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Abstract

Recently, video processing becomes much more significant topic due to
the advances in the information technology. In this thesis, a new video
deblurring algorithm implementation based on FPGA is presented. The
proposed algorithm is based on the fractional order differentiation and
modified Van Cittert algorithm. Genetic algorithm as an optimization tool has
been used to tune the parameters of the proposed algorithm. The tuning cost
function is a fuzzy set of entropy and peak signal to noise ratio.

Matlab 2017b as a development environment has been used to design
and implement GUI application for the proposed algorithm to evaluate the
results and compare with the conventional integer order filters (Laplacian,
Robert, Prewitt, and Sobel). Qualitative and quantitative metrics have been
used to evaluate the proposed algorithm. An online questionnaire survey
based on Google forms used for visual qualifications of the restored images.
More than 125 people respond to the questionnaire. 88.4% of the people
stated that the proposed algorithm is better than the other ones. Normalized
absolute error, structural content, normalized cross-correlation, peak signal to
noise ratio, mean square error, entropy, average difference, and maximum
difference are used as quantitative metrics.

Xilinx ISE design suite 14.5 has been used in conjunction with Matlab
in hardware implementation. Two design methodologies have been used in
the FPGA implementation on Xilinx Spartan-6 (Xc6slx16) SP601 evaluation
kit. The first is based on Xilinx system generator, whereas the other using
HDL verifier through FPGA in the loop and Modalism cosimulation. The
aspects to reduce the hardware utilization of the FPGA are discussed. 44%,
45%, 15%, and 41% of hardware reduction in number of registers, LUTS,
IOB, and DSP48A coprocessor respectively have been achieved. Under real
time considerations, a 128x128 frame size has been implemented in the first
technique, whereas full high definition (1080x1920) in the other technique.
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Chapter One

Introduction and Literature Review

1.1 Introduction

In the recent years, video and image processing are becoming more
important in the fields of research. Video is a stream of frames. Frame is an
image which is a two dimensional array of picture elements, pixels or pels [1].
Image quality degradation may not be avoided during the video acquisition
which caused by atmospheric turbulence, camera lens defocus and relative
movement between the camera and the scene. The inverse issue of the blurring
is called deblurring [2]. The main aim of deblurring is recovering an image
which suffered from degradation [3]. Image deblurring techniques are
encountered in a wide range of applications, such as microscopy, medical
imaging, astronomy, remote sensing, super resolution, optics, motion tracking,

and photography [4, 5, 6].

Implementation of such applications based on general-purpose computer
may be more easier, but not efficiently in time because of the constraints on
peripheral devices and memory. The implementation of application specific
hardware gives a better speed than the implementation of software [7]. The
advances in the very high scale integration (VLSI) technology made the
hardware implementation becomes an attractive alternative. The
implementation of complex computation on hardware by utilization of
pipelining and parallel algorithms make a significant reduction in the time of
execution. There are two kinds of technologies available for hardware



implementation. Fully custom hardware devices which known as application
specific integrated circuits (ASIC) and semi-custom, which are programmable
devices like field programmable gate arrays (FPGA). Fully custom ASIC offers
highest performance design, but the cost and complexity of the design is very
much. FPGAs are reconfigurable devices [8]. Hardware design techniques like
pipelining and parallelism can be implemented on FPGA using electronic
design automation (EDA) tools that can help the designer with design entry,
hardware generation, test sequence generation, verification and design
management [9, 10, 11]. FPGAs generally consist of a system of logic blocks
and some amount of Memory, all wired together using a vast array of
interconnections. All of the logic in an FPGA can be rewired, or reconfigured
[12].

1.2 Review of Literature

Researchers have applied many methods and algorithms for image and
video deblurring. Different approaches have been used in the hardware

implementation of the deblurring techniques.

Jun Kong et al. in 2017 [13] proposed a blind deblurring algorithm using
hyper-Laplacian prior for regularization of image gradients. Generalized soft
thresholding (GTS) has been used to solve the problem of non-convex during
the deblurring process. Qualitative and quantitative metrics have been used to
qualify the proposed algorithm with popular approaches.

Hongyan Wang et al. in 2017 [14] presented a new bind deblurring
method based on image prior using the regularization of elastic-net of singular

values. Complex filtering is not required to select the salient edges. Results
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showed that the proposed algorithm performance favorably against the popular

algorithms.

Dong-Bok Lee et al. in 2013 [15] developed an iterative blind algorithm
for video deblurring exploiting the unblurred neighborhood frames to estimate
the blur kernel. The residual deconvolution has been presented to reduce the

ringing of artifacts produced in conventional deconvolution.

Mohammed Alaregi et al. in 2017 [16] developed an FPGA
implementation based Hardware co-simulation of image enhancement. The
contrast stretching and thresholding have been used to enhance the image for
biomedical applications. Xilinx system generator and Matlab Simulink have

been used for co-simulation on Virtex-5 FPGA development Kit.

A M Deshpande and S Patnaik in 2011 [17] presented a comparison study
and performance evaluation of Wiener filtering, Richardson-Lucy algorithm,
constrained least squares filtering, direct inverse filtering, and pseudo-inverse
filtering. The objective evaluation involved peak signal to noise ratio (PSNR)

and mean square error (MSE).

Yie-Fie Pu et al. in 2010 [18] implemented a fractional order
differentiator masks for image enhancement. Six fractional order differential
masks have been proposed. Experimental analysis proved that the fractional

differentiator is better than conventional integer order differentiators.

Wengi Ren et al. in 2017 [19] proposed a pixel wise nonlinear kernel
(PWNLK) for video deblurring. Experimental results on blurred videos showed
that PWNLK is better than state-of-art techniques.



M. Lopez-Ramirez et al. in 2017 [20] developed a novel and optimized
method to extend the depth of filed in one image. The proposed approach has
been implemented on Xilinx Virtex-6 and Altera Stratix-111. Experiments
showed that FPGA implementation is best in performance than graphics

processing units (GPU) and Digital Signal Processors (DSP).

Priyanka Raina et al. in 2017 [21] proposed a kernel estimation using
hardware acceleration for application of image deblurring. 40nm CMOS
technology has been used as a platform for fabrication of proposed model. The
fabricated chip has been mounted on Xilinx Vertix-6 development kit. The
developed model has 78X speed faster than intel Core i5 CPU for kernel

estimation and 56X for the overall deblurring algorithm of Full HD images.

G. B. Reddy and K. Anusudha in 2016 [22] implemented image edge
detection based Laplacian of Gaussian, Sobel, Prewitt, and Robert operators on
Xilinx Spartan-3E FPGA development kit. Xilinx system generator and Matlab

Simulink have been used as a platform for hardware implementation.

Wei Wang and Peizhong Lu in 2012 [2] developed a new deblurring
algorithm by combining fractional order differentiation with Total Variation
(TV). Results showed that the performance of the proposed method is better in

visual quality and PSNR than conventional deblurring algorithms.

Chien-Cheng Tseng and Shyi-Chyi Cheng in 2012 [23] presented a color
image sharpening algorithm based on discrete cosine transform (DCT) and

fractional order differentiation.

Chien-Cheng Tseng and Su-Ling Lee in 2013 [24] presented a color

image sharpening using fractional order differentiation and modulation transfer



function (MTF). YCbCr color space has been used in the implementation of the

algorithm.

Yie-Fie Pu et al. in 2008 [25] presented an analytical study of fractional
order differentiation in view of kinetics and information theory. The hardware
model of fractional order differentiator mask has been developed for image
processing applications. Experimental results proved that the fractional order

differentiator has excellent capabilities for texture enhancement.

Thusitha Chandrapala et al. in 2012 [26] developed an FPGA
implementation of vide deblurring. The hardware implementation consists of
two soft cores in the FPGA chip, one for blur detection and the other for
restoration. The deblurring system achieved 15 frame rate at 1280x720 HD

video stream.

Zohair Al-Ameen et al. in 2012 [27] presented an extensive study of
image deblurring algorithms. The algorithms are Van Cittert, enhanced Van
Cittert, Poisson Map, Landweber, Richardson — Lucy, optimized Richardson —

Lucy, and Laplacian sharpening filters.

Emrah ONAT in 2016 [28] presented a real time hardware
implementation of Robert, Sobel, Laplacian, and Prewitt filters for edge

detection. Xilinx Zyng 7000 has been used in the hardware implementation.

Qi Yang et al. in 2016 [29] presented fractional calculus definitions and
discretization schemes. They introduced a survey of fractional calculus and it’s
applications in image enhancement, edge detection, denoising, segmentation,

recognition, registration, fusion, compression, encryption, and restoration.



T. Singh and B. M. Singh in 2016 [30] presented image deblurring as a
comparative analysis survey for more than twenty five researches. The

comparative study based on PSNR as an objective assessment.
1.3 Aims of the Study
The following related points provide the main objectives of the current study:

1. To study the theory of video blurring and debluring.

2. To study the theory of fractional order differentiation and its applications
in image processing.

3. To use genetic algorithm to search for the optimal values of the gain and
order of the proposed two-dimensional fractional order differentiator
(2D-FOD) debluring algorithm.

4. To develop the required software to implement and examine the proposed
algorithm.

5. To implement a real time video debluring system based FPGA.

1.4 Thesis Layout

The mathematical model of video blurring, causes of video blurring and
the debluring techniques are given in chapter two. Chapter three presents the
theory of fractional order differentiation and the most famous two dimensional
fractional order differentiators used in image processing. The software and
problems associated with developing the required software for the proposed 2D-
FOD debluring system are given in chapter four. Chapter five presents the

FPGA implementation of the proposed debluring system. Performance analysis



of the implemented system is discussed in this chapter. Finally, conclusions and

some suggestions for future researches are propose in chapter six.



Chapter Two

Image Deblurring

2.1 Introduction

Blur is a kind of bandwidth reduction during the image acquisition
process, which may produce from deferent sources and usually makes bad
quality vision. Occasionally blur may be arisen by the photographer to
enhance picture’s expressiveness, but unconsciously blur will degrade the
picture quality. The mathematical model of blurring process is usually

required to restore a higher image quality from the blurry version [31].
2.2 Mathematical Model of Image Blur

The mathematical model of the blurry image is computed by
convoluting the original image with a blur kernel plus a noise. The
mathematical model is given in equation (2.1). The blur kernel is also known
as Point Spread Function (PSF). The PSF makes a pixel brightness to be
spread over the pixels of the neighborhood [32].

g=feh+n (2.1)

Where g denotes the blurry image, f is the original image, h is the PSF, n is
the noise, and the ® symbol is the convolution operator. Equation (2.1) can

be expressed in frequency domain as illustrated in equation (2.2) [33].
G=F -H+N (2.2)

Where, G,F,H,and N are the Fourier transform of g,f,h,andn

respectively. H is a low pass filter because it tries to discards the high



frequency information in the F [31]. Figure 2.1 visualizes the process of

blurring.

gx,y)

Original Blur kernel i i Acquired

Image (PSF) - Image
Additive

Noise

Fig 2.1: Image Blurring Process.
2.3 Causes of Image Blur

There are three main types of blurs respect to their physical properties:

atmospheric blur, out of focus blur, and motion blur.
2.3.1 Atmospheric blur

Atmospheric blur comes from both optical turbulence and small angle scatter
of light by aerosols. Optical turbulence is characterized by random
refractions of light caused by spatiotemporal changes in atmospheric

properties such as temperature and density.

Fig 2.2: Atmospheric blur.
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Chemical substances of variant sizes can also produce deferent kinds of
scattering to light waves with variant waves length. This phenomenon is
known as aerosol scattering in atmospheric sciences. In general, turbulence
blur is more of a problem closer to the Earth’s surface and aerosols blur is
more prevalent at higher elevations. Both aerosol scattering and optical
turbulence will introduce blur. Atmospheric blur is a considerable issue in

satellite imaging, atmospheric science, and remote sensing [31].
2.3.2 Out of focus blur

The different depths of objects would cause image blur in digital cameras
with automatic focusing system [34]. For instance, when capturing many
objects in the scene with deferent ranges, the digital camera lens can focus
on a single object or a region of interest whereas leaving the rest objects out
of focus. Figure 2.3 illustrates that cameras have a finite depth of focus and
the whole image can be perfectly in focus only if the whole scene is in the
same distance from camera. A more widely used parametric model for out-

of-focus blur is a circularly symmetric 2D Gaussian function [31].

