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Abstract 

        In this work we discuss the challenge of distinguishing between 

close frequencies and angles of sources in spectral analysis, 

emphasizing the limitations of conventional methods like the Fourier 

transform, which requires a large amount of data and often results in 

poor resolution due to side lobes. It introduces the Direction of 

Arrival (DOA) estimation as a critical area for improvement and 

presents the Root Multiple Signal Classification (Root-MUSIC) 

method as a high-resolution alternative to traditional approaches like 

the Fast Fourier Transform (FFT). The study compares Root-MUSIC 

and FFT using various parameters, including the number of samples, 

spatial sampling interval, and wavelength, with both single and dual 

emitting sources. The findings highlight Root-MUSIC's superior 

accuracy and efficiency with fewer data requirements. The efficacy 

of high-resolution methods over the Fourier technique in accurately 

separating source angles is further supported by experiments 

conducted with ultrasonic transducers at different source angles, 

demonstrating the high-resolution approaches' advantage over 

traditional methods. Implementing the DOA estimation experiments 

have been performed through ultrasonic transducers. Each 

experiment involves different angles of sources. The experimental 

results have demonstrated that the high-resolution approaches 

outperformed the traditional approaches.  

      From the simulated and practical results, we conclude that the 

maximum error is as high as possible in the practical results and less 

than it in the noisy simulation results data, the least of which is 
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noiseless simulation resluts data, for the FFT method and the Root-

MUSIC method. This means that the best results are in noiseless 

resluts data, then in the results of noisy resluts data, and the worst 

results are the practical results in the results of one source and two 

emitting sources for all resluts.  
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for the second actual angle (Ɵ2=-400), 

SNR=10dB for DOA Estimation 

 

Figure (3.45) 

Percentage error of angle versus N for 

double (two) sources (Ɵ1=-150, Ɵ2=- 400)  

for the first actual angle (Ɵ1=-150), 

SNR=5dB for DOA Estimation 
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Figure (3.46) 

Percentage error of angle versus N for 

double (two) sources (Ɵ1=-150, Ɵ2=- 400)  

for the second actual angle (Ɵ2=-400), 

SNR=5dB for DOA Estimation 
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Figure (3.47) 

Percentage error of angle versus N for 

double (two) sources (Ɵ1=-100, Ɵ2=150)  

for the first actual angle (Ɵ1=-100), 

SNR=10dB for DOA Estimation 
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Figure (3.48) Percentage error of angle versus N for 

double (two) sources (Ɵ1=-100, Ɵ2=150)  

for the second actual angle (Ɵ2=150), 

SNR=10dB for DOA Estimation 
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Figure (3.49) 

Percentage error of angle versus N for 

double (two) sources (Ɵ1=-100, Ɵ2=150)  

for the first actual angle (Ɵ1=-100), 

SNR=5dB for DOA Estimation 
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Figure (3.50) 

percentage error of angle versus N for 

double (two) sources (Ɵ1=-100, Ɵ2=150)  

for the second actual angle (Ɵ2=150), 

SNR=5dB for DOA Estimation 
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Figure (4.1) Ultrasonic Ceramic Transducer 87 

Figure (4.2) Experimental Setup System Parts 89 

 

Figure (4.3) 

Magnitude (power (dB)) versus angle 

(degree) for a single-source (Ɵ = -100) 

using the FFT approach (N=11) 
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Figure (4.4) 

Percentage error of angle versus N for 

single source with Ɵ =-100 for DOA 

Estimation 
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Figure (4.5) 

Magnitude (power (dB)) versus angle 

(degree) for a single-source (Ɵ = -110) 

using the FFT approach (N=18) 
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Figure (4.6) 

Percentage error of angle versus N for 

single source with Ɵ=-110  for DOA 

Estimation 
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Figure (4.7) 

Magnitude (power (dB)) versus angle 

(degree) for a single-source (Ɵ = 60) using 

the FFT approach (N=13) 
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Figure (4.8) 

Percentage error of angle versus N for a 

single source with Ɵ =60  for DOA 

Estimation 
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Figure (4.9) 

Magnitude (power (dB)) versus angle for a 

double (two) sources Ɵ1=-29o,   Ɵ2=26o) for 

DOA estimation using the FFT approach 

(N=17) 
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Figure (4.10) 

Percentage error of angle versus N for 

double (two) sources (Ɵ1= -290 , Ɵ2= 260 )  

with the first actual angle (Ɵ1=-29o ) for 

DOA Estimation 
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Figure (4.11) 

Percentage error of angle versus N for 

double (two) sources (Ɵ1= -290 , Ɵ2= 

260) with the second actual angle (Ɵ2= 26o) 

for DOA Estimation 
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Figure (4.12) 

Magnitude (power (dB) versus angle for  a 

double (two) sources (Ɵ1= -100 , Ɵ2= 140 ) 

for DOA estimation using the FFT 

approach (N=25) 
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Figure (4.13) 

percentage error of angle versus N for 

double (two) sources (Ɵ1= -100 , Ɵ2= 

140) with the first actual angle (Ɵ1= -10o ) 

for DOA Estimation 
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Figure (4.14) 

percentage error of angle versus N for 

double (two) sources (Ɵ1= -100 , Ɵ2= 
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140) with the second actual angle (Ɵ2= 14o) 

for DOA Estimation 
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FFT Fast Fourier Transform 
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Chapter One 

Introduction 

1.1 Overview 

         In the current era, the fields of communication and signal 

processing are crucial, serving as the foundation of our digital 

existence by playing key roles in various sectors such as business, 

economy, education, and health[1]. Signal processing involves 

analyzing, modifying, and controlling different types of signals (like 

electromagnetic, images, and sound) through operations like storage, 

reconstruction, compression, and feature extraction[2]. These 

operations, which aim to enhance storage and transmission efficiency 

while preserving signal quality, rely on mathematical, and statistical 

methods, and hardware devices. Their effectiveness is assessed using 

various metrics tailored to the specific goals and operation types[3]. 

Additionally, array signal processing, a subset of signal processing 

that uses sensor or antenna arrays to gather signal source data, is 

highlighted for its widespread application in different fields such as 

medicine, astronomy, radar systems, sonar systems, positioning 

systems, etc[4][5].                                                                                    

Spectrum analysis focuses on identifying a signal's spectral 

components, a practice dating back to early studies by Pythagoreans, 

Newton, Bernoulli, and Prony on planetary motion, with Gauss' work 

hinting at principles of the Fast Fourier Transformation based on 

Fourier's 1807 work[6]. It's used in various applications, particularly 

for analyzing stationary stochastic data through autoregressive 
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processes[7]. Spectral analysis plays a key role in processing signals 

received from various objects like airplanes, medical imaging 

devices, and missiles, aiming to determine parameters such as signal 

direction, magnitude, speed, and range[8][9][10]. Signals, 

considered to be emitted by point sources, are categorized into 

narrowband and wideband based on their bandwidth[11]. Spectral 

estimation techniques, which aim to estimate a signal's spectral 

density from time samples, are crucial and vary as parametric, non-

parametric, or semi-parametric, depending on the application's nature 

and requirements[2].                                                                               

       Direction of Arrival (DOA) estimation, also known as Direction 

Finding, is a significant application in array signal processing used 

to determine the direction from which a signal arrives, using forms 

like acoustic or electromagnetic waves through antenna arrays or 

sensors[12]. This technique is crucial for tracking and locating signal 

sources in both military and civilian contexts, such as rescue 

operations, exploration, emergency response, and monitoring 

applications[13]. DOA estimation involves analyzing the sensor 

array's spatial spectrum with specific mathematical models, where its 

performance can be affected by data model errors and noise[14]. The 

literature highlights DOA's effectiveness in addressing various 

engineering challenges, including:                                                             

 Locating the direction relative to the array of a source. 

 Identifying multiple signal sources around a specific point of 

interest. 

 Employing in radio telescopes to pinpoint locations in the sky. 
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 Enhancing beamforming in wireless communications to lower 

data rate complexities. 

 Addressing direction of arrival issues alongside other 

technologies like Time Difference of Arrival (TDOA), Angle 

of Arrival (AoA), and Frequency Difference of Arrival 

(FDOA). 

 Improving accuracy in digital signal processing[12][15][16]. 

      DOA estimation utilizes various algorithms, broadly classified 

into classical, parametric, and subspace categories, with subspace 

algorithms like Pisarenko Harmonic Decomposition (PHD), Eigen 

Vector (EV), Multiple Signal Classification (MUSIC), and Root-

MUSIC being preferred for their high-resolution capabilities. 

Classical algorithms, though available, lack the efficiency of these 

modern approaches. This study aims to offer a detailed analysis and 

benchmarking to evaluate these algorithms, preparing to present the 

latest research in the subsequent section.                                                     

      The PHD algorithm, introduced in 1973 by Pisarenko, represents 

a high-resolution method based on eigenanalysis of the data model's 

autocorrelation matrix, designed to surpass classical method 

limitations[17]. However, PHD has its own weaknesses, prompting 

the development of the MUSIC algorithm by Schmidt to address 

these issues, noted for its super-resolution capabilities[18]. 

Additionally, Barabell suggested another variant of MUSIC, utilizing 

the polynomial's root in the MUSIC spectrum for Angle of Arrival 

(AOA) estimation. Unlike MUSIC, which typically presents results                      

in visual plots, Root-MUSIC outputs numerical results[19].                     
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1.2 Literature Review 

 The Direction of Arrival (DOA) techniques have been used 

since four decades ago for addressing different kinds of issues such 

as estimating the DOA of signals, reducing the power transmitted, 

etc. One of the earliest studies was performed by Mahapatra [20] in 

1980. He suggested an approach that was based on a mobile direction 

finder for the passive location of the radio emitter. A vehicle was 

used to carry the direction finder.. A year after, Klose and Skudera 

[21] proposed a technique that accurately measured the information 

obtained from frequency and angle of arrival. The technique, then, 

has been utilized in high-density environments for identifying 

parameters emitters. Nine years later, using a basic Bayesian 

approach, Farrier. and D.R [22] developed a useful direction-of-

arrival (DOA) estimator in 1990. However, the threshold for this 

estimator is substantially lower than that of MUSIC, making it nearly 

identical to this approach. Two years after, Wong [23] estimated the 

DOA of signals considering its noise with an unknown covariance 

matrix. The author tested data projection on the noise subspace. The 

strength of the approach is that there is no need to have the noise 

covariance matrix known.  

 In 2000, Larsson and Stoica [24] investigated the case when 

having sensors failure before the completion of the measurement 

process. The authors have found the direction of arrival DOA 

estimation with both covariance matching and MUSIC algorithm. 

The authors showed that the covariance matching technique can use 

the information on the array covariance matrix estimation accuracy. 
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The findings of the experiments on their method reflected efficient 

performance gain.  

 When a large number of sources (M) are used in the estimation 

of the direction of arrival (DOA), the number of sensors (N) that can 

be used to determine the DOA can be exceeded, as was the case in 

the paper by Araki, et al. [25] (2006). Two uniform linear arrays 

(ULAs) were used to solve the challenge of associating multiple 

targets' estimated arrival angles (DOAs) with each other in a study 

published in (2008), by Bai et al. [26]. Rejfek et al. [27] offered a 

comparison of parametric power spectrum density approaches for 

application in meteorological radar, and used pulses of the pulse 

radar in it for frequency modulation in their article in (2015). Auto 

regression (AR) and Eigen Vector (EV) have both been used in this 

study. 

 Another study performed by Yuan [28] proposed an accurate 

and fast DOA estimation for multi target in “Additive White 

Gaussian Noise”. The proposed method used two highest magnitudes 

(DFT) coefficients of the input and two of their “associated 

neighboring bins”. The authors also analyzed the mean square errors. 

The results showed the high efficient of the proposed approach under 

several DOA estimators. Zhang et. [29] suggested a fast DOA 

estimation for single channel antenna array. The suggested approach 

used spatial FFT that considers the switching time into operation 

aiming to construct a new transformation function. This function was 

used to directly operate spatial Fast Fourier Transformation (FFT) to 
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the single-channel antenna array sampled data. The proposed method 

was proved to be highly efficient. 

 Researchers and developers from worldwide institutions and 

companies have significantly contributed to this field. The study of 

Shaghaghi and Vorobyov [30] proposed a high-resolution DOA 

estimation approach that was based on using root MUSIC algorithm. 

The aim of the algorithm was to improve the quality of DOA 

estimation when having small sample size. The main idea behind the 

approach was identifying undesirable phenomenon in the sample 

covariance matrix that causes perturbations. The metrics used in 

evaluating the proposed approach were MSE and detection rate. The 

simulation results showed the efficient performance of the proposed 

approach.  Another study performed by Vasylyshyn [31] used root-

MUSIC approach for DOA estimation. The approach involved 

resampling procedure by adding some noise “pseudo noise”. The 

root-MUSIC algorithm polynomial was used as alternative of 

eliminating of the entire estimator. Yan et al. [32] developed a low-

computational cost approach using root-MUSIC for DOA 

estimation. The developed approach aimed to reduce the 

computational cost consumed in the estimation process. The 

approach utilized eigenvalue decomposition for extracting real noise 

subspace. The approach showed high performance in terms of the 

mean squared error. 

 Furthermore, other DOA estimation algorithms such as 

“Pisarenko Harmonic Decomposition (PHD)” were examined in the 

literature. For instance, the work of Kamil et al. [33] (2021) achieved 



 
 
 

 ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ ( 7 ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ)
 

a comprehensive and evaluative study on PHD, MUSIC, and other 

DOA estimation algorithms. The results reflected the high efficiency 

of the MUSIC algorithm compared to PHD and other estimation 

algorithms. This was because MUSIC requires fewer number of 

antennas than Pisarenko and other algorithms to address the “Angle 

of Arrival” of the received signals. 

 In 2021, Fathtabar et al. [34] proposed an Eigen-Structure 

approach for DOA estimation. The strength of their proposed 

approach is that it does not require prior-knowledge about the source 

angle estimation. Their approach transformed the covariance matrix 

to reference frequency. Then, they formed a “Hankel Matrix” for 

each “Signal Subspace Eigenvector”. Many experiments were 

performed and the results under different conditions reflected an 

efficient performance compared to other approaches in the literature 

under a variety of conditions. Vesa [35] used root-MUSIC algorithm 

for DOA estimation. The author showed that root-MUSIC was able 

to improve the performance of the estimation. The study also showed 

that root-MUSIC can be efficiently used with smart antennas since it 

adds the possibility of user separation. 

