
University of Mosul

College of Electronic Engineering

FPGA Implementation of Viterbi Algorithm for

IoT Applications

A Thesis Submitted by

Hiba Saad Mahmood

To

The Council of College of Electronic Engineering

University of Mosul

In Partial Fulfillment of the Requirements

For the Degree of Master of Sciences

In

Computer and Information Engineering

Supervised by

Assistant Prof. Mohammed Hazim Al-Jammas

 A.C. A.H.

 َذِي خَلَقَ * خَلَق
َّ
كَ ال اقْرَاْ بِاسْمِ رَبِّ

كْرَمُ * كَ الَأ الِإنْسَانَ مِنْ عَلَقٍ * اقْرَاْ وَرَبُّ
مْ

َ
مَ الِإنْسَانَ مَا ل قَلَمِ * عَلَّ

ْ
مَ بِال ذِي عَلَّ

َّ
ال

  يَعْلَمْ

 5-1: العلق

Supervisor
'
s Certification

I certify that the dissertation entitled (FPGA Implementation of Viterbi

Algorithm for IoT Applications) was prepared by Hiba Saad Mahmood under

my supervision at the Department of Computer and Information Engineering,

University of Mosul, as a partial requirement for the Master of Science Degree

in Computer and Information Engineering.

Signature:

Name: Dr. Mohammed H.Al-Jammas

Department of Computer and Information Engineering

Date: / /

Report of Linguistic Reviewer

I certify that the linguistic reviewer of this dissertation was carried out

by me and it is accepted linguistically and in expression.

Signature:

Name:

Date: : / /

Report of the Head of Department

I certify that this dissertation was carried out in the Department of

Computer and Information Engineering. I nominate it to be forwarded to

discussion.

Signature:

Name: Dr .Abdulbary Raouf Suleiman

Date: / /

Report of the Head of Postgraduate Studies Committee

According to the recommendations presented by the supervisor of this

dissertation and the linguistic reviewer, I nominate this dissertation to be

forwarded to discussion.

Signature:

Name:

Date: / /

Acknowledgments

All praises to Almighty Allah, Who has induced me with intelligence,

knowledge, sight to observe and mind to think and given me enough

strength and health to perform and accomplish my scientific project

successfully.

I would like to take this opportunity to express my deep sense of

gratitude and thank to my supervisor Dr.Mohammed H. Al-Jammas for

offering me help and guidance.

My appreciation is extended to the Head of the Computer and

Information Engineering Department.

Finally, I would gratefully like to express my gratitude and love

feeling to my family and dearest husband for their encouragement, moral

support, and patience and for the many sacrifices during the course of the

study.

I

Table of Contents

Page Subject

 Abstract

I Table of Content

IV List of Table

V List of Figures

VII List of Abbreviations

Chapter One

Introduction

 Background

 Application of IoT

 Smart City

 Industrial Internet

 Smart Home

 Medical and Health Care

 Transportation

 Smart Agriculture

 Challenges of IoT

 Literature Survey

 Thesis Layout

 Chapter Two

IEEE ah and IoT Overview

 Introduction

 IoT Concept

 IoT Application Requirements

 . IEEE ah and IoT

 IoT Architecture

 IoT and Viterbi Decoder

 Error Detection and Correction (EDC)

 Convolutional Encoder

II

 . Viterbi Decoder

 Branch Metric Unit (BMU)

 Add Compare Select Unit (ACSU)

 Trace Back Unit (TBU)

 Viterbi decoder Hardware Implementation Tool

 Field Programmable Gate Array (FPGA)

 Hardware Description Languages (HDLs)

Chapter Three

Simulation of Viterbi Decoder

 Introduction

 System Overview

 Data Generator

 Convolution Encoder

 BPSK Modulator

 BPSK Demodulator

 Viterbi Decoder

 Viterbi Decoder Implementation in MATLAB

 Branch Metric Unit (BMU)

 Add Compare Select Unit (ACSU)

 Trace Back Unit (TBU)

 Simulation Results

 Simulation Analysis

Chapter Four

FPGA Implementation of Viterbi Decoder

 Introduction

 Implementation of Viterbi Decoder in VHDL

 Branch metric Unit

 Add Compare Select Unit

 Trace Back Unit

 Viterbi Decoder Simulation Result

III

 Branch Metric Simulation Result

 Add Compare Select Simulation Result

 Trace Back Simulation Result

 Synthesis and Implementation Viterbi Decoder

 Hardware and Software Results Comparison

Chapter Five

Conclusions and Future Work

 Conclusions

 Future Work

REFERENCES

 Reference

1 Arabic Abstract

IV

List of Table

page Title Table

 State Table

 Parameters of Convolution Encoder of Rate ½

 BER for Hard Viterbi Decoder

 BER for Soft Viterbi Decoder

 BER for Soft and hard Viterbi Decoder at Constraint

Lengths of (and)

 decoding time for K and in hard and soft

 Decoding Time For K and in Hard and Soft

 A Comparison Result Between VHDL and

MATLAB

V

List of Figures

Page Title Figure

 IOT Concept

 The block diagram of flow information over a noisy

channel

 Convolutional Coding, Rate , Generator Polynomials

 , and

 State diagram of code (, ,)

 Trellis Diagram of Code (, ,)

 Block Diagram of Viterbi Decoder

 Branch Metric Unit (BMU)

 Add Compare Select Unit(ACSU)

 Metrics for the First Input .a

 Metrics for the Second Input .b

 Metrics for the Third Input .c

 Metrics for the Fourth Input .d

 Metrics for the Fifth Input .e

 Metrics for the Sixth Input .f

 Trackback the Trellis .g

 viterbi decoder flowchart

 NEXYS DDR overview

 Block Diagram for the System

 Convolution Encoder for K=

 Convolution Encoder for K=

 Performance of Hard Decoder for Different Constraint

Length

 Performance of Soft Decoder for Different Constraint

Length

 Performance of Soft and Hard Viterbi Decoder at

Constraint Lengths of (and)

 Decoding Delay time in Hard Decoder and Soft Decoder

for Constraint Length (and)

VI

 Flow Chart of Branch Metric Unit

 Flow Chart of Add Compare Select Unit

 Flow chart of Trace Back unit

 Simulation Result for BMU for Constraint Length =

 Simulation Result for BMU for Constraint Length =

 Simulation Result for ACSU for Constraint Length =

 Simulation Result for ACSU for Constraint Length =

 Simulation Result for TBU of Constraint Length =

 Simulation Result for TBU of Constraint Length =

 Architecture Design of Viterbi decoder

 Hardware Implementation of the

 Time Summary of the Design for hard Viterbi decoder

at Constraint Length =

 Time Summary of the Design for hard Viterbi decoder

at Constraint Length =

 Device Utilization of the Design

 Device Utilization of the Design

 Time Summary of the Design for Soft Viterbi Decoder

at Constraint Length =

 Time Summary of the Design for Soft Viterbi Decoder

at Constraint Length =

 Device Utilization of the Design

 Device Utilization of the Design

VII

List of Abbreviations

Name Abbreviation

Add Compare Select Unit ACSU

Additive White Gaussian Noise AWGN

Bit Error Rate BER

Branch Metric Unit BMU

Field Programmable Gate Array FPGA

Internet of Thing IoT

Institute Of Software Engineers ISE

Trace Back Unit TBU

Viterbi Decoder VD

VHSIC Hardware Description Language VHDL

Viterbi Decoder VD

1

Abstract

In communication systems, Viterbi decoder that is use to decode the

convolutional codes is consider as a powerful error-correcting technique to

control and correct the errors during transmission over a noisy channel.

When data is transmit in Internet of Thing (IoT) applications over

wireless communication channels, it is possible to be subject to noise,

distortion and interference. This leads to various amounts of errors and data

corruption at the receiver side. The 802.11ah wireless transmission

standard is adopt as wireless communication protocol in IoT applications.

The Viterbi decoder implementation has a trade-off between

performance from one side, and the design complexity and decoding time

from the other side. In this thesis, Viterbi decoder designed and

implemented using Matlab simulations, and FPGA design kit to evaluate

and compare the performance of this decoder at various specifications and

settings. Using Matlab (2013a), Viterbi decoder performance is tested for

five encoding models at constraint lengths of 3, 4, 5, 6 and 7, using a code

rate of 1/2. This is to perform a comparison between these models and

evaluate the performance of each design. This performance evaluation is

measure using the decoding time and BER at various SNR levels. Results

show that constraint lengths of 6 and 7 have similar BER which is higher

than other implemented lengths, with length 6 having less complexity and

less decoding time by 4.7ms and 3.5ms in hard and soft types, respectively.

The FPGA implementation used NEXYS 4DDR kit involving

Viterbi decoder design at constraint lengths of 6 and 7 in both hard and soft

decoding. In addition to the lower complexity and decoding delay time,

length 6 shown to have lower resource utilization. Therefore, the

2

requirements of IoT applications error correction are best achieve with

Viterbi decoder with length 6, providing high data receiving performance,

with the least possible data loss.

3

Chapter1

Introduction

1.1 Background

Internet of Thing (IoT) is one of the most important field in the world

[1]. It is a new technology for access to the internet, the all objects in IoT

can access and use information that collected by other object [2]. The

concept of IoT that every devices merging with the human existence, the

physical object can intelligently communicate with each other to carry out

daily operations. Every device can communicate with other, respond

intelligently, transfer data, and retrieve data [3]. The IoT applications need

new methods and theories to support their requirements. The important

requirements is the communication protocol that have long-range, low data

rate, and low-power, thus the characteristic of 802.11ah standard can

supports and meet the requirements of the IoT applications [1]. In the

wireless transmission for 802.11ah standard, the convolutional encoding is

important method providing error-correcting codes.

1.2 Application of IoT

IoT is not only a compatibility theory. It is a useful application

technology for human lives. IoT works to turn lifestyle into a better one.

From a few years, IoT technology has spread around the world and has

entered into a variety of lifestyles to move beyond the applications of

smartphones, to make human life simpler and more comfortable in

various aspects of life with the spread of modern communication

technologies. The importance of IoT in our lives comes from widely

applications fields. It seems to be an interconnected set of smart home

applications, wearable and smart industry components but in reality, it

could have a wider range. When the world connected every things

4

reality, IoT will turn everything to be smart from home to hospital,

transportation and smart industry. Implement solutions for these

applications will be the main driver of the invention. Currently, there

are several successful applications have already been developed in

different areas such as: [4].

1.2.1 Smart City

The smart city makes human life easier and more convenient, such

as solving traffic congestion, making cities safer and reducing pollution.

Many smart city applications such as traffic regulation, intelligent water

distribution, efficient use of energy and intelligent transportation.

1.2.2 Industrial Internet

The industrial internet can be seen as an IoTs concept by many

market research like Gartner or Cisco and has high-end possibilities.

The industrial internet applications include intelligent factories that

work with smartly connected equipment. In 2014, General Electric

(GE's) revenues from industrial internet products totaled nearly 1 billion

$.

1.2.3 Smart Home

IoT is an innovative technology that makes our life smarter [5]. In

many field the word "smart" is used and accepts in a wide range to mean

intelligence [6]. You cannot imagine the idea of a connected world without

IoT. An example is the smart home based IoT [5]. With the emergence of

IoTs, and the rapid evolution of internet technology and communications,

a smart home with high computing and communications features has

emerged. Smart home based on IoT concept are being an important part of

the smart cities that are design and develop in over the worlds [5].

Intelligent home service, one of the innovative technologies in the age of

IoT, is changing home appliances to become smarter, remotely controllable

5

and communicate to each other, as well as, the level of intelligence or

control of the smart house service that the user wants may vary depending

on the user requirements [6]. Smart home or connected home is the

environment for living with highly automated and controlled systems. The

goal of the smart home to improving the standard of living, safety and

security in addition to providing resources and energy and it is playing an

important role in improvement society [5]. Smart home is suitable place to

describe communication in our home with strong automation systems that

can monitor and control for example thermostats, smoke detectors, light

bulbs, home appliances, door locks, entertainment systems, windows, and

many more. famous companies in the design of smart home Nest, Apple,

Phillips and Belkin. So the IoT has a distinctive role in building a smart

home [5].

1.2.4 Medical and Health Care

With the emergence of the concept of internet things and the

evolution of information technology and medical device technologies, the

concept of the medical interne has gradually become integrate with the

people life's. Medical IoT is a kind of technology that connects wireless

sensors of medical devices with the internet and connects them with

hospitals, patients and medical device to improve modern medical level. It

can make hospitals capable of achieving smart medical treatment and

management that includes collect, store, transmit and share medical

information about equipment, personnel information, management

information for the hospital and information on medicines. The medical

IoT includes many applications such as: management and monitor of

medical equipment and medicines, telemedicine care, personal medical

care, mobile medical care, health care management and many more [7].

1.2.5 Transportation

6

Smart transportation system offers intelligent control, and make

more successfully management for transportation use advanced sensor

information technology and network. Smart transportation have various

applications in many aspects of daily life such as: [8]

 Smart Parking

Smart parking management provides the best solution for drivers,

saving fuel and time, where offers accurate information on available

parking spaces, making traffic easy and reducing traffic jams.

 3D Assisted Driving

Vehicles that embedded with sensors such as cars, buses and trains can

provide vehicle driver with useful information on navigation and safety.

Using driving with three-dimensional help, drivers can set the right track

with the prior knowledge about situation of jams and traffic accidents.[4]

1.2.6 Smart Agriculture

As the world's population continues to increase, the demand is very

high for food supplies, with the future direction to smart ideas by developed

technologies replacing smart applications (automation), the emergence of

IoT made intelligent agriculture one of important application in IoT.

Farmers use sensors to measure soil moisture and nutrients, to determine

the specific fertilizers and to control the use of water for plant growth.

These parameters are one of the simplest applications used in the smart

agriculture. The data from sensors is using to achieve the better production

of crop. One of the application in this field is automatic irrigation based on

measure some environment parameters such as temperature, air humidity

measurement and soil information in real time and sending to server to be

analyzed. According to the results, automatic irrigation is controlled and

improving agricultural crop. [9][10]

7

1.3 Challenges of IoT

IoT are connect "things" between the real world and the virtual

world, allowing communication at anytime and anywhere for anything and

not just anyone. It is allowing every beings, machines, physical object in

the world connected, and interact together with peoples in any place and

any time to providing services [11]. These objects embedded with sensors

connected to internet by a wired or wireless network [2]. Millions of smart

devices and sensors spreading daily in every aspect of our life creating

better understanding of how we interact with our environment, at home, in

the city, in office, etc. That make life more easy which have clearly affected

our life in terms of costs reduction, energy saving and improving customer

service [12]. Although the above applications are very interesting and offer

smart technologies for everything, some challenges facing applications of

IoT, including the IoT applications implementation cost, which is expected

to be at low cost for the large possible number of things. In addition to the

cost challenge, there are other challenges such as [2]:

 Scalability: IoT have a greater scope than conventional internet.

Where needs new functionality to increase scalability and enable

things that collaborate in an open environment to make functions

equally efficiently.

 Security and Privacy: The Internet requirements in security and

privacy aspects such as the reliability of communication, the

integrity of the message and the credibility of communication

companies. IoT also need these requirements, devices of IoT must

been protected from hackers.

 Fault Tolerance: In the IoT, the objects have to be more flexible

and dynamic than the conventional Internet and in unexpected ways

change quickly. The structured of IoT requires could to

automatically adapting.

8

 Software Complexity: There is a need to design powerful and more

comprehensive software infrastructure on the network to support

and provide services for smart objects.

 Interoperability: Every kind of intelligent objects in IoT can have

different information, processing and communication capabilities.

Different smart objects are subject to many conditions, such as

available power and bandwidth needed for communications. There

is a need for Common standards to facilitate communication and

cooperation between these objects.

 Data Volumes: Huge information of data are gather from sensor

networks and large-scale networks, a huge amount of information

will be on the network servers. New technologies will be required to

manage, store and translate this information.

 Self-Organizing: Smart objects in IoT need to be able to configure

themselves, and able to establish a connection automatically.

 Working with Multiple Communications Standards: The huge

increase in range of used IoT devices has led to the multiple

emergence of new standards and wireless communication

technologies and being to use, and each standard has different testing

requirements. Therefore, the great challenge for designers is to

ensure all components must work together efficiently and support

more than one standard at the same time [13].

 The Need for Long Battery Life: In order to reduce the cost of

maintenance, especially when designs feature in large numbers of

sensors, it is necessary to have a long battery life. Designers are

looking to increase the operating life of the battery by implementing

sleep patterns and idle modes whenever possible. In high-

performance machines, different parts require different amounts of

9

energy. Designers need to know how much use for energy, the

amount of current required and the time spent in each operating

mode. These considerations can increase battery life [13].

1.4 Literature Survey

Newly, the IoT has become more interesting for researchers around

the world; it aims to make home and cities smarter. Things in IoT are

connect to each other by embedded with sensor devices that collect

information about things and share information with the server computer.

Sensors in the Internet of things need to wireless communicate transceiver

to be able to exchange information among them, one of the standards used

in the wireless connection is the IEEE 802.11 ah which is expected to be

used widely for IoT applications. Viterbi decoder (VD) is considered one

of the most important devices in the IEEE 802.11 ah receiver, which works

to decode the convolutional codes received from the transmitter while at

the same time correcting the bit errors, below are some research for IoT

and Viterbi Decoder:

 In 2012 Yan Sun and Zhizhong Ding [14], propose and presented

FPGA implementation a (2,1,7) convolution encoder based on

IEEE.802.11a WLAN standard in OFDM baseband modulation and

design Viterbi decoder with constraint length=7, code rate 1/2 and

decode depth 36 symbols . They designed and implementation using

Xilinx Virtex-II by ISE 7.1 environments; and obtained simulation

results using Verilog HDL. The Viterbi decoder implemented in

parallel structure to improve the speed of calculations in ACS unit

and adoption of optimal data storage to avoid overflow, the results

of this design decreasing 10% of chip logic and used around 2.99 %

of total chip logic elements and reducing 5% of the power

consumption. The synthesis results showed of FPGA

10

implementation can operating on 80 MHz frequency and this is

suitable to current applications.

 In 2014 T. Adame, A. Bel, B. Bellalta, J. Barcelo, M. Oliver [15],

propose using and evaluation IEEE 802.11ah on four scenarios of

(M2M) applications (intelligent metering, industry automation at

indoor, animal control and agriculture outdoor). With the significant

development of (M2M) communication, M2M depending a new

standard to meet its requirements addressed by new amendment

IEEE 802 .11ah. The most important requirements of (M2M) are a

large number of power-limited stations, transmission for long range,

small and infrequent data messages, and low data rates. The IEEE

802.11ah standard ensures meet these requirements in terms of

increasing the number of operated stations arranged by a hierarchical

organization up to 8191 stations sharing one Access Point (AP).

Their results showed that more than 99% of the time in the stations

was in the sleep mode.

 In 2015 Thi Hong Tran, Hiromasa Kato, Shinya Takamaeda-

Yamazaki, Yasuhiko Nakashima [16], propose and presented

study to developed low complex-Viterbi decoder to meet

requirements applications of IoT. They work to study the effects of

Viterbi Decoder parameters on (Bit Error Rate) BER, and (Packet

Error Rate) PER on communication system. These parameters

include, trace back length (L), width of input data (D), and log

likelihood ratio (LLR) a truncated value (E). The best result obtain

when (20 < L< 40), if L continuous to increase (i.e. L >=60) the

performance become not important, also BER and PER performance

improved when the width of input data (D) be in range (1 to 4), the

best result when increase 2 to 3. From this results they were able to

11

use (20 < L < 40), D=3, LLR=1.75 to obtaining develop Viterbi

decoder for IoT applications.

 In September 2015 Minyoung Park[17], presents overview of

physical layer (PHY) and Medium Access Control (MAC) layer

features of 802.11 ah that can suitable and support sensors and

applications of IoT. One of the most important features of PHY layer

in 802.11 ah that supports the applications of the IoT in outdoor by

providing data rate of up to 150 Kbps to 347 Mbps and the

transmission distance of 1 km using physical layer parameters. The

long-range transmission provides optimal power consumption using

very low transmission power provided by MAC protocols and MAC

frame formats that have improvement for sensors and IoT

applications that supports a large number of stations.

 In 2016 Hiromasa Kato, Thi Hong Tran, Yasuhiko Nakashima

[18], propose and developed the (K-best Viterbi decoder) based on

an (M) algorithm that work to reduce the number of paths in the

trellis to (K) with the same traditional Viterbi decoder performance

to meet the requirements of IoT. The Viterbi decoder that decode

convolutional code in the receiver and correct the errors, which

works ceaselessly so it consumes a lot of energy. Therefore, the

establishment of a low-power wireless and small transceiver is more

important for IoT applications. They implemented simulation on

(Verilog HDL) and the results showed that the best value for K is 4

to obtain the same Packet Error Rate (PER), they found results of

(K-best Viterbi) can reduce 69% of area and 91% power

consumption.

 In 2016 Thi Hong Tran, Duc Phuc Nguyen, and Yasuhiko

Nakashima[19], proposed a new algorithm called K-min Viterbi

decoder, that less complexity than conventional Viterbi decoder for

12

wireless sensors that meet requirements IoT applications, in wireless

sensors the transceiver is a very important unit and Viterbi decoder

is needed in wireless transceiver to enhanced decoding performance.

They evaluate the performance of (PER) of the algorithm that

depend on some factors such as modulation type, trace-back length,

and channel type with some value of K by using 802.11ah simulator

have 64-state Viterbi decoder (VD) and showing complexity of K-

min VD is less than conventional VD by 64/K times. They

recommend K value between (3 and 5), they reached to reduced

complexity of VD by (12.8 to 21.3) times than conventional VD.

 In March 2017 Rami Akeela and Yacoub Elziq [20], propose

introduced the Hardware implementation of IEEE 802.11ah

standard, which provides a solution to meet the requirements of

IoTs. They have been introduced the new features on amendment

for the Wi-Fi standard IEEE 802.11ah on the MAC layer to support

the largest number of stations, increase operating range and reduce

power consumption. They was performed simulation using (Xilinx

Vivado) to verify the design. The results of IEEE 802.11ah structure

analysis indicated that is suitable for FPGA and ASIC based

applications. The synthesized done on the ZYNQ-7 ZC702 FPGA

board and result show decrease the hardware utilization and low

power consumption.

1.5 Thesis Layout

This thesis is arranged as follows:

in addition to the current chapter, chapter two present an overview of the

IEEE 802.11ah and IoT as well as detailed explanation for Viterbi decoder

structure and procedure and the tool used in implementing design.

13

Chapter three present the simulation of the design of Viterbi decoder using

MATLAB (2013a) software program. Includes five different encoding

types and make comparison between them to choose the best model.

Chapter four presents FPGA implementation for the designed Viterbi

decoder at constraint length 6 an 7 in detailed, including VHDL

implementation, flow charts and implementation result.

Finally, conclusions and future works are given in chapter five.

14

Chapter2

IEEE 802.11ah and IoT Overview

2.1 Introduction

In recent years, the term "Internet of Thing" (IoT) has emerged and

has attracted the interest of many researchers around the world. This term

refers to a network of different objects and devices that able to

communicate with each other. These objects or devices are integrate with

sensors to collect information about objects and to communicate with the

server computer to exchange the information. Thus, a person can control a

particular device without being in a specific place to deal with the device.

Sensors in IoT are need to wireless communication transceiver in order

things to be able share information. In IoT connections, it will be expect of

widespread to using IEEE 802.11ah technology. It is a one of the Wi-Fi

standards for wireless communication of IoT sensors, which created by

IEEE 802.11 committee members in 2015. [18]

2.2 IoT Concept

Internet of things (IoT) or called Internet of Objects is a network of

interconnected devices that can to interaction with each other and with

humans and physical objects in the world to execute a diversity of tasks.

IoT is a new technology for connecting to the internet. Objects in IoT are

communicate with each other and behave smartly by making the right

decisions in real time as well as can distinguish themselves and accessing

information gathered by other things. The IoT devices embedded with

sensors to ensure the devices connection with the physical world. Figure

(2.1) show that anything’s can connection to the internet from any place to

offer any services at any time. The using of sensors enables IoT devices to

sense changes in their surroundings, enabling them to improve procedures

15

to continue carry out their task, as well as make effective independent

decisions to fit changes and interacts with the physical world. This

interaction with the physical world make a IoT of efficient applications

have spread widely and easy to use, making IoT devices is available in

many applications fields, from smart cities to smart industries, from smart

home to smart personal healthcare etc. With the widespread use of IoT

devices, become more popular. By 2020, devices connect to internet will

be 30 billion, depending for the business insider report. In the next five

years, the cost of manufacturing of IoT devices will be more than $ 6

trillion dollars [2][21].

Figure (2.1). IoT Concept

2.3 IoT Application Requirements

With the emergence of IoT concept, several technologies and

applications have been create that are aimed to changing aspects of day life

for the better [22]. In IoT applications devices, the sensors are include

16

which operate on small data transfers over short distances from remote

locations. One of the most important requirements is long range, most

applications covering short distances ranging from 10 to 100 meters, many

of which require a range of over 100 meters to several kilometers, and data

rate can considered less than 1 Mbit / s be a typical . The second important

thing is the low power consumption for applications where most

applications run on the battery, therefor require a long battery life. IoT

applications that need to short range can be using traditional

communication technologies such as ZigBee, Bluetooth, and Wi-Fi, which

its frequency provide the short-range. Energy consumption is another

challenge. It’s known in the physics of radio waves that the range is the

reverse of frequency. This means, in low frequency signals the

transmission range is high in contrast to high-frequency signals. The

frequency range of the basic communication techniques is either 2.4 GHz

or 5 GHz in the short rang. The range can be extend using low frequencies.

The benefits of working in the frequency band below 1 GHz is the range

expansion as well as the low frequencies enable penetrate buildings better

than the high frequencies [23].

One of the important features of a communication protocol that

supports IoT applications are having a long transmission range, low data

rate and low power consumption[1]. The basic features of the for IEEE

802.11ah specification that amend from IEEE 802.11 legacy specification

can able to support IoT application requirements comparing with current

communication protocols. IEEE 802.11ah is a new technology operating

at 1GHz, where the low frequency ensure the expansion of transmission

band. Thus, IEEE 802.11ah can be adopt as a communication protocol

standard covering IoT requirements.

17

2.4 IEEE 802.11ah and IoT

In the seeing an intelligent world, the spread of (IoT) evolves very

quickly. IoT having things in various aspects of our daily lives such as

mobile phones, sensors, vehicles, clothing, computers and many other

things. The number of devices is increasing in the internet, according to the

Cisco Internet Business Solutions Group (IBSG). The number of devices

in 2020 will reach 50 billion. According to the large expected number of

devices, wireless technology is suitable for connecting this number of

devices. Wireless technology was develop to connect a limit number of

devices that are over short distances with each other at a high transfer rate.

So, the IEEE 802 LAN / MAN Standards Committee (LMSC) was set a

new standard IEEE 802.11ah Task Group (TGah) amend from legacy

IEEE 802.11 standard to fit the low power requirements of IoT devices

connected to internet. The future is predictive of the increasing number of

low-power intelligent devices connected to the internet through low-power

wireless technologies. Therefore, the task group has expanded the scope

of 802.11 networks, which develop energy-efficient protocols to connect

thousands of devices that can to operate within the same region. The

expanding of the concept of IoT become covering many application in

everyday aspects of human life. With the evolution and spread of wireless

communication protocols the Wi-Fi network is become used in various

daily fields, at home, university, cafe and work places to connect to the

internet across a wireless access point. So, with widespread use of Wi-Fi,

it has become the best choice of variety IoT applications. A huge number

of IoT applications devices are connect to internet by choosing a low-cost

wireless technology and power consumption. IEEE 802.11ah is a new

communication protocol designed for the purpose to achieving a long-

distance communication between a large numbers of low-power devices to

meet the requirements of the IoT. It works in the low-frequency range, one

18

gigahertz (900MHz), which has a wide spread capacity compared to

conventional Wi-Fi technologies such as 6Lowpan, ZigBee. This band

supports transmission up to 1 km in outdoor and with the possibility of

connecting a large number of the devices up to 8191 with one access point.

[24][25]

2.5 IoT Architecture

IoT concept provides the possibility of connecting devices and

sensors to the Internet and therefore available to communicate to anyone

at anytime and anywhere. IoT applications are moving to include home

appliances, vehicles, the environment, and their susceptibility to sensing

other things and interacting with each other without any human

intervention. IoT has become a new revolution in the information world.

The IoT network has many sensors that collect information about things

and make the right decision in real time to be able to manage them [26].

IoT architecture consist three layered called the perception, network,

in additions, application layers. Each layer has specific functionality as

below:

 The perception layer, It is a physical layer, whose main function is to

identify objects and collect information about the environment in which

they are located by using sensors as well as identifying other smart

objects around them.[27]

 The network layer, the main objective of this layer is to transfer the

collected data from the sensors across the perception layer, as well as

manage communicating to network devices, smart objects, and

servers.[28]

 The application layer, this layer is responsible for implementing smart

solutions and offering application specific services to the user, and can

19

deployed the IoT for different applications such as Smart Cities, Smart

Health, Smart Home.[26][28]

2.6 IoT and Viterbi Decoder

 Wireless technologies are being important aspect of everyday users'

lives, and their impact will be greater in the future. Recently, the

communication habits among consumers have been changing according to

developments in wireless technologies. A report by the World Wireless

Research Forum (WWRF) expected that by 2020 seven trillion wireless

devices would be deploy to seven billion people. Business Insider report

is more recent in 2014 expect by 2020 the number of IoT devices

connecting to the internet will be 24 billion. With this increase in the

number of devices connected to the internet, will guaranteed that there is a

connection to the internet for everything from anywhere and at any time,

therefore will be an introduction to the concept of IoT. Things in internet

of thing can contains a wide range of different elements in daily life such

as tablets, digital cameras and smart phones that embedded with sensors

[23]. Sensors are using to collect data about objects, so it considered being

a core technology in Internet of thing applications. They are small, wireless

low-power electronic devices designed to perform a specific function or

embedded with other devices such as smartphones. Sensors can be consider

the main engine to IoT expanding. IoT contains a variety devices and

heterogeneous communication protocols for data exchange between

devices and data servers. In IoT sensors, wireless communication

transceiver are needed for exchange data [10]. Sensors monitor physical

changes and measure them to convert into raw data stored digitally to be

ready for analysis. In order to fit IoT application requirements, the digital

signals emerging from sensors have little power that make are subject to

noise during wireless transmissions. Since, in IoT the physical layer

components of transmitter and receiver are like to component of Wi-Fi

20

transmitter and receiver. It is necessary to make Research on a low complex

Viterbi decoder Suitable for IoT applications [10]. One of the most

important and complex components of the wireless transceiver is the

Viterbi decoder (VD). The VD function in the receiver is to decode the

convolutional codes coming from transmitter and correct the resulting

errors during transmission. VD is consuming a lot of energy continuously

because it operates nonstop in the wireless transceiver. It is important to

development a small Viterbi decoder consumes a small amount of power

to suit wireless transceiver for IoT applications [2]. The most essential in

802.11ah transceiver is to making the circuit in low power and small size.

One of the most complex block in receiver of IEEE 802.11ah is Viterbi

decoder (VD). The search on low-complexity VD is important for the

development of a communication transceiver suitable IoT application

[2][29].

2.7 Error Detection and Correction (EDC)

In wireless communication systems, the interference and noise

accrue and it is very high. It affects the Signal to Noise Ratio (SNR).

Therefore, the Error Detection and Correction (EDC) techniques are need

to improve SNR [30]. Convolutional code is error correct techniques

almost used in most of communication systems. Transmitter used

convolution encoder add redundancy bits to the information before

transmitted. Therefore, the effective technique to decode the

convolutionally encoded data is Viterbi Decoder (VD). The general flow

of information over a noisy channel shown in fig. (2.2).

`

 Figure (2.2). The Block Diagram of Flow Information over a Noisy Channel

Encoder

Channel i/p o/p

Noise

Decoder

21

2.8 Convolutional Encoder

Convolution codes are one of the powerful and widely used in

numerous applications because of ability of error correction [31]. The

convolution encoding is done by entered a fixed number (m) of input data

to encoder to result in an n_ bits symbol [32]. The input bits passed through

the shift register and merged using (XOR) gates with many outputs of shift

register cells [33]. This process is equivalent to convolution method and

called a convolution coding [32]. A convolution encoder protects data by

adding redundant bits into the binary data stream through the linear shift

registers. Convolution encoder can be described by the three following

parameters (n ,m ,L) as summarized:

n : number of output symbols.

m: number of input symbols.

L: number of shift register.

Constraint length (K) = L+1 is the number of stages which the input bit

pass through in the encoding shift register [34]. Convolution encoder

accepts an (m) input bits that are fed to the shift register and calculates (n)

outputs from generator polynomials by (XOR). In generator polynomial,

(1) refers to the connections and (0) indicates that there are no connections

between shift register and (XOR) gates. Fig. (2.3) shows a simple

convolution encoder example with m=1, n=2, K=3, u1=111, u2=101 [35].

m0

+

m-1

+

+
2

=1+X+X1U

2
=1+X2U

1Input bit m

 Figure (2.3). Convolutional Coding, Rate 1/2, Generator Polynomials 7, and 5

22

There are three methods using to represent the Convolutional

encoder by state diagram, state table and trellis diagram. The number of

state code can be defined by the combinations of bits number in the shift

registers that calculated by: number of state =2L, in the code (2,1,3) above

L=2; so the number of states equal to four and defined by : (00)

,(01),(10),(11). When input equal (0) the transition is represent by solid

line and when input (1) represent transition by dotted line. Figure (2.4)

shown the transition between different four states in state diagram.

Figure (2.4). State Diagram of Code (2, 1, 3)

The four states table are shown in table (2.1).

The trellis diagram illustrates the states diagram in the encoder with

a time line; in every time unit is represent a separate state diagram and the

number of state is (2K-1) . The trellis consist of matrix of nodes, these

nodes represented the number of states in the encoder, each column in the

matrix represents the encoder states for a specific time (the first column

starting from the left represents the possible states at t=0 and the second

column represents the possible states for t=1 and so on). Each state in the

a=00

d=11

00

10

00

10

c=01

11

01

b=10

11

01

Input 1

Input 0

Encoder

state

23

trellis have 2m branches leaving from it and 2m branches arriving to it.

Figure (2.5) show the trellis diagram for code (2 ,1 ,3).

In the encoder, each state transition results in one code word that

may be corrupted through transmission over a noisy channel. The sequence

of data input of the encoder can be reconstructed by Viterbi decoder

through calculating the most likely sequence of state transition [33]. The

trellis diagram in Viterbi decoder using to calculate accumulated distances

(named a path metric) to decode transmission data.

Table 2.1.State Table

Output bit next stat Input stat Input bit

00 S0
S0 00

0

1 11 S2

11 S0
S1 01

0

1 00 S2

10 S1
S2 10

0

1 01 S3

01 S1
S3 11

0

1 10 S3

Figure (2.5). Trellis Diagram of Code (2, 1, 3)

00

11

00

01

10

11

00 00 00 00 00

11 11 11 11 11

10 10 10 10

01

10

01 01 01 01

11

10 10 10 10

01

t=0 t=5 t=4 t=3 t=2 t=1

Stat

e

Input 0

Input 1

24

2.9 Viterbi Decoder

To decode a noisy signal received, the Viterbi decoder is used [36].

 The Viterbi decoder is the most common way to decode convolutional

code that may be corrupt through transmit [33]. Viterbi decoder uses

Viterbi algorithm to decode convolutionally encoded data. The decoder

configuration depends on encoder's generator polynomial, code rate and

constraint length. The encoder adds to original information bits redundant

bits for the purpose of error recovery. The output from encoder is transmit

across the channel. In the receiver, the data contains information with

redundancy bits that may be corrupted through transmission, Viterbi

decoder tries to extract the original information by start moving along the

trellis in the front direction then make some calculations, after this in

backward direction move to find the transmitted bits sequence before

encoding [37]. Decoding complexity is the main drawback it growing

exponentially with the length of code, so it can be used only for relatively

short codes [36]. The computational complexity in Viterbi decoder can be

reduced by using simpler trellis structure. Decoder can be able to correct

information bits corrupts by noisy channel through transition due to the

structure of convolutional encoded code. The decoding will start from zero

state by the assumption that the encoding will start from the same state.

The Viterbi decoding select the low metric path to be winning path. The

winning path will have low bit error path compared to other paths. Viterbi

decoder implementation have two types, namely hard decision and soft

decision Viterbi decoding. In hard decision, a hamming distance metric is

use, and in soft decision the Euclidean distance metric used. Hamming

distance metric is the number of differ bits between received code and

actual code and the path with lowest Hamming distance metric is called

survivor path. If hamming distance is zero, this indicate that the symbol is

receive without any error. Euclidean distance metric is squared difference

25

between received symbol and actual symbol. The path with minimum

Euclidean distance called a survivor path. The received symbol in Soft

decision decoding is quantized in to more than two levels, so the soft

decision decoder is better than hard decision because soft decision

decoding will have more information about the received information

[38][31].

Fig. (2.6) shows the general block diagram of Viterbi decoding

algorithm. Viterbi decoder has three basic units [39]:

2.9.1 Branch Metric Unit (BMU)

 The first unit in the Viterbi decoder is branch metric unit, this unit

calculate the distance between received code from noisy channel and legal

codewards for all trellis branch by compares between them and calculate

the number of different bits. There are two measure in BMU, hamming

distance in the case of hard input decoding or Euclidean distance when soft

input decoding [33]. Hamming distance calculated by XOR-ing received

code with legal codewards and counts the number of 1's in the result ,this

can illustrates in figure(2.7).[38] thus minimum Hamming distance

consider as optimal path through the trellis[39]. Euclidean distance is

calculate the squared distance between received symbol and ideal symbol

to find the distance in soft-decision decoding; the resultant is branch metric

(BM) as shown in equation (2.1) [37] [38].

Encoded

Stream
Decoded

Stream

Branch Metric

Unit

Add Compare

Select Unit

Trace Back

Unit

Figure (2.6). Block Diagram of Viterbi Decoder

26

D= (A-A0)
2+ (B-B0)

2 2.1

2.9.2 Add Compare Select Unit (ACSU)

 The second unit is add compare select unit, also known as the path

metric unit (PMU) calculate new path metric values. It is sub divided into

three parts: add, compare and select units. Consist of two adder and

comparator. in trellis each current state can reached from the previous

stage (from two states), so by help adder each current state have two path

metric through adding current branch metric with path metric to every

two branch coming from previous state. After this, the comparator select

the least metric, and store it as the new path metric to current state. The

ACSU block diagram is showing in figure (2.8) [37].

XOR
Count number

of 1's

Received symbol

Legal symbol

Hamming distance

Figure (2.7). Branch Metric Unit (BMU)

Adder

Path metric

Comparator

and select

Branch metric

Adder

Path metric

Branch metric

New path metric

Figure (2.8). Add Compare Select Unit(ACSU)

27

2.9.3 Trace Back Unit (TBU)

 After storing all possible survivor paths by ACSU and assigned one

bit for the local survivor branch to every state in the trellis to allocate if

the winner branch come from upper or lower position, starting the decoding

for a block of data (determined by the trace back length) through TBU.

This is done by traces back the trellis when reached the end of the trellis

defined by trace-back length (decoding depth) [38]. TBU starting from the

path of the last survivor, for node of the minimum path and then trace back

paths that return the path of the initial survivor track of state 0. Then the

original information data corresponding to the encoded data is determined.

In order to get better performance, the traceback length is calculated by

equation [40]:

(2 to 3) *(K-1) / (1-r) 2.2

Where: K=Constraint length and r=n/m.m

To show the method of operation followed in Viterbi decoders,

below is a simple trellis diagram example at code rate=1/2, K=3 for

convolution encoder and a message length of six bits [1 0 0 1 0 0]. The four

states are implemented as four-dot columns. For each column, the branch

metric is calculated to find the smallest path for each time line (t). For the

assumed input sequence bits, the output result from the encoder will be:

[11 10 11 11 10 11]. During the transmission, the bit number ten is assumed

to be corrupted, so the decoder input is [11 10 11 11 11 11]. Viterbi decoder

works on reconstructing the original data and correcting this error as

illustrated in the trellis diagram shown in figure (2.9). This figure gives the

calculated metrics for the assumed inputs at all the required time lines,

which requires re-plotting a trellis diagram six times to show the calculated

metrics values at all the processing stages.

28

11 11 11 11 10 11

11 11 11 11 10 11

Decoder i/p

t=0 t=1 t=2 t=3 t=4 t=5 t=6

00

11

00

01

10

11

00 00 00 00 00

11 11 11 11 11

10 10 10 10

01

10

01 01 01 01

11

10 10 10 10

01

2

0

0

Path metric

2

0

Figure (2.9.a). Metrics for the First Input

Figure (2.9.b). Metrics for the Second Input

Decoder i/p

t=0 t=1 t=2 t=3 t=4 t=5 t=6

00

11

00

01

10

11

00 00 00 00 00

11 11 11 11 11

10 10 10 10

01

10

01 01 01 01

11

10 10 10 10

01

2

0

0

3

3

2

0

1

1

0

2

Path metric

29

11 11 11 11 10 11

11 11 11 11 10 11 Decoder i/p

t=0 t=1 t=2 t=3 t=4 t=5 t=6

00

11

00

01

10

11

00 00 00 00 00

11 11 11 11 11

10 10 10 10

01

10

01 01 01 01

11

10 10 10 10

01

2

0

0

Path metric

2

0

2

0

1

1

3

3

2

0

1

1

0

2

1

1

2

0

1

1

0

2

1

1

t=0 t=1 t=2 t=3 t=4 t=5 t=6

00

11

00

01

10

11

00 00 00 00 00

11 11 11 11 11

10 10 10 10

01

10

01 01 01 01

11

10 10 10 10

01

2

0

0

Path metric

0

2

2

0

1

1

3

3

2

0

1

1

0

2

1

1

Decoder i/p

Figure (2.9.c). Metrics for the Third Input

Figure (2.9.d). Metrics for the Fourth Input

30

11 11 11 11 10 11

11 11 11 11 10 11

 Decoder i/p

t=0 t=1 t=2 t=3 t=4 t=5 t=6

00

11

00

01

10

11

00 00 00 00 00

11 11 11 11 11

10 10 10 10

01

10

01 01 01 01

11

10 10 10 10

01

2

0

0

Path metric

3

2

2

0

1

1

1

1

2

0

1

1

0

2

1

1

2

0

1

1

0

2

1

1

2

0

1

1

0

2

1

1

 Decoder i/p

t=0 t=1 t=2 t=3 t=4 t=5 t=6

00

11

00

01

10

11

00 00 00 00 00

11 11 11 11 11

10 10 10 10

01

10

01 01 01 01

11

10 10 10 10

01

2

0

0

Path metric

1

3

2

0

1

1

2

2

2

0

1

1

0

2

1

1

2

0

1

1

0

2

1

1

2

0

1

1

0

2

1

1

2

0

1

1

1

1

0

2

Figure (2.9.e) Metrics for the Fifth Input

Figure (2.9.f) Metrics for the Sixth Input

31

 After reaching the trace back length at t=6, VD begins from the state

that has the smallest path to trace back the path that leads to the initial

survivor track of state 0. Then the original information data corresponding

to the encoded data is determined.

0 0 1 0 0 1

11 11 11 11 10 11

 From the above example, it is clear that Viterbi decoder reconstructs the

original input data as well as corrects the errors that may occur during

transmission. A flowchart that shows the Viterbi decoder operation steps

shown in figure (2.10).

data i/p

Decoder i/p

t=0 t=1 t=2 t=3 t=4 t=5 t=6

00

11

00

01

10

11

00 00 00 00 00

11 11 11 11 11

10 10 10 10

01

10

01 01 01 01

11

10 10 10 10

01

2

0

0

Path metric

0

2

2

0

1

1

3

3

2

0

1

1

0

2

1

1

2

0

1

1

0

2

1

1

1

1

0

2

1

1

2

0

2

0

1

1

1

1

0

2

Figure (2.9.g).Trackback the Trellis

32

Yes

No

Start

Initialize all input

value

Calculate branch metric value

Perform Add Compare Select

operation

Path metric value and state

information are stored

Is TB

length

reached?

Start trace back

Obtain decoded

bit

End

Figure (2.10). Viterbi Decoder Flowchart

33

2.10 Viterbi Decoder Hardware Implementation Tool

A Project Navigator interface that enables to access the hardware

provided by FPGA devices is the software programming tools produced by

Xilinx and Altera [41]. The implementation of Viterbi decoder in this thesis

was carried out using Xilinx ISE14.7 as a register transfer level (RTL)

design tool. This interface provides the ability to display and access the

source files in any designed project, in addition to providing the access to

run processes for currently designated sources. It also provides quick

access to creating projects and frequently accessing various materials,

tutorials and documentation. It provides a display of status messages,

errors, and warnings. It enables to view design reports, text files,

simulation waveforms and schematics.

The implementation of a specific design requires translating,`

mapping, placing, routing, and generating operations for a bit stream file

for the design. These design tools are embedded in the Xilinx ISE Design

Suite [42].

2.10.1 Field Programmable Gate Array (FPGA)

FPGA are digital integrated circuits (ICs) that contain configurable

(programmable) blocks of logic along with configurable interconnects

between these blocks. They are created in such a way that is possible for

engineers to configure the design in the field to perform a tremendous

variety of tasks [43].

The first FPGA, introduced in 1985, consisted of 2000 gates.

Recently FPGA, devices consist of up to two million logic cells that can be

configured to implement a variety of software algorithms [43]. Nowadays,

there are many vendors of FPGA devices. One of the most popular

advanced FPGA families in industry is the FPGA series produced by

Xilinx [45].

34

All Xilinx FPGAs contain the following basics resources [46]:

 Configurable logic blocks (CLBs): provide the functional elements

for constructing user's logic.

 Input/output blocks (IOBs): provide the interface between the

package pins and internal signal lines.

 Programmable interconnections (PLs): provide routing paths to

connect the inputs and outputs of the CLBs and IOBs.

The Viterbi decoder architectures are implemented in this thesis using

one of the Xilinx FPGA device, The Nexys4 DDR kit board (Xilinx part

number XC7A100T-1CSG324C). This device has features include:

 15,850 logic slices, each with four 6-input LUTs and 8 flip-flops

 4,860 Kbits of fast block RAM

 Six clock management tiles, each with phase-locked loop (PLL)

 240 DSP slices

 Internal clock speeds exceeding 450 MHz

 On-chip analog-to-digital converter (XADC)

Figure (2.11) shows an overview of Nexys4 DDR kit board.









 Figure 2.11 NEXYS 4 DDR overview

35

2.10.2 Hardware Description Languages (HDLs)

The two most popular hardware description languages are VHDL

and Verilog. The HDL used in this thesis to implement the designed based

on the VHDL, within the use of Xilinx ISE 14.7 as a register transfer level

(RTL) design tool.

VHDL is a general –purpose hardware description language that can

be used to describe and simulate the operation of wide variety of digital

systems, ranging in complexity from few gates to an interconnection of

many complex integrated circuits. VHDL was originally developed for the

military to allow a uniform method for specifying digital systems. Since

then, the VHDL language has become an IEEE standard, and it is widely

used in industry [47].

36

CHAPTER 3

Simulation of Viterbi Decoder

3.1 Introduction

In this chapter, we present a study on decoding the convolutional

codes in AWGN channel using the Viterbi algorithm. This study is perform

using different constraint lengths at a fixed coding rate of (1/2). Two types

of Viterbi decoder, hard and soft decoding are used. The performance of

hard and soft Viterbi decoder is evaluate by measuring Bit Error Rate

(BER) and decoding delays at various constraint lengths using MATLAB

(2013a) program with 32-bit operating system in Intel(R) core(TM) i5-

CPU 2.30 GHz and 2 GB RAM. This enables to select the best Viterbi

decoder model that suited the requirements of IoT. Increasing constraint

length results in further improvements in BER both in soft and hard Viterbi

decoders.

3.2 System Overview

The general block diagram of the designed system that involves

convolution encoder and Viterbi decoder shown in figure (3.1). This

system implements at various constraint lengths. A description of each part

of this system given in the following subsections, with including some of

the MATLAB code used to implement each part.

Data

Generator

Convolution

Encoder

BPSK

Modulator

AWGN

Channel

BPSK

Demodulator

Viterbi

Decoder

Received

Data

Figure (3.1) Block Diagram for the System

37

3.2.1 Data Generator

In this block, a random function generator in MATLAB used to

generate binary random input that is pass into convolution encoder. In this

simulation, 105 random bits are generate and coded to be transmit through

AWGN channel.

3.2.2 Convolution Encoder

The convolution encoder (in the case of using a code rate of 1/2) is

a made up of a number of memory shift registers and two modulo-2 adders.

Each output represents one generator polynomial. A shift register holds

only one input bit. In the simulation of this encoder, a comparison is

performed between five different encoding schemes in order to select the

best encoding scheme that suites the designed Viterbi decoder and helps

getting the best performance, measured using BER at various SNR values.

Each scheme model has different parameters. The number of state for each

convolution encoder equals to (2K-1). Figures (3.2) and (3.3) illustrate the

encoding schemes for constraint length K (3 and 6) and the parameters for

five encoding schemes given in table (3.1) where each generator

polynomial equation can be represented in a binary or equivalent octal

format.

0m 1-m

+

+

+

1
Input bit m

2=1+X2U

2=1+X+X1U

Figure (3.2) Convolution Encoder for K=3

38

3.2.3 BPSK Modulator

The BPSK modulator block utilize to modulate the received data

from convolution encoder. This is done by giving an output of "-1" when

the convolution encoder's output is '0' and "+1" when the encoder's output

is '1'. This performed in MATLAB by using the following equation:

 SM=2*Bcode -1 3.1

Where, SM represents the output signal of BPSK modulator and Bcode is the

convolution encoder output.

Table (3.1) Parameters of Convolution Encoder of Rate 1/2

Constraint

length (K)

Generator

polynomial 1 (U1)

Generator

 polynomial 2 (U2)

3 [111]78 [101]58

4 [1101]158 [1011]138

5 [11101]358 [10011]238

6 [111101]758 [101011]538

7 [1111001]1718 [1011011]1338

0m 4-m 3-m 2-m 1-m

+

+

1
Input bit m

5+x3+x2=1+x+x1U

5+x4+x2=1+x2U
 Figure (3.3) Convolution Encoder for K=6

39

3.2.4 BPSK Demodulator

The AWGN channel gives a complex number sequence in the

output. The value of this output ranges between "-1" and "+1". Because

Viterbi decoder is not able to process this form of outputs, BPSK

demodulator used to convert these complex numbers into real numbers,

providing a matching stage between Viterbi decoder and the AWGN

channel output.

In order to carry out BPSK modulator in MATLAB, the following

function used when hard decision is done:

SD =real (mod_n)>0

While in the case of soft decision decoding, the following MATLAB code

is used:

SD = real (mod_n)

where SD represents the output data sequence value from BPSK

demodulator and 'mod_n' represents the modulated signal which is the

output coming from AWGN channel.

3.2.5 Viterbi Decoder

To recover the original transmitted data, Viterbi decoder is used.

Viterbi decoder uses three stages to decode transmitted data, Branch Metric

Unit (BMU), Add Compare and Select Unit (ACSU), and Trace Back Unit

(TBU).

3.3 Viterbi Decoder Implementation in MATLAB

The operation and performance of Viterbi decoder are evaluated

using MATLAB program simulations.

3.3.1 Branch Metric Unit (BMU)

Branch metric unit calculates the transition branch metric for the

received code. This operation implemented in MATLAB by using XOR

40

operation between the received code and the legal code of the branch. This

operation is perform for a block of data which length is limited by the

traceback length. The method used to calculate the traceback length was

explaine in section (2.9.3).

The following sub code used to calculate the branch metric, where

two branches metrics are compute for each of the four states:

Brarnch_metric(1,j)=sum([0,0]~=[y0(j+n-1),y1(j+n-1)]);

Brarnch_metric(2,j)=sum([1,1]~=[y0(j+n-1),y1(j+n-1)]);

Brarnch_metric(3,j)=sum([1,0]~=[y0(j+n-1),y1(j+n-1)]);

Brarnch_metric(4,j)=sum([0,1]~=[y0(j+n-1),y1(j+n-1)]);

Brarnch_metric(5,j)=sum([1,1]~=[y0(j+n-1),y1(j+n-1)]);

Brarnch_metric(6,j)=sum([0,0]~=[y0(j+n-1),y1(j+n-1)]);

Brarnch_metric(7,j)=sum([0,1]~=[y0(j+n-1),y1(j+n-1)]);

Brarnch_metric(8,j)=sum([1,0]~=[y0(j+n-1),y1(j+n-1)]);

Where [(00), (11), (10), (01), (11), (00), (01), (10)] represent legal codes

while (y0, y1) is the received code.

3.3.2 Add Compare Select Unit (ACSU)

After computing the eight branches metric, the second step is to

calculate the path metric by adding each branch metric with the

corresponding path metric from previous state and select the least path

metric to be consider as a survivor path. The following sub program used

to calculate the path metric:

Path_dis(1,j+1)=min(path_dis(1,j)+Branch_metric(1,j),path

_dis(2,j)+Branch_metric(2,j));

Path_dis(2,j+1)=min(path_dis(3,j)+Branch_metric(3,j),path

_dis(4,j)+Branch_metric(4,j));

Path_dis(3,j+1)=min(path_dis(1,j)+Branch_metric(5,j),path

_dis(2,j)+Branch_metric(6,j));

Path_dis(4,j+1)=min(path_dis(3,j)+Branch_metric(7,j),path

_dis(4,j)+Branch_metric(8,j));

41

Where "Path_dis(1,i+1)" refers to the path metric calculated for state

j+1 and "path_dis(1,i)" is path metric for the previous state j.

3.3.3 Trace Back Unit (TBU)

The finale stage is tracing back the survivor path calculated from the

previous step, starting from the state that has minimum path after reaching

the end of the block of data and tracing back the path to initial state. The

following sub program used to trace back the trellis and reconstruct the

original transmitted data, where in this sub code, the previous state is

calculated and the transition branch that leads to this state represents the

decoded bit.

[pr-state,decoded_bit]=

prev_stage(state,distance,Branch_metric)

if(state==1)

if(distance(1)+Branch_metric(1)<=

distance(2)+branch_metric(2))

pr-state=1;decoded_bit=0;

else

pr-state=2;decoded_bit=0;

end

end

if(state==2)

if(distance(3)+Branch_metric(3)<=

distance(4)+Branch_metric(4))

pr-state=3;decoded_bit=0;

else

pr-state=4;decoded_bit=0;

end

end

3.4 Simulation Results

 For the designed simulation system, (105) random stream of binary

bits are generated. The values of Signal to Noise Ratio (SNR) are set from

0 to 10 dB. A BPSK modulation is applied and signals are pass through

AWGN channel, then, decoded by Viterbi decoder. Analyses performance

of Viterbi decoder is performed by plotting the Bit Error Ratio (BER) versus

42

(SNR) for AWGN channel. Simulation runs for different generator

polynomials, and constraint lengths, also we take a varying trace back

length. The constraint length equal (3, 4, 5, 6, and 7) with tracback length

(10, 15, 20, 25, and 30), the simulation result for hard decoder is show in

table (3.2), and for soft decoder shown in table (3.3). Figure (3.4) shows a

comparative between them in Bit Error Rate (BER) for hard decision

decoder, while figure (3.5) shows the BER for soft decision decoder. Figure

(3.6) compares between soft and hard decoder with different constraint

length (6, and 7). Decoding time for soft and hard decoder with different

constraint length equal (3, 4, 5, 6, and 7) is shown in figure (3.7).

Figure (3.4) Performance of Hard Decoder for Different Constraint

Length

0 1 2 3 4 5 6 7 8 9 10

10
-4

10
-3

10
-2

10
-1

SNR(dB)

B
E

R

Viterbi decoder performance over AWGN channel for BPSK modulated symbols

BER uncoded

BER hard k=3

BER hard k=4

BER hard k=5

BER hard k=6

BER hard k=7

43

 Figure (3.5) Performance of Soft Decoder for Different Constraint

Length

Figure (3.6) Performance of Soft and Hard Viterbi Decoder at

Constraint Lengths of (6 and 7)

0 1 2 3 4 5 6 7 8 9 10

10
-4

10
-3

10
-2

10
-1

SNR(dB)

B
E

R

Viterbi decoder performance over AWGN channel for BPSK modulated symbols

ber uncode

BER soft k=3

BER soft k=4

BER soft k=5

BER soft k=6

BER soft k=7

0 1 2 3 4 5 6 7 8 9 10

10
-4

10
-3

10
-2

10
-1

SNR(dB)

B
E

R

BER uncode

BERhard k=6

BERsoft k=6

BERhard k=7

BERsoft k=7

44

Figure(3.7) Decoding Delay time in Hard Decoder and Soft Decoder

for Constraint Length (3,4,5,6 and 7)

3 3.5 4 4.5 5 5.5 6 6.5 7

1

2

3

4

5

6

7

8

9

constrraint length (k)

ti
m

e
 m

s

Viterbi decoder performance over AWGN channel for BPSK modulated symbols

decode delay in soft

decode delay in hard

45

Table (3.2). BER for Hard Viterbi Decoder

BER with code rate(1/2) for hard decoder

SNR BER for

K=3&TB=10

BER for

K=4&TB=15

BER for

K=5&TB=20

BER for

K=6&TB=25

BER for

K=7&TB=30

0 0.135604

0.182164

0.1965061 0.235999

0.2530552

0.5 0.112859

0.1525342

0.161047

0.194081

0.2079072

1 0.090242

0.123613

0.1282135

0.154045

0.1642739

1.5 0.069822

0.09519

0.0966448

0.115681

0.1208208

2 0.051547

0.0706905

0.0705208

0.081346

0.0848927

2.5 0.037056

0.0503313

0.0474833

0.052852

0.0534071

3 0.026054

0.0341905 0.0291062 0.03139

0.0308927

3.5 0.016884

0.0218333

0.0175062 0.017679

0.0176219

4 0.010535

0.0131553

0.0097844 0.009456

0.0082125

4.5 0.00619

0.0072764

0.004934 0.004241

0.0038563

5 0.003354

0.0040031

0.0026229 0.001982

0.0013104

5.5 0.00177

0.0018623

0.0011615 0.000633

0.0006865

6 0.000769

0.0008881

0.0004917 0.000217

0.0001906

6.5 0.0004190

0.0004079

0.0001489 7.9e-05

4.895e-05

7 0.000171

0.0001729 8.541e-05

1.9e-05

2.188e-05

7.5 7.5e-05

6.211e-05

2.187e-05

1.3e-05

6.25e-06

8 2.e-05

2.173e-05

5.208e-06

0

8.333e-06

8.5 7.e-06

6.212e-06

3.125e-06

0 0

9 3.e-06

4.140e-06

2.083e-06

0 0

9.5 1.e-6 0 0

0 0

10 0 0 0

0 0

46

Table (3.3). BER for Soft Viterbi Decoder

BER with code rate(1/2) for soft decoder

SNR BER for

K=3&TB=10

BER for

K=4&TB=15

BER for

K=5&TB=20

BER for

K=6&TB=25

BER for

K=7&TB=30

0 0.085191

0.1041759

0.1113188 0.118038

0.1292531

0.5 0.064603

0.0770683

0.0790052 0.082069

0.0873239

1 0.046605

0.0539182

0.0557542 0.053725

0.0552906

1.5 0.031789

0.0363385 0.0354198 0.032055

0.031826

2 0.020805

0.0224099

0.0215406 0.017093

0.016875

2.5 0.013233

0.0134772

0.0120042 0.009342

0.0079239

3 0.007716

0.0075186 0.0063042 0.004056

0.0033583

3.5 0.004333

0.0036563 0.0030208 0.001999

0.001391

4 0.002175

0.0019089 0.001325

0.000711

0.0005854

4.5 0.001145

0.0007795 0.0006521 0.00029

0.0001812

5 0.000532

0.0003509

0.0002760 0.000116

6.250e-05

5.5 0.000208

0.0001770 0.0001031 4.400e-05

1.250e-05

6 8.60e-05

5.797e-05

4.37e-05

9.e-06

3.125e-06

6.5 2.2e-05

2.381e-05

1.979e-05

5.00e-06

2.083e-06

7 4.0e-06

1.345e-05

7.291e-06

0

0

7.5 3.e-06

1.035e-06

4.166e-06

0 0

8 1.0e-06

0

0

0 0

8.5 0

0

0

0 0

9 0

0

0

0 0

9.5 0

0

0

0 0

10 0

0

0

0

0

47

3.5 Simulation Analysis

The results shown in the above figures are simulate by Matlab2013a.

Figures show the performance of Viterbi decoder in both hard and soft

decoder in BER for different constraint lengths and polynomial equations

with code rate=1/2. Soft decoder was shown to have higher BER than hard

decoder by (1 to 2) dB, which can be noticed from figures (5) and (6).

Further improvement in BER can be achieve by increasing the constraint

length in both cases. At constraint lengths of 6 and 7, the designed Viterbi

decoder had, the highest performance calculated using BER and decoding

time. From figure (3.6) and table (3.4) that is show the BER and decoding

delay time for both hard and soft decoder at constraint length (6, and 7). It

is clear that the performance of BER is almost similar at constraint lengths

(6 and 7); therefore, we select the decoder for constraint length 6 in the

designed Viterbi decoder. This is because of having lower complexity than

length 7 with approximately same performance and less decoding time by

4.7ms and 3.5ms in hard and soft types as illustrate from table (3.5),

respectively. The results show that the decoding time was faster in hard

decision than that in soft decision.

48

Table (3.4). BER for Soft and Hard Viterbi Decoder at Constraint

Lengths of (6 and 7)

BER and decoding delay with code rate ½

SNR BER for

K=6 (hard)

BER for

K=6(soft)

BER for

K=7(hard)

BER for

K=7(soft)

0 0.235999 0.118038 0.2530552 0.1292531

0.5 0.194081 0.082069 0.2079072 0.0873239

1 0.154045 0.053725 0.1642739 0.0552906

1.5 0.115681 0.032055 0.1208208 0.031826

2 0.081346 0.017093 0.0848927 0.016875

2.5 0.052852 0.009342 0.0534071 0.0079239

3 0.03139 0.004056 0.0308927 0.0033583

3.5 0.017679 0.001999 0.0176219 0.001391

4 0.009456 0.000711 0.0082125 0.0005854

4.5 0.004241 0.00029 0.0038563 0.0001812

5 0.001982 0.000116 0.0013104 6.250e-05

5.5 0.000633 4.400e-05 0.0006865 1.250e-05

6 0.000217 9.e-06 0.0001906 3.125e-06

6.5 7.9e-05 5.00e-06 4.895e-05 2.083e-06

7 1.9e-05 0 2.188e-05 0

7.5 1.3e-05 0 6.25e-06 0

8 0 0 8.333e-06 0

8.5 0 0 0 0

9 0 0 0 0

Table (3.5) Decoding Time for K 6 and 7 in Hard and Soft

Constraint Lengths

(K)

Decoding Delay Time

in Hard (ms)

Decoding Delay Time

in Soft (ms)

6 3.9 5.6

7 8.6 9.1

49

Chapter Four

FPGA Implementation of Viterbi Decoder

4.1 Introduction

The Viterbi decoder was implemented using MATLAB program in

order check the accuracy and performance efficiency of each stage of the

design. The design was present in detail in chapter 3. However, time

consumption and hardware utilization are highly important metrics that

measure the efficiency of any design and require implementing the design,

so that they are possible to be measure.

This chapter presents the FPGA implementation of the Viterbi

decoder in detail. The synthesis stage of the proposed Viterbi decoder is

carried out using Xilinx Nexys4 DDR board Artix-7 XC7A100T device

CSG324 package -1 speed tool based on VHDL hardware description

language at a code rate of ½ and constraint lengths K=6 and 7 for two types

of Viterbi decoder, hard and soft decoding. The design is carry out with the

help of Xilinx ISE14.7 as a register transfer level (RTL) design tool. This

software provides a design environment for the engineering who uses

hardware description languages to describe his own design, and enables to

test the design operation before synthesizing it using one of the FPGA

devices.

4.2 Implementation of Viterbi Decoder in VHDL

It is usually possible to describe an architecture through

programming using more than one method. However, each method will

result in a different resource allocation, which may lead to an inefficient

utilization. Therefore, when describing a structure in VHDL, it is highly

important to follow the method that leads to an optimal design in order to

50

reduce hardware utilization of the FPGA device to the minimum and have

a satisfactory efficient implementation.

A random input sequence bit is created and then has been encoded

using convolutional encoder of constraint length K=6 and code rate 1/2

then transmitted over AWGN channel. In real case, the output codes

symbol may contain some errors that occur through wireless transmission.

This requires the use of AWGN to add an error to the symbols. AWGN is

implemente in Matlab in order to get the noisy encoded symbols that are

used as the signal given to the input of the Viterbi decoder implemented in

VHDL.

The input signal processed in the VHDL code is defined as an array

of 25 elements length, each element has a length 2-bit. This is because in

the VHDL code, a trace back length of (25) is used, which is calculated

according to equation (2.2). Therefore, the encoded symbol entry of the

decoder has a length of fifty bits (twice the trace back decoder as a code

rate of 1/2 is used).

Viterbi decoder consists of three units: Branch metric Unit, Add

Compare Select Unit and Trace Back Unit, as explained in chapter 2. The

FPGA implementation of these three units using VHDL language are

describe in detail in the following subsections.

4.2.1 Branch Metric Unit

The Branch Metric unit accepts an input of 2-bits length with each

clock cycle. This requires 25 clock cycle to process the total input coded

symbols. For each input, 64 integer numbers representing the branch

metrics of 32 states are generated, with their values ranging between 0 and

2. This is performed in VHDL using if statements. A flow chart that

represents the implementation of Branch Metric Unit in VHDL shown in

figure (4.1).

51

Begin

Clk=1 and

clk 'event
End

process

No

Yes

Ip_data

=01

Ip_data

=10

1

No

Ip_data

Ip_data

=00

Yes

Yes

Yes

No

No

Metric (0) =0

Metric (1) =2

Metric (2) =1

Metric (63) =1

Metric (0) =1

Metric (1) =1

Metric (2) =0

Metric (63) =2

Metric (0) =1

Metric (1) =1

Metric (2) =2

Metric (63) =0

Metric (0) =2

Metric (1) =0

Metric (2) =1

Metric (63) =1

Figure (4.1) Flow Chart of Branch Metric Unit

52

4.2.2 Add Compare Select Unit

The Add Compare Select Unit receives the 64 integer output of the

Branch Metric Unit and performs addition operation for the current state

between each initial distance and the branch metric coming from previous

state for a specific input. This requires allocating 64 addition circuits, each

two consecutive additions belong to one state. Each addition circuit accepts

two integer inputs, the first input (initial distance) ranges between 0 and 15

and the second input (branch metric) is between 0 and 2. The output

produced from each addition is an integer ranging between 0 and 31.

In order to compare between the outputs of each two-addition

operations that belong to one state, a comparison circuit required to be

implemented. Therefore, for the 32 states, a 32 comparison circuit are

implemented. This process of addition and comparison produces 32

distance with each clock cycle. After completing the calculation of all the

distances, the number of the state that has the smallest distance save to be

used in the final stage of Viterbi decoder for reconstructing the original

data. A flow chart that represents the implementation of Add Compare

Select Unit in VHDL shown in figure (4.2).

4.2.3 Trace Back Unit

The Trace Back Unit receives 32-integer distance for each input

code from add compare select unit. Afterwards, it is begin to reconstructed

original data. The operation of tracing back the trills starts from the state

that has the lowest distance (the distance is the value of each of the previous

unit outputs). The state value is integer number ranging from (0 to 31). If

the state number between 0 and 15, the value of the branch that leads to

this state is 0. While the state number between 16 and 31, the value of the

branch that leads to this state is 1. By repeating the comparison operation

that performed in the previous stage (ACSU) and led to the received

53

distances, the value of the pre-state is predicted for the chosen distance.

With each new clock cycle, one output bit is produce. Thus, the total output

of this stage of 25-bit length resembles the reconstructed data. Therefore,

each coded symbol require two clock cycle for reconstructed. A flow chart

that represents the implementation of Trace Back Unit in VHDL shown in

figure (4.3).

54

i=i+1

Udistance(2)=initial_distance(4)+metric(4)

Ldistance(2)=initial_distance(5)+metric(5)

i=i+1

Udistance(3)=initial_distance(6)+metric(6)

Ldistance(3)=initial_distance(7)+metric(7)

i=i+1

Udistance(5)=initial_distance(10)+metric(10)

Ldistance(5)=initial_distance(11)+metric(11)

i=i+1

Udistance(4)=initial_distance(8)+metric(8)

Ldistance(4)=initial_distance(9)+metric(9)

i=i+1

Udistance(6)=initial_distance(12)+metric(12)

Ldistance(6)=initial_distance(13)+metric(13)

i=i+1

Udistance(7)=initial_distance(14)+metric(14)

Ldistance(7)=initial_distance(15)+metric(15)

i=i+1

Udistance(1)=initial_distance(2)+metric(2)

Ldistance(1)=initial_distance(3)+metric(3)

i=0

Udistance(0)=initial_distance(0)+metric(0)

Ldistance(0)=initial_distance(1)+metric(1)

1

i=i+1

Udistance(10)=initial_distance(20)+metric(20)

Ldistance(10)=initial_distance(21)+metric(21)

i=i+1

Udistance(11)=initial_distance(22)+metric(22)

Ldistance(11)=initial_distance(23)+metric(23)

i=i+1

Udistance(14)=initial_distance(28)+metric(28)

Ldistance(14)=initial_distance(29)+metric(29)

i=i+1

Udistance(15)=initial_distance(30)+metric(30)

Ldistance(15)=initial_distance(31)+metric(31)

i=i+1

Udistance(13)=initial_distance(26)+metric(26)

Ldistance(13)=initial_distance(27)+metric(27)

i=i+1

Udistance(12)=initial_distance(24)+metric(24)

Ldistance(12)=initial_distance(25)+metric(25)

i=i+1

Udistance(8)=initial_distance(16)+metric(16)

Ldistance(8)=initial_distance(17)+metric(17)

i=i+1

Udistance(9)=initial_distance(18)+metric(18)

Ldistance(9)=initial_distance(19)+metric(19)

2

55

i=i+1

Udistance(23)=initial_distance(14)+metric(46)

Ldistance(23)=initial_distance(15)+metric(47)

i=i+1

Udistance(25)=initial_distance(18)+metric(50)

Ldistance(25)=initial_distance(19)+metric(51)

i=i+1

Udistance(24)=initial_distance(16)+metric(48)

Ldistance(24)=initial_distance(17)+metric(49)

i=i+1

Udistance(22)=initial_distance(12)+metric(44)

Ldistance(22)=initial_distance(13)+metric(45)

i=i+1

Udistance(20)=initial_distance(8)+metric(40)

Ldistance(20)=initial_distance(9)+metric(41)

i=i+1

Udistance(21)=initial_distance(10)+metric(42)

Ldistance(21)=initial_distance(11)+metric(43)

i=i+1

Udistance(19)=initial_distance(6)+metric(38)

Ldistance(19)=initial_distance(7)+metric(39)

i=i+1

Udistance(18)=initial_distance(4)+metric(36)

Ldistance(18)=initial_distance(5)+metric(37)

i=i+1

Udistance(17)=initial_distance(2)+metric(34)

Ldistance(17)=initial_distance(3)+metric(35)

i=i+1

Udistance(16)=initial_distance(0)+metric(32)

Ldistance(16)=initial_distance(1)+metric(33)

2

i=i+1

Udistance(28)=initial_distance(24)+metric(56)

Ldistance(28)=initial_distance(25)+metric(57)

i=i+1

Udistance(26)=initial_distance(20)+metric(52)

Ldistance(26)=initial_distance(21)+metric(53)

i=i+1

Udistance(27)=initial_distance(22)+metric(54)

Ldistance(27)=initial_distance(23)+metric(55)

i=i+1

Udistance(29)=initial_distance(26)+metric(58)

Ldistance(29)=initial_distance(27)+metric(59)

i=i+1

Udistance(30)=initial_distance(28)+metric(60)

Ldistance(30)=initial_distance(29)+metric(61)

i=i+1

Udistance(31)=initial_distance(30)+metric(62)

Ldistance(31)=initial_distance(31)+metric(63)

i=0

3

56

No

Yes

i=31

i=i+1

minumum_distance=survivor_distance (i)

State=i

survivor_dista

nce(i)<minum

um_distance

No

Yes

4

5

minumum_distance=survivor_distance (0)

State=0

Udistanc

e(i)<=Ldi

stance(i)

survivor_distance(i)=Udistance(i)

survivor_distance(i)=Ldistance(i)

Yes

No

i=i+1

i=31

No

i=0

Initial_ distance(i) =survivor_distance(i)

distance(i)

i=31

i=i+1

No

Yes

Yes

i=1

4

3

Figure (4.2) Flow Chart of Add Compare Select Unit

57

Yes

Yes

No

x= data_ length

State=0

or 1or

….15

Udistance(i,x)

<=Ldistance(i

,x)

pr_state=even state

Branch=0
pr_state=odd state

Branch=0

State=16

or 17or

….31

Yes

No

pr_state= odd state

Branch=1
pr_state= even state

Branch=1

No

x=x-1

State=pr_state

5

7

6

Figure (4.3) Flow Chart of Trace Back unit

58

4.3 Viterbi Decoder Simulation Result

After completing the design in VHDL, the design is simulate in order

to verify the results using Xilinx ISE 14.7 simulator tool. The input values

for the Viterbi decoder are insert in the code design; therefore, the

simulation processes all input data directly. The simulation runs for two

different constraint lengths (6 and 7); the following subsections describe

the simulation output waveform of each unit.

4.3.1 Branch Metric Simulation Result

The first calculation in Viterbi decoder is computing the branch

metric value. The simulation result of branch metric is presented in figures

(4.5) and (4.6), with code rate (1/2), and constraint length 6 and 7

respectively, assuming that the original input sequence and the received

code symbols are as shown below:

For Constraint Length = 6.

Input sequence: (25 Bits)

[0001000000110100110100000]

Encoded symbol: (50 Bits)

[00,00,00,11,10,11,10,01,11,00,11,01,01,10, 01,01,10,00,10,10,01,01,01,01,11]

Encoded symbol after noise:

[10,00,10,11,10,11,10,01,11,10,11,01,11,10,01,01,10,10,10,10,01,01,01,01,11]

For Constraint Length = 7.

Input sequence: (30 Bits)

[000010111110101100011010000000]

Encoded symbol: (60 Bits)

[00,00,00,00,11,01,00,01,01,00,01,11,10,11,01,00,01,10,00,01,11,01,11,10,01,10,11,

10,11,00]

Encoded symbol after noise:

[00,00,00,00,10,01,00,01,01,01,01,11,10,11,01,00,01,10,00,01,11,01,11,01,01,01,00,

10,01,11].

59

The received code symbol given to the input of the branch metric

unit and the result shown in the figures. Figure (4.4) shows the computed

64 branch metric intended to 32 state for the encoded bits given above. In

addition, figure (4.5) shows the computed 128 branch metric intended to

64 state for the encoded bits given above.

Figure (4.4) Simulation Result for BMU for Constraint Length = 6

Figure (4.5) Simulation Result for BMU for Constraint Length = 7

60

4.3.2 Add Compare Select Simulation Result

The simulated of the ACSU is based on the result of BMU, figure

(4.6) shows the simulation result for constraint length 6 viewing the 32-

integer distance for each encoded input symbole and figure (4.7) shows the

simulation result for constraint length 7 viewing the 64 -integer distance

for each encoded input symbole

Figure (4.6) Simulation Result for ACSU for Constraint Length = 6

Figure (4.7) Simulation Result for ACSU for Constraint Length = 7

61

4.3.3 Trace Back Simulation Result

After BMU and ACSU complete their processes and this requires 25

clock cycle to process all the input data in the case of K=6 and 30 clock

cycle when K=7, the TBU is now ready to obtain the output from previous

unit and start reconstructing data. The output from this unit represents the

original 25-bits input sequence estimated by Viterbi decoder when K=6, or

30-bits when K=7, depending on its calculations on the upper and lower

branch computed from ACSU to obtain the correct value that represents

the previous state. The simulation result of this unit in the case of constraint

length 6 is shown in figure (4.8) while figure (4.9) show the simulation

result when constraint length 7.

Figure (4.8) Simulation Result for TBU of Constraint Length = 6

62

4.4 Synthesis and Implementation Viterbi Decoder

After checking the behavior of the design and reviewing results

using simulation, this design is ready to be synthesize and implement using

Xilinx Artix-7 XC7A100T FPGA device, and to check the amount of

hardware resources required to implement the design. Figure (4.10) shows

the overall architecture design of Viterbi decoder.

Figure (4.9) Simulation Result for TBU of Constraint Length = 7

Figure (4.10) Architecture Design of Viterbi decoder

63

Figure (4.11) show the hardware implementation of Viterbi decoder

on Xilinx Artix-7 board with showing of LEDs that are activate indicating

the outputs produced from Viterbi decoder.

After completing the synthesis of the design, the synthesis report is

generated and it is found that the minimum period is equal to (6.363ns) and

the maximum operating frequency is equal to (157.156MHz) for constraint

length 6 in hard type, as shown in figure (4.12).

Figure (4.11) Hardware Implementation of the Design

Figure (4.12) Time Summary of the Design for hard Viterbi decoder

at Constraint Length = 6

64

Figure (4.13) illustration that the minimum period is equal to

(7.716ns) and the maximum operating frequency is equal to (129.605MHz)

for constraint length 7.

The device utilization of resources available in the ARTIX 7 kit for

the design when K=6 in hard type is shown in figure (4.14).

Figure (4.13) Time Summary of the Design for hard Viterbi decoder

at Constraint Length = 7

Figure (4.14) Device Utilization of the Design

65

Figure (4.15) show the device utilization of resources available in

the ARTIX 7 kit for the design when K=7.

In the case of soft decoding type, for constraint length 6, figure

(14.16) show the minimum period is equal to (9.319ns) and the maximum

operating frequency is equal to (107.304MHz)

Figure (4.15) Device Utilization of the Design

Figure (4.16) Time Summary of the Design for Soft Viterbi Decoder

at Constraint Length = 6

66

Figure (14.17) show the minimum period is equal to (9.442ns) and

the maximum operating frequency is equal to (105.907MHz) when

constraint length 7.

The device utilization of resources available in the ARTIX 7 kit for

the design when K=6 in soft type is shown in figure (4.18).

Figure (4.18) Device Utilization of the Design

Figure (4.17) Time Summary of the Design for Soft Viterbi

Decoder at Constraint Length = 7

67

The device utilization of resources available in the ARTIX 7 kit for

the design when K=7 in soft type is shown in figure (4.19).

table (4.1) show the decoding time for K 6 and 7 in Hard and Soft

viterbi decoder

Table (4.1) Decoding Time For K 6 and 7 in Hard and Soft

Constraint Lengths

(K)

Decoding Delay Time

in Hard (ns)

Decoding Delay Time

in Soft (ns)

6 6.363 9.319

7 7.716 9.442

4.7 Hardware and Software Results Comparison

The performance of simulation result of the designed Viterbi

decoder in VHDL is compare with a reference Viterbi decoder that has

implemented in MATLAB program.

Table (4.2) explains the match between the results of MATLAB and

VHDL code.

Figure 4.19 Device Utilization of the Design

68

Table (4.2) A Comparison Result Between VHDL and MATLAB

SNR 1

Original input sequence 0001000000110100110100000

Encoded symbol 00,00,00,11,10,11,10,01,11,00,11,01,01,10,01,01,10,00,10,10,01,01,01,01,11

Encoded symbol after noise 10,00,10,11,10,11,10,01,11,10,11,01,11,10,01,01,10,10,10,10,01,01,01,01,11

Decoded data in MATLAB 0001000000110100110100000

Decoded data in VHDL 0001000000110100110100000

SNR 3

Original input sequence 0001000000110100110100000

Encoded symbol 00,00,00,11,10,11,10,01,11,00,11,01,01,10,01,01,10,00,10,10,01,01,01,01,11

Encoded symbol after noise 10,00,10,11,10,11,10,01,11,00,11,01,01,10,11,01,10,10,10,10,01,01,01,01,11

Decoded data in MATLAB 0001000000110100110100000

Decoded data in VHDL 0001000000110100110100000

SNR 5

Original input sequence 0001000000110100110100000

Encoded symbol 00,00,00,11,10,11,10,01,11,00,11,01,01,10,01,01,10,00,10,10,01,01,01,01,11

Encoded symbol after noise 00,00,00,11,11,11,10,01,11,00,11,01,01,10,01,01,10,00,10,10,00,01,01,01,11

Decoded data in MATLAB 0001000000110100110100000

Decoded data in VHDL 0001000000110100110100000

69

Chapter Five

Conclusions and Future Work

5.1 Conclusions

The FPGA implementation of Viterbi decoder given in chapter four

has been test for efficiency in terms of frequency, delay and resource

utilization. This is to find out the most suitable design of Viterbi decoder

that satisfies the requirements of IoT applications. Results of comparison

between constraint lengths of 6 and 7 found in Matlab are confirmed

through the results of the FPGA implementation.

1. In Matlab, the two constraint lengths of 6 and 7 were found to have

approximately similar BER measurements while the decoding delay

was notably lower when using length 6 compared to length 7, in

addition to having less code complexity because of having less

number of computations.

2. In FPGA implementation, when the two constraint lengths are

compare, length 6 resulted in lower resource utilization with higher

frequency and lower decoding delay by 1.353ns and 0.123ns in hard

and soft types as illustrate from table (4.1). The reduced time

required to produce the implementation of Viterbi decoder using

VHDL when length 6 is used can also be added to the advantages of

using this length compared to the use of the constraint length of 7.

3. The FPGA implementation results achieve the requirements of IoT

applications, where a frequency of less than 1GHz is achieved for

the design that uses constraint lengths of 6 and 7. Decoding time

achieved with length 6 is the reason of preferring this length over

length 7 when implementing an IoT application, bearing in mind that

length 6 also reduces the amount of hardware resource utilization

and is easier to be implemented.

70

5.2 Future Work

The designed Viterbi decoder has more than one parameter that can

be changed in order to achieve better performance or improve one of the

implementation parameters. The following are the possible developments

that can be applied to the implementation carried out in this thesis:

1- During the FPGA implementation of the first two stages of Viterbi

decoder (BMU and ACSU), an output was designed to be processed

at each clock cycle and is ready to be entered to the last stage (TBU).

This helped improving the total decoding time of the decoder. The

use of Pipelining technique in FPGA implementation of Viterbi

decoder is suggested as a future work so that an output is achieved

with each clock cycle which adds more improvement to the decoding

delay time. This results from achieving a high throughput of double

without affecting the amount of utilized hardware, leading to an

efficient decoding time.

2- Another future work can be focused on changing the code rate

parameter to other one and observing its effect on the

implementation performance of Viterbi decoder at various constraint

lengths.

71

References:

[1] Chunqiu Lu," Exploration of Low-power Viterbi Decoders Design for

Low-throughput Application",Master Thesis Eindhoven, July 2016.

[2] Zeinab Kamal Aldein Mohammed," Internet of Things Applications,

Challenges And Related Future Technologies", WSN 67(2) (2017)

126-148 EISSN 2392-2192.

[3] Diego Mendez1," Internet of Things: Survey on Security and Privacy",

arXiv: 1707.01879v2 [cs.CR] 10 Jul 2017.

[4] Heba Aly," Big Data on Internet of Things: Applications, Architecture,

Technologies , Techniques, and Future Directions", International

Journal of Computer Science Engineering (IJCSE), ISSN: 2319-7323

Vol. 4 No.06 Nov 2015.

[5] Timothy Malche," Internet of Things (IoT) for building Smart Home

System", International conference on I-SMAC (IoT in Social, Mobile,

Analytics and Cloud) (I-SMAC 2017), 978-1-5090-3243-3/17/$31.00

©2017 IEEE.

[6] Heetae Yang," IoT Smart Home Adoption: The Importance of Proper

Level Automation", Hindawi Journal of Sensors, Volume 2018, Article

ID 6464036, 11 pages, https://doi.org/10.1155/2018/6464036.

[7] Fang Hu," On the Application of the Internet of Things in the Field of

Medical and Health Care",2013 IEEE International Conference on

Green Computing and Communications and IEEE Internet of Things

and IEEE Cyber, Physical and Social Computing, DOI

10.1109/GreenCom-iThings-CPSCom.2013.384.

[8] Rafiullah Khan," Future Internet: The Internet of Things Architecture,

Possible Applications and Key Challenges",(pp. 257-260), DOI:

10.1109/FIT.2012.53.

[9] Ravi Gorli1," Future of Smart Farming with Internet of Things", Journal

of Information Technology and Its Applications, Volume 2 Issue 1,

April 2017, Page 27-38.

[10] Pallavi Sethi," Internet of Things: Architectures, Protocols, and

Applications", Hindawi Journal of Electrical and Computer

Engineering, Volume 2017, Article ID 9324035, 25 pages

,https://doi.org/10.1155/2017/9324035.

https://doi.org/10.1155/2018/6464036

72

[11] Anass Sedrati," A Survey of Security Challenges in Internet of Things",

Advances in Science, Technology and Engineering Systems Journal

Vol. 3, No. 1, 274-280 (2018), ISSN: 2415- 6698,

[12] M.Praveen Kumar1," A SURVEY ON IoT PERFORMANCES IN BIG

DATA", International Journal of Computer Science and Mobile

Computing, IJCSMC, Vol. 6, Issue. 10, October 2017, pg.26 – 34, ISSN

2320–088X.

[13] Andrea Dodini," The Big Five IoT Challenges", POWER

MEASUREMENT, Issue 3 2017 Power Electronics Europe.

[14] Yan Sun," FPGA Design and Implementation of a Convolutional

Encoder and a Viterbi Decoder Based on 802.11a for OFDM", Wireless

Engineering and technology, 2012, 3, 125-131.

[15] T. Adame," IEEE 802.11ah: The Wi-Fi Approach for M2M

Communications", arXiv: 1402.4675v2 [cs.NI] 5 Oct 2014.

[16] Thi Hong Tran," Performance Evaluation of 802.11ah Viterbi Decoder

for IoT Applications", 2015 International Conference on Advanced

Technologies for Communications (ATC), 978-1-4673-8374-

5/15/$31.00 ©2015 IEEE.

[17] Minyoung Park," IEEE 802.11ah: Sub-1-GHz License-Exempt

Operation for the Internet of Things", IEEE Communications Magazine

• September 2015, 0163-6804/15/$25.00 © 2015 IEEE.

[18] Hiromasa Kato," ASIC Design of a Low-Complexity K-best Viterbi

Decoder for IoT Applications", APCCAS 2016, 978-1-5090-1570-

2/16/$31.00 ©2016 IEEE.

[19] Thi Hong Tran," PER Evaluation of K-min Viterbi Decoder for

Wireless Sensors", 2016 Tenth International Conference on Sensing

Technology, 978-1-5090-0795-0/15/$31.00 ©2016.

[20] Rami Akeela, "Design and Verification of IEEE 802.11ah for IoTand

M2M Applications", Conference Paper March 2017, DOI:10.

109/PERCOMW.2017.7917612.

[21] Amit Kumar Sikder1," A Survey on Sensor-based Threats to Internet-

of-Things (IoT) Devices and Applications", arXiv: 1802.02041v1

[cs.CR] 6 Feb 2018.

[22] Victor Baños-Gonzalez 1," IEEE 802.11ah: A technology to face the

IoT Challenge", Sensors 2016, 16, 11; doi: 10.3390/s16111960.

73

[23] Lou frenzel," What is the Difference between IEEE 802.11ah and

802.11af in the IoT? "Electronic Design, Article Jul 17 ,2017.

[24] N. Ahmed," A comparison of 802.11ah and 802.15.4 for IoT", The

Korean Institute of Communications and Information Science, ICT

Express 2 (2016) 100–102.

[25] Mahmoud Elkhodr," Emerging Wireless Technologies In The Internet

Of Things: A Comparative Study", International Journal of Wireless &

Mobile Networks (IJWMN) Vol. 8, No. 5, October 2016, DOI:

10.5121/ijwmn.2016.8505.

[26] Aqeel-ur-Rehman1," Communication Technology That Suits IoT – A

Critical Review", Conference Paper · April 2013, DOI: 10.1007/978-3-

642-41054-3_2, pp. 14–25, 2013.

[27] Avinash P. Ingle," Internet of Things (IoT): Vision, Review, Drivers of

IoT, Sensors Nodes, Communication Technologies and Architecture",

International Journal of Advances in Computer and Electronics

Engineering Volume 2, Issue 8, August 2017, pp. 1–7.

[28] Pallavi Sethi," Internet of Things: Architectures, Protocols, and

Applications", Hindawi Journal of Electrical and Computer

Engineering, Volume 2017, Article ID 9324035, 25 pages.

[29] Xuying Zhao," A High Performance Multi-standard Viterbi

Decoder",978-1-5090-3025-5/17/$31.00 ©2017 IEEE.

[30] Kapil Gupta," A Comparative Study of Viterbi and Fano Decoding

Algorithm for Convolution Codes", AIP Conference Proceedings 1324,

34 (2010), doi: 10.1063/1.3526231.

[31] P. Kranthi," Optimization of the Decoding Performance of Rate ⅓

Convolutional Code ",International Journal of Innovative Research &

Development, ISSN 2278 – 0211(Online), August, 2014 Vol 3 Issue 8.

[32] Poonam Beniwal1," Convolution Code Encoder Design Using Particle

Swarm Optimization", International Journal of Electronics

Engineering, 4 (1), 2012, pp. 65– 67, ISSN: 0973-7383,

[33] K.Cholan, a," Design and Implementation of Low Power High Speed

Viterbi Decoder", International Conference on Communication

Technology and System Design 2011, Procedia Engineering 30 (2012)

61 – 68.

74

[34] Deepa Kumari," Design and Performance Analysis of Convolutional

Encoder and Viterbi Decoder for Various Generator Polynomials", Int.

Journal of Engineering Research and Applications, ISSN: 2248-9622,

Vol. 6, Issue 5, (Part - 2) May 2016, pp.67-71.

[35] Suneha Gupta,"Design and Implementation of an Optimized Viterbi

Decoder", A thesis submitted in partial fulfillment of the requirements

for the award of degree of master of technology in VLSI design and

CAD, Thapar University July 2012

[36] Mahe Jabeen," Design of Convolution Encoder and Reconfigurable

Viterbi Decoder", International Journal of Engineering and

Science,ISSN: 2278-4721, Vol. 1, Issue 3 (Sept 2012), PP 15-21.

[37] Amjad Saeed Khan, "Hardware Implementation and performance

valuation of Viterbi Decoder using Parallel decoding approach over

Xilinx Virtex-6 FPGA", International Journal for Research and

Development in Engineering ISSN: 2279-0500.Vol2: Issue3: pp- 01-

09. IJRDE 2014. Volume2: Issue3

[38] Ms. Shankari N," Hard Decision Viterbi Decoder: Implementation on

FPGA and Comparison of Resource Utilization on Different FPGA

Devices", Int. Journal of Engineering Research and Application, ISSN:

2248-9622, Vol. 6, Issue 5, (Part -6) May 2016, pp.43-47.

[39] Ch Sandeep Reddy," FPGA Implementation of Convolution Encoder

and Viterbi Decoder", International Journal of Research in Electronics

& Communication Technology, Volume 1, Issue 2, October-December,

2013, pp. 166-172, © IASTER 2013 , www.iaster.com, ISSN Online:

2347-6109, print: 2348-0017.

[40] MATLAB Help 2017A.

[41] Ognjen Šcekic," FPGA Comparative Analysis", University of Belgrade

ETF – School of Electrical Engineering, Belgrade 2005.

[42] www.xilinx.com," ISE In-Depth Tutorial", UG695 (v14.1) April 24,

2012.

[43] C.Maxfied,"The Design Warrior's Guide to FPGA", Mentor Graphics

Corporation And Xilinx, Inc., ISBN:0-7506-7604-3,2004.

[44] Xilinx, Inc. "Introduction to FPGA Design with Vivado High-Level

Synthesis (UG998) ", 2013.

75

[45] Remigiusz WISNIEWSKI," Synthesis of Compositional Microprogram

Control Units for Programmable Devices", University of Zielona Góra

Press, Poland, 2009, ISBN 978-83-7481-293-1.

[46] Chandra S. Mulpuri," Runtime and Quality Tradeoffs in FPGA

Placement and Routing", Master’s Thesis July 2001, Northwestern

University.

[47] Charles H.Roth, Jr,"Digital Systems Design Using VHDL", Pws

Publishing Company ,20 Park Plaza, Boston MA 02116-4324,ISBN:0-

534-95099-X,1999.

1

 الخلاصة

 انًشيض انخلافٛفٙ نفك حشفٛش انًسخخذو Viterbi decoder))فاحح انخشيٛض فٛخشبٙ خبش ٚؼ

convolutional codes)انُاحجت مٕٚت نخصحٛح الأخطاء ان (فٙ أَظًت الاحصالاث يٍ انخمُٛاث

 .ػٍ ػًهٛاث الاسسال ٔالاسخلاو

فٙ حطبٛماث انلاسهكٛت ػبش لُٕاث الاحصالاث ػًهٛاث الاسسال لذ حخؼشض انبٛاَاث اثُاء

انؼذٚذ يٍ الأخطاء ظٕٓس إنٗ يًا ٚؤد٘ ،ٔانخذاخمنضٕضاء ٔانخشّٕٚ انٗ ا اَخشَٛج الاشٛاء

انز٘ حى ah يؼٛاس انُمم انلاسهكٙ ٔٚؼخبش . الاسخلاوانبٛاَاث فٙ جاَب انضٛاع فٙٔ

ج الأشٛاء أحذ انطشق انًًٓت نخصحٛح اَخشَٛ اػخًادِ كبشٔحٕكٕل احصال لاسهكٙ فٙ حطبٛماث

 .ْزِ الأخطاء

بٍٛ الأداء يٍ جاَب ٔحؼمٛذ انخصًٛى ٔٔلج يٕاصَت فاحح انخشيٛض فٛخشبٙ ٚخضًٍ حصًٛى

باسخخذاو فاحح انخشيٛض فٛخشبٙ فٙ ْزِ انشسانت خش. حى حصًٛى ٔحُفٛز آجاَب فك انخشفٛش يٍ

يصفٕفت انبٕاباث انًُطمٛت انًبشيجت حصًٛى ٔيجًٕػت Matlab (a)ًحاكاة بشَايج ان

اصفاث ئٕيماسَت أدائّ ػُذ اسخخذاو فاحح انخشيٛض فٛخشبٙ ػًم نخمٛٛىٔرنك ،(FPGA)حمهٛاً

نخًست ًَارج فاحح انخشيٛض فٛخشبٙ اخخباس أداء حى Matlabبشَايج ٔإػذاداث يخخهفت. باسخخذاو

إجشاء (، حٛث حى1/2)كٕد ذل باسخخذاو يؼٔ ،7ٔ 6ٔ 5ٔ 4ٔ 3 حسأ٘ حشفٛش بأطٕال لٛذ

حمٛٛى الأداء باسخخذاو ٔلج فك انخشفٛش َٔسبت حىٔلذ يُٓا.بٍٛ ْزِ انًُارج ٔحمٛٛى أداء كم يماسَت

 نٓا 7ٔ 6حظٓش انُخائج أٌ أطٕال انمٛذ .يخخهفت SNR يسخٕٚاثػُذ (BERانخطأ فٙ انبخاث)

BER ألم حؼمٛذًا 6 انمٛذ طٕل حٛث ًٚخهك ،انخٙ حى حُفٛزْا الأخشٖأػهٗ يٍ الأطٕال ٔيخشابٓت

ػهٗ ،انُٕػٍٛ انصهب ٔانُاػىثاَٛت فٙ يههٙ 3.5ٔيههٙ ثاَٛت 4.7ٔٔلج فك حشفٛش ألم بًمذاس

 انخٕانٙ.

انخٙ NEXYS DDRيجًٕػت فمذ اسخخذو FPGAأيا انخطبٛك انؼًهٙ ػهٗ جٓاص

بالإضافت ٔنهُٕػٍٛ انصهب ٔانُاػى. 7ٔ 6أطٕال انمٛذ فاحح انخشيٛض فٛخشبٙ ػُذ حخضًٍ حصًٛى

 ألم، اً ٚسخخذو يٕاسد 6طٕل انٚظٓش أٌ انخشفٛش،فك سشػت أكبش فٙٔ اً ألمحؼمٛذايخلاكٓا إنٗ

 بٕاسطت اَخشَٛج الاشٛاءيخطهباث حصحٛح أخطاء حطبٛماث خُفٛز فئٌ أفضم طشٚمت ن ٔنٓزا انسبب

يغ ألم انبٛاَاث،اسخمبال فٙ فش أداءً ػانٛاً يًا ٕٚ ،6لٛذ طٕل فاحح انخشيٛض فٛخشبٙ حخى باسخخذاو

 فمذ يًكٍ.

 قرار المشرفإ
الأشياء باستخدام مصفوفة انترنيت لتطبيقات فيتربي تنفيذ لخوارزميةشيد بأن ىذه الرسالة الموسومة)أ

قسم ىندسة فيتحت اشرافي (هبة سعد محمود شكري) ةالطالب والمعدة من قبل (البوابات المبرمجة حقميا

شيادة / جامعة الموصل، كجزء من متطمبات نيل ىندسة الالكترونيات/ كمية الحاسوب والمعموماتية
 .ىندسة الحاسوب والمعموماتيةفي اختصاص عموم الماجستير

 التوقيع:
 .م. محمد حازم الجماسأالاسم:
 9102/ / التاريخ:

 إقرار المقوم المغوي
فييا من أخطاء لغوية وتعبيرية اشيد بأنو قد تمت مراجعة ىذه الرسالة من الناحية المغوية وتصحيح ماورد

 وبذلك أصبحت الرسالة مؤىمة لممناقشة بقدر تعمق الأمر بسلامة الأسموب أو صحة التعبير.

 التوقيع:
 الاسم:

 9102/ / التاريخ:
 قسم هندسة الحاسوب والمعموماتيةإقرار رئيس

 لرسالة لممناقشة.بناءً عمى التوصيات المقدمة من قبل المشرف والمقوم المغوي أرشح ىذه ا

 التوقيع:
 .م. عبد الباري رؤوف سميمانأالاسم:
 9102/ / التاريخ:

 إقرار رئيس لجنة الدراسات العميا
قسم ىندسة الحاسوب بناءً عمى التوصيات المقدمة من قبل المشرف والمقوم المغوي ورئيس

 أرشح ىذه الرسالة لممناقشة. والمعموماتية
 التوقيع:
 الاسم:
 9102/ / التاريخ:

 جامعة الموصل

 هندسة الالكترونياتكمية

الأشياء باستخدام مصفوفة انترنيت لتطبيقات فيتربي خوارزميةتنفيذ ل
 البوابات المبرمجة حقميا

 رسالة تقدم بيا

 هبة سعد محمود

 إلى

 ىندسة الالكترونياتمجمس كمية
 جامعة الموصل

 من متطمبات نيل شيادة الماجستير كجزء
 في

 ىندسة الحاسوب والمعموماتية

 بإشراف
 الأستاذ المساعد الدكتور

 محمد حازم الجماس

 م9102 هـ 0441

	واجهة
	content
	thesis - Copy
	الخلاصة
	إقرار المشرف

