix B4“Implementation Pictures” to show pictures
implementation design for all algorithms.

Table 4.17 presents execution time , throughput , speed up between
RSA architectures. The results showed that RSACRT was the fastest

method for implementation of RSA algorithm.
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Table 4.17 Execution time , Throughput and Speed up For each
RSA Architecture

RSA architecture Ht(ms) Th(MMPS) S
RSAM 26.057 78596 1.12
RSAF 14.09 145268 2.075

RSACRT 6.52 314014 4.48

59



Chapter Five

Conclusions and Future Work
5.1 Conclusions

A. The implementations were done without division operation since the
division in hardware uses big area and consume more time in
execution .

B. When RSAM is used for RSA there is no need for mapping and
remapping to and from to Montgomery domain.

C. Speed up of Modified interleaved multiplication compared to
Interleaved multiplication is near (1.2) regardless of the number of
bits.

D. The fastest implementation is RSACRT with 153 HZ operation
clock and 1024 bit word.
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5.2 Recommendations future works

1. Implementation of RSACRT system using RSAF instead of
RSAM.

2. Implementation of RSA system using SoC chips such as
ZYNQ family instead of Spartan6 can increase hardware
speed up and decrease area of implementations of all
algorithms.

3. Increase in key space from 1024 bit to 2048 bit or 4096 bit to
increase the security of RSA system.

4. This work can be used as core for modular exponentiation
which is the basic core of other cryptographic systems such as
DH or ECC algorithms.
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Appendix A
Results of Java

p:
1223604196247529407074112488775079353925160638702625348887493
5448075197804469962232199079975235402434916611294921117695090

934302550586941987540609690795959

g:
8111436295414081345637134963979885440071500002283594035245269
7944988089899891021878459937871943653847338063965781679104659

90227511580944/07777144934386197

Nis:
9925187488663184508730207741673066100897901983416136038183869
7226835377860031020981923904604485679026487496107358145920757
2837922417465472678920848325319112023900101328752644279653347
3377592663622934404697431376606378604353804933665161385530712
2740798365318940644325377373549771146969173274619805278032977
923

Public key is :
1239419053308473816511659340465201931490442302278026289870583
6481985422095342212585838477056006857142189272312279568160143
901695852984457750571111138235723

private key is :
5038214274542656383883535849573924496626381672532935516024688
0576908897216682766277206061807734531251903881602936073710005
7597057375633845288929049904761444319377066951413923779889829
0404831349369944573053599714589439522124253614252204605908004
6311890565919257781477372923392835299254334517360575633817154
043

Enter the plain text:

zaid abdulsatar



Encrypting String: zaid abdulsatar
String in Bytes: 122971051003297981001171081159711697114
Elapsed time of RSA encryption in nanoseconds: 29259186

Encrypted String in Bytes: 67-13198-63-391262-83-3011-798424102120-
1213114-84-31-8014-18114189955-861154166-881051187218-12112649-
7-14-41-1217711910438-4-11622-1-25-3820-6-9412982-1256455-116-
422182-6028-47113-5335-116119-78-6192-56-6927-121-8382-17-5781-
103-2432-3261-109126-84779-1149373-11294-37-6634912451-103125-
67117-86372-8461127-10796-109-2436-20-106-22-105

Elapsed time of RSA decryption in nanoseconds: 19264425

Decrypted String in Bytes: 122971051003297981001171081159711697114
Decrypted String: zaid abdulsatar

BUILD SUCCESSFUL (total time: 13 seconds).



Appendix Bl

Results of FPGA Implementation of RSAM
Encryption_Decryption

p:
1223604196247529407074112488775079353925160638702625348887493
5448075197804469962232199079975235402434916611294921117695090

934302550586941987540609690795959

g:
8111436295414081345637134963979885440071500002283594035245269
7944988089899891021878459937871943653847338063965781679104659
90227511580944/07777144934386197

Nis:
9925187488663184508730207741673066100897901983416136038183869
7226835377860031020981923904604485679026487496107358145920757
2837922417465472678920848325319112023900101328752644279653347
3377592663622934404697431376606378604353804933665161385530712
2740798365318940644325377373549771146969173274619805278032977
923

public key is :
1239419053308473816511659340465201931490442302278026289870583
6481985422095342212585838477056006857142189272312279568160143
901695852984457750571111138235723

plaintext message = 122971051003297981001171081159711697114

Cipher text =

3833324203417103168193069940320990115298670855525727002386164
816497744988883407339001405618311597941968685276509990884064 7
0105624701443041115653183294003731849516840942608761148303881
9482088459213611440231859724030094320467234480410107722106339



2683023329778111046147982925509167821995325663363215103282260
309.

private key is :
5038214274542656383883535849573924496626381672532935516024688
0576908897216682766277206061807734531251903881602936073710005
7597057375633845288929049904761444319377066951413923779889829
0404831349369944573053599714589439522124253614252204605908004
6311890565919257781477372923392835299254334517360575633817154
043

plaintext = 1229710510097981001171081159711697114.