Kooy) = gomep (- 55)  @23)

21mwo?

\ lét;:zf'v'
@ycb,‘ﬁ“

2ule i‘ A
N

Fig 2.3: Out of focuse blur
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2.3.3 Motion blur

Motion blur caused by a relative motion between the camera and a
scene which is inevitable due to the nature of a camera sensor that
accumulates incoming light during exposure time period [35,36]. Blurred
images can be obtained by camera shaking or object motion during image
acquisition processes [37]. Usually, the motion blur, which can be caused by
the camera vibration when shutter is open, is known as camera motion blur,
or camera shaking blur [30]. Camera shaking is a very prominent problem

for photography, especially in low-light conditions [38].

Figure 2.4 shows examples of images that are blurred by three

different motion paths.

(a) Scene (b) Horizontally blurred

(c) Vertically blurred (d) Circularly blurred

Fig 2.4: Different motion blur.

When camera is fixed over the period of exposure, any object moving with
respect to a static background can also lead to another motion blur, which is
known as object motion blur. Obviously, objects in the scene may not
undergo the same motion relative to the camera. Figure 2.6 show two real
examples of object motion blur [39, 40]. The blur is usually space-variant,
nonlinear, local and multiple. Practically, the motion blur can be caused by

both camera shaking and moving object [31].

11



Fig 2.5: Object motion blur.

2.4 11l-posed Problem in Image Deblurring

Image deblurring is a well-known ill-posed inverse problem [41]. From
equation (2.1), there are three unknown variables, The PSF, original image,
and noise. The PSF must be estimated before we can compute the original
image. Even if it is assumed that the PSF is known, the restoration process
is still complex because it is an ill-posed problem, and any noise in the
degraded images can be amplified dramatically in the restored images.
Moreover, the denoising must be happened before the deblurring process to

cancel the noise [32].
2.5 Deblurring Techniques
The deblurring techniques can be divided into blind and non-blind:

1. In non-blind deblurring algorithms, the PSF must be known [42].
Many of the non-blind deblurring algorithms use the inverse of the
PSF in frequency domain such as wavelet transform [44], Wiener filter
[43], and so on. Whereas the other non-blind deblurring algorithms

works directly on spatial domain as in Bayesian inferences [45].

2. The blind deconvolution [46, 47] is the process of restoring a fine

detail image from degraded version, when the blur kernel is unknown,

12



The Blind Deconvolution Algorithm can be used effectively when no
information about the distortion (blurring and noise) is known. The
algorithm restores the image and the point-spread function (PSF)
simultaneously [47]. There are two typical approaches for blind
deblurring problem. In the first approach, the blur identification
procedure is realized in a separate step to estimate the blurring
function. Then, any available deblurring method is used to estimate
the original image. In the second approach, the blur identification and
the image restoration procedure are incorporated in a unifying
algorithm [48].

In this work a blind deconvolution has been used by applying a special
domain filter such as first order differential gradient operator, second
order differentiation (Laplacian) operator, and fractional Differentiation

operator to restore sharpen image from degraded image.
2.6 Differential Gradient and Operators

In this section, we review integer-order differential gradient and operators,
while the fractional order differential operator will be discussed in chapter

three.
2.6.1The First Order Differential Operator

In image processing, first order differential is achieved through the gradient
method. For the Function f(x,y) , the gradient of its coordinates (x,y) is

through a two-dimensional column vector defined by:

of
R
dy

The vector model is given by:

13



1

Vf = mag(V) = [GZ + G2]2 = [(%)2 + (%)T (2.5)

There:Z—];:f(x+ 1,y) — f(x,y,and Z_f, =f(x,y+1)—f(x,y)

For ease of calculation, the general method is convolution calculation.
Firstly, we obtain a convolution mask, then using the mask to loop
calculation on whole image. First-order operators, which include Roberts
operator, Prewitt operator, Sobel operator, Robinson operator and Kirsch
operators. This article chooses Prewitt and Sobel operator, as the first order
differential operators of comparative experiments. Here are Prewitt and

Sobel edge detection operator of the convolution mask [50->49].

-1 0 1 -1 -2 -1
-2 0 2 0 0 O
-1 0 1 1 2 1
(b) X-axis direction mask (@) Y-axis direction mask

Fig 2.6: Sobel mask operator.

The weight value 2 of Sobel operator is used to increase the importance of

the center.
-1 0 1 -1 -1 -1
-1 0 1 0O 0 O
-1 0 1 1 1 1
(a) X-axis direction mask (b) Y-axis direction mask

Fig 2.7: Prewitt mask operator.

14



2.6.2 The Second Order Differential Operators

Laplacian filter well-known filter used to sharpening images. Image
deblurring is sharpening task. There are three types of Laplacian filter, -8, -

4, and 9 operators. Figure 2.8 shows the three types of Laplacian operators.

-1 9 |-1

1
B
o

1
o0

Fig 2.8: Different Laplacian operators.

The sharpening formula using Laplacian (-8) and (-4) operators is given in

equation 2.6.

F=g-[gel] (2.6)

Where, F is the sharpened image, g is the blurred image, L is Laplacian
operator, and ® is the convolution operator. Whereas, the sharpening

formula using Laplacian (9) operator is given in equation 2.7.
F=geslL (2.7)

The degree of the sharpening depends on the type of the Laplacian operator.
The Laplacian operators (9) and (-8) sharpening the images better than the (-
4) [27].

15



Chapter Three

Fractional Order Differentiation

3.1 Introduction

The conventional image enhancement algorithms are based on integer
order differential mask operators. Recently, fractional calculus has been
presented for various applications of science and engineering. The current
chapter introduces the definition of fractional calculus and the discretization

schemes in one and two-dimensional space for fractional order differentiation.

3.2 Start of Fractional Calculus

Fractional calculus is 300 years old but not well known among
engineering and science communities. In 30 September 1695, L’ Hopital wrote

a letter to Leibniz asking him about his publication for nth order of fraction

d"g(x)
daxn’

one day useful consequences will be drawn”. From these words fractional

derivative

if n = 1/2. Leibniz replied “an apparent paradox from which

calculus was started [50, 51].

3.3 Definitions of Fractional Calculus

Fractional calculus is a generalization of differentiation and integration.
The non-integer order operator ,Df, where a € R in the interval[a,t]. The
integro-differential operator can be defined as in equation 3.1 [52, 53].

16
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a>0,
1, a =0, (3.1)
t

j d(t)*, a < 0.

\Jq

a
oDt =

The following are the popular definitions of fractional order differentiation [50].

1. Riemann-Liouville (R-L)

t
w1 d\" g(1)
«Dig(t) = F(n——a) (%) (t — 7)a—n+1

a

dt ,(n—1)<a<n (3.2)

Where n is integer and « is real number.

The fractional order derivatives of some standard functions using Riemann-—
Liouvelle (R-L) are presented in Table 3.1 [50]. Figure 3.1 shows the fractional
derivative of sine wave at different orders.

2. Grunwald-Letnikov (G-L)

t—a
h

|

1 .

DEGO =lim oz > D/ ((Jae—jm)  @3)
j=0

t-a] . .
Where [Ta] s an integar number.

3. M. Caputo

g™ ()
n—a) ) (t—1)2tl-n

iDf g(t) = T dt, (n—1)<a<n, (34)

Where n is integer and « is real number.
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Table 3.1: Fractional derivative for some standard functions [50].

Function g(t) oDEg(t). Fractional Derivative
elt Aaelt
sin At A% sin (At + E)
2
cos At A% cos (At + E)
2

amplitude

0 1
0 Degree (rad)

(a) Three dimensions view.

2 T T T T T T

a=1

« =087
/ < o =075 7l
NN @ = 0625 \\

1

1
/ \ a~os
ospf @=0378 ¥
! /

a =0.125 \

(b) Two dimensions view
Fig 3.1: Fractional derivative of sine wave at different orders.
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3.4 Fractional Order Differentiation Discretization
The main approach for presenting image processing applications based
fractional order differentiation is demonstrated in figure (3.2) [29, 54, 55]. The

Numerical
solution

main methods of discretization are given bellow:

Opcra.tor Discretization
Equation

Model

Generalization

Fig 3.2: Image processing based FOD [29].

1. Tustin Transformation:
The discretization is based on Tustin discretization [56, 57].

2 (1-z"H\*™
ta — (.~ 7
b <T a +z—1)> (3:5)
For a given (n) order of approximation:
2 A, (Z71 )
a _ ° s n
D% =7 Jm <An(Z‘1, —a)> (3.6)
Where:
AO(Z_li a) =1

A(Z7he) = A1 (Z7 @) = CuZ T A4 (27 )

C :{ @/n  nisodd
n 0 nis even

2. Discretization using AL-ALaoui operator.

pra— (8. A-27 - 3.7
B _<ﬁ'(1+z—1/7)> (37)
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This equation can be approximated using continuous fraction expansion
(CFE) [58].

3. G-L discretization [51].

g(x+h)—gx)

1 _ .
g (x) = lim

h
1 _ A1
2(x) = | glx+2h)—2g(x+h) + g(x)
g~(x) = lim h2

9" =lim > -1 (") g —~mh)
Where
n n!
(m) T ml (n —m)!

I'(a+1)

For non integer n, i.e., a. () can be replaced using Gamma function ———
m mi'(a—-m+1)

7]

" 1 L T(@+1)
() = lim —- Z(—m Ty prmnt GRS DI ER)

m=0

3.5 Two Dimensional FOD Masks

In digital image processing the pixels are processed in eight
symmetrical directions to enhance pixels antirotation ability. The
directions are positive-X, left up diagonal, positive-Y, right up diagonal,
negative-X, right down diagonal, negative-Y, and left down diagonal as

shown in figure (3.3) [25].
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Yi-Fie proposed six masks to be used in image processing. He mentioned
that the YiFeiPU-2 is the best mask for the image enhancement. Yi-Fei
masks are shown in table (3.2) [18].

: : 0 | swes 0 0 0
0 (-v)(;v+l) 0 —— (":)('ll—:ll)“"l) e (-v)(;v+l) -y ]
0 -V 0 ceee 0 ceese 0 0 0
o | 1 o AR
(a) (b)
0| 1 |0 2 I N I N
0 -V 0 ceee 0 0 0 ceee 0
0 (—v)(;vﬂ) 0 [« || 1 [ v ] @] gy
: 0 0 0 cene 0
0 |aiirevem| 0 Pl ]
(c) (d)
0 0 0 | I s | : 0 |eHitho
0 0o | -v|io |l oo 0 | |0
0 (-v)(;v+1) 0 0 0 0 (-v)(;v+1) 0
0o | .| 0 oo |l o]|-v]| o
sl 0 : i | s 1|0 0 0
(e) (f)
wHim| 0 : e | & 10 0 0
0 | . 0 ool o |-v]| o 0
0 (-v)(;v+l) 0 0 0 0 (-v)(;v+l) 0
0 0 |-v|o|l oo 0 || 0
0 0 0 | I s | 3 ; 0 |wHho
(9) (h)

Fig 3.3: Fractional Differential mask in eight directions.
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Table 3.2: Yi-Fei mask operators [18].

YiFeiPU-1 YiFeiPU-2 YiFeiPU-3,v<0 YiFeiPU-4 ,v<0 YiFeiPU-5,0 <v <1 YiFeiPU-6, 1 < v < 2
v v 1
C_ 4
! 273 ré-v

c ) 2 3 1 1 1 227V -3

0 =23 I'(=v)(=2v) I(=v)(v? —v) r@2-v r@é-v
c sv v v 2 27 -2 217 -2 3322V +327

—v o _ _ - @ - -

! 416 16 r(-v)(-2v) r(-v)(v? - v) r2-v) r@-v)
C f(h-v) [ T(h-v-1) <_E N nV—-m-D7 [(Q-vn" -2+ - DA -v)n -0V - DY 2-3v+v)n - 2 - v)nt+n? TV — (n— 1)

" T(=v) |(n = DIT(-v) 4 F(=v)(-2v) F(=v)(w? -v) r2-v r@-v)
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Chapter Four

Deblurring Based 2D Fractional Order Differentiation

4.1 Introduction

The software implementation of the proposed deblurring algorithm
will be presented in the current chapter. MATLAB package has been used as
a tool to implement software of the blind deblurring system. Quantitative and
qualitative metrics have been used to qualify the proposed deblurring

algorithm.

