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ABSTRACT

Medical imaging is a modern tool used in diagnosing diseases and
injuries, including tumors and cancers. Various types, including CT, X-ray,
MRI, and ultrasound, are used. Ultrasound imaging is popular due to its non-
invasive, cost-effectiveness, high tumor identification ability, and lack of
anesthesia, offering high frame rates but sacrificing image quality. The type of
ultrasound imaging that uses no focusing is called Plane-Wave Imaging (PWI1).
Researchers and engineers are enhancing imaging quality through various
techniques, including adaptive beamforming technologies, with Minimum
Variance (MV) adaptive beamformer improving resolution and Eigen Space-
Based Minimum Variance (ESBMV) adaptive beamformer enhancing contrast.
However, ESBMV has a drawback of producing black box regions (BBR) and
dark spots in the produced images. Partial-ESBMV (PESBMV) method has
been recently proposed to control those artifacts with a slight reduction in
contrast. In this dissertation, a beamforming method is proposed to improve the
imaging quality of PESBMV. This approach uses two factors as detection tools
to adaptively indicate the different regions of the image. Those factors are the
number of vectors in the signal subspace matrix produced by ESBMV and the
weight of ESBMV. After discrimination, which divides the image into four
regions, the most suitable beamforming method is applied in each of those
regions. The results of applying the proposed method, MV, ESBMV, and
PESBMV to in vitro datasets and simulation data using MATLAB (R2021a)
show the superiority of the proposed method in improving speckle preservation
with (55%) resolution improvement, compared to PESBMV, in addition to

providing excellent contrast compared to the other implemented methods.
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CHAPTER ONE

INTRODUCTION

1.1 Introduction

Medical imaging is a non-invasive technology that acquires signals by
leveraging the physical principles of sound, light, electromagnetic waves, etc.,
from which visual images of internal tissues of the human body are generated.
Medical imaging is a vital component of modern healthcare, playing a role in the
diagnosis, staging, and monitoring of many diseases and conditions. There are
many widely used medical imaging modalities, including ultrasound, digital
radiography, computed tomography (CT), magnetic resonance imaging (MRI), and
optical coherent tomography (OCT) [1].

Recurrent imaging is used for managing various health conditions and chronic
diseases such as malignancies, trauma, end-stage kidney disease, cardiovascular
diseases, Crohn's disease, urolithiasis, and cystic pulmonary disease. However,
recurrent radiological imaging and associated cumulative doses to patients can lead
to radiation exposure and cancer risk elevation. Therefore, it is important to
improve radiation protection of individuals who are submitted to frequent imaging.
This includes access to dose-saving imaging technologies, improved imaging
strategies and appropriateness process, specific optimization tailored to the clinical
condition and patient habitus, wider utilization of the automatic exposure
monitoring systems with an integrated option for individual exposure tracking in
standardized patient-specific risk metrics, improved training, and communication.
Non-ionizing imaging structures like ultrasound can be used to prevent exposure to
radiation [2].



Using ultrasound imaging is advantageous over other imaging methods. It is a
better option than other imaging procedures like MRI, X-rays, and CT because of
its non-invasive nature.

Ultrasound imaging gives real-time body structure images, non-ionizing
radiation exposure, high tumor detection, no anesthetic required, and may break up
urinary stones, making it a safe and cost-effective procedure.

Contrast chemicals are used in several imaging methods, such as CT and MRI
scans, to boost visibility of specific tissues or organs. The risk of adverse reactions
to contrast agents is lowered since ultrasonic imaging does not need the use of
these agents.

Because ultrasound devices are portable and generally affordable in comparison
to other imaging equipment, they are more accessible to healthcare professionals in
distant or low-resource areas.

Ultrasound imaging uses high-frequency sound waves that are higher than the
audible frequency to generate images of inside tissues and organs.[3], [4]. It is one
of the most rapidly evolving medical imaging techniques. It is used as a popular
diagnostic tool in a variety of applications, including cardiac imaging, abdominal,
fetal, and breast imaging. Real-time images are used to provide rapid visual
guidance for a variety of interventional procedures, such as regional anesthesia and

pain control. Figure 1.1 shows the components of sonography.



Figure ( 1.1): Sonography components [5].

Acoustic waves with frequencies ranging from 20 kHz to 20 MHz represent
ultrasound signals. Electrical stimulation of a piezoelectric transducer results in the
generation and detection of those waves. Ultrasound transducers are used to
transmit and receive ultrasound waves. The transducer is the most essential
equipment in ultrasonic imaging, which differs according to the number and
arrangement of the piezoelectric element’s arrays, which shapes the way it is used
and the application where it is employed [6].

The Curie brothers demonstrated the piezoelectric effect by mechanically
stressing a cut piece of quartz [3], [4]. They subsequently discovered the reverse
piezoelectric effect, which occurs when an electrical current is applied to quartz
and causes quartz vibrations [3], [7]. When these mechanical sound waves pass
through body tissues, they create alternating areas of compression and rarefaction.

A piezoelectric effect is a phenomenon where certain materials generate an electric



charge in response to applied mechanical stress. This effect is beneficial for various
applications, such as photocatalysis, superconductivity and sensing.

A piezoelectric effect creates sound waves and propagation requires a
transmission medium [6]. Ultrasound waves are sent to deeper layers, reflect back
to the transducer as echoes, scatter, and transform into heat while passing through
tissues. The velocity of propagation differs according to the characteristics of the
medium, and the images result from the interaction of refraction, reflection,
scattering, absorption, attenuation, and transmission [6], [8]. Figure (1.2) shows the

two phases of transmission and reception of ultrasound signals using a linear array
transducer.
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When Ultrasound waves travel through tissues and partly being transmitted to
deeper structures, echoes are partially being reflected back to the transducer,
scattered, and converted to heat. In ultrasound imaging, the return of echoes to the
transducer for imaging purposes is of prime importance.

Acoustic impedance is a tissue parameter that determines how much echo is
returned after a tissue interface is contacted. This is a physical property of a
medium defined as the density of the medium multiplied by the velocity of
ultrasound wave propagation in the medium. Air-containing organs (such as the
lung) have the lowest acoustic impedance, whereas dense organs like bone have
extremely high acoustic impedance [3]. The intensity of the reflected echo is
proportional to the difference (or mismatch) in acoustic impedances between two
mediums. No echo is produced if the acoustic impedance of two tissues is the
same. Low-intensity echoes are commonly produced at the interfaces of soft tissues
with similar acoustic impedances. Because of the large acoustic impedance
gradient, interfaces between soft tissue and bone or the lung produce very intense
echoes [3].

Ultrafast ultrasound imaging is a technique that allows the analysis of rapidly
changing physical phenomena in human body, such as ultrasensitive flow imaging
in the cardiovascular system or shear-wave elastography.

Ultrafast ultrasound, an acquisition technique that has been widely studied and
applied over the last two decades, As the name implies, ultrafast ultrasound
imaging can potentially exceed 1,000 frames per second by overcoming the
conventional frame rate limitation which is usually much less than 1000 frames per
second [10]. By delaying pulse times across a group of transducer elements, in
transmission, conventional ultrasonography emphasizes the shape and steering of
focused acoustic beams. To scan a 2D or 3D space, focused beams are transmitted

and received line by line. This simple scheme, however, limits the frame rate to



about 100 frames per second, which only meets the basic requirements of

traditional medical applications.

1.2 Literature Review

Ultrasound has been used for imaging human body for over 50 years. Dr. Karl
Theo Dussik, an Austrian neurologist, pioneered the use of ultrasound as a medical
diagnostic tool to view the brain [3]. In medicine, ultrasound has become one of
the most widely used imaging modalities. Underwater acoustics, monitoring and
control applications, medical ultrasonics for therapy, diagnosis, and surgery,
biotechnology, nanotechnology, and defense are all diverse disciplines of research
within ultrasonics.

To generate high-quality images using PWI and overcome unfocused
transmission drawbacks, resembled by the decreased image quality, in terms of
both contrast and resolution, various techniques have been proposed in recent
decades.

Those methods include the adaptive and non-adaptive beamforming techniques.
In the medical field, adaptive beamforming methods can increase image quality
while degrading real-time performance, due to requiring long processing time.
Researchers have devised an adaptive beamforming method based on minimum
variance and Deep Neural Network (DNN) to increase image efficiency and speed
up the beamforming process in ultrafast ultrasound [11].

The Eigenspace-Based Minimum Variance Beamformer (ESBMV)
is an adaptive beamforming technique used in medical ultrasound imaging. It is
used to suppress sidelobes, grating lobes and clutter for PWI, and it can improve
image quality by reducing speckle pattern inconsistencies and removing artifacts.
This method is utilized in ultrasonic imaging in medicine to improve the resolution

and contrast of images [12], [13].



ESBMV was first introduced by Van Veen in (1988) [14]. It was developed to
highly improve the contrast of MV beamformer. However, it may introduce dark
region artifacts alongside the hyperechoic scatterers when obtaining obvious
contrast. A dark region produced artificially in ESBMV is called Black Box Region
(BBR). In addition to BBR, ESBMYV produces dark regions in background speckle,
distorting its homogeneity.

Lately, several research groups have investigated and developed several ways to
improve ESBMV beamforming.

In (2010), Mahloojifar and Asl, employing a simulated cyst phantom, proposed
using iterative ESBMV to determine appropriate imaging parameter choices to
improve imaging quality. Nonetheless, the impact of changed parameters on BBR
artifacts was not taken into account in the proposed iterative approach [15].

In (2012), Zeng et al. proposed mixing ESBMV with Wiener post-filtering to
increase ESBMV contrast and resolution.[16]. However, the suggested
combination failed to eliminate the BBR artifacts and black spots in the
background speckle.

In (2013), Zeng et al. suggested a beam-domain ESBMV beamformer by
combining the beam-space approach with the ESBMV beamformer. The suggested
approach can achieve performance equivalent to that of the ESBMV beamformer
in considerably less time, however ESBMV artifacts still exist.[17] .

In (2015), Aliabadi et al. suggested a technique that able to reduce dark spot and
enhance contrast in ESBMV through adjusting the focal point value with respect to
the characteristics of the echo signals received by the surrounding locations [18].
However, this proposed technique failed to be removing BBR artifacts.

In (2016), Zhao et al. suggested a technique that able to advances image quality
in clear of speckle homogeneity, contrast, and resolution [19], though associations

ESBMV with a subarray-based coherence factor. However, this approach failed to



be removing BBR artifacts and Subarray smoothing has a negative impact on
computation efficiency.

In (2017), Partial-ESBMV (PESBMV) method was suggested to overcome the
ESBMV limitation and its artifacts. This approach applies or stops ESBMV based
on the number of eigenvectors in the signal subspace. As a result, this strategy was
able to decrease BBR artifacts [20]. However, the contrast in PESBMV is lower in
comparison to reference ESBMV. Following that, several techniques for improving
ESBMV's performance were proposed.