Appendix B2
Results of FPGA Implementation of RSAF

p:
1223604196247529407074112488775079353925160638702625348887493
5448075197804469962232199079975235402434916611294921117695090

934302550586941987540609690795959

g:
8111436295414081345637134963979885440071500002283594035245269
7944988089899891021878459937871943653847338063965781679104659
90227511580944/07777144934386197

Nis:
9925187488663184508730207741673066100897901983416136038183869
7226835377860031020981923904604485679026487496107358145920757
2837922417465472678920848325319112023900101328752644279653347
3377592663622934404697431376606378604353804933665161385530712
2740798365318940644325377373549771146969173274619805278032977
923

public key is :
1239419053308473816511659340465201931490442302278026289870583
6481985422095342212585838477056006857142189272312279568160143
901695852984457750571111138235723

private key is :
5038214274542656383883535849573924496626381672532935516024688
0576908897216682766277206061807734531251903881602936073710005
7597057375633845288929049904761444319377066951413923779889829
0404831349369944573053599714589439522124253614252204605908004
6311890565919257781477372923392835299254334517360575633817154
043

let message(plaintext) = 122971051003297981001171081159711697114

plaintext after mapping process



P =
3609222534566718105116232463627691392183488716495971624017930
2923377706862868952205349034058803872592428480752504203069904
1938001769160666553286248739189139638094036036329956076744279
7031210352864715155286911046113889973560896829352695053280858
8245679091213470665980231699590456437652158031077747478502908
533.

R =

4283016840323968335101270677530533569878705466688718904132456
2179181437074897598778738227682108848514692659926209268916128
1495169811953947799584551382716218040475270584698680046867899
6557251043956478963707708438993008750439527907122318030890886
525134767685781245462410809389153106523392395360464 7762971520
818.

The result after 1024 iterations of Faster Montgomery

R =
3713629310501366674687444102309836540647288253564587802637917
87419580474704524800369386885833458064 /7983030539084 791460544
4585504976634193358538836869634624501180593684552765706344228
0895131328143704912557284048265986358272780682466587926721740
7352132051667620188381407382780410095128636257620192423645203
098.

Remapping the result from Montgomery process

R =

3833324203417103168193069940320990115298670855525727002386164
816497744988883407339001405618311597941968685276509990884064 7
0105624701443041115653183294003731849516840942608761148303881
9482088459213611440231859724030094320467234480410107722106339
2683023329778111046147982925509167821995325663363215103282260
3009.

Which is the same result in RSAM



Cipher text =
3833324203417103168193069940320990115298670855525727002386164
8164977449888834073390014056183115979419686852765099908840647
0105624701443041115653183294003731849516840942608761148303881
9482088459213611440231859724030094320467234480410107722106339
2683023329778111046147982925509167821995325663363215103282260
3009.



Appendix B3
Results of FPGA Implementation of RSACRT

p:
6749032513800971877572069788650487713921402763574526410979681
6698934947477571765284539470452754194534503940702407822732650
62631247817900883156324084515213

g:
7033592116616602594327115635049407643567210337427488611152584
6518686016061523539548799111896539340034048006864159495167930
73627986105586498442848620640529

Nis:
4746994188385964794843636140340695029003788627352844935688070
4302296434427651770363195373416829002527394318460531164232763
8619691597216985105889529142678075928823110982620861799746398
7732310129645349307399634715053197713367600765937802373204986
3716420775604246379733942803978914124146968281636555586504867
677

public key is :
9147413694506669615431534967461352480512917218690980833714036
2098971674802651257254445686473821978581732818121074325431629
10770816045269826866687658184251

private key is :
3635168986198912336274330150182383896696641720891133579005992
8243077945551569210308155382544218382329784542779640722698986
1130597360356321141588976685679048691577351487859479218999158
2796291191335175116230864109763569994589662561977078536856931
8987431972017904462748111236835606559971076977515814384961362
43.



