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Abstract 

Elevation beamforming allows elevational cooperation, which is one 

of the essential features in the development of FD-MIMO systems. This 

study investigates the incorporation of artificial intelligence into FD-

MIMO systems to make the theoretical base of the beamforming 

algorithms stronger and improve their performance. 

 

It provides a better approach that combines artificial intelligence 

methods with reinforcement learning to achieve adaptive beamforming in 

dynamically changing network scenarios. Horizontal and vertical 

beamforming strategies are compared using ULA and URA. The 

simulations take place in urban-inspired distribution. 

 

Performance evaluation is based on the key metrics of BER, 

throughput, and Eb/No. The results show improvements in signal integrity 

and spectral efficiency. BER analysis indicates close performance to 

theoretical limits with an increase in throughput from 2.2 Mbps at -25 dB 

Eb/No to 3.8 Mbps at 5 dB Eb/No. SINR improvements in the order of 80 

dB could enable themselves with the application of optimized 

beamforming weights. 

 

The results show that the role of AI-empowered beamforming 

strategies can play in surmounting high-density urban deployment 

challenges and give the opportunity to work further on wireless network 

optimization.
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CHAPTER ONE 

INTRODUCTION 
 

1.1 Preface 

At the current time, wireless networks are required to deliver more 

than just higher data rates are, also, expected to offer new frontiers of 

reliability, coverage, and energy efficiency. Full dimension-multi-input 

multi output (FD-MIMO) is revolutionary as it unlocks spatial dimension 

using elevation beamforming and provides a way to see and use wireless 

networks. These systems will become increasingly essential for 

overcoming the difficulties of urban densification, which is marked not 

only by large consumer demand but also by the various demands for the 

service quality of the individual user [1]. The transition to Fifth Generation 

(5G) was driven by a search for novelty and elevation. One of the major 

drivers has been beamforming. The basic point of this procedure is that it 

helps in adapting the information that is to be sent, thus making it possible 

for the power of transmission to be concentrated towards its intended 

recipients, thereby leading to much more efficient and effective wireless 

communication systems. By making good use of such a spatial dimension, 

elevation beamforming will make network Resource Allocation (RA) more 

realistic, thereby enhancing user experience through better signal quality 

and network capacity improvement.  

As a broadband opportunity for 5G cellular networks, there is great 

interest in the ability of millimeter-wave (mm-Wave) beamforming to 

deliver extremely high Gigabit per second (Gb/s) data rates [1].  

Massive MIMO is one of the most promising technologies for 

improving the spectral efficiency (SE) of cellular networks. Beamforming 

technology is used to equip a Base Station (BS) with an antenna array with 
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hundreds of active elements to perform coherent processing on both the 

transmitter and receiver sides [1]. 

The main components that provide current wireless communications 

include beamforming in millimeter wave (mmWave) and massive MIMO 

systems. The usage of the mmWave technologies, which leads to a 

significant increase of data rate, throughput, and capacity, also plays a role 

in increasing the bandwidth available when applying the required output 

goals SE.  

The massive MIMO mmWave systems may reach the required 

output goals by applying multiple frequencies and three different 

beamforming techniques: conjugate beamforming, minimum mean 

squared error, and zero-forcing over mmWave channel. However, even 

though the available beamforming techniques provided the needed 

requirements; they consumed excessive power and did not allow limitless 

use of the electromagnetic spectrum [2]. 

Some cases might require the communication link of the network to 

be available while the User Equipment (UE) is using some applications and 

at the same time it might be moving as pedestrian/using a car, so according 

to 5G system beamforming facility, the beam must follow to the user’s 

movement, which means that we need to track the user movement 

accordingly. This is done by Channel Quality Indicator (CQI) in Forth 

Generation Long Term Evolution (4G-LTE) or by proximity discovery 

using Device-to-Device (D2D) [3], [4]. This chapter sets the stage for the 

dissertation to outline the motivation, objectives, and structure of the 

research. It provides a preliminary overview of elevation beamforming and 

its significance in the context of 5G networks. 
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1.2 Literature Review 

The conceptual foundation underpinning Elevation Beamforming 

(EB) in Full Dimension - Multiple Input Multiple Output (FD-MIMO) 

systems is rooted in early thoughts on spatial multiplexing as well as the 

possibilities of antenna arrays which followed significantly soon. The early 

generation research is mostly based on the azimuth dimension and gives 

less emphasis to the elevation one. Nonetheless, as soon as the knowledge 

of the two-dimensional planar antenna system’s incapacity to fulfill the 

growing needs of the wireless network services grew, so did the focus on 

exploitation of the elevation dimension in a bid to elicit improved 

discrimination and more multiplexing. 