In (2017), Wu et al. proposed an adjustable factor to adaptively assign some
special imaging parameters, and then combined ESBMV beamformer with it, to
improve the spatio-temporally smoothed factor beamformer by introducing.
However, BBR artifacts were not eliminated [21].

In (2017), Wang et al. suggested a synthetic aperture (SA) ultrasound imaging
technique combining short-lag spatial coherence (SLSC) weighting with ESBMV,
to improve imaging quality at all depths. Based on the spatial coherence of
different sources, an adaptive threshold of eigenvalues is designed for ESBMV. As
a result, this strategy was able to increase contrast while the contrast to noise ratio
and speckle SNR are decreased due to the presence of BBRs [22].

In (2017), Mozaffarzadeh et al. suggested linking ESBMV with Delay Multiply
And Sum (DMAS) beamformer to reduce sidelobes and raise the signal-to-noise
ratio through a simulated study. However, this did not reduce the ESBMV artifacts
[23].

In (2019), Mozaffarzadeh et al. suggested again to link ESBMV with DMAS
beamformer to reduce sidelobes and raise the signal-to-noise ratio for the
application of Linear-Array Photoacoustic Imaging. This method raised the signal-

to-noise ratio and increased resolution but BBR and dark spot were sill exist [24].



In (2020), Shamekhi et al. proposed to combine ESBMV beamformer with the
Sign Coherence Factor (SCF) to reduce noise when they are used in combination
with each other [25]. But artifacts of ESBMV still occur.

In (2021), Lan et al. suggested the use of an adaptive eigenvalue threshold for
subspace development to improve contrast and reduce dark region artifacts [26].
Image quality can be improved by adaptively altering the subarray length of the
covariance matrix, this also helps to decrease the size of the covariance matrix and,
to some extent, increase computational efficiency. However, this suggestion
produced a lower hyperechoic target brightness compared to classical ESBMYV, and
according to that the borders of hyperechoic targets were suffering from a lack of

clarity.

Table 1-1: Literature reviews.

Year No of Study Description Advantages Disadvantage
of | Reference
Study
1988 [14] It was developed to Avoidance of ESBMV
highly improve the | explicit covariance artifacts
contrast of MV matrix estimation
beamformer and inversion,
requiring only scalar
and vector quantities
to be estimated
2010 [15] ESBMV improved imaging BBR artifacts
beamforming has resolution and
been successfully contrast, better

applied to specific performance, and
ultrasound application to

techniques, such as | specific ultrasound
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plane wave imaging

in ultrasound
computed
tomography, where
it has been shown

to maintain or
improve the
resolution and

contrast ratio of the

reconstruction

techniques.

results
2012 [16] It has been optimizes the failed to
combined with ESBMV weights eliminate the
Wiener postfilter to with a Wiener BBR artifacts
further improve postfilter, making | and black spots
medical ultrasound | the output power of in the
imaging quality | the new beamformer = background
closer to the actual speckle
signal power at the
Imaging point than
the ESBMV
beamformer
2013 [17] It combines the The proposed ESBMV

beamspace method
with the
Eigenspace-Based
Minimum Variance
(ESBMV)

method can achieve
performance
comparable to the
ESBMV

beamformer within

artifacts still

exist.
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beamformer

much shorter time

2015 [18] The proposed This method failed to be
beamforming enhances the removing BBR
method utilizes a Imaging contrast artifacts.
kernel to select significantly while
neighbor points, keeping the
and the number of resolution quality
selected similar to the
eigenvectors for eigenspace-based
each focal pointis | minimum variance
compared with the (ESBMV)
number of selected beamformer
eigenvectors of its
neighbor points and
Is changed to a new
value
2016 [19] This method The proposed failed to be

introducing an
adjustable factor to
adaptively assign
some special
Imaging parameters
and then combining
the eigen space-
based minimum
variance
beamformer into
the method to

method improves
the robustness of the
algorithm with
speckle pattern
consistency and
markedly removes
the artifacts while
preserving effective
ability to suppress
clutter and side-

lobes

removing BBR
artifacts and
Subarray
smoothing has
a negative
impact on
computation

efficiency
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further improve the

image quality.
2017 [20] this method, this strategy was the contrast in
ESBMV is applied able to decrease PESBMV is
or stopped based on BBR artifacts lower in
the amount of comparison to
eigenvectors in the reference
signal subspace ESBMV.
2017 [21] proposed an enhance image BBR artifacts
adjustable factor to contrast and were not
adaptively assign suppress clutter in eliminated
some special ultrasound imaging
imaging
parameters, and
then combine
ESBMV
beamformer into
our method, to
improve the spatio-
temporally
smoothed factor
beamformer by
introducing.
2017 [22] suggested a improve imaging BBR artifacts
synthetic aperture | quality at all depths, were not
(SA) ultrasound increase contrast eliminated

imaging technique

combining short-lag
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spatial coherence

(SLSC) weighting
with ESBMV
2017 [23] link ESBMV with | reduce sidelobes and | did not reduce
Delay Multiply And | raise the signal-to- the ESBMV
Sum (DMAS) noise ratio through a artifacts
beamformer simulated study
2019 [24] This study link This method raised | BBR and dark
ESBMV with the signal-to-noise | spot were sill
DMAS beamformer | ratio and increased exist
for the application resolution
of Linear-Array
Photoacoustic
Imaging.
2020 [25] combine ESBMV | reduce noise when | But artifacts of
beamformer with they are used in ESBMV still
the Sign Factor combination with occur
(SCF) Coherence each other
2021 [26] suggested the use of Image quality produced a
an adaptive improved by lower
eigenvalue adaptively altering hyperechoic

threshold for
subspace
development to
improve contrast
and reduce dark

region artifacts

the subarray length
of the covariance
matrix, increase
computational

efficiency

target
brightness
compared to
classical
ESBMYV, and
according to
that the borders
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of hyperechoic
targets were

suffering from

a lack of clarity

1.3 The Aims

The main objective of this dissertation aims to:

1. study the different types of adaptive beamformers used in ultrafast
ultrasound imaging.

2.suggest a method for improving imaging quality in these types of
beamformers, specifically in ESBMV.

3. Discriminate hyperechoic targets, hypoechoic targets, speckle
backgrounds and Black Box Regions from each other.

4. Discrimination helps to use the most suitable beamforming method in
each region, resulting in improved overall resolution and contrast of the
produced images, with preserved homogeneity at background tissue. The
operation includes studying various methods and factors and
implementing and applying them to the used in-vitro data, in order to
find the amount of difference factor’s value in the image regions. This is
followed by testing various types of beamformers in order to select the
most appropriate type of each imaging region, leading to an

improvement in the overall image quality.

1.4 Dissertation Organization

This dissertation is organized as follows:

The introduction, and literature review presented in chapter one.

14



In chapter two, the theory and principle of ultrasound imaging, theory of
beamforming and adaptive beamforming types, and applications of ultrafast
ultrasound imaging are introduced in detail.

In chapter three, the model of the proposed method and the flowcharts that are
used to calculate the parameters using this method are given, with the beamforming
method used in each imaging region. Chapter four states the results and
discussions of applying the proposed method to in vitro datasets. Finally, chapter

five provides conclusions as well as future related works.
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CHAPTER TWO

THEORY AND PRINCIPLE OF ULTRASOUND
IMAGING AND BEAMFORMING TECHNIQUES

2.1 Introduction

This chapter presents an overview of ultrasound imaging and its principle,
wavelength, frequency, applications, transducer types, imaging techniques in
ultrasound, and beamforming principle. It demonstrates the background method
behind the standard data-independent and adaptive beamformers and their main
issues. Finally, this chapter describes the methods suggested in the literature to

Improve the image quality produced by the adaptive beamformer.

2.2 Principle of ultrasound imaging

Ultrasound imaging can be carried out by using various imaging techniques.
The main types of these techniques are linear scan, plane-wave emission and
synthetic aperture. The technique used in this work is the plane-wave type of
emission, or Plane-Wave Imaging (PWI).

Linear array transducers were invented, which consist of a series of elements
arranged in straight rows, allowing the generation of different sets of directed
and/or concentrated emitted beams [27], [28]. And this can be achieved by
manipulating the pulse operation of these parts with specified timing patterns, this
can be efficiently achieved.

A single unfocused beam is used by PWI for displaying the imaging region,
resulting in a high frame rate of several thousand frames per second. PWI can give
a frame rate that is independent on the number of data lines produced for the
required imaging width [29]. At each transmit event, an ultrasound wave is

transmitted from the whole array aperture by pulsing all the elements in the same
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time. The emitted sound wave will thus produce a plane wave, which propagates
with no focusing. Backscattered echoes are then recorded using all elements on the
receive aperture. After the received data is ready, the beamforming operation that
produces final B-mode images will take place.

In beamforming operation, the output of the sensor array is processed in order
to produce an image that has meaning. The purpose of using sensor array is to
enhance the signal-to-noise ratio compared to a single sensor, which is a collection
of sensors located at fixed spatial positions. Each element of this array receives
data that participate in producing the final image from the received ultrasound echo
signals [20]. This process is the most crucial step in revealing the necessary
information carried by the reflected echo signals [20].

One of the first major steps in any beamformer is focusing. Delays are
employed in transmission to manage the contributions from all transducer elements
and hit a specific point, which is referred to as the focal point of emission. Echoes
received by elements in reception are delayed to accumulate contributions from the
same point in the medium (focal point). Focusing performed using received data
during beamforming is called (dynamic focusing). In PWI, transmit focusing is not

applied.
2.3 Ultrasound Wavelength and Frequency

The frequencies of ultrasound waves are higher than the limit of audible human
hearing, which is 20 kHz, as shown in figure 2.1. Sound waves with frequencies

ranging from 1 to 20 MHz are used by medical ultrasonography devices.
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Figure (2.1): Shows the range of ultrasound frequency [30].

The correct transducer frequency selection is critical for achieving optimal
image resolution in diagnostic and procedural ultrasound imaging. Ultrasound
waves with high spatial resolution are produced by high-frequency (short
wavelength) ultrasound waves [3]. This is due to the fact that increasing the
amount of compression and rarefaction waves over a given distance allows for
more accurate discrimination of two distinct structures along the wave propagation
plane. However, because high-frequency waves are more attenuated over a given
distance than lower-frequency waves, they are best suited for imaging superficial
structures. Low-frequency (long wavelength) waves have lower resolution but can
penetrate deeper due to lower attenuation [3]. As a result, in medical ultrasound
imaging, high-frequency transducers (up to 10-15 MHz range) are used for
Imaging superficial structures such as stellate ganglion blocks, and low-frequency
transducers (usually 2-5 MHz) are used for imaging deeper tissues such as deep
lumbar neuraxial structures.

Ultrasound imaging waves are generated in the form of pulses (intermittent
trains of pressure), which usually consist of two or three sound cycles of the same
frequency. The pulse repetition frequency (PRF) is the number of pulses emitted by
the transducer per unit of time. Before the next pulse is formed, ultrasound waves
must be delivered in pulses with enough time between them to allow the signal to
reach the target of interest and be reflected back to the transducer as echo. PRF in

medical imaging is also known as (frame rate) [3].
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2.4 Types of Ultrasound Imaging Transducers

The variety of transducer configurations designed for various applications
reflects ultrasound imaging's high flexibility [31]. The widely used types of
ultrasound transducers include linear array transducers, phased array transducers
and curved array transducers. These types differ in their element organizing, and
they are primarily designed for non-invasive use [9], in addition to the presence of
other special types of probes that can acquire images invasively. Other types of
noninvasive imaging probes include single-element probes, mechanical-2D probes,
and 2D-matrix probes, which can acquire acoustical signals from 1D to 3D spaces,

respectively [31]

2.5 B-Mode Ultrasound Images

B-mode was initially given this name for distinguishing it from the so-called
Amplitude mode (A-mode). In A-mode ultrasound, it is possible to view the
amplitude of the signal that is received in a single beam (axial direction) produced
by a transducer. When altering to B-mode, along with a transducer's element array
(lateral direction), a series of evenly spaced A-mode beams are obtained. In
contrast to the beam focusing from a single large element in A-mode, the beam in
B-mode is primarily shaped by transmitting ultrasound pulses from an aperture
containing a series of smaller elements. B-mode images are the most widely
produced image type from medical ultrasound. B-mode image is a two-dimensional
image of the scanned area [32], figure 2.2 shows an example B-mode ultrasound
Image. Other imaging modes include Doppler flow images, expanded field of view
images, and three-dimensional images [6], [32]. The axial direction in a B-mode
image is the direction of ultrasonic propagation along the beam line, while the
lateral direction is the direction in the image plane perpendicular to the axial

direction, parallel to the transducer surface.
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The significant proportion of ultrasound transducers is used to generate 2D
Images. Volumetric B-mode images can be created by stacking 2D planes obtained
by mechanical translation along the plane orthogonal to the axial-lateral plane,
known as the Elevation direction, by rotating the probe, or by extending the 1D
element array transducers to 3D. The quality of B-mode image can be enhanced by
improving focusing, producing denser-spaced lines, compounding multiple
frequencies, focal depths, and steering angles. Signal processing and image
processing methods are combined with beam shaping techniques to enhance image
quality in many applications [33].

CA1-7A (AC)/Renal / FR34Hz
G51 DR48 FA11 P951.8 Frq Gen.'14.0cm

RLQ TX KIDNEY™

Figure (2.2): Example B-mode ultrasound image [34].
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2.6 Plane-Wave Imaging (PWI)

Plane-Wave Imaging (PWI1) is an ultrasound imaging technique that allows for
faster image acquisition and higher frame rates [35], [36]. In traditional ultrasound,
to send and receive ultrasonic waves, beam focusing is utilized. However, in PWI
to transmit and collect ultrasonic signals, a transducer's elements are all activated at
the same moment to produce an unfocused beam [35], [36]. PWI can be used in
medical diagnosis and non-destructive testing (NDT) in various industries [35],
[37]. In medical diagnosis, PWI can produce high-resolution images through scan
conversion and image reconstruction. PWI has various medical applications. Its
main benefits are to rise the frame rate and decrease the number of elements
required in the transducer array, allowing for ultrafast image collection, which is
capable of imaging at kHz rates [35], [36]. Another application of PWI in the
medical field is to measure the velocity of blood flow in the body [36]. This
techniqgue has also been used to improve Doppler images by filtering

spatiotemporal clutter from ultrafast ultrasound data [36].

2.7 Ultrafast Ultrasound Imaging

Ultrafast ultrasound imaging is a technique that allows the analysis of rapidly
changing physical phenomena in the human body, such as ultrasensitive flow
Imaging in the cardiovascular system or shear-wave elastography.

Ultrafast ultrasound, an acquisition technique that has been widely studied and
applied over the last two decades, As the name implies, ultrafast ultrasound
Imaging can potentially exceed 1,000 frames per second by overcoming the
conventional frame rate limitation which is usually much less than 1000 frames per
second [10]. By delaying pulse times across a group of transducer elements, in
transmission, conventional ultrasonography emphasizes the shape and steering of
focused acoustic beams. To scan a 2D or 3D space, focused beams are transmitted

and received line by line. This simple scheme, however, limits the frame rate to
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about 100 frames per second, which only meets the basic requirements of
traditional medical applications. Un-focused acoustic waves, like limited
diffracted, diverging, or plane waves, are transmitted in ultrafast speed to
illuminate a broad-range space with a fewer number of beams. Ultrafast ultrasound
has the ability to make an exceedingly high frame rate that exceeds 1,000 frames
per second, because fewer beams are required to compose a single image frame.
Implementing the ultrafast ultrasound concept has become feasible in the last two
decades, thanks to the exponentially increasing computation ability. Due to the
absence of transmission focusing, the advancement in frame rate in ultrafast
ultrasound is detrimental to image quality.

To balance the ratio of frame rate to signal-to-noise ratio and resolution,
Coherent compounding of steering plane waves has been shown to greatly increase
both spatial resolution and signal-to-noise ratio, while still obtaining moderate-high
framerates [10]. To improve image quality without introducing too much
computational complexity, novel signal processing and beamforming techniques
have been proposed.

The main difference between ultrafast ultrasound imaging and traditional
ultrasound imaging is the high frame rates of ultrafast imaging, typically over 1
kHz, where traditional ultrasound imaging provides lower frame rates. This is
because ultrafast ultrasound imaging requires only a single acquisition to
reconstruct each image, while traditional ultrasound imaging typically requires
multiple acquisitions to obtain sufficient image quality. Another difference is that
ultrafast ultrasound imaging provides poor imaging quality due to unfocused
beams, while traditional ultrasound imaging is focused, and it thus provides better
imaging quality. In addition, ultrafast ultrasound imaging suffers from strong
diffraction artifacts, mainly caused by grating lobes, sidelobes, or edge waves,

while traditional ultrasound imaging does not have these artifacts. The high frame
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rate of ultrafast ultrasound imaging is the reason of using it to analyze rapidly

changing physical phenomena in the human body [10].

2.8 Applications of Ultrafast Imaging

The basic principle of ultrafast ultrasound imaging was developed in the 1970s.
However, practical applications of ultrafast ultrasound imaging only arise from the
early 2000s.

The initial application of ultrafast ultrasound imaging was to visualize the
propagation of a shear wave caused by an acoustic radiation force delivered by an
ultrasonic push pulse. Other applications for functional imaging have been
explored, such as blood flow imaging, heart function evaluation, and vascular

viscoelastic characteristics [38].

2.8.1 Visualization of Blood Flow

There are two main types of blood flow imaging applications of ultrafast
ultrasound imaging including vector flow imaging and Coronary Ultrafast Doppler
Angiography (CUDA) [33].

2.8.1.1 Vector Flow Imaging

Color flow imaging is a technique for visualizing blood flow by measuring
Doppler shifts and superimposing them on B-mode images. Flow patterns in
circulation, on the other hand, are generally more complex, with vortices formed as
blood passes via orifices such as the mitral valve. To image these more complex
flow dynamics, different echocardiographic approaches have been developed.
Doppler flow imaging is combined with Left Ventricle (LV) wall motion
assessment using particle image velocimetry and vector flow mapping. However,

both methods have intrinsic limitations due to low frame rates.
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An innovative method based on ultrafast ultrasound combined with Doppler and
speckle-tracking technology enables users to image complex blood flow without
the use of contrast agents or mathematical hypotheses. This approach is less angle-
dependent, allowing for two-dimensional imaging of blood flows in two
dimensions without relying on wall motion assumptions, and has been validated for
pediatric use on high frequencies curvilinear pediatric probes. The flow velocity
data obtained can be used to compute energy losses, vorticity parameters, and
intraventricular pressure gradients. However, challenges include large datasets,
computational challenges, storage capacity limitations and penetration of ultrafast
ultrasound plane waves [33]. Blood speckle-tracking techniques are projected to be
more enhanced and, as technology advances, will probably replace present color

Doppler techniques.

2.8.1.2 Coronary Ultrafast Doppler Angiography (CUDA)

Coronary ultrafast Doppler angiography is a nonsurgical technique that
visualizes and quantifies distal periarteriolar coronary vessels using ultrafast
ultrasound technology. This technique separates cardiac movement from blood
flow using spatiotemporal filters, allowing reconstruction of vessel architecture and
fluxes. Validated in human’s models, CUDA can quantify coronary flow reserve,
this makes it an effective noninvasive tool for detecting ischemic heart disease
[39].

2.8.2 Visualization of Tissue Motion

Because of the availability of ultrafast ultrasound technology, more detailed,
diverse applications for measuring heart function and tissue properties have been

created. Shear wave imaging is one of the most sophisticated applications [33].
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2.8.2.1 Shear Wave Imaging

Ultrafast ultrasonic technique catches tissue movements at extremely high
frame rates. allowing for more detailed investigation of tissue motion. Various
applications for evaluating heart function and tissue properties have been

developed. One of the more advanced uses is shear wave imaging [33], [40].

2.8.2.2 Electromechanical Wave Imaging (EW1)

The direct association between electrical and mechanical activation that
occurs between 20 and 50 ms depending on the cardiac region under examination
Is known as electromechanical coupling. As the muscles contract, electrical
depolarization occurs, resulting in electromechanical activation. At the time of
activation, the myocardium undergoes a transitory deformation that might be seen
at very high frame rates. This information can be used to compute
electromechanical activation times. The feasibility of this technology has been
demonstrated in both 2D and 3D human patients [33], [41].

2.8.3 Tissue Structure and Fiber Orientation

In vivo myocardial fiber orientation was investigated utilizing diffraction-tensor
MRI methods. However, recent work using ultrafast ultrasound has showed that
imaging fiber orientation using ultrasound is feasible. Speckle echoes spatial
coherence is used by Backscatter Tensor Imaging (BTI) to determine the direction
of myocardial fibers; The spatial coherence is highest when fibers are parallel to
the ultrasound wave. Shear wave velocities are utilized by Elastic Tensor Imaging
(ETI) to construct fiber maps, which exhibit a good correlation with MR DTI using

animal models. Despite this, clinical use remains a laborious process[42].
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2.9 Cardiovascular Diseases Diagnosis

Ultrafast ultrasound has potential clinical applications in cardiovascular
diseases, particularly for patients with congenital heart disease. Estimating
Myocardial Stiffness (MS) has been shown to be promising as a measure of
contractility and for detecting subclinical problems that standard approaches do not
detect. MS has been proven in animal models to be a noninvasive indicator of
cardiac contractility, while in humans, there are differences in end-systolic MS
between healthy patients and those with amyloid. More geometric and load-
independent systolic function metrics might be advantageous for patients with
congenital heart disease, where morphology and loading are significantly varied
[33].

2.9.1 Ventricular Function

Myocardial stiffness measurement is considerably more crucial in diastolic
assessment, where stiffness and fling pressure assessment are the primary clinical
Issues. The majority of current echocardiographic diastolic assessment has been on
early diastolic events impacted by myocardial relaxation. Early relaxation may not
be significantly affected by diastolic dysfunction in children. Myocardial diastolic
stiffness can be estimated noninvasively using shear wave imaging [33].

Myocardial diastolic stiffness has been demonstrated in humans to rise
dramatically with age and excessively greater in patients with hypertrophic
cardiomyopathy, hypertension-induced LV hypertrophy, and cardiac amyloidosis.
Further validation and technical standardization will be needed before widespread

clinical use becomes possible, but initial findings are promising [33].

2.9.2 Evaluating Coronary Perfusion and Cardiac Structure

Assessment of coronary micro perfusion is crucial for patients with congenital

heart disease, as it may be relevant for certain congenital defects. Patients with
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reduced coronary perfusion and flow reserve are at increased risk of sudden death
and have a reduced survival rate post-Fontan. Identifying patients earlier with
reduced coronary perfusion and flow reserve could help stratify them and reduce
the risk of sudden death. CUDA could replace postoperative coronary artery
Doppler patterns by evaluating post repair coronary flow in 2D and assessing
coronary flow reserve before leaving the operating room. Myocardial fiber
orientation that can be visualized using ultrafast imaging plays a significant role in
cardiac function, and abnormal fiber architecture in congenital heart disease and
cardiomyopathies may predispose to decreased function. BTI could help
understand the pathophysiology of congenital heart disease and offer potential for

novel insights [33].

2.9.3 Electromechanical Rhythm Abnormalities

A previous research on cardiac fiber orientation has been primarily conducted
on one-time vivo specimens utilizing diffraction-tensor MRI techniques. Recent
research using ultrafast ultrasound shows that imaging fiber orientation by
ultrasound is possible. Backscatter tensor imaging (BTI) determines cardiac fiber
orientation by measuring the spatial coherence (i.e., the degree of similarity) of
speckle echoes. The highest spatial coherence is found in fibers parallel to the
ultrasonic wave, whereas the lowest is found in fibers at 90°. Myocardial fiber
vectors can be constructed based on the degree of spatial coherence using this
method. This has originally been proven in 2D and 3D models of heart tissue using
fiber-reinforced composites, demonstrating that fiber orientation correlates with

spatial coherence [43].

2.9.4 Future Directions Echocardiography

The imaging process used to examine both anatomy and functional

assessment can take up to an hour or more. Multiple angles are used to image
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structures and hemodynamics and tissue motion measurements are performed
using multiple methods. Color Doppler, tissue Doppler, chamber volumes, blood
flow imaging, shear wave imaging, and tissue orientation may all be recorded in
3D and in a single acquisition with ultrafast ultrasound imaging employing
simultaneous 4D image acquisition. The acquisition of multiple functional
parameters simultaneously would lead to better measurement consistency and lead
to new algorithms and indices for functional assessment. Ultrafast ultrasound has
yet to be explored in the field of pregnancy.

Figure 2.3 shows a diagram that represents the most important clinical

applications of ultrafast ultrasound imaging [33].
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Figure (2.3): Clinical applications of ultrafast ultrasound imaging [44].
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2.10 Limitations in Ultrafast Ultrasound Imaging

Ultrafast ultrasound is utilized in the preclinical phase for cardiology, with
Improvements in frame rate and spatial resolution. However, it remains imperfect
due to challenges in tissue penetration, signal attenuation, and diffraction.
Anatomical location of structures remains a challenge. For 2D flow quantification,
the angle of sonification is crucial. Although new matrix array probes will enhance
this, the current clinical use of ultrafast imaging is still limited despite the

Improvements in graphic and data processing [45].

2.11 Beamforming Principle

The basic operation in beamforming is to perform summation of the delayed
data, received by the ultrasound transducer elements. In order to calculate the
delays, the ray acoustics theory can be used. Figure 2.4 Explains the primary
elements utilized in calculating focal delays. In this figure, the x value resembles
the lateral distance, z is the axial distance (depth) and y resembles the elevation

distance (third dimension).

29



Transducer

depth

Py (x,7)
.

Figure (2.4): A diagram describing the round-off time required by a signal to travel to and

reflect from a focal point.

To specify the sample value received from a focal point, it is necessary to know
how long it takes the ultrasound beam to trip from the transducer to the point and
then reflect back to the transducer element i. This can be done through knowing the
distance of this journey, converting distance to time, and then simply dividing by
the sampling time Ts. Assuming that the point position is (x; , yr , zr ) and the
center of the element’s position is (x;, y;, z;), where the center of the transducer is
situated at position (xq, Yo, Zo), then the transmit time in PWI (r;) is calculated
from the perpendicular space between the transducer and the point, which is equal

to z ¢, or simply the depth of that point. Distance (r;) from the point to element i is

calculated as follows [9]:

r;= \](xi — .X'f)z + (yl - yf)z + (Zi — Zf)z. (21)
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(x¢ . ¥¢ , zf ) is the coordinate of the point position.

(x;, ¥;, z;) is center of the element’s position.

The central element of the transducer is situated at the position (x0, y0, z0), and

its distance to the focal point, . is expressed as:

2 2 2
re= o —x7) + (- y7)* + (20 - 27" 22)
Thus, the delay needed to be applied to the i element data in order to

compensate for the time of flight is equal to [9]:

1 1
t; = c Ttotal = c * (re—m;), (2-3)

where c is the speed of sound in the medium, which is assumed in medical imaging
to be 1540m/s [9]. Thus, the value of every point can be specified depending on the
delays expressed in equation (2.2), but under the assumption of having a constant
value of sound speed. The center of the transducer is assumed to be (0, 0, 0), while
the value of the third dimension y equals to zero for all the points in traditional 2D
B-mode images.

It can be considered in general that for a particular setup with an M-element
ultrasound probe (M also refers to the number of the active elements in the
transducer) and for the returning echoes recorded using the same ultrasound
transducer, that each point in the (z, x) grid (for which y is equal to 0) will have a
vector of values that are the delayed signals from each element. Therefore, a matrix
of (X ,Z,M) is produced from beamforming, where summation will be performed
over the third dimension and a single value will be assigned for each point in the
final image. After this operation, the point values are normalized to the maximum,
converted to dB scale, and then displayed as the final B-mode image points.
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2.12 Data-Independent Beamforming

After applying focusing to the received data, different weights can be applied to
this data. Beamformers can be either data-independent (fixed) or data-dependent
(adapters) depending on the weights applied to the output array of the reflected
signals. Delay and Sum (DAS) is the most fundamental data-independent
beamforming, because of its simplicity and efficiency. It is common in medical
ultrasound imaging, and very likely, the most spread beamformer in ultrafast
ultrasound imaging. Before being employed for ultrasound imaging [46], [47], the
technique of DAS has historically been used in ground-based and airborne radar as
well as telecommunication [47], [48]. It is simple and can be parallelized due to its
implementation. It is also fast and compatible with real-time applications, and due
to being data-independent, it preserves the temporal coherence and statistical
properties of the real envelopes [47], [49], [50].

DAS aims to create the image by delaying the incoming signal from each
aperture channel then combining the resulting values. The apodization weights for
the delivered signals are determined by the location of the receiving element.
Signals from the central elements are given higher weights while those from
elements farther from the center are given lower weights. Thus, all signals will
coincide and then summation is performed [20].

The principle of PWI is illustrated in figure 2.5 on emit side. In emission, as in
figure 2.5, each transducer element is responsible for controlling both the
amplitude and time of excitation, such that the transmitted pulses are applied to all

elements at the same time to produce an unfocused plane-wave.
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Figure (2.5): Transmission using PWI.

In reception, as shown in figure 2.6, the echoes received by the elements of the
ultrasound probe, also called raw channel data, are focused (delayed) in order to
compensate for the delays due to the time-of-flight differences. Then, the resulting
signals are weighted using a weighting function, which is the receive apodization
process. Afterwards, samples from each element are summed up to form the final
beamformer output. Beamforming is more flexible in reception than in emission. In
emission, once the elements have been excited, they cannot be controlled anymore
during the process of beamforming. However, in receive, the raw channel data can
be stored, and the weighting functions can be selected depending on the preferred
characteristics of the recorded data, or according to the depth. The operation

performed by DAS at each point p(x, z) can be expressed as follows [51]:
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P(x,z) = 31, pi(t — Aty), (2.4)

p; is represent, the value received by the receiving element i*".

At; is total round tip from transmitter to the received element.

To achieve perfect imaging quality, apodization is performed by decreasing the
sidelobe level. Predefined and data-independent apodization weighting has the
drawback of reducing the lateral resolution of DAS beamformer by widening the
main lobe. Compared to conventional data independent beamforming, adaptive

beamforming yields higher spatial resolution and lower sidelobe levels [20].
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Figure (2.6): Delay and sum beamforming after reception.

2.13 Data-dependent Adaptive Beamforming

Beamforming signal

The operation of beamforming where output adapts according to the received

echo data is called adaptive beamforming. Adaptive beamformers calculate the

weights from the statistics of the received data in order to converge to an optimal

response through the maximization of the produced SNR at the beamformer output

[9]. Thus, the contributions of the noise and the signals that arrive from other

directions than the desired direction are minimized. Figure 2.7 shows a diagram of

reception operation and the calculation of the weighting in data-dependent

beamforming.
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Figure (2.7): A diagram showing the principle of adaptive beamforming.

Adaptive beamformers have been employed in other applications of array signal
processing, such as sonar and radar, for decades. The adaptive beamformer actively
updates a set of apodization weights for each point in the image, whereas the
standard beamformer has a passive procedure that uses precalculated data-
independent apodization weights [52].

In the field of adaptive beamforming, there was a real and tangible pursuit by
researchers and engineers, where the techniques rolled one after the other, and on
top of these techniques or one of the widely used was the Minimum Variance (MV)

Based Adaptive Beamforming.
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2.14 Minimum Variance (MV)

MV beamformer is one of the widely used methods. It was originally introduced
by Capon in 1969. MV beamforming is a signal processing technique that has been
acquiring a wide interest by researchers in the medical ultrasound field [53], [54],
[55], [56]. The Capon or Minimum Variance (MV) beamformer continuously
updates the apodization weights, so that the variance (or power) of the weighted
sensor signals is minimized under the constraint that the signal emerging from the
point of interest is passed without distortion.

MV approach achieves higher spatial resolution than classic DAS, by lowering
overall output power while maintaining the desired signals [56], or in other words,
by keeping on-axis signals while minimizing off-axis ones [57], [58]. However,
their execution usually imposes a significant computational load [59]. MV
beamforming has been used to illustrate how adaptive methods' narrow beamwidth
and low sidelobe levels can be used to improve resolution and imaging. The aim of
MYV is to apply an optimal set of weights in order to estimate the desired signal
waveform as accurately as possible, while rejecting the interfering signals [54].

Synnevag et al. has highlighted the benefits of MV over DAS for producing
higher contrast and resolution. They discussed methods that can improve
robustness. They also demonstrated comparable quality levels while employing
smaller apertures, fewer transmitted frequencies, or greater penetration depths.

The MV beamformer is used in conjunction with covariance matrix-based
adaptive weighting. It could be used to enhance penetration depth while preserving
lateral resolution [11]. The covariance matrix is critical in adaptive beamforming. It
IS a matrix that depicts the statistical relationship between the received signals of

the array members.

The covariance matrix is computed through the received signals and then used
to weight the array components in adaptive beamforming to improve the intended
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signal and minimize interference [60], [61]. Various techniques, such as
interference-plus-noise covariance matrix estimation and sample covariance matrix
estimation, can be used to estimate the covariance matrix.[61], [62].

The precision of the covariance matrix estimate can affect the quality of the
adaptive beamforming process. Generally, the covariance matrix is an important
component in adaptive beamforming since it allows for the strengthening of
desirable signals while suppressing interference. However, MV beamforming does
not increase contrast [63]. Researchers have proposed merging MV beamforming
with other methods to increase contrast and to overcome this issue., such as Sign
Coherence Factor (SCF) [58], [64], Coherence Factor (CF) weighting and
Convolutional Neural Networks (CNN) [63].

Combining CF weighting with MV beamforming improves contrast and reduces
sidelobes by enhancing in-phase signals while lowering out-of-phase signals [58].
Section 2.16 will introduce the CF concept.

The use of SCF could also modify the beamformer's input vector, which can
reduce side lobe noise while requiring nearly no additional calculations [64].

The third proposed method of combining MV beamforming with CNN
suppresses off-axis scattering signals while the MV beamforming apodization
weights provide improved image resolution performance [63].

Researchers have also proposed combining MV beamforming with Phase
Coherence Imaging (PCI) to enhance imaging resolution and contrast
simultaneously. PCI analyzes phase dispersion, generates coherence factors PCF
and SCF, and weighs the MV beamformed channel output [57].

Salari and Asl have proposed adaptively generated parameters for MV
performance balance, ensuring user independence [65].

MV beamforming has two different types of implementations, in time domain
and in frequency domain. In the use of time domain implementation, the weighting

vector and output value for each point are derived by using vectors of data or
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sensor signals that have been received. In frequency domain implementing, Fourier
transforms are used to convert sensor signals into the frequency domain. The final
output is determined by taking the central sample of the result after applying the
inverse Fourier transform to the weighted output vector. Time domain and
frequency domain implementations of MV have close performance. Therefore,
time domain implementation is usually selected because it requires less
calculations and time.

The weighting vector in MV beamformer is always reorganized to minimize the
output power by giving a unity value for the focal point's response. This criterion
can be mathematically described as [66], [67], [68]:

Wiy = argmin wiCMw

subjectto wfa=1, (2.5)

The weighting vector is w,CM is the echo data's covariance matrix w* is weight
transpose. a is defined as the steering vector accustomed to recompense for the
delays from the focal point for every element that is received. The final result of

the weight value is displayed as [66], [68]:

M 1q
Wmy = alcM-1a”

(2.6)

The analytical form of CM is unknown, and it is typically estimated from the
data. In spatial smoothing, the transducer array is subdivided into p subarrays, with
one element being shifted between each two adjacent subarrays [69]. Temporal
smoothing, where (2K + 1) is a vector of specific number of samples for each
focal point [70], is included in the CM calculation. The covariance matrix can be
expressed as [66], [68]:
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CM =355 VpVy (2.7)
where the number of subarrays is called p, and it is equivalentto (M — Lp + 1).
Lp is the length of the subarray in the spatial smoothing operation. The total
amount of transducer elements is M. V, is the p" subarray, calculated as follows
[66], [68]:

Vp = [yp(n) Yp+1(n) yp+Lp—1(n)],, (2.8)
where y,(n) is a portion of the input signal received by the pt" element, p =
0,1,...,P—1.
yp (n) represents a vector of length (2K + 1).

The beamformer's output value is computed by multiplying the subarray

average by the weighting vector, as follows [66], [68]:
Y =wuy' 5358 Vy - (29)

By studying the effect of Lp on contrast and resolution in MV and method, it is
observed that decreasing the value of Lp leads to lowering contrast ratio and
contrast to noise ratio (approaching DAS beamforming method), and also
decreases resolution and increases brightness, while the background speckle
appears homogeneous and clear. On the other side, the increase in Lp value has a
very positive and noticeable effect on resolution and contrast but at the expense of

reducing the robustness of the method towards noise and off-axis signals.
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In summary, MV offers improved resolution and adaptive capabilities, but it
comes with high computational complexity and potential limitations in the overall

image contrast.

2.15 Eigenspace-Based Minimum Variance Beamforming (ESBMV)

ESBMV is a technique used in medical ultrasound imaging to improve image
quality. It is a type of adaptive beamforming that is used to suppress sidelobes,
granting lobes and clutter in PWI [21], [71]. ESBMV was first introduced by Van
Veen in (1988). It is based on the minimum variance (MV) beamforming
algorithm, which is designed to improve image resolution in ultrasound imaging
[71]. ESBMV overcomes the shortcomings of the MV algorithm by using
eigenspace-based projection to estimate the covariance matrix [21], [71]. ESBMV
method has been shown to improve the robustness of the algorithm with speckle
pattern consistency and markedly remove noise while preserving the effective
ability to suppress clutter and side lobes [72]. However, it usually introduces dark
region artifacts alongside hyperechoic scatterers when obtaining improved contrast,
which is called Black Box Regions (BBR).

Lately, several research groups have investigated and developed several ways
to improve ESBMV beamforming. Mahloojifar and Asl have proposed an iterative
ESBMV implementation for improving imaging parameter choices in a simulated
cyst phantom. Zeng et al. suggested combining Wiener post-filtering with ESBMV
to improve ESBMV resolution and contrast. Aliabadi et al. has developed a method
for improving contrast in ESBMV by modifying the focal point value based on the
qualities of the echo signals received by the surrounding points. Zhao et al.
suggested an original technique that combines a coherence factor based on
subarrays with ESBMV. This technique aids in the enhancement of imaging quality
in terms of resolution, speckle homogeneity and contrast. Other techniques that

have been proposed to improve ESBMV's performance include short-lag spatial
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coherence, DMAS beamformer, SCF, adaptive eigenvalue threshold and adaptive
Image quality. These methods aimed to remove BBR artifacts, reduce sidelobes,
and improve signal-to-noise ratio. However, they had not totally remove ESBMV
artifacts or noticeably improve imaging quality.

It is based on the minimum variance (MV) beamforming algorithm, which is
designed to improve image resolution in ultrasound imaging [71]. ESBMV
overcomes the shortcomings of the MV algorithm by using eigenspace-based
projection to estimate the covariance matrix [21], [71]. ESBMV method has been
shown to improve the robustness of the algorithm with speckle pattern consistency
and markedly remove noise while preserving the effective ability to suppress
clutter and side lobes [72].

In ESBMV, Signal and noise subspaces are found from the MV covariance
matrix (CM), then the weight vector is projected onto the signal subspace. CM can
be written as [15], [16]:

CM = UAUY = UsAUS" + UyAULT = CM + CMYy, (2.10)

where the diagonal matrix is A = diag [1;,4;, ..., 4,,] CM's eigenvalues are
represented by the diagonal of A, where 4; > 4, >--- > 1, are arranged in
descending order. U = [uy,uy,...,u,,] where u; is the it" orthonormal
eigenvector for A; with i = 1, ..., Lp. In this method, CM is divided based on its
Eigen structure, into signal and noise subspaces. Subsequently, weighting vector in
MYV is subjected onto the corresponding subspace-constructed signal. As a result of
the high coherency of on-axis signals, the energy produced by the mainlobe is
focused on the eigenvectors related to the larger eigenvalues. Depending on this

description, the signal subspace matrix (Uy) is written as [15]:
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Us = [u1;u2; ey uNum] ’ (2-11)

where Num is the number of eigenvectors included in the signal subspace. The
signal subspace is constructed from the eigenvectors whose corresponding
eigenvalues are greater than o times the highest eigenvalue (4,,4,), Where 0 is a
value that can be set by the user from 0 to 1[13]. New weights are then calculated
by projecting the MV weight to the signal subspace using the following equation
[15]:

Wespmy = Us U§ wyy. (2.12)

WhereUys is the signal subspace matrix.
H is denotes the transpose of the matrix.
In summary, ESBMV beamforming offers improved resolution and contrast, but

it suffers from dark spots and BBRs artifacts which appear in background speckle.

2.16 Partial Eigenspace-Based Minimum Variance (PESBMV)

Contrast and resolution in MV adaptive beamformers are improved by ESBMV
beamforming. Nevertheless, two types of artifacts reduce the overall image quality
in ESBMV. Firstly, BBR around hyperechoic targets, and secondly dark spots in
background speckle regions. Therefore, PESBMV was proposed to overcome those
limitations. By depending on the value of Num, this method can distinguish or
divide the image into two areas. The first area contains hyperechoic objects, wires
(or point targets), and sidelobes, while the second area contains hypoechoic objects

and speckle backgrounds. The weight in this method can be written as [20]:
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UsUl'wyy ifNum>L,.n

i (2.13)
Wy otherwise.

Wpgspmy = {

where 1 is a user-specified coefficient that is between 0 and 1. 5 has a direct effect
on the reduction of the noise level and Num. Depending on the type of the
processed data the value of & is selected, since it balances between imaging
artifacts and the darkness and delineation of hypoechoic targets.

PESBMYV was able to achieve a quantum leap in the PWI field by averting the
BBR artifacts and controlling the dark spots through controlling the value of . The
ability of the factor Num in discriminating the imaging regions will be further
clarified in chapter four.

In summary, PESBMV beamforming overcomes the limitation of ESBMYV, by

decreasing the BBR and sidelobes, with a little reduction in contrast.

2.17 Coherence Factor (CF)

CF is an adaptive method that measures the coherency of signals. It is also used
to describe the superiority of adaptive imaging focusing [73]. The CF originally
introduced as a method of quantifying the quality of ultrasound imaging. The use
of CF is widespread to enhance imaging quality in both ultrasound and
photoacoustic imaging [74], [75]. The ratio between the coherent and incoherent
sums of the received signals after applying focusing delays [75]. CF is defined as
[75] :

Where:

x; (k) represents the data received from channel i after applying focusing
delays

k is the time index.

M number of elements.
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CF(K) = (2.14)

In ultrasonic imaging, CF value is commonly utilized as a weight to eliminate
sidelobes. By using coherent signals, the value of CF increases, allowing the
beamformer output to pass with no distortion. On the other hand, the beamformer
output is attenuated by incoherent signals, which lowers the value of CF. By
utilizing this property in the CF, artifacts and sidelobe levels can be reduced, and
spatial resolution can be enhanced in point target imaging. The ultimate
beamformed output is found by multiplying the CF by the final beamformer output.