4.2 Problem Definition

The proposed deblurring algorithm involves using 2D-FOD operator
instead of the point spread function in the enhanced version of Van Cittert
algorithm [28]. The proposed algorithm is non-iterative. It is given in

equation 4.1.

f=g+K(g-d"(g) (4.1)

Where,

g : blurred image.

f : deblurred image.

K : gain.

dV: 2D-fractional order differentiation.

The enhanced version of Van Cittert algorithm in [28] is an iterative non-
blind deblurring algorithm in which a prior information about PSF must be
known. In equation 4.1, there is no need for prior information about PSF.
Genetic Algorithm (GA) as an optimization technique will be used to search
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for the optimal values of K and v that give best quality of the deblurred image

for out of focus blur.

4.3 2D-FOD Operator

The eight symmetric directions of the 2D-FOD mask have anti-
rotation capability. 2D-FOD masks which are respectively on the directions
of positive x-coordinate, left upward diagonal, positive y-coordinate, right
upward diagonal, negative x-coordinate, left downward diagonal, negative
y-coordinate and right downward diagonal are implemented in a single mask
as shown in figure (4.1). YiFei-PU-2 mask is considered the best
performance fractional order differential mask for texture enhancement. For
5x5 YiFei-PU-2 2D-FOD Mask is given in equation (4.2) [2].

®A
© \ /@
®- \><i></ SO
® ®
V@

Fig. (4.1): Eight symmetric directions.
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cz+c1 0 C3+Cq 0 c3+c_q

0 c, + ¢o ¢y + ¢ ¢, + ¢ 0
Cc1t6 cte 4at+a) cte Tl (42)
| 0 C0+C2 C0+C2 C0+C2
I_C—1 + c3 0 c_1+c3 0 c_1 + C3J
Where
v N v? ) v? 3 5v v3 vt
c,1=—*F—,cg=1—-———— ¢, = ——+—+—,
174 g’"® 2 8’1 4 16 16
_ ra-v) (v v _Te-v) (v v?
27 (D)Ir(-v) ( Pl 8) yand ¢3 = (2)'T(~v) ( Pl 8)
4.4 The Genetic algorithm

The Genetic Algorithms (GAS) is an optimization technique based on
random search to obtain the best solution in a complex search space. In GA,
the natural evolution is modeled to process population individuals in several
generations to enhance the objective function. The individuals which
represent an elected solution to the studied issue, usually known as
chromosome. The chromosome is represented as a bit string [59].

GA has two primary issues, the first is called coding, it’s how to code
the issue. There are two common ways of coding, real or binary coding. The
GA requires a collection of certain solutions called initial populations which
are randomly selected. The second issue is called the fitness evaluation
(objective function) it’s how to qualify each individual chromosome (string).
This step depends on nature of the issue. It is either rule-based procedure,
mathematical equation or combination of the both [60].

GA has three main operators to createa  new  generation  of
chromosomes (individuals). These are reproduction (selection), crossover,
and mutation. Reproduction is performed using one of the selection

algorithms (Tournament, Roulette Wheel, ..etc.). Crossover is the process of
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producing a child (offspring) from parent individuals. Mutation mimics
biological mutation. Mutation changes gene value or genes value in the
chromosome. It is used to avoid trapping the solution in local minima [61].

The following main steps illustrate the genetic algorithm:

Step 1: Initial population creation.

Step 2: Fitness calculation for each string.

Step 3: While (does not exceed maximum number of generation) OR (an
acceptable solution is not found)
e Next generation reproduction using modified roulette

selection.

e Create new offspring using crossover between parents.
e Perform mutation with certain probability.
e Fitness calculation for each offspring.

Step-4: End while.

4.4.1 Genetic-based 2D-FOD Operator

The undertaken optimization problem is to find the gain (K) and order
(v) of the 2D-FOD of equation (4.1) which assure the objective function.
The suggested objective function is to deblur the degraded image is based a
simple fuzzy set of entropy and PSNR. Each GA solution has to minimize

the following objective function:

Fitness = —2— 4 (4.3)
Entropy PSNR

Where:
a,- IS entropy weight, between(0 and 1).

2552
PSNR = 10log| — - (4.4) [62]
T 2t 20190 — i
Entropy = — Y. Y, f (x,y) log(f (x,)) (4.5) [62]

gi,j - blurred image.
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I; ; :original image.

i,j

f(x,y) : restored image.

The deblurring algorithm parameters is coded in a binary string as shown in
figure (4.2).

K 1%

16 bit 16 bit

Fig. (4.2): FOD Deblurring system parameter string codding.

4.5 Software Implementation

The graphical user interface (GUI) of the 2D-FOD deblurring system
software which has been implemented in Matlab is shown in figure (4.3).

The source code in given in appendix-A. It consists of the following items:-

1
2

Select an image using browse file.

Select mask size and sigma from Gaussian blur mask panel. It is used
to simulate out-of-focus blur.
Select filter (modified_DFD2, DFD2, Laplacian, LoG, unsharp, sobel,

and prewitt) from control panel to deblur degraded image version.

w
1

N
1

Modified_DFD?2 filter will be manually pass the gain (K) and order

(v) to apply equation 4.1, from gain and order slide bar.
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KR89
2D-FOD Deblurring System
~ Control Panel - ~ Gausian Blur Mask - - Genetic Algonithm
Select Fiter _modifide_DFD2 ~ Gain | | 03 || sze | 11 m
Select Image lena tif (1_)- Order «| | »| 0.7 | Segma |
- Quaity metrics - Quaity metrcs
PSNR PSNR
prRaay RestorodumagoKnos v=0.7 e
Entropy Entropy
7.3 7783
MSE MSE
0.000%60 0.000123
AD AD
000207 £ 0009t
_NCC NCC
09955 100711
SC SC
1007767 0956185
MD MD
0431542 v 0.127145
NAE ‘ NAE
0014382 0010517
(a)
[ File Edit View Inset Tools Desktop Window Help File Help
QLY :
2D-FOD Deblurring System @ o) A B cnren e
[“Control Panel Gausian Blur M3/ eneti i =
Select Filter modifide_DFD2 ~/| Gain < ] ol 03 I size 11 |
| | Select Imag: DI;E.)Z. i rder < ml o 07 | Segma 1
! Laplacian Masksze |
I @ LoG CS: R
I unsharp PSNR =
G smesuss | Restored image K=0.3 v=0.7
! rewitt Entropy |} . 3 :

— ’ 7.332083
i - ( MSE

1.001711 ‘
SC

f 0996186 ‘
MD

| 0187145 |

NAE
0010517

(b)
Fig (4.3): 2D-FOD Deblurring system GUI.
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5- The following metrics will be calculated for the restored image [62].
a. Peak Signal to Noise Ratio (PSNR in dB):

2552
PSNR = 101log 1 > (4.6)
TN 2ie1 20=1(90 — I
b. Entropy:
Entropy=— ) Y faylog(fxy)  (47)
Xy

c. Mean Square Error (MSE):

1 2
MSE = - ¥iL 5)1(90) — 1 (4.8)
d. Normalized Cross-Correlation (NCC):

M N
NCC = Yi=1Xj=19i; lij
T yM N g2
i=14j=19i;j

e. Average Difference (AD):

AD = iiw (4.10)
MN

i=1 j=1

f. Structural Content (SC):

M ©N 2
i=12j=19i,j

(4.9)

SC = (4.11)
iz1 2= 17
g. Maximum Difference (MD):
MD = Max(|g;; — 1) (4.12)
h. Normalized Absolute Error (NAE):
M N
M SN g . — ..
NAE = =1 2-1[91) ~ 1| (4.13)

1iw=1 Z?{:1|gi,j|
Where:
gi,j is blurred image.

I; ; is original image.
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6- Now to find the best gain (k) and order (v) for proposed algorithm,
GA will be used. The fitness function depends on PSNR and Entropy
in equation (4.3).

4.6 Results Analysis

Three parameters of equation (4.1) must be determined
(v, k, and mask size) in order to implement the proposed algorithm using
an FPGA. Quantitative and qualitative approaches have been used to achieve

the proper selection of the parameters.
4.6.1 Quantitative Analysis

Different metrics (equations 4.6 — 4.13) have been used to qualify the
restored images. PSNR for various orders and gains at different mask sizes
(3,5, 7, and 9) is shown in figure (4.4), whereas Entropy is shown in figure
(4.5). The proposed 2D-FOD algorithm has been compared with standerd
integar order differentiation (sobel, prewitt, and Laplacian) as illustrated in
figure (4.6) and figure (4.7). The performance of the current approach for
debluuring images degraded by out of focuse blur is better than the
traditional filters (for more detials see appendix-B). According to these
empirical results, GA has been used to search the optimal gain and order

using fitness of equation (4.3) at certain range of gains and orders.

30



30 403y, X
Order 0.1 4 0 01 gain Order 01 5" o . gain

PSNR

Fig (4.4): PSNR for cat image (a).Mask Size 3x3, (b). Mask Size 5x5,
(c). Mask Size 7x7 and (d). Mask Size 9x9.
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0.3 - "0 02
Order 0204 g4 02 gain Order 9204”04 gain

(b)

2044 i “0%03 .
Order 0201 01 gain Order 0204 04 gain

(c) (d)

Fig (4.5): Entropy for cat image (a).Mask Size 3x3, (b). Mask Size 5x5,
(c). Mask Size 7x7 and (d). Mask Size 9x9.
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PSNR

Entropy

PSNR for Cat image

90 T T T T T T T T /—\l T T T
80 ﬁ -~
70 - n
/
60 - .
50 [~ n
PSNR for Laplacian
PSNR for LoG
PSNR for prewitt
40 H PSNR for Sobel -
PSNR for modifide__DFD2 3x3 K=0.47
PSNR for modifide__DFD2 5x5 K=1
PSNR for modifide__DFD2 7x7 K=0.41
PSNR for modifide__DFD2 9x9 K=0.22
30 I T T T T 1 1 | 1 1 | 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
Orderv
Entropy of cat image
8 T T T T T T T T T T T T
| / -
6.5 - b
6 .
55| Entropy for modified DFD2 3x3, K=0.81 . =
Entropy for Laplacian
Entropy for LoG
Entropy for Prewitt
5F Entropy for Soble -
Entropy for modified DFD2 5x5, K=0.5
Entropy for modified DFD2 7x7, K=0.1
Entropy for modified DFD2 9x9, K=0.1
45 1 1 1 1 1 1 1 1 1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.1 1.2 1.3 1.4 1.5

order v

Fig (4.7): Entropy for cat image.
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Table 4.1: Cat video frames K=0.5, v=0.6

Frame
No.

Input Frame Output Frame

20

40

60
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90

100

120

130

160




180

190

200

210

220




4.6.2 Qualitative Analysis

An online questionnaire survey using google forms (available at
https://goo.gl/forms/wAdhoGMeSfHPsUDy1 ) has been used for visual
qualification of the restored images. Figure (4.8) shows the deblurring image
was degraded by out of focus blue with sigma =1, whereas figure (4.9) Sega
=2 see appendix-C. Appendix-D shows samples of the forms of
questionnaire survey. The questionnaire consists of two parts. The first
compares between the restored image using 2D-FOD algorithm and the
degraded one. Whereas the other compares between the restored using
Laplacian filter and the proposed algorithm (refer to figure (4.6) and (4.7)).
Table 4.2 presents the summary of the questionnaire survey of 125 voters.

