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Abstract

In this work we discuss the challenge of distinguishing between
close frequencies and angles of sources in spectral analysis,
emphasizing the limitations of conventional methods like the Fourier
transform, which requires a large amount of data and often results in
poor resolution due to side lobes. It introduces the Direction of
Arrival (DOA) estimation as a critical area for improvement and
presents the Root Multiple Signal Classification (Root-MUSIC)
method as a high-resolution alternative to traditional approaches like
the Fast Fourier Transform (FFT). The study compares Root-MUSIC
and FFT using various parameters, including the number of samples,
spatial sampling interval, and wavelength, with both single and dual
emitting sources. The findings highlight Root-MUSIC's superior
accuracy and efficiency with fewer data requirements. The efficacy
of high-resolution methods over the Fourier technique in accurately
separating source angles is further supported by experiments
conducted with ultrasonic transducers at different source angles,
demonstrating the high-resolution approaches' advantage over
traditional methods. Implementing the DOA estimation experiments
have been performed through ultrasonic transducers. Each
experiment involves different angles of sources. The experimental
results have demonstrated that the high-resolution approaches
outperformed the traditional approaches.

From the simulated and practical results, we conclude that the
maximum error is as high as possible in the practical results and less

than it in the noisy simulation results data, the least of which is

(1)




noiseless simulation resluts data, for the FFT method and the Root-
MUSIC method. This means that the best results are in noiseless
resluts data, then in the results of noisy resluts data, and the worst
results are the practical results in the results of one source and two

emitting sources for all resluts.

(1)
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Chapter One

Introduction

1.1 Overview

In the current era, the fields of communication and signal
processing are crucial, serving as the foundation of our digital
existence by playing key roles in various sectors such as business,
economy, education, and health[1]. Signal processing involves
analyzing, modifying, and controlling different types of signals (like
electromagnetic, images, and sound) through operations like storage,
reconstruction, compression, and feature extraction[2]. These
operations, which aim to enhance storage and transmission efficiency
while preserving signal quality, rely on mathematical, and statistical
methods, and hardware devices. Their effectiveness is assessed using
various metrics tailored to the specific goals and operation types[3].
Additionally, array signal processing, a subset of signal processing
that uses sensor or antenna arrays to gather signal source data, is
highlighted for its widespread application in different fields such as
medicine, astronomy, radar systems, sonar systems, positioning

systems, etc[4][5].

Spectrum analysis focuses on identifying a signal's spectral
components, a practice dating back to early studies by Pythagoreans,
Newton, Bernoulli, and Prony on planetary motion, with Gauss' work
hinting at principles of the Fast Fourier Transformation based on
Fourier's 1807 work[6]. It's used in various applications, particularly

for analyzing stationary stochastic data through autoregressive
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processes[7]. Spectral analysis plays a key role in processing signals
received from various objects like airplanes, medical imaging
devices, and missiles, aiming to determine parameters such as signal
direction, magnitude, speed, and range[8][9][10]. Signals,
considered to be emitted by point sources, are categorized into
narrowband and wideband based on their bandwidth[11]. Spectral
estimation techniques, which aim to estimate a signal's spectral
density from time samples, are crucial and vary as parametric, non-
parametric, or semi-parametric, depending on the application’s nature

and requirements|[2].

Direction of Arrival (DOA) estimation, also known as Direction
Finding, is a significant application in array signal processing used
to determine the direction from which a signal arrives, using forms
like acoustic or electromagnetic waves through antenna arrays or
sensors[12]. This technique is crucial for tracking and locating signal
sources in both military and civilian contexts, such as rescue
operations, exploration, emergency response, and monitoring
applications[13]. DOA estimation involves analyzing the sensor
array's spatial spectrum with specific mathematical models, where its
performance can be affected by data model errors and noise[14]. The
literature highlights DOA's effectiveness in addressing various

engineering challenges, including:

e Locating the direction relative to the array of a source.
e |dentifying multiple signal sources around a specific point of
interest.

e Employing in radio telescopes to pinpoint locations in the sky.

(2)




e Enhancing beamforming in wireless communications to lower
data rate complexities.

e Addressing direction of arrival issues alongside other
technologies like Time Difference of Arrival (TDOA), Angle
of Arrival (AoA), and Frequency Difference of Arrival
(FDOA).

e Improving accuracy in digital signal processing[12][15][16].

DOA estimation utilizes various algorithms, broadly classified
into classical, parametric, and subspace categories, with subspace
algorithms like Pisarenko Harmonic Decomposition (PHD), Eigen
Vector (EV), Multiple Signal Classification (MUSIC), and Root-
MUSIC being preferred for their high-resolution capabilities.
Classical algorithms, though available, lack the efficiency of these
modern approaches. This study aims to offer a detailed analysis and
benchmarking to evaluate these algorithms, preparing to present the

latest research in the subsequent section.

The PHD algorithm, introduced in 1973 by Pisarenko, represents
a high-resolution method based on eigenanalysis of the data model's
autocorrelation matrix, designed to surpass classical method
limitations[17]. However, PHD has its own weaknesses, prompting
the development of the MUSIC algorithm by Schmidt to address
these issues, noted for its super-resolution capabilities[18].
Additionally, Barabell suggested another variant of MUSIC, utilizing
the polynomial's root in the MUSIC spectrum for Angle of Arrival
(AOA) estimation. Unlike MUSIC, which typically presents results
in visual plots, Root-MUSIC outputs numerical results[19].

(3)




1.2 Literature Review

The Direction of Arrival (DOA) techniques have been used
since four decades ago for addressing different kinds of issues such
as estimating the DOA of signals, reducing the power transmitted,
etc. One of the earliest studies was performed by Mahapatra [20] in
1980. He suggested an approach that was based on a mobile direction
finder for the passive location of the radio emitter. A vehicle was
used to carry the direction finder.. A year after, Klose and Skudera
[21] proposed a technique that accurately measured the information
obtained from frequency and angle of arrival. The technique, then,
has been utilized in high-density environments for identifying
parameters emitters. Nine years later, using a basic Bayesian
approach, Farrier. and D.R [22] developed a useful direction-of-
arrival (DOA) estimator in 1990. However, the threshold for this
estimator is substantially lower than that of MUSIC, making it nearly
identical to this approach. Two years after, Wong [23] estimated the
DOA of signals considering its noise with an unknown covariance
matrix. The author tested data projection on the noise subspace. The
strength of the approach is that there is no need to have the noise

covariance matrix known.

In 2000, Larsson and Stoica [24] investigated the case when
having sensors failure before the completion of the measurement
process. The authors have found the direction of arrival DOA
estimation with both covariance matching and MUSIC algorithm.
The authors showed that the covariance matching technigque can use

the information on the array covariance matrix estimation accuracy.
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The findings of the experiments on their method reflected efficient

performance gain.

When a large number of sources (M) are used in the estimation
of the direction of arrival (DOA), the number of sensors (N) that can
be used to determine the DOA can be exceeded, as was the case in
the paper by Araki, et al. [25] (2006). Two uniform linear arrays
(ULAs) were used to solve the challenge of associating multiple
targets' estimated arrival angles (DOASs) with each other in a study
published in (2008), by Bai et al. [26]. Rejfek et al. [27] offered a
comparison of parametric power spectrum density approaches for
application in meteorological radar, and used pulses of the pulse
radar in it for frequency modulation in their article in (2015). Auto
regression (AR) and Eigen Vector (EV) have both been used in this
study.

Another study performed by Yuan [28] proposed an accurate
and fast DOA estimation for multi target in “Additive White
Gaussian Noise”. The proposed method used two highest magnitudes
(DFT) coefficients of the input and two of their “associated
neighboring bins”. The authors also analyzed the mean square errors.
The results showed the high efficient of the proposed approach under
several DOA estimators. Zhang et. [29] suggested a fast DOA
estimation for single channel antenna array. The suggested approach
used spatial FFT that considers the switching time into operation
aiming to construct a new transformation function. This function was

used to directly operate spatial Fast Fourier Transformation (FFT) to
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the single-channel antenna array sampled data. The proposed method

was proved to be highly efficient.

Researchers and developers from worldwide institutions and
companies have significantly contributed to this field. The study of
Shaghaghi and Vorobyov [30] proposed a high-resolution DOA
estimation approach that was based on using root MUSIC algorithm.
The aim of the algorithm was to improve the quality of DOA
estimation when having small sample size. The main idea behind the
approach was identifying undesirable phenomenon in the sample
covariance matrix that causes perturbations. The metrics used in
evaluating the proposed approach were MSE and detection rate. The
simulation results showed the efficient performance of the proposed
approach. Another study performed by Vasylyshyn [31] used root-
MUSIC approach for DOA estimation. The approach involved
resampling procedure by adding some noise “pseudo noise”. The
root-MUSIC algorithm polynomial was used as alternative of
eliminating of the entire estimator. Yan et al. [32] developed a low-
computational cost approach using root-MUSIC for DOA
estimation. The developed approach aimed to reduce the
computational cost consumed in the estimation process. The
approach utilized eigenvalue decomposition for extracting real noise
subspace. The approach showed high performance in terms of the

mean squared error.

Furthermore, other DOA estimation algorithms such as
“Pisarenko Harmonic Decomposition (PHD)” were examined in the

literature. For instance, the work of Kamil et al. [33] (2021) achieved
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a comprehensive and evaluative study on PHD, MUSIC, and other
DOA estimation algorithms. The results reflected the high efficiency
of the MUSIC algorithm compared to PHD and other estimation
algorithms. This was because MUSIC requires fewer number of
antennas than Pisarenko and other algorithms to address the “Angle

of Arrival” of the received signals.

In 2021, Fathtabar et al. [34] proposed an Eigen-Structure
approach for DOA estimation. The strength of their proposed
approach is that it does not require prior-knowledge about the source
angle estimation. Their approach transformed the covariance matrix
to reference frequency. Then, they formed a “Hankel Matrix” for
each “Signal Subspace FEigenvector”. Many experiments were
performed and the results under different conditions reflected an
efficient performance compared to other approaches in the literature
under a variety of conditions. Vesa [35] used root-MUSIC algorithm
for DOA estimation. The author showed that root-MUSIC was able
to improve the performance of the estimation. The study also showed
that root-MUSIC can be efficiently used with smart antennas since it

adds the possibility of user separation.

The literature includes a lot of works that are able to deal with
different kinds of problems. For example, the problem of time-
varying DOA in “Uniform Linear Array ULA” was investigated by
one of the most recent studies performed by Zhao e al. [36] in 2021.
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1.3 Research Objectives

This study is dedicated to the exploration of advanced Direction
of Arrival (DOA) estimation methodologies, with a particular
emphasis on the Root-MUSIC algorithm. These methodologies are
distinguished by their high-resolution characteristics and their
foundation in eigenanalysis. A comparative analysis is conducted to
evaluate the performance of these contemporary techniques against

conventional methods, notably the Fast Fourier Transform (FFT).
The investigation encompasses several critical areas:

e Analyzing auto-covariance and auto-correlation processes to
elucidate the procedures for extracting Eigenvalues and

Eigenvectors from the auto-correlation matrix.

e An extensive examination of the Root-MUSIC method as a

contemporary approach to DOA estimation.

e The application of these methodologies across various

scenarios to assess their efficacy and validate the findings.

e Benchmarking the results obtained to formulate
recommendations regarding the application efficacy of the

explored methodologies.

e Verification of the applicability of these findings through

experiments involving ultrasonic waves.