By computing the CF for each image point and then multiplying it by the
beamformer output at that point, the CF can be used to adaptively weight the
output of any form of beamformers as shown in figure 2.8. Despite those
advantages of CF, there are two main disadvantages of using this type of adaptive
weighting. Firstly, due to its high sensitivity to incoherency, the CF cannot
maintain the homogeneity of speckle-generating targets, which results in reducing
the intensity level and increasing the variance in background tissue. Secondly the
generation of BBR artifacts on the sides of hyperechoic targets in the region of
interest. The incoherence created by the sidelobes of the lesion that intersect in this

area produces artifacts, that diminish the value of the CF [75].
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Figure (2.8): Block diagram of coherence-weighted beamforming using CF [76].

In summary, the advantages of coherence factor beamforming include high
enhancing resolution, despite the distortion which is usually introduced in

background speckle by dark spots and BBRs.

2.18 Wiener Post Filter

The Wiener post-filter, also known as the Wiener filter, is a signal processing
filter that uses linear time-invariant (LTI) filtering of an observed noisy process to
give an estimate of a desired or target random process, assuming known stationary
signal and noise spectra, and additive noise. In ultrasound imaging, the Wiener
filter is a denoising technique used to minimize speckle noise and improve image
quality. It is a universal filter that minimizes the mean square error between the

estimated and the original signal to give an estimate of the uncorrupted signal [77].
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H _ v |2
Wiener — |Y|2+wHCM,w

(2.15)

where w? CM,,w represents the noise of the output power, with w being the weight
of the used beamformer.

CM,, is the noise covariance matrix for the used beamformer.

|Y|? represented the power of the output signal of the used beamformer.

The noise covariance matrix is obtained by the following equation.

M, =M, (x(k) — Y(K))? +1 (2.16)
where x,,, (k) the signal received by the i*®element. I is Identity matrix.Y (k) is the

power of the output signal of the used beamformer.

In summary, the Wiener post-filter offers optimal noise reduction and
adaptability but requires prior knowledge and may lead to over-suppression of

artifacts in certain scenarios.

2.19 Standard Deviation

In statistics, the standard deviation is a measure of the amount of variation or
dispersion of a set of values. It tells how spread out from the center of the
distribution the data is on average. A low standard deviation indicates that the
values tend to be close to the mean of the set, while a high standard deviation
indicates the opposite. The standard deviation is calculated as the square root of the

variance. The standard deviation is calculated using the formula [86]:
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Where u is the mean value.
x (k) is represent the received data.

M is represent number of elements.
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CHAPTER THREE

SIMULATION -BASED EVALUATION OF
PROPOSED METHOD

3.1 Introduction

This chapter displays the suggested method and its flowchart, as well as
investigating the proposed method and other beamformers performance by
applying them to point spread function simulations. The obtained results are also

discussed in this chapter.

3.2 Proposed Method

The method proposed in this work aims to maintain high imaging quality via
discriminations between the different areas of an image. Rather than discriminating
the image region into two groups of areas as in PESBMYV, the proposed method
further discriminates the image so that four different image areas are distinguished
from each other. This is done relying on the Num value as well as the weight of
ESBMV method. This method is proposed to take advantage of the positives of
ESBMYV, MV and CF, each in the most suitable region, where the most suitable
beamformer is applied.

Thus, the idea is exploiting the positives of a number of beamforming methods,
where depending on specific values that detect different areas in the image, the best
performance of the methods is included in each region to obtain high-quality
images.

Initially, two factors are proposed to distinguish between the different areas of
the image. The first parameter is the value of Num that is the number of vectors in
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the signal subspace matrix produced by the ESBMV technique. By using this
factor, image can be divided into two regions. The first region includes
hyperechoic targets, point targets (or wire points) and sidelobe regions, where the
value of this factor is found to be less than its half maximum possible value, which
Is the subarray length (Lp).

The second area distinguished by Num is the hypoechoic targets and
background speckle, where it is found that the value of Num is above half the
subarray length (L) . This behavior of Num is shown in figure 3.1 and figure 3.2,
on two different in-vitro data sets. The objects included in the areas for which these
two data sets are taken is shown in (a) for figure 3.1 and figure 3.2. The value of L,
used during producing this figure is 32. This is proved previously in PESBMV
method, where the use of ESBMV is blocked in the first area and allowed in the
second area. In this way, BBR artifacts are prevented from occurring at the side
lobe regions and dark spots are reduced in many points in the background speckle.

Afterwards, the role of the method proposed in this work comes through further
discriminating each of the two areas into other two subareas. This gives flexibility
in the use of different types of beamforming in each of the four regions, allowing
for further improvement in imaging quality. This discrimination is performed by
depending on Num value, where it is found, as can be clearly seen in (b) for both
figure 3.1 and figure 3.2, that Num can distinguish between the elements in the first
region (including hyperechoic and point targets and sidelobes), by giving values of
larger than 1 to sidelobes and 1 to hyperechoic and point targets. It is also found
that the weight produced by ESBMV method can very well distinguish between the
elements of region two (which includes hypoechoic targets and speckle
backgrounds), by giving dark values to hypoechoic targets that are very

distinguishable from the bright values given to the speckle background.
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After discrimination, the proposed method uses four different types of
beamforming techniques in each of the four regions as follows. Firstly, ESBMV
(Lp = M/2) multiplied by CF is used where hypoechoic targets exist. Secondly,
MV(Lp = 1) is used at the background speckle and hyperechoic target regions.
Finally, MV (Lp = M/2) is used for areas that include BBRs resembled by the
sidelobe regions. The flow chart that explains the steps followed by this method is

shown in figure 3.3.

o1



00

200

00

900

800

[wiw] 3oueysiq [elae]

01

‘s1oserep 1senuod buisn (ze = d7'7°0 =Q) 18 AINGSH JO 1y3om

ay1 moys (9) 'syadep wiw z pue ‘ww GT 8yl e paidluad s1sAd aaiyl yum wolueyd 1senuod e st (8) () ul umoys
‘wnp Jo anjea ayl :(1°¢) ainbi4

wojueyd 3senuod ayy Joy (q) u (ze = %7 ‘70 =Q) 18 AINGST 90ualayas Buisn

o)

0 0

09

o
=

[ww] yadaqg

0¢

(@)

[wiw] dueysiq [esae]

01 0 0r

[ww] yadag

01

(e)

[ww] douesiq esie]

01

0

01-

0S

o
=<

o
on
[wuwi] yadag

o
o~

01

52



"S19selep uolnjosal buisn (zg

=d7" 70 =0) 1® AINGSH JO yS1om a3 Moys (9) ‘wwgz JO Yyidap e 1e uoisa] o10ydaladAy e pue sadim /2 YliM wolueyd uonnjosal e sl

(e) - (e) ur umoys woyueyd uonn|osal Yy 1oy (4) Ut (Z€ = “7 “T°0 =Q) 18 AINGST 30uaIa4a1 Buisn ‘wnN 4o anjea ayL :(z'c) ainbig

53



00

200

v0'0

900

80°0

()
[ww] 3oueysiq [eJa3e]
01

[ww] yadag

(a)
[ww] soueysiq [e4a1e]
01

o1-

[ww] yadaq

(e)

|ww] 3dueisiq |essie]
01 0 01-

0S

o
<

o
o
[wwi] yadaqg

o
o~

01

54



Eigen decomposition
of CM into En and Es

Es

Num = no. of row in

!

Yes
No
Hypoechoic target
Background speckle yp 9
W = Wmv(Lp=1) W = WesBMV(Lp=M/2) *

CF

Yes
No |
Sidelobe region Hyperechoic targets &point

W = Wmv(Lp=M/2)

targets
W = Wwv(Lp=1)

)
\[j

()

o

Figure (3.3): Flow chart outlining the steps followed by the proposed method.
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3.3 Differences Between PESBMV and the Proposed Method

The main difference between the proposed method and PESBMV is look like by
the levels of image discrimination. PESBMYV includes a single level of
discrimination that divides image structures into two regions, while the proposed
method further discriminates each of these two regions into two subregions,

allowing for the use of four types of beamforming methods instead of only two.

PESBMV has been mainly proposed to minimize the artifacts of ESBMV
resembled by BBRs and dark spots, without adding improvement to image quality.
Unlike PESBMV, the proposed method adds another level of image decomposition
so that image quality can be improved without reducing the ability of the method to

reduce artifacts.

Another difference between PESBMV and the proposed method is the
dependence of the proposed method on a new discrimination factor (ESBMV
weight), in addition to Num used in PESBMV. Figure 3.4 shows a comparison

between the flow charts of the two methods,

56

PESBMYV and the proposed method.



S VA
L o/

ANM =

- - (r9=d7)rwm 19 (t=d)Awm
(z=dDanm =m =M » (P9=d7)Awasam = m =M
SOA oN soA

0

¢ SV'0<ANgs3

ﬁ|m®> OZL

s3
ul MoJ JO "ou = wnyN

|

3 pue u3 oI ) Jo
uonisodwiodap uabig

SaA

ANESIM =M

S$3 Ul MOJ JO "ouU = wny

f

s3 pue u3 ol 1D
jo uomisodwodap uabiz

S7



3.4 PSF Imaging Using Field Il Simulation Program

Point spread function (PSF) imaging is commonly used to evaluate the imaging
quality of an ultrasound systems, by displaying the spatial impulse response of the
ultrasound system. [82]. The PSF images result from imaging point targets located
in various locations in the imaging area. The main property measured for PSF is
spatial resolution, which is defined as the width of the mainlobe at the center of
PSF along lateral, axial or elevational direction, after a specific drop in amplitude
from the peak value. In addition to spatial resolution, the pattern of side lobes and
grating lobes can also be assessed using PSF imaging [82]. Thus, PSF is often
analyzed to determine the image quality of an ultrasound systems and algorithms.

The formation of PSF is determined by several practical factors such as the
transducer aperture, element directivity, apodization, pitch, imaging position and
steering angles. Conventional numerical simulations are usually used to provide the
ability to examine those factors’ effects and produce empirical expressions based
on PSF performance.

Field Il simulation software is one of these simulators. Field Il is a software that
uses linear acoustics to simulate ultrasonic translator fields and ultrasound imaging.
It was created at Duke University in 1991-92 and has been available for free
download since 1995. The program calculates pulsed ultrasound fields using the
Tupholme-Stepanishen approach and is capable of estimating emission and pulse-
echo fields for both pulsed and continuous wave scenarios for a wide number of
various transducers.

The software allows users to simulate ultrasonic transducer fields and
ultrasound imaging, making it a powerful tool for learning and creating novel
ultrasound imaging techniques.

The program comes in a variety of variants, including MATLAB, Octave, and C
library versions, making it compatible with a variety of programming environments
and systems. Field Il can be downloaded for free.
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Figure (3.5): Field Il simulation program initialization background [78] .

3.5 Specifications of Simulated System

A linear array consisting of 128 elements with a width of 0.27 mm, a height of
6.0 mm, and a pitch of 0.304 mm is simulated. The central frequency of the
transmitted sinusoidal pulse is 6 MHz, with 100% bandwidth, and 100MHz
sampling frequency. All 128 elements are used during the transmission and
reception, with no focusing at the transmission and dynamic focusing at the
reception. The sinusoidal wave consists of 2.5 cycles. A medium sound speed of

1540m/s is assumed.
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3.6 Quality Metrics

This work employs well-known quality metrics for the quantitative analyses of
the performance of the proposed method. Those metrics are Contrast-to-Noise
Ratio (CNR), Contrast Ratio (CR), Full Width at Half Maximum (FWHM), and
Speckle signal-to-Noise Ratio (SSNR).

As indicated in the following equation, CR is calculated to evaluate imaging
contrast from the absolute difference between the cystic area's mean value and the

background tissue mean value [83]:

CR = |w; — ml, (3.1)

where the mean values within the cyst target and speckle are u; and puy,

respectively. CNR is another measure of contrast that is found as follows [83]:

CNR = il (3.2)

where o; and gy, are the equivalent standard deviations, within the cyst target area
and the speckle background area, respectively. In the contrast dataset, two 2x1 mm
rectangles inside the two cysts at the center of the image, with two 11x15 mm
rectangles to the left and right top corners of the image are the areas for which CR
and CNR are calculated depending on equations 3.1 and 3.2.

Background Speckle Signal-to-Noise Ratio (SSNRgg) is used to evaluate the

quality of background speckle. The following formula is used to determine
SSNRgg [84], [85]:
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SSNRg, = 22 , (3.3)
b

In contrast dataset, an 11 x 17 mm rectangle in the right top corner is used to
measure the background speckle's homogeneity using SSNRgg. A similar formula
to that used in equation 3.3 is used to calculate the BBR's Speckle Signal-to-Noise
Ratio (SSNRggRr) as follows [84], [85]:

SSNRBBR = FBER (34)

i)
OBBR

where uggr and oggr are the BBR's standard deviation and mean values,
respectively. In the resolution phantom, two 2x2 mm squares to the sides of the
point target at a depth of 9mm indicates the area for which, BBR artifacts are

evaluated using SSNRggRr.

3.7 Simulations of PSF Imaging

The PSF module simulated in Field Il consists of three-point targets located
at depths, 30 and 35 mm, perpendicular to the middle of the transducer (x=0).
Lateral resolution is assessed for the point at 30 mm depth.

Ultrasound images of this PSF model were produced using different
beamforming methods, and the resulting B-mode images are as illustrated in figure
3.6. The images in this figure are all produced with a dynamic range of 60dB.

In figure 3.6 image (a) shows the result of using MV beamforming at subarray
length of 32. In figure 3.6 (b), ESBMV beamforming is used with subarray lengths
of 32. Finally, images (c) and (d) in Figure (3.6) show the results of using
PESBMYV beamforming and the proposed method respectively, the beamforming
performance at the 30 mm depth was evaluated in terms of sidelobe levels and
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resolution using Full Width at Half Maximum (FWHM), where calculating the
FWHM at 6 dB drop from the peak of the main lobe in the lateral direction gives
the lateral resolution [79]. FWHM measurements are given in Table (3-1).

Figure 3.6 show that PESBMYV has a main lobe equivalent to MV (Lp = 32).
Image quality in ESBMV compared to MV (Lp = 32) is slightly improved, as
shown in figure 3.6 (a, b). according to this figure, it can be confirme that ESBMV-
based methods have better lateral resolution compared to MV methods. The
sidelobe and FWHM are both improved when using the proposed algorithm
compared to the other simulated beamformers. Figure 3.7 shows the lateral profile
of the four simulated beamformers, for the point centered at the 30 mm depth. This
figure shows that the proposed method is superior inside lobe reduction and in

resolution value, compared to the other simulated beamformers.
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Figure (3.6) :Simulated point targets using beamforming methods: (a) MV (Lp = 32) (b)
ESBMV (6 =0.2, Lp = 32) (c) PESBMV (6 =0.2, 1 =0.5, Lp = 32) (d) proposed method (6 =
0.2, 1 =0.5). All images are shown in a dynamic range of 60 dB.
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Table (3-1) Full Width at Half Maximum for the point located at the 30mm depth, for the

beamformers shown in figure 3.6.

Method FWHM (mm)
MYV (Lp = 32) 0.539
ESBMYV (Lp = 32) 0.441
PESBMYV ((5 = 0.2, =0.5) 0.539
Proposed method (8 = 0.2, 1 = 0.5) 0.241
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CHAPTER FOUR

IN VITRO DATASETS RESULTS

4.1 Introduction

This chapter is dedicated for evaluating the proposed method used in vitro
datasets. In addition to B-mode images evaluating, the proposed method is
evaluated and compared to other beamforming method using a number of
ultrasound imaging quality metrics. These metrics include both contrast resolution
and speckle SNR.

4.2 In Vitro Datasets

Two in vitro datasets are used in this dissertation to evaluate the proposed
method. The datasets are obtained from the web platform of the International
Ultrasound Symposium IEEE 2016 held in Tours, France [80]. A Verasonics
Vantage 256 research scanner and an L11 probe are used to collect data (\erasonics
Inc., Redmond, WA). CIRS Multi-Purpose Ultrasound Phantom (Model 040GSE)
is used to collect those datasets for the modules shown in (a) for both figure 3.1
and figure 3.2 [81]. The first dataset for the module in figure 3.1(a) has three
anechoic cysts and a single point target. They are embedded in background
speckles. During this chapter, this dataset will be called (contrast dataset), due to
including hypoechoic targets, allowing for doing contrast measurements.

The second dataset is shown in figure 3.2 (a). It includes a single hyperechoic
lesion and seven point targets, embedded in background speckles [82]. This dataset
will be called (resolution dataset) during this dissertation, due to including several
point targets allowing for doing measurements of resolution at various imaging
depths. MATLAB program is used to implement the proposed method as well as
MV, ESBMV, and PESBMV methods for assessment and compression.
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A linear array is used, consisting of 128 elements, each element has a width of
0.27 mm, a height of 6.0 mm, and a pitch of 0.3 mm. 6 MHz central frequency,
100% bandwidth, and 20.832 MHz sampling frequency are used. All the 128
elements were used during the transmission and reception, with a dynamic focus on
the receiver and no focusing at the transmitter. The excitation sinusoidal wave has
a pulse duration of 2.5 cycles. It is assumed that the medium sound speed is
1540ml/s.

4.3 Results

In this dissertation, a variety of beamformers are applied to the in vitro datasets
to be compared with the proposed beamformer's performance. Figure 4.6 displays
the superiority of the proposed method in improving CR. Where, as shown in (a)
and (b) in figure 4.1, MV (Lp=1) and MV (Lp = M/2) produce blurred

boundaries for the hypoechoic cyst targets.

N
o
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Depth [mm]

40

50 -
-10 0 10 -10 0 10

Lateral Distance [mm] Lateral Distance [mm]

(a) (b)

Figure (4.1): Images of in vitro data of the contrast dataset using: (a) MV (Lp = 1) (b) MV
(Lp = M/2).
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While there is noticeable distortion in background homogeneity due to the produced artifacts
in ESBMV (Lp = M /4, M /2), as shown in figure 4.2 and 4.3. Figure (4.2): Images of the
contrast dataset using: (a) ESBMV (Lp = M /4) (b) ESBMV (Lp = M /2)
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Figure (4.3): Images of in vitro data of the contrast dataset using: (a) ESBMV (Lp = M/
4) (b) ESBMV (Lp = M /2)
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Figure (4.4): Images of in vitro data of the resolution dataset using: (a) ESBMV (Lp = M/
4) (b) ESBMV (Lp = M/2).

ESBMV (Lp = M /4) and PESBMV (Lp = M /4) have a reduced CR compared
to ESBMV (Lp = M /2) as can be seen in table 4.1.

The speckle pattern produced by MV (Lp = M/2) is homogeneous, while in
ESBMV method, the background speckle suffers from strong BBRs. PESBMV
method is better than ESBMV in limiting dark spots and BBR. Nevertheless, the
background speckle using MV (Lp = 1 and M/2) as in figure 4.1 is still superior.
This is comparable to DAS beamforming technique, which is known to give a
highly homogeneous background.

Table 4.1 indicates that SSNR for the proposed method and MV with (Lp = 1)
are close, which illustrates the strength of the proposed method in preserving the
homogeny of speckle background.
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Lateral responses of the implemented beamformers for the point target
positioned at the 18.75 mm depth in the resolution phantom dataset are given in
figure 4.7 to aid intuitive observations of their lateral resolution performance. The
graphs show that when Lp increases, both of MV and ESBMV methods
considerably result in reducing mainlobe width, where, compared to the other
approaches, MV (LP = 1) is less effective in improving lateral resolution since its
mainlobe width is theoretically equivalent to that of DAS. Lateral resolution in
PESBMV approaches that in ESBMV method using the same subarray length
(Lp), from table 4.2, it can be noticed that the smallest value of FWHM has been
achieved using the proposed method, with an improvement by (52%) compared to
the resolution achieved using PESBMV as shown in figure 4.4. One exception is
FWHM in ESBMV at Lp = M /4, which produces very strong BBR artifacts as can
be noticed from table 4.2 (the values of SSNRggr) and in figures 4.5 and 4.6.
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Figure (4.5) : Images of in vitro data of the resolution dataset using (a) PESBMV (6 =0.2, 1
=0.5, Lp = M /4) (b) proposed method (6 = 0.2, 1 =0.5).
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Figure (4.6): Images of in vitro data of the resolution dataset using different beamforming

method. All images are shown in a dynamic range of 60 dB.
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Figure (4.7): Images of in vitro data of contrast dataset using different beamforming method.

All images are shown in a dynamic range of 60dB.
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Table (4-1): Measurement of contrast and speckle statistics for the contrast dataset using
different beamforming techniques.

Method CR (dB) | CNR (dB) SSNR
MV (Lp = 1) 12.36 2.05 1.74
MV (Lp = M /2) 11.85 1.97 1.65
ESBMYV (Lp = M/4) 15.67 2.44 1.63
ESBMYV (Lp = M/2) 17.17 2.12 1.30
PESBMY (6=0.2, n=0.5) 15.57 2.42 1.63

Proposed method (6=0.2,

=0.5) 16.26 2.55 1.70
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Table (4-2): Measurements of SSNR at BBR and FWHM for the point target at 18.75 mm
depth for the resolution phantom dataset using different beamforming techniques.

Method FWHM (mm) SSNRggr
MV (Lp =1) 1.086 5.82
MV (Lp = M/2) 0.709 6.33
ESBMYV (Lp = M /4) 0.978 2.29
ESBMYV (Lp = M /2) 0.648 2.56
PESBMY ((6 =0.2,1=0.5) 0.987 6.03
Proposed method (6 = 0.2, 1 =0.5) 0.704 5.89
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4.4 Analysis of Results

The proposed algorithm proves to be highly effective in increasing the quality
of imaging through improving image contrast and preserving speckle pattern. It
also proves to be significantly increasing lateral resolution. This is done by sensing
the details of the image first through the value of Num, which can efficiently
distinguish hyperechoic targets and sidelobe regions from the rest of the regions, as
it gives a value (1) for the hyperechoic target and a value between 2 and half
subarray length to sidelobe regions as can be noticed from (b) in figure 3.1 and
figure 3.2. Secondly by using the value of the weights of ESBMV (Lp = M /4).
This is because the values of this weight given to the cyst are found to be within
the range from 0 to 0.5, as can be noticed from (c) in figure 3.1 and figure 3.2.

Figure 4.6 illustrates that the cyst is much more visible using the proposed
method and that the proposed beamformer significantly improves CNR, exceeding
all the implemented beamforming methods.

The main reason for that is the ability of the proposed method to detect the
areas of the cysts, and because of the use of the CF that justifies the weight of the
beamformer based on the coherency of these signals and due to the projection of
the MV weights onto the signal subspace. Also, to improve speckle statistics and
contrast in tissue areas, temporal smoothing is applied, where the final value of the
focal point is determined by a vector of samples instead of a single sample.

The proposed method's superiority in terms of CR and CNR is confirmed
through the results of table 4.1. When the weight of ESBMV (Lp = M /4) is higher
than (0.5), this indicates being inside the areas of the speckle. The proposed
method uses MV (Lp = 1) in this region to produce more homogenous background

speckle and thus higher values of SSNR are achievable.
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The issue of the underestimation of the amplitude of hyperechoic targets when a
large length of the subarray is used has been solved by surrounding the hyperechoic
and wire areas by MV (Lp = M/2), while beamforming inside the regions of the
hyperechoic and wire targets using MV (Lp = 1). The results of using this method
are described in tables 4.1 and 4.2.

4.5 Unsuccessful Examined Methods

This part discusses a set of methods that have been examined for discriminating
image regions before reaching the final algorithm proposed in this dissertation.
Those implemented methods were not considered due to either providing
unsignificant improvement to the final image or because they were unable to
distinguish image parts from one another. Those factors include Coherence Factor

(CF), coherent sum, standard deviation, and Wiener postfilter.

4.5.1 Coherent Summation of Received Signals

Coherent sum means to coherently add the values of x(k) for each focal point. It
also represents the numerator in the equation of CF. It was suggested to be
examined for discrimination due to having the ability to highly discriminate
between hypoechoic targets which have highly coherent signals, and speckle
background which include incoherent signals. For the same reason, coherent
summation is expected to be able to discriminate hyperechoic targets from sidelobe

regions. Figure 4.8 shows the result of coherent summation of contrast dataset.
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Figure (4.9): (b)The result of coherent summation of the contrast nhantom shown in (a).

However, the result of coherently summing received data, as shown in figure
4.b, has failed to distinguish between hypoechoic targets and background. This is
because this summation is not a ratio and therefore it becomes lower as depth
increases and therefore the use of coherence factor (CF) was suggested to solve this

problem.

4.5.2 Coherence Factor

One of the examined methods for discrimination is the coherence factor
explained in section (2.16). This factor was proposed due to having the ability to
highly discriminate between hyperechoic targets and sidelobe regions, while it is
expected not to make a good discrimination in the other region containing
hypoechoic targets and background speckle, due to its inability to retain
homogeneity and producing dark spots in background speckle, which makes it hard
to discriminate many points in this area from cysts. Figure (4.9) shows the value of

CF using contrast phantom.
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Figure (4.10):(b) The result of the coherence factor of the contrast phantom shown in (a).

As expected, figure 4.9 shows that CF highly distorts background homogeneity
and thus fails to be suitable for distinguishing in the first region (hypoechoic
targets and background). In the second region (containing hyperechoic targets and
sidelobes), CF was efficiently able to discriminate between regions. This means
that it could be used as a discrimination tool in this area. However, it was not
considered for this job, and this is because the use of Num was able to give an
even better results and the latter is therefore considered as a discrimination tool in

this region in the proposed method.

4.5.3 Standard Deviation

In statistics, the standard deviation is a measure of the amount of variation or
dispersion of a set of values. It tells how spread out from the center of the

distribution the data is on average. A low standard deviation indicates that the
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values tend to be close to the mean of the set, while a high standard deviation
indicates the opposite.

Due to the mentioned properties of standard deviation, it was suggested for
distinguishing image regions, where standard deviations are calculated for the
signal subspace matrix of ESBMV. Figure 4.10 shows these values of o using the

contrast phantom.
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Figure (4.11): (b) The results of the value of standard deviation of the contrast phantom

shown (a).

From figure 4.10 it can be seen that o was not able to discriminate between
wires and sidelobes, while it was able to discriminate between cysts and

backgrounds but with lower performance than the proposed method.

81



45.4 Wiener Post Filter

The Wiener filter, also known as the Wiener post-filter, as explained in section
(2.17), is tested for discriminating image regions. Figure 4.11 shows the output

values of wiener postfiltering applied to the contrast phantom.
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Figure (4.12): (b) The results of wiener filter applied to the contrast phantom shown in (a).

From figure 4.11 it can be seen that Wiener post filter fails as a discriminating
tool in the region containing cysts and speckle background, because of the highly
distorting speckle and producing dark spots, in addition to providing widened and
distorted wire target in the region containing hyperechoic targets and sidelobes,

which makes Wiener post filter unsuitable for this task.
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CHAPTER FIVE

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

The technique of transforming received echo signals into a picture to
characterize the region of interest is known as beamforming. This dissertation
focuses on Plane-Wave Imaging (PWI) beamformers, which create a complete
ultrasound image for the area of interest with a single transmission. This enables
data acquisition at rates greater than 1000 frames per second, enabling for new
ultrafast imaging applications such as shear wave tracking and flow motion
estimates. Meanwhile, other beamforming techniques have been developed to
compensate for PWI's lack of focusing, which reduces imaging quality. This
dissertation deals with different types of beamformers.

For PESBMYV, it is concluded that PESBMYV is a good method suggested to
eliminate BBR artifacts appear in reference ESBMV, but with decreasing the
contrast ratio as a drawback. This dissertation introduces a novel approach for
improving image quality produced by PESBMYV. The new algorithm which
discriminates imaging area based on Num and the weight of ESBMV is meant to
improve lateral resolution and speckle preservation while simultaneously
increasing contrast by using different beamforming types in each defined area. The
results show that the proposed approach can achieve increased image contrast and
very well keep speckle patterns with a significant increase in lateral resolution.
Most importantly, it can keep BBRs, and dark spots minimized. Additionally, the
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proposed approach has the potential to be an effective strategy for improving image

quality in other imaging methods such as Compound Plane Wave Imaging (CPWI).

5.2 Future work

The current work can be extended by performing the following:

1. Combining the proposed algorithm with other types of beamforming
methods such as CPWI. This is because merging beamformers with this
method usually results in further improvement in imaging quality.

2. Merging the proposed method with (Salaris method) which suggests to
adaptively generating the parameters that control MV performance balance
so that this beamformer is fully independent on the user.

3. Using Wiener post filtering with proposed method in specific region.
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Dealing With Datasets In Hdf5 File Format
Appendix-A:

HDF5 (Hierarchical Data Format version 5) is a data model, library, and
file format for storing and managing data. It is designed for flexible and efficient
input/output (1/0O). It is commonly used in scientific and engineering applications
to store large, such as astronomical data, bioimage informatics data, and data
from radio telescopes, complex datasets. HDF5 files can store a wide variety of
data types, including numerical data, text, images, and more, and it is an open-
source file format that is widely used in neuroscience, molecular dynamics, and
other fields.

HDF5 files are organized into a hierarchical structure of groups and datasets,
which can be easily navigated using the HDF5 library. The format also supports
compression and chunking to optimize storage and 1/0O performance. HDFS5 files
can be read and written using a variety of programming languages, including
MATLAB, Java, Python, and C++.

In MATLAB, the hdf5 library allows users to read and write data to and from
HDF5 files. It provides a set of functions and tools that can be used to access
and manipulate HDF5 files in MATLAB. With hdf5, users can read and write
large datasets, work with complex data structures, and easily exchange data with
other software tools that support the HDF5 format.

In MATLAB, the 'hdf5info’ function can be used to obtain information about the
contents of an HDF5 file. The 'hdf5read’ can be used function to read data from
an HDF5 file into a MATLAB variable. The 'hdf5write' function used to write
data from a MATLAB variable to an HDF5 file. By using the HDF5 file format,
large data sets can store and manipulate efficiently, without having to load the
entire data set into memory. This can save memory space and reduce the time
required to perform data analysis.

To export data from an HDF5 file in MATLAB, the "h5read()” function can be
used to read data from the file and then save it to a file in a different format.
Here's an example of how to export data from an HDF5 file to a CSV file:



" "matlab
% Open the HDF5 file
file = 'example.hb';
h5info(file) ;

% Read the data from the HDF5 file
data = hbSread(file, '/path/to/dataset');

% Save the data to a CSV file
csvwrite ('example.csv', data);

"h5info()” is used to display information about the HDF5 file, including the
names and paths of the datasets it contains. The "h5read()” function is then used
to read the data from a specific dataset in the file. Finally, the “csvwrite()’
function is used to save the data to a CSV file.

"h5read()” function can also be used to read only a portion of a dataset by
specifying a subset of indices. Additionally, the “csvwrite()” function can be
replaced with other functions for exporting data to different file formats, such as
“save()” for saving data to a MAT file.

There are several advantages of using HDF5 over other file formats like MAT
files in MATLAB: first large dataset support: HDF5 can handle significantly
larger datasets than MAT files. This is particularly advantageous for scientific
data applications where the amount of data can be very large. second Flexibility:
HDF5 provides more flexibility in handling data objects in terms of data types
and organization. It can store a variety of data types including numerical data,
images, audio, and video. third Hierarchical structure: HDF5 has a hierarchical
structure that allows for efficient organization of data. This structure of HDF5
files makes it easy to navigate and access data elements. fourth Cross-platform:
HDF5 is designed to work on multiple platforms, making it easy to exchange
data between different systems. It is also compatible with a variety of
programming languages including Python, R, and C++. fifth Compression:
HDF5 provides a built-in compression feature that can be used to reduce file

size. This can be useful when working with large datasets, as it can reduce



storage requirements and improve 1/O performance. While HDF5 is a popular
open format, it has some drawbacks related to its complex specification, which
has initiated discussions for an improved replacement. One alternative to HDF5
Is the Experimental Directory Structure (Exdir), which is an open standard for
data storage in experimental pipelines. Exdir uses file system directories to
represent the hierarchy, with metadata stored in human readable YAML files,
datasets stored in binary NumPy files, and raw data stored directly in
subdirectories. Storing data in multiple files makes it easier to track for version

control.
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