Original image Blurred image Restored image
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https://goo.gl/forms/wAdhoGMeSfHPsUDy1

st

{ : iy i il
ITEL q

1;'“‘:':: ---- T ‘

Fig (4.8): Gaussian blur using sigma ¢ = 1 and 11x11 kernel size
Deblurring using modified DFD2 K=0.5 and v=0.75.
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Original image Blurred image Restored image

SoE

==
-

m==)
= —

R—
—

\‘:" "_‘ii

Fig (4.9): Gaussian blur using sigma o = 2 and 11x11 kernel size

Deblurring using modified DFD2 K=0.8 and v=0.88.
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Table 4.2: Summary of the questionnaire survey.

First questionnaire | second questionnaire
forms forms
Images blurred | restored | Laplacian Modified
FOD2
Elephant 0% 100% 4% 96%
Bikes gray 1.6% 98.4% 8.8% 91.2%
Calculator 8.8% 91.2% - -
Houses 1.6% 98.4% 11.2% 88.8%
House 2.4% 97.6% 8% 92%
Parrots 2.4% 97.6% 15.2% 84.8%
Colored Chips 0.8% 99.2% 11.2% 88.8%
Flower 9.6% 90.4% 22.4% 77.6%
Palace 3.2% 96.8% 14.4% 85.6%
Forest 0.8% 99.2% 14.4% 85.6%
Peacock 0.8% 99.2% 10.4% 89.6%
Valley 0.8% 92.2% 10.4% 89.6%
Electronic Kit 0% 100% 8% 92%
Parthenon 0% 100% 11.2% 88.8 %
Cloth 0.8% 99.2% 12.8% 87.2%
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Chapter Five

FPGA Implementation of 2D-FOD

5.1 Introduction

The FPGA implementation of the proposed deblurring algorithm will
be presented in the current chapter. The algorithm has been implemented on
Xilinx Spartan 6 (Xc6slx16). The hardware Systems can be designed using
high-level Simulink graphical environment of Xilinx system generator
(XSG). XSG provides graphical modules that expand the Hardware
description Language (HDL). The Simulink enables the design abstraction
using XSG subsystems and blocks which specifically reduces the necessary
time for hardware implementation. Also, Simulink provides FPGA-in-the-
loop verification and simulation, which is known as hardware cosimulation.
This methodology provides easier hardware verification and implementation
compared to HDL based approach. The Simulink simulation and hardware-
in-the loop approach presents a far more cost efficient solution than other

methodologies [3].

5.2 2D-FOD Deblurring System

The suggested Deblurring system using 2D-FOD (refer to equation
4.1) is shown in figure 5.1. The 2D-FOD system model is to be implemented
in FPGA using two design methodologies. The first using DSP System
Generator; and the second using Matlab HDL Verifier and HDL Coder,
FPGA in the Loop (FIL).
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conversion algorithm conversion

(a) Deblurring system.

5x5 FOD
Filter | b @1

(b) 2D-FOD deblurring algorithm.

Fig 5.1: 2D-FOD deblurring system.

5.3 FPGA Implementation Design Methodologies

In MATLAB Simulink, there is a development platform that encapsulates
the design of the system, system modeling, system simulation, code
generation of the system, and system implementation. There are two design
approaches. One uses Simulink HDL Coder. The other approach uses Xilinx
System Generator. Table 5.1 illustrates the benefits and main features of
System Generator and HDL Coder. Each approach gives an effective

hardware design flow.
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Table 5.1: System Generator and HDL Coder benefits and main features.

HDL System
Feature Benefit
Coder Generator
Rapidly prototype algorithmic
MATLAB to HDL X L
MATLAB
Floating-to Fixed-Point _
] X Shorten design cycle
Conversion
Design exploration X Rapidly explore hardware solution space
Software and Hardware % Partition algorithms between processor
code generation and hardware
Access to Simulink s Rapidly assemble system model to
block library hardware
Support for native = Easily migrate from system model to
Simulink block hardware
Automatic test ) )
) X Verify hardware against system model
generation
Transaction Level
Model (TLM) X Support system level modeling
component generation
Readable, traceable = Streamline standards compliance and
HDL code reporting
Access Xilinx IP in % Generate implementations optimized for
Simulink Xilinx targets
) ) Verify hardware implementations on
Hardware co-simulation X .
Xilinx development boards
o Verify algorithms to real world analog
Analog data acquisition X
data
Deploy design in hardware without
Hardware deployment X

FPGA design experience
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5.3.1 Xilinx System Generator Based Design

The MATLAB R2011b with Xilinx System Generator for DSP and
Integrated Software Environment (ISE14.2) are used as illustrated in figure
5.2.

Co-Simulston

. . e Code Generation
Simulink MDL ——  Xilinx System Generation

.oun  Matlab Environment 3¢ ieuon

l l

HDL Test bench Test Vector RTL HDL & IP core

Hardware
Simulation
Modelsim

Xilinx implementation
Flow (Xilinx ISE)

Model

Bitstream

Fig 5.2: Design Methodology with Xilinx System Generator.

ISE is a powerful design environment that is working in the background
when implementing System Generator blocks. The ISE environment consists
of a set of program modules, written in HDL, that are utilized to create,
capture, simulate and implement digital designs in a FPGA or Complex
Programmable Logic Devices (CPLD). The netlist files are created in the

synthesis process of the modules which serve as the input to the
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implementation process. Then, the logic design is converted into a bitstream
file that can be downloaded on the target FPGA device [3].

5.3.2 HDL Verifier and HDL Coder Based Design

HDL Verifier works with Simulink, MATLAB, HDL Coder and the
supported FPGA development environment to prepare automatically the
generated HDL Code for implementation in an FPGA. FIL simulation allows
running a Simulink or MATLAB simulation with an FPGA board strictly
synchronized with the software. This process allows getting a real world data
into the design while accelerating the simulation with the speed of an FPGA

as illustrated in figure 5.3.

FIL provides the communication channel for sending and receiving data
between Simulink and the FPGA. This channel uses a Gigabit Ethernet
connection. Because communication between Simulink and the FPGA is
strictly synchronized, the FIL simulation provides a more dependable

verification method [13].

[ MATLAB Algorithm and Simulink System Design

U g

Automatic HDL Code
Generation

Y Y

Hardware Synthesis FPGA-in-the-loop

HDL Cosimulation

Fig 5.3 Design Methodology using FIL.
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5.4 Hardware Implementation Using System Generator

The model of video deblurring system that implemented using System

Generator is showing in figure 5.4.

Input Buffer

\ 4

Shared Memory

2D-FOD Deblurring System

Output Buffer

2D-FOD
Deblurring System

v

Shared Memory

Fig 5.4: Hardware model of Deblurring System.

The shared memory enables of image processing tasks with specific memory
requirements and high bandwidth to be simulated on FPGA. The data
transactions between FPGA device and Simulink are carried out using burst
transfers which provide a throughput for real time image processing

applications depending on the type of cosimulation interface.

Figure 5.5 shows 1/O buffering interface that enables data buffering and
streaming using XSG data path during cosimulation. The design is composed
of input and output subsystems to realize the buffer storage. The middle
block of the figure is a placeholder for the proposed image processing
algorithm. The buffering interface contains data valid ports which control
the data flow [12].
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GelEvElE - - - - - - - - - > [din_valid dout valid| > ------- »| din_valid

Input Buffer Output Buffer

Fig 5.5: Operation of 1/O buffering interface and Data Path.

5.4.1 Two Dimensional FOD Deblurring System

Refer to figure 5.1.b, the deblurring system consists of 2D-FOD filter
mask, gain, subtracter and adder. The contents of the 5x5 filter mask is
illustrated in figure 5.6. It contains a line buffer. The line buffer can be
configured to accommodate certain frame size to process a complet frame
during single simulation cycle. The coefficient memory stores the filter
coefficients. The coefficients of the filter mask can be loaded dynamically

during run time.
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Line Buffer
Linel » Linel

Line2 » Line2

din Line3 » Line3
Line4 » Lined
Line5 » Line5
Load » [oad
Coef »Coef

Coefficient Memory Gain

5x5 FOD Mask

Fig 5.6: Two dimensional FOD.

XSG provides a high-throughput cosimulation with FPGA board over
an Ethernet (Point-to-point) connection to eliminate the limitations caused

by programming cables [12].

5.4.2 Compilation for Cosimulation

Before hardware cosimulation, the hardware design must be compiled.
The compilation phase generates a hardware cosimulation block as
illustrated in figure 5.7. The block includes information about FIFOs,

registers, and shared memories.
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Dlgain

Point-to-point
Ethernet

M offset

H/W Co-simulation

Fig 5.7: Hardware Cosimulation block

5.4.3 2D-FOD Deblurring System Test Bench

The deblurring system test bench consists of FPGA processing, video
source, and matrix viewer (video viewer) models as illustrated in figure 5.8.
Each frame (128x128 uint8) of the video stream is processed on the FPGA
model. The FPGA processing model is implemented on Xilinx SP601
development board. Refer to figure 5.9, the operation of the deblurring

processing model is expressed as follows:

a) The host PC locks the Shared Memory Write block from access by
FPGA processing model. Then, the host PC writes a video frame into

the shared memory and releases the lock.

b) The hardware cosimulation model locks the read and write shared
memories. Then, the FPGA model processes the input frame and
stores the result in the shared memory read block. Lastly, the FPGA

model grants the shared memories for host PC access.

c) The host PC locks the Shared Memory Read block. Then, the PC reads

the output frame and displays it on the matrix viewer.
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5.4.4 Hardware Implementation Reports

1. Gray Image

The synthesis has been implemented on one plane (gray) image. The
summery of utilization report is given in table 5.2.

Table 5.2 Gray Image Device Utilization Summary

Logic Utilization Used | Available | Utilization
Number of Slice Registers 899 18224 4%
Number of Slice LUTs 482 9112 5%
Number of fully used LUT-FF pairs 351 1030 34%
Number of bonded IOBs 133 232 57%
Number of BUFG/BUFGCTRLs 1 16 6%
Number of DSP48A1s 12 32 37%
2. RGB Image

The synthesis has been implemented on three planes (RGB) image. The

summery of utilization report is given in table 5.3.

Table 5.3 Three planes (RGB) image Device Utilization Summary.

Logic Utilization Used | Available | Utilization
Number of Slice Registers 1453 18224 7%
Number of Slice LUTs 798 9112 8%
Number of fully used LUT-FF pairs 573 1678 34%
Number of bonded IOBs 240 232 103%
Number of BUFG/BUFGCTRLs 1 16 6%

3. YCbCr Image

On YCbCr color space the synthesis has been implemented on one plane
(Y plane) only. The summery of utilization report is shown in table 5.4.
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Table 5.4 YCbCr Device Utilization Summary.

Logic Utilization Used | Available | Utilization
Number of Slice Registers 553 18224 3%
Number of Slice LUTs 320 9112 3%
Number of fully used LUT-FF pairs | 244 629 38%
Number of bonded IOBs 148 232 63%
Number of BUFG/BUFGCTRLs 1 16 6%
Number of DSP48A1s 7 32 21%

5.4.5 Hardware Minimization

The hardware required to implement the proposed deblurring algorithm in
the FPGA can be minimized at high level abstraction by simplifying and
reordering equation 4.1. In spatial domain, for mask of size 3x3 for example,

the equation 4.1 can be written as:

f,y) =gxy)
+ K[ gt y) — [we-nglx—1,y = 1)
+weo-ngdxy—1D +wy_pnglx+1,y—-1)
+werngd(x —1Ly) + weong(x,y) + wegngx +1,y)
+tweng(x—Ly+1) +wenglry+1)
+wangx+Ly+1D]] (5.1)

flx,y) = —KW(—1,—1) gx—1,y—-1) - KW(O,—l) glx,y —1)
—Kwu,-1y g(x + 1,y = 1) = Kw(_y,09) g(x = 1,y)
+ (1+K — Kwy) )g(x,y) — Kwgg) g(x + 1,3)
—Kwi_inyg(x—Ly+1) —Kwgqy glx,y+1)
- Kwapngx+1,y+1) (5.2)
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Equation 5.2 can be rewritten in matrix notation as:

F=A®G (5.3)
Where:
Kw(_1,-1) Kw(o,-1) Kw,-1)
A = KW(—l,O) 1 + K - KW(0,0) KW(l,O) (54)
KW(—l,l) KW(O,l) KW(l,l)
For 5x5 mask size kernel,
[KW(z-2)  KW(q,-2) Kwo,-2) Kwa,-2) Kw(z,_2)]
KW(—Z,—l) KW(—I,—l) KW(O,—l) KW(l,—l) KW(Z,—l)
A = KW(—Z,O) KW(—l,O) 1 + K - KW(O,O) KW(l,O) KW(Z,O) (55)
KW(—Z,I) KW(—l,l) KW(O,I) KW(l,l) KW(Z,l)
| KW(—Z,Z) KW(—LZ) KW(O,Z) KW(l,Z) KW(Z,Z) i

The system hardware shown in figure 5.1.b will be as shown in figure 5.10
after the minimization.

Minimized Kernel
Filter

Fig 5.10: Minimized Hardware Kernel

5.4.6 Hardware Minimization Reports

1. Gray Image

The synthesis has been implemented on one plane (gray) image. The
summery of utilization report after minimization is given in table 5.5.
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Table 5.5 New Hardware Device Utilization Summary for Gray Image.

Relative
Logic Utilization Used | Available | Utilization H/W
Reduction
Number of Slice Registers 497 18224 2% 44%
Number of Slice LUTs 264 9112 2% 45%
Number of fully used LUT-FF | 188 573 32% 3%
pairs
Number of bonded IOBs 113 232 48% 15%
Number of 1 16 6% 0%
BUFG/BUFGCTRLs
Number of DSP48A1s 7 32 21% 41%
2. RGB Image

The synthesis has been implemented on three planes (RGB) image. The

summery of utilization report after minimization is given in table 5.6.

Table 5.6 Minimization Hardware Device Utilization Summary for Three

planes (RGB) image.

Relative
Logic Utilization Used | Available | Utilization H/W
Reduction

Number of Slice Registers 1405 18224 7% 3%
Number of Slice LUTs 732 9112 8% 8%
Number of fully used LUT-FF | 516 1621 31% 6%
pairs

Number of bonded IOBs 217 232 93% 9%
Number of 1 16 6% 0%
BUFG/BUFGCTRLs

3. YCbCr Image

On YCDCr color space the synthesis has been implemented on one plane
(Y plane) only. The summery of utilization report after minimization is

given in table 5.7,
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Table 5.7 Minimization Hardware Device Utilization Summary for YCbCr

Logic Utilization Used | Available | Utilization Rg%i;e
Reduction
Number of Slice Registers 529 18224 2% 4%
Number of Slice LUTs 296 9112 3% 7%
Number of fully used LUT-FF | 220 605 36% 6%
pairs
Number of bonded IOBs 147 232 63% 0.67%
Number of 1 16 6% 0%
BUFG/BUFGCTRLs
Number of DSP48A1s 7 32 21% 0%
5.4.7 Results

The hardware cosimulation system consists of PC and Xilinx Spartan-
6 SP601 Evaluation Kit as shown in Figure 5.11. Two monitors have been
used to demonstrate the cosimulation; the first is used to display Matlab XSG
model, whereas the other is used to display the source video and the
processed video on SP601 kit. The simulation waveforms using Xilinx
ISE14.5 is illustrated in Figure 5.12. Samples of input and output video

frames is shown in Table 5.8.
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Fig 5.11: System Hardware
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Table 5.8: XSG video frame samples.
Input Frame Output Frame
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5.5 Video Processing Acceleration Using FPGA-in-the-Loop

FPGA-in-the-Loop (FIL) accelerates a video processing simulation
using Simulink and FPGA [15]. The FIL process consists of three steps. The
first step, the design is simulated using Matlab Simulink. The FIL 2D-FOD
deblurring Simulink model is illustrated in Figure 5.13. Then, cosimulation
based ModelSim is generated, the cosimulation verification model is shown
in Figure 5.14. The cosimulation model includes a cosimulation block which
is EDA Simulink gateway to ModelSim that provides on the fly hardware
signals. The hardware signals timing can be verified and investigated for
timing and functional correctness. Figure 5.15 shows the timing signals using
ModelSim. The last step, FIL verification, in which the hardware is

implemented and simulated on the FPGA.
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5.5.1 FIL 2D-FOD deblurring Model

Matlab Vision HDL Toolbox provides a design environment that
support video and image processing in HDL architecture as illustrated in
Figure 5.13. The Video Source block provides frame stream to Frame to
Pixel block. The Frame to Pixel block converts the incoming frame stream
into stream of pixels and generates control signals for pixels stream (hStart,
hEnd, vStart, vEnd, and valid data), also the size of the frame can be
specified in this block. The HDL block incorporates the 2D-FOD deblurring
Algorithm which processes the video in pixel by pixel. HDL block
parameters includes line buffer size, padding method, fixed point arithmetic
parameters, and 2D filter coefficients. The Pixel to Frame block convert the

processed pixel stream into frame stream.

5.5.2 FIL Hardware Implementation Reports

1. Gray Frame

The synthesis has been implemented on one plane (gray) frame 480x640
frame size. The summery of utilization report after minimization is given in
table 5.8.

Table 5.9 FIL Device Utilization Summary for Gray Frame.

Logic Utilization Used | Available | Utilization
Number of Slice Registers 2622 18224 14%
Number of Slice LUTs 3882 9112 42%
Number of fully used LUT-FF pairs | 1854 4650 39%
Number of bonded IOBs 30 232 12%
Number of BUFG/BUFGCTRLs 5 16 31%
Number of DSP48A1s 2 32 6%
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Table 5.10 FIL Device Utilization Summary for Gray 1080x1920 Frame.

Logic Utilization Used | Available | Utilization
Number of Slice Registers 2637 18224 14%
Number of Slice LUTs 3903 9112 42%
Number of fully used LUT-FF pairs | 1869 4671 40%
Number of bonded IOBs 30 232 12%
Number of BUFG/BUFGCTRLs 5 16 31%
Number of DSP48A1s 0 32 0%

2. YCbCr Image

On YCbCr color space the synthesis has been implemented on one plane
(Y plane) only. The summery of utilization report for 240x320 frame size is

shown in table 5.9.

Table 5.11 FIL YCDbCr Device Utilization Summary.

Logic Utilization Used | Available | Utilization
Number of Slice Registers 3663 18224 20%
Number of Slice LUTs 4310 9112 47%
Number of fully used LUT-FF pairs | 2169 5804 37%
Number of bonded IOBs 30 232 12%
Number of BUFG/BUFGCTRLs 5 16 31%
Number of DSP48A1s 2 32 6%
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5.5.3 Results

The hardware cosimulation system consists of PC and Xilinx Spartan-
6 SP601 Evaluation Kit as shown in Figure 5.x. Two monitors have been
used to demonstrate the cosimulation; the first is used to display Matlab FIL
model, whereas the other is used to display the source video and the
processed video on SP601 kit. Samples of input and output video frames is
shown in Table 5.11.

Table 5.12: Cat video frames K=0.5, v=0.6

Frame

No Input Frame Output Frame

—_— — e ——

20

40
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Chapter Six

Conclusions and Suggestions for Future Work

1.1 Conclusions

Video processing is a powerful branch of signal processing, which usually
includes video filters. In current thesis a new deblurring algorithm based on
2D-FOD and modified Van Cittert algorithm has been proposed. The
parameters of the proposed algorithm have been optimized using GA. Two
approaches of the hardware implementation for the proposed algorithm based
on Xilinx Spartan 6 (SP601) have been presented. From the design, analysis,
and hardware implementation, one can conclude the following remarks that

related with the different aspects of the subject:

1. The enhanced Van Cittert is an iterative algorithm which requires prior
knowledge about the PSF, whereas the proposed is blind and non-
iterative.

2. Yi-Fei commented that the Yi-Fei-2 mask operator is best filter mask for
Image enhancement applications but not suggested the value of the order
of differentiation. The order of differentiation with the gain are optimized
using genetic algorithm.

3. The cost function of the genetic algorithm is a fuzzy set of the
contributions of entropy and PSNR, which gives better quality than using
one of them alone.

4. The analyses of the proposed algorithm has been better to evaluate the
results using the implemented GUI software application.
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5. The online questionnaire survey is best than the traditional survey for
visual quality evaluation. The traditional survey has many drawbacks for
visual qualification. The Google forms is a creative platform for surveys.
The people who contributed in questionnaire stated the recovered images
Is better than blurred version. 88.4% of the people state that the proposed
algorithm is better than the conventional integer order operators.

6. Two approaches have been used for FPGA hardware implementation of
the proposed algorithm using Xilinx system generator and FPGA in the
loop. 44%, 45%, 15%, and 41% of hardware reduction in number of
registers, LUTs, 10B, and DSP48A coprocessor have been achieved by
reordering and simplifying the equations of the proposed model.

7. In Xilinx system generator methodology, a resolution 128x128 has been
achieved on Spartan 6 (SP601) at 24 frame rate, whereas in FPGA in the
loop a resolution of full high definition (1080x1920) attend on the same
development kit at 30 frame rate.

8. ModelSim cosimulation verifier is better than Xilinx simulator. FIL with
ModelSim provides on the fly hardware signals. The hardware signals
timing can be verified and investigated for timing and functional

correctness

1.2 Suggestions for Future Work
The following are some guidelines for future work:
1. Implementation of the proposed algorithm using system on chip (SoC)
based FPGA, on Zyng-7000 evaluation Kit.
2. Implementation of algorithm parameters estimation on FPGA.

68



[1].

[2].

13].

[4].

[5].

[6].

[7].

REFERENCES

Guojun Lu, “Advances in Digital Image Compression
Techniques”, Computer Communications Vol. 16, No. 4, pp.
202-214, April 1993.
Wei Wang and Peizhong Lu, “A New Image Deblurring
Method Based on Fractional Differential”, International
Conference on Audio, Language and Image Processing
(ICALIP) IEEE Conferences, pp. 497 — 501, 2012.
Sitara K and Remya S, “Image Deblurring in Bayesian
Framework Using Template Based Blur Estimation”,
International Journal of Multimedia and Its Applications
(IJMA), Vol. 4, No. 1, February 2012.
Sabah F. Hamood, Mohd Shafry Mohd Rahim, Omar Farook
and Daud Kassmuni, “A Survey on Various Image Deblurring
Methods”, Journal of Engineering and Applied Sciences, Vol.
11, No. 3, pp. 561-569, 2016.
I. M. El-Henawy, A. E. Amin, Kareem Ahmed, Hadeer Adel,
“A  Comparative Study On Image Deblurring Techniq”,
International Journal of Advances in Computer Science and
Technology (IJJACST), Vol. 3, No.12, pp. 01-08, 2014.
Per Christion Hansen, James G.Nagy, and Dianne P.O’Leary,
“Deblurring Image Matrices, Spectra, and Filtering”, Society
for Industrial and Applied Mathematics (siam) Philadelphia,
2006.

Dhanabal R, Bharathi V, And S.Kartika, “Digital Image
Processing Using Sobel Edge Detection Algorithm in
FPGA”, Journal of Theoretical and Applied Information

69



Technology (JATIT), Vol. 58, No. 1, pp. 130-139, December
2013.

[8]. Daggu V. Rao, Shruti Patil, Naveen Anne Babu and V
Muthukumar, “Implementation and Evaluation of Image
Processing Algorithms on Reconfigurable Architecture using
C-based Hardware Descriptive Languages”, International
Journal of Theoretical and Applied Computer Sciences (ijtacs),
Vol. 1 No 1, pp. 9-34, 2006.

[9]. Sio-long Ao, Len Gelman, “Electronic Engineering and
Computing Technology”, Springer, 2010.

[10]. A.C.Suthar, Mohammed Vayada, C.B.Patel, G.R.Kulkarni,
“Hardware Software co-simulation for Image Processing
Applications”, 1JCSI International Journal of Computer
Science Issues, Vol. 9, No 2, pp. 560-562, March 2012.

[11]. T. Saidani, D. Dia, W. Elhamzi, M. Atri and R. Tourki,
“Hardware Co-simulation for Video Processing Using Xilinx
System Generator”, Proceedings of the World Congress on
Engineering, Vol. 1, 2009.

[12]. Uwe Meyer-Baese, “Digital Signal processing with filed
programable gate array”, Springer, 2001.

[13]. Jun Kong, Kesai Lu, and Min Jiang “A New Blind Deblurring
Method via Hyper-Laplacian Prior”, Procedia Computer
Science Vol. 107 pp.789 — 795, 2017.

[14]. Hongyan Wang, Jinshan Pan, Zhixun Su, and Songxin Liang,
Blind image deblurring using elastic-net based rank prior ”,
Computer Vision and Image Understanding CVIU, Dec 2017.

[15]. Dong-Bok Lee, Shin-Cheol Jeong, Yun-Gu Lee, and Byung
Cheol Song, “Video Deblurring Algorithm Using Accurate
Blur Kernel Estimation and Residual Deconvolution Based on

70



[16].

[17]

[18].

[19].

[20].

[21].

a Blurred- unblurred Frame Pair”, IEEE Transactions on
Image Processing, Vol. 22, No. 3, pp 926-940, March 2013.
Mohammed Alareqi, R. Elgouri, and M. Tarhda, K. Mateur,
A. “Design and FPGA Implementation of Real-Time
Hardware Co-Simulation for Image Enhancement in
Biomedical Applications”, International Conference on
Wireless Technologies, Embedded and Intelligent Systems
(WITS), 2017.

A M Deshpande, and S Patnaik, “A Qualitative-Quantitative
Comparison of Image Motion Deblurring Algorithms”,
International Conference and Workshop on Emerging Trends
in Technology (ICWET), 2011.

Yi-Fei Pu, Ji-Liu Zhou, and Xiao Yuan, “Fractional
Differential Mask: A Fractional Differential-Based Approach
for Multiscale Texture Enhancement”, IEEE Transactions On
Image Processing, Vol. 19, No. 2, February 2010.

Wenqgi Ren, Jinshan Pan, Xiaochun Cao, and Ming-Hsuan
Yang, “Video Deblurring via Semantic Segmentation and
Pixel-Wise  Non-Linear Kernel”, IEEE International
Conference on Computer Vision (ICCV), pp. 1086 — 1094,
2017.

M. Lopez-Ramirez, L. M. Ledesma-Carrillo, E. Cabal-Yepez,
G. Botella, C. Rodriguez-Donate, and Sergio Ledesma,
“FPGA-Based Methodology for Depth-of-Field Extension in a
Single Image”, Digital Signal Processing, Vol.70, pp 14-23,
Nov 2017.

Priyanka Raina, Mehul Tikekar, and Anantha P.
Chandrakasan, “An Energy-Scalable Accelerator for Blind

71



[22].

[23].

[24]

[25].

[26].

[27].

Image Deblurring”, IEEE Journal of Solid-State Circuits, Vol.
52, No. 7, pp. 1849 — 1862, July 2017 .

G. Bharadwaja Reddy, and K. Anusudha, “Implementation of
Image Edge Detection on FPGA using XSG”, International
Conference on Circuit, Power and Computing Technologies
[ICCPCT], 2016.

Chien-Cheng Tseng, and Shyi-Chyi Cheng, “Digital Color
Image Sharpening Using Fractional Differentiation and
Discrete Cosine Transform”, International Symposium on
Communications and Information Technologies (ISCIT) IEEE
Conferences, pp. 181 — 186, 2012.

Chien-Cheng Tseng, and Su-Ling Lee, “Color Image
Sharpening Based on Fractional Differentiation and
Modulation Transfer Function”, International Symposium on
Consumer Electronics (ISCE) IEEE Conferences, pp. 201 —
202, 2013.

PU YiFei, Wang Weixing, Zhou Jiliu, Wang Yiyang, And Jia
Huading, “Fractional differential approach to detecting
textural features of digital image and its fractional differential
filter implementation”, Sci China Ser F-Inf Sci, Vol. 51, No. 9,
pp. 1319-1339, Sep. 2008.

Thusitha Chandrapala , Amila Cabral, Thilina Sameera,
Spumal Ahangama and Jayathu Samarawickrama, “Hardware
Implementation of Motion Blur removal”, 22nd International
Conference on Field Programmable Logic and Applications
(FPL) IEEE Conferences, pp. 243 — 248, 2012.

Zohair Al-Ameen, Ghazali Sulong and Md. Gapar Md. Johar,
“A  Comprehensive Study on Fast image Deblurring

72



[28].

[29].

[30].

[31].

[32].

[33].

[34].

[35].

Techniques”, International Journal of Advanced Science and
Technology Vol. 44, July, 2012.

Emrah ONAT, “FPGA Implementation of Real Time Video
Signal Processing Using Sobel, Robert, Prewitt and Laplacian
Filters”, 25th Signal Processing and Communications
Applications Conference (SIU) IEEE Conferences, pp. 1 — 4,
2017.

Qi Yang, Dali Chen, Tiebiao Zhao, and YangQuan Chen,
“Fractional Calculus in Image Processing: A Review”,
Fractional Calculus and Applied Analysis, Vol. 19, No. 3,
2016.

Taresh Singh, and B. M. Singh, “Comparative Analysis of
Image Deblurring Techniques”, International Journal of
Computer Applications, Vol. 153, No. 5, November 2016.

LU YUAN, “Image Deblurring”, Ph.D Thesis, Hong Kong
University of Science and Technology, 2009.

Su Bolan, “Document Image Enhancement”, Ph.D Thesis,
National University of Singapore, 2012.

Jodo P. Oliveira, Mario A. T. Figueiredo, and José M.
Bioucas-Dias, “Parametric Blur Estimation for Blind
Restoration of Natural Images: Linear Motion and Out-of-
Focus”, IEEE Transactions on Image Processing, Vol. 23, No.
1, pp. 466-477, JAN 2014.

Xue-fen Wan, and Yi Yang, Xin Lin, “Point Spread Function
Estimation For Noisy Out-of-focus Blur Image Restoration”,
International Conference on Software Engineering and Service
Sciences, IEEE Conferences, pp. 344 — 347, 2010.

Sunghyun Cho, Yasuyuki Matsushita,and Seungyong Lee,

“Removing Non-Uniform Motion Blur from Images”,

73



[36].

[37].

[38].

[39].

[40].

[41].

[42].

International Conference on Computer Vision, IEEE
Conferences, pp. 1 -8, 2007;

Shengyang Dai and Ying Wu, “Motion from Blur”,
Conference on Computer Vision and Pattern Recognition,
IEEE Conferences, pp. 1 — 8, 2008.

Jong Min Lee, Jeong Ho Lee, Ki Tae Park, and Young Shik
Moon, “Image deblurring based on the estimation of PSF
parameters and the post-processing”, Optik - International
Journal for Light and Electron Optics, Vol. 124, No 15, pp.
2224-2228, August 2013.

Jian-Feng Cai, Hui Ji, Chaogiang Liu, and Zuowei Shen,
“Blind motion deblurring using multiple images”, Journal of
Computational Physics, Vol. 228, No 14, pp. 5057-5071,
August 2009.

Jiaya Jia, “Single Image Motion Deblurring Using
Transparency”, IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1-8, 2007.

Yang shen, and Lizhuang ma, “Detecting and Removing the
Motion Blurring from Video Clips”, I.J.Modern Education and
Computer Science, pp. 17-23, 2010.

Ryan Wen Liu, and Tian Xu, “A Robust Alternating Direction
Method for Constrained Hybrid Variational Deblurring
Model”, Cornell University Library, Computer Vision and
Pattern Recognition, 2013.

Uwe Schmidt, Carsten Rother, Sebastian Nowozin, Jeremy
Jancsary, and Stefan Roth, “Discriminative Non-blind
Deblurring”, IEEE Conference on Computer Vision and
Pattern Recognition, pp. 604 — 611, 2013.

74



[43].

[44].

[45].

[46].

[47].

[48].

[49].

[50].

R. C. Puetter, T.R. Gosnell, and Amos Yahil, “Digital Image
Reconstruction: Deblurring and Denoising”, Annual Review
of Astronomy and Astrophysics, Vol. 43, pp. 139-194, 2005.
Dr. Jassim M. , Dunia S. Tahir, and Dr.Fadhil A. Ali.
“Restoration of Noisy Blurred Image”, Basrah Journal for
Engineering Science No. 2, pp. 90-101, 2010.

Yu-Hua Fan, Xiao-Ming Wei, and Shi-Yin Qin, “Fast and
robust deblurring method with multi-frame images based on
PSF estimation and total variation optimization”, Optik -
International Journal for Light and Electron Optics, Vol, 124,
No. 16, pp 2285-2291, August 2013.

Hui Ji and Kang Wang, “A two-stage approach to blind
spatially-varying motion deblurring”, Computer Vision and
Pattern Recognition (CVPR), IEEE Conference, 2012.

Sudha Tiwari, Naazish Rahim, Sandeep Sahu, and Nikita
Sharma, “Multiple Blur Images Restoration- A Parallel
Computing Approach”, Fourth International Conference on
Computational Intelligence and Communication Networks, pp
374 - 377, 2012.

LE NGOC THUY, “Line-Field Based Adaptive Image Model
for Blind Deblurring”, Ph.D Thesis, National University of
Singapore, 2010.

Zhuzhong YANG, Fangnian LANG, Xiaohong YU,and Yu
ZHANG, “The Construction of Fractional Differential
Gradient Operator”, Journal of Computational Information
Systems Vol. 7, No. 12, pp. 4328-4342, 2011.

Shantanu Das, “Functional Fractional Calculus for System
Identification and Controls”, Springer-Verlag Berlin
Heidelberg, 2008.

75



[51].

[52].

[53].

[54].

[55].

[56].

[57].

[58].

[59].

Keith B. Oldham, And Jerome Spanier, “The Fractional
Calculus”, Academic Press, INC, 1974.

Ivo Petras, “Fractional-Order Nonlinear Systems”, Higher
Education Press, Beijing and Springer-Verlag Berlin
Heidelberg, 2011.

Changpin Li and Fanhai Zeng et al., “Numerical Methods for
Fractional Calculus”, CRC Press Taylor & Francis Group,
2015.

George A. Anastassio, and loannis K. Argyros, “Intelligent
Numerical Methods Il: Applications to Multivariate
Fractional Calculus”, Springer International Publishing
Switzerland, 2016.

Dumitru Baleanu, Kai Diethelm, Enrico Scalas, and Juan J.
Trujillo, “Fractional Calculus: Models and Numerical
Methods”, 2nd edition, New Jersey : World Scientific, 2016.
Blas M. Vinagre, Yang Quan Chen, and Ivo Petr, “Two direct
Tustin  discretization  methods  for  fractional-order
differentiator/integrator”, Journal of the Franklin Institute,
Vol. 340, No. 5, pp. 349-362, August 2003.

CH. Lubich, “Discretized Fractional Calculus”, Society for
Industrial and Applied Mathematics Vol. 17, No. 3, pp. 704-
719, May 1986.

Mohamad Adnan Al-Alaoui, “Discretization Methods of
Fractional Parallel PID Controllers”, IEEE International
Conference on Electronics, Circuits and Systems - (ICECS),
pp 327 — 330, 2009.

Mitchell Melanie, “An Introduction to Genetic Algorithms”,
MIT Press, 1998.

76



[60].

[61].

[62].

Goldberg D.E., “Genetic Algorithms in Search Optimization
and Machine learning”, Adison Wesley, New York, 1989.
Mazin Z. Othman, Emad A. Al-Sabawi, “Fractional Order
System Identification Based on Genetic Algorithms”, Journal
of Engineering Science and Technology, Vol. 8, No. 6, pp.
713 -722, 2013.

Slami Saadi, Abderrezak Guessoum, Maamar Bettayeb, “ABC
optimized neural network model for image deblurring with its
FPGA implementation”, Microprocessors and Microsystems,
Vol. 37, No. 1, pp. 52-64, February 2013.