 The literature includes a lot of works that are able to deal with 

different kinds of problems. For example, the problem of time-

varying DOA in “Uniform Linear Array ULA” was investigated by 

one of the most recent studies performed by Zhao e al. [36] in 2021. 
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1.3   Research Objectives  

This study is dedicated to the exploration of advanced Direction 

of Arrival (DOA) estimation methodologies, with a particular 

emphasis on the Root-MUSIC algorithm. These methodologies are 

distinguished by their high-resolution characteristics and their 

foundation in eigenanalysis. A comparative analysis is conducted to 

evaluate the performance of these contemporary techniques against 

conventional methods, notably the Fast Fourier Transform (FFT). 

The investigation encompasses several critical areas: 

 Analyzing auto-covariance and auto-correlation processes to 

elucidate the procedures for extracting Eigenvalues and 

Eigenvectors from the auto-correlation matrix. 

 An extensive examination of the Root-MUSIC method as a 

contemporary approach to DOA estimation. 

 The application of these methodologies across various 

scenarios to assess their efficacy and validate the findings. 

 Benchmarking the results obtained to formulate 

recommendations regarding the application efficacy of the 

explored methodologies. 

 Verification of the applicability of these findings through 

experiments involving ultrasonic waves. 

The research aims to offer a comprehensive evaluation 

framework and actionable insights for the implementation of DOA 
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estimation techniques, thereby enhancing their applicability and 

accuracy in practical scenarios. 

1.4 Study Organization 

Chapter one (Introduction with Literature Review): tries to explain 

most of the different algorithm methods for the Direction of Arrival 

(DOA) Estimation. 

Chapter two (Principles of Direction of Arrival (DOA) Estimation): 

covers the required background on the topics considered in this 

study.  

Chapter three (DOA Methods): presents the research method 

followed in this study including simulation with and without noise 

data. 

Chapter four (Experimental Results): contains the results of the 

experiments of the implemented approaches. 

Chapter five (Conclusions): contains some conlusing the study has 

come up with in terms of the approaches considered providing 

general recommendations. The chapter also states the future works 

that can be done by other researchers and the area of development. 

  



 
 
 

 ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ ( 10 ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ)
 

Chapter Two 

Theoretical Background 

2.1 Overview 

          In this chapter the required theoretical background about the 

topics considered in this study is presented. Descriptions of the non-

parametric and high-resolution methods as well as an explanation 

about autocorrelation matrices, eigenvectors, and other algorithms    

required in this study are also presented. Also, estimation approaches 

will be elaborated in detail such as the modern (parametric) 

Autoregressive (AR) method, EV (Eigenvectors), PHD (Pisarenko 

Harmonic Decomposition), MUSIC (Multiple Signal Classification 

Algorithm), and Root-MUSIC. 

2.2 Frequency Estimation 

         Power spectral estimation is considered an important area in 

Digital Signal Processing (DSP). A spectrum reflects the relationship 

between the frequency and the magnitude, which can be graphically 

represented as a plot. It has many different applications, for instance, 

in speech recognition, it can be utilized in reducing the bandwidth of 

a speech [37]. Moreover, it is widely used in modern radar systems 

for tracking and monitoring static and mobile objects [38]. Signals 

are categorized into periodic and random; the former can be predicted 

since its behavior is almost known, while it is difficult to predict the 

behavior of the second type “the random”. Random signals are also 

called random processes s(n) and have two types; stationary, the 
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variance and mean of a stationary random process are both constant, 

meaning they don't change with time when its order is O such that 

s(n) and s(n+k) have the same “Oth-order joint density functions”, 

while if O>0 it is considered a non-stationary in “Strict Sense”, the 

means, variances, and covariances of data points are frequently non-

stationary or fluctuate with time [39]. A random process may be also  

termed “Ergodic” when the statistical averages are able to be defined 

using a single sample function [40]. Furthermore, there is another 

form of stationery that is called “Wide Sense Stationary (WSS)”, if 

both the mean function and the correlation function of a random 

process remain unchanged when time shifts the process is referred to 

as weak-sense stationary, or wide-sense stationary (WSS), when 

process means is constant (R(n)= R) and process variance are finite 

(R(0)<). 

The Fourier transform of  the signal s(n) is [63]: 

                         𝑆(𝜔) = ∑  𝑠(𝑛) 𝑒−𝑗𝜔𝑛
𝑛=−                                              (2.1) 

or, equivalently: 

                        𝑆(𝑓) = ∑  𝑠(𝑛) 𝑒−𝑗2𝜋𝑓𝑛
𝑛=−                                             (2.2)        

      The WSS autocorrelation sequence of a discrete signal s(n) can 

provide a “time-domain description” of the 2nd order moment of the 

signal (process). The autocorrelation of the signal s(n) is given as 

follows [41]: 

                       𝑟𝑠𝑠(𝑘) = ∑ 𝑠∗(𝑛)
𝑛=− 𝑠(𝑛 + 𝑘)                                     (2.3) 

It has a Fourier transform: 
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                             𝑃𝑠𝑠(𝜔) =  ∑ 𝑟𝑠𝑠(𝑘)
𝑘=− 𝑒−𝑗𝑘𝜔                                   (2.4) 

The formula above is called “Power Spectrum” or “Power Spectral 

Density” of the process. The autocorrelation sequence is determined 

by the inverse DT-FT [41]: 

                          𝑟𝑠𝑠(𝑘) =
1

2𝜋
∫ 𝑃𝑠𝑠(𝑒

𝑗𝜔)
𝜋

−𝜋
𝑒𝑗𝑘𝜔𝑑𝜔                          (2.5) 

Also 𝑃𝑠𝑠(𝜔) can be written as: 

                            𝑃𝑠𝑠(𝜔) =  |𝑆(𝜔)|
2
                                               (2.6) 

                           𝑃𝑠𝑠(𝜔) =  |∑ 𝑠(𝑛)𝑒−𝑗𝑛𝜔
𝑛=− |

2
                                 (2.7) 

        The power spectrum estimation in the frequency domain is 

equivalent to the autocorrelation estimation in the time domain. The 

ergodic process autocorrelation is formalized as follows [41]: 

                   𝑟𝑠𝑠(𝑘) = lim
𝑁→

{
1

2𝑁+1
∑ 𝑠(𝑛 + 𝑘)𝑠∗(𝑛)𝑁

𝑛=−𝑁 }                    (2.8) 

The power spectrum estimation is directly obtained when the s(n) is 

known for all n. However, the problem in the above formulas lies 

on two main issues, as follows: 

- The data cannot be unlimited. 

- Noisy or corrupted signals may exist, which lead to have 

incorrect data. 

 Therefore, the estimation of the spectrum is performed on a 

limited (finite) number of noisy measurements s(n). It should be 

mentioned that spectrum estimation aims to, using a finite dataset, 

illustrate the distribution of power over signal frequency, to 
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characterize the power encoded in the signal's distribution across 

frequencies, spectral estimation is utilized. A signal's power spectrum 

becomes more condensed the more correlated or predictable it is [42]. 

The spectrum estimation can be performed using two kinds of 

approaches; classical (non-parametric) and modern (parametric) and 

subspace is as described in the following sections. 

2.2.1 Classical (Non-Parametric) Methods 

      This kind does not need assumptions on the data generation 

approach. Using a given data, the first step starts with estimating the 

“autocorrelation sequence” of the random process. The estimation is 

performed using the FT of the previous step. As mentioned, the 

autocorrelation ergodic process s(n) is evaluated by a limited (finite) 

interval. The estimation can be performed using the following 

formula [43]: 

                             𝑟̂𝑠𝑠(𝑘) =
1

𝑁
∑ 𝑠(𝑛 + 𝑘)𝑠∗(𝑛)

𝑁−1

𝑛=0
                       (2.9) 

       The non-parametric estimation is considered a periodogram that 

is simple to calculate and the power spectrum resolution is limited to 

low-scale data. In this context, a resolution is crucial when it comes 

to performance analysis of spectral estimation and reflects the ability 

in distinguishing spectral features [44]. The literature includes a lot 

of approaches that have modified the periodogram aiming to 

enhancing its statistical features (e.g., Welch, Bartlett, and 

Blackman-Tukey methods).  
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        According to the previous description and equations, the values 

outside the interval [0, N-1] of s(n) are excluded from Equation 2.9 

and can be re-formalized as follows: 

                     𝑟̂𝑠𝑠(𝑘) =
1

𝑁
∑ 𝑠(𝑛 + 𝑘)𝑠∗(𝑛)

𝑁−1−𝑘

𝑛=0
                        (2.10) 

Where k=0 to N-1 and by taking the DT-FT of 𝑟̂𝑠𝑠(𝑘), the power 

spectrum estimate is called “Periodogram” as follows: 

                     𝑃̂𝑝𝑒𝑟(𝑒
𝑗𝜔) = ∑ 𝑟̂𝑠𝑠(𝑘)𝑒−𝑗𝑘𝜔

𝑁−1

𝑘=−𝑁+1
                       (2.11) 

The above formula can be directly obtained in terms of s(n) as 

follows: 

       𝑃̂𝑝𝑒𝑟(𝑒
𝑗𝜔) =

1

𝑁
 |∑ 𝑠(𝑛) 𝑒−𝑗𝜔𝑛

𝑁−1

𝑛=0

|

2

=
1

𝑁
 |𝑆(𝑤)|

2
               (2.12) 

      𝑃̂𝑝𝑒𝑟(𝑒
𝑗𝜔) =

1

𝑁
 𝑆(𝜔) 𝑆∗(𝜔) =

1

𝑁
 |𝑆(𝜔)|

2
                           (2.13) 

    where S(ω) is the DT-FT of data sequence s(n) with N points. 

        Regardless of its simplicity, the periodogram needs large-scale 

data for obtaining good “Frequency Resolution” [45][46]. However, 

this method struggles with what has been called in the literature 

“Spectral Leakage”, spectrum leaking is the term used to describe 

this blending of data. When doing transforms over data that contains 

a noninteger period signal, you can minimize spectral leakage by 

using a technique known as windowing. By using windowing, a 

signal is multiplied by a vector that depicts a smooth curve with 
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boundary values close to or equal to zero, which is due to the 

windowing technique involved [47][48]. 

2.2.2 Autoregressive (AR) model and power spectrum 

       Parametric approaches are used to describe the data s(n) time 

series, which is represented by the rational assembly and two-step 

spectrum estimation procedure, as the output of the linear system 

[49],[50]. In AR modeling, the time history of a signal is used to 

extract useful information from the signal. To compute a time series 

power spectrum density function, the AR model can be used and then 

application of the DFT is made. The power spectrum provides 

information on the frequency output of a time series [51],[52]. The 

features of stationary stochastic systems are defined by AR models. 

The problems that best suit parametric algorithms have well-defined 

and predictable input data. The most popular parametric method is 

the AR method. The data in the AR technique can be represented as 

the result of a discrete causal filter, all poles, with white noise as the 

input. Each EEG signal sample is described by the autoregressive 

(AR) model as a linear mixture of earlier samples. AR model 

parameters and variance are used to generate the power spectrum and 

maximum covariance function [53]. The AR model predicts the 

present values of a time series based on its historical values. 

Autocorrelation is a process that will demonstrate the potential 

dependency on previous values [52]. 

       Autocorrelation is the coupling of a data sample s[n] with a more 

advanced version of itself. Autocorrelation is the average of a data 
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sample's s[n] outputs with a version of itself that has been advanced 

by a lag time [52]. 

 Autocorrelation is described by the equation [52]: 

                        𝑟𝑠𝑠[𝑘] =  
1

𝑁
∑ 𝑠[𝑛]𝑠[𝑛 + 𝑘]𝑁−𝑘

𝑛=1                            (2.14) 

In this case, 𝑟𝑠𝑠[𝑘]is the amount of autocorrelation at sample delay k, 

and N is the total number of observations.   

      The AR model [52],[54] can be viewed as a series of 

autocorrelation functions. Time series modelling is based on the 

assumption that current data points contain more information than 

past data points, and that each series value can be calculated as a 

weighted sum of the same series' prior values plus an error word 

“known as AR time series modelling”. AR's model is characterized 

by the following: 

                           𝑠[𝑛] = ∑ 𝑎𝑖 𝑠[𝑛 − 𝑖] + 𝑒[𝑛]𝑀
𝑖=1                         (2.15) 

One-step prediction error, s[n] is the value in the selected time 

series,  𝑎1, 𝑎𝑀 is the weighting coefficient (predictor)., and M is the 

order of the sequence (forecasting the present value based on a 

number of prior values), and e[n] is the difference between the 

expected value and the actual value. 

2.2.3 Subspace Methods (High-Resolution Techniques) 

        One of the most crucial processes in the signal processing field 

is estimating the problem’s parameters of a particular signal. This is 

important since high-resolution DOA estimation is used in a variety 
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of applications such as radar systems, sonar systems, navigating 

systems, tracking systems, etc. The estimation of high-resolution 

frequency is termed “Super Resolution” technique, which is useful in 

many contemporary applications. One of the most common 

techniques is “Maximum Likelihood (ML)” [55] and “Maximum 

Entropy (ME)” [56] are (super) high resolution methods. However, 

these techniques have limitations related to sensitivity when 

estimating parameters is attempted. 

       Eigenanalysis is widely used in the literature for different 

applications including parameters, estimation of signals. The early 

literature showed involving eigenanalysis in estimating parameters 

such as in the works of Pisarenko [17] and Schmidt [18]. 

        One of the most widely used high-resolution algorithms is Root-

MUSIC (Multiple Signal Classification). The literature showed that 

it is the most efficient and promising algorithm due to many reasons. 

For instance, it is characterized by eigenvectors that enable splitting 

between the noise subspace and signal subspace, which is useful in 

many applications [57]. 

       The Eigen-based analysis are utilized to approximate the 

characteristics of the sinusoidal signal. Two subspaces can be created 

using Eigen-analysis to separate the Eigenvector and Eigen-values of 

the autocorrelation matrix of the noise signal [58]: 

1. Signal subspace: An important part of the signal 

dimensionality is made up of the primary Eigenvectors that are 

linked to the highest Eigenvalues. 
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2. Noise subspace : The smallest Eigenvalues indicated the 

noise's dimensionality. 

        The Eigen-vector approach is able to estimate complex 

exponential frequencies in such a noise amongst many other methods 

[59],[60]. 

2.2.3.1 Matrices 

       Multiplying and adding numbers and other abstract quantities 

can be done using a matrix, which is a rectangular table with a fixed 

number of elements (or entries). Matrices are used to define linear 

equations, maintain track of linear transformation coefficients, and 

record data dependently on numerous factors. The study of matrices 

is known as matrix theory.' Additionally, matrices are a crucial notion 

in linear algebra because they may be added, multiplied, and 

deconstructed.  

       A matrix is a data structure that is able to contain different data 

types of different dimensions. For instance, a matrix of (m x l) has n 

rows and m columns as shown in (2.16): 

                         𝑩 = {𝑏𝑖𝑗} = [

𝑏11 𝑏12 …… 𝑏1𝑚

𝑏21 𝑏22 …… 𝑏2𝑚

… … …
𝑏𝑛1 𝑏𝑛2 …… 𝑏𝑛𝑚

]                   (2.16) 

       If m=l, the matrix is said to be a squared matrix because the 

number of rows equals the number of columns. The transpose matrix 

of B is termed BT
 with a size of m x l, which is obtained by 

exchanging the M’s columns with its rows such that bij becomes bji. 
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Moreover, for squared matrices, when a matrix is equal to its 

transpose, it is called “Symmetric Matrix” (B=BT) [60]. The 

“Hermitian Transpose” of a complex matrix is the complex 

conjugate transpose such that BH=(B*)T=(BT)*. It should be 

mentioned that a matrix is called “Hermitian” when a “Square 

Complex” value equals its Hermitian transpose. 

2.2.3.2 Autocorrelation Matrices [60, 62, 63] 

      Signals in communication systems may include environment-

based noise that is originated from a different source, which makes 

the noise uncorrelated. In the context of autocorrelation matrices, the 

correlation sequence for s(n) can be formulated as follows: 

                           𝑟𝑠𝑠(𝑘) = ∑ 𝑠(𝑛 − 𝑘)𝑠∗(𝑛)


𝑛=−
                        (2.17) 

when (Length(s(n)=N), it can be reformulated as follows: 

  

                            𝑟̂𝑠𝑠(𝑘) = ∑ 𝑠(𝑛 − 𝑘)𝑠∗(𝑛)
𝑁−1

𝑛=0
                         (2.18) 

Then, the autocorrelation sequence can be represented as follows: 

Let (s) be a data sequence (samples), then: 

                   𝒔 = [𝑠(0), 𝑠(1), 𝑠(2), … . , 𝑠(𝑁 − 1)]𝑇                       (2.19) 

The correlation matrix becomes: 

                              𝑽𝑦 = 𝐸{𝒔𝒔𝐻}                                                        (2.20) 
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       This equation determines the “Degree of Correlation” of data 

signals, and the term E{} represents the “Statistical Expectation”. 

The symbol H reflects the transpose of the complex conjugate. Now, 

the term ssH is the N×N  can be represented as follows: 

𝒔𝒔𝐻 = [

𝑠(0)𝑠∗(0) 𝑠(0)𝑠∗(1) … 𝑠(0)𝑠∗(𝑁 − 1)

𝑠(1)𝑠∗(0) 𝑠(1)𝑠∗(1) … 𝑠(1)𝑠∗(𝑁 − 1)
… … … …

𝑠(𝑁 − 1)𝑠∗(0) 𝑠(𝑁 − 1)𝑠∗(1) … 𝑠(𝑁 − 1)𝑠∗(𝑁 − 1)

] 

……(2.21) 

Considering the aforementioned description, the autocorrelation 

matrix leads to product the N×N  becomes: 

𝑽𝑦 = 𝐸{𝒔𝒔𝐻} = 

[
 
 
 
 

𝑟𝑠𝑠(0) 𝑟𝑠𝑠
∗(1) 𝑟𝑠𝑠

∗(2) …… 𝑟𝑠𝑠
∗(𝑁 − 1)

𝑟𝑠𝑠(1) 𝑟𝑠𝑠
∗(0) 𝑟𝑠𝑠

∗(1) …… 𝑟𝑠𝑠
∗(𝑁 − 2)

𝑟𝑠𝑠(2) 𝑟𝑠𝑠
∗(1) 𝑟𝑠𝑠

∗(0) …… 𝑟𝑠𝑠
∗(𝑁 − 3)

… … …… …… …
𝑟𝑠𝑠(𝑁 − 1) 𝑟𝑠𝑠(𝑁 − 2) 𝑟𝑠𝑠(𝑁 − 3) …… 𝑟𝑠𝑠(0) ]

 
 
 
 

     (2.22) 

2.2.3.3 Eigenvectors and Eigenvalues [59, 62] 

        Eigenvalues and Eigenvectors are used to extract useful 

information from matrices. Eigenvectors can be also used in 

distinguishing noise subspace and signal subspace. This  

decomposition is  effectively used in Root-MUSIC algorithms. 

Given that B is a matrix of dimension (m x m), then; 

                                           𝑩𝒖 = λ𝒖                                                   (2.23) 
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Where λ is a constant value. The above equation is re-formalized to 

be a set of homogeneous linear as follows: 

                                    (𝑩 − λ𝑰)𝒖 = 0                                               (2.24) 

For a non-zero vector, the terms (𝑩 − λ𝑰) should not have an inverse 

(singular matrix). For this reason, the determinant should be: 

                                    𝑑𝑒𝑡(𝑩 − λ𝑰)𝒖 = 0                                         (2.25) 

      The above equation includes the features of B and its n roots. The 

values of λi are the eigenvalues of the matrix B for i=1, 2, 3, …, n, 

and for each of which, the matrix will be singular and there exists a 

non-zero vector (at least one). Therefore, Equation 2.25 is re-

formalized and becomes as follows: 

                                      𝑩𝒖𝒊 = λ𝑖𝒖𝒊                                                    (2.26) 

The Eigenvectors in the above equation are represented by ui for 

matrix B. For any given ui, αui is also an eigenvector for any α 

(constant). The eigenvector can be normalized as || ui ||=1 

2.2.3.4 Eigendecomposition of Autocorrelation Matrices 

[60, 63] 

       As shown in the previous sections, estimating the spectrum can 

be performed using a variety of methods based on some parameters. 

Other methods may use the characteristics of the process in addition 

to the assumed parameters. In a practical context, for the 

autocorrelation matrix, these methods perform 

“EigenDecomposition” into noise and signal subspaces. Given that a 
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single frequency and complex exponential with white noise (equal 

intensity at different frequencies): 

                            𝑠(𝑛) = ℎ exp(𝑗𝑛𝜔1) + 𝑞(𝑛)                               (2.27) 

The complex exponential amplitude is represented by h1 and the 

white noise is represented by q(n). The white noise variance is q
2, 

the s(n) autocorrelation sequence can be formalized as follows: 

                𝑟𝑠𝑠(𝑘) = 𝑃1 exp(𝑗𝑘𝜔1) + 𝑞
2𝛿(𝑘)   

𝑘 = 0,±1,… . . , ±(𝑀 − 1)                              …… . (2.28) 

where P1=|h|2, which is the complex exponential power. Now, the 

autocorrelation matrix Vy of dimension M x M is the sum of the 

signal-based matrix (Vs) and noise-based matrix (Vq) as follows: 

                                      𝑽𝑦 = 𝑽𝑠 + 𝑽𝑞                                                (2.29) 

The Vs matrix is as follows: 

𝑽𝑠 = 𝑃1

[
 
 
 
 

1 𝑒−𝑗𝜔1 𝑒−𝑗2𝜔1 …… 𝑒−𝑗(𝑀−1)𝜔1

𝑒𝑗𝜔1 1 𝑒−𝑗𝜔1 …… 𝑒−𝑗(𝑀−2)𝜔1

𝑒𝑗2𝜔1 𝑒𝑗𝜔1 1 …… 𝑒−𝑗(𝑀−3)𝜔1

… … …… …… …
𝑒𝑗(𝑀−1)𝜔1 𝑒𝑗(𝑀−2)𝜔1 𝑒𝑗(𝑀−3)𝜔1 …… 1 ]

 
 
 
 

    

                                                                                         ……(2.30) 

The noise matrix is diagonal and the signal matrix has a rank of one: 

                                    𝑽𝑞 = 𝑞
2𝑰                                                       (2.31) 

The above equation is considered full-rank; and: 

                     𝒂1 = [1, 𝑒𝑗𝜔1, 𝑒𝑗2𝜔1, … . , 𝑒𝑗(𝑀−1)𝜔1]
𝑇

                    (2.32) 
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Then Vs is a signal vector of dimension M in terms of Equation (2.32) 

which becomes: 

                                        𝑽𝑠 = 𝑃1𝒂1𝒂1
𝐻                                        (2.33) 

Based on the rank of Vs and the non-zero Eigenvalue, then: 

       𝑽𝑠𝒂1 = 𝑃1(𝒂1𝒂1
𝐻)𝒂1 = 𝑃1𝒂1(𝒂1

𝐻𝒂1) = 𝑀𝑃1𝒂1             (2.34) 

The MP1 is the non-zero Eigenvalue and the Eigenvector is a1. The 

Vs is “Hermitian”, the rest of Eigenvectors “u2, u3, u4, …, um” are 

orthogonal to a1 as follows: 

             𝒂1
𝐻𝒖𝑖 = 0;       𝑤ℎ𝑒𝑟𝑒 𝑖 = 2, 3, 4, … ,𝑀                           (2.35) 

when the λ𝑖
𝑠
 are the Eigenvalues of Vs,  the following formula is 

obtained: 

 𝑽𝑦𝒖𝑖 = (𝑽𝑠 + 𝑞
2𝑰)𝒖𝑖 = λ𝑖

𝑠𝒖𝑖 + 𝑞
2𝒖𝑖 = (λ𝑖

𝑠 + 𝑞
2)𝒖𝑖  (2.36) 

The Eigenvector of Vs is similar in Vy: 

                                  λ𝑖 = λ𝑖
𝑠 + 𝑞

2                                             (2.37) 

The maximum Eigenvalues in Vy is as follows: 

                               λ𝑚𝑎𝑥 = 𝑀𝑃1 + 𝑞
2                                            (2.38) 

The above description is extended to M-frequencies in white noise  

and M > p, then the correlation sequence becomes as follows: 

                𝑟𝑠𝑠(𝑘) = ∑ 𝑃𝑖

𝑝

𝑖=1
exp(𝑖𝑘𝜔1) + 𝑞

2𝛿(𝑘)                     (2.39) 

The parameters of the above equation have been defined before and 

the new formula is written below: 



 
 
 

 ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ ( 24 ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ)
 

                    𝑽𝑦 = 𝑽𝑠 + 𝑽𝑞 = ∑ 𝑃𝑖𝒂𝑖𝒂𝑖
𝐻

𝑝

𝑖=1
+ 𝑞

2𝐼                  (2.40) 

Where ai is formalized as follows 

𝒂𝑖 = [1, 𝑒𝑗𝜔𝑖 , 𝑒𝑗2𝜔𝑖 , 𝑒𝑗3𝜔𝑖 , … , 𝑒𝑗(𝑀−1)𝜔𝑖]
𝑇
          

                                                 𝑖 =  1, 2, 3, … ,𝑀                             (2.41) 

This is a set of M independent vectors. 

     Alternatively, this decomposition can be expressed as follows: 

                                𝑽𝑦 = 𝑨𝑷𝑨𝐻 + 𝑞
2𝑰                                      (2.42) 

   Where 𝑨 = [𝒂1, …… , 𝒂𝑴] is M×p matrix with p signal vectors and 

𝑷 = 𝑑𝑖𝑎𝑔{𝑃1, … . , 𝑃𝑝} would hold the signal power diagonal matrix. 

The eigenvalues of 𝑽𝑦 

                                 λ𝑖 = λ𝑖
𝑠 + 𝑞

2                                              (2.43) 

Where  λ𝑖
𝑠
: eigenvalues of  𝑽𝑠 

      Since 𝑽𝑠 is a matrix of rank M, and 𝑽𝑦 has M eigenvalues, the 

first p eigenvalues will be larger than 𝑞
2 and the last M-p will be 

equal to a 𝑞
2. Hence there are two kinds of Eigenvectors of 𝑽𝑦: the 

signal Eigenvectors 𝒖1, … , 𝒖𝑝 , with eigenvalues larger than 𝑞
2  and 

the noise  eigenvectors 𝒖𝑝+1, …,𝒖𝑀, which have eigenvalues equal 

to 𝑞
2. So, here's how we would break out 𝑽𝑦 : 

          𝑽𝑦 = ∑ (
𝑝
𝑖=1 λ𝑖

𝑠 + 𝑞
2) 𝒖𝑖𝒖𝑖

𝐻 + ∑ 𝑞
2𝑀

𝑖=𝑝+1 𝒖𝑖𝒖𝑖
𝐻           (2.44) 

Matrix notation can be used to express this decomposition as: 
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                            𝑽𝑦 = 𝑼𝑠𝑼𝑠
𝐻 + 𝑼𝑞𝑼𝑞

𝐻                                       (2.45) 

A signal eigenvectors M× p matrix called 𝑼𝑠 is used here. 

                             𝑼𝑠 = [𝒖1,𝒖2, … . , 𝒖𝑝]                                       (2.46) 

The noise eigenvectors' M×(M-p) matrix is also known as 𝑼𝑞. 

                       𝑼𝑞 = [𝒖𝑝+1,𝒖𝑝+2, … . , 𝒖𝑝]                                  (2.47) 

      Complex exponential frequencies can be estimated by using the 

orthogonality of the signal and noise subspaces, as was previously 

demonstrated for single complex exponential signal with white noise. 

As known, all signal eigenvectors 𝒂1, …  , 𝒂𝑝 are in the subspace of 

the signal, hence the orthogonality includes 𝒂𝑖  is orthogonal to a 

noise eigenvectors:  

                           𝒂𝑖
𝐻𝒖𝑘 = 0 ;  i=1,2,…,p   k=p+1, p+2, … ., M      (2.48) 

    An estimation of the frequencies is given by using the following 

frequency estimation function: 

𝑃̂(𝑒𝑗𝜔) =
1

∑ 𝑐𝑘|𝒂𝐻𝒖𝑘|
2𝑀

𝑘=𝑝+1

                                                         (2.49) 

Where 𝑐𝑘 is a positive weight. 

      It is possible to estimate the direction of sources using array’s 

steering vectors which are orthogonal to the noise subspace by 

detecting the peaks in the spatially power spectrum based on the 

eigendecomposition method. 
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2.2.3.5 Pisarenko Harmonic Decomposition Algorithm 

(PHD) [60, 63] 

        The PHD algorithm was first suggested by Pisarenko [17] in 

1973 as a high-resolution method and was based on eigenanalysis of 

the autocorrelation matrix of the data model. The main reason behind 

developing this algorithm is to fill the gaps that existed in the 

classical approaches. The estimation was based on Eigen analysis of 

the Vy, where the eigenvector of Vy is used to derive the frequency. 

The PHD algorithm considers the sum of a known complex 

exponentials p in “white noise” s(n). Also, it considers that the values 

(p+1) of the correlation sequence are already estimated or known. 

Then, given that a correlation matrix ((p+1) x (p+1)), the noise 

subspace dimension is 1, it is spanned by the Eigen corresponding to 

the minimum eigenvalue: 

                                   λ𝑚𝑖𝑛 = 𝑞
2                                                 (2.50) 

The eigenvector umin is orthogonal to signal vectors ai as follows:  

                    𝒂𝑖
𝐻𝒖𝑚𝑖𝑛 = ∑ 𝑢𝑚𝑖𝑛(𝑘)𝑒−𝑗𝑘𝜔𝑖 = 0

𝑝

𝑘=0
                    (2.51) 

Where i=1, 2, 3, …, p and then,  

                   𝑈𝑚𝑖𝑛(𝑒𝑗𝜔) = ∑ 𝑢𝑚𝑖𝑛(𝑘)𝑒−𝑗𝑘𝜔 = 0
𝑝

𝑘=0
                  (2.52) 

The above equation equals 0 at each ωi. Now, the z-transform of the 

eigenvector of the noise is called “Eigen Filter” and on the unit, a 

circle has p zeros. 
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𝑈𝑚𝑖𝑛(𝑧) = ∑ 𝑢𝑚𝑖𝑛(𝑘)𝑧−𝑘 = ∏ (1 − 𝑒−𝑗𝑘𝜔𝑧−1)
𝑝

𝑘=1

𝑝

𝑘=0
     (2.53) 

In the above equation, the value of z=e-jw and the frequency is derived 

from the “Eigen Filter Roots”. The estimation function of the 

frequency is formalized as follows: 

                        𝑃̂𝑃𝐻𝐷(𝑒𝑗𝜔) =
1

|𝒂𝐻𝒖𝑚𝑖𝑛|2
                                           (2.54) 

      It should be mentioned that the term 𝑃̂𝑃𝐻𝐷(𝑒𝑗𝜔) is large and the 

location of the peaks in it is used for estimating the frequencies. Also, 

this term is called “Eigenspectrum” or sometimes “Pseudospectrum” 

that does not include information about the noise components or the 

complex exponentials. After determining the frequencies, Pi will be 

extracted from the Vy eigenvalues. The details of this process are 

described as follows: 

Consider the Eigenvectors of the signal subspace (u1, …, up) can be 

normalized as: 

                                           𝒖𝑖
𝐻𝒖𝑖 = 1                                                (2.55) 

And, 

                                          𝑽𝑦𝒖𝑖 = λ𝑖𝒖𝑖                                               (2.56) 

where i =1, 2, 3, …, p and by multiplying both sides with 𝒖𝑖
𝐻, it 

becomes as follows: 

                               𝒖𝑖
𝐻𝑽𝑦𝒖𝑖 = λ𝑖𝒖𝒊𝒖𝒊

𝐻 = λ𝑖                                  (2.57) 

By substituting Vy with 𝑨𝑷𝑨𝐻 + 𝑤
2𝐼, the above equation becomes: 
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              𝒖𝒊
𝐻𝑽𝒚𝒖𝒊 = 𝒖𝑖

𝐻 {∑ 𝑃𝑘𝒂𝑘𝒂𝒌
𝐻

𝑝

𝑘=1
+ 𝑞

2𝑰}𝒖𝒊 = λ𝑖      (2.58) 

The above formula can be re-written as follows: 

                       ∑ 𝑃𝑘|𝒂𝑘
𝐻𝒖𝑖|

2 =
𝑝

𝑘=1
λ𝑖 − 𝑞

2                                 (2.59) 

Where |𝒂𝑘
𝐻𝒖𝑖|

2 is the squared magnitude of the DT-FT that is 

calculated at frequency ωk. of the Eigenvector (ui) of the signal 

subspace: 

                              |𝒂𝑘
𝐻𝒖𝑖|

2 = |𝑈𝑖(𝑒
𝑗𝜔𝑘)|

2
                                    (2.60) 

And,  

                              𝑈𝑖(𝑒
𝑗𝜔𝑘) = ∑ 𝑢𝑖(𝑙)𝑒

−𝑗𝑙𝜔
𝑝

𝑙=0
                          (2.61) 

  Thus, Equation (2.59) can be re-written as follows: 

                           ∑ 𝑃𝑘|𝑈𝑖(𝑒
𝑗𝜔𝑘)|

2
=

𝑝

𝑘=1
λ𝑖 − 𝑞

2                       (2.62) 

Now, the above equation is a set of a linear equation and takes the 

following form: 

[
 
 
 
 |𝑈1(𝑒

𝑗𝜔1)|
2

|𝑈1(𝑒
𝑗𝜔2)|

2
… |𝑈1(𝑒

𝑗𝜔𝑝)|
2

|𝑈2(𝑒
𝑗𝜔1)|

2
|𝑈2(𝑒

𝑗𝜔2)|
2

… |𝑈2(𝑒
𝑗𝜔𝑝)|

2

… … … …

|𝑈𝑝(𝑒𝑗𝜔1)|
2

|𝑈𝑝(𝑒
𝑗𝜔2)|

2
… |𝑈𝑝(𝑒𝑗𝜔𝑝)|

2
]
 
 
 
 

[

𝑃1

𝑃2

…
𝑃𝑝

] =  

[
 
 
 
λ1 − 𝑞

2

λ2 − 𝑞
2

…
λ𝑝 − 𝑞

2]
 
 
 

      (2.63) 

       The PHD can perform the estimation using peaks’ locations in 

𝑃̂𝑃𝐻𝐷(𝑒𝑗𝜔) or the roots of the Eigen filter. However, the PHD 

struggles with computation cost when it comes to high-order 
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problems. Also, the PHD has some limitations related to the 

availability of prior-knowledge about the signal’s number of 

complex exponentials. 

2.2.3.6 Multiple Signal Classification (MUSIC)Algorithm 

[60, 62, 63] 

         As explained above, the previous algorithm (PHD) is restricted 

by some limitations. Therefore, it becomes necessary to adopt an 

algorithm that is able to overcome the aforementioned limitations. 

The “Multiple Signal Classification (MUSIC)” comes for this 

purpose and has been suggested by Schmidt [18]. There is algorithm 

method is called Root-MUSIC to find frequencies we have moved its 

application towards DOA. 

The detailed work of the MUSIC algorithm is described in this 

section. Consider having a random process s(n) that includes 

“Complex exponentials (p)” in “White-Noise” and variance of 𝑞
2. 

Also, consider that the autocorrelation matrix (M x M) is Vy such that 

(M  p+1). Moreover, λ 1  λ2  λ3  …  λM are the ascending order 

of the Vy eigenvalues, and the corresponding eigenvectors are u1, u2, 

u3, …, uM, then, these vectors are partitioned into: 

- The “signal eigenvectors” (p) of the largest eigenvalues; and, 

- The “noise eigenvector” (M-p) of the eigenvalues that are 

equal to 𝑞
2.  

Hence the estimation of power spectrum using MUSIC method is 

[60, 62, 63]: 
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                               𝑃̂𝑀𝑈(𝑒𝑗𝜔) =
1

∑ |𝒂𝐻𝒖𝑖|
2𝑀

𝑖=𝑝+1

                           (2.64) 

The above equation is used to find the positions of the largest peaks 

(M), which are the frequency estimates of the complex exponentials.  

2.2.3.7 Root-MUSIC Algorithm 

        It is an updated version of the MUSIC algorithm that has been 

proposed by Barabell [19]. The root of the polynomial in the MUSIC 

spectrum is utilized in the “Angle of Arrival (AOA)” estimation, a 

signal's direction of arrival, such as its radio, optical, or acoustic 

component, is known as its angle of arrival (AoA). The main 

difference between the MUSIC and Root-MUSIC is that MUSIC 

always provides the results as visual plots, but the Root-MUSIC 

provides the results as numbers. 

       Using a polynomial search for zeros instead of searching for 

maxima in the case of MUSIC, this method provides a direct estimate 

of the DoA. This strategy is only applicable to networks of linear 

antennas that are evenly spaced. By leveraging certain features of the 

received signals, it allows for a reduction in computation time and 

hence an increase in angular resolution. This approach uses a 

polynomial of degree 2(M-1) to extract the roots [64]-[65] from a 

given polynomial. The estimation of signal arrival directions 

corresponds to the search for max. pseudo-spectrum F(θ) values of 

MUSIC [72]: 
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                           𝐹𝑀𝑈𝑆𝐼𝐶(Ɵ) =
1

𝒂𝐻(θ)  𝑽𝑞 𝑽𝑞  
𝐻   𝒂(θ)

                                     (2.65) 

Where  𝑉𝑞 is the matrix of eigenvectors that span the noise subspace. 

Let 𝑫 = 𝑽𝑞 . 𝑽𝑞
𝐻  is the projection matrix and  𝒂𝐻(θ) 𝑽𝑞𝑽𝑞  

𝐻   𝒂(θ)  is 

the noise subspace projection of the a(θ) vector. 

According to (2.65), the following relation describes the steering 

vector's projection onto the noise subspace: 

         𝐹𝑀𝑈𝑆𝐼𝐶
−1 (θ) = 𝑔𝑅−𝑀𝑈𝑆𝐼𝐶(θ) =  𝒂𝐻(θ) 𝑽𝑞𝑽𝑞  

𝐻   𝒂(θ)             (2.66) 

  Equation (2.66) can be written: 

        𝐹𝑀𝑈𝑆𝐼𝐶
−1 (θ) =  𝑔𝑅−𝑀𝑈𝑆𝐼𝐶(θ) =  𝒂𝐻(θ). 𝑫. 𝒂(θ)                     (2.67)                           

     Analysis and expression of steering vectors are used in this kind 

of representation 𝒂𝑛(θ) = 𝑒
𝑖2𝜋𝑑(𝑛−1)sinθ

Ⴤ   of the 𝑛𝑡ℎ element of the 

linear array (n= 1, 2,  .…, N), where Ⴤ is the wavelength, So [66]: 

𝐹𝑀𝑈𝑆𝐼𝐶
−1 (θ) = 𝑔𝑅−𝑀𝑈𝑆𝐼𝐶(θ) =

       ∑ . ∑ 𝑒
−𝑖2𝜋(𝑛−1)𝑑sinθ

Ⴤ
   𝑫𝒏𝒑 𝑒

𝑖2𝜋(𝑝−1)𝑑 sinθ
Ⴤ𝑀

𝑝=1
𝑀
𝑛=1                                 (2.68) 

 Where 𝑫𝒏𝒑 refers to the elements of the 𝑛𝑡ℎrow and the 𝑝𝑡ℎcolumn 

of D [66]. Root-MUSIC Algorithm is represented by a Linear 

Algebraic and the roots are obtained after equating (2.68) to zero. 

The following equation is generated by combining both amounts 

from (2.68): 

𝐹𝑀𝑈𝑆𝐼𝐶
−1 (θ) = 𝑔𝑅−𝑀𝑈𝑆𝐼𝐶(θ) = ∑ 𝐷𝐿

𝑀−1
𝐿=−𝑀+1 𝑒

−2𝜋𝐿𝑑 sinθ

Ⴤ                 (2.69) 

Where 𝐷𝐿 = ∑ 𝐷𝑛𝑝𝑛−𝑝=𝐿  
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    The Root-MUSIC polynomial, a function of z, can be derived from 

Equation (2.69) [66], as follows: 

                             𝑅(𝑧) = ∑ 𝑫𝐿𝑧
𝐿𝑀−1

𝐿=−𝑀+1                                             (2.70) 

Where 𝑧 = 𝑒
−𝑖2𝜋𝑑 sinθ

Ⴤ  

         The problem is to find the 2(M-1) double roots of the 

polynomial whose usable zeros are located on the unit circle because 

the directions of arrival of signals are functions of z. These complex 

root phases are consistent with the electrical phase shifts that are 

desired. From the following equation, the angles of signal arrival can 

be deduced [73]: 

                               θ𝑚 = sin−1(
Ⴤ

2𝜋𝑑
arg (𝑧𝑚))                                      (2.71) 

Roots of the unit circle, 𝑧𝑚 are the m-th nearest to the unit circle. 

        Now, calculating the root of the polynomial given in the values 

for . The zero polynomial is considered in terms of (N-1) pairs 

within the unit circle. As a result, the closest roots (d) to the circle 

unit are selected. Lastly, the values of AOA can be calculated 

according to the following formula: 

                                θ = sin−1 [
Ⴤ

2𝜋𝑑
]                                             (2.72) 

2.3 Direction of Arrival (DOA) Estimation 

        Recently a great revolution in wireless technologies has been 

witnessed. These technologies have been widely used in many 

different applications (e.g., tracking, environment monitoring, sensor 
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networks, etc.). This revolution introduces many policies that control 

the demand and use of these technologies. Most of the to be 

mentioned applications aim to determine the location of the 

source/target. This kind of request raises the demand for the 

Direction of Arrival (DOA) in communications systems [67]. 

       According to the existing literature, the demand for DOA has 

increased in recent years. The most recent applications are “Mobile 

Wireless Communications” and “Biomedical Signal Processing” 

[68],[69]. Also, an antenna array is involved in most of these 

applications aiming to measure the incoming signals. 

       Furthermore, the DOA estimation can be performed for single or 

multiple sources of signals. Sensor arrays are usually involved in the 

estimation process. The literature on the field shows a lot of 

approaches proposed to find the DOA of signals based on sensor 

arrays and these approaches are categorized into: conventional (e.g., 

Fourier Transform) and subspace (e.g., Root-MUSIC). 

2.3.1 Model of the Data 

The assumptions considered in this study algorithms for estimating 

DOA are: 

- Linear Transmission Medium and Non-Isotropic: The 

transmission medium between signal sources and antenna 

array in all the directions does not have of the same physical 

features. 

- Far-Field: This assumption states that the sources of signals 

are located far from the sensors. This means that the sources’ 
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waves arrive at all sensors in equal directions. This situation is 

obtained by setting a larger space than the antenna array 

dimensions between the array and the sources. This leads to 

have a distance larger than 2D2/ Ⴤ, where Ⴤ represents the 

signal’s wavelength and D denotes the array’s dimension. 

- Narrowband: Signals of different sources p and their carrier 

have the same frequency. The contents of frequency are 

focused in the proximity of “Carrier Frequency (fc)”. The 

coming signals can be formulated as follows: 

                           𝑠𝑖
𝑟(𝑡) = ℎ𝑖(𝑡)𝑐𝑜𝑠[2𝜋𝑓𝑐𝑡 + 𝛽𝑖(𝑡)]                      (2.73) 

      Where 1 ≤ i ≤ p, r is used for narrowband, ℎ𝑖(𝑡) is the amplitudes, 

and 𝛽𝑖(𝑡) is an arbitrary phase.  

AWGN Channel: The features of the signals assumed are: zero mean, 

Gaussian complex white noise, and spatially uncorrelated with the 

signal. The white noise variance is 2.  

2.3.2 Antenna Array 

        An antenna array is a set of antennas involved in 

receiving/transmitting signals [70]. The term “Array Element” is 

used to refer to a single antenna. In a receiving array, all elements 

receive the signal and merge them for processing (e.g., DOA 

estimation). Figure 2.1 depicts an antenna array of 3 elements 

(element_1, element_2, and element_3). In the figure, element_1 is 

called the “Reference Element”. The distance between any given two 

elements is denoted by d. The far distances of the sources (i.e., far-

field) enable the path lines of the elements to be parallel [71].  
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Figure 2.1: An antenna of 3 elements. 

       The path lines from the reference element to both elements 2 and 

3 are explained in the following equation: 

                            𝑑2 = 𝑑. sin θ                                                 (2.74 a) 

                            𝑑3 = 2𝑑. sin θ                                              (2.74 b) 

In general          𝑑𝑛 = (𝑛 − 1)𝑑. sin θ                                          (2.75) 

Where 𝜃 is the angle of waves impinging on the array and n=1, 2, 3. 

Moreover, consider that the wave received by the reference element 

is as follows: 

                                         𝑠1 = ℎ                                                          (2.76) 

The waves received by the other two elements can be expressed as 

follows (considering no additive noise): 
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                                 𝑠2 = ℎ 𝑒−𝑗𝛽𝑑2 = ℎ 𝑒−𝑗
2𝜋𝑑
Ⴤ sinθ                      (2.77) 

And, 

                                  𝑠3 = ℎ 𝑒−𝑗𝛽𝑑3 = ℎ 𝑒−𝑗2
2𝜋𝑑
Ⴤ sinθ                   (2.78) 

The term 𝛽 =
2𝜋𝑑

Ⴤ
 is the “Phase Shift” constant of the disseminating 

wave with Ⴤ of wavelength. The term 𝑒−𝑗𝛽𝑑𝑛in both of the above 

equations reflects the outcome of the difference between the 

reference element compared to the path lines (the additional 

mentioned distance). The receiving signals by the aforementioned 

elements can be generalized as follows: 

              𝒔 = [

𝑠1

𝑠2

𝑠3

] = [

1

𝑒−𝑗
2𝜋𝑑
Ⴤ sinθ

𝑒−𝑗2
2𝜋𝑑
Ⴤ sinθ

] ℎ = [
1

𝑒−𝑗

𝑒−𝑗2
] ℎ = 𝒂()ℎ     (2.79) 

Where 𝒂() = [1 𝑒−𝑗 𝑒−𝑗2]𝑇  is called “Array Steering 

Vector”, and   =
2𝜋𝑑

Ⴤ
. The above equation can be extended as 

follows: 

𝒔 = [

𝑠1

𝑠2

…
𝑠𝑁

] =

[
 
 
 
 

1

𝑒−𝑗
2𝜋𝑑
Ⴤ sinθ

…

𝑒−𝑗(𝑁−1)
2𝜋𝑑
Ⴤ sinθ]

 
 
 
 

ℎ = [

1
𝑒−𝑗

…
𝑒−𝑗(𝑁−1)

] ℎ = 𝒂()ℎ (2.80) 

Where N is the number of antenna elements. 

Also the term 𝒂() becomes as follows [72]: 

                      𝒂() = [1 𝑒−𝑗 … 𝑒−𝑗(𝑁−1)]𝑇                        (2.81) 
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2.3.3 DOA Problem Formulation 

      In this study, the term “Uniform Linear Array (ULA)” will be 

frequently used. To describe this array, it is assumed that the system 

depicted in figure 2.2 is used having source i that have generated a 

wave signal of narrowband type (𝑠𝑖
𝑟). But Wideband systems support 

substantially higher data rate communications than narrowband 

systems, which often have lower data rate transmissions. Broadband 

networks, to put it simply, facilitate speedier communication. The 

impinging on the array by the source is at an angle  𝜃𝑖.  

 

Figure 2.2: DOA estimation data model on N elements. 

      According to the previous section, the signal that is moving from 

the rightmost element takes a shorter distance compared to the other 

elements that consume additional distance that can be calculated 

using the following equation: 



 
 
 

 ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ ( 38 ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ)
 

                                𝑑𝑛𝑖 = (𝑛 − 1)𝑑 sin θ𝑖                                       (2.82) 

Where n=1, 2, 3, …, N. 

        Furthermore, the difference between the signal received by the 

reference element (rightmost) and the nth element is called “Phase 

Shift Factor” that can be formalized as 𝑒−𝑗(𝑛−1)𝑖 . Also, this factor 

depends on the first element’s relative position and the spatial 

frequency (
𝑖
). In practice, there is a 

𝑖
for each incident angle θ𝑖 that 

detects the source. Accordingly the DOA estimation aims to 

investigate the signals received by the array and extract the spatial 

frequency (
𝑖
). These spatial frequencies are restricted by the 

following limitation: 

                                    −𝜋 ≤  
𝑖
 ≤ 𝜋                                                (2.83) 

Also, the DOA potential range is limited by the following: 

                                   −90 ≤  θ𝑖  ≤ 90                                             (2.84) 

        The above restriction intervals need the element spacing to hold 

the term 𝑑 ≤ Ⴤ/2 [73]. In fact, this condition is necessary because if 

it does not hold, the estimation of DOA will be ambiguous since (
𝑖
) 

will lead to have two solutions for the angles. This specific case may 

lead to what is called “Grating Lobes” and it is also called “Spatial 

Aliasing”. 

       To generalize and formulate the noises and signals received by 

nth elements, the following formula can be used [73]: 

                                  𝑠𝑛 = ∑ 𝑆𝑖𝑒
−𝑗(𝑛−1)𝑖 + 𝑞𝑛𝑖

𝑝

𝑖=1
                    (2.85) 
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where n=1,2,3,…, N. 

Now, differentiating the noise and the pure signal, the previous 

equation after calling the data, can be formalized as follows [73]: 

𝑺 = [𝒂(
1
), 𝒂(

2
), 𝒂(

3
), … , 𝒂(

𝑀
)] [

ℎ1

ℎ2

…
ℎ𝑀

] + 𝒒 = 𝑨𝒉 + 𝒒   (2.86) 

The data column vector received is denoted as s, which is: 

S=[𝒔1, 𝒔2, 𝒔3 … . 𝒔𝑁]𝑇. Also, the signal column vector is denoted as s, 

which is h=[ℎ1, ℎ2, ℎ3 … . ℎ𝑁]𝑇 and q=[𝑞1, 𝑞2, 𝑞3 … . 𝑞𝑁(𝑡)]𝑇that 

represents a “Zero-Mean Spatially Uncorrelated Additive Noises” 

with the spatial covariance matrix of 𝑁
2𝑰𝑁 [73]. Furthermore, the 

“Array Steering” column vector is denoted by 𝛼(
𝑖
) and formulated 

as follows [73]: 

                   𝒂(
𝑖
) = [1 𝑒𝑗𝑖   𝑒𝑗2𝑖 … 𝑒𝑗(𝑁−1)𝑖]𝑇                (2.87) 

The steering matrix A can be formalized based on the following 

equation [73]: 

𝑨 = [𝒂(
1
) … 𝒂(

𝑖
) … 𝒂(

𝑀
)] 

= [

1 1 … 1
𝑒𝑗1 𝑒𝑗2 … 𝑒𝑗𝑀

… … … …
𝑒𝑗(𝑁−1)1 𝑒𝑗(𝑁−1)2 … 𝑒𝑗(𝑁−1)𝑀

]          (2.88) 

  



 
 
 

 ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ ( 40 ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ)
 

CHAPTER THREE 

Simulation Results 

3.1 Introduction 

        In this chapter, simulation results are given for noiseless, and 

noisy data; and for both single and two emitting sources. The 

parameters required for DOA estimation methods are: number of 

samples, N, sampling interval, d,(equivalent to separation between 

receiving antennas or transducers), and the wavelength, Ⴤ of the 

transmitted signal from the source. The methods used are: the Fourier 

transform, also called a classical method, and the Root-MUSIC 

method, which is also considered as super resolution method. We are 

used computer software MATLAB program with m-file. 

Ɵ𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑠𝑖𝑛−1(
((𝑥_𝑎𝑥𝑖𝑠 𝑣𝑎𝑙𝑢𝑒) 𝑚𝑘)∗Ⴤ ⁄

𝑑
) for positive angle         (3.1) 

Ɵ𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑠𝑖𝑛−1(
((−𝑥_𝑎𝑥𝑖𝑠 𝑣𝑎𝑙𝑢𝑒)) 𝑚𝑘)∗Ⴤ ⁄

𝑑
)for negative angle      (3.2) 

Where mk=180o. 

       The percentage error in all methods is determined by using the 

following equation: 

% Error = 
|Ɵ𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡 −  Ɵ 𝑎𝑐𝑡𝑢𝑎𝑙|

| Ɵ 𝑎𝑐𝑡𝑢𝑎𝑙|
  *100                                         (3.3)   
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3.2 Simulation Results with Noiseless Data 

3.2.1 Single Source for DOA Estimation.  

     Figure (3.1) shows the result of using a single source. The  

Fourier transform (FFT ) algorithm is applied. The values of 

parameters used here are N=12, d=0.6 cm, Ⴤ=2 cm. 

Figure (3.2) illustrates the effect of using only one source of 

information. Fourier transform (FFT) is used. The parameters 

utilized here are N=11, d=0.6 cm, Ⴤ=2 cm, and the angle Ɵactual is 

37o. 

 

Figure (3.1) Magnitude (power(dB)) versus angle (degree) for a single-source 

angle Ɵ =200 using the FFT method (N=12). 
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Figure (3.2) Magnitude (power(dB)) versus angle (degree) for a single-source 

angle Ɵ =370  using the FFT method (N=11).. 

        Using a single source yields the results shown in Figure (3.3). 

The Fourier transform procedure is used. N=10, d=0.6 cm, Ⴤ=2 cm, 

and Ɵactual =-50o are the parameters utilized in this example. 

        Figure (3.4) shows the result of using a single source. The  

Fourier transform (FFT ) algorithm is applied. The values of 

parameters used here are N=12, d=0.2 cm, Ⴤ=0.8 cm, and the angle,  

Ɵactual is equal to 6o. 
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Figure (3.3) Magnitude (power(dB)) versus angle (degree)  for a single-source 

angle Ɵ =-500 using the FFT method (N=10).          

  

Figure (3.4) Magnitude (power(dB)) versus angle (degree) for a single-source 

angle Ɵ =60 using the FFT method (N=12). 
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        In Figure (3.5), a single source is shown. The Fourier transform 

procedure is used. N=10, d=0.2 cm, Ⴤ=0.8 cm, and Ɵactual= -10o are 

the values of parameters utilized here. 

        The use of one source is depicted in Figure (3.6). One method 

for doing this is through the use of an algorithm called Fourier 

transform (FFT). N=8, d=0.2 cm, Ⴤ =0.8 cm, and Ɵactual= -11o are 

the values of the parameters used in this example. 

  

Figure (3.5) Magnitude (power(dB)) versus angle (degree) for a single-source 

angle Ɵ =-100 using the FFT method (N=10). 
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Figure (3.6) Magnitude (power(dB)) versus angle (degree) for a single-source 

angle Ɵ =-110 using the FFT method (N=8). 

       We conclude from all the above figures that indicate to the 

relationship between Amplitude versus angles with noiseless data for 

a single source a sidelobe is clear, and this is the disadvantage of the 

FFT technique. Also, it is noticed that, from the resulting curve using 

the FFT method, the peak corresponding to the apparent (measured) 

angle is not sharp enough. 

      Figures (3.7) indicate (3D) plot to the relationship between the 

percentage error and the number of samples, N, and angles (Theta) 

with noiseless data for a single source for the FFT algorithm method. 

It is noticed that the percentage error is a constant level for the FFT 

algorithm method. For the Root-MUSIC, the percentage error equals 
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zero at all points of N (number of samples) and the order equals n=2. 

It means that 𝑁𝑚𝑖𝑛=5 for the Root-MUSIC method. When using the 

Root-MUSIC method, it is found that the appearing value of Ɵ is 

equal exactly to its real value. 

 

Figure (3.7) Percentage error of versus N and angles (Theta) for a single source 

DOA Estimation for (FFT) algorithm method. 

3.2.2 Double (two) emitting Sources for DOA Estimation. 

         In figure (3.8) two sources are used to show the result of using 

the FFT algorithm method. The two sources can not be distinguished 

when the difference between two angles is (20 degrees) when N<9. 
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A side lobe is clear and this is a problem of the FFT technique. when 

Ɵ1=17o, Ɵ2=37o, N=8, d=0.6cm, and Ⴤ=2cm.  

    In figure (3.9) above, two sources are used to show the result of 

using the FFT algorithm method. It can recognize between two 

sources when the difference between two angles is (20 degrees) when 

N>=9. A side lobe is clear and this is a drawback of the FFT 

technique. when Ɵ1=17o,  Ɵ2=37o , N=12 , d=0.6cm and  Ⴤ=2cm.  

 

Figure (3.8) Magnitude (power(dB)) versus angle (degree) for a double (two)-

source angle ( Ɵ1=17o,  Ɵ2=37o) using the FFT method (N=8). 
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Figure (3.9) Magnitude (power(dB)) versus angle (degree) for a double (two)-

source angle (Ɵ1=17o ,  Ɵ2=37o) using the FFT method (N=12). 

         For the FFT algorithm method with noiseless double (two) 

sources, the relationship between the percentage error and N (number 

of samples) is shown in figure (3.10) when the first actual angle is 

equal to Ɵ1=17o and the second actual angle is equal to Ɵ2=37o. For 

the Root-MUSIC algorithm method, the percentage error of the first 

and second source is equal to zero at all points of N (number of 

samples) and the order is equal to n=3. It means that 𝑁𝑚𝑖𝑛 = 8 for 

the Root-MUSIC method. 
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    Figure (3.10) Percentage error of angle versus N for double (two) sources 

(Ɵ1=17o,  Ɵ2=37o ) for DOA Estimation. 

         Using the FFT algorithm approach, the results are shown in 

Figure (3.11) using two sources. If the difference between the two 

angles is (15 degrees) when N< 12, the two sources can not be 

distinguished. When Ɵ1=20o,   Ɵ2=35o, N=11, d=0.6cm, and Ⴤ=2cm, 

the FFT approach has a visible side lobe.  

      Using the FFT algorithm approach, the results are shown in 

figure (3.12) using two sources. If the difference between the two 

angles is (15 degrees) when N ≥ 12, the two sources can be 

distinguished. When Ɵ1=20o, Ɵ2=35o, N=15, d=0.6cm, and Ⴤ=2cm, 

the FFT approach has a visible side lobe. 
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Figure (3.11) Magnitude (power(dB)) versus angle (degree) for a double (two)-

source angle (Ɵ1=20o,  Ɵ2=35o) using the FFT method (N=11). 

         

Figure (3.12) Magnitude (power(dB)) versus angle (degree) for a double (two)-

source angle (Ɵ1=20o,  Ɵ2=35o) using the FFT method (N=15). 
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 ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ ( 51 ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ)
 

         Figure (3.13) refers to the relationship between the percentage 

error and N (number of samples) for the FFT algorithm method with 

noiseless double (two) sources when the first actual angle is equal to 

Ɵ1=20o and the second actual angle is equal to Ɵ2=35o. For the Root-

MUSIC algorithm method, the percentage error of the first and 

second source is equal to zero at all points of N (number of samples) 

and the order is equal to n=3. It means that 𝑁𝑚𝑖𝑛 = 8 for the Root-

MUSIC method.   

 

Figure (3.13) Percentage error of angle versus N for double (two) sources 

(Ɵ1=20o,  Ɵ2=35o) for DOA Estimation. 

         In figure (3.14), the FFT algorithm results from two different 

sources are shown. N<17 allows it for not distinguishing between 

two sources when the difference in angles is 10 degrees. When Ɵ1=-
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25o,   Ɵ2=-35o, N=16, d=0.6cm, and Ⴤ =2cm, there is a visible side 

lobe, which is one of the limitations of using the FFT method. 

     In figure (3.15), the FFT algorithm results from two different 

sources are shown. N >=17 allows it for distinguishing between two 

sources when the difference in angles is 10 degrees. When Ɵ1=-25o,   

Ɵ2=-35o, N=22, d=0.6cm, and Ⴤ =2cm, there is a visible side lobe, 

which is one of the limitations of using the FFT method.   

 

Figure (3.14) Magnitude (power(dB)) versus angle (degree) for a double (two)-

source angle (Ɵ1=-25o,  Ɵ2=-35o) using the FFT method (N=16). 
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Figure (3.15) Magnitude (power(dB)) versus angle (degree) for a double (two)-

source angle (Ɵ1=-25o,  Ɵ2=-35o) using the FFT method (N=22). 

         The relationship between the percentage error and N (number 

of samples) for the FFT algorithm method with noiseless double 

(two) sources, when the first actual angle is equal to Ɵ1=-25o and the 

second actual angle is equal to Ɵ2=-35o, is depicted in figure (3.16). 

It noticed that the percentage error is maximum at minimum N 

(number of samples) and then decreases at maximum N (number of 

samples). When using the Root-MUSIC algorithm approach, the 

order is equal to n=3, and the percentage error of the first and second 

sources is equal to zero at all points of N (number of samples). It 

indicates that for the Root-MUSIC approach, N_min=8. 
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Figure (3.16) Percentage error of angle versus N for double (two) sources 

(Ɵ1=-25o,   Ɵ2=-35o) for DOA Estimation. 

        Figure (3.17) shows the FFT algorithm results from two 

different sources. When the difference between the two angles is (25 

degrees) when N ≤ 8, the two sources can not be distinguished. When 

Ɵ1=-15o,   Ɵ2=-40o, N=8, d=0.6cm, and Ⴤ =2cm, a side lobe is clearly 

visible, which is one of the downsides of the FFT method.  

     Figure (3.18) shows the FFT algorithm results from two different 

sources. When the difference between the two angles is (25 degrees) 

when N > 8, the two sources can be distinguished. When Ɵ1=-15o,   

Ɵ2=-40o, N=17, d=0.6cm, and Ⴤ =2cm, a side lobe is clearly visible, 

which is one of the downsides of the FFT method. 
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Figure (3.17) Magnitude (power(dB)) versus angle (degree) for a double (two)-

source angle (Ɵ1=-15o,  Ɵ2=-40o) using the FFT method (N=8). 

 

Figure (3.18) Magnitude (power(dB)) versus angle (degree) for a double (two)-

source angle (Ɵ1=-15o,  Ɵ2=-40o) using the FFT method (N=17). 
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 ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ ( 56 ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ)
 

         Using the FFT algorithm approach with noiseless double (two) 

sources and a first angle of Ɵ1=-15o and a second angle of Ɵ2=-40o, 

figure (3.19) shows the relationship between percentage error and N 

(number of samples). It was observed that the percentage error peaks 

at the lowest number of samples, N, and subsequently falls at the 

highest number of samples, N. The order is equivalent to n=3 when 

employing the Root-MUSIC algorithm technique, and the first and 

second sources' percentage errors are always equal to zero (number 

of samples = N). It suggests that N_min=8 for the Root-MUSIC 

method. 

 

Figure (3.19) Percentage error of angle versus N for double (two) sources 

(Ɵ1=-15o, Ɵ2=-40o) for DOA Estimation. 

8 9 10 11 12 13 14 15 16 17
0

5

10

15

20

25

30

35

40

45

N(number of samples)

P
e
rc

e
n
ta

g
e
 E

rr
o
r

FFT

 

 

Angle1= - 15

Angle2= - 40



 
 
 

 ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ ( 57 ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ)
 

         Figure (3.20) shows the results of utilizing the FFT algorithm 

approach employing two sources. When N is less than or equal to 5, 

it may not distinguish between two sources when the angle difference 

between the two is (30 degrees). When Ɵ1=-17o,   Ɵ2=13o, N=5, 

d=0.6cm, and Ⴤ=2cm, a side lobe is clearly visible and this is a 

downside of the FFT technique.  

          Figure (3.21) shows the results of utilizing the FFT algorithm 

approach employing two sources. When N is more than or equal to 

6, it may distinguish between two sources when the angle difference 

between the two is (30 degrees). When Ɵ1=-17o,   Ɵ2=13o, N=14, 

d=0.6cm, and Ⴤ=2cm, a side lobe is clearly visible and this is a 

downside of the FFT technique. 

Figure (3.20) Magnitude (power(dB)) versus angle (degree) for a double (two)-

source angle (Ɵ1=-17o, Ɵ2=13o) using the FFT method (N=5). 
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Figure (3.21) Magnitude (power(dB)) versus angle (degree) for a double (two)-

source angle (Ɵ1=-17o,  Ɵ2=13o) using the FFT method (N=14). 

         The relationship between percentage error and N (number of 

samples) for the FFT algorithm method with noiseless double (two) 

sources when the first actual angle is equal to Ɵ1=-17o and the second 

actual angle is equal to Ɵ2=13o, is depicted in figure (3.22). It was 

observed that at minimal N (number of samples), the percentage error 

is at its maximum, and at maximum N (number of samples), it 

declines. When employing the Root-MUSIC algorithm approach, the 

first and second sources' percentage errors are equal to zero over the 

whole N (number of samples) range, and the order is equal to n=3. It 

shows that N_min=8 for the Root-MUSIC method. 
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Figure (3.22) Percentage error of angle versus N for double (two) sources 

(Ɵ1=-17o,  Ɵ2=13o) for DOA Estimation. 

        Figure (3.23) shows the result of utilizing the FFT algorithm 

approach with two sources. When the difference between the two 

angles is (25 degrees) when N<7, the two sources can not be 

distinguished. Because of this, when Ɵ1=-10o, Ɵ2=15o, N=6, 

d=0.6cm, Ⴤ=2cm, the FFT approach has certain issues. 

       Figure (3.24) shows the result of utilizing the FFT algorithm 

approach with two sources. When the difference between the two 

angles is (25 degrees) when N≥7, the two sources can be 

distinguished. Because of this, when Ɵ1=-10o, Ɵ2=15o, N=17, 

d=0.6cm, Ⴤ=2cm, the FFT approach has certain issues. 
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Figure (3.23) Magnitude (power(dB)) versus angle (degree) for a double (two)-

source angle (Ɵ1=-10o, Ɵ2=15o) using the FFT method (N=6). 

 

Figure (4.24) Magnitude (power(dB)) versus angle (degree) for a double (two)-

source angle (Ɵ1=-10o,  Ɵ2=15o) using the FFT method (N=17). 
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 ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ ( 61 ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ)
 

           The relationship between the percentage error and N (number 

of samples) for the FFT algorithm method with noiseless double 

(two) sources when the first actual angle is equal to Ɵ1=-10o and the 

second actual angle is equal to Ɵ2=15o is illustrated in figure (3.25). 

The percentage error was found to peak at the lowest number of 

samples, or N, and to fall at the highest number of samples, or N. 

When the Root-MUSIC algorithm approach is applied, the first and 

second source's percentage error is equal to zero at all locations 

within N (the number of samples), and the order is equal to n=3. 

According to it, N_min=8 for the Root-MUSIC method. 

 

Figure (3.25) Percentage error of angle versus N for double (two) 

sources (Ɵ1=-10o,  Ɵ2=15o) for DOA Estimation. 
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        As seen in figure (3.26), the FFT algorithm method yields the 

desired results. When N ≤ 5, it can not distinguish between two 

sources when the difference in the two angles is (55 degrees). When 

Ɵ1=-29o,   Ɵ2=26o, N is 5, d is 0.2cm, and Ⴤ is 0.8cm, a side lobe is 

clearly visible. This is a shortcoming of the FFT technique.  

        As seen in figure (3.27), the FFT algorithm method yields the 

desired results. When N > 5, it can distinguish between two sources 

when the difference in two angles is (55 degrees). When Ɵ1=-29o, 

Ɵ2=26o, N is 14, d is 0.2cm, and Ⴤ is 0.8cm, a side lobe is clearly 

visible. This is a shortcoming of the FFT technique. 

 

Figure (3.26) Magnitude (power(dB)) versus angle (degree) for a double (two)-

source angle (Ɵ1=-29o,  Ɵ2=26o) using the FFT method (N=5). 
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Figure (3.27) Magnitude (power(dB)) versus angle (degree) for a double (two)-

source angle (Ɵ1=-29o,  Ɵ2=26o ) using the FFT method (N=14). 

        It is shown in figure (3.28) that when the first actual angle is 

equal to Ɵ1=-29o and the second actual angle is equal to Ɵ2=26o, the 

percentage error and N (number of samples) are related. As the 

number of samples increases, so does the percentage error, starting 

at the smallest N and decreasing in the case of the largest N. (number 

of samples). The Root-MUSIC algorithm approach has zero percent 

error in the first and second sources at all places of N. (number of 

samples) and the order is equal to n=3. It means that 𝑁𝑚𝑖𝑛 = 8 for 

the Root-MUSIC method. 
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Figure (3.28) Percentage error of angle versus N for double (two) sources 

(Ɵ1=-29o,  Ɵ2=26o ) for DOA Estimation. 

        As seen in figure (3.29), the FFT algorithm method yields the 

desired results. When N ≤ 8, it can distinguish between two sources 

when the difference in two angles is (24 degrees). When Ɵ1=-10o,   

Ɵ2=14o, N is 8, d is 0.2cm, and Ⴤ is 0.8cm, a side lobe is clearly 

visible. This is a shortcoming of the FFT technique.  

          As seen in figure (3.30), the FFT algorithm method yields the 

desired results. When N > 8, it can distinguish between two sources 

when the difference in two angles is (24 degrees). When Ɵ1=-10o,   

Ɵ2=14o, N is 20, d is 0.2cm, and Ⴤ is 0.8cm, a side lobe is clearly 

visible. This is a shortcoming of the FFT technique. 
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Figure (3.29) Magnitude (power(dB)) versus angle (degree) for a double (two)-

source angle (Ɵ1=-10o,  Ɵ2=14o ) using the FFT method (N=8). 

 

Figure (3.30) Magnitude (power(dB)) versus angle (degree) for a double (two)-

source angle (Ɵ1=-10o,  Ɵ2=14o ) using the FFT method (N=20). 
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         The relationship between the percentage error and N (number 

of samples) for the FFT algorithm method with noiseless double 

(two) sources is illustrated in figure (3.31) when the first actual angle 

is equal to Ɵ1=-10o  and the second actual angle is equal to Ɵ2=14o. 

It was observed that the percentage error is greatest at the smallest N 

(number of samples) and reduces to the greatest N. (number of 

samples). The percentage error of the first and second sources is 

equal to zero for the Root-MUSIC algorithm approach at all positions 

of N. (number of samples) and the order is equal to n=3. It means 

that 𝑁𝑚𝑖𝑛 = 8 for the Root-MUSIC method. 

 

Figure (3.31) Percentage error of angle versus N for double (two) sources 

(Ɵ1=-10o,   Ɵ2=14o) for DOA Estimation. 
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        Figure (3.32) refers to the relationship between the difference 

angle on the y-axis and the minimum number of samples 𝑁𝑚𝑖𝑛 on the 

x-axis for the first angle is equal to 20o and the second angle is varied 

between 25oand 50o for double (two) sources with the FFT algorithm 

method. It is noticed that the minimum difference angle needs a 

maximum number of samples while the maximum difference angle 

needs a minimum one. For Root-MUSIC when order n=3, it is found 

that the difference approaches less than 1o (up to 0.5o) for 𝑁𝑚𝑖𝑛= 8. 

 

Figure (3.32) Relationship between Difference Angle and minimum number of 

samples 𝑁𝑚𝑖𝑛 for noiseless double (two) sources. 
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3.3 Simulation Results with Noise Data. 

3.3.1 Single Source for DOA Estimation. 

        Figure (3.33) refers to the relationship between the percentage 

error and N (number of samples) for the FFT algorithm method and 

Root-MUSIC algorithm method with a noise single source when the 

actual angle of this single source is Ɵ=200 and the value of the signal 

to noise ratio SNR=10dB and noticed that the percentage error is 

maximum at minimum N (number of samples) and then decreases at 

maximum N (number of samples). It means that the percentage error 

of the Root-MUSIC algorithm method is less than that of the FFT 

algorithm method. 

 

Figure (3.33) Percentage error of angle versus N for single angle source with  

Ɵ=200, SNR=10dB, d=0.6cm, Ⴤ=2cm using DOA Estimation. 
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        Figure (3.34) refers to the relationship between the percentage 

error and N (number of samples) for the FFT algorithm method and 

Root-MUSIC algorithm method with a noise single source when the 

actual angle of this single source is equal to Ɵ=200 and the value of 

the signal to noise ratio SNR=5dB and noticed that the percentage 

error is maximum at minimum N (number of samples) and then 

decreases at maximum N (number of samples). It means that the 

percentage error of the Root-MUSIC algorithm method is less than 

that of the FFT algorithm method. 

 

Figure (3.34) Percentage error of angle versus N for single angle source with  

Ɵ=200, SNR=5dB, d=0.6cm, Ⴤ=2cm using DOA Estimation. 
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        Figure (3.35) shows the FFT algorithm method and Root-

MUSIC algorithm method with noise single source when the actual 

angle is =37o and the value of the signal to noise ratio SNR=10 dB 

and observed that the percentage error reaches its maximum at the 

lowest number of samples, N, and then starts to decline at the highest 

number of samples, N. Compared to the FFT algorithm approach, the 

root-MUSIC algorithm method has a lower percentage inaccuracy. 

 

Figure (3.35) Percentage error of angle versus N for single angle source with  

Ɵ=370, SNR=10dB, d=0.6cm, Ⴤ=2cm using DOA Estimation. 

        FFT algorithm method and Root-MUSIC algorithm method 

with a noise single source when the angle of this single source is 
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maximum at the lowest number of samples, N, and then starts to 

decline at the highest number of samples, N. Compared to the FFT 

algorithm approach, the root-MUSIC algorithm method has a lower 

percentage inaccuracy. 

 

Figure (3.36) Percentage error of angle versus N for single angle source with  

Ɵ=370, SNR=5dB, d=0.6cm, Ⴤ=2cm using DOA Estimation. 

       Using figure (3.37), we can see the relationship between the 

percentage error and N (number of samples) when the actual angle 

of the single source is Ɵ= -500 and SNR=10dB, and we can see that 

the percentage error is highest when N is as low as possible, and then 

decreases when N is as high as possible (number of samples). It 

means that the Root-MUSIC algorithm method's percentage error is 

lower than the FFT algorithm method's percentage error. 
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Figure (3.37) Percentage error of angle versus N for single angle source with 

Ɵ= -500, SNR=10dB, d=0.6cm, Ⴤ=2cm using DOA Estimation. 

        For the FFT algorithm method with a single noise source at an 

actual angle of Ɵ=-500 and a signal-to-noise ratio of SNR=5dB, see 

figure (3.38), where the relationship between the percentage error 

and the number of samples is shown, and it's seen that the percentage 

error reaches its maximum at minimum N (number of samples) and 

then decreases at maximum N. (number of samples). This means that 

the Root-MUSIC algorithm approach has a lower percentage error 

than the FFT algorithm method. 
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Figure (3.38) Percentage error of angle versus N for single angle source with 

Ɵ=-500, SNR=5dB, d=0.6cm, Ⴤ=2cm using DOA Estimation. 

        3.3.2 Double (two) Sources for DOA Estimation. 

        For different N (number of samples), figure (3.39) shows the 

relationship between the percentage error and N (number of samples) 

for both FFT and Root-MUSIC algorithm methods, with noise 

double (two) sources (Ɵ1= 170, Ɵ2= 370), d=0.6cm, Ⴤ=2cm for the 

first actual angle (Ɵ1=170) and the value of the signal to noise ratio 

SNR=10dB. It is found that the greatest error requires the minimum 

N (number of samples) while the minimum error requires the 

maximum N (number of samples). There is a less error rate with the 
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Root-MUSIC algorithm than there is with the FFT algorithm; as a 

result, it is more accurate than the FFT approach. 

 

 

Figure (3.39) Percentage error of angle versus N for double (two) sources (Ɵ1= 

170, Ɵ2= 370)  for the first actual angle (Ɵ1=170), SNR=10dB for DOA 

Estimation. 

        Figure (3.40) shows the relationship between percentage error 

and N (number of samples) for both FFT and Root-MUSIC 

algorithms for various N (number of samples) with noise double 

(two) sources (Ɵ1= 170, Ɵ2= 370), d=0.6cm, Ⴤ=2cm for the second 

actual angle (Ɵ2=370) and the value of the signal to noise ratio 

SNR=10dB. It has been discovered that the maximum percentage 

error requires a minimum number of samples, whereas the minimum 

percentage error requires a maximum number of samples (number of 
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samples). It signifies that the Root-MUSIC technique has a lower 

percentage error than the FFT method, making the Root-MUSIC 

algorithm method superior to the FFT algorithm method. 

 

Figure (3.40) Percentage error of angle versus N for double (two) sources (Ɵ1= 

170, Ɵ2= 370)  for the second actual angle (Ɵ2=370), SNR=10dB for DOA 

Estimation. 

        Figure (3.41) refers to the relationship between the percentage 

error and N (number of samples) for both the FFT algorithm method 

and Root-MUSIC algorithm method for different N (number of 

samples) with noise double (two) sources (Ɵ1=17, Ɵ2= 370), 

d=0.6cm, Ⴤ=2cm for the first actual angle (Ɵ1=170) and the value of 

the signal to noise ratio SNR=5dB. It is noticed that the maximum 

percentage error requires  the minimum N (number of samples) while 

the minimum percentage error requires the maximum N (number of 
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samples). It means that the percentage error of the Root-MUSIC 

method is less than that of the FFT method for this reason the Root-

MUSIC method is better than the FFT method. 

 

Figure (3.41) Percentage error of angle versus N for double (two) sources (Ɵ1= 

170, Ɵ2= 370)  for the first actual angle (Ɵ1=17o), SNR=5dB for DOA 

Estimation. 

        For varying N (number of samples) with noise double (two) 

sources (Ɵ1= 170, Ɵ2= 370), d=0.6cm, Ⴤ=2cm for the second actual 

angle (Ɵ2=370), SNR=5dB. Figure (3.42) shows the relationship 

between the percentage error and N (number of samples) for both the 

FFT algorithm technique and the Root-MUSIC algorithm method. It 

is found that the highest error requires the least number of samples, 

while the minimum error requires the maximum number of samples 

(number of samples). As a result, the Root-MUSIC algorithm 
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technique has a lower error % than the FFT algorithm method, for 

this reason, the Root-MUSIC method is better than the FFT method. 

 

Figure (3.42) Percentage error of angle versus N for double (two) sources (Ɵ1= 

170, Ɵ2= 370) for the second actual angle (Ɵ2=370), SNR=5dB for DOA 

Estimation. 

       For different N (number of samples), figure (3.43) shows the 

relationship between the percentage error and N (number of samples) 

for both FFT and Root-MUSIC algorithm methods, with noise 

double (two) sources (Ɵ1=-150, Ɵ2=- 400), d=0.6cm, Ⴤ=2cm for the 

first actual angle (Ɵ1=-150) and the value of the signal-to-noise ratio 

SNR=10dB. One thing that is found is that the maximum percentage 

error required the minimum N (number of samples), but that 

minimum percentage error required the maximum N. (number of 
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samples). Root-error MUSIC's percentage is lower than the FFT's, 

indicating that it is a superior method. 

 

Figure (3.43) Percentage error of angle versus N for double (two) sources 

(Ɵ1=-150, Ɵ2=- 400) for the first actual angle (Ɵ1=-150), SNR=10dB for DOA 

Estimation. 

       There is a relationship in figure (3.44) between the percentage 

error and the quantity N for the FFT algorithm method and the Root-

MUSIC algorithm method for different quantities of N (number of 

samples) with noise double (two) noise sources (Ɵ1=-150, Ɵ2=- 400), 

d=0.6cm, Ⴤ=2cm for the second actual angle (Ɵ2=-400) and the value 

of SNR=10dB for both methods. Observedly, a maximum percent 

error require the minimum N (number of samples). As a result, the 
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Root-MUSIC algorithm method has a lower error percentage than the 

FFT algorithm method, and as a result, it is preferable to the latter. 

 

Figure (3.44) Percentage error of angle versus N for double (two) sources 

(Ɵ1=-150, Ɵ2=- 400)  for the second actual angle (Ɵ2=-400), SNR=10dB for 

DOA Estimation. 

       For different N (number of samples), figure (3.45) shows the 

relationship between the percentage error and N (number of samples) 

for both FFT and Root-MUSIC algorithm methods with noise double 

(two) sources (Ɵ1=-150, Ɵ2=- 400), d=0.6cm, Ⴤ=2cm for the first 

actual angle of (Ɵ1= -150) and the value of SNR=5dB. It is found that 

the maximum error requires the minimum number of samples, while 

the minimum error requires the maximum number of samples 

(number of samples). As a result, the Root-MUSIC algorithm method 
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has a lower error percentage than the FFT algorithm method, for this 

reason, the Root-MUSIC method is better than the FFT method. 

 

Figure (3.45) Percentage error of angle versus N for double (two) sources 

(Ɵ1=-150, Ɵ2=- 400)  for the first actual angle (Ɵ1=-150), SNR=5dB for DOA 

Estimation. 

        For different N (number of samples) with noise double (two) 

sources (Ɵ1=-150, Ɵ2=- 400), d=0.6cm, Ⴤ=2cm for the second actual 

angle (Ɵ2=-400) and the value SNR=5dB, figure (3.46) shows the 

relationship between the percentage error and N (number of samples) 

for the FFT algorithm method and Root-MUSIC algorithm method. 

It is discovered that whilst the minimum error needs the maximum N 

(number of samples), the maximum error requires the minimum N. 

The accuracy of the Root-MUSIC method is higher than that of the 

FFT algorithm because its error rate is lower. 
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Figure (3.46) Percentage error of angle versus N for double (two) sources 

(Ɵ1=-150, Ɵ2=- 400)  for the second actual angle (Ɵ2=-400), SNR=5dB for 

DOA Estimation. 

          Figure (3.47), the relationship between the percentage error 

and N (number of samples) is shown for both the FFT algorithm and 

the Root-MUSIC algorithm with noise double (two) sources (Ɵ1=-

100, Ɵ2=150), d=0.6cm, Ⴤ=2cm for the first actual angle (Ɵ1=-100) 

and a signal-to-noise ratio SNR=10dB. A minimum of N (samples) 

is required for the maximum percentage error, whereas a maximum 

of N. (number of samples) is required for the minimum percentage 

error. This indicates that the Root-MUSIC approach is better than the 

FFT method because it has a smaller percentage inaccuracy. 
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Figure (3.47) Percentage error of angle versus N for double (two) sources 

(Ɵ1=-100, Ɵ2=150)  for the first actual angle (Ɵ1=-100), SNR=10dB for DOA 

Estimation. 

         The relationship between the percentage error and N (number 

of samples) is depicted in figure (3.48) for both the FFT algorithm 

and the Root-MUSIC algorithm for different N (number of samples) 

with noise double (two) sources (Ɵ1=-100, Ɵ2=150), d=0.6cm, 

Ⴤ=2cm  for the second actual angle (Ɵ2=150) and a signal-to-noise 

ratio SNR=10dB. A minimum of N (number of samples) is required 

for the maximum percentage error, whereas a maximum of N is 

required for the minimum percentage error (number of samples). 

This indicates that the Root-MUSIC algorithm technique is better 
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than the FFT algorithm method as its percentage error is lower in the 

former case. 

 

Figure (3.48) Percentage error of angle versus N for double (two) sources 

(Ɵ1=-100, Ɵ2=150)  for the second actual angle (Ɵ2=150), SNR=10dB for DOA 

Estimation. 

          The relationship between the percentage error and N (number 

of samples) is depicted in figure (3.49) for both the FFT algorithm 

and the Root-MUSIC algorithm for different N (number of samples) 

with noise double (two) sources (Ɵ1=-100, Ɵ2=150), d=0.6cm, 

Ⴤ=2cm for the first actual angle (Ɵ1=-100) and a signal-to-noise ratio 

SNR=5dB. Noted was the difference between the minimum and 

maximum percentage errors: the minimum requires a maximum of N 

(number of samples), while the maximum requires a minimum of N. 

By comparison, the Root-MUSIC algorithm methodology has a 
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lower percentage error than the FFT algorithm method, indicating its 

superiority. 

 

Figure (3.49) Percentage error of angle versus N for double (two) sources 

(Ɵ1=-100, Ɵ2=150)  for the first actual angle (Ɵ1=-100), SNR=5dB for DOA 

Estimation. 

         The relationship between the percentage error and N (number 

of samples) is shown in figure (3.50) for both the FFT algorithm and 

the Root-MUSIC algorithm for different N (number of samples) with 

noise double (two) sources (Ɵ1=-100, Ɵ2=150), d=0.6cm, Ⴤ=2cm for 

the second actual angle (Ɵ2=150) and a signal-to-noise ratio 

SNR=5dB. A minimum of N (number of samples) is required for the 

largest percentage error, while a maximum of N is needed for the 

smallest percentage error. This indicates that the Root-MUSIC 

8 10 12 14 16 18 20 22
0

5

10

15

20

25

30

35

40

45

N(number of samples)

P
er

ce
nt

ag
e 

E
rr

or

First Angle= - 10 ,SNR=5dB

 

 

FFT

Root-MUSIC



 
 
 

 ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ ( 85 ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ)
 

algorithm approach is better than the FFT algorithm method as the 

Root-MUSIC technique's percentage error is lower. 

Figure (3.50) Percentage error of angle versus N for double (two) sources 

(Ɵ1=-100, Ɵ2=150)  for the second actual angle (Ɵ2=150), SNR=5dB for DOA 

Estimation. 
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CHAPTER FOUR 

Experimental Results 

4.1 Introduction 

        This chapter presents experimental findings that assess the 

Root-MUSIC approach's effectiveness in calculating the DOA and 

contrast it with the FFT method. An ultrasonic transducer serves as 

the device for the practical system in this dissertation. The ultrasonic 

transducer's specifications and an overview are given. The ultrasonic 

DOA system, which is employed in the practical system and 

parameters, is introduced with a brief explanation. To execute the 

ultrasonic DOA estimation of a single source and two sources, 

several experiments were carried out. 

4.2 Ultrasonic Transducer 

         There are numerous uses for the ultrasonic transducer, 

including channel level and air or water speed measurement. A 

gadget employs numerous detectors to measure direction and speed. 

It determines the speed based on the relative distances to airborne or 

waterborne particulate matter. This dissertation makes use of the air 

ultrasonic ceramic transducers depicted in figure (4.1) 

below.                          



 
 
 

 ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ ( 87 ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ)
 

 

Figure (4.1) Ultrasonic Ceramic Transducer. 

4.3 The DOA Estimation System Using Ultrasound. 

     The signal generator and transducers make up the initial section 

of the practical system. The 40kHz ultrasonic wave is produced by 

the signal generator. One transducer for a single source and two 

transducers for two sources convey the ultrasonic signal through the 

atmosphere. 

The scanning receiver in the receiver uses a single transducer. The 

uniform linear array is the same as the receiver scanning procedure. 

The greatest distance between elements in a uniform linear array 

(ULA) is equal to or less than (Ⴤ /2), where Ⴤ is the wavelength. The 

ultrasonic wavelength is equivalent to 0.8cm. The distance between 

the ultrasonic transducer and the target must not be greater than 0.2 

cm in order to meet ULA requirements. 
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4.4 Practical Experimental Results 

     The ultrasonic DOA estimate hardware experimental setup is 

depicted in figure (4.2). For the Direction Of Arrival (DoA) estimate 

test with one source and two sources, the ultrasonic transducers are 

used, and the received signal is obtained by scanning an ultrasonic 

transducer and taking a sample at (d) interval. For DoA estimations, 

the FFT and Root-MUSIC methods are used.  

        A comparison between conventional and high-resolution 

methods is then made for different numbers of samples. The 

parameters of the system are as follows: N (number of samples), d 

(distance between two samples), f (frequency), Ⴤ (wavelength), and 

Ɵ (actual angle). 
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Figure (4.2)  Hardware experimental system parts. 

4.5 Experimental with Single Source  

      Three experiments for single-source are achieved, two of them 

are for a negative angle and the other is for a positive angle. 
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4.5.1 Single-Source with Negative Angle : 

       The experiment uses a single source with a negative angle. The 

actual angle is  Ɵ = -100. The following parameters are used : N=11, 

d=0.2 cm, f=40 KHz, Ⴤ=0.8 cm. Figure (4.3) refers to the result of 

the FFT algorithm method. The practical (apparent) angle is equal to 

-60. The percentage error is very high and equal to 40%. Also, it is 

noticed, from the resulting curve using the FFT method, that the peak 

corresponding to the apparent (measured) angle is not sharp enough. 

 

Figure (4.3) Magnitude (power (dB)) versus angle (degree) for a single-source  

(Ɵ = -100) using the FFT approach (N=11). 
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percentage error of the Root-MUSIC approach is lower than that of 

the FFT approach. For this reason, the Root-MUSIC approach is 

better than the FFT approach. Moreover, the sidelobe that appears 

with the Root-MUSIC method is higher than 10 dB. Figure (4.4) 

shows the relationship between percentage error and N (number of 

samples) of both FFT and Root-MUSIC methods for a single source 

with Ɵ = -100. It is noticed that the percentage error for the FFT 

approach is much greater than that of the Root-MUSIC approach. 

The error for the FFT approach exceeds 30% and reaches up to 40% 

while for the Root-MUSIC approach is less than 20% and decreases 

down to less than 10%. 

 

Figure (4.4) Percentage error of angle versus N for single source with Ɵ =-100 

for DOA Estimation. 
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        The second experiment uses a single source with another 

negative angle. The actual angle is Ɵ =-110. The following 

parameters are used : N=18, d=0.2 cm, f=40 KHz, Ⴤ=0.8 cm.  

    Fig. (4.5) depicts the FFT algorithm method's output. The apparent 

(practical) angle is -12o. The percentage mistake is 9.0909 percent, 

which is quite large. To put it in another way: The sidelobe is high, 

which means that it's at least 10% lower than the peak corresponding 

to the practical angle. The FFT algorithm has this shortcoming. Also, 

the peak corresponding to the apparent (measured) angle is not sharp 

enough in the resulting curve of employing the FFT approach. 

 

Figure (4.5) Magnitude (power (dB)) versus angle (degree) for a single-source 

(Ɵ = -110) using the FFT approach (N=18). 
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angle is -11.6066o degrees. As a result, the error percentage is 6.005 

percent. Also, the Root-MUSIC approach has a lower percentage 

error than the FFT approach does. This ensures that Root-approach 

MUSIC is superior to the FFT's approach. Furthermore, the Root-

MUSIC technique produces a sidelobe with an amplitude greater 

than 10 decibels. Figure (4.6) shows the relationship between 

percentage error and N (number of samples) of both FFT and Root-

MUSIC algorithm methods for a single source with Ɵ = - 110. It is 

noticed that the percentage error for the FFT approach is much 

greater than that of the Root-MUSIC approach. The error for the FFT 

approach exceeds 9.0909% and reaches up to 70% while for Root-

MUSIC is less than 40% and decreases down to less than 10%. 

 

Figure (4.6) Percentage error of angle versus N for single source with Ɵ=-110  

for DOA Estimation. 
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    4.5.2 Single-Source with Positive Angle : 

      The experiment uses a single source with a positive angle. The 

actual angle is positive and equals θ=60. The following parameters 

are used : N=13, d=0.2 cm, f=40 KHz, Ⴤ=0.8 cm. As may be seen in 

Fig. (4.7), Good results were obtained with the FFT approach.. The 

angle that appears to be practical is 1o degrees. The percentage 

inaccuracy is 83.333 percent, which is quite high. It is less than 10 

dB from the peak that corresponds to the practical (appeared) angle. 

The sidelobe is high, ie this is a shortcoming of the FFT method. It 

has been also discovered that the FFT method's result curve shows 

that the peak corresponding to the apparent (measured) angle is not 

sharp enough. 

 

     Figure (4.7) Magnitude (power (dB)) versus angle (degree) for a single-

source (Ɵ = 60) using the FFT approach (N=13). 
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       Using the same N=13 samples, the Root-MUSIC technique is 

also an option. The apparent (practical) angle is 5.3730o. Because of 

this, the percentage of error is 10.45 percent. Root-error MUSIC's 

percentage is lower than the FFT's error percentage, as is the case 

with both approaches. The Root-MUSIC technique is superior to the 

FFT approach for this reason. Furthermore, the Root-sidelobe 

MUSIC is more than 10 dB. Figure (4.8) shows the relationship 

between percentage error and N (number of samples) of both FFT 

and Root-MUSIC algorithm methods for a single source with Ɵ = 60. 

It is noticed that the percentage error for the FFT is much greater than 

the Root-MUSIC. The error for the FFT exceeds 50% and reaches up 

to 100% while for Root-MUSIC is less than 20% and decreases down 

to less than 10%. 

 

Figure (4.8) Percentage error of angle versus N for a single source with Ɵ =60  

for DOA Estimation. 
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4.6 Experimental with Two Sources: 

         In this experiment, two sources are used. The first angle is 

negative and the second angle is positive. The first actual angle is  

Ɵ1=-290 and the second actual angle is equal to Ɵ2=260. The 

following parameters are used: N=17, d=0.2cm, f=40kHz, Ⴤ=0.8cm.                       

         Figure (4.9) refers to the result of the FFT method. The first 

practical (apparent) angle is equal to - 240. The percentage error is  

17.241%. The second practical (apparent) angle is 190, hence the 

percentage error is 26.923%. The sidelobe is high, less than 10dB 

from the peak that is corresponding to the highest practical (apparent) 

angle. This is one of the drawbacks of the FFT algorithm. Also, it is 

noticed, from the resulting curve using the FFT method, that the peak 

corresponding to the apparent (measured) angle is not sharp enough. 

 

   Figure (4.9) Magnitude (power (dB)) versus angle for a double (two) sources 

( Ɵ1=-29o,    Ɵ2=26o) for DOA estimation using the FFT approach (N=17). 
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        The other method that is used is the Root-MUSIC method for 

the same number of samples N=17. The first practical (apparent) 

angle is equal to -30.20040. The percentage error is 4.139%, while 

the second practical (apparent) angle is equal to 25.26950 with a 

percentage error equal to 2.809%. This means that the percentage 

error of the Root-MUSIC method is lower than that of the FFT 

method. This ensures that the Root-MUSIC method is better than the 

FFT method. Moreover, the sidelobe that appears with the Root-

MUSIC method is higher than 10 dB. Figure (4.10) shows the 

relationship between the percentage error and N (number of samples) 

for the first actual angle (Ɵ1=-290) of both FFT and Root-MUSIC 

algorithm methods. It is noticed that the percentage error for the FFT 

method is much greater than the Root-MUSIC method. The error for 

the FFT  method exceeds 10% and reaches up to 27.586% while for 

the Root-MUSIC method is less than 10% and decreases down to less 

than 5%. 
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Figure (4.10) Percentage error of angle versus N for double (two) sources (Ɵ1= 

-290 , Ɵ2= 260)  with the first actual angle (Ɵ1=-29o) for DOA Estimation. 

        Figure (4.11) shows the relationship between the percentage 

error and N (number of samples) for the second actual angle (Ɵ2= 

26o ) of both FFT and Root-MUSIC algorithm methods. The 

percentage error for the FFT method is much greater than the Root-

MUSIC method. The error for the FFT  method exceeds 23% and 

reaches up to 34.615% while for the Root-MUSIC method is less 

than 7.5% and down to about 0%. 
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 Figure (4.11) Percentage error of angle versus N for double (two) sources 

(Ɵ1= -290 , Ɵ2= 260) with the second actual angle (Ɵ2= 26o) for DOA 

Estimation. 

      In the other experiments, two sources are also used. The first 

angle is negative and the second angle is positive. The first actual 

angle is  Ɵ1= -100 and the second actual angle is Ɵ2= 140. The 

following parameters are used: N=25, d=0.2cm, f=40kHz, Ⴤ=0.8cm. 
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The second practical (apparent) angle is 13o, hence the error 
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angle... This is a shortcoming of the FFT algorithm approach. Also, 
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the peak corresponding to the apparent (measured) angle is not sharp 

enough in the resulting curve of employing the FFT approach. 

Figure (4.12) Magnitude (power (dB) versus angle for  a double (two) sources 

(Ɵ1= -100 , Ɵ2= 140) for DOA estimation using the FFT approach (N=25). 
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magnitude. Figure (4.13)  shows the relationship between the 
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( Ɵ1=-100) of both FFT and Root-MUSIC algorithm methods. It is 
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noticed that the percentage error for the FFT method is much greater 

than the Root-MUSIC method. The error for the FFT method exceeds 

40% and reaches 50% while for Root-MUSIC is less than 20% and 

decreases down to less than 1%. 

 

Figure (4.13) Percentage error of angle versus N for double (two) sources (Ɵ1= 

-100 , Ɵ2= 140) with the first actual angle (Ɵ1= -10o) for DOA Estimation. 

      Figure (4.14) shows the relationship between the percentage error 

and N (number of samples) for the second actual angle (Ɵ2=14o ) of 

both FFT and Root-MUSIC algorithm methods. the percentage error 

for the FFT method is much greater than the Root-MUSIC method. 

The error for the FFT method exceeds 21% and reaches up to 28% 

while for Root-MUSIC is less than 14% and down to about 0.714%. 
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Figure (4.14) Percentage error of angle versus N for double (two) sources (Ɵ1= 

-100 , Ɵ2= 140) with the second actual angle (Ɵ2= 14o) for DOA Estimation. 
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CHAPTER FIVE 

Conclusions and Suggestions for Future Work 

5.1 Conclusions 

       In this work we compared traditional FFT and super-resolution 

Root-MUSIC methods for Direction of Arrival (DOA) estimation, 

highlighting FFT's limitations in resolution, data requirements, and 

high sidelobes, which obscure signals and hinder accuracy. Despite 

Root-MUSIC's mathematical complexity and longer estimation 

times, its lower error rates and ability to discern slight angular 

differences demonstrate its superiority. Practical results confirm that 

FFT struggles with accurately detecting DOA, especially for closely 

spaced sources, whereas Root-MUSIC excels, benefiting from 

modern computing power to deliver precise and reliable DOA 

estimates with lower error margins and reduced sidelobe 

interference. 

     From simulation results, we can conclude that the percentage 

error equals zero at all points locations of the number of samples (N) 

with noiseless data for single and two emitting (radiating) sources, 

when we use the Root-MUSIC algorithm method that is 

advantageous for this method but the percentage error is not equal 

zero of the FFT algorithm method. When we use with noisy data for 

single and two emitting (radiating) sources, the percentage error is 

minimum with high value signal to noise ratio (SNR) and with 

maximum N (number of samples).   
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        From the practical results along with an investigation of the 

performance of both the conventional method (FFT) and super-

resolution method (Root-MUSIC), we can conclude many points:  

The percentage errors of the FFT method is much higher, in most 

cases than of Root-MUSIC for both types of experiments, the two 

single-source experiments, and the single two sources experiment. In 

the FFT method the error is increased with fewer values of the 

number of samples N and begins decreasing, but still high, as N 

increases. For the Root-MUSIC method, it is noticed that the 

percentage error in most cases less than 15% for the two experiments 

of single source and less than 10% for the experiment of two sources. 

Also, it is noticed that high sidelobes have appeared for the FFT 

method in most experiments and it was less than 10 dB from the peak 

that corresponds to the highest practical (apparent) angle.  While in 

the Root-MUSIC method, the sidelobes are of small values, higher 

than 10 dB from the peak that is corresponding to the highest 

practical (apparent) angle.                                                                         

5.2 Suggestions for Future Work 

1. The application of radio frequency microwaves. 

2. Applying various frequencies and wavelengths. 

3. Using ULA without a scanning receiver is made possible by the 

use of tiny ultrasonic transducers. 

4.  Using of other high-resolution methods such as ESPRIT.  
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 الخلاصة

في هذا العمل نناقش التحدي المتمثل في التمييز بين الترددات القريبة وزوايا المصادر في         
 (FT)ع التركيز على القيود المفروضة على الطرق التقليدية مثل تحويل فورييهالتحليل الطيفي، م

، الذي يتطلب كمية كبيرة من البيانات وغالبا ما يؤدي إلى ضعف الدقة بسبب الفصوص الجانبية. 
كمجال حاسم للتحسين ويقدم طريقة تصنيف إشارات الجذر  (DOA) يقدم تقدير اتجاه الوصول

 (FFT).عقليدية مثل تحويل فورييه السريكبديل عالي الدقة للنهج التRoot-MUSIC) ) المتعددة 

باستخدام معلمات مختلفة، بما في ذلك عدد العينات،  FFTو Root-MUSICتقارن الدراسة 
والفاصل الزمني لأخذ العينات المكانية، والطول الموجي، مع مصادر انبعاث فردية ومزدوجة. 

الفائقة مع متطلبات أقل للبيانات. يتم دعم  Root-MUSICعلى دقة وكفاءة تسلط النتائج الضوء 
في فصل زوايا المصدر بدقة من خلال التجارب   FT فعالية الطرق عالية الدقة عبر تقنية فورييه

التي أجريت باستخدام محولات الطاقة بالموجات فوق الصوتية في زوايا مصدر مختلفة، مما يدل 
من خلال  DOAتم تنفيذ تجارب تقدير  .عالية الدقة على الطرق التقليدية على ميزة الأساليب

محولات الطاقة بالموجات فوق الصوتية. تتضمن كل تجربة زوايا مختلفة من المصادر. وقد 
 أظهرت النتائج التجريبية أن الأساليب عالية الدقة تفوقت على الأساليب التقليدية.

خطأ هو أعلى ما يمكن في النتائج للملية نستنتج أن الحد الأقصى  والعومن النتائج المحاكاة        
 بدون ضوضاء وأقلها بيانات نتائج المحاكاة بضوضاء  العملية وأقل منه في بيانات نتائج المحاكاة

. وهذا يعني أن أفضل النتائج تكون في نتائج البيانات Root-MUSIC   و طريقة FFTلطريقة 
، وأسوأ النتائج هي النتائج العملية في نتائج مصدر بضوضاء نتائج البيانات، ثم في بدون ضوضاء

 .لكل النتائج  واحد ومصدري انبعاث

 

 

 

 

 

 



 
 
 

 

 قرار لجنة المناقشةإ

تقنية  ) نشهد بأننا أعضاء لجنة التقويم والمناقشة قد اطلعنا على هذه الرسالة الموسومة        

لتخمين اتجاه الوصول في تطبيقات   (Root-MUSIC)تصنيف الإشارات المتعددة -جذر

في محتوياتها وفيما له علاقة بها  (شكري  محمد رافع)وناقشنا الطالب  (الأمواج فوق الصوتية
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