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Abstract 

The detection of shrapnel in the human body is a medical imaging task that is 

typically performed using X-ray, computed tomography (CT), Ultrasounds, or magnetic 

resonance imaging (MRI) scans. These imaging techniques can provide detailed images 

of the internal organs and bones. However, those methods suffer from not distinguishing 

non-metallic shrapnel, causing ionizing radiation, not distinguishing between shrapnels 

and bones, and being time-consuming, respectively. 

Medical microwave imaging is the method that involves the use of microwave 

electromagnetic waves to create images of the internal structures of the human body. It 

has the advantage of being non-invasive and safe. Microwave imaging can be combined 

with neural networks to enhance the analysis and interpretation of the collected 

microwave data. 

In this research, the deep neural network was employed to identify the presence 

or absence, size, and location of shrapnel. To build a model, an electromagnetic 

simulator CST Microwave Studio is employed. The model consists of four layers (skin- 

fat- muscle- bone) with different conductivity and relative permittivity. Spherical 

shrapnel of different radii (5mm, 10mm, and 15mm) is supposed to be at various places 

in the model. The signal is directed at the model using a monopole ultra-wideband 

antenna, which is also used to pick up reflected signals. The transmitted signal operates 

in the frequency range of 1 GHz to 6 GHz.  In order to determine whether shrapnel is 

present or not, its size, and where it is located, the collected signals are analyzed using 

a deep neural network. 

It is important to select an appropriate design and learning algorithm for the 

neural network to produce the best results. MATLAB can be used to test various neural 

network designs and sizes and conclude on the best model. 

The results were acquired utilizing the neural network with 90% success in 

shrapnel identification, 86% success in shrapnel sizing, and 78% success in shrapnel 

depth. Better results were obtained using CNN, where 99% success was reached in 
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determining the presence of the fragment and 88% in determining its size and location. 

Overall, the combination of microwave imaging and neural networks, 

specifically CNNs, shows great potential in improving the accuracy and reliability of 

shrapnel detection systems, especially with a large amount of trained data. Further 

research and advancements in this field can lead to enhance medical imaging techniques 

and improved patient care. 
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 CHAPTER ONE 

INTRODUCTION 

1.1 Overview 

Whether in peacetime or wartime, metal may enter the human body in 

numerous ways, including trauma, medical accidents, medical implants, and misuse. 

The most common injuries are gunshot wounds, shrapnel, and metal fragments 

remaining in the human body. It is important to locate the metal in the body quickly 

and accurately with effective imaging methods such as X-ray, CT scan, MRI, or 

ultrasound. This will help to determine the size, shape, and location of the metal, 

which is important for planning any necessary surgery or treatment. Additionally, 

this can help in reducing the pain of the patient [1]. 

Typically, shrapnel material is either steel, copper, or aluminum. This shrapnel 

is frequently moves inside the patient's body for a variety of reasons. A surgeon must 

find the shrapnel and surgically remove it in order to treat injuries [2]. 

1.2 Some Hidden Object Detection Techniques 

Hidden object-detecting techniques are used to detect concealed items or 

objects in various scenarios, such as security checkpoints, baggage screening, or 

medical imaging. Here are some commonly used hidden object-detecting techniques 

1.2.1  X-Rays 

X-rays are a type of electromagnetic radiation that can pass through many 

materials, including soft tissue, bones, and metal. They are used to detect hidden 

objects in the human body, such as shrapnel, bullets, or other metallic objects that 

may be present inside the body in some circumstances. X-rays work by passing 

through the body and being absorbed by different materials at different rates. Dense 

materials like bone absorb more X-rays, while less dense materials like soft tissue 

absorb fewer. 

 Metals, such as those used in shrapnel, are highly dense, and therefore absorb 
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a significant number of X-rays, making them visible on an X-ray image. X-ray 

imaging is a non-invasive procedure, it can be done quickly and easily, and it does 

not require the patient to have anesthesia. However, X-ray imaging exposes the 

patient to ionizing radiation, which can have potential long-term health effects [3]. 

1.2.2  Magnetic Resonance Imaging 

Magnetic Resonance Imaging (MRI) is often used to detect hidden objects in 

the human body. The technique uses a powerful magnetic field, radio waves, and 

computer technology to produce detailed images of internal organs, bones, and other 

structures. The MRI system is shown in Figure (1.1). MRI can be used to detect a 

variety of foreign objects, such as bullets, shrapnel, and other metallic fragments, as 

well as non-metallic objects like glass, wood, and plastic. It can also be used to detect 

tumors. The high resolution and contrast of MRI make it a valuable tool for detecting 

objects that may not be visible using other imaging techniques However, there are a 

few challenges associated with MRI. One problem is the time-consuming nature of 

MRI scans, which can limit their use in emergency situations [4]. the MRI technique 

exploits the behavior of hydrogen protons in a magnetic field and their response to 

RF pulses to create detailed and informative images of the body's internal 

structure[5]. 

 

Figure 1.1: Magnetic resonance imaging system 
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1.2.3  Computed Tomography 

Computed tomography (CT) can be an effective tool for detecting shrapnel in 

the human body. CT scans use X-rays to produce detailed images of the body's 

internal structures, including bones and soft tissue. The metal of shrapnel shows up 

in white on a CT scan, which makes it easy to be identified and located. In addition, 

CT scans can also be used to detect any internal injuries or bleeding that may have 

been caused by the shrapnel. CT scans are fast and non-invasive, and they can 

provide important information to help guide treatment decisions.  

CT can offer more detailed imaging data, and accurate three-dimensional 

placement and location are both possible. The cost is a drawback because it is high. 

In addition, it cannot be effectively used in the complex environment seen on the 

battlefield due to its big size, awkward carrying, and high environmental 

requirements.  

1.2.4 Ultrasound Imaging 

The high-frequency sound waves of ultrasound can create images of internal 

organs and tissues, allowing healthcare providers to locate and identify foreign 

objects such as shrapnel. It is a non-invasive and relatively safe method for detecting 

shrapnel in the body.  

During the ultrasound imaging, the sonographer will apply a water-based gel 

to the skin and move a handheld transducer over the area of concern. The transducer 

sends out sound waves that bounce off of internal structures and return to the 

transducer to create an image. The sonographer can adjust the frequency and 

intensity of the sound waves to optimize the image for the specific type and size of 

shrapnel. Under ultrasound supervision, metallic bodies can be removed safely and 

without radiation harm. However, the metallic body appears identical to the bone in 

ultrasonic pictures, making it impossible to distinguish between the two [6]. 
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1.2.5  Microwave Imaging 

Microwave imaging is one promising technology for seeing internal human 

structure by subjecting it to electromagnetic waves at microwave frequencies 

between 300MHz and 30GHz [7]. In general microwave technology is reliable, 

affordable, and portable, and it can provide the initial diagnosis of a number of 

serious medical disorders. The necessary hardware for a microwave-based diagnosis 

system typically consists of a transmitter, such as a portable vector network analyzer 

(VNA), an array of antennas (or occasionally just one antenna in sensing 

applications), and some switching networks to switch between multiple antennas. 

This necessary hardware can be made for a small portion of the cost of other 

traditional diagnosis tools [8].  

Microwave imaging techniques utilize the interaction between microwave 

signals and biological tissues to provide information about their composition and 

properties. It can provide valuable information about tissue properties, such as 

electrical conductivity and permittivity.   

This technology is especially relevant in military medicine, as it can detect and 

locate shrapnel in soldiers who have been injured by explosive devices, without the 

need for invasive surgery. It can also be used in emergency rooms and trauma centers 

to quickly identify and locate shrapnel in the bodies of civilians who have been 

injured in bombings or other explosions. 

1.2 Literature Review 

In 2018, Mohammad T. et al. presented a review of concepts and 

electromagnetic techniques for microwave breast imaging, with a specific emphasis 

on the use of ultra-wideband (UWB) antenna sensors [9]. The use of UWB sensor-

based microwave energy in various imaging applications for breast tumor-related 

diseases, tumor detection, and breast tumor detection. In microwave imaging, the 

back-scattered signals radiating by sensors from a human body are analyzed for 

changes in the electrical properties of tissues. Tumorous cells exhibit higher dielectric 
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constants because of their high-water content. 

In 2018, Oleksandr D. et al. developed an impulse electromagnetic wave that is 

used to irradiate the surface, and the reflected field characteristics are analyzed using 

an ANN [10]. This data is used to train the ANN to recognize specific objects based 

on the characteristics of the reflected field. The ANN is then able to identify objects 

based on the input data it receives during testing. This method can be used to detect 

and identify a wide range of hidden objects. also investigated the effect of the number 

of hidden layers in the ANN on the precision of recognition.  

In 2019, Chen H. et al. presented a unified approach that performs thoracic 

disease identification and localization using deep learning techniques [11]. The 

proposed method is to build an accurate prediction model that can effectively identify 

and locate thoracic diseases in radiology images. The method is based on deep learning 

techniques, which have shown significant success in medical image analysis tasks. 

Deep learning models can automatically learn relevant features from the data, making 

them well-suited for complex image recognition tasks. the proposed method shows 

promising results in accurately identifying and localizing thoracic diseases in 

radiology images, making it a potentially valuable tool for clinical diagnosis and 

treatment planning. 

In 2020, Ahmed J. et al. presented a small-size UWB monopole antenna to 

accurately locate and identify kidney stones within the body [12]. The low profile, 

simple structure, and lightweight nature of the antenna design are intended to make it 

easy to manufacture and to be comfortable for patients to use during the scanning 

process. The UWB antenna was simulated, measured, and tested at an ultra-wideband 

frequency range of 3-11 GHz to detect kidney stones. The test results showed that 

when a stone is present, the Reflection coefficient (S11) increases.  

In 2020, Gennadiy P. et al. proposed UWB antenna systems that can be used for 

detection and classification by sending out UWB pulses and analyzing the reflections 

[13]. The reflections can be analyzed using artificial neural networks (ANNs) to 
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classify the object, The ANNs can then be trained to recognize the characteristics of 

hidden objects and differentiate them from other objects in the environment.  

In 2021, Vikesh S. et al. proposed automated microwave monitoring a technique 

that utilizes microwave signals to detect hidden objects in strategic and security 

applications [14]. The technique works by emitting microwave signals and measuring 

the reflections, which can reveal the presence of hidden objects. By measuring the S-

parameters of the test region using a horn-lens antenna and a network analyzer in the 

wide frequency range of 2-10 GHz, it is possible to detect hidden objects. The 

proposed scheme allows for the calculation and comparison of the objects' shape, size, 

and depth profile with their actual values in addition to determine their dielectric 

properties. 

 In 2021, Amran H. et al. investigated A YOLOv3 deep neural network to detect 

brain tumors in portable electromagnetic imaging systems [15]. a nine-antenna array 

setup and a phantom that mimics tissue are used, and the portable head imaging 

system can collect detailed scattering data to produce high-resolution images of the 

head and brain. These images can be analyzed using a YOLOv3 deep neural network 

model to detect and locate brain tumors. A final image data set is created by combining 

fifty sample images, that were gathered from various EM head imaging system 

development scenarios. The data set is made up of 1000 images, including 50 samples, 

of which 80% are used for training and the remaining 20% for validation and testing. 

The results of the proposed architecture demonstrate great training, and validation 

accuracy with low training and validation loss.  

In 2022, Sofia I. et al. proposed a YOLOv3 deep neural network for the 

identification of shrapnel in different sizes and locations with respect to a 

neurovascular bundle [16]. This makes it possible to employ automated methods to 

determine how close shrapnel is near tissue's critical features, which can then be used 

to determine whether evacuation or surgical intervention is necessary.  

In 2022, Emily N. et al. developed a deep learning neural network model 
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specifically designed to identify shrapnel in ultrasound images, termed ShrapML 

(ML)[17]. It is faster than traditional deep learning models, ShrapML can minimize 

the cognitive burden for medical professionals in high-stress emergency, or military 

medicine scenarios by automating some tasks and providing real-time help and 

analysis.  

In 2022, Gokul N. et al. introduced a UWB Antipodal Vivaldi Antenna (AVA) 

for microwave imaging applications [18]. The AVA accomplishes high transmission 

capacity from 1.2–14 GHz with a maximum gain of 13 dBi at 10 GHz. The antenna is 

utilized for the identification of a metal object located inside a human stomach cross-

section modeled in the simulator. A suitable imaging algorithm is devised to identify 

the material inside the stomach. The algorithm can locate the exact coordinates of the 

metallic objects along with their actual dimensions used in the simulations. Further, 

the resolution of the image has been improved. 

 

1.3 Aims of the Dissertation 

The aim of this dissertation is to detect the existence of shrapnel in the human 

body and determine its size and its location using microwave imaging and neural 

networks (NN). To do that the following steps are to be taken: 

1. Constructing a model that mimics the layers of the human body, then apply an 

electromagnetic signal to the model. 

2. Creating a planar monopole antenna for UWB microwave imaging. 

3. Analyzing the backscattered signals from the model. 

4. Collecting the signal sets, and prepare the data for use in the neural network. 

5. Utilizing the data as input, a neural network can be employed to identify the 

presence of shrapnel, estimate its size, and determine its location.  

6. By analyzing the input data, the neural network learns patterns and correlations 

that correspond to the presence, size, and location of shrapnel. 
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1.4 Dissertation Layout 

This dissertation includes the following chapters. Chapter one contains 

background about the shrapnel, hidden object detection techniques, and a literature 

review about the subject. Chapter Two states the theory of neural networks, the 

theory of microwave imaging, and the fundamentals of microwave imaging. Chapter 

three includes the theory of Ultra-Wideband Antenna, a planar monopole antenna 

that has been developed for this purpose, building a simple two-dimensional 

homogeneous model of the human body using CST studio, theory of human model 

effect on antenna parameters. Chapter four includes the theory and simulation of 

dataset reparation for a homogenous Model, the architecture of neural networks, 

results and analysis of one-dimensional locating using artificial neural networks 

(ANN), results and analysis of two-dimensional locating using artificial neural 

networks (ANN), and results of training Convolutional Neural Network (CNN). 

Finally, chapter five presents’ conclusions and some suggestions for future work. 
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CHAPTER TWO 

NEURAL NETWORKS AND MICROWAVE IMAGING 

2.1  Neural Network 

An Artificial Neural Network (ANN) is a machine learning model that draws 

inspiration from the structure and function of biological neural networks, which are 

found in the human brain. It is composed of layers of interconnected nodes, called 

artificial neurons, which process and transmit information. The neurons in each layer 

are connected to the neurons of the previous and next layers via pathways called 

synapses. The neurons and synapses are used to learn and make predictions or 

decisions based on input data. ANNs are widely used for medical applications in 

various disciplines of medicine. ANNs have been extensively applied in diagnosis, 

electronic signal analysis, medical image analysis, and radiology [19]. 

ANNs can be trained using supervised, or unsupervised methods. In 

supervised learning, the neural network is trained on a labeled dataset, where both 

input data and corresponding target outputs are provided. During training, the 

network learns to map inputs to desired outputs by adjusting its internal parameters 

through an optimization process, typically using techniques like backpropagation 

and gradient descent. The goal is to minimize the difference between the network's 

predictions and the actual targets. 

In unsupervised learning, the neural network is trained on an unlabeled dataset, 

where only the input data is provided without any corresponding target outputs. The 

network tries to find patterns or structures in the data without explicit guidance. 

Common unsupervised learning tasks include clustering (grouping similar data 

points) and dimensionality reduction (finding a lower-dimensional representation of 

the data) [20].  

An artificial neural network is a nonlinear function, represented by a collection 

of interconnected artificial neurons, in which an input vector (𝑥) multiplied by a 

weights vector (𝑤) summed, and then inserted into a certain activation function 
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which determines if the neuron is activated, and an output is generated. These 

weights are typically adjusted during a training process, where the network is 

presented with a set of input-output examples, and the weights are adjusted to 

minimize the difference between the network's output, and the target output. The 

output can be unidimensional or multidimensional, depending on the problem, and 

the architecture of the network. The working principle of an artificial neuron is 

shown in Figure (2.1). The mathematical explanation of the artificial neuron model 

is below [21]. 

𝑦(𝑘) = 𝑓(∑ 𝑤𝑖
𝑚
𝑖=0 (𝑘) .  𝑥𝑖(𝑘) + 𝑏)  ,       (2.1) 

where: 

𝑥𝑖(𝑘)  is input value in a discrete-time 𝑘 where 𝑖 goes from 0 to 𝑚, 

𝑤𝑖(𝑘) is weight value in a discrete-time 𝑘 where 𝑖 goes from 0 to 𝑚, 

𝑏 is bias, 

𝐹 is a transfer function, 

𝑦𝑘 (𝑘) is output value in discrete time 𝑘. 

 

 
Figure 2.1: Principle of an artificial neuron[21] 
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In an ANN, weights, and biases are the learnable parameters that enable the 

network to make predictions and learn from data during the training process. These 

parameters are crucial for the network's ability to approximate complex functions 

and generalize to new data.  

A weight is a scalar value associated with each connection between neurons 

in adjacent layers. Each connection represents the flow of information from one 

neuron to another. The weight determines the strength and direction of the signal 

being passed from one neuron to the next. During the training process, the network 

adjusts the weights to find the optimal values that minimize the prediction error on 

the training data. 

A bias is a scalar value associated with each neuron in the network, including 

the input layer and all hidden layers. The bias provides an offset or threshold for the 

neuron's activation function. It allows the network to adjust the decision boundary 

and control the neuron's responsiveness to the input. 

The bias term is essential because without it, the output of a neuron would be solely 

determined by the weights and inputs, which may not be sufficient to model complex 

relationships in the data. The bias allows the network to shift and adjust the activation 

function, making it more flexible and adaptable [22]. 

The main artificial neural network architectures fall into the following categories, 

taking into account the neuron disposition, their connectivity, and the makeup of 

their layers: 

• Single-layer feedforward network: This type of network is also known as a 

perceptron, which consists of only one layer of neurons, where each neuron 

receives input from the layer, processes it, and sends it to the output layer. These 

networks are usually employed in pattern classification, and linear filtering 

problems. 

• Multilayer feedforward networks: These networks consist of multiple layers of 

neurons, where each layer receives input from the previous layer, processes it, 

and sends it to the next layer. These networks are also known as multi-layer 
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perceptron, as seen in Figure (2.2). They are used to solve a variety of issues, 

including those involving function approximation, pattern classification, system 

identification, process control, optimization, and more. 

 

(a)                                                              (b)  

 

Figure 2.2: (a) Single layer network, (b) Multiple layers network. 

 

• Recurrent networks: In these networks, the output of a neuron is fed back to 

itself, and to the other neurons in the same layer. This creates a feedback loop, 

allowing the network to maintain a certain level of internal state, and process 

sequential data. 

• Mesh networks: These networks are composed of multiple processing nodes 

connected by directed edges, where each node can represent a single or 

multiple neurons, and the edges represent the connections between them as 

seen in Figure (2.3). These networks are utilized for a variety of tasks, 

including data clustering, pattern recognition, and system optimization [23]. 
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(a)                                                               (b) 

Figure 2.3: (a) Recurrent network, (b) Mesh network [23]. 

 

2.2 Transfer Functions 

The transfer function is a crucial component of an artificial neuron in a neural 

network. It maps the input signal to an output signal, and its properties determine the 

behavior of the neuron. A transfer function can be either linear or nonlinear. A linear 

transfer function produces an output that is directly proportional to the input, while 

a nonlinear transfer function produces an output that is not directly proportional to 

the input. The choice of a linear, or nonlinear transfer function depends on the 

specific problem that the neuron or system is trying to solve. Figure (2.4) illustrates 

several of the typical activation functions, command used [24]. 

 

Figure 2.4: Common activation functions of NN [24]. 

K   
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2.3      Feed-Forward Back Propagation 

The FFBPN method is used to train a model that represents the results of two-

way iterations. The feed-forward aspect of the process refers to the flow of data 

through the network, moving from the input layer to the output layer, without looping 

back. The backpropagation aspect of the process refers to the flow of error 

information, moving from the output layer to the input layer, and adjusting the 

weights of the connections between the layers in order to minimize the error. This 

process is repeated many times, also known as an "epoch," until the network reaches 

a satisfactory level of accuracy. The number of iterations or epochs required to train 

a neural network can vary depending on factors, such as the complexity of the 

network, the size of the dataset, and the learning rate [25]. 

2.4 The Architecture of Neural Network 

The best method for recognizing and distinguishing between various signal 

sets is a neural network. It is important to select an appropriate design and learning 

algorithm for the neural network to produce the best outcomes. The simplest 

approach to achieve that is to decide what is projected to be appropriate based on 

prior experience, and then to increase or decrease the size of the neural network until 

a suitable output is generated. 

Neural networks are typically trained using a process called backpropagation, 

where the network is adjusted based on the difference between its output and the 

expected target output. During training, the neural network is repeatedly presented 

with input/target pairs, and the weights and biases of the network are updated so as 

to minimize the difference between the network's output and the target output. 

 During the implementation of neural networks, it is a common practice to 

divide the available data into three sets: training data, validation data, and testing 

data.  

The training data set is used to teach the network how to map input data to 

output data by adjusting the network's parameters based on the errors between the 
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predicted outputs and the true outputs. The training process continues until the 

network's error on the training data set is minimized and the network has learned to 

generalize to new unseen data.  

The validation data set is used to evaluate the performance of the network 

during training and to prevent overfitting. Overfitting occurs when the network 

becomes too specialized in the training data and fails to generalize to new data. The 

network is evaluated on the validation data set after each training epoch, and training 

is stopped when the error on the validation data set starts to increase, indicating that 

the network has started to overfit. 

The testing data set is used to provide an independent measure of the network's 

performance after training. The testing data set is not used during training or 

validation, and the network has not seen this data before. By evaluating the network 

on the testing data set, we can estimate the generalization performance of the 

network, i.e., how well it can perform on new, unseen data. 

It may be possible to use an artificial neural network (ANN) with reflection 

coefficient data inputs to predict the depth of shrapnel in a human. Reflection 

coefficient data can be used to estimate the dielectric properties of tissues, which can 

in turn be used to estimate the depth of penetration of shrapnel. 

2.5     Training Process 

The training process of a neural network is guided by a learning algorithm, 

which is responsible for adjusting the weights, and biases of the neurons in the 

network. The goal of the learning algorithm is to find a set of weights and biases that 

minimize the error between the predicted output, and the true output. This process is 

iterative, and typically uses a dataset of labeled examples, called the training set, to 

update the weights and biases. As the training progresses, the network extracts 

discriminant features from the input data, that are useful for solving the problem at 

hand. These features are learned by the network in the form of weights, and biases 

which then can be used to make predictions on unseen data, known as the test set. 
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A training epoch is also the term used to describe each complete presentation 

of all the samples from the training set during the training of artificial neural 

networks in order to modify the synaptic weights and thresholds. Before the training 

process begins, the number of training epochs must be set as a hyperparameter. The 

training process ends when performance on the validation set stops advancing, or 

after a predetermined number of training epochs [26]. 

In training a backpropagation neural network, the mean squared error (MSE) 

function is commonly used as the cost function. It calculates the average squared 

difference between the predicted output and the actual output for all training samples 

[26]. 

MSE =
1

N
∑ (di − yi)

2 =
1

𝑁
∑ 𝑒𝑖

2𝑁
𝑖=1

N
i=1    ,     (2.2) 

where: 

MSE is the mean square error.  

N  training samples were generated using an EM simulator. 

𝑑𝑖 the expected output. 

𝑦𝑖  the corresponding output of neural networks. 

𝑒𝑖 the sample errors. 

2.6 Deep Neural Network 

A DNN is a type of ANN that has multiple layers of artificial neurons, also 

known as hidden layers. The added layers in a deep neural network can make it more 

powerful and capable of solving more complex problems, but they can also lead to 

certain issues. The vanishing gradient problem is one such issue. It occurs when the 

gradients of the weights in the network become very small, as they are 

backpropagated through the layers, causing the weights to update very slowly. As a 

result, the network may take a very long time to converge, or may not converge at 

all. This can make it difficult to train DNNs. Overfitting is another issue that can 

occur when the model becomes too complex and starts to memorize the training data, 
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rather than generalizing to new unseen data. This can lead to poor performance on 

unseen data or validation set [27]. 

2.7 Convolutional Neural Network (CNN) 

CNN is a type of deep learning model. It consists of multiple layers, including 

convolutional layers, pooling layers, and fully connected layers, which work together 

to extract features from the input data and make predictions [28]. The training, and 

testing of the input data is performed by passing the data through a series of 

convolution layers with filters. These filters are also known as kernels. Because of 

their ability to automatically learn features from data, CNNs have been widely used 

in computer vision tasks such as object detection, image segmentation, and image 

classification. A general CNN architecture is shown in Figure (2.5). It consists of 

Convolutional Layer, Pooling Layer, Fully connected layer (FC), and Rectified 

Linear Unit Layer. 

 

Figure 2.5: Architecture of CNN. 

2.7.1 Convolutional Layer 

The main purpose of a convolution layer is to detect local features, or 

combinations of local features by applying filters to the input. The convolutional 

layer takes the input data x and a set of filters 𝐹 = {𝑓1, 𝑓2, … . . . 𝑓𝑁𝑘
}, and applies the 

convolution operation ⊗between them. This operation produces a set of 𝑁𝑘feature 

maps ℎ: 
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ℎ𝑘 = 𝑓𝑘 ⊗ 𝑥  .        (2.3) 

 

By sliding the filter over the data, it performs a dot product with the local 

region of the data, producing a response that indicates the presence or absence of a 

certain feature. This response is then transformed into a feature map, which can be 

used as input for the next stage of processing [29].  

 

 

Figure 2.6: Operation of the convolutional layer. 

 

2.7.2 Pooling Layer 

The main purpose of pooling layers is to down-sample the spatial dimensions 

of the input feature map, reducing their size, and the number of parameters in the 

network. This can help to reduce overfitting, improve computation efficiency, and 

control the size of the feature maps. The most commonly used pooling operations 

are Max Pooling and Average Pooling.  

Max pooling takes the maximum value among the data in a pooling field, and 

average pooling takes the average of all the values in the same field. Figure (2.7) 

shows the operation of the pooling layer. The choice between max pooling and 

average pooling depends on the characteristics of the data, the task at hand, and the 

network architecture. By taking the maximum value, max-pooling preserves the most 

prominent feature in that region, making it robust to small variations or noise. This 
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property helps the network focus on the most important and discriminative features 

while discarding less relevant information. In situations where extreme values exist 

in the data, max pooling may emphasize these outliers, potentially leading to a loss 

of information about the majority of the data points. In contrast, average pooling 

computes the mean value within the pooling window, which can help mitigate the 

influence of extreme values and provide a more stable representation of the data. 

[30]. 

 

Figure 2.7: Operation of pooling layer. 

 

2.7.3 Fully Connected Layer 

The fully connected (FC) layer is used to perform the final classification of 

the input data into different classes. The FC layer takes the output from the 

convolutional and pooling layers, which have learned high-level features from the 

input data, and performs a dot product with a set of weights and biases to produce 

the final classification scores. The weights and biases in the FC layer are learned 

through the training process, allowing the model to recognize and classify new, 

unseen data. 
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2.7.4 Rectified Linear Unit Layer (RELU) 

 Typically, CNN employs the nonlinear RELU activation function. Values 

greater than zero remain unaffected by RELU, while values less than zero are 

transformed to zero (1) [31]. 

𝑓(𝑥) = {
0, 𝑖𝑓 𝑥 < 0.
𝑥, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

   .       (2.4) 

 

2.8 Deep Neural Network Structure Design 

The design of a DNN involves choosing the number, and type of layers, the 

number of neurons in each layer, the activation functions, and the type of connectivity 

between the layers. The number of hidden layers in a deep neural network is a key 

factor in determining its performance. The right number of hidden layers depends on 

the complexity of the problem, the size of the input and output layers, and the amount 

of training data available. If the network has too few hidden layers it may not be able 

to capture the complexity of the problem, and may result in underfitting. If the 

network has too many hidden layers, it may become too complex and may result in 

overfitting. Therefore, the neural network that will be used in this dissertation has 

two hidden layers. 

2.9 Microwave Imaging System 

The physical basis of microwave imaging techniques is the significant 

dielectric between the various tissues of the human body and its surroundings in the 

microwave frequency region [32].  

Different imaging algorithms have been developed to extract the data from 

measurements of the scattered fields depending on the imaging system design. There 

are primarily two types of configurations (monostatic and multistatic), which use one 

or more spatially varied antennas as transmitters and receivers. In the monostatic 

technique, a single antenna serves both the transmitter and receiver. To gather more 

details about the imaging domain, the antenna can be shifted to various places. At 
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least two antennas are used in multistatic. Each antenna in this setup sends out a 

microwave signal, which is then picked up by all the other antennas. To record every 

signal required, this procedure is done for each antenna. While the multistatic 

arrangement is more complex than the monostatic method, it can provide more 

details about the photographed domain by sending and receiving signals to, and from 

every area of the pictured domain.  

An Ultra-Wideband (UWB) imaging systems typically consist of two main 

parts: a hardware component, usually an antenna, that illuminates the target object 

with microwave signals, and collects the signals that are reflected, and a software or 

post-processing component that uses these signals to reconstruct an image of the 

target object. The image can then be used for visualization and analysis of the target's 

internal structure as shown in Figure (2.8) [33]. 

 
Figure 2.8: A schematic illustration of the microwave imaging system's components. 

 

Microwave imaging can be divided into three main categories:  

• Passive microwave imaging: The operation principle of passive microwave 

imaging is based on the measurement of microwave radiation emitted by 
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objects. The emitted radiation is typically in the form of thermal emission or 

scattered radiation. The passive microwave sensor detects the emitted or 

scattered microwave radiation, and converts it into an electrical signal, which 

is then processed to produce an image. 

• Active microwave imaging: It works by transmitting microwave signals into 

human tissue, and measuring the reflected signals. The differences in the 

reflected signals can then be used to construct an image of the object. The 

image represents the distribution of material properties within the object such 

as permittivity and conductivity, which affect the reflection of the transmitted 

signals. The process is repeated many times to increase the accuracy of the 

image. 

• Hybrid microwave imaging: The operation principle of hybrid microwave 

imaging is based on the difference in electrical properties between normal and 

abnormal tissues. Microwave signals are transmitted into the body, and the 

energy from these signals is absorbed and scattered by the tissue. The amount 

of energy absorbed and scattered by the tissue depends on its electrical 

properties, such as conductivity and permittivity. Abnormal tissue has 

different electrical properties compared to normal tissue, and therefore, it 

absorbs and scatters microwave energy differently. The expansion of the 

abnormal tissue due to the absorbed energy creates pressure waves, which are 

then detected by an ultrasound transducer [34].  

2.9.1 Microwave Imaging Methods 

Microwave imaging methods refer to techniques used to create images or 

maps of objects or scenes using microwave radiation. These methods utilize the 

interaction of microwaves with the target to extract information about its properties 

and structure 
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2.9.1.1 Matching Interface Imaging 

Utilizing a matching medium is designed to efficiently couple EM radiation to 

the body and reduce reflections at the air-body interface. Additionally, because the 

resolution of a microwave imaging system depends on wavelength, using a matching 

medium increases the imaging resolution in accordance to: 

𝜆𝑚 =
𝜆0

√𝜀𝑚
  .          (2.5) 

Where 𝜆𝑚 is the wavelength of an electromagnetic wave in a material medium, 𝜆0 is 

the wavelength in free space, and 𝜀𝑚 is the permittivity of the medium. 

Additionally, the reflections off the boundaries will be limited by a lossy 

matching medium. Assure that the scattering from the imaging item dominates the 

signals picked up by the receivers and that all other multi-paths are negligible. The 

matching medium is considered the best way to transfer microwave energy into an 

Imaging Object (IO) because it reduces losses at the air-body interface. This is due 

to the higher permittivity of biological tissues compared to air, which causes high 

losses when coupling microwave energy directly into the tissue. The matching 

medium helps to match the permittivity of the tissue and air, reducing these losses 

and improving the coupling efficiency of the microwave energy into the IO [35]. 

2.9.1.2 Quantitative Imaging 

Quantitative imaging techniques, also known as microwave tomography, 

create the image based on the electrical conductivity, and relative permittivity values 

of the various human tissues. The generated image demonstrates the distribution of 

tissues inside the body with various electrical characteristics. In medical 

applications, the large differences in the dielectric characteristics of various 

biological tissues can lead to an extremely ill-posed inverse scattering problem, 

making it challenging to estimate accurately the dielectric permittivity map of the 

imaged domain. Nonlinear iterative techniques must be used to solve the inverse 
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scattering problem. A large number of transmit, and receive antennas surround the 

body that has to be scanned. At a given time, each transmitter antenna illuminates 

the body with a microwave signal, and all receive antennas to collect the signal that 

the body scatters. This complete setup is typically placed in a homogenous medium 

with permittivity, which serves as a matching medium for coupling the microwave 

energy delivered to the body, and minimizing any reflection that may have happened 

at the air-body contact in the absence of it. 

2.9.1.3 Qualitative Imaging 

The goal of imaging in some medical applications is not to determine the 

electrical characteristics of the tissues, but rather to find and locate the hidden object. 

These methods utilize an ultra-wideband (UWB) signal for good time resolution. 

However, each antenna only sends out short pulses at a time (UWB in the frequency 

domain), and the same antenna only receives the backscatter return [36] 

2.9.2 Fundamentals of Microwave Imaging 

The use of microwave frequencies for non-ionizing electromagnetic (EM) 

waves is regarded as an economical, and low-risk imaging technique. The dispersive 

nature of human tissues at RF frequencies leads to signal attenuation, and distortion, 

making it crucial to understand the electromagnetic (EM) properties of these tissues 

for medical imaging purposes. 

2.9.2.1 Propagation of Electromagnetic Waves 

The propagation of electromagnetic waves is best described using Maxwell 

equations. When the medium is linear (𝜀 and 𝜇 independent of 𝐸⃗  and 𝐻⃗⃗  ), the 

Maxwell equation can be written as [37]: 

𝛻 × 𝐸⃗ = −𝑗𝑤𝜇𝐻⃗⃗   ,         (2.6a) 

𝛻𝑥𝐻⃗⃗ = 𝑗𝑤𝜀𝐸⃗ + 𝑗   ,        (2.6b) 
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𝛻 ⋅ 𝐷⃗⃗ = 𝜌  ,           (2.6c) 

𝛻 ⋅ 𝐵⃗ = 0  ,          (2.6d) 

𝐷⃗⃗ = 𝜀𝐸⃗   ,           (2.6e) 

𝐵⃗ = 𝜇𝐻⃗⃗   ,           (2.6f) 

where: 

𝛻. is the divergence operator, which is represented by a vector symbol (∇) followed 

by a dot (⋅) 

𝐸⃗  is the electric field, in volts per meter (V/m). 

𝐻⃗⃗  is the magnetic field, in amperes per meter (A/m). 

𝐷⃗⃗  is the electric flux density, in coulombs per meter squared (Coul/m2). 

𝐵⃗  is the magnetic flux density, in webers per meter squared (Wb/m2). 

𝐽 is the electric current density, in amperes per meter squared (A/m2). 

𝜌 is the electric charge density, in coulombs per meter cubed (Coul/m3). 

𝜀 and 𝜇 are the permittivity and permeability of the medium.  

𝜀 = 𝜀0𝜀𝑟  .          (2.7) 

𝜇 = 𝜇0𝜇𝑟  .          (2.8) 

𝜀0 = 8.85 × 10−12 and 𝜇0 = 4𝛱 × 10−7are the intrinsic permittivity and 

permeability of the vacuum.  

The conductive currents in human tissues are typically dominant, due to their 

high electrical conductivity. The relative permittivity of a medium is a measure of 

its ability to store electrical energy, and is generally represented as a complex value. 

The relative permittivity helps to determine the behavior of electromagnetic waves 

in a medium, such as how they are transmitted, reflected, and absorbed. It is assumed 
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that biological tissues do not have magnetic properties, and therefore the magnetic 

permeability 𝜇 is considered to be zero. 

For a medium conductivity 𝜎, a corresponding conduction current density 𝑗  exists 

that is proportional to the 𝐸⃗  vector according to [37]: 

𝐽 = 𝜎𝐸⃗   .           (2.9) 

Equation (2.7) can be re-written as: 

 𝛻𝑥𝐻⃗⃗ = 𝐽𝜔𝜀𝐸⃗ + 𝑗  

 𝛻𝑥𝐻⃗⃗ = 𝐽𝜔𝜀0𝜀𝑟𝐸⃗ + 𝜎𝐸⃗  

= 𝐽𝑤𝜀0 [𝜀𝑟 − 𝑗
𝜎

𝜔𝜀0
] 𝐸  .         (2.10) 

 Therefore, the modified complex permittivity can be expressed as: 

𝜀 = 𝜀0 (𝜀𝑟 − 𝑗
𝜎

𝜔𝜀0
)  .                       (2.11) 

The wave equation is required to specify other crucial propagation parameters. 

𝛻 × 𝐸⃗ = −𝑗𝜔𝜇0𝐻⃗⃗  

𝛻 ×  𝛻 × 𝐸⃗ = −𝑗𝜔𝜇0𝛻 × 𝐻⃗⃗  

𝛻(𝛻 ∙ 𝐸⃗ ) − 𝛻2𝐸⃗  = 𝜔2𝜇0𝜀0 [𝜀𝑟 −  𝑗
𝜎

𝜔𝜀0
] 𝐸⃗   .     (2.12) 

𝛻2𝐸⃗ + 𝑤𝜔2𝜇0𝜀0 [𝜀𝑟 −  𝑗
𝜎

𝜔𝜀0
] 𝐸⃗ = 0  .      (2.13) 

The wave number in a lossy medium is defined as: 

𝑘 = 𝜔√𝜇0𝜀0 [𝜀𝑟 − 𝑗
𝜎

𝜔𝜀0
]  .       (2.14) 

The complex wave propagation constant in the medium is given by the following 

equation: 

𝛾 = 𝛼 + 𝑗𝛽 = 𝑗𝑘 = 𝑗𝜔√𝜇0𝜀0 [𝜀𝑟 − 𝑗
𝜎

𝜔𝜀0
]  .     (2.15) 

𝛼 and 𝛽 are the attenuation, and phase constants, respectively. 
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2.9.2.2 Attenuation Constant 

Conductive losses in a medium can lead to signal attenuation, and result in a 

reduction of the amplitude, and energy of the propagating signal. This occurs because 

some of the energy is absorbed, and dissipated as heat in the medium. The magnitude 

of the conductive losses, and the resulting signal attenuation is dependent on the 

conductivity of the medium, and the frequency of the signal. The propagation factor 

for the positive traveling wave is then as follows: 

𝑒−𝛾𝑧 = 𝑒−𝛼𝑧𝑒−𝑗𝐵𝑧  .        (2.16) 

This indicates that a wave moving in the +z direction with a phase velocity 𝑣𝑃 = 𝜔/𝛽, 

Wavelength 𝜆 = 2𝛱 ∕ 𝛽.  The wave's rate of decay is controlled by the attenuation 

constant. It can be represented as follows in dB, assuming a 1-meter distance: 

𝐷(𝑑𝐵∕𝑚) = 20 log10(𝑒
−𝛼) = −20. 𝛼. log10(𝑒) = 8.686. 𝛼  .  (2.17) 

2.9.2.3 Skin Depth 

The skin depth, or penetration depth is a crucial parameter in 

electromagnetism, and is defined as the depth at which the magnitude of the 

electromagnetic field decreases to 1/e (37%) of its original value at the surface of the 

medium. This concept is useful in understanding the interaction of electromagnetic 

waves with materials.  

𝛿𝑠 =
1

𝛼
= √

2

𝜔𝜇𝜎
  .          (2.18) 

2.9.2.4 Wave Impedance 

The wave impedance in a lossy medium can be estimated using the 

relationship between the wave's electric field (E), magnetic field (H), the complex 

permittivity (𝜀), and complex permeability (𝜇) of the medium. The wave impedance 

(Z) can be expressed as [37]: 

𝜂 = √
𝜇

𝜀
= √

𝜇0𝜇𝑟

𝜀0𝜀𝑟
= 𝜂0√

𝜇𝑟

𝜀𝑟
  .         (2.19) 

where 𝜂0 is the intrinsic wave impedance of vacuum and is equal to 120𝛱, 𝜇𝑟 is the 

relative permeability of the material, 𝜀𝑟 is the relative permittivity of the material. 
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The discussion above, and the introduction of the key wave propagation 

parameters lead to the conclusion that it is theoretically possible to estimate the phase 

constant, attenuation, penetration depth and wave impedance by knowing the 

complex relative permittivity of a medium (the medium's dielectric properties). As a 

result, the analysis of wave propagation and its interactions with the human body is 

based on the dielectric characteristics of biological human tissues. 

2.9.3 Dielectric Properties of Biological Tissues 

Dielectric properties of biological tissues play a crucial role in understanding 

the interactions of electromagnetic (EM) waves with the human body. These 

properties include the ability of a tissue to store electrical energy and the ease with 

which it allows the flow of electrical currents. Understanding these properties is 

important in fields such as medical imaging and therapeutic applications of EM 

waves, that operate in the frequency range of biological tissues. 

Different types of tissues have different electrical properties that affect how 

they scatter electromagnetic waves. The two most commonly studied dielectric 

properties are relative permittivity and conductivity. Relative permittivity is a 

measure of a material's ability to store electrical energy, and conductivity is a 

measure of its ability to allow electrical current flow. These properties can vary 

between different tissues, and even within a single tissue depending on the frequency 

of the electromagnetic wave. 

2.9.3.1 Debye Model 

The Debye model is one commonly used method for predicting the frequency-

dependent dielectric properties of biological tissues. The Debye model provides a 

first-order approximation for the complex relative permittivity of a single tissue as a 

function of frequency. The equation for the Debye model describes the relationship 

between the complex relative permittivity, the frequency of the electromagnetic wave 

and a single relaxation time constant which characterizes the electrical properties of 

the tissue. This model provides a simple and intuitive way to describe the frequency-

dispersive nature of biological tissues and is used in the field of medical imaging. 
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𝜀 = 𝜀∞ +
𝜀𝑠−𝜀∞

1+𝑗𝜔𝜏′
   .         (2.20) 

where 𝜀∞ is the saturated permittivity at very high frequencies, 𝜀𝑠 is the static 

permittivity at very low frequencies. 𝛥𝜀 = 𝜀𝑠 − 𝜀∞ is described as the magnitude of 

the dispersion and finally 𝜏′ is a relaxation time constant. 

2.9.3.2 Cole - Cole Model 

The Cole-Cole model is a higher-order approximation compared to the Debye 

model, and provides a more accurate description of the electrical properties of 

biological tissues, including their frequency-dependent. 

2.9.4 Microwave Energy Radiation Safety Issues 

  The known risks associated with electromagnetic radiation exposure are 

thermal impacts. Radio frequency (RF) and microwave radiation are absorbed by the 

body and converted to heat.  

 Since the heating takes place inside the body, it cannot be sensed from the 

outside. To avoid exposure to dangerous power levels, it is crucial to establish 

acceptable safety levels when using EM waves for medical applications. 

 Specific Absorption Rate (SAR) measures the amount of dissipated power (heat) 

in a unit of tissue mass and is expressed in watts per kilogram (W/kg) of tissue. SAR 

is defined as [37]: 

𝑆𝐴𝑅 =
𝜎

2𝜌𝑚
|𝐸⃗ |

2
  .         (2.21) 

where 𝜎 is the conductivity of the tissue (𝑆 𝑚⁄ ), 𝜌𝑚 is the tissue density (𝐾𝑔 𝑚3⁄ ) 

and |𝐸⃗ | is the electric field inside the tissue. 

2.10  Types of Signals 

  Microwave measurements can be conducted either in the frequency domain or 

in the time domain. Both approaches have their advantages and disadvantages and 

the choice between them depends on the nature of the system under investigation and 

the goals of the measurement. 

 



 

 

 

 

 

 

30  

2.10.1  Frequency Domain System 

  Frequency domain systems in microwaves are based on inverse scattering 

techniques, which involve the measurement of scattered fields produced by an object, 

or a system when it is illuminated by a microwave transmitter. The scattered fields 

are then used to determine the object's properties, such as its size, shape and electrical 

characteristics. In inverse scattering techniques, the incident field is first measured, 

and then subtracted from the total field to obtain the scattered field. 

 The inverse problem in microwave inverse scattering techniques is to determine 

the position and permittivity (or dielectric constant) of a scatterer from the 

measurement of the scattered fields. The solution to this problem is often carried out 

by using an optimization procedure in which aims to minimize the difference between 

the measured and calculated data. The field measurements in the inverse scattering 

problem can be carried out either by using a bistatic configuration with mechanical 

scanning or an array of antennas with electronic scanning. 

 In the case of mechanical scanning, the scattered signal data is recorded at each 

antenna position and stored in the data processor, which can result in a long data 

acquisition time. In the case of electronic scanning, the array of antennas can provide 

high-speed data acquisition, potentially reducing the data acquisition time compared 

to mechanical scanning. However, the use of electronic scanning requires advanced 

signal processing techniques to estimate the scattered field from the measured data.  

2.10.2  Time Domain Systems 

 Time domain systems are commonly used in Ultra-Wideband (UWB) radar 

techniques. In medical imaging, UWB radar can be used to obtain images of internal 

structures of the body, including highly reflective objects such as shrapnel. The 

technique involves transmitting low-power short pulses of radar energy into the body 

and detecting the scattered signals with a probe antenna or an array of antennas. The 

time delay and shape of the received signals are analyzed to obtain information about 

the location of the scatterers. The processed signals from multiple locations can then 

be combined to form a 2D or 3D image. In comparison to frequency-domain 
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measurements, time-domain measurements could have shorter scan times, and more 

cost-effective measurement equipment [38]. 

2.11 UWB Imaging Technique 

Ultra-Wide Band (UWB) technology is preferred for its good range resolution 

and penetration through materials, due to the high bandwidth of UWB radar. The 

high bandwidth results in better separation of multiple targets, making UWB a 

popular choice for various applications such as real-time location tracking, imaging 

and communication [39]. 

UWB is a type of microwave imaging technique that uses short pulses to probe 

a target and gather information about its position, size and composition. The time 

delay between the transmitted and scattered signals provides information about the 

distance to the target, while the amplitude of the scattered signals provides 

information about its reflectivity and composition. 

Compared to microwave tomography, UWB radar is considered to be less 

computationally complex, as it focuses on detecting and localizing regions with 

highly scattered signals, rather than reconstructing the dielectric properties of the 

tissues. This makes UWB radar a faster and more efficient method for detecting 

certain targets such as abnormal tissues and objects, but it provides less detailed 

information about the composition and structure of the target compared to 

microwave tomography [34]. 

UWB systems are known for their ability to transmit large amounts of data 

with high accuracy, and low power consumption [41]. 

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ = 2
(𝑓ℎ−𝑓𝐿)

(𝑓ℎ+𝑓𝐿)
  .      (2.22) 

where 𝑓ℎ and 𝑓𝐿 are used to describe the frequency limits of the -10 dB emission limit 

in the field of radio frequency. The -10 dB emission limit refers to the maximum 

level of radio frequency energy that can be emitted from a device and still be 

considered compliant with regulatory standards. The frequency range between 𝑓ℎ 
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and 𝑓𝐿 defines the frequency band within which the device must meet the -10 dB 

emission limit. 

𝐶𝑒𝑛𝑡𝑒𝑟 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑓𝑐) =
𝑓ℎ+𝑓𝐿

2
  .      (2.23) 

Lower-frequency electromagnetic waves have better penetrating properties 

compared to higher-frequency waves. This property makes them suitable for UWB 

applications where the ability to penetrate through objects is important.  

UWB radar uses a wide bandwidth of low-frequency signals which increases 

its ability to detect hidden objects and provide precise location information. The 

wavelength of an electromagnetic wave is inversely proportional to its frequency. 

This means that, as the frequency of an electromagnetic wave increases, its 

wavelength decreases, making it possible to use smaller receive and transmit 

antennas.  

On the other hand, increasing the center wavelength of the signal results in a 

lower frequency, making it more suitable for penetrating through layers. This makes 

the longer wavelength, lower frequency signals more desirable for applications that 

require the ability to penetrate through objects [34], [40]. 
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CHAPTER THREE 

SIMULATIONS AND RESULTS OF MICROWAVE IMAGING 

SYSTEM 

3.1 Introduction 

In 2002, the Federal Communications Commission (FCC) approved the use of 

UWB technology used within the range of 3.1 to 10.6 GHz [41]. UWB imaging 

systems require specially designed antennae to transmit electromagnetic energy and 

receive the reflected signal from the human body and any objects within it, such as 

a shrapnel. The received signals are then processed to determine the location and size 

of the objects including shrapnel. The human body has unique electrical properties 

that affect the scattering of electromagnetic (EM) waves, leading to differences in 

the way that EM waves are reflected, absorbed and transmitted by the body. 

Therefore, it is important to take into account the electrical properties of the human 

body when designing UWB antennas for this application. A planar monopole 

antenna is one type of antenna that has been developed for this purpose. CST 

Microwave Studio is a powerful software tool for designing the antenna. Exporting 

the design from CST Microwave Studio allows the user to take the scattered signals 

as input to the deep neural network when it is used as a tool in recognition and 

discrimination in this work. 

 In this chapter a simple two-dimensional homogeneous model of the human 

body has been built. The model can be created by dividing the body into different 

layers, each with its electrical properties, such as conductivity and permittivity. The 

main layers typically include the skin, fat, muscle and bone. 

3.2 UWB Antenna 

The antenna is a critical component for UWB systems. The UWB antenna 

technology is based on the transmission of short, low-power pulses over a wide 

bandwidth, which allows for the detection of hidden objects. This is because the short 
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pulses can penetrate through materials and bounce back from the hidden object, 

providing information about its location, and composition. The wide bandwidth of 

UWB signals also enables high-resolution imaging, making it a promising 

technology for microwave hidden object detection. Several fundamental parameters 

are used to describe the performance of UWB antenna, including: 

• Radiation Pattern 

The radiation pattern is a representation of the relative distribution of the 

electric and magnetic fields generated by an antenna in space. This space can be 

divided into three regions:  reactive near field, radiating near field, and far field. The 

region in which an antenna operates depends on its physical size compared to the 

wavelength of the electromagnetic waves. 

 When the antenna size is much smaller than the wavelength (D/λ << 1), the 

antenna operates in the reactive near field region. In this region, the electromagnetic 

fields have both reactive and radiating components, and the behavior of the antenna 

is strongly influenced by its immediate surroundings. 

When the antenna size is comparable to the wavelength (D/λ ~ 1), the antenna 

operates in the radiating near field region. In this region, the antenna starts to exhibit 

more radiating properties, and the reactive components diminish as the distance from 

the antenna increases. 

When the antenna size is much larger than the wavelength (D/λ >> 1), the 

antenna operates in the far field region. In this region, the electromagnetic fields are 

predominantly radiating, and the antenna behaves as a traditional electromagnetic 

radiator. 

 Radiation patterns are defined in spherical coordinates. The x-y plane 

contains the phi component where the theta-component is 90 degrees (𝜙 = 0 where 

𝜃 =90°), and is usually referred to as the azimuthal plane. The x-z plane contains the 

theta-component where phi is zero degrees, and usually indicates the elevation plane 

(𝜃 = 0 where  𝜙 = 90°). A linearly polarized antenna is often described in terms of 

its principal E-field (electric field), and H-field (magnetic field) patterns. The E-field 
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pattern represents the distribution of the electric field in the direction of polarization, 

while the H-field pattern represents the distribution of the magnetic field 

perpendicular to the direction of polarization [42]. 

• Bandwidth 

The bandwidth (BW) is the range of frequencies where an antenna's 

performance complies with a given specification. The antenna must typically offer a 

return loss of less than -10 dB over its bandwidth [42]. 

• Radiation Pattern Lobes 

The radiation pattern of a directional antenna is represented by multiple lobes 

or peaks, where the main lobe has the highest field intensity, and the other lobes are 

called minor or back lobes. The direction of the main lobe determines the direction 

of maximum radiation, and sensitivity of the antenna. The HPBW is defined as the 

angular separation between the points on the main lobe where the power drops to 

half of its maximum value [42]. 

• Gain and Directivity 

The Gain of an antenna is a measure of its ability to direct the radio waves in 

a specific direction, rather than distributing it uniformly in all directions. It is 

expressed as the ratio of the power density (intensity) in a particular direction to the 

power density, that would be obtained if the power were equally distributed in all 

directions (isotropic). The gain is usually expressed in decibels (dB) relative to an 

isotropic radiator. 

𝐺𝑎𝑖𝑛 =
𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑝𝑢𝑡(𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑) 𝑝𝑜𝑤𝑒𝑟
= 4𝛱

𝑈(𝜃,𝜙)

𝑃𝑖𝑛
  .   (3.1) 

Directivity is defined as the maximum gain of an antenna in a particular 

direction, relative to the gain of an isotropic radiator, which has equal power output 

in all directions. Directivity is a measure of the ability of an antenna to concentrate 

its radiated power in a specific direction, and is usually expressed in dB [42]. 

𝐷0 =
𝑈𝑚𝑎𝑥

𝑈0
=

4𝛱𝑈𝑚𝑎𝑥

𝑃𝑟𝑎𝑑
  .        (3.2) 
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3.3 CST Microwave Studio Software 

CST Microwave Studio (CST MWS) is a component of CST Studio Suite that 

provides fast and accurate 3-D electromagnetic simulation tools for high-frequency 

problems. It offers a variety of different solvers that operate in both time and 

frequency domains. The software offers advanced solvers, visualization tools, and 

an extensive library of materials and components to help users in the design and 

analysis of complex electromagnetic systems [43].  

CST Microwave Studio is a software tool used to design antennas by 

simulating their electromagnetic behavior. The tool can evaluate various 

performance parameters such as reflection coefficient, impedance matching, gain, 

radiation efficiency, and radiation pattern. This helps in analyzing the antenna's 

performance and improving its design. 

The transient solver gives appropriate results of homogeneous human layers 

imaging. An antenna that transmits and receives the signal, known as a wideband 

planner, has been used to collect data. The decisive parameter S11 is used for 

detecting a hidden object. S11 refers to the ratio of signal that reflects from the port 

for a signal incident on that port. 

In the design of antenna, several important factors are needed to be considered to 

ensure that the antenna works effectively and safely: 

• Resonant frequency: In medical applications, the resonant frequency must be 

chosen to ensure that it falls within the frequency range of the target tissue 

layer. 

• Dielectric constant: This is a measure of the electrical permittivity of a 

material and determines how the material affects the propagation of 

electromagnetic waves. In medical applications, it is important to consider the 

dielectric constant of the human body. 

• Type of tissue layer: There are different types of tissue layers in human body, 

such as skin, fat, muscle and bone, which have different electrical properties 

that can affect the performance of the antenna. 



 

 

 

 

 

 

37 
 

• Thickness of tissue layer: This is also an important factor to consider, as it can 

significantly impact the performance of the antenna. Thicker tissue layers can 

cause greater losses and reduce the efficiency of the antenna. 

3.4       Planar Monopole Antenna Design 

a monopole antenna can be considered a planar monopole due to its structure, 

where the radiator is placed on one side of a substrate and the ground plane is on the 

opposite side, forming a planar arrangement. 

A UWB monopole antenna with a notched band at (2.44 - 2.77 GHz) is 

presented in [44]. The band-notched characteristic of an antenna is made possible by 

the C-shaped slot in the round shape radiating patch, and the ground plane.  

The slot helps to avoid this electromagnetic interference, as it is designed to 

reject specific frequency bands that cause interference. This can be done without 

significantly increasing the size or complexity of the system. Additionally, these 

slotted antennas can offer great radiation efficiency and low dispersion. Additionally, 

slots can help in reducing the size of the antenna by shifting its resonant frequency. 

The size and position of the slots determine whether the resonant frequency is shifted 

to a higher or lower value. The insertion of slots also helps to reduce the power lost 

to surface waves. Surface waves are generated in antennas, due to the interaction of 

the radiated field with the surface of the antenna. These waves can cause a significant 

reduction in the radiation efficiency of the antenna. By introducing slots, the path of 

the surface waves is disrupted, and this helps to reduce their impact on the efficiency 

of the antenna [45]. 

A 1 to 6 GHz bandwidth is the design goal, with a 10 dB return loss reference. 

The simulations are done by using electromagnetic simulators (CST) as a tool. The 

suggested elliptical band-notched UWB antenna's design as well as a picture of the 

constructed antenna is shown in Figure (3.1). The antenna is built using an FR4 

substrate having a 1.6 mm thickness and a 4.3 dielectric constant. The type of 

materials used in UWB antenna design are listed in Table (3.1). 

 



 

 

 

 

 

 

38 
 

The suggested antenna consists of the elliptical radiating patch fed by a 

microstrip line of 50 ohms along the principal axis. The aspect ratio of an antenna is 

defined as the ratio of the length of its major axis to the length of its minor axis. An 

aspect ratio of 1.1 means that the length of the major axis is 1.1 times greater than 

the length of the minor axis to get the broadband characteristics. The parameters for 

the suggested antenna are listed in Table (3.2). 

 
(a)         (b)  

Figure 3.1: The suggested antenna's geometry in (a) front and(b) back views. All 

measurements are in millimeters. 

 

 

Table 3.1: Material properties of antenna design. 

component Material name  Color 

 elliptical radiator  Perfect electrical conductor (PEC)  Red 

ground plane  Perfect electrical conductor (PEC)  Red 

Substrate  FR4  Grey 

feedline  Perfect electrical conductor (PEC)  Red 
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Table 3.2: Design parameters of the proposed antenna. 

Value 

(mm) 
Parameters 

46*34  Dimensions of the substrate, including its length and width 

 

13.1  The major radius of the elliptical patch 

 

11.8 
 The minor radius of the elliptical patch 

 

16.1*3 
 Length and width of the feedline 

 

15*34 

 Dimensions of the ground plane, including its length and     

width 

 

The lowest frequency of the broadband antenna is 𝑓𝐿  which is given in the 

following equation [46]. 

𝑓𝐿 =
𝑐

𝜆
=

7.2

𝐿+𝑟+𝑝
  .         (3.3) 

The cylindrical monopole antenna's length (L), and radius (r) are determined 

by equating the area of the antenna as follows: 

2𝜋𝑟𝐿 = 𝜋𝑎𝑏  .         (3.4) 

Let, 𝐿 = 2𝑏  .         (3.5) 

Then, 𝑟 =
𝑎

4
  .         (3.6) 

Where’𝑝’ is the gap between the ground plane and the radiating patch, 𝑎 𝑎𝑛𝑑 𝑏 are 

the major axis and the minor axis of the radiating patch respectively. 

Slots are utilized to get the band-notch characteristics, two slots are created: 

one on the radiating patch and one in the ground plane. The length of the slot is 

denoted by 𝐿𝑛, and is calculated by using the equation below. 

𝐿𝑛 =
C

2fᵣ√𝜀𝑒𝑓𝑓
=

𝜆

2
  .        (3.7) 

where 𝐿𝑛 denotes the length of the slot, 𝜀𝑒𝑓𝑓  the effective dielectric constant 

(𝜀𝑒𝑓𝑓 =
𝜀𝑟+1

2
),  𝜀𝑟 is the dielectric constant, and c denotes the light velocity, fᵣ is the 

resonant frequency [47]. 
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The return loss for the designed UWB monopole antenna as a function of 

frequency is shown in Figure (3.2). The results demonstrate that the antenna's return 

loss performance is ultra-wideband, radiating at frequencies between 1 GHz and 6 

GHz. It is noticed that at the resonance frequency =2.24 GHz the reflection loss (S11) 

is -40.5dB. The results of simulation of VSWR are illustrated in Figure (3.3). The 

VSWR is 1.0190 at f=2.24GHz. 

 
Figure 3.2: Simulated reflection coefficient results of UWB monopole 

antenna. 

 

 
Figure 3.3: Simulated VSWR with frequency. 
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The simulated 3D radiation pattern of the proposed antenna at 2.24 GHz is shown 

in Figure (3.4). the antenna shows responsible power gain of 2.067dBi, and the 

directivity of 2.653 dBi at 2.24 GHz. The gain must be less or equal to the directivity, 

efficiency equal (gain/directivity)   × 100, (2.067/2.653)   × 100=77.9%. 

The simulated E-Plane (y-z), and H-Plane (x-z) radiation patterns of proposed 

antenna at resonant frequency 2.24 GHz are shown in Figure (3.5). The E-Plane and 

H-Plane refer to two different cross-sectional views of the radiation pattern of an 

antenna. The E-Plane shows the electric field pattern, while the H-Plane shows the 

magnetic field pattern. in the x-z plane (ϕ = 0°) and the y-z plane (ϕ= 90°). While 

the E-Plane pattern has the same far-field field radiation pattern as a dipole antenna, 

the H-Plane pattern is almost omnidirectional, making it preferable to receive the 

signal from all directions.  

 

Figure 3.4: 3D Radiation plot at 2.24 GHz. 
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(a)                 (b) 

Figure 3.5: The proposed antenna's radiation patterns, (a) H-plane, and (b) E-plane. 

 

 3.5   Modeling Human Body Layers  

In this work, the antenna's performance was simulated in simplified human 

body phantom layers created in CST Microwave Studio. The layers modeled the 

effect of the human body on the antenna's behavior, allowing for a detailed analysis 

of the antenna's performance when placed close to the human body. 

A model that depicts the main layers of the human body can be used to validate 

any imaging approach. The model is made up of four layers: skin, fat, muscle and 

bone. The shrapnel is located inside. When an EM wave encounters a layer of human 

tissue, it interacts with the electric and magnetic fields of the tissue, causing the wave 

to scatter in multiple directions. The amount of scattering and the direction of the 

scattered wave depend on the size, shape, and material of the shrapnel, as well as the 

frequency and polarization of the incident wave. 

In this model, the shrapnel is assumed to be aspherical shape, and the material of 

shrapnel is copper. Copper is a highly conductive metal, which means that it will 

strongly interact with the electric and magnetic fields of the incident EM wave. 

 The homogenous model of human layers that has been utilized in this work is 

built and depicted in Figure (3.6) which shows a side view in CST simulation and top 

cross section view. The model's dimensions were presumed to be those in table (3.3). 

The electrical and physical characteristics of several human tissues that has been in 
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this work are shown in table (3.4), where Ԑᵣ is the relative dielectric constant, σ is 

conductivity (S/m), and ρ is the mass density of the tissue (kg/m3) [48]. The shrapnel 

radius size can range from 5 mm to 15 mm, additionally utilized different locations 

on the z-axis and on the x-axis. 

 
(a)               (b) 

Figure 3.6: The designed model (a)side view in CST, (b) cross sectional view. 

 

 

Table 3.3: The dimensions of the designed homogenous model. 
 

 

 

 

 

 

 

 

 

 

component of a model model dimensions 
mm 

Model width 200 

Model length 300 

Skin thickness 3 

Fat thickness 12 

Muscle thickness 15 

Bone thickness 20 

Skin 

Fat  

Muscle  

Bone  

skin 
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Table 3.4: The electrical properties of the designed homogenous model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

3.6 Human Model Effect on Antenna Parameters 

The human body can be considered as a lossy and dispersive medium, with its 

electrical properties varying with frequency. The high conductivity and permittivity 

of human body tissues can cause significant signal attenuation losses. The signal 

attenuation can be expressed mathematically using the following equation [49]: 

𝐿𝛼 = 20 log10(𝑒
−𝛼𝐿)  .       (3.8) 

Where 𝛼 (Np/m) is the attenuation constant, and 𝐿 (m) the distance traveled by the 

signal through the body. The attenuation constant can be calculated by the following 

equation [49]: 

𝛼 = ω√
𝜇𝜀

2
(1 + (

𝜎

ω𝜀
) − 1)  .       (3.9) 

  ω = 2𝜋𝑓  .          (3.10) 

where ω(rad/m) and μ(H/m) are angular frequency and permeability of human body 

tissue, whereas the ε and σ are the permittivity, and conductivity, respectively. 

The imaginary part of permeability is equal to 0, because bodily tissues are 

not magnetic by nature. The losses due to reflections at the boundaries between 

tissues are calculated as a component of the total attenuation losses in the tissue. This 

takes into account the reduction in the intensity of the electromagnetic waves as they 

 

Tissue type 

 

Ԑᵣ 

 

 

σ [S/m] 

 

ρ [kg/m3] 

Skin 38.00 1.46 1010 

Fat 5.28 0.11 920 

Muscle 52.73 1.74 1040 

Bone 11.38 0.39 1850 
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pass through the tissue, and reflects off the boundaries between different tissue types. 

The losses due to the reflections at the boundary between the tissues is calculated as 

[49]:  

𝐿𝑟 = 20 log10(𝛤)  .        (3.11) 

𝜂 = √
𝑗ω𝜇

σ+jω𝜀
  .         (3.12) 

𝛤 =
𝜂2−𝜂1

𝜂2+𝜂1
  .          (3.13) 

Where 𝜂 is the intrinsic impedance and  𝛤 is the tissue's boundary reflection coefficient.  

 

         Due to the difference in impedance, and electromagnetic characteristics of the two 

mediums, the transmitted signal is also reflected at the boundary between free space 

and the skin's outer layer. The received signal power by a receiver is calculated by the 

following equation [50]: 

𝑃𝑅𝑋 = 𝑃𝑇𝑋 + 𝐺𝑇𝑋 + 𝐺𝑅𝑋 − 𝐿𝑃 − 𝑒𝑃 − 𝑀𝐿𝑇𝑋 − 𝑀𝐿𝑅𝑋  .   (3.14) 

Where P(dBm) is the power, G(dB) is the gain and ML (dB) is impedance mismatch 

loss. The subscript TX and RX represents transmitter and receiver. 𝐿𝑃(dB) is the path 

loss and 𝑒𝑃 (dB) is the polarization mismatch factor. The path loss 𝐿𝑃 is the reduction 

in power density of an electromagnetic wave, as it propagates through human layer it 

can be calculated as [50]: 

𝐿𝑃 = 10𝑛 log (
𝑑

𝑑0
) + 10 log (

4𝜋𝑑0

𝜆0
)
2
+ 𝑆  .     (3.15) 

where n is a path loss component that is dependent on the environment. The reference 

distance is 𝑑0 , and the wavelength is λ(m). S represents the mean's random scatter [51]. 

The gain of a conductive medium (𝐺𝑐𝑜𝑛) refers to the ability of the medium to amplify 

an electrical signal, as it passes through it, is given by [50]: 

𝐺𝑐𝑜𝑛 =
4𝜋𝑅𝑔2

𝑅𝑅
  .      (3.16) 

where Rr is the radiation resistance and R is the intrinsic resistance. The following 

equation can be used to compute the intrinsic resistance [51]:  
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𝑅 = √
ω𝜇

2𝜎
  .     (3.17) 

g is a function involving the medium's parameters, and its value is provided by [51]: 

𝑔 =
|𝐻|𝑑𝑒

𝑑
𝛿

𝐼𝑖
   .     (3.18) 

|𝐻| is the magnetic field, d is the distance, 𝐼𝑖is the input current, 𝛿 represents the skin 

depth. It is clear from equations (3.16) and (3.18) that the value of g will increase as, 

the magnetic field inside the human body increases. The antenna's gain will increase 

with a higher value of g [52]. 

The human body can affect the radiation efficiency and radiated power of an 

antenna. When an antenna is placed close to the human body, it can cause absorption 

and scattering of electromagnetic waves, which results in a reduction in the radiated 

power, and efficiency of the antenna. The radiation efficiency of antennas is given 

by the following equation [52]: 

𝜂 =
𝑃𝑟𝑎𝑑

𝑃𝑖𝑛
  .         (3.19) 

𝑃𝑖𝑛 is the input power, which is made up of the three power components reflected, 

absorbed, and radiated (Pref + Pabs + Prad). The near field coupling in the system 

causes the absorbed power to be larger than the reflected power, leading to low 

radiation efficiency, and reduced radiated power. The absorbed power is given by 

the following equation [53]: 

𝑃𝑎𝑏𝑠 =
ω

2
∫ 𝜀0𝜀𝑟|𝐸|2 𝑑𝑣  .        (3.20) 

Increases in the absorbed power, and the specific absorption rate (SAR) has 

an effect on the antenna radiation efficiency. SAR is a measure of the amount of 

energy absorbed by a body, due to the exposure to electromagnetic fields, and high 

SAR levels can cause harmful effects on human tissue. The SAR is given by [53]: 

𝑆𝐴𝑅 =
𝑃𝐿

𝜌
=

𝜎|𝐸|2

2𝜌
  .        (3.21) 

where 𝜌(kg/m3) is the mass density, and E(V/m) is electric field. radiation resistance, 
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and loss resistance are used to represent the radiation efficiency of an antenna. 

Radiation resistance is a measure of the amount of power radiated by an antenna. 

Loss resistance is a measure of the power lost in the antenna structure, due to various 

causes such as dielectric, and conductor losses. 

𝜂 =
𝑅𝑟𝑎𝑑

𝑅𝑟𝑎𝑑+𝑅𝐿
  .         (3.22) 

Consequently, the antenna's gain would be [53]: 

𝐺 = 𝜂𝐷  .          (3.23) 

where D is the directivity of the radiated power. Directivity is a measure of the ability 

of an antenna to radiate power in a specific direction, and is defined as the ratio of 

the radiation intensity in a specific direction to the average radiation intensity in all 

directions. The average directivity is given by: 

𝐷 =
𝑈(𝜃,𝜙)

𝑈(𝜃,𝜙)𝑎𝑣𝑔
=

4𝜋𝑈(𝜃,𝜙)

𝑝𝑡
  .       (3.24) 

where 𝑝𝑡 represents the total power radiated. The antenna radiation efficiency also 

increases as the antenna radiation resistance increases. The radiated power of the 

antenna has a major effect on its radiation resistance. As a result of this connection 

between the antenna radiating element, and the body tissues, the antenna's radiation 

efficiency decreases inside human body tissues. The human body can have a 

significant effect on the radiation pattern of an antenna. When an antenna is placed 

near a human body, the body acts as a load, and influences the impedance, and 

radiation characteristics of the antenna [53]. 

When testing the performance of a monopole antenna near a simplified skin 

layer as shown in Figure (3.7). The dimensions of the simplified skin layer of the 

human body are (200×300× 3) mm. The electrical properties of the human skin tissue 

layer are 𝜀𝑟 = 38 and σ =1.46 S/m. The simulated return loss plot of the monopole 

antenna in free space and with skin layer is shown in Figure (3.8). 
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Figure 3.7: Block representation of monopole antenna near simplified skin layer. 

 

 
Figure 3.8: Return loss of monopole antenna in free space and with skin layer. 
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When testing the performance of a monopole antenna near a simplified fat layer as 

shown in Figure (3.9), the dimensions of the simplified skin layer of the human body are 

(200×300×12) mm. The electrical properties of the human fat tissue layer are 𝜀𝑟 = 5.28 and 

σ =0.11 S/m. The simulated return loss plot of the monopole antenna in free space, and with 

skin layer is shown in Figure (3.10). 

 
Figure 3.9: Block representation of monopole antenna near simplified fat layer. 

 

Figure 3.10: Return loss of monopole antenna in free space and with fat layer. 
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When testing the performance of a monopole antenna near a simplified muscle 

layer as shown in Figure (3.11). The dimensions of the simplified skin layer of the 

human body are (200×300×15) mm. The electrical properties of the human muscle 

tissue layer are 𝜀𝑟 = 52.73 and σ =1.74 S/m. The simulated return loss plot of the 

monopole antenna in free space and with muscle layer is shown in Figure (3.12). 

 
Figure 3.11: Block representation of monopole antenna near simplified muscle layer. 

 

Figure 3.12: Return Loss of Monopole Antenna in Free Space and with Muscle. 
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When testing the performance of a monopole antenna near a simplified bone layer 

as shown in Figure (3.13), the dimensions of the simplified bone layer of the human 

body are (200×300×20) mm. The electrical properties of the human bone tissue layer 

are 𝜀𝑟 = 11.38 and σ =0.39 S/m. The simulated return loss plot of the monopole 

antenna in free space and with skin layer is shown in Figure (3.14). 

 
Figure 3.13: Block representation of monopole antenna near simplified bone layer. 

 

Figure 3.14: Return loss of monopole antenna in free space and with bone layer. 
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The planner monopole antenna was simulated in simplified multilayer tissue 

(skin, fat, muscle and bone) .The return loss of the antenna in four layers of the 

human body phantom is shown in Figure (3.15). 

 
Figure 3.15: Monopole antenna return loss in multilayer tissues (skin, fat, muscle and 

bone). 

 

The increase in return loss, when a layer of the model with a high relative 

permittivity is near the antenna, is due to the mismatch in impedance between the 

antenna and the layer. where the reflection coefficient is a measure of how much of 

the incident power is reflected at the interface between the antenna and the 

surrounding medium (in this case, the layer of the model). and a relative permittivity 

indicates that the layer has a much higher ability to store electrical energy in the 

presence of an electric field compared to free space (which has a relative permittivity 

of approximately 1).  

The block representation of simplified multilayer tissue phantom, which is 

used to designe and monopole antenna is near to the human layers model is 
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shown in Figure(3.16). The electrical properties of different tissues of the human 

body are given in Table (3.3). The simulated return loss of the monople antenna 

with absence of  body model is given in Figure (3.17) 

 

Figure 3.16: Block diagram of monopole antenna near layer of body model. 

 
Figure 3.17: Return loss of the monople antenna with absence of  body model. 
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The received radiation pattern from the homogeneous model is shown in 

Figure (3.18). The model acts as a scatterer, causing the electromagnetic waves 

radiated by the antenna to interact with the surface of the model, causing changes 

in the radiation pattern. Figure (3.19) shows the E-plane and H-plane radiation 

pattern. 

 

Figure 3.18: 3D radiation pattern received from the model. 

 
(a)            (b) 

Figure 3.19: Received radiation pattern from the model (a) H-plane (b) E-plane. 
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CHAPTER FOUR 

NEURAL NETWORKS IMPLEMETATION AND 

RESUTS  

4.1 Introduction 

In this chapter, a new approach for detecting hidden objects based on the use of 

a neural network is presented. Reflection coefficients will be used in combination with 

deep learning techniques to detect buried objects. In this approach, an UWB antenna is 

used to measure the reflection coefficients of the human body model with a shrapnel 

inside at various locations. The measured reflection data are then used as input data to 

a deep learning model, such as a convolutional neural network, to detect the presence 

of buried objects. 

Deep learning can be trained on a dataset of measured reflection coefficients with 

known hidden objects to learn the relationship between the reflection coefficients and 

the presence of hidden objects. During the detection process, the DL takes the measured 

reflection coefficients as input, and produces a map of the probabilities of the presence 

of hidden objects.  

From the perspective of a neural network, it is feasible to state that the 

differences between the scattering characteristics of healthy and injured humans 

indicate that the dispersed signals captured at various locations around the model carry 

the telltale signs of the presence of shrapnel. Table (4.1) shows the hypothesis for 

shrapnel detection using a neural network. The hypothesis assumes that dispersed 

signals collected at various locations around the model contain distinct features 

indicative of the presence of shrapnel. 

It is important to note that the accuracy of this approach will depend on the quality and 

quantity of the data used to train the network, as well as the architecture, and training 

method used. The flow chart in Figure (4.1) illustrates how the process steps is done. 
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Table 4.1: Hypotheses and Rationale for shrapnel detection using a neural network. 

Hypothesis Rationale 

Dispersed signals collected at various 

locations around the model contain distinct 

features indicative of the presence of shrapnel. 

It is assumed that when an EM wave 

encounters shrapnel within the human body 

model, the interaction with the electric and 

magnetic fields of the tissue causes the 

wave to scatter. This scattering behavior is 

influenced by the size, shape and material 

of the shrapnel, as well as the frequency and 

polarization of the incident wave. The 

hypothesis suggests that these scattering 

characteristics produce discernible features 

in the dispersed signals that can be captured 

and utilized by a neural network. 

The neural network can learn to identify and 

extract the distinct features from the dispersed 

signals associated with the presence of 

shrapnel 

Neural networks have the ability to learn 

complex patterns, and features from input 

data. By training on dispersed signals 

captured at various locations, the neural 

network can potentially learn to distinguish 

the patterns associated with the presence of 

shrapnel. 

The neural network can accurately classify the 

presence of shrapnel with different radius 

sizes (5 mm, 10 mm, and 15 mm). 

The neural network can generalize its 

learning to accurately classify the presence 

of shrapnel, regardless of its radius size. 

The neural network can accurately pinpoint 

the location of shrapnel within the human 

body model based on received signals from 

various locations.  

By comparing received signals collected at 

different locations, the neural network can 

potentially infer the location of the shrapnel 

within the human body model. 
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Figure 4.1: The flow chart of process steps. 
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The process begins with UWB Antenna Measurement to understand how 

electromagnetic waves interact with hidden objects. Data Collection gathers 

measured reflection coefficients. Dataset Preparation creates a dataset with reflection 

coefficients and labels (presence/absence of hidden objects). Neural Network 

Training uses a CNN to learn the relationship between coefficients and object 

presence. Detection Process inputs coefficients into the trained CNN for predicting 

probabilities. Deep Learning Inference yields an output map of probabilities for 

object presence. Result Analysis identifies likely locations of hidden objects. The 

process concludes with the End step. 

 

4.2 Dataset Preparation for Homogenous Model 

To generate the dataset necessary for detection and recognition, an UWB 

monopole antenna is set at 10 mm from the model surface with a view to receive the 

scattered signals. The model has shrapnel in a variety of places. The antenna is shifted 

on the destination range in x coordinates, and at each 10mm the reflection coefficient 

(S11) is examined using the electromagnetic simulator CST Microwave Studio.  

The reflection loss of a homogeneous model when shrapnel of different sizes is 

immersed is the amount of energy that is reflected back by the model and shrapnel as 

a result of the scattering process. The reflection loss is determined by the scattering 

properties of the shrapnel and the material of the model. The size of the shrapnel can 

affect the reflection loss, as larger shrapnel can scatter more energy than smaller 

shrapnel. When the shrapnel is immersed in the model at a depth of 30 mm, change 

the radius (5, 10, 15) and each time the reflection coefficient is measured. The 

information that depicts the scattered signals, as they were measured at each site is 

kept in a database. The simulated reflection loss (S11) of three different sized 

shrapnel is displayed in Figure (4.2). 
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Figure 4.2: Simulated reflection loss for three different sizes. 

 

4.3  Neural Network Designer in MATLAB 

The Neural Network Designer in MATLAB is a graphical user interface (GUI) 

tool that allows users to create, design and train models in a visual and interactive 

manner. The tool enables users to easily experiment with different network 

architectures, hyperparameters and training options and provides visualization and 

performance metrics to monitor the training progress. To implement the design of a 

neural network in MATLAB: 

1- Start the Neural Network Designer application in MATLAB typing >> nnstart in 

the MATLAB command prompt and pressing enter. 

2- The Neural Network Designer application in MATLAB includes several wizards 

to help solving different types of deep learning problems. The wizards guide users 

through the process of loading data, defining the network architecture, training 

the network and providing visualizations and performance metrics to help in 

evaluating the network's performance as shown in Figure (4.3). 

S11(shrapnel_rad=5mm) 

S11(shrapnel_rad=10mm) 

S11(shrapnel_rad=15mm) 
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Figure 4.3: Neural network start in MATLAB. 

3- Click on the pattern recognition application (nprtool), then select the data that are 

used as inputs that were generated using EM simulator. 

4- Select the data that are used as target, spli the data into training and validation 

sets. For example, if the validation ratio is set to 20%, then 20% of the data will 

be used for validation, and the remaining 80% will be used for training. 

5- Choose the number of layers, neurons, as well as activation functions used by the 

hidden and output layers. 

6- Set the training parameters such as the number of epochs, minimum accepted 

error, learning rate and the performance function. 

7- Click the "Train" button to start the travining process. The training process will 

run for the specified number of epochs, and the network's performance on the 

training and validation sets will be displayed. 

8- After training, use the "Test" button to evaluate the network on a test set. The 

behavior of system can be monitored through the level of the output mean square 

error (MSE). In nnstart, the training error curve shows the MSE as a function of 

the number of epochs [56]. 
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4.4   One-Dimensional Locating of Shrapnel Using ANN 

Whenever a shrapnel changes its position in the z direction (depth), a dataset 

of reflection coefficients is collected using a CST model. This dataset is then used to 

train an artificial neural network (ANN) to predict the absence or presence, as well 

as the size and location (depth) of any shrapnel. To train the ANN, the collected 

dataset of reflection coefficients would be needed to be labeled according to whether 

or not a shrapnel was present, and if so, the size and depth of the shrapnel.  

In this work, "nnstart" in MATLAB is used to explore different network architectures 

and training strategies, and to experiment with different types of data and 

input/output mappings. "nnstart" is also used to compare the performance of different 

networks, and to optimize network's hyperparameters. 

In the Neural Network Start GUI, can create a neural network by selecting a 

network type, such as feedforward or radial basis, and specifying the network 

architecture, such as the number of layers, neurons per layer, and activation 

functions.  can also import data, preprocess it and split it into training, validation and 

test sets. 

To determine the presence or absence of fragments, pattern recognition and 

classification tool is used. Pattern recognition involves identifying patterns or 

features in data, while classification involves assigning input data to one of several 

predefined categories or classes. 

In "nnstart", pattern recognition and classification tasks can be created using 

the GUI by selecting the appropriate toolboxes, specifying the input and output data, 

and adjusting the network architecture and training parameters. Then training the 

network and evaluating its performance on new data can take place. 

A two-layer feedforward neural network with sigmoid hidden neurons, an input layer 

with 1001 inputs and SoftMax output neurons, that is suitable for a classification task 

is designed. The inputs with 1001 features, where each feature represents the 

reflection coefficient at a specific frequency and antenna movement. 
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The Sigmoid activation function for the hidden neurons will introduce non-

linearity into the network, allowing it to learn complex patterns in the data. The 

SoftMax activation in the output neurons will ensure that the output values represent 

probability distributions over the different classes, making it easier to interpret the 

network's predictions and make decisions based on those probabilities. The number 

of neurons will depend on the number of classes. In this case, equal 1output neuron 

for predicting presence or absence of shrapnel. To train the neural network, a cost 

function is needed to measure the difference between the predicted output and the 

true output for each observation in the training set. For a classification task with 

SoftMax output neurons, a common cost function is the cross-entropy loss. it 

measures the dissimilarity between the predicted probabilities and the true class 

labels. As the network is trained, the cross-entropy loss is minimized, leading to 

improved performance on the classification task. 

Next, an optimization algorithm is used, such as gradient descent or its 

variants, to minimize the cost function by updating the weights and biases of the 

neural network. Typically perform multiple iterations over the training set, which is 

referred to as epochs.  

In this model, 130 observations are set for training and 23 observations are set for 

testing. The neural network pattern recognition is shown in Figure (4.4).  

 The performance plot of cross-entropy loss in pattern recognition neural 

networks typically shows the value of the loss function over the course of training. 

The x-axis represents the number of training iterations or epochs, while the y-axis 

represents the value of the cross-entropy loss. Figure (4.5) shows how the cross-

entropy loss is decreased rapidly, as the network learns to make better predictions. 

This curve shows that after 84 epochs, the loss is approximately 10−7.  
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Figure 4.4: Pattern recognition neural network to predict the presence of shrapnel. 

 

 

Figure 4.5: Cross entropy loss in training. 
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To determine the size of shrapnel, Neural network fitting tool is used. This 

tool uses an iterative process called backpropagation to adjust the weights and biases 

of the neural network to minimize the error between the predicted output and the 

actual output.  A two-layer feedforward neural network with 10 sigmoid hidden 

neurons, an input layer with 1001 inputs and 1 linear output neurons suitable. The 

inputs with 1001 features, where each feature represents the reflection coefficient at 

a specific frequency and antenna movement. The linear output neuron allows the 

network to directly output continuous values for the regression task. The output is 1 

to predict a single value (size). During the training, a loss function is used to measure 

the error between the predicted output values, and the actual output values, and an 

optimization algorithm such as gradient descent is used to adjust the weights and 

biases to minimize the loss function. One commonly used loss function for 

regression tasks is the mean squared error (MSE) function.  

In this model 122 observations are set for training, and 31 observations are set 

for testing. The neural network fitting is shown in Figure (4.6).  

The mean square error (MSE) is a common metric used to evaluate the 

performance of a neural network model. Typically, the MSE will decrease as the 

training progresses, indicating that the model is improving its fit to the data. The 

performance plot of MSE in fitting neural network is shown in figure (4.7). In this 

plot, the x-axis represents the number of training epochs, and the y-axis represents 

the MSE. This curve shows that after 11 epochs, the MSE is approximately 10−21. 
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Figure 4.6: Fitting neural network to predict the size of shrapnel. 

 

 

Figure 4.7: MSE in training process to predict size of shrapnel. 
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To determine the location (depth) of shrapnel, Neural network fitting tool is used. 

In this model 138 observations are set for training and 15 observations are set for 

testing. In the model, shrapnel was placed at various depths, and at a random location 

in the middle. Figure (4.8) shows how error varies with the number of trials (epochs). 

This curve shows that after 230 epochs, the MSE is approximately 10−5. 

 

Figure 4.8: MSE in training process to predict depth of shrapnel. 

 

When all targets are present (the presence or absence of shrapnel, and its size 

and location with one dimension (depth)), The feedforward neural network is used. 

The feedforward neural network is a type of neural network that consists of an input 

layer, one or more hidden layers, and an output layer. In this case, there are two 

hidden layers, with 10 and 6 neurons, respectively .an input layer with 1001 inputs, 

and an output layer with 3 outputs (presence or absence, size, location). The training 

parameters are then set using the property of the neural network object. The epochs 

parameter specifies the maximum number of training epochs, learning rate, and 
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minimum gradient, which determines when the training process will stop. Finally, 

the train function is called to train the neural network using the inputs and targets 

data. The structure of the feedforward neural network is shown in Figure (4.9). 

 

Figure 4.9: Feedforward neural network construction. 
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The goal of training the neural network is to adjust its weights and biases so 

that it can accurately predict the size and depth of the shrapnel given the input data. 

The weights and biases of the network are updated iteratively until the error reaches 

a minimum, or until a predetermined number of epochs (training iterations) have 

been completed.  

At this point, the trained neural network can be used to make predictions on 

new data. The detection rate of shrapnel was (90%), while the results to size 

specification rate were (86%), and the results to the depth detection rate of the 

shrapnel were (78%). The relationship between the error and the number of epochs 

in neural network training is shown in Figure (4.10).  This curve shows that after 75 

epochs, the error is approximately 10−4. 

 

Figure 4.10: Error curves of training set and validation set performance across 

epochs. 

Plotting regression in feedforward neural network involves visualizing the 

relationship between the predicted output values and the actual output values based 

on a set of input values. The neural network training regression is shown in Figure 

(4.11).  
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Figure 4.11: Regression in feedforward neural network. 
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4.5 Two-Dimensional Locating of Shrapnel Using ANN 

 Whenever a shrapnel changes its position in both the x and z directions, a 

dataset of reflection coefficients is collected using a CST model. This dataset is then 

used to train an ANN to predict the absence, or presence, as well as the size and 

location of shrapnel. To train the ANN, the collected dataset of reflection coefficients 

would be needed to be labeled according to whether or not shrapnel was present, and 

if so, the size and location of the shrapnel. 

To predict the absence of shrapnel, pattern recognition and classification tool is 

used. In this model, 1980 observations are set for training and 349 observations are 

set for testing. the training performance is shown in Figure (4.12). This curve shows 

that after 107 epochs, the loss is approximately 10−7. 

 

Figure 4.12: Training Performance of Pattern Recognition Neural Network. 

 

To predict the size of shrapnel, Neural network fitting tool is used. After 

training the neural network on this data (two dimensions), the mean square error 

increased, and for this we resort to using an CNN to estimate the size of the 

fragment. Figure (4.13) shows how the MSE is approximately 0.1 after 67 epochs. 
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Figure 4.13: Training performance for predicting the size of shrapnel. 

 

Well, when training the network for  predicting the depth of shrapnel in the 

model, the curve shows how after 136 epochs the MSE is approximately 0.4 as 

shown in the Figure (4.14). 

 

Figure 4.14: Training performance for predicting the depth of shrapnel. 
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4.6 Convolutional Neural Network (CNN) Training Results for Shrapnel 

Detection 

If the MSE increases, it will indicate that the model is performing poorly and 

its predictions are further away from the actual values. One approach for building a 

machine learning model for this problem would be to use a convolutional neural 

network (CNN). A CNN is a type of neural network that is commonly used for 

imaging recognition tasks, but can also be used for other types of data, such as 

matrices. In a CNN, the input matrix is passed through a series of convolutional 

layers, which are able to identify patterns in the data. The output of the convolutional 

layers is then passed through a series of fully connected layers, which are used to 

make the final predictions. 

The output of the machine learning model should be a set of four values, that 

describe the classification of the case, the size of the fragment, and the location of 

the fragment in X and Z.  

Classification: The classification variable could be a categorical variable, that 

indicates the presence, or absence of a fragment in the body. In this case, it could be 

a value of 0 for no fragment, indicating the absence of a fragment, and 1 for the 

presence of a fragment. 

Size:  The size variable would have a limited set of possible values, which would be 

0, 5, 10, and 15. The different possible size categories for the fragments that are 

being tried to be detected and classified would be represented by these values.  During 

training, the machine learning model would be learned to associate specific input 

patterns with the different size categories, allowing it to predict the size of new 

fragments in future inputs. 

Location in Z: The location in Z variable would have a limited set of possible values, 

which would be 25, 30, and 35. The different possible locations for the fragments 

along the Z-axis, which are being tried to be detected and classified, would be 

represented by these values. 
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Location in X: The location in X variable would have a limited set of possible values, 

which would be the values between 0 and 160 with increments of 10 (i.e., 0, 10, 20, 

30, 40, 50, ..., 160). The different possible locations for the fragments along the X-

axis, which are being tried to be detected and classified, would be represented by 

these values. 

The machine learning model takes the input matrix as input and produces the 

four output values as its output, based on what it has learned from the labeled dataset 

during training. The data set is labeled in excel as shown in Figure (4.15). 

The architecture of convolutional neural network consists of: 

1- Sequence Input Layer: This layer specifies the input size of the network, which 

is the number of features in each input matrix. In this case, it is the number of 

rows in the input matrix, which is 1001. 

2- convolution1dLayer: This layer performs a 1D convolution operation on the input 

sequence using a set of learnable filters. The first convolution layer has 128 filters 

of size 3, followed by a RELU activation function and layer normalization layer. 

3- convolution1dLayer: This layer has 2*num Filters (256) filters of size 3 followed 

by RELU activation function and layer normalization layer. 

4- convolution1dLayer: This layer has 4*num Filters (512) filters of size 3 followed 

by RELU activation function and layer normalization layer. 

5- Global Average Pooling1dLayer: This layer calculates the meaning of each 

feature map across time steps, and returns a 1D output vector. 

6- Fully Connected Layer: This layer connects every element of the input vector to 

every element of the output vector with learnable weights, followed by a SoftMax 

activation function to generate class probabilities. 

7- Classification Layer: This layer computes the cross-entropy loss between the 

predicted probabilities, and the true labels, and backpropagates the gradient to 

update the weights of the network. 
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The network is trained using mini-batch stochastic gradient descent with the 

Adam optimizer. Adam optimization algorithm is a variant of stochastic gradient 

descent that is commonly used to train deep neural networks. Adam stands for 

"Adaptive Moment Estimation." The algorithm computes individual adaptive 

learning rates for each parameter in the network based on estimates of the first, and 

second moments of the gradients. The first moment is the mean of the gradient, and 

the second moment is the variance of the gradient. These moments are calculated for 

each parameter and used to update the learning rate and weight parameters during 

training. Adam is known for its efficiency in training deep neural networks, as it can 

automatically adjust the learning rate during training and converge to a good solution 

faster than other optimization algorithms. 

The validation data is used for monitoring the performance of the network 

during training and preventing overfitting. The network is trained for a maximum 

of 250 epochs or until convergence, whichever occurs first. The final trained 

network is stored in the "net" variable. 

For classification to indicate the presence or absence of a fragment, CNN is 

used. In this case, it could be a value of 0 for no fragment, indicating the absence of 

a fragment, and 1 for the presence of a fragment. The training process of CNN is 

shown in Figure (4.16).
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Figure 4.15: Samples from the labeled data set in Excel. 
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Figure 4.16: Training process for classification using CNN.
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A validation accuracy of 99% indicates that the model is performing well on 

the validation set and is able to classify accurately the presence, or absence of a 

fragment. 

To train the network to predict both the size and location of the fragment, it is 

required to modify output layer of the network. Instead of output that represents the 

presence or absence of a fragment, the output must be represent the size and location 

of the fragment. The training process for predicting the size and location are shown 

in Figure (4.17). 

A validation accuracy of 88% after 900 epochs indicates that the model is 

able to accurately predict the size and location of the fragment.
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Figure 4.17: Training process for prediction size and location using CNN.
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CHAPTER FIVE 

CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

Specifying the size and location of a shrapnel within the human body is a 

challenging task in the field of hidden object detection. There are several factors that 

contribute to this challenge, such as the variability of human tissue properties and 

the interaction of electromagnetic waves with them. to solve this problem: 

1- A model depicting the main layers of the human body (skin, fat, muscle, and 

bone) was designed to represent the anatomical structure, and test detection 

methods. The fragment was incorporated into the model, assuming an aspherical 

shape, and using copper as its material representation. 

2- It is possible to use a single antenna to detect hidden object by using the reflection 

coefficient. The antenna can transmit a signal toward the model, and the reflection 

of that signal can provide information about the presence of shrapnel. 

3- The data which was collected from scattered signals at various locations around 

the model, and a neural network was employed to analyze this data, and determine 

the fragment's location and size. 

4- It is possible to use neural networks for detecting shrapnel, and having a large 

number of trained data can be beneficial for improving the network's 

performance. 

5- A CNN can be an effective approach for detecting and locating shrapnel in model, 

and can help to improve the accuracy, and reliability of the detection system. 

6- In order to use a convolutional neural network (CNN), the input data is typically 

represented in the form of images, which can be thought of as matrices of pixel 

values. the input data for the CNN would be represented as dimensions of 

1001*17 (1001 represent frequency steps, 17 represent antenna movements). 
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7- During the training process of a CNN, the model can be trained to detect and 

locate the presence of shrapnel in two dimensions, as well as estimate their size. 

8- From results, a convolutional neural network (CNN) improves the rate of 

detection and position determination as compared to regular neural network. The 

results were acquired utilizing the neural network with 90% success in shrapnel 

identification, 86% success in shrapnel sizing, and 78% success in shrapnel depth. 

Also, better results were obtained when using the CNN, where 99% was reached 

to determine the presence of the fragment and 88% to determine the size and 

location. 

5.2 Future Work 

Based on the work done in this dissertation, there are several aspects that can be 

considered to extend the research further. Some of these aspects include:  

1- Incorporating more complex network architectures: The dissertation discusses the 

use of a basic convolutional neural network for detecting hidden objects. 

However, more complex architectures such as ResNet, can be explored to further 

improve the performance of the network. 

2- Increasing the size of the dataset: While the dataset used in this dissertation is 

sufficient to train the network, increasing the size of the dataset can help improve 

the accuracy of the model.  

3- Investigating the use of multiple sensors: The dissertation uses a single antenna 

to detect hidden objects. However, the use of multiple sensors, such as a radar 

system, can potentially improve the accuracy of the detection, and locating of the 

hidden object. 

4- Testing the model with various types of materials for initial tests can help to 

evaluate the performance of the model in detecting hidden objects under different 

conditions. This can help to improve the model's accuracy and reliability, and 

make it more effective in real-world scenarios. 
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 الخلاصة 

الأشعة  باستخدام  عادةً  إجراؤها  يتم  طبي  تصوير  مهمة  الإنسان  جسم  في  الشظايا  اكتشاف  يعد 

التصوير بالرنين المغناطيسي    الموجات فوق الصوتية او أو (  CTالسينية أو التصوير المقطعي المحوسب )

(MRI هذه أن  إلا  والعظام،  الداخلية  للأعضاء  مفصلة  هذه صورًا  التصوير  تقنيات  توفر  أن  يمكن   .)

الطرق تعاني من عدم تمييز الشظايا غير المعدنية، الإشعاع المؤين، عدم التمييز بين الشظايا والعظام  

 على التوالي.  وتستغرق وقتاً طويلاً,

يتضمن التصوير الطبي بالميكروويف استخدام الموجات الكهرومغناطيسية لإنشاء صور للهياكل  

الداخلية لجسم الإنسان, ويتميز بأنه تصوير آمن وغير جراحي. يمكن دمج التصوير بالموجات الدقيقة مع  

 الشبكات العصبية لتحليل وتفسير بيانات الميكروويف المجمعة.  

البحث ، تم استخدام الشبكة العصبية العميقة للتعرف على وجود أو غياب وحجم ومواقع  في هذا  

. يتكون  CST Microwave Studioالشظايا. لبناء نموذج، تم استخدام جهاز محاكاة كهرومغناطيسي  

هذا النموذج من أربع طبقات )جلد ودهن وعضل وعظم( ذات موصيلية وسماحية نسبية مختلفة. وتمتلك  

مم( في أماكن مختلفة في النموذج. تم توجيه   15مم و  10مم و  5ايا الكروية أنصاف أقطار مختلفة )الشظ

الإشارات  أيضًا لالتقاط  استخُدِمَ  والذي  النطاق،  أحادي عريض  هوائي  باستخدام  النموذج  إلى  الإشارة 

ن أجل تحديد ما إذا جيجاهرتز. م  6جيجاهرتز إلى  1المنعكسة. تعمل الإشارة المرسلة في نطاق تردد من  

 كانت الشظايا موجودة أم لا وحجمها وموقعها، تم تحليل الإشارات المجمعة باستخدام شبكة عصبية عميقة. 

من المهم تحديد التصميم المناسب وخوارزمية التعلم للشبكة العصبية لتحقيق أفضل النتائج. يمكن  

 لمختلفة واستنتاج ماهو أفضل نموذج. لاختبار أحجام الشبكات العصبية ا  MATLABاستخدام برنامج  

٪ نجاح في  86٪ في تحديد الشظايا، و 90تم الحصول على نتائج استخدام الشبكة العصبية بنسبة نجاح  

٪ نجاح في تحديد عمق الشظايا, كما تم الحصول على نتائج افضل عند استخدام  78تحديد حجم الشظايا، و 

 ٪ في تحديد حجمها وموقعها.88د وجود القطعة و ٪ نجاح في تحدي 99حيث تم التوصل الى  CNNالـ

شبكات   وتحديداً  العصبية،  والشبكات  الدقيقة  بالموجات  التصوير  بين  الجمع  يظُهر  عام،  بشكل 

CNN  إمكانات كبيرة في تحسين دقة وموثوقية أنظمة الكشف عن الشظايا، خاصةً مع وجود كمية كبيرة ،

د من الأبحاث والتطورات في هذا المجال إلى تعزيز تقنيات  من البيانات المدربة. يمكن أن تؤدي المزي 

 التصوير الطبي وتحسين رعاية المرضى.  



 

 

 

 

 

 

 
 

 اقرار المشرف 

اكتشاف الاجسام المعدنية باستخدام خوارزميات التعلم العميق للتصوير الطبي )أشهد بأن هذه الرسالة الموسومة 

تحت اشرافي في قسم هندسة الاتصالات/ كلية   (نرمين حسين فتحي) قد تم اعدادها من قبل الطالبة  (بالموجات الدقيقة

علوم في اختصاص هندسة   -هندسة الالكترونيات / جامعة نينوى, كجزء من متطلبات نيل شهادة الماجستير 
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.للمناقشة  

 

: التوقيع   

 

               الاسم: 

  

 التاريخ: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 
 

الطبي  اكتشاف الاجسام المعدنية باستخدام خوارزميات التعلم العميق للتصوير 

 بالموجات الدقيقة 

 

 

 دراسة تقدمت بها

 

 نرمين حسين فتحي 

 

 الى

 

 

 مجلس كلية هندسة الالكترونيات 

 

 جامعة نينوى 

 

 كجزء من متطلبات نيل شهادة الماجستير 

 

 في هندسة الاتصالات 

 

 

 باشراف 

 

 

الدكتور يونس محمود عبوش  الاستاذ المساعد  

 

   ضياء محمد عليالدكتور  الاستاذ المساعد

 

م 2023  ه ـ1445 



 

 

 

 

 

 

 
 

  

 

اكتشاف الاجسام المعدنية باستخدام خوارزميات التعلم العميق للتصوير الطبي بالموجات 

 الدقيقة 

 

ن فتحيينرمين حس  

 

 

 رسالة ماجستير علوم في

 

 هندسة الاتصالات      

 

 باشراف

 

 

 

يونس محمود عبوش الاستاذ المساعد الدكتور     ضياء محمد علي  الاستاذ المساعد الدكتور 

 

م 2023  ه ـ1445 

 

 وزارة التعليم العالي والبحث العلمي

 

 جامعة نينوى 

 

 كلية هندسة الالكترونيات 

 

 قسم هندسة الاتصالات 



 

 

 

 

 

 

 
 

 

 

 

 

 