77



Appendix A
Source Code

GA main program

format long;

clear;
warning off;
clc;

global Y;

o

oe

read image

o

filename=strcat (pwd, '\images\gray\lena.jpg');

f =imread(filename) ;

% Simulate a Blur

% Simulate a blurred image that you might get from camera motion. Create a
% point-spread function, |PSF|, corresponding to the linear motion across

% 9 pixels (|LEN=9]|), at an angle of 5 degrees (|THETA=5]). To simulate

oe

the blur, convolve the filter with the image using |imfilter].

LEN = 9;
Sigma = 5;
PSF = fspecial ('gaussian', LEN, Sigma);

g = conv2 (double(f), double(PSF), 'same');
g(find (g >255))=255;

LastGeneration 100;
Nn = 16 ;

o\°

Number of bits G 0.8 ,v 0.8
S [8 8] = [G V]

o

% Number of cromosomes

=
=}
Il
-
o
o
o

Prob = 0.4;

M Prob = 0.6 ;

X = CreatCromosomesX (Nn,Mn) ;
X(1l,:) = cromsoume (0.996, 0.828);
X(2,:) = cromsoume (0.996, 0.828);
X(3,:) = cromsoume (0.996, 0.828);
X(4,:) = cromsoume (0.996, 0.828);
X(5,:) = cromsoume (0.996, 0.828);
272=1[1;

Zz =01;

h = waitbar (0, 'Please wait..."');
for kk=1l:LastGeneration

Al



Fitn] = Fitness( X ,f,g );

error = max( Fitn )
Z = [Z;error];
if error >200
break;
end
X = RouletteSel( X , Fitn );
X = crossoverfun (X, Prob, kk) ;

for i = 1 :round(M Prob*Mn),

I = floor (rand* (Nn-1))+1;
X (i, :)=mutation (X (i, :),7);
end
3 Printing FOP
% [Fitn Index] = sort( Fitn);
$ c = Crm Val(1l,X(Index( size(X,1) ) ,:));

o

wailtbar (kk / LastGeneration)

end
[p 1] = max (Y (:,3));
G = Y(i,1)
v = Y(1i,2)

mask =DFD2(5,v);

dg = conv2 (g,mask, 'same') ;

3rX = g - G*dg;

rX=g + G*(g-dg);

Pl=psnr (double(f),qg,255) ;
subplot (1,3,1),imshow( £ ); title(sprintf('source image'));
subplot (
subplot (1,3,3),imshow( uint8(rX) ); title(sprintf ('enhanced

image=%g',p));

Fitness Function

function [ b ] =costfunMix( x )

SUNTITLED2 Summary of this function goes here
% Detailed explanation goes here

global X;

global DbX;

global Y;

G=x(1);

v=x(2);
mask =DFD2(5,vVv);
dg = conv2 (bX,mask, "same") ;
rX = bX + G* (bX-dg);
Pl=ntrop (rX,255) ;
bl = 1/P1;

A2

1,3,2),imshow(uint8( g) ); title(sprintf('blured image=%g',Pl));



P2=psnr (double (X), rX, 255) ;

b2 = 1/P2;
b = 99999;
if P1 > 7
if P2 > 75
b =1/(0.3*P1) + 1/(0.7*P2) ;
end
end
Y =[Y; Gv Pl P2];

% rX= imfilter( bX , mask );

end
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function [ mask ] = DFD2( N , v )

% The discrete form of fractional differentiation (DFD ) of order a

% presented byGrinwald "YiFeiPU-2"

% where:

% N : size of mask

% v : order

% Reference : Fractional Differential Mask: A fractional Differential-Based

o

Aproch for Multiscale Texture Enhancement.

n = N-2;

w(l) = (v/4 ) + ( v*2/8 ) ;

w(2) =1 - (v*2/2 ) - ( v*3/8 ) ;

w(3) = -(5*v/4) + (5*v"~3/16) + (v*4/16) ;

for k = 2 : n-2
w(k+2) = (1/gamma (-v))* ((gamma (k-v+1)/factorial (k+1))* w(l) +
((gamma (k-v) /factorial (k)) *(1-(v"2/4)))+
((gamma (k-v-1) /factorial (k=1))* ((-v/4)+(v"2/8))))

end
if N > 3
w(N-1) = (1/gamma (-v))* ((gamma (n-v-1)/factorial (n-1))*(1-(v"2/4)) +
((gamma (n-v-2) /factorial (n-2))* ((-v/4)+(v"2/8))))
w(N) = (1/gamma (-v))* ((gamma (n-v-1) /factorial(n—l))*((—v/4)+(vA2/8)))
end
L = zeros (N ,N) ;
L( (N+1)/2 , =) =w ;
R fliplr (L) ;
U = flipud(L)"' ;
D = flipud(U) ;
RU = diag(w) ;
RD = flipud(RU) ;
LU = fliplr (RU) ;

LD = flipud(LU) ;

mask =L + R+ U+ D+ RU + RD + LU + LD ;
mask mask ./sum(sum(mask)) ;
end

function [ out ] = AD( imgl , img2 )
%Compute Average Difference (AD) between images
%$imgl : Original Image
%$img2 : Restoration Imag
%Ref. ABC optimized neural network model for image deblurring with its FPGA
implientation.

[ M, N] = size( imgl ) ;

imgl = double( imgl ) ;

img2 = double( img2 ) ;

out = sum( sum( ( imgl - img2 ) ./ (M * N ) ) ) ;
end

function [ out ] = Img MSE( imgl , img2 )

%$Compute Mean Square Error ( MSE ) between images
%imgl : Original Image

%img2 : Restoration Imag
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$Ref. ABC optimized neural network model for image deblurring with its FPGA
implientation.

[ M, N] = size( imgl ) ;

imgl = double( imgl ) ;

img2 = double( img2 ) ;

out = sum( sum( ( imgl - img2 ).”2 ) ) / (M * N ) ;
end

function [ out ] = MD( imgl , img2 )
$Compute Maximume Difference ( MD ) between images

%$imgl : Original Image
%$img2 : Restoration Imag

%$Ref. ABC optimized neural network model for image deblurring with its FPGA
implientation.

[ M, N] = size( imgl ) ;

imgl = double( imgl ) ;

img2 = double( img2 ) ;
out = max (max(abs( imgl - img2 )));
end

function [ out ] = NAE( imgl , img2 )
%Compute Normalized Absolute Error (NAE) between images

%imgl : Original Image
%$img2 : Restoration Imag

%Ref. ABC optimized neural network model for image deblurring with its FPGA
implientation.

[ M, N] = size( imgl ) ;

imgl = double( imgl ) ;

img2 = double( img2 ) ;

out = ( sum( sum( abs( imgl - img2 ))) ) / (sum( sum( abs( img2 ) ) )) ;
end

function [ out ] = NCC( imgl , img2 )

$Compute Normalized Cross-Corelation ( NCC ) between images
%imgl : Original Image
%$img2 : Restoration Imag

%$Ref. ABC optimized neural network model for image deblurring with its FPGA
implientation.

[ M, N] = size( imgl ) ;

imgl = double( imgl ) ;

img2 = double( img2 ) ;

out = (sum( sum( ( imgl .* img2 ) ))) / ( sum(sum(imgl.”"2)) ) ;

end

function h = ntrop (x, n)

SNTROP Computes a first - order estimate of the ent ropy of a mat
rix .

% H = NTROP (X, N) returns the ent ropy of matrix X with N

% symbols . N = 256 1if omitted Dbut it must be larger than the

% number of unique values in X for accu rate results . The estimate

o\

assumes a statistically independent source characterized Dby the
relative frequency of occu rrence of the elements 1in X.

The estimate 1is a lower bound on the average number of bits per
unique value (or symbol ) when coding without coding redundancy

o oe

o
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error ( nargchk (1 , 2, nargin) ); % Check input arguments
if nargin < 2

n = 256 ; % Default for n.
end

x = double(x) ;

xh = hist(x( :), n) ;

xh = xh / sum(xh( :));

% Make input double

% Compute N - bin histogram

o\°

Compute probabilities

% Make mask to eliminate O's since 1log2 (0) = -inf
i = find(xh) ;
h = -sum (xh(1) .* log2 (xh(i ))); % Compute entropy

function [ PSNR out ] = PSNR( imgl , img2 )

$Compute peak signal-to-noise ratio ( PSNR in db) between images
%imgl : Original Image
%$img2 : Restoration Imag

[ M, N] = size( imgl ) ;

imgl = double( imgl ) ;
img2 = double( img2 ) ;

MSE = sum( sum( ( imgl - img2 ).”2 ) ) / (M * N ) ;
% R = max( max ( imgl ) ) ;
PSNR out = 10 * logl0 ( 25572 / MSE ) ;

end

function [ out ] = SC( imgl , img2 )

$Compute Structural Content ( SC ) between images
%imgl : Original Image
%$img2 : Restoration Imag

$Ref. ABC optimized neural network model for image deblurring with its FPGA
implientation.

[ M, N] = size( imgl ) ;

imgl = double( imgl ) ;

img2 = double( img2 ) ;
out = (sum( sum( ( imgl.”2 ) ) )) / (sum( sum( ( img2.72 ) ) )) ;
end
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Appendix B

Lena Image k=0.752383 , v=0.314

Filter Restored PSNR | Entropy MSE AD NCC SC MD NAE
blurred 80.790612 7.637887 | 0.000542 | 0.001128 | 0.992740 | 1.012031 | 0.284636 | 0.031078
modifide DFD2 85.360605 7.574223 | 0.000189 | -0.000028 | 0.998817 | 1.001449 | 0.178733 | 0.021010
Laplacian 85.116070 7.429287 | 0.000200 | -0.001039 | 1.003726 | 0.991646 | 0.153924 | 0.020823
LoG 83.416621 7.546372 | 0.000296 | 0.000139 | 0.998792 | 1.000980 | 0.232835 | 0.024322
Unsharp 85.116070 7.429287 | 0.000200 | -0.001039 | 1.003726 | 0.991646 | 0.153924 | 0.020823
Sobel 63.587622 5.222922 | 0.028465 | 0.000742 | 0.992300 | 0.890635 | 3.342715 | 0.168505
prewitt 66.084647 5.506724 | 0.016018 | 0.000839 | 0.992410 | 0.941101 | 2.567970 | 0.128824

Lena Image k=0.752383 , v=0.314
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Cameraman image K=0.2, v=0.7

blurred

modifide_DFD2

-

DFD2 Laplacian unsharp

EPSNR Entropy MSE AD ENCC @ESC mMD MENAE

B2

Sobel

Filter Restored PSNR | Entropy MSE AD NCC SC MD NAE
blurred 79.961626 | 7.071894 | 0.000656 | 0.001538 | 0.991878 | 1.014048 | 0.333785 | 0.024468
modifide DFD2 | 86.724179 |6.934150 | 0.000138 | -0.000304 | 1.001042 | 0.997418 | 0.163777 | 0.012385
DFD2 53.910048 | 7.078748 | 0.264287 | -0.453616 | 1.947099 | 0.259242 | 1.329982 | 0.498752
Laplacian 85.042641 | 6.785014 | 0.000204 | -0.001418 | 1.005435 | 0.988521 | 0.163123 | 0.013854
LoG 83.925065 | 6.890248 | 0.000263 | 0.000189 | 0.999456 | 1.000128 | 0.254538 | 0.014748
Unsharp 85.042641 | 6.785014 | 0.000204 | -0.001418 | 1.005435 | 0.988521 | 0.163123 | 0.013854
Sobel 60.958385 | 4.946218 | 0.052149 | 0.000228 | 0.989803 | 0.854947 | 3.275105 | 0.189710
prewitt 63.433008 | 5.193887 | 0.029497 | 0.000555 | 0.990321 | 0.918995 | 2.360802 | 0.145477
; Cameraman image K=0.2, v=0.7
8
7
6
5
4
3
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: Wl-_ - Hﬁﬂm - - . N .
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Flood image k=0.3, v=0.7

Filter Restored PSNR | Entropy MSE AD NCC SC MD NAE
blurred 67.401483 2.859984 | 0.011829 | 0.002612 | 0.976721 | 1.031494 | 0.840845 | 0.042121
modifide DFD2 68.878660 3.124310 | 0.008418 | -0.001096 | 0.990544 | 1.007564 | 0.808030 | 0.038102
DFD2 49.580798 3.122114 | 0.716144 | -0.795604 | 1.907365 | 0.264197 | 2.189519 | 0.498572
Laplacian 69.446296 2.816521 | 0.007387 | -0.002405 | 0.994606 | 1.000780 | 0.808350 | 0.036722
LoG 68.223840 2.983758 | 0.009788 | 0.000323 | 0.985797 | 1.015377 | 0.840418 | 0.039971
Unsharp 69.446296 2.816521 | 0.007387 | -0.002405 | 0.994606 | 1.000780 | 0.808350 | 0.036722
Sobel 56.365158 2.610431 | 0.150164 | 0.002612 | 0.976720 | 0.864379 | 3.655615 | 0.133830
prewitt 58.658782 2.686860 | 0.088553 | 0.002612 | 0.976720 | 0.931600 | 2.808835 | 0.107359

Flood image k=0.3, v=0.7
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Elephant image k=0.793 , v=0.287

Filter Restored PSNR | Entropy MSE AD NCC SC MD NAE
blurred 74.665128 7.632426 | 0.002221 | 0.002945 | 0.988582 | 1.018107 | 0.482551 | 0.034989
modifide DFD2 78.570698 7.598604 | 0.000904 | - 0.000027 | 0.997057 | 1.003845 | 0.293511 | 0.022771
DFDZ 51.845102 7.649161 | 0.425177 | -0.603162 | 1.966471 | 0.256407 | 1.151010 | 0.496051
Laplacian 78.989112 7.370486 | 0.000821 | -0.002709 | 1.004606 | 0.989042 | 0.266102 | 0.021352
LoG 76.695240 7.477546 | 0.001392 | 0.000366 | 0.996359 | 1.004134 | 0.395282 | 0.027626
Unsharp 78.989112 7.370486 | 0.000821 | -0.002709 | 1.004606 | 0.989042 | 0.266102 | 0.021352
Sobel 58.784261 5.436831 | 0.086031 | 0.000519 | 0.985042 | 0.857802 | 3.853230 | 0.171632
prewitt 61.192517 5.750737 | 0.049412 | 0.001126 | 0.985928 | 0.922299 | 2.961191 | 0.132922

Elephant image k=0.793, v=0.287
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Bikesgray image k=0.3, v=0.7

Filter Restored PSNR | Entropy MSE AD NCC SC MD NAE
blurred 79.043069 7.726895 | 0.000811 | 0.000806 | 0.992200 | 1.012416 | 0.450174 | 0.039206
modifide DFD2 83.333983 7.645812 | 0.000302 | -0.000360 | 1.000772 | 0.997222 | 0.300091 | 0.025879
DFD2 54.374432 7.670179 | 0.237486 | -0.434671 | 1.955831 | 0.257111 | 1.287592 | 0.500073
Laplacian 84.085234 7.546028 | 0.000254 | -0.000746 | 1.002600 | 0.993794 | 0.284949 | 0.023490
LoG 81.850115 7.616162 | 0.000425 | 0.000097 | 0.998198 | 1.001859 | 0.358445 | 0.029490
Unsharp 84.085234 7.546028 | 0.000254 | -0.000746 | 1.002600 | 0.993794 | 0.284949 | 0.023490
Sobel 61.015093 6.203829 | 0.051472 | 0.000200 | 0.991605 | 0.836739 | 2.130504 | 0.260134
prewitt 63.490153 6.462877 | 0.029112 | 0.000352 | 0.991753 | 0.906325 | 1.635491 | 0.200417
%0 Bikesgray image k=0.3, v=0.7
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calculator image k=0.3, v=0.7

Filter Restored PSNR | Entropy MSE AD NCC SC MD NAE
blurred 80.338649 6.672735 | 0.000601 | 0.000280 | 0.983257 | 1.029066 | 0.428060 | 0.039812
modifide DFD2 85.383511 6.493748 | 0.000188 | -0.000119 | 1.005509 | 0.987501 | 0.239548 | 0.024259
DFD2 57.867128 6.609769 | 0.106259 | -0.292772 | 1.892343 | 0.269503 | 1.467084 | 0.499514
Laplacian 85.460809 6.398776 | 0.000185 | -0.000259 | 1.008502 | 0.981724 | 0.215157 | 0.022976
LoG 84.693804 6.554018 | 0.000221 | 0.000034 | 0.999720 | 0.998640 | 0.313021 | 0.026501
Unsharp 85.460809 6.398776 | 0.000185 | -0.000259 | 1.008502 | 0.981724 | 0.215157 | 0.022976
Sobel 60.069220 5.403374 | 0.063997 | 0.000210 | 0.983139 | 0.656215 | 2.039721 | 0.321344
prewitt 62.571629 5.603583 | 0.035968 | 0.000228 | 0.983168 | 0.781414 | 1.555946 | 0.252077
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T2 image k=0.3, v=0.7

Filter Restored PSNR | Entropy MSE AD NCC SC MD NAE
blurred 71.151117 7.696560 | 0.004988 | 0.000691 | 0.971412 | 1.041811 | 0.513711 | 0.096139
modifide DFD2 74.524315 7.575623 | 0.002294 | -0.000438 | 0.993614 | 1.004958 | 0.411985 | 0.066555
DFD2 53.520786 7.595339 | 0.289069 | -0.475598 | 1.868819 | 0.268439 | 1.680386 | 0.500398
Laplacian 75.777750 7.439962 | 0.001719 | -0.000780 | 0.999193 | 0.995758 | 0.365977 | 0.058078
LoG 73.235956 7.558643 | 0.003087 | -0.000034 | 0.986495 | 1.016740 | 0.456417 | 0.076124
Unsharp 75.777750 7.439962 | 0.001719 | -0.000780 | 0.999193 | 0.995758 | 0.365977 | 0.058078
Sobel 57.905682 6.312300 | 0.105320 | -0.000540 | 0.970202 | 0.769094 | 2.490982 | 0.355072
prewitt 60.287675 6.493188 | 0.060857 | -0.000232 | 0.970505 | 0.870376 | 1.887599 | 0.284722

T2 image k=0.3, v=0.7
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Appendix C

Gaussian blur using sigma o = 1 and 11x11 kernel size
Deblurring using modified DFD2 K=0.5 and v=0.75

Original image Blurred image Restored image
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Gaussian blur using sigma o = 2 and 11x11 kernel size
Deblurring using modified DFD2 K=0.8 and v=0.88

Original image Blurred image Restored image
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Gaussian blur using sigma o = 0.1 and 11x11 kernel size
Deblurring using modified DFD2 K=0.7 and v=0.85

Original image Blurred image Restored image
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Gaussian blur using sigma o = 1 and 11x11 kernel size

Deblurring using modified DFD2 K=0.7 and v=0.85

Original image Blurred image Restored image
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Appendex-D

Samples of Google Forms

CENRCHNNWIE RS IR N PR RN LT MRENRED TR LIC [ I I

* Required

Q1\ Which of these image is the best quality? (shesi) saliaadl
APy

Q2\ Which of these image is the best quality? (s ) sallail
953 g2

sovEn  rim
Tl 8

GoMVERT

Q4\ Which of these image is the best quality? (shesi; sl
pAPESy

D1




Q5\ Which of these image is the best quality? shexs ) saliuzil
953 52"

Q6\ Which of these image is the best quality? hess ) salizd)
953 52"

-

O a O

Q7\ Which of these image is the best quality? hes ) salizadl
953 52"

Q8\ Which of these image is the best quality? shess ) sealindl
953 52"

D2



Q9\ Which of these image is the best quality? (shei ) saloail
?S.\J;*

Q10\ Which of these image is the best quality? (b salioail
953 9%

NP

O b

. R

I

Q12\ Which of these image is the best quality? shei ) saloail
953 2%

D3



125 responses

Q1\ Which of these image is the best quality?

125 responses

®-
@b

Q2\ Which of these image is the best quality?

125 responses

Qa
@b

Q3\ Which of these image is the best quality?

125 responses

®a
@b

Q4\ Which of these image is the best quality?

123 responses

L K]
@b

D4

kighlas

(s smallamifss n

b ) salanifss

S ) paluaifsy s

(bt ) palumifsa n



Q5\ Which of these image is the best quality?

125 responscs

®a
@b

Q6\ Which of these image is the best quality?

125 responses

®a
@b

Q7\ Which of these image is the best quality?

125 responses

®a
@b

Q8\ Which of these image is the best quality?

125 responises

®a
@b

90.4%

Q9\ Which of these image is the best quality?

125 respanses

D5

shes ) sealonifsy s

b ) salonifsy o

b ) sl i o

shen ) salonifs s

(st smalluanifia sa



Al

A b Alalall col)ghill Aai dagall aalsall e Dage Gypadll dalledl compal i

sl A ghme padtly gl Gt A1) Gaa) lsal sobe LS el ALyl o3n sl e gled)
Van ) Cusis ol dge)lsas abjiall @mS Joaliill e adiad da i) ey lsall L dae el
s gl Ayl All Bl e lelaall e Jpandl dnall G )lall aladiu) 5 LAl (Cittert
A BV 5950 Y Cauaall Bl o adiad dgall duejlall 3 deadiuall Caagd) Al o

-(Entropy) ,Lad 43lsdall jlaiay (PSNR) ¢l guall

padiuall Glgals acda Bubi el aranal 3 sk 40K (Matlab 2017b) alaasiul
Al 550 damaa layall g Loailis 43 lies da il Epaj sl ai) (GUI) dsa poss)
Ja g8 z i Glaatial cAae iy BaaS julaa aladinly (Sobel, Robert, Prewitt, and Laplacian)
oani VY0 (e ST il gpadl auiil) (m iyl o) e bil Jead (Google Forms)
O 153S) i) 4 cpSoliad) (alidN1 e %ANCE L] e ol s b 1Sl
alatin) 2 LS L gAY Bl e saga Juail daiiall dge) el lasiuly des il 3)seall
Normalized absolute error, structural content, normalized cross—correlation, )

peak signal to noise ratio, mean square error, entropy, average difference, and

JAga) lall WS sl & (maximum difference

&= a5 (Xilinx ISE design suite 14.5) (Sl 458 Glinays pladinl &
S i) & il slaie) s gall L Al galadl LS by 3 (Matlab) Sl

FPGA in the loop and ) Jlaiul GAY s (Xilinx system generator XSG) alaaiuly

78



& ua gkl dagl e asensill bl dabidd) G Cuilsa aaend (plill 5 . (ModelSim
number of ) C3lawall 23 50 %) 59%V0 5%°¢ 5% Ui dus e Jpasll

Aallas 40l&a) (M Jpa ol 235 DSP4A8A 2eludl el 5 10OB 5 LUTS s (registers
A,hall 8 1AY ox) oAy D) e sl 3 e o Y1 ARy Shall 3 Y YAX) YA diy g0

Gl il gl iy s i %

79



dz8lial) Adat )8

Lagugall Al 038 o Gallal 28 Zidlidlly @il Ll slmel Wil gl
Opean Gaal) ae) Ul Lty ((spaul) quadal A15Y Llia daaje il ddghas £ L)
Jiiy Dpas olias 385 2018/ /gty L ADle o) Loy Loligine (b (s S0

ileglaally Cipnlall dusia (alaia) 8 asle— jiualal saled

s il Fapal
el Lohae slee. s 1(capdal)ialll giac sdaalll Ly
2018/ [ Wl 2018/ [/ Wl

Fapa] Fapa
t(cariall) Balll giac :aalll giac
2018/ [ Ul 2018/ [ Ul

Al (ulaa )8
2018/ [ il saiaidl inday il AV dsnia L ulae adia)

&_I}.mlaj\ PIVERYY ua\.\a:t;\ Lé (.\JXS: )ﬁmw\ EJ\.@.& Ju\ C._\A u.uu\ ‘)‘)5}
icilaladlly

P Galas Gad) 2 palaadl ) a
2018/ |t 2018/ | s



Juasall Al

laig sy dwaia 448
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