Plaintext Message (m) = 122971051003297981001171081159711697114.
cl=mmodp

122971051003297981001171081159711697114 %
1223604196247529407074112488775079353925160638702625348887493
5448075197804469962232199079975235402434916611294921117695090
934302550586941987540609690795959 =
122971051003297981001171081159711697114.

c2=m modq=

122971051003297981001171081159711697114 %
8111436295414081345637134963979885440071500002283594035245269
7944988089899891021878459937871943653847338063965781679104659
90227511580944707777144934386197 =
122971051003297981001171081159711697114.

p-1=
6749032513800971877572069788650487713921402763574526410979681
6698934947477571765284539470452754194534503940702407822732650
62631247817900883156324084515212.

g-1=
7033592116616602594327115635049407643567210337427488611152584
6518686016061523539548799111896539340034048006864159495167930
73627986105586498442848620640528.

dp=emod p-1= 22398 381 180 705 697 737 859 465 178 810 864 766
591 514 455 116 454 422 734 354 540 003 672 732 507 949 196 990 621
602 106 778 404 722 887 741 866 650 269 897 848 139 568 227 368 943
710 363 573 669 039.

dg=emod (g-1) = 2113821577 890 067 021 104 419 332 411 944 836
945 706 881 263 492 222 561 451 558 028 565 874 112 771 770 564 657
457 728 263 854 768 481 125 691 483 026 369 837 142 829 939 683 328
423 839 037 543 723.

X1=C1%mod p =



3650202307544262627873628649245060748909072948055155567769993
5808562570490134277257610939151009727126638127835783964089583
17885768088879175740639663440662.

X2 =C2dq mod g =
5526234160609859652059919831278155736156770947417732432545128
4786830295420653959785293808335577014484118657139803130171917
13991470095722060080820602102214

Cp=q-1modp=
3619619789143849862522590541201874727962945606118436134343790
1418877918868509806441387201887992284932512386226079461238940
29238089339066955993348151448587

Cg=p-1modq=
3261358220571334206532928808075419829867449241190989840735275
7233632427920320438306999615083258357053084820502311550289974
94910127506624778111509473597935.

C=(qxCpxxl+pxCgxx2)modN =

((703359211661660259432711563504940764356721033742748861115258
4651868601606152353954879911189653934003404800686415949516793
073627986105586498442848620640529 x
3619619789143849862522590541201874727962945606118436134343790
1418877918868509806441387201887992284932512386226079461238940
29238089339066955993348151448587 X
3650202307544262627873628649245060748909072948055155567769993
5808562570490134277257610939151009727126638127835783964089583
17885768088879175740639663440662) +
(6749032513800971877572069788650487713921402763574526410979681
6698934947477571765284539470452754194534503940702407822732650
62631247817900883156324084515213 %
3261358220571334206532928808075419829867449241190989840735275
7233632427920320438306999615083258357053084820502311550289974
94910127506624778111509473597935 x
5526234160609859652059919831278155736156770947417732432545128

J



4786830295420653959785293808335577014484118657139803130171917
13991470095722060080820602102214) ) %
47469941883859647948436361403406950290037886273528449356880/0
4302296434427651770363195373416829002527394318460531164232763
86196915972169851058895291426780/5928823110982620861799/46398
7732310129645349307399634/715053197713367600765937802373204986
3716420775604246379733942803978914124146968281636555586504867
677

= 27700721 744 276 189 079 503 123 767 937 526 151 253 235 821 022
147 733 863 498 363 850 464 122 808 798 235 456 299 931 110 070 807
541 406 704 411 111 462 997 153 453 153 148 850 041 808 762 911 196
666 402 621 530 349 573 453 377 013 817 261 882 726 440 526 018 242
828 602 432 904 258 522 059 585 721 787 700 967 777 261 219 423 012
270 319 505 122 970 888 282 098 220 806 545 322 205 052 607 455 478
924.

The result tested by mathematical operations using calculator with large
numbers

N=p Xq
C = message " e mod N

2770072174427618907950312376793752615125323582102214773386349
8363850464122808798235456299931110070807541406704411111462997
1534531531488500418087629111966664026215303495734533770138172
61882726440526018242828602432904258522059585721787700967 77726
1219423012270319505122970888282098220806545322205052607455478
924.



Appendix B4

Implementation Pictures all RSA algorithms
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