− In 2019, Q.-U.-A. Nadeem et al. discussed FD MIMO status and 

standardization. They mentioned the history of FD-MIMO, from its 

conceptualization to its latest standardization within the Third 

Generation Partnership Project (3GPP) releases. They outlined the 

development of FD-MIMO in literary text as one of the most significant 

technological advances in the field of wireless communication. 

Utilizing 3D beamforming, FD-MIMO has enabled this as a way to curb 

the unprecedented rise in data consumption. The breakthrough marks a 

leap in the grasp of the potential for wireless networks to guarantee high 

– risk communication in high density urban settings and beyond. 

Furthermore, the paper discussed the use of advanced antenna 

technologies and the integral role of elevation beamforming in helping 

to fully unlock FD-MIMO systems [5]. 

− In 2020, S. Kalamkar et al. proposed system-level stochastic geometry 

model that includes various aspects of beam management, such as 

frequencies, antenna configuration, physical layer, wireless links, 

network geometry, interference, and resource sharing. This model aims 
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to find an optimal balance between beamforming gains and the 

operational overheads associated with beam management. The model 

led to a simple analytical expression for the effective rate of the typical 

user. This expression helps in determining the optimal number of beams 

per cell and per Mobile Terminal (MT) [6]. 

− In 2021 April, Joan Palacios et al. focused on the challenging problem 

of interference management in dense wireless networks, enabled by 

elevation beamforming in the context of FD-MIMO architectures. In 

particular, this part examined a set of algorithmic solutions and system 

designs get designed to reduce the impact of cross-channel interference 

while simultaneously increasing the aggregate network capacity. In 

relation to this, the key importance of Coordinated Multi-Point (CoMP) 

transmission and reception and Non-Orthogonal Multiple Access 

(NOMA) and many more to improve the Signal-to-Interference-plus-

Noise Ratio (SINR) platform across the network. Such strategies 

illustrate that FD communication may be used to not only boost the 

performance of a Person-to-Person (P2P) link but also to enhance the 

efficiency and availability of the network [7]. 

− In 2021 Dec, K. Ma et al. discussed the motivations, and the challenges 

in implementing deep learning for beam control in millimeter-wave 

communications. They, also, spotlighted their research vector and the 

main peculiarities. However, in addition to making them remarkable 

due to the benefits of narrow beams for high interaction gains, it also 

distinguishes some limitations, such as overhead in training and 

susceptibility in comparison with blockages, shown under the 

utilization of thinner currents. Deep Learning (DL) design lessons were 

summarized by drawing readers’ attention to the problems and future 

opportunities for such insights to support innovative concepts on novel 
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mechanisms for beam management that can stimulate novel ideas and 

contributions into DL-assisted beam management [8]. 

− In 2022, Spyros et al. developed an adaptive beamforming approach 

that utilizes a predefined set of configurations to generate highly 

directional beams on demand. This approach is designed to handle 

various traffic scenarios effectively. They incorporated a Machine 

Learning (ML) beamforming approach based on the k-Nearest 

Neighbors (k-NN) approximation. This ML model is trained to generate 

the appropriate beamforming configurations according to the spatial 

distribution of throughput demand [9]. 

− In 2023 Jan, the idea of how complicated the problem of beam 

management in massive MIMO arrived. The authors showed that it is 

complicated to find efficient beamforming schemes that maximize 

Spectral Efficiency (SE) to enhance network performance. In this case, 

adaptive beam steering and dynamic resource allocation as well as 

advanced signal processing approaches and machine learning indicate 

the direction beam management strategies should evolve in the context 

of dynamic wireless environments. It will help to ensure the required 

high throughput and low latency of next generation wireless networks 

[10]. 

− In 2023 July, J. Kaur et al. investigated the idea of contextual 

beamforming, its pros and cons as well as its interpretation. They 

showed a significant 53% improvement of Signal-to-Noise Ratio (SNR) 

by using with and without beamforming implemented scenarios. The 

importance of localization in implementing contextual beamforming 

was argued by them [11].  

− In 2023, S. Lavdas et al. studied an adaptable mixed analog-digital 

beamforming technique for such networks and shown proof of the 

potential of the concept to aid 5G MIMO mmWave broadband networks 
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in meeting dynamic traffic demands. Using vertical antenna arrays and 

ON OFF antenna mode, this work has shown remarkable enhancement 

in the annual cumulative distribution function of the throughput, the 

blockage probability, and downlink transmission power. The mixed 

digital-analog beamforming versatile nature considerably decreases the 

active radiating components, hence indicating a path towards hardware-

efficient broadband wireless networks [12]. 

− In 2023 Nov, the utilization of elevation beamforming in various 

environments, including satellite communications to urban canyons and 

disaster recovery operations occurred. As a result, some examination 

points to the commonality and uniqueness of the challenges faced in 

each scenario, such as high mobility, severe multipath fading, and line-

of-sight obstructions were discussed. The extensive overview of such 

diverse applications offers comprehensive insights into the wide-

reaching potential of elevation beamforming in substantially increasing 

communication reliability and coverage. Therefore, the exploration 

impacts an enhanced understanding of how the elevation beamforming 

can be used to strengthen the resilience and operation of wireless 

networks in the various domains [13]. 

− In 2024, Chary et al. proposed a deep learning-based hybrid 

beamforming approach for massive MIMO systems, integrating the 

Improved Extreme Learning Machine-Adaptive Orthogonal Matching 

Pursuit (IELM-AOMP) algorithm for accurate channel estimation and 

the Improved Proximal Policy Optimization (IPPO) algorithm for 

hybrid beamforming. Their method effectively reduces pilot overhead 

and power consumption but introduces significant computational 

complexity and requires substantial training data [14]. 
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1.3  Aims of the Dissertation 

This dissertation sets out with the primary objective of demystifying 

the complexities and unraveling the potential of elevation beamforming 

within FD-MIMO architectures in the evolving landscape of 5G networks. 

The research aims to bridge the theoretical concepts with practical 

applications, thereby contributing to the body of knowledge in the 

following ways: 

1. Theoretical Exploration and Validation: is used to thoroughly 

investigate the theoretical underpinnings of elevation beamforming in 

FD-MIMO systems. This involves a detailed examination of the signal 

processing mechanisms, antenna array configurations, and the spatial 

dynamics that govern the effectiveness of elevation beamforming. 

2. Algorithmic Development and Optimization: is used to develop and 

optimize algorithms that enhance the performance of elevation 

beamforming in FD-MIMO systems. This includes creating adaptive 

beamforming strategies that can dynamically adjust to varying network 

conditions, user distributions, and traffic demands. 

3. Performance Analysis and Benchmarking: is used to conduct a 

comprehensive performance analysis of elevation beamforming in FD-

MIMO systems across a range of scenarios and conditions. This 

analysis will focus on key performance indicators such as throughput, 

SINR, and energy efficiency. 

4. Future Directions and Innovations: is used to identify future research 

directions and potential innovations that can further enhance the 

performance and applicability of elevation beamforming in 5G and 

beyond. This includes investigating the integration of emerging 

technologies such as Artificial Intelligence (AI) and ML in the 

optimization and management of elevation beamforming. 
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1.4  Layout of Dissertation 

The dissertation is structured to provide a coherent and 

comprehensive exploration of elevation beamforming in FD-MIMO 

systems, structured as follows: 

• Chapter Two – Theoretical Background and Technologies: Delving 

into the theoretical aspects, covers the principles of beamforming, FD-

MIMO architectures, and the role of elevation beamforming. It includes 

a review of the state-of-the-art technologies and methodologies relevant 

to the dissertation. 

• Chapter Three – Algorithmic Framework and Optimization: 

Focusing on the algorithmic advancements, presents the development, 

implementation, and optimization of beamforming algorithms tailored 

for elevation beamforming in FD-MIMO systems. 

• Chapter Four – Performance Evaluation and Analysis: This chapter 

details the simulation setup, performance metrics, and analysis of 

elevation beamforming under various scenarios. It aims to validate the 

theoretical models and algorithmic approaches through rigorous testing 

and benchmarking. 

• Chapter Five – Conclusion and Future Work: The final chapter 

summarizes the key findings, contributions, and limitations of the 

dissertation. It also outlines future research directions that can further 

advance the field of elevation beamforming in wireless communication 

systems. Through this structured approach, the dissertation aims to 

provide a holistic understanding of elevation beamforming in FD-

MIMO systems, contributing valuable insights and innovations to the 

field of wireless communications. 
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CHAPTER TWO 

THEORETICAL BACKGROUND 

 

2.1. Introduction 

5G introduction had a huge impact on the telecommunication world 

by shifting the focus from network-centric designs to user-centric ones. 

This shift was caused by the demand for data rates, Ultra-Reliable Low-

Latency Communications (URLLC), and massive Machine-Type 

Communications (mMTC), which underlies the principal concepts on the 

Internet of Things (IoT), smart cities, autonomous vehicles, and 

Augmented Reality (AR) 5G applications. The technology cornerstone 

enabling the full coverage of high spectrum efficiently and signal 

directivity are beamforming techniques  [1].   Beamforming is utilized in 

signal processing techniques in radio signals’ transmission and reception 

direction alike applications. Beamforming was used in 5G networks due to 

high-frequency bands, e.g., millimeter waves, posing obstacles to mobile 

communication design. Even though these frequencies can carry huge data, 

they have major cons including large propagation loss and vulnerability to 

obstacles. Beamforming resolves these demerits by concentrating the 

signal power on certain directions which improves signal strength and 

minimizes interference leading to efficient wireless networks. The role of 

beamforming in 5G is widespread including boosting signal quality and 

network capacity. However, the technology is a product of promoting 

energy usage and preserving battery lifespan [1].  As such, since in 5G 

physical infrastructure last-mile link is a key challenge, keeping beams 

steered enables flexible network coverage to be achieved.  

Indeed, such adaptive properties are crucial if 5G is to realize its 

potential especially considering its large spectrum and anticipated 
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applications from video streaming to mission critical communications. 

Moving on from fixed-beam antennas to advanced adaptive beamforming 

and massive MIMO systems symbolizes the powerful drive of the industry 

to make 5G’s visions a reality. These innovations also prove the essential 

significance of beamforming in linking the disparity among the network’s 

theoretical capability and actual, competent, and scalable wireless 

communication [15]. 

 

2.2. Overview to 5G System 

The 5G wireless system is a significantly revolutionary 

technological advancement in the telecommunications sector. A number of 

factors summarize the characteristics of 5G that include advanced 

architectural development, superior network capability performance, and 

revolution for internet connection for over billions of devices [16].  

Central to the transformation of 5G are some core technologies 

anchored in the massive MIMO, beamforming, mmWave communication, 

and network slicing. Massive MIMO technology reflects significant 

capacity and efficiency improvements arising from support for several 

antennas in the BS. The technology enables the BS to manage multiple data 

streams simultaneously, thus elevated throughput and diminishing 

interference. In close association with massive MIMO technology, 

beamforming enables systems to manage added streams sent to specific 

users.  

In addition to enhancing the signal strength and quality, focused 

transmissions approach reduces energy use per bit and the consequences of 

signals among different users as well [2].  

Another important feature of 5G is the utilization of mmWave 

frequencies to send huge amount of data at high data rates. However, the 
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large attenuation of signals transmitted using mmWave frequency bands, 

compel using beamforming to ensure adequate performance and reliable 

communication of these higher frequencies. Beamforming is made 

conceivable by the shrewd plan of receiving wire exhibits and all the more 

particularly through phased array antennas. This allows the real time 

changing of the directionality of transmitted or received signals. By 

utilizing mmWave, beamforming increments the availability and reliability 

of such systems considerably, in crowded urban areas [2].  Network slicing, 

another concept made possible with 5G, includes the division of the 

communications network into multiple virtual networks that utilize an 

identical physical infrastructure. Each of these networks can, at that point, 

be assigned committed levels of network assets such as transmission 

capacity or ways, with a direct association to their necessities and 

prerequisites. The assets include the radio, the sending force of the BS, and 

indeed the potential directions through which they are transmitted or 

received [2]. 

2.2.1. Key Performance Indicators (KPI) 

The deployment of 5G networks sets several new milestones in the 

wireless communication technology and introduces particular key 

performance indicators which are applicable metrics to evaluate the 

efficiency and effectiveness of the new systems. Thus, in contrast to the 

traditional ones that measure throughput, latency and reliability, the new 

performance of 5G is provided by its qualities to effectively deploy and 

integrate mmWave technology, massive MIMO architecture, sophisticated 

beamforming techniques, mobile edge computing, small cell BSs, and D2D 

communications. Every item is some of the bases for the success of 5G 

networks that have to address the growing challenge of high data rates, high 

system capacity, low latency, power consumption, device costs, and 

massive intercommunications [4]. 
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• Millimeter Wave (mmWave) Technology: mmWave technology, 

shown in Figure 2.1, points to the use of extremely high frequencies 

ranging from 30 GHz to 300 GHz in 5G networks, allow large volumes 

of data to be transmitted at high speeds. In this case, SE is the most 

important KPI associated with mmWave technology, thus testing the 

performance of high quality connections over short distances 

overcoming high propagation loss and blockage at the same time. 

Therefore, in the case of mmWave, beamforming and antenna 

technology should be more advanced to guarantee the specified level of 

signal directivity and reliability which makes this metric very crucial 

for 5G networks testing performance in an urban environment and 

places with large number of people [16]. Figure 2.1 shows the mmWave 

ranges. 
 

 

Fig 2.1: mmWave 

• Massive MIMO (Multiple Input Multiple Output): Massive MIMO 

technology, as shown in Figure 2.2, enhances network capacity and 

efficiency by deploying hundreds of antennas at a single BS to serve 

multiple users simultaneously. Massive MIMO technology’s ultimate 

performance indicator includes network throughput and energy 

efficiency. Massive MIMO systems drive up throughput through spatial 

multiplexing, which means higher data rates need not more bandwidth 

or transmit power [16]. 
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Fig 2.2: Massive MIMO. 
 

• Mobile Edge Computing (MEC): as shown in Figure 2.3, MEC is 

implemented to get computational resources and storage closer to the 

endpoint of the network, lessening latency and traffic congestion. 

Therefore, the performance KPIs for MEC are set for end-user 

applications and the effectiveness of resource usage. Locating data at 

the endpoint allows real-time applications and is one of the promising 

solutions for URLLC implementation in 5G [16].  
  

 
Fig. 2.3: Mobile Edge Computing [17]. 

• Small Cell Base Stations (SCBSs): Small cell BSs, as shown in Figure 

2.4, are essential to expand network's reach and capacity, highly used in 

congested user areas and indoor environments. The small cell KPIs are 
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their ability to integrate with macro networks to improve coverage and 

high data rate capabilities. Deploying small cells is a policy that will 

guarantee steady and dependable connectivity across the 5G network by 

achieving the limitations of mmWave because small cell connectivity is 

more growth-oriented [16]. 

 

 

Fig. 2.4: Small Cell Stations [18]. 

 

• Non-Orthogonal Multiple Access (NOMA): Non-Orthogonal 

Multiple Access, shown in Figure 2.5, ensures that the same frequency 

resource transmits to multiple users all at the same time. A drastic 

difference to Orthogonal Multiple Accesses (OMA)s, which operate 

through orthogonal spectral uses, are recognized by a distinction in its 

power domain multiplexing implementation. Such is possible through 

the Successive Cancellation (SC) and the Successive Interference 

Cancellation (SIC). Evidently, the BS has the ability to serve as many 

users as it can as it results in efficient use of the spectrum. When coupled 

with the MIMO technology, the 5G network’s aim to achieve higher 

data rates and user density. It promises further improvements and 

energy advancement for the 5G systems and widespread use in the IoT 

[19]. 
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Fig. 2.5: Non-Orthogonal Multiple Access [20]. 

 

• Beamforming: Beamforming technology, shown in Figure 2.6, is 

necessary for radio wave propagation focused on specified users either 

when transmitting or receiving, which lead to signal impact and 

minimal interference. Success of the beamforming methods is measured 

by the increased signal to noise ratio, as well as minimal reduction of 

power usage. These measures define the perfect measure for the 

potentiality of focusing that characterize the power usage ability of the 

5G. Sophisticated beamforming is therefore critical in addressing the 

technologies of mmWave and massive MIMO due to the assumed 

potentiality concerning the power usage ability metric [16]. 
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Fig. 2.6: Beamforming. 

 

2.3. Introduction to Elevation Beamforming 

Elevation beamforming is integral to making the revolutionary 

massive MIMO systems entirely realize the 5G and future wireless 

potentials. It is even more fundamental in high-mobility and continued 

mmWave operations since the conventional beam steering techniques are 

limited by fluctuations in the channel conditions, side communication, fast 

signal blockage, and interference systems. This study presents an overview 

of elevation beamforming from the basics, showing how it is expected to 

solve these challenges and take the wireless communication systems to a 

new level of efficiency and reliability.  

As such, it is correct to describe massive MIMO systems as 

revolutionary since they will provide enough bandwidth to meet the 

increasing demand for high-data services like virtual/augmented reality 

and vehicle-to-everything systems.  A classic challenge of these systems is 

how to maintain strong links between the fast-moving UE and the BS. This 

requires effective interference suppression and directional control, which 

is a process known as beamforming. Although traditional fully digital 

beamforming architectures may be formidable, the costs are prohibitive 
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and overhead of energy consumption is enormous.  Under the combined 

pressure, developers have come up with an answer in hybrid beamforming-

the best of both systems that uses digital signal processing on baseband end 

to suppress interference and employs analog mechanisms such as phase 

shifters in Radio Frequency (RF) front while steering beams. Hybrid 

beamforming is particularly effective in large-scale MIMO systems 

because it reduces the number of required RF chains and thus itemizes both 

system complexity and cost. This new way of using AI for beamforming, 

together with Deep Reinforcement Learning (DRL), is a profound 

departure. It not simply promises better than theory communication ability 

in Massive MIMO projects over traditional beamforming approached but 

even development of underlying algorithms is simplified locally for 

everyone.  This is especially important in edge computing scenarios, where 

computational resources are expensive, and good communications is 

crucial [21]. Figure 2.7 shows Elevation beamforming. 

 

Fig. 2.7: Elevation Beamforming [22] 
 

If hybrid beamforming in FD-MIMO systems is to succeed in 

practical operation, the intricate adaptation of beamforming vectors 
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according to daily changing channel conditions is vital; this is an 

achievement that prior methods cannot accomplish, especially in cases as 

fluid as those involving high levels of mobility. Born out of this kind of 

consideration, recent advances have utilized deep learning methodologies, 

especially DRL, to design and then control the process of transmitting radio 

waves in space. These techniques allow beamforming vectors to adjust 

dynamically towards the source, leading to maximal energy efficiency and 

Quality of Service (QoS) network wide. The incorporation of DRL into 

beamforming reflects the general trend towards bettering machine learning 

for administering ever-more complicated wireless network systems.  

Therefore, elevation beamforming, through the power of high-

dimensional reinforced learning and hybrid radio communications means, 

has come to dominate technology that defines the shape wireless 

communications will take tomorrow. It also embodies the ongoing journey 

from hardware-defined to software-configurable radio systems; in this way 

a great leap forward is made toward at last realizing the full power of 5G 

and beyond [23]. 

 

2.4. Fundamentals of Beamforming 

In Massive MIMO systems, beamforming is a technology that 

improves the signal processing capability of 5G and future 6G networks. 

In order to shape the signal radiation from antenna arrays dynamically, we 

use electronic networks, such as that given in Figure 2.8, to control 

amplitudes and phases at individual antennas on BS. SNR is critical for a 

receiver's performance. Through manipulation of antenna pattern--its 

power gain in various directions--beamforming accomplishes this end by 

improving reception quality. The result is that multiple UE can be served 
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simultaneously over the same time-frequency resources through space-

domain multiple access [24]. 

 

Fig 2.8: Channel Beamforming. 

 

2.4.1.  Beamforming Approaches 

There are primarily two beamforming strategies in the context of 

massive MIMO systems: Grid of Beams (GoB) and adaptive beamforming. 

• In GoB, the very important downlink Reference Signal Received Power 

(RSRP) measurement mainly depends on the Synchronous Signal Block 

(SSB) sent by BS. This method has the advantage of simplicity, ease in 

implementing--and it is well-suited for high mobility scenarios where 

the channel status goes through rapid periodic changes making real-time 

adaptive beamforming difficult. Figure 2.9 shows the GoB. 

• Whereas in adaptive beamforming, the beamforming weight for 

Adaptive Beamforming demands accurate channel estimation, which 

has to be calculated from Sounding Reference Signals (SRS) in hope 

that by Time-Division Duplexing (TDD) systems. Although this 

method can lead to greater user throughput through increased accuracy 

of channel information, it needs sophisticated signal processing and 
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control, because the quickly outdated channel estimates of high-speed 

UE products makes it unsuitable for such equipment. [24]. 

 

Fig 2.9: Grid of Beams [24]. 

  

2.4.2. Evolution from MU-MIMO to Massive MIMO 

5G massive MIMO contextual help to support more users than ever 

before processing higher data rates with lower latency and higher need for 

reliability. When using traditional MIMO, both the transmitter and the 

receiver normally include as many as 8 antennas; but massive MIMO can 

support up to 256 BS antennas and 32 UE ones. An additional increase in 

the number of antennas makes a marked addition to the amount of 

throughput and coverage that can be had by cellular networks.  

The next step, is to explain how massive MIMO overcomes the 

higher path losses during its use of high-frequency bands, thus achieving 

extended coverage. Using an integrated technology, which we call 

beamforming, to angle radio energy into more angular sectors 

proportionally improves the SE of this process. 
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2.4.3.  FD-MIMO and 3D-MIMO 

FD-MIMO not only enhances azimuthally, but adds the angle of 

inclination as 3D MIMO, antennas cytologically arranged within both 

horizontal and vertical dimensions. This approach vastly improves 

performance and use range at the BSs, therefore, transmission direction in 

both azimuth and elevation has been resolved into a task helpfully taken on 

by special chips. One of the more significant challenges in deploying FD-

MIMO systems is the complex radio system that must be put in place.  

To fully take advantage of this technology, radios are needed. It not 

only can handle 3D beamforming operations but do so in ways only 

possible through use of Native Instruments (NI) tools and modules right 

for the task. This includes having the accurate electric state feedback 

needed to improve the Channel State Information (CSI) and employ the 

quantum algorithms in advanced mode-forming techniques to efficiently 

drive beams towards users [25]. 

 

2.5. 3D Channel Modeling Approaches 

Advances in 3D channel modeling methods have greatly raised the 

stakes for developing and applying Full Dimension-Multiple Input 

Multiple Output (FD-MIMO) technologies for 5G and beyond networks. It 

should be clear that these methods are necessary for Hybrid Beamforming 

(HB), which is crucial to harvesting the mmWave spectrum and massive 

MIMO communications, and these are both core technologies of 5G and 

beyond. 

2.5.1.  HB and Channel Modeling 

The widespread adoption of HB strikes a balance between power, 

complexity, and cost for mmWave massive MIMO communications. 

Sometimes transiently through a variety of streams at the same time, this 
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technique leverages both Digital Beamforming (DB) and Analog 

Beamforming (AB) benefits to create the possibility for mmWave 

communications with less computational overhead as well as lower cost. 

2.5.2. Reasons for HB System’s 3D Channel Modeling 

• Spectral Efficiency Optimization: Effective HB requires precise 

modeling of the mmWave propagation environment, including 

considerations of path loss, shadowing, and multipath effects, to 

optimize SE. 

• Hardware Complexity and Energy Efficiency: because the channel 

model used in a certain system is different from that of others, it will 

affect directly on how many RF chains and the physical and digital 

architecture of beamformers are needed. Accurate 3D channel modeling 

can reduce how much hardware there is and improve the energy 

efficiency. 