The research aims to offer a comprehensive evaluation

framework and actionable insights for the implementation of DOA
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estimation techniques, thereby enhancing their applicability and

accuracy in practical scenarios.
1.4 Study Organization

Chapter one (Introduction with Literature Review): tries to explain
most of the different algorithm methods for the Direction of Arrival
(DOA) Estimation.

Chapter two (Principles of Direction of Arrival (DOA) Estimation):
covers the required background on the topics considered in this

study.

Chapter three (DOA Methods): presents the research method
followed in this study including simulation with and without noise

data.

Chapter four (Experimental Results): contains the results of the

experiments of the implemented approaches.

Chapter five (Conclusions): contains some conlusing the study has
come up with in terms of the approaches considered providing
general recommendations. The chapter also states the future works

that can be done by other researchers and the area of development.
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Chapter Two

Theoretical Background

2.1 Overview

In this chapter the required theoretical background about the
topics considered in this study is presented. Descriptions of the non-
parametric and high-resolution methods as well as an explanation
about autocorrelation matrices, eigenvectors, and other algorithms
required in this study are also presented. Also, estimation approaches
will be elaborated in detail such as the modern (parametric)
Autoregressive (AR) method, EV (Eigenvectors), PHD (Pisarenko
Harmonic Decomposition), MUSIC (Multiple Signal Classification
Algorithm), and Root-MUSIC.

2.2 Frequency Estimation

Power spectral estimation is considered an important area in
Digital Signal Processing (DSP). A spectrum reflects the relationship
between the frequency and the magnitude, which can be graphically
represented as a plot. It has many different applications, for instance,
in speech recognition, it can be utilized in reducing the bandwidth of
a speech [37]. Moreover, it is widely used in modern radar systems
for tracking and monitoring static and mobile objects [38]. Signals
are categorized into periodic and random; the former can be predicted
since its behavior is almost known, while it is difficult to predict the
behavior of the second type “the random”. Random signals are also

called random processes s(n) and have two types; stationary, the
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variance and mean of a stationary random process are both constant,
meaning they don't change with time when its order is O such that
s(n) and s(n+k) have the same “O™-order joint density functions”,
while if O>0 it is considered a non-stationary in “Strict Sense”, the
means, variances, and covariances of data points are frequently non-
stationary or fluctuate with time [39]. A random process may be also
termed “Ergodic” when the statistical averages are able to be defined
using a single sample function [40]. Furthermore, there is another
form of stationery that is called “Wide Sense Stationary (WSS)”, if
both the mean function and the correlation function of a random
process remain unchanged when time shifts the process is referred to
as weak-sense stationary, or wide-sense stationary (WSS), when

process means is constant (xr(n)= &) and process variance are finite

(or(0)<).
The Fourier transform of the signal s(n) is [63]:

S(w) = Xq=— s(n) e7J" (2.1)
or, equivalently:

S(f) = Xreew S(n) €728 (2.2)

The WSS autocorrelation sequence of a discrete signal s(n) can
provide a “time-domain description” of the 2" order moment of the
signal (process). The autocorrelation of the signal s(n) is given as
follows [41]:

Tes(k) = Xp=—0s™(n) s(n+k) (2.3)

It has a Fourier transform:
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Pss(w) = Zlocoz—oorss(k) e Jkw (24)

The formula above is called “Power Spectrum” or “Power Spectral

Density” of the process. The autocorrelation sequence is determined
by the inverse DT-FT [41]:

res(k) = %f_”n Pis(e/?) ek dw (2.5)
Also P, (w) can be written as:
Pes(@) = IS(@)I* (2.6)

Ps(@) =[S s(m)e=ime|” 2.7)

The power spectrum estimation in the frequency domain is
equivalent to the autocorrelation estimation in the time domain. The

ergodic process autocorrelation is formalized as follows [41]:

res() = lim {——3N__ s(n + k)s*(n)} (2.8)

N-oow (2N+1

The power spectrum estimation is directly obtained when the s(n) is
known for all n. However, the problem in the above formulas lies

on two main issues, as follows:

- The data cannot be unlimited.
- Noisy or corrupted signals may exist, which lead to have
incorrect data.
Therefore, the estimation of the spectrum is performed on a
limited (finite) number of noisy measurements s(n). It should be
mentioned that spectrum estimation aims to, using a finite dataset,

illustrate the distribution of power over signal frequency, to
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characterize the power encoded in the signal's distribution across
frequencies, spectral estimation is utilized. A signal's power spectrum
becomes more condensed the more correlated or predictable it is [42].
The spectrum estimation can be performed using two kinds of
approaches; classical (non-parametric) and modern (parametric) and

subspace is as described in the following sections.
2.2.1 Classical (Non-Parametric) Methods

This kind does not need assumptions on the data generation
approach. Using a given data, the first step starts with estimating the
“autocorrelation sequence” of the random process. The estimation is
performed using the FT of the previous step. As mentioned, the
autocorrelation ergodic process s(n) is evaluated by a limited (finite)
interval. The estimation can be performed using the following
formula [43]:

1 ~—N-1
RCEE)Y st k)s'(n) (2.9)

The non-parametric estimation is considered a periodogram that
is simple to calculate and the power spectrum resolution is limited to
low-scale data. In this context, a resolution is crucial when it comes
to performance analysis of spectral estimation and reflects the ability
in distinguishing spectral features [44]. The literature includes a lot
of approaches that have modified the periodogram aiming to
enhancing its statistical features (e.g., Welch, Bartlett, and

Blackman-Tukey methods).
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According to the previous description and equations, the values

outside the interval [0, N-1] of s(n) are excluded from Equation 2.9

and can be re-formalized as follows:
1 ~N-1-k
£ (k) = —Z st + k)s*(n) (2.10)
N n=0

Where k=0 to N-1 and by taking the DT-FT of #,,(k), the power

spectrum estimate is called “Periodogram” as follows:

N-1
pper(e]w) = Z fos (k) e (2.11)
k=—N+1

The above formula can be directly obtained in terms of s(n) as

follows:
N-1 2
1 B 1 ,
Per(e/®) == Z s(n) e/ =— |S(w)] (2.12)
N N
n=0
Bper (e70) = + S() §* (@) =~ IS() I’ (2.13)

where S(w) is the DT-FT of data sequence s(n) with N points.

Regardless of its simplicity, the periodogram needs large-scale
data for obtaining good “Frequency Resolution” [45][46]. However,
this method struggles with what has been called in the literature
“Spectral Leakage”, spectrum leaking is the term used to describe
this blending of data. When doing transforms over data that contains
a noninteger period signal, you can minimize spectral leakage by
using a technique known as windowing. By using windowing, a

signal is multiplied by a vector that depicts a smooth curve with
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boundary values close to or equal to zero, which is due to the

windowing technique involved [47][48].
2.2.2 Autoregressive (AR) model and power spectrum

Parametric approaches are used to describe the data s(n) time
series, which is represented by the rational assembly and two-step
spectrum estimation procedure, as the output of the linear system
[49],[50]. In AR modeling, the time history of a signal is used to
extract useful information from the signal. To compute a time series
power spectrum density function, the AR model can be used and then
application of the DFT is made. The power spectrum provides
information on the frequency output of a time series [51],[52]. The
features of stationary stochastic systems are defined by AR models.
The problems that best suit parametric algorithms have well-defined
and predictable input data. The most popular parametric method is
the AR method. The data in the AR technique can be represented as
the result of a discrete causal filter, all poles, with white noise as the
input. Each EEG signal sample is described by the autoregressive
(AR) model as a linear mixture of earlier samples. AR model
parameters and variance are used to generate the power spectrum and
maximum covariance function [53]. The AR model predicts the
present values of a time series based on its historical values.
Autocorrelation is a process that will demonstrate the potential
dependency on previous values [52].

Autocorrelation is the coupling of a data sample s[n] with a more

advanced version of itself. Autocorrelation is the average of a data
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sample's s[n] outputs with a version of itself that has been advanced

by a lag time [52].

Autocorrelation is described by the equation [52]:
reslk] = “ZN=Fs[nls[n + k] (2.14)

In this case, 1, [k]is the amount of autocorrelation at sample delay K,

and N is the total number of observations.

The AR model [52],[54] can be viewed as a series of
autocorrelation functions. Time series modelling is based on the
assumption that current data points contain more information than
past data points, and that each series value can be calculated as a
weighted sum of the same series' prior values plus an error word
“known as AR time series modelling”. AR's model is characterized

by the following:
sinl=3YM,a;s[n—1i] +e[n] (2.15)

One-step prediction error, s[n] is the value in the selected time
series, a,, a,; is the weighting coefficient (predictor)., and M is the
order of the sequence (forecasting the present value based on a
number of prior values), and e[n] is the difference between the

expected value and the actual value.

2.2.3 Subspace Methods (High-Resolution Techniques)

One of the most crucial processes in the signal processing field
is estimating the problem’s parameters of a particular signal. This is

important since high-resolution DOA estimation is used in a variety
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of applications such as radar systems, sonar systems, navigating
systems, tracking systems, etc. The estimation of high-resolution
frequency is termed “Super Resolution” technique, which is useful in
many contemporary applications. One of the most common
techniques is “Maximum Likelihood (ML) [55] and “Maximum
Entropy (ME)” [56] are (super) high resolution methods. However,
these techniques have limitations related to sensitivity when

estimating parameters is attempted.

Eigenanalysis is widely used in the literature for different
applications including parameters, estimation of signals. The early
literature showed involving eigenanalysis in estimating parameters
such as in the works of Pisarenko [17] and Schmidt [18].

One of the most widely used high-resolution algorithms is Root-
MUSIC (Multiple Signal Classification). The literature showed that
it is the most efficient and promising algorithm due to many reasons.
For instance, it is characterized by eigenvectors that enable splitting
between the noise subspace and signal subspace, which is useful in

many applications [57].

The Eigen-based analysis are utilized to approximate the
characteristics of the sinusoidal signal. Two subspaces can be created
using Eigen-analysis to separate the Eigenvector and Eigen-values of

the autocorrelation matrix of the noise signal [58]:

1. Signal subspace: An important part of the signal
dimensionality is made up of the primary Eigenvectors that are

linked to the highest Eigenvalues.
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2. Noise subspace : The smallest Eigenvalues indicated the
noise's dimensionality.
The Eigen-vector approach is able to estimate complex
exponential frequencies in such a noise amongst many other methods
[59],[60].

2.2.3.1 Matrices

Multiplying and adding numbers and other abstract quantities
can be done using a matrix, which is a rectangular table with a fixed
number of elements (or entries). Matrices are used to define linear
equations, maintain track of linear transformation coefficients, and
record data dependently on numerous factors. The study of matrices
is known as matrix theory." Additionally, matrices are a crucial notion
in linear algebra because they may be added, multiplied, and

deconstructed.

A matrix is a data structure that is able to contain different data
types of different dimensions. For instance, a matrix of (m x I) has n

rows and m columns as shown in (2.16):

bll blz ------ blm
B — {bij} — b.?ll bzz.:. ----- b.z.f):rl (2.16)
by by e o b

If m=I, the matrix is said to be a squared matrix because the
number of rows equals the number of columns. The transpose matrix
of B is termed BT with a size of m x I, which is obtained by

exchanging the M’s columns with its rows such that b;; becomes b;;.
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Moreover, for squared matrices, when a matrix is equal to its
transpose, it is called “Symmetric Matrix” (B=BT) [60]. The
“Hermitian Transpose” of a complex matrix is the complex
conjugate transpose such that BH=(B")"=(B")". It should be
mentioned that a matrix is called “Hermitian” when a “Square

Complex” value equals its Hermitian transpose.

2.2.3.2 Autocorrelation Matrices [60, 62, 63]

Signals in communication systems may include environment-
based noise that is originated from a different source, which makes
the noise uncorrelated. In the context of autocorrelation matrices, the

correlation sequence for s(n) can be formulated as follows:

Tres(k) = zw s(n — k)s*(n) (2.17)

n=—oo

when (Length(s(n)=N), it can be reformulated as follows:

(k) = ZN;:sm s () (2.18)

Then, the autocorrelation sequence can be represented as follows:
Let (s) be a data sequence (samples), then:

s = [5(0),s(1),s(2),....,s(N — D] (2.19)
The correlation matrix becomes:

V, = E{ss"} (2.20)
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This equation determines the “Degree of Correlation” of data
signals, and the term E{} represents the “Statistical Expectation”.
The symbol H reflects the transpose of the complex conjugate. Now,

the term ss™ is the NxN can be represented as follows:

s(0)s*(0) s(0)s*(1) s(0)s*(N—-1)
o5t = s(1)s*(0) s(1)s*(1) s(Ds*(N—-1)
S(N=1)s'(0) s(N—1)s*(1) ... s(N—1)s*(N—1)
...... (2.21)

Considering the aforementioned description, the autocorrelation

matrix leads to product the NxN becomes:

V, = E{ss"} =
rss(o) rss*(l) rss*(z) ------ TSS*(N - 1)_
Tss(l) rss*(o) rss*(l) ------ rss*(N - 2)
1es(2) rs (1) () r'(N=3)| (222)
(N =1) 7g(N=2) 1(N=3) wov  755(0)

2.2.3.3 Eigenvectors and Eigenvalues [59, 62]

Eigenvalues and Eigenvectors are used to extract useful
information from matrices. Eigenvectors can be also used in
distinguishing noise subspace and signal subspace. This

decomposition is effectively used in Root-MUSIC algorithms.
Given that B is a matrix of dimension (m x m), then;

Bu =Au (2.23)
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Where A is a constant value. The above equation is re-formalized to

be a set of homogeneous linear as follows:
(B—Mu=0 (2.24)

For a non-zero vector, the terms (B — AI) should not have an inverse

(singular matrix). For this reason, the determinant should be:
det(B—ADu =0 (2.25)

The above equation includes the features of B and its n roots. The
values of A; are the eigenvalues of the matrix B for i=1, 2, 3, ..., n,
and for each of which, the matrix will be singular and there exists a
non-zero vector (at least one). Therefore, Equation 2.25 is re-

formalized and becomes as follows:
Bui = }\iui (226)

The Eigenvectors in the above equation are represented by u; for
matrix B. For any given u;, au; is also an eigenvector for any a

(constant). The eigenvector can be normalized as || ui ||=1

2.2.3.4 Eigendecomposition of Autocorrelation Matrices
[60, 63]

As shown in the previous sections, estimating the spectrum can
be performed using a variety of methods based on some parameters.
Other methods may use the characteristics of the process in addition
to the assumed parameters. In a practical context, for the
autocorrelation matrix, these methods perform

“EigenDecomposition” into noise and signal subspaces. Given that a
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single frequency and complex exponential with white noise (equal

intensity at different frequencies):
s(n) = hexp(jnw,) + q(n) (2.27)

The complex exponential amplitude is represented by h; and the

white noise is represented by g(n). The white noise variance is o¢?,

the s(n) autocorrelation sequence can be formalized as follows:
15s(k) = Py exp(jkw;) + 64%8 (k)

k=04+1,....,+(M—1) e (2.28)

where P;=|h|?, which is the complex exponential power. Now, the
autocorrelation matrix Vy of dimension M x M is the sum of the

signal-based matrix (Vs) and noise-based matrix (Vg) as follows:
V,=Vs+V, (2.29)

The Vs matrix is as follows:

1 e jwl e-j2wl e JM-Nwl
eja)l 1 e_j“’l ...... e—j(M—Z)wl
V=P el2wl elwl 1 . e JM=3wl
QIMD1 G M-Dl  GfM-Da1 1
...... (2.30)

The noise matrix is diagonal and the signal matrix has a rank of one:
V, =0, (2.31)
The above equation is considered full-rank; and:

a, = [1,e/91, /201, ....,ej(M‘l)“’l]T (2.32)

(22)




Then Vs is a signal vector of dimension M in terms of Equation (2.32)

which becomes:
V., =Paa," (2.33)
Based on the rank of V; and the non-zero Eigenvalue, then:
Via, = Py(a;a,")a; = P,a,(a;"a;) = MP,a, (2.34)

The MP; is the non-zero Eigenvalue and the Eigenvector is a1. The
Vs is “Hermitian”, the rest of Eigenvectors “Up, Uz, U, ..., Uy~ are

orthogonal to a; as follows:
a,u; =0, wherei=23,4,..,.M (2.35)

when the A;° are the Eigenvalues of Vs, the following formula is

obtained:
Vou, = (Vs + o2 Du; = A w; + o%u; = (A + 0,%)u; (2.36)
The Eigenvector of Vs is similar in Vy:
N =N+ o,” (2.37)
The maximum Eigenvalues in Vy is as follows:
Amax = MPy + o,° (2.38)

The above description is extended to M-frequencies in white noise

and M > p, then the correlation sequence becomes as follows:

14
r (k) = Z_=1pi exp(ikwy) + 0,26 (k) (2.39)

The parameters of the above equation have been defined before and

the new formula is written below:
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p
Vy = VS + Vq = Z 1PiaiaiH + O'qzl (240)
i=

Where a; is formalized as follows
a; = [1,e/%i, /29, /3w, ...,ej(M‘l)“)i]T
i=123,..,M (2.41)
This is a set of M independent vectors.
Alternatively, this decomposition can be expressed as follows:
V, = APA" + o,°I (2.42)

Where A = [aq, ... ... , ] 1s Mxp matrix with p signal vectors and

P = diag{Py, ...., B,} would hold the signal power diagonal matrix.

The eigenvalues of V,,
A =05+ oy (2.43)
Where 2;°: eigenvalues of V

Since V is a matrix of rank M, and V,, has M eigenvalues, the
first p eigenvalues will be larger than o, and the last M-p will be
equal to a o, %. Hence there are two kinds of Eigenvectors of V,,: the
signal Eigenvectors uy, ..., u,, , with eigenvalues larger than o,* and
the noise eigenvectors u,. 4, ...,u), Which have eigenvalues equal

to o,°. So, here's how we would break out V, :
V,=Y_ (A + oD wul + X1 o2 wuf! (2.44)

Matrix notation can be used to express this decomposition as:
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v, = U U +U,Ud (2.45)
A signal eigenvectors Mx p matrix called U is used here.
Us =[ugu, ..., uy] (2.46)
The noise eigenvectors' Mx(M-p) matrix is also known as U,,.
Uy = [UpiiUpiz o Uy (2.47)

Complex exponential frequencies can be estimated by using the
orthogonality of the signal and noise subspaces, as was previously
demonstrated for single complex exponential signal with white noise.
As known, all signal eigenvectors a,, ... ,a, are in the subspace of
the signal, hence the orthogonality includes a; is orthogonal to a

noise eigenvectors:
alu, =0; i=1,2,....p k=p+1,p+2,... .M (2.48)

An estimation of the frequencies is given by using the following

frequency estimation function:

P(el?) = !

(2.49)

ZI]\(/I:p+1 CklaHuklz
Where c;, is a positive weight.

It is possible to estimate the direction of sources using array’s
steering vectors which are orthogonal to the noise subspace by
detecting the peaks in the spatially power spectrum based on the

eigendecomposition method.
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2.2.3.5 Pisarenko Harmonic Decomposition Algorithm
(PHD) [60, 63]

The PHD algorithm was first suggested by Pisarenko [17] in
1973 as a high-resolution method and was based on eigenanalysis of
the autocorrelation matrix of the data model. The main reason behind
developing this algorithm is to fill the gaps that existed in the
classical approaches. The estimation was based on Eigen analysis of
the Vy, where the eigenvector of Vy is used to derive the frequency.
The PHD algorithm considers the sum of a known complex
exponentials p in “white noise” s(n). Also, it considers that the values
(p+1) of the correlation sequence are already estimated or known.
Then, given that a correlation matrix ((p+1) x (p+1)), the noise
subspace dimension is 1, it is spanned by the Eigen corresponding to

the minimum eigenvalue:
Anin = 0'q2 (2.50)
The eigenvector un, is orthogonal to signal vectors a; as follows:
a;u,,;, = zz_oumm(k)e‘jk“’i =0 (2.51)

Where i=1, 2, 3, ..., p and then,

. p .
Umin(e]w) = zk_oumin(k)e_]kw =0 (2-52)

The above equation equals 0 at each wi. Now, the z-transform of the
eigenvector of the noise is called “Eigen Filter” and on the unit, a

circle has p zeros.
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Unin(2) = ZZ=O umin(k)z_k = HZ=1(1 - e_jsz_l) (2.53)

In the above equation, the value of z=e 7" and the frequency is derived
from the “Eigen Filter Roots”. The estimation function of the

frequency is formalized as follows:

1

|aHumin |2

Ppyp(e’®) = (2.54)

It should be mentioned that the term Py, (e/%) is large and the
location of the peaks in it is used for estimating the frequencies. Also,
this term is called “Eigenspectrum” or sometimes “Pseudospectrum”
that does not include information about the noise components or the
complex exponentials. After determining the frequencies, P; will be
extracted from the V, eigenvalues. The details of this process are

described as follows:

Consider the Eigenvectors of the signal subspace (us, ..., up) can be

normalized as:

w;fu; =1 (2.55)
And,

Vyu, = \u,; (2.56)

where i =1, 2, 3, ..., p and by multiplying both sides with u;, it

becomes as follows:
uiHVyui = AiuiuiH = 7\1' (257)

By substituting V, with APA" + 5,21, the above equation becomes:
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p
uiHVyui = ul‘H {Z PkakakH + O'qzl} u; = Ai (258)
k=1
The above formula can be re-written as follows:

PklakHuilz =}\i - O'qz (259)
k=1

Where |a,"u;|? is the squared magnitude of the DT-FT that is
calculated at frequency wy. of the Eigenvector (u;) of the signal

subspace:
@ Mu|? = |U;(eFox)|’ (2.60)
And,
. P .
Uy (e/%) = Z i (1)e =it (2.61)
=0

Thus, Equation (2.59) can be re-written as follows:

> Rduer ) =2 - o (262)

Now, the above equation is a set of a linear equation and takes the

following form:

HU (eo)* Jui(eo)* . |U1(e"°P)|1P1 M= ]
[w@w e (el l \ | e
U ()] . o, (e“’p)l

A—aq

The PHD can perform the estimation using peaks’ locations in
Ppyp(e’®) or the roots of the Eigen filter. However, the PHD

struggles with computation cost when it comes to high-order
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problems. Also, the PHD has some limitations related to the
availability of prior-knowledge about the signal’s number of

complex exponentials.

2.2.3.6 Multiple Signal Classification (MUSIC)Algorithm
[60, 62, 63]

As explained above, the previous algorithm (PHD) is restricted
by some limitations. Therefore, it becomes necessary to adopt an
algorithm that is able to overcome the aforementioned limitations.
The “Multiple Signal Classification (MUSIC)” comes for this
purpose and has been suggested by Schmidt [18]. There is algorithm
method is called Root-MUSIC to find frequencies we have moved its

application towards DOA.

The detailed work of the MUSIC algorithm is described in this
section. Consider having a random process s(n) that includes
“Complex exponentials (p)” in “White-Noise™ and variance of o,°.
Also, consider that the autocorrelation matrix (M x M) is Vy such that
(M >p+1). Moreover, A1 >Ay >A3 >... >Aygare the ascending order
of the V, eigenvalues, and the corresponding eigenvectors are us, Uy,

Us, ..., Um, then, these vectors are partitioned into:

- The “signal eigenvectors” (p) of the largest eigenvalues; and,
- The “noise eigenvector” (M-p) of the eigenvalues that are
equal to o,
Hence the estimation of power spectrum using MUSIC method is
[60, 62, 63]:
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1
lafu;|?

PMU(ejw) =M
i=p+1

(2.64)

The above equation is used to find the positions of the largest peaks

(M), which are the frequency estimates of the complex exponentials.
2.2.3.7 Root-MUSIC Algorithm

It is an updated version of the MUSIC algorithm that has been
proposed by Barabell [19]. The root of the polynomial in the MUSIC
spectrum 1is utilized in the “Angle of Arrival (AOA)” estimation, a
signal's direction of arrival, such as its radio, optical, or acoustic
component, is known as its angle of arrival (AoA). The main
difference between the MUSIC and Root-MUSIC is that MUSIC
always provides the results as visual plots, but the Root-MUSIC

provides the results as numbers.

Using a polynomial search for zeros instead of searching for
maxima in the case of MUSIC, this method provides a direct estimate
of the DoA. This strategy is only applicable to networks of linear
antennas that are evenly spaced. By leveraging certain features of the
received signals, it allows for a reduction in computation time and
hence an increase in angular resolution. This approach uses a
polynomial of degree 2(M-1) to extract the roots [64]-[65] from a
given polynomial. The estimation of signal arrival directions
corresponds to the search for max. pseudo-spectrum F(0) values of
MUSIC [72]:
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1
Fyysic(0©) = a"(©) Vo, VF a(®) (2.65)

Where 1, is the matrix of eigenvectors that span the noise subspace.
Let D = V,.V] isthe projection matrix and a”(8) V,V{ a(8) is

the noise subspace projection of the a(0) vector.

According to (2.65), the following relation describes the steering

vector's projection onto the noise subspace:
Frttisic(8) = gr-music(®) = a(®) V Vi a(6) (2.66)
Equation (2.66) can be written:

FA71l1]SIC(e) = gr-music(0) = a(0).D.a(6) (2.67)

Analysis and expression of steering vectors are used in this kind

i2md(n—1)sin 6

of representation a,,(0) = e v of the n" element of the

linear array (n=1, 2, ...., N), where ¥ is the wavelength, So [66]:

FAZIIJSIC () = gr-music(®) =

Where D, refers to the elements of the nt"row and the p**column
of D [66]. Root-MUSIC Algorithm is represented by a Linear
Algebraic and the roots are obtained after equating (2.68) to zero.
The following equation is generated by combining both amounts
from (2.68):

—27nLd sin©

Fusic(8) = gr—music(0) = X1y De ¥ (2.69)

Where D, = ¥.,_p=1 Dnp
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The Root-MUSIC polynomial, a function of z, can be derived from
Equation (2.69) [66], as follows:

R(z) = X1t 41 Do2" (2.70)

—i2ntd sin©

Wherez =e v

The problem is to find the 2(M-1) double roots of the
polynomial whose usable zeros are located on the unit circle because
the directions of arrival of signals are functions of z. These complex
root phases are consistent with the electrical phase shifts that are
desired. From the following equation, the angles of signal arrival can
be deduced [73]:

. v
0,, = sin 1(ﬁ arg(z,)) (2.71)
Roots of the unit circle, z,, are the m-th nearest to the unit circle.

Now, calculating the root of the polynomial given in the values
for u. The zero polynomial is considered in terms of (N-1) pairs
within the unit circle. As a result, the closest roots (d) to the circle
unit are selected. Lastly, the values of AOA can be calculated
according to the following formula:

Y
— cin-1
0 = sin [an ,u] (2.72)

2.3 Direction of Arrival (DOA) Estimation

Recently a great revolution in wireless technologies has been
witnessed. These technologies have been widely used in many

different applications (e.g., tracking, environment monitoring, sensor
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networks, etc.). This revolution introduces many policies that control
the demand and use of these technologies. Most of the to be
mentioned applications aim to determine the location of the
source/target. This kind of request raises the demand for the

Direction of Arrival (DOA) in communications systems [67].

According to the existing literature, the demand for DOA has
increased in recent years. The most recent applications are “Mobile
Wireless Communications” and “Biomedical Signal Processing”
[68],[69]. Also, an antenna array is involved in most of these

applications aiming to measure the incoming signals.

Furthermore, the DOA estimation can be performed for single or
multiple sources of signals. Sensor arrays are usually involved in the
estimation process. The literature on the field shows a lot of
approaches proposed to find the DOA of signals based on sensor
arrays and these approaches are categorized into: conventional (e.g.,

Fourier Transform) and subspace (e.g., Root-MUSIC).
2.3.1 Model of the Data

The assumptions considered in this study algorithms for estimating
DOA are:

- Linear Transmission Medium and Non-Isotropic: The
transmission medium between signal sources and antenna
array in all the directions does not have of the same physical
features.

- Far-Field: This assumption states that the sources of signals

are located far from the sensors. This means that the sources’
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waves arrive at all sensors in equal directions. This situation is
obtained by setting a larger space than the antenna array
dimensions between the array and the sources. This leads to

have a distance larger than 2D% ¥, where ¥ represents the

signal’s wavelength and D denotes the array’s dimension.

- Narrowband: Signals of different sources p and their carrier
have the same frequency. The contents of frequency are
focused in the proximity of “Carrier Frequency (f;)”. The
coming signals can be formulated as follows:

sT(t) = hy(t)cos[2nft + Bi(8)] (2.73)

Where 1 <i<p, risused for narrowband, h;(t) is the amplitudes,

and g;(t) is an arbitrary phase.

AWGN Channel: The features of the signals assumed are: zero mean,
Gaussian complex white noise, and spatially uncorrelated with the

signal. The white noise variance is o.
2.3.2 Antenna Array

An antenna array is a set of antennas involved in
receiving/transmitting signals [70]. The term “Array Element” is
used to refer to a single antenna. In a receiving array, all elements
receive the signal and merge them for processing (e.g., DOA
estimation). Figure 2.1 depicts an antenna array of 3 elements
(element_1, element_2, and element_3). In the figure, element_1 is
called the “Reference Element”. The distance between any given two
elements is denoted by d. The far distances of the sources (i.e., far-
field) enable the path lines of the elements to be parallel [71].
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Element3 Element2 Elementl

Figure 2.1: An antenna of 3 elements.

The path lines from the reference element to both elements 2 and

3 are explained in the following equation:

d, =d.sinf (2.74 a)
d; = 2d.sin 6 (2.74 b)
In general d, = (n—1)d.sin6 (2.75)

Where 6 is the angle of waves impinging on the array and n=1, 2, 3.
Moreover, consider that the wave received by the reference element

is as follows:
Sl == h (2.76)

The waves received by the other two elements can be expressed as
follows (considering no additive noise):
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i —'msine
s,=he Bl =pe /T (2.77)

And,

an ———sin 6
=he /Bl =pe” (2.78)

The term § = % is the “Phase Shift” constant of the disseminating

wave with ¥ of wavelength. The term e~/B9nin both of the above
equations reflects the outcome of the difference between the
reference element compared to the path lines (the additional
mentioned distance). The receiving signals by the aforementioned

elements can be generalized as follows:
1
[ ] ~j5gtsin® | p [e—{'ﬂ] h=a(wh (2.79)
—]2—sm9 e~

Where a(u) =[1 e Ju e=Jj24]T is called “Array Steering

Vector”, and u= %. The above equation can be extended as

follows:
1
il —]msme 1j,U
r; -
s=|72=| ¢ h=| °© h = a()h (2.80)
SN e—j(N—1)¥sine e J(N-Du

Where N is the number of antenna elements.
Also the term a() becomes as follows [72]:

a() =[1 e Jn .. e JN-DuT (2.81)
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2.3.3 DOA Problem Formulation

In this study, the term “Uniform Linear Array (ULA)” will be
frequently used. To describe this array, it is assumed that the system
depicted in figure 2.2 is used having source i that have generated a
wave signal of narrowband type (s;). But Wideband systems support
substantially higher data rate communications than narrowband
systems, which often have lower data rate transmissions. Broadband
networks, to put it simply, facilitate speedier communication. The

impinging on the array by the source is at an angle 6;.
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Figure 2.2: DOA estimation data model on N elements.

According to the previous section, the signal that is moving from
the rightmost element takes a shorter distance compared to the other
elements that consume additional distance that can be calculated

using the following equation:
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d,; = (n—1)dsin6; (2.82)
Where n=1, 2, 3, ..., N.

Furthermore, the difference between the signal received by the

reference element (rightmost) and the n™ element is called “Phase
Shift Factor” that can be formalized as e ~/(*~D# Also, this factor
depends on the first element’s relative position and the spatial

frequency (). In practice, there is a x, for each incident angle 8; that

detects the source. Accordingly the DOA estimation aims to
investigate the signals received by the array and extract the spatial

frequency (g;). These spatial frequencies are restricted by the

following limitation:
<m (2.83)
Also, the DOA potential range is limited by the following:

-90< 6; <90 (2.84)

The above restriction intervals need the element spacing to hold
the term d < ¥/2 [73]. In fact, this condition is necessary because if
it does not hold, the estimation of DOA will be ambiguous since ()
will lead to have two solutions for the angles. This specific case may
lead to what is called “Grating Lobes” and it is also called “Spatial

Aliasing”.

To generalize and formulate the noises and signals received by
n" elements, the following formula can be used [73]:

b ,
=) Sie/ T gy (2.85)
1=
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Where n=1,2,3,..., N.

Now, differentiating the noise and the pure signal, the previous

equation after calling the data, can be formalized as follows [73]:
hy
h

S =la(y,) a(w,) a(w,), ..., a(y,,)] 2 +q=Ah+q (2.86)
hy

The data column vector received is denoted as s, which is:
S=[sy, s,,53 ....sy]T. Also, the signal column vector is denoted as s,
which is h=[hy, hy, hs ....hy]T and q=[qq, 2, G5 -... qn ()] that
represents a “Zero-Mean Spatially Uncorrelated Additive Noises”
with the spatial covariance matrix of oy 2Iy [73]. Furthermore, the
“Array Steering” column vector is denoted by a(,ul.) and formulated

as follows [73]:
a(ﬂi):[l ety g2t @I (N=Du]T (2.87)

The steering matrix A can be formalized based on the following

equation [73]:

a=[a(s) - alw) - alu)]
1 1 1
_ e/t et eltm (2.88)
pIN-Dpy I (N-Day i (N=Dayy
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CHAPTER THREE

Simulation Results

3.1 Introduction

In this chapter, simulation results are given for noiseless, and
noisy data; and for both single and two emitting sources. The
parameters required for DOA estimation methods are: number of
samples, N, sampling interval, d,(equivalent to separation between

receiving antennas or transducers), and the wavelength, ¥ of the

transmitted signal from the source. The methods used are: the Fourier
transform, also called a classical method, and the Root-MUSIC
method, which is also considered as super resolution method. We are

used computer software MATLAB program with m-file.

((x_axis value) /mk)*¥

Oapparent = SN~ ( - ) for positive angle (3.1)

((—x_axis value))/mk)*¥

O apparent = Sin~( - Yfor negative angle  (3.2)

Where mk=180°.

The percentage error in all methods is determined by using the

following equation:

% Error = (Sapparent = O actuatl yp (3.3)

| 5] actual|

(40)




3.2 Simulation Results with Noiseless Data

3.2.1 Single Source for DOA Estimation.

Figure (3.1) shows the result of using a single source. The
Fourier transform (FFT ) algorithm is applied. The values of

parameters used here are N=12, d=0.6 cm, Y=2 cm.

Figure (3.2) illustrates the effect of using only one source of

information. Fourier transform (FFT) is used. The parameters
utilized here are N=11, d=0.6 cm, Y=2 cm, and the angle 6,.tya 1S

37°.

FFT
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Figure (3.1) Magnitude (power(dB)) versus angle (degree) for a single-source
angle © =20° using the FFT method (N=12).
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Figure (3.2) Magnitude (power(dB)) versus angle (degree) for a single-source
angle ® =37° using the FFT method (N=11)..

Using a single source yields the results shown in Figure (3.3).
The Fourier transform procedure is used. N=10, d=0.6 cm, Y=2 cm,

and 6,41 =-50° are the parameters utilized in this example.

Figure (3.4) shows the result of using a single source. The
Fourier transform (FFT ) algorithm is applied. The values of

parameters used here are N=12, d=0.2 cm, ¥=0.8 cm, and the angle,

O,4ctuar 1S €qual to 6°.
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Figure (3.3) Magnitude (power(dB)) versus angle (degree) for a single-source
angle © =-50° using the FFT method (N=10).
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Figure (3.4) Magnitude (power(dB)) versus angle (degree) for a single-source
angle © =6° using the FFT method (N=12).
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In Figure (3.5), a single source is shown. The Fourier transform
procedure is used. N=10, d=0.2 cm, Y=0.8 cm, and 6 ,.,4= -10° are

the values of parameters utilized here.

The use of one source is depicted in Figure (3.6). One method

for doing this is through the use of an algorithm called Fourier
transform (FFT). N=8, d=0.2 cm, ¥ =0.8 cm, and O,.tya= -11° are

the values of the parameters used in this example.

10 r r r r \
9

Power(dB)
(2] (o))

1 \\/ \v/
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Figure (3.5) Magnitude (power(dB)) versus angle (degree) for a single-source
angle © =-10° using the FFT method (N=10).
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Figure (3.6) Magnitude (power(dB)) versus angle (degree) for a single-source
angle 8 =-11° using the FFT method (N=8).

We conclude from all the above figures that indicate to the
relationship between Amplitude versus angles with noiseless data for
a single source a sidelobe is clear, and this is the disadvantage of the
FFT technique. Also, it is noticed that, from the resulting curve using
the FFT method, the peak corresponding to the apparent (measured)

angle is not sharp enough.

Figures (3.7) indicate (3D) plot to the relationship between the
percentage error and the number of samples, N, and angles (Theta)
with noiseless data for a single source for the FFT algorithm method.
It is noticed that the percentage error is a constant level for the FFT
algorithm method. For the Root-MUSIC, the percentage error equals
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zero at all points of N (number of samples) and the order equals n=2.
It means that N,,,;,,=5 for the Root-MUSIC method. When using the
Root-MUSIC method, it is found that the appearing value of © is

equal exactly to its real value.

3D Plot of Error vs. Theta and N

18

16

Error

N 0 -50 Theta

Figure (3.7) Percentage error of versus N and angles (Theta) for a single source
DOA Estimation for (FFT) algorithm method.

3.2.2 Double (two) emitting Sources for DOA Estimation.

In figure (3.8) two sources are used to show the result of using
the FFT algorithm method. The two sources can not be distinguished

when the difference between two angles is (20 degrees) when N<9.
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A side lobe is clear and this is a problem of the FFT technique. when

0,=17°6,=37° N=8, d=0.6cm, and ¥Y=2cm.

In figure (3.9) above, two sources are used to show the result of
using the FFT algorithm method. It can recognize between two
sources when the difference between two angles is (20 degrees) when
N>=9. A side lobe is clear and this is a drawback of the FFT
technique. when 6,=17°, 6,=37°, N=12, d=0.6cm and Y=2cm.
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Figure (3.8) Magnitude (power(dB)) versus angle (degree) for a double (two)-
source angle ( 6,=17°, ©6,=37°) using the FFT method (N=8).
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Figure (3.9) Magnitude (power(dB)) versus angle (degree) for a double (two)-
source angle (6,=17°, ©6,=37°) using the FFT method (N=12).

For the FFT algorithm method with noiseless double (two)
sources, the relationship between the percentage error and N (number
of samples) is shown in figure (3.10) when the first actual angle is
equal to ©,=17° and the second actual angle is equal to 6,=37°. For
the Root-MUSIC algorithm method, the percentage error of the first
and second source is equal to zero at all points of N (number of
samples) and the order is equal to n=3. It means that N,,;,, = 8 for
the Root-MUSIC method.
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Figure (3.10) Percentage error of angle versus N for double (two) sources
(6,=17°, ©,=37°) for DOA Estimation.

Using the FFT algorithm approach, the results are shown in
Figure (3.11) using two sources. If the difference between the two

angles is (15 degrees) when N< 12, the two sources can not be
distinguished. When 6,=20°, ©6,=35° N=11, d=0.6cm, and ¥Y=2cm,
the FFT approach has a visible side lobe.

Using the FFT algorithm approach, the results are shown in
figure (3.12) using two sources. If the difference between the two

angles is (15 degrees) when N > 12, the two sources can be
distinguished. When 6,=20°, ©,=35°, N=15, d=0.6cm, and ¥=2cm,
the FFT approach has a visible side lobe.
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Figure (3.11) Magnitude (power(dB)) versus angle (degree) for a double (two)-
source angle (6,=20° ©6,=35°) using the FFT method (N=11).
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Figure (3.12) Magnitude (power(dB)) versus angle (degree) for a double (two)-
source angle (6,=20° 6,=35°) using the FFT method (N=15).
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Figure (3.13) refers to the relationship between the percentage
error and N (number of samples) for the FFT algorithm method with
noiseless double (two) sources when the first actual angle is equal to
0,=20° and the second actual angle is equal to ©,=35°. For the Root-
MUSIC algorithm method, the percentage error of the first and
second source is equal to zero at all points of N (number of samples)
and the order is equal to n=3. It means that N,,;,, = 8 for the Root-
MUSIC method.
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Figure (3.13) Percentage error of angle versus N for double (two) sources
(6,=20° ©6,=35°) for DOA Estimation.

In figure (3.14), the FFT algorithm results from two different
sources are shown. N<17 allows it for not distinguishing between

two sources when the difference in angles is 10 degrees. When 6, =-
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25°, ©6,=-35° N=16, d=0.6cm, and ¥ =2cm, there is a visible side

lobe, which is one of the limitations of using the FFT method.

In figure (3.15), the FFT algorithm results from two different
sources are shown. N >=17 allows it for distinguishing between two
sources when the difference in angles is 10 degrees. When 6,=-25°,
0,=-35° N=22, d=0.6cm, and ¥ =2cm, there is a visible side lobe,

which is one of the limitations of using the FFT method.
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Figure (3.14) Magnitude (power(dB)) versus angle (degree) for a double (two)-
source angle (6,=-25° 6,=-35°) using the FFT method (N=16).
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Figure (3.15) Magnitude (power(dB)) versus angle (degree) for a double (two)-
source angle (6,=-25° 6,=-35°) using the FFT method (N=22).

The relationship between the percentage error and N (number
of samples) for the FFT algorithm method with noiseless double
(two) sources, when the first actual angle is equal to 6,=-25° and the
second actual angle is equal to ©,=-35°, is depicted in figure (3.16).
It noticed that the percentage error is maximum at minimum N
(number of samples) and then decreases at maximum N (number of
samples). When using the Root-MUSIC algorithm approach, the
order is equal to n=3, and the percentage error of the first and second
sources is equal to zero at all points of N (number of samples). It
indicates that for the Root-MUSIC approach, N_min=8.
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Figure (3.16) Percentage error of angle versus N for double (two) sources
(6,=-25° 6,=-35°) for DOA Estimation.

Figure (3.17) shows the FFT algorithm results from two
different sources. When the difference between the two angles is (25

degrees) when N <8, the two sources can not be distinguished. When
0,=-15° 6,=-40° N=8, d=0.6cm, and ¥ =2cm, a side lobe is clearly

visible, which is one of the downsides of the FFT method.

Figure (3.18) shows the FFT algorithm results from two different
sources. When the difference between the two angles is (25 degrees)
when N > 8, the two sources can be distinguished. When 6,=-15°,
0,=-40° N=17, d=0.6cm, and ¥ =2cm, a side lobe is clearly visible,

which is one of the downsides of the FFT method.
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Figure (3.17) Magnitude (power(dB)) versus angle (degree) for a double (two)-
source angle (6,=-15° 6,=-40°) using the FFT method (N=8).
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Figure (3.18) Magnitude (power(dB)) versus angle (degree) for a double (two)-
source angle (6,=-15° 6,=-40°) using the FFT method (N=17).

(55)




Using the FFT algorithm approach with noiseless double (two)

sources and a first angle of ©,=-15° and a second angle of ©,=-40°,

figure (3.19) shows the relationship between percentage error and N

(number of samples). It was observed that the percentage error peaks

at the lowest number of samples, N, and subsequently falls at the

highest number of samples, N. The order is equivalent to n=3 when

employing the Root-MUSIC algorithm technique, and the first and

second sources' percentage errors are always equal to zero (number
of samples = N). It suggests that N_min=8 for the Root-MUSIC

method.
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Figure (3.19) Percentage error of angle versus N for double (two) sources
(6,=-15° 6,=-40°) for DOA Estimation.
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Figure (3.20) shows the results of utilizing the FFT algorithm
approach employing two sources. When N is less than or equal to 5,
it may not distinguish between two sources when the angle difference
between the two is (30 degrees). When ©,=-17°, ©6,=13° N=5,
d=0.6cm, and Y=2cm, a side lobe is clearly visible and this is a

downside of the FFT technique.

Figure (3.21) shows the results of utilizing the FFT algorithm
approach employing two sources. When N is more than or equal to
6, it may distinguish between two sources when the angle difference
between the two is (30 degrees). When 6,=-17°, 6,=13° N=14,
d=0.6cm, and Y=2cm, a side lobe is clearly visible and this is a

downside of the FFT technique.
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Figure (3.20) Magnitude (power(dB)) versus angle (degree) for a double (two)-
source angle (6,=-17°, 6,=13°) using the FFT method (N=5).
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Figure (3.21) Magnitude (power(dB)) versus angle (degree) for a double (two)-
source angle (6,=-17°, 6,=13°) using the FFT method (N=14).

The relationship between percentage error and N (number of

samples) for the FFT algorithm method with noiseless double (two)

sources when the first actual angle is equal to 6,=-17° and the second

actual angle is equal to ©,=13° is depicted in figure (3.22). It was

observed that at minimal N (number of samples), the percentage error

IS at its maximum, and at maximum N (number of samples), it

declines. When employing the Root-MUSIC algorithm approach, the

first and second sources' percentage errors are equal to zero over the

whole N (number of samples) range, and the order is equal to n=3. It
shows that N_min=8 for the Root-MUSIC method.
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Figure (3.22) Percentage error of angle versus N for double (two) sources
(6,=-17°, 6,=13°) for DOA Estimation.

Figure (3.23) shows the result of utilizing the FFT algorithm
approach with two sources. When the difference between the two
angles is (25 degrees) when N<7, the two sources can not be
distinguished. Because of this, when ©6;=-10° ©6,=15° N=6,

d=0.6cm, Y=2cm, the FFT approach has certain issues.

Figure (3.24) shows the result of utilizing the FFT algorithm
approach with two sources. When the difference between the two
angles is (25 degrees) when N>7, the two sources can be
distinguished. Because of this, when 6,=-10° ©,=15°, N=17,

d=0.6cm, Y=2cm, the FFT approach has certain issues.
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Figure (3.23) Magnitude (power(dB)) versus angle (degree) for a double (two)-
source angle (6,=-10° 6,=15°) using the FFT method (N=6).
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Figure (4.24) Magnitude (power(dB)) versus angle (degree) for a double (two)-
source angle (6,=-10° 6,=15°) using the FFT method (N=17).
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The relationship between the percentage error and N (humber
of samples) for the FFT algorithm method with noiseless double
(two) sources when the first actual angle is equal to ©,=-10° and the
second actual angle is equal to ©,=15° is illustrated in figure (3.25).
The percentage error was found to peak at the lowest number of
samples, or N, and to fall at the highest number of samples, or N.
When the Root-MUSIC algorithm approach is applied, the first and
second source's percentage error is equal to zero at all locations
within N (the number of samples), and the order is equal to n=3.
According to it, N_min=8 for the Root-MUSIC method.
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Figure (3.25) Percentage error of angle versus N for double (two)
sources (6,=-10°, 6,=15°) for DOA Estimation.
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As seen in figure (3.26), the FFT algorithm method vyields the
desired results. When N < 5, it can not distinguish between two
sources when the difference in the two angles is (55 degrees). When
0,=-29° 6,=26° Nis 5, dis 0.2cm, and ¥ is 0.8cm, a side lobe is

clearly visible. This is a shortcoming of the FFT technique.

As seen in figure (3.27), the FFT algorithm method yields the
desired results. When N > 5, it can distinguish between two sources
when the difference in two angles is (55 degrees). When ©6,=-29°,

0,=26° N is 14, d is 0.2cm, and ¥ is 0.8cm, a side lobe is clearly

visible. This is a shortcoming of the FFT technique.
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Figure (3.26) Magnitude (power(dB)) versus angle (degree) for a double (two)-
source angle (6,=-29°, 6,=26°) using the FFT method (N=5).
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Figure (3.27) Magnitude (power(dB)) versus angle (degree) for a double (two)-
source angle (6,=-29° 6,=26°) using the FFT method (N=14).

It is shown in figure (3.28) that when the first actual angle is
equal to ©6,=-29° and the second actual angle is equal to 6,=26°, the
percentage error and N (number of samples) are related. As the
number of samples increases, so does the percentage error, starting
at the smallest N and decreasing in the case of the largest N. (humber
of samples). The Root-MUSIC algorithm approach has zero percent
error in the first and second sources at all places of N. (number of
samples) and the order is equal to n=3. It means that N,,;,, = 8 for
the Root-MUSIC method.
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Figure (3.28) Percentage error of angle versus N for double (two) sources
(6,=-29° 6,=26°) for DOA Estimation.

As seen in figure (3.29), the FFT algorithm method yields the
desired results. When N < 8, it can distinguish between two sources

when the difference in two angles is (24 degrees). When 6,=-10°,
0,=14° N is 8, d is 0.2cm, and ¥ is 0.8cm, a side lobe is clearly

visible. This is a shortcoming of the FFT technique.

As seen in figure (3.30), the FFT algorithm method yields the
desired results. When N > 8, it can distinguish between two sources
when the difference in two angles is (24 degrees). When 6,=-10°,
0,=14° N is 20, d is 0.2cm, and ¥ is 0.8cm, a side lobe is clearly

visible. This is a shortcoming of the FFT technique.
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Figure (3.29) Magnitude (power(dB)) versus angle (degree) for a double (two)-
source angle (6,=-10° 6,=14°) using the FFT method (N=8).
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Figure (3.30) Magnitude (power(dB)) versus angle (degree) for a double (two)-
source angle (6,=-10° 6,=14°) using the FFT method (N=20).
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The relationship between the percentage error and N (number

of samples) for the FFT algorithm method with noiseless double

(two) sources is illustrated in figure (3.31) when the first actual angle

Is equal to ©,=-10° and the second actual angle is equal to 6,=14°.

It was observed that the percentage error is greatest at the smallest N

(number of samples) and reduces to the greatest N. (number of

samples). The percentage error of the first and second sources is

equal to zero for the Root-MUSIC algorithm approach at all positions

of N. (number of samples) and the order is equal to n=3. It means
that N,,,;;, = 8 for the Root-MUSIC method.
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Figure (3.31) Percentage error of angle versus N for double (two) sources
(6,=-10° 6,=14°) for DOA Estimation.
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Figure (3.32) refers to the relationship between the difference
angle on the y-axis and the minimum number of samples N,,;,, on the
x-axis for the first angle is equal to 20° and the second angle is varied
between 25°and 50° for double (two) sources with the FFT algorithm
method. It is noticed that the minimum difference angle needs a
maximum number of samples while the maximum difference angle
needs a minimum one. For Root-MUSIC when order n=3, it is found

that the difference approaches less than 1° (up to 0.5°) for N,,,;,,= 8.
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Figure (3.32) Relationship between Difference Angle and minimum number of

samples N,,,;,, for noiseless double (two) sources.
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3.3 Simulation Results with Noise Data.

3.3.1 Single Source for DOA Estimation.

Figure (3.33) refers to the relationship between the percentage
error and N (number of samples) for the FFT algorithm method and
Root-MUSIC algorithm method with a noise single source when the
actual angle of this single source is ©=20° and the value of the signal
to noise ratio SNR=10dB and noticed that the percentage error is
maximum at minimum N (number of samples) and then decreases at
maximum N (number of samples). It means that the percentage error
of the Root-MUSIC algorithm method is less than that of the FFT

algorithm method.

Angle=20 , SNR=10dB
14

+— FFT
* Vv~ Root-MUSIC
12
10
Y
w8
]
&
E :7 e,
2 6 , ﬂ
8 A
TN
4 =
Y T 2
R
v
0 A A A
4 6 8 10 12 14 16 18

N(number of samples)

Figure (3.33) Percentage error of angle versus N for single angle source with

0=20°, SNR=10dB, d=0.6cm, Y=2cm using DOA Estimation.
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Figure (3.34) refers to the relationship between the percentage
error and N (number of samples) for the FFT algorithm method and
Root-MUSIC algorithm method with a noise single source when the
actual angle of this single source is equal to ©=20° and the value of
the signal to noise ratio SNR=5dB and noticed that the percentage
error is maximum at minimum N (number of samples) and then
decreases at maximum N (number of samples). It means that the
percentage error of the Root-MUSIC algorithm method is less than
that of the FFT algorithm method.
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Figure (3.34) Percentage error of angle versus N for single angle source with

©=20°, SNR=5dB, d=0.6cm, Y=2cm using DOA Estimation.
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Figure (3.35) shows the FFT algorithm method and Root-
MUSIC algorithm method with noise single source when the actual
angle is =37° and the value of the signal to noise ratio SNR=10 dB
and observed that the percentage error reaches its maximum at the
lowest number of samples, N, and then starts to decline at the highest
number of samples, N. Compared to the FFT algorithm approach, the

root-MUSIC algorithm method has a lower percentage inaccuracy.
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Figure (3.35) Percentage error of angle versus N for single angle source with
0=37°, SNR=10dB, d=0.6cm, Y=2cm using DOA Estimation.

FFT algorithm method and Root-MUSIC algorithm method
with a noise single source when the angle of this single source is
equal to =37° and the signal to noise value SNR is 5dB are shown in

figure (3.36) and observed that the percentage error reaches its
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maximum at the lowest number of samples, N, and then starts to
decline at the highest number of samples, N. Compared to the FFT
algorithm approach, the root-MUSIC algorithm method has a lower

percentage inaccuracy.
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Figure (3.36) Percentage error of angle versus N for single angle source with

0=37° SNR=5dB, d=0.6cm, Y=2cm using DOA Estimation.

Using figure (3.37), we can see the relationship between the
percentage error and N (number of samples) when the actual angle
of the single source is 6= -50° and SNR=10dB, and we can see that
the percentage error is highest when N is as low as possible, and then
decreases when N is as high as possible (number of samples). It
means that the Root-MUSIC algorithm method's percentage error is
lower than the FFT algorithm method's percentage error.
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Figure (3.37) Percentage error of angle versus N for single angle source with
0= -50°, SNR=10dB, d=0.6cm, ¥=2cm using DOA Estimation.

For the FFT algorithm method with a single noise source at an
actual angle of ©=-50° and a signal-to-noise ratio of SNR=5dB, see
figure (3.38), where the relationship between the percentage error
and the number of samples is shown, and it's seen that the percentage
error reaches its maximum at minimum N (number of samples) and
then decreases at maximum N. (number of samples). This means that
the Root-MUSIC algorithm approach has a lower percentage error
than the FFT algorithm method.
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Figure (3.38) Percentage error of angle versus N for single angle source with

0=-50°, SNR=5dB, d=0.6cm, Y=2cm using DOA Estimation.
3.3.2 Double (two) Sources for DOA Estimation.

For different N (number of samples), figure (3.39) shows the
relationship between the percentage error and N (number of samples)
for both FFT and Root-MUSIC algorithm methods, with noise
double (two) sources (6,= 17°, ©,= 37°), d=0.6cm, ¥Y=2cm for the
first actual angle (6,=17°) and the value of the signal to noise ratio
SNR=10dB. It is found that the greatest error requires the minimum
N (number of samples) while the minimum error requires the

maximum N (number of samples). There is a less error rate with the
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Root-MUSIC algorithm than there is with the FFT algorithm; as a

result, it is more accurate than the FFT approach.
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Figure (3.39) Percentage error of angle versus N for double (two) sources (6,=
17°, 6,=37% for the first actual angle (6,=17°), SNR=10dB for DOA

Estimation.

Figure (3.40) shows the relationship between percentage error
and N (number of samples) for both FFT and Root-MUSIC
algorithms for various N (number of samples) with noise double
(two) sources (6,=17°, 6,= 37°), d=0.6cm, Y=2cm for the second
actual angle (6,=37° and the value of the signal to noise ratio
SNR=10dB. It has been discovered that the maximum percentage

error requires a minimum number of samples, whereas the minimum

percentage error requires a maximum number of samples (number of
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samples). It signifies that the Root-MUSIC technique has a lower
percentage error than the FFT method, making the Root-MUSIC

algorithm method superior to the FFT algorithm method.
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Figure (3.40) Percentage error of angle versus N for double (two) sources (6,=
17°, 8,=37% for the second actual angle (6,=37°), SNR=10dB for DOA

Estimation.

Figure (3.41) refers to the relationship between the percentage
error and N (number of samples) for both the FFT algorithm method
and Root-MUSIC algorithm method for different N (number of
samples) with noise double (two) sources (6,=17, ©,= 379),
d=0.6cm, Y=2cm for the first actual angle (6,;=17°) and the value of
the signal to noise ratio SNR=5dB. It is noticed that the maximum
percentage error requires the minimum N (number of samples) while

the minimum percentage error requires the maximum N (number of
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samples). It means that the percentage error of the Root-MUSIC
method is less than that of the FFT method for this reason the Root-
MUSIC method is better than the FFT method.
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Figure (3.41) Percentage error of angle versus N for double (two) sources (6,=
17°, 8,=37% for the first actual angle (6,=17°), SNR=5dB for DOA

Estimation.

For varying N (number of samples) with noise double (two)
sources (6,= 17°, 6,= 37, d=0.6cm, ¥Y=2cm for the second actual
angle (6,=37%, SNR=5dB. Figure (3.42) shows the relationship
between the percentage error and N (number of samples) for both the
FFT algorithm technique and the Root-MUSIC algorithm method. It
is found that the highest error requires the least number of samples,

while the minimum error requires the maximum number of samples

(number of samples). As a result, the Root-MUSIC algorithm
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technique has a lower error % than the FFT algorithm method, for
this reason, the Root-MUSIC method is better than the FFT method.
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Figure (3.42) Percentage error of angle versus N for double (two) sources (6,=
17°, ©,= 37°%) for the second actual angle (6,=37%), SNR=5dB for DOA

Estimation.

For different N (number of samples), figure (3.43) shows the
relationship between the percentage error and N (number of samples)
for both FFT and Root-MUSIC algorithm methods, with noise
double (two) sources (6,=-15° 6,=- 40°), d=0.6cm, ¥Y=2cm for the
first actual angle (6,=-15% and the value of the signal-to-noise ratio
SNR=10dB. One thing that is found is that the maximum percentage
error required the minimum N (number of samples), but that

minimum percentage error required the maximum N. (number of
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samples). Root-error MUSIC's percentage is lower than the FFT's,

indicating that it is a superior method.
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Figure (3.43) Percentage error of angle versus N for double (two) sources
(6,=-15°, 8,=- 40 for the first actual angle (6,=-15°), SNR=10dB for DOA
Estimation.

There is a relationship in figure (3.44) between the percentage
error and the quantity N for the FFT algorithm method and the Root-
MUSIC algorithm method for different quantities of N (number of
samples) with noise double (two) noise sources (6,=-15°, 6,=- 40°),
d=0.6cm, Y=2cm for the second actual angle (6,=-40°) and the value
of SNR=10dB for both methods. Observedly, a maximum percent

error require the minimum N (number of samples). As a result, the
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Root-MUSIC algorithm method has a lower error percentage than the

FFT algorithm method, and as a result, it is preferable to the latter.
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Figure (3.44) Percentage error of angle versus N for double (two) sources
(6,=-15° 8,=-40% for the second actual angle (6,=-40%, SNR=10dB for
DOA Estimation.

For different N (number of samples), figure (3.45) shows the
relationship between the percentage error and N (number of samples)
for both FFT and Root-MUSIC algorithm methods with noise double
(two) sources (0,=-15° ©6,=- 40%), d=0.6cm, Y=2cm for the first
actual angle of (8;=-15°) and the value of SNR=5dB. It is found that
the maximum error requires the minimum number of samples, while
the minimum error requires the maximum number of samples

(number of samples). As a result, the Root-MUSIC algorithm method
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has a lower error percentage than the FFT algorithm method, for this
reason, the Root-MUSIC method is better than the FFT method.
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Figure (3.45) Percentage error of angle versus N for double (two) sources
(6,=-15° 8,=-40% for the first actual angle (6,=-15°), SNR=5dB for DOA
Estimation.

For different N (number of samples) with noise double (two)

sources (6,=-15° 6,=- 40%), d=0.6cm, Y=2cm for the second actual

angle (6,=-40° and the value SNR=5dB, figure (3.46) shows the
relationship between the percentage error and N (number of samples)
for the FFT algorithm method and Root-MUSIC algorithm method.
It is discovered that whilst the minimum error needs the maximum N
(number of samples), the maximum error requires the minimum N.
The accuracy of the Root-MUSIC method is higher than that of the

FFT algorithm because its error rate is lower.
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Figure (3.46) Percentage error of angle versus N for double (two) sources
(8,=-15° ©6,=-40°%) for the second actual angle (6,=-40°), SNR=5dB for
DOA Estimation.

Figure (3.47), the relationship between the percentage error
and N (number of samples) is shown for both the FFT algorithm and
the Root-MUSIC algorithm with noise double (two) sources (6,=-
10°, ©,=15%), d=0.6cm, Y=2cm for the first actual angle (6,=-10°)
and a signal-to-noise ratio SNR=10dB. A minimum of N (samples)
is required for the maximum percentage error, whereas a maximum
of N. (number of samples) is required for the minimum percentage
error. This indicates that the Root-MUSIC approach is better than the

FFT method because it has a smaller percentage inaccuracy.
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Figure (3.47) Percentage error of angle versus N for double (two) sources
(6,=-10° ©,=15%) for the first actual angle (8,=-10°), SNR=10dB for DOA

Estimation.

The relationship between the percentage error and N (number
of samples) is depicted in figure (3.48) for both the FFT algorithm
and the Root-MUSIC algorithm for different N (number of samples)
with noise double (two) sources (6,=-10°, ©,=15%, d=0.6cm,
Y=2cm for the second actual angle (6,=15°) and a signal-to-noise
ratio SNR=10dB. A minimum of N (number of samples) is required
for the maximum percentage error, whereas a maximum of N is
required for the minimum percentage error (number of samples).
This indicates that the Root-MUSIC algorithm technique is better
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than the FFT algorithm method as its percentage error is lower in the

former case.
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Figure (3.48) Percentage error of angle versus N for double (two) sources
(6,=-10° 6,=15% for the second actual angle (6,=15°), SNR=10dB for DOA

Estimation.

The relationship between the percentage error and N (number
of samples) is depicted in figure (3.49) for both the FFT algorithm
and the Root-MUSIC algorithm for different N (number of samples)
with noise double (two) sources (6,=-10°, ©,=15%, d=0.6cm,
Y=2cm for the first actual angle (6,=-10°) and a signal-to-noise ratio

SNR=5dB. Noted was the difference between the minimum and
maximum percentage errors: the minimum requires a maximum of N
(number of samples), while the maximum requires a minimum of N.

By comparison, the Root-MUSIC algorithm methodology has a
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lower percentage error than the FFT algorithm method, indicating its

superiority.
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Figure (3.49) Percentage error of angle versus N for double (two) sources
(6,=-10° 6,=15% for the first actual angle (6,=-10°), SNR=5dB for DOA
Estimation.

The relationship between the percentage error and N (number
of samples) is shown in figure (3.50) for both the FFT algorithm and
the Root-MUSIC algorithm for different N (number of samples) with
noise double (two) sources (6,=-10° 6,=15%), d=0.6cm, Y=2cm for
the second actual angle (6,=15° and a signal-to-noise ratio
SNR=5dB. A minimum of N (number of samples) is required for the
largest percentage error, while a maximum of N is needed for the

smallest percentage error. This indicates that the Root-MUSIC
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algorithm approach is better than the FFT algorithm method as the

Root-MUSIC technique's percentage error is lower.
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Figure (3.50) Percentage error of angle versus N for double (two) sources
(8,=-10° 8,=15% for the second actual angle (6,=15°), SNR=5dB for DOA

Estimation.
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CHAPTER FOUR

Experimental Results

4.1 Introduction

This chapter presents experimental findings that assess the
Root-MUSIC approach's effectiveness in calculating the DOA and
contrast it with the FFT method. An ultrasonic transducer serves as
the device for the practical system in this dissertation. The ultrasonic
transducer's specifications and an overview are given. The ultrasonic
DOA system, which is employed in the practical system and
parameters, is introduced with a brief explanation. To execute the
ultrasonic DOA estimation of a single source and two sources,

several experiments were carried out.
4.2 Ultrasonic Transducer

There are numerous uses for the ultrasonic transducer,
including channel level and air or water speed measurement. A
gadget employs numerous detectors to measure direction and speed.
It determines the speed based on the relative distances to airborne or
waterborne particulate matter. This dissertation makes use of the air
ultrasonic ceramic transducers depicted in figure (4.1)

below.
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G
)

Figure (4.1) Ultrasonic Ceramic Transducer.

4.3 The DOA Estimation System Using Ultrasound.

The signal generator and transducers make up the initial section
of the practical system. The 40kHz ultrasonic wave is produced by
the signal generator. One transducer for a single source and two
transducers for two sources convey the ultrasonic signal through the

atmosphere.

The scanning receiver in the receiver uses a single transducer. The
uniform linear array is the same as the receiver scanning procedure.
The greatest distance between elements in a uniform linear array
(ULA) is equal to or less than (¥ /2), where ¥ is the wavelength. The
ultrasonic wavelength is equivalent to 0.8cm. The distance between
the ultrasonic transducer and the target must not be greater than 0.2

cm in order to meet ULA requirements.
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4.4 Practical Experimental Results

The ultrasonic DOA estimate hardware experimental setup is
depicted in figure (4.2). For the Direction Of Arrival (DoA) estimate
test with one source and two sources, the ultrasonic transducers are
used, and the received signal is obtained by scanning an ultrasonic
transducer and taking a sample at (d) interval. For DoA estimations,
the FFT and Root-MUSIC methods are used.

A comparison between conventional and high-resolution
methods is then made for different numbers of samples. The
parameters of the system are as follows: N (number of samples), d

(distance between two samples), f (frequency), ¥ (wavelength), and

O (actual angle).
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Figure (4.2) Hardware experimental system parts.

4.5 Experimental with Single Source

Three experiments for single-source are achieved, two of them

are for a negative angle and the other is for a positive angle.
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4.5.1 Single-Source with Negative Angle :

The experiment uses a single source with a negative angle. The
actual angle is © =-10°. The following parameters are used : N=11,
d=0.2 cm, f=40 KHz, Y=0.8 cm. Figure (4.3) refers to the result of
the FFT algorithm method. The practical (apparent) angle is equal to
-6°. The percentage error is very high and equal to 40%. Also, it is
noticed, from the resulting curve using the FFT method, that the peak

corresponding to the apparent (measured) angle is not sharp enough.

FFT
40 :

ﬁZ / \\/f
YA

-10 \

Power(dB)

-20 - - - - - - -
-80 -60 -40 -20 0 20 40 60 80
Angle (degree)

Figure (4.3) Magnitude (power (dB)) versus angle (degree) for a single-source
(6 =-10°) using the FFT approach (N=11).

The other method that is used is the Root-MUSIC approach for
the same number of samples, N=11. The practical (apparent) angle is

-9.1190°. Hence the percentage error is 8.81%. It means that the
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percentage error of the Root-MUSIC approach is lower than that of

the FFT approach. For this reason, the Root-MUSIC approach is

better than the FFT approach. Moreover, the sidelobe that appears
with the Root-MUSIC method is higher than 10 dB. Figure (4.4)

shows the relationship between percentage error and N (number of

samples) of both FFT and Root-MUSIC methods for a single source

with © = -10°. It is noticed that the percentage error for the FFT

approach is much greater than that of the Root-MUSIC approach.

The error for the FFT approach exceeds 30% and reaches up to 40%

while for the Root-MUSIC approach is less than 20% and decreases

down to less than 10%.
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Figure (4.4) Percentage error of angle versus N for single source with 8 =-10°

for DOA Estimation.
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The second experiment uses a single source with another
negative angle. The actual angle is © =-11°. The following

parameters are used : N=18, d=0.2 cm, f=40 KHz, ¥=0.8 cm.

Fig. (4.5) depicts the FFT algorithm method's output. The apparent
(practical) angle is -12°. The percentage mistake is 9.0909 percent,
which is quite large. To put it in another way: The sidelobe is high,
which means that it's at least 10% lower than the peak corresponding
to the practical angle. The FFT algorithm has this shortcoming. Also,
the peak corresponding to the apparent (measured) angle is not sharp

enough in the resulting curve of employing the FFT approach.

FFT

Power(dB)

-15 ; ’ - ’ > ’ ’
-80 -60 -40 -20 (0] 20 40 60 80
Angle (degree)

Figure (4.5) Magnitude (power (dB)) versus angle (degree) for a single-source
(6 =-11°) using the FFT approach (N=18).

Using the same N=18 samples, the Root-MUSIC method is the

alternate way of data analysis... For practical purposes, the apparent
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angle is -11.6066° degrees. As a result, the error percentage is 6.005
percent. Also, the Root-MUSIC approach has a lower percentage
error than the FFT approach does. This ensures that Root-approach
MUSIC is superior to the FFT's approach. Furthermore, the Root-
MUSIC technique produces a sidelobe with an amplitude greater
than 10 decibels. Figure (4.6) shows the relationship between
percentage error and N (number of samples) of both FFT and Root-
MUSIC algorithm methods for a single source with 8 = - 11°, It is
noticed that the percentage error for the FFT approach is much
greater than that of the Root-MUSIC approach. The error for the FFT
approach exceeds 9.0909% and reaches up to 70% while for Root-
MUSIC is less than 40% and decreases down to less than 10%.

Angle = -11
80 ; ;
% FFT
70%'?1  """" ©~— Root-music ||
%
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< 40
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8 9 10 11 12 13 14 15 16 17 18

N(number of samples)

Figure (4.6) Percentage error of angle versus N for single source with 6=-11°
for DOA Estimation.

(93)




4.5.2 Single-Source with Positive Angle :

The experiment uses a single source with a positive angle. The
actual angle is positive and equals 6=6°. The following parameters

are used : N=13, d=0.2 cm, f=40 KHz, ¥=0.8 cm. As may be seen in
Fig. (4.7), Good results were obtained with the FFT approach.. The

angle that appears to be practical is 1° degrees. The percentage
inaccuracy is 83.333 percent, which is quite high. It is less than 10
dB from the peak that corresponds to the practical (appeared) angle.
The sidelobe is high, ie this is a shortcoming of the FFT method. It
has been also discovered that the FFT method's result curve shows

that the peak corresponding to the apparent (measured) angle is not
sharp enough.
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Figure (4.7) Magnitude (power (dB)) versus angle (degree) for a single-
source (6 = 6°) using the FFT approach (N=13).
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Using the same N=13 samples, the Root-MUSIC technique is
also an option. The apparent (practical) angle is 5.3730°. Because of
this, the percentage of error is 10.45 percent. Root-error MUSIC's
percentage is lower than the FFT's error percentage, as is the case
with both approaches. The Root-MUSIC technique is superior to the
FFT approach for this reason. Furthermore, the Root-sidelobe
MUSIC is more than 10 dB. Figure (4.8) shows the relationship
between percentage error and N (number of samples) of both FFT
and Root-MUSIC algorithm methods for a single source with 6 = 6°.
It is noticed that the percentage error for the FFT is much greater than
the Root-MUSIC. The error for the FFT exceeds 50% and reaches up
to 100% while for Root-MUSIC is less than 20% and decreases down
to less than 10%.
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12 13 14 15 16 17 18
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Figure (4.8) Percentage error of angle versus N for a single source with 6 =6°
for DOA Estimation.
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4.6 Experimental with Two Sources:

In this experiment, two sources are used. The first angle is
negative and the second angle is positive. The first actual angle is

0,=-29° and the second actual angle is equal to ©6,=26° The

following parameters are used: N=17, d=0.2cm, f=40kHz, ¥=0.8cm.

Figure (4.9) refers to the result of the FFT method. The first
practical (apparent) angle is equal to - 24°. The percentage error is
17.241%. The second practical (apparent) angle is 19° hence the
percentage error is 26.923%. The sidelobe is high, less than 10dB
from the peak that is corresponding to the highest practical (apparent)
angle. This is one of the drawbacks of the FFT algorithm. Also, it is
noticed, from the resulting curve using the FFT method, that the peak

corresponding to the apparent (measured) angle is not sharp enough.

Power(dB)

-80 -60 -40 -20 (0] 20 40 60 80
Angle (degree)

Figure (4.9) Magnitude (power (dB)) versus angle for a double (two) sources
(6,=-29°, 6,=26°) for DOA estimation using the FFT approach (N=17).
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The other method that is used is the Root-MUSIC method for
the same number of samples N=17. The first practical (apparent)
angle is equal to -30.2004°. The percentage error is 4.139%, while
the second practical (apparent) angle is equal to 25.2695° with a
percentage error equal to 2.809%. This means that the percentage
error of the Root-MUSIC method is lower than that of the FFT
method. This ensures that the Root-MUSIC method is better than the
FFT method. Moreover, the sidelobe that appears with the Root-
MUSIC method is higher than 10 dB. Figure (4.10) shows the
relationship between the percentage error and N (number of samples)
for the first actual angle (6,=-29° of both FFT and Root-MUSIC
algorithm methods. It is noticed that the percentage error for the FFT
method is much greater than the Root-MUSIC method. The error for
the FFT method exceeds 10% and reaches up to 27.586% while for
the Root-MUSIC method is less than 10% and decreases down to less
than 5%.
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Figure (4.10) Percentage error of angle versus N for double (two) sources (6,=
-29° , 8,=26% with the first actual angle (6,=-29°) for DOA Estimation.

Figure (4.11) shows the relationship between the percentage
error and N (number of samples) for the second actual angle (6,=
26° ) of both FFT and Root-MUSIC algorithm methods. The
percentage error for the FFT method is much greater than the Root-
MUSIC method. The error for the FFT method exceeds 23% and
reaches up to 34.615% while for the Root-MUSIC method is less
than 7.5% and down to about 0%.
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Figure (4.11) Percentage error of angle versus N for double (two) sources
(6,=-29°, 8,= 26°) with the second actual angle (6,= 26°) for DOA
Estimation.

In the other experiments, two sources are also used. The first
angle is negative and the second angle is positive. The first actual
angle is ©,= -10° and the second actual angle is ©,= 14° The

following parameters are used: N=25, d=0.2cm, f=40kHz, ¥=0.8cm.

Figure (4.12) illustrates the FFT algorithm's output. The first
practical (appearing) angle is 6° degrees. The mistake rate is 40%.
The second practical (apparent) angle is 13° hence the error
percentage is 7.142 percent. There is a high sidelobe, less than 10 dB
from the peak, which corresponds to the largest practical (apparent)

angle... This is a shortcoming of the FFT algorithm approach. Also,
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the peak corresponding to the apparent (measured) angle is not sharp

enough in the resulting curve of employing the FFT approach.
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Figure (4.12) Magnitude (power (dB) versus angle for a double (two) sources
(6,=-10°, 8,=14° for DOA estimation using the FFT approach (N=25).

For the same number of samples N=25, the Root-MUSIC
approach is employed. The apparent (practical) angle of -8.6161° is
the first to consider. The error is 13.839 percent, but the apparent
(secondary) angle is 15.9560° degrees, with a 13.971-percent error
rate. This means that the Root-MUSIC approach has a lower
percentage error than the FFT method. The Root-MUSIC approach
IS therefore superior to the FFT method in this regard. Root-MUSIC,
on the other hand, has a sidelobe that is more than 10 dB in
magnitude. Figure (4.13) shows the relationship between the
percentage error and N (number of samples) for the first actual angle
(©,=-10° of both FFT and Root-MUSIC algorithm methods. It is
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noticed that the percentage error for the FFT method is much greater
than the Root-MUSIC method. The error for the FFT method exceeds
40% and reaches 50% while for Root-MUSIC is less than 20% and

decreases down to less than 1%.
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Figure (4.13) Percentage error of angle versus N for double (two) sources (6,=
-10°%, ©,= 14% with the first actual angle (6,= -10°) for DOA Estimation.

Figure (4.14) shows the relationship between the percentage error
and N (number of samples) for the second actual angle (6,=14°) of
both FFT and Root-MUSIC algorithm methods. the percentage error
for the FFT method is much greater than the Root-MUSIC method.
The error for the FFT method exceeds 21% and reaches up to 28%
while for Root-MUSIC is less than 14% and down to about 0.714%.
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Figure (4.14) Percentage error of angle versus N for double (two) sources (6,=
-10%, ©,= 14% with the second actual angle (6,= 14°) for DOA Estimation.
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CHAPTER FIVE

Conclusions and Suggestions for Future Work

5.1 Conclusions

In this work we compared traditional FFT and super-resolution
Root-MUSIC methods for Direction of Arrival (DOA) estimation,
highlighting FFT's limitations in resolution, data requirements, and
high sidelobes, which obscure signals and hinder accuracy. Despite
Root-MUSIC's mathematical complexity and longer estimation
times, its lower error rates and ability to discern slight angular
differences demonstrate its superiority. Practical results confirm that
FFT struggles with accurately detecting DOA, especially for closely
spaced sources, whereas Root-MUSIC excels, benefiting from
modern computing power to deliver precise and reliable DOA
estimates with lower error margins and reduced sidelobe

interference.

From simulation results, we can conclude that the percentage
error equals zero at all points locations of the number of samples (N)
with noiseless data for single and two emitting (radiating) sources,
when we use the Root-MUSIC algorithm method that is
advantageous for this method but the percentage error is not equal
zero of the FFT algorithm method. When we use with noisy data for
single and two emitting (radiating) sources, the percentage error is
minimum with high value signal to noise ratio (SNR) and with

maximum N (number of samples).
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From the practical results along with an investigation of the
performance of both the conventional method (FFT) and super-
resolution method (Root-MUSIC), we can conclude many points:
The percentage errors of the FFT method is much higher, in most
cases than of Root-MUSIC for both types of experiments, the two
single-source experiments, and the single two sources experiment. In
the FFT method the error is increased with fewer values of the
number of samples N and begins decreasing, but still high, as N
increases. For the Root-MUSIC method, it is noticed that the
percentage error in most cases less than 15% for the two experiments

of single source and less than 10% for the experiment of two sources.

Also, it is noticed that high sidelobes have appeared for the FFT
method in most experiments and it was less than 10 dB from the peak
that corresponds to the highest practical (apparent) angle. While in
the Root-MUSIC method, the sidelobes are of small values, higher
than 10 dB from the peak that is corresponding to the highest

practical (apparent) angle.

5.2 Suggestions for Future Work

1. The application of radio frequency microwaves.
2. Applying various frequencies and wavelengths.

3. Using ULA without a scanning receiver is made possible by the

use of tiny ultrasonic transducers.

4. Using of other high-resolution methods such as ESPRIT.
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