• Channel State Information (CSI) Accuracy: The performance of HB 

significantly relies on the accuracy of CSI. Advanced 3D channel 

models enable more precise estimation of CSI, facilitating improved 

alignment of beams in both azimuth and elevation dimensions and 

enhancing the system's overall performance. 

• Adaptation to Environment Variability: 3D channel models account 

for the variability in propagation environments, from urban high-rise 

scenarios to rural open spaces. This adaptability is essential for 

designing HBF strategies that can dynamically adjust to changing 

conditions to maintain optimal performance [26]. 

2.5.3. Beam Management in mmWave Communications 

In mmWave communications, beam management includes three 

processes: beam selection, beam switching, and beam tracking. These are 

very important for keeping up a high-quality communication link with 
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often quickly changing environmental conditions. With signals transmitted 

in such high frequencies and pinpoint directions, even if there is a slight 

shift in where the user equipment (UE) is located or what direction it faces, 

then this will have a big effect on channels. For this reason, efficient beam 

management strategies must be used if robust and reliable communication 

is to be achieved using FD-MIMO systems in the new mmWave spectrum. 

Figure 2.10 shows the beam management. 

• Beam Selection: is the process of choosing the most appropriate 

transmit and receive beams from a predefined set or codebook to 

establish the initial communication link. Beam selection aims to 

maximize the received signal strength by considering the spatial 

correlation and the propagation. 

• Beam Switching: when the UE is in motion, the initially selected beam 

may not be best. Changing beams means moving to a different beam or 

beams that is/are better performing under the new conditions, thus 

ensuring spatial correlation, which has been invented for both 

conditions, are managed and maintained through link quality, which is 

unaffected by pushes and pulls on noise characteristics. 

• Beam Tracking: to sustain high-quality communication links in the 

face of UE mobility and dynamic channel conditions, beam tracking 

continuously monitors the channel and adjusts the beam direction and 

width. This adaptability is crucial for compensating for the spatial 

correlation effects and ensuring that the beamforming strategy remains 

aligned with the optimal communication path [27]. 
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Fig. 2.10: Beam Management[27]. 
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CHAPTER THREE 

AI-ENHANCED BEAMFORMING FOR POWER-

EFFICIENT IN 5G NETWORKS USING 

REINFORCEMENT LEARNING  

3.1 Introduction 

In the quest for optimizing 5G networks, this study introduces an 

innovative AI based beamforming technique, which focused on power 

efficiency and signal integrity.  By combining Reinforcement Learning 

(RL) and adaptive signal processing, the system achieves optimal 

beamforming towards the user with the lowest power signature. The system 

starts at the BS which conducts an omnidirectional scan to identify and 

direct beams towards the UE exhibiting the lowest power signature, and 

optimizing the network's performance and efficiency.  

In this chapter, extensive simulations are conducted using a Uniform 

Linear Array (ULA) at 28 GHz with Quadrature Amplitude Modulation 

(QAM) to authenticate the process. AI algorithm dynamically adjusted the 

beamforming weights, which were then applied to synthetic user signals to 

simulate real-world conditions. This study will conclude that AI based 

steering towards the least power-intensive user is not only viable but also 

enhances overall network efficiency and reliability. 
 

3.2  System Architecture 

The architecture of a system, which is suitable for setting up an 

elevation beam comprises all the hardware and software components 

needed to perform a beamforming operation. These components include 

the antenna array, RF radio-frequency chains and digital signal processing 

circuitry, and a means of acting over these components.  
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The architecture, which varies depending on the given application 

cellular communication, satellite communication, or radar system, mainly 

includes the following [28]: 

• Antenna Array: The configuration of the antenna array (linear, planar, 

etc.) and the number of elements significantly influence the 

beamforming capabilities, particularly in elevation. The physical design 

and spacing of the antenna elements are crucial for achieving the desired 

beamforming performance. 

• RF Chains: In a digital system, each antenna element is connected to 

the input of its dedicated RF chain. RF chain consists of amplifiers, 

mixers, and analog-to-digital and digital-to-analog converters. In analog 

and hybrid systems, several elements might share the same RF chain or 

use phase shifters and variable gain amplifiers for beam steering. 

• DSP Units: Digital signal processors perform the calculations for 

generating the beamforming weights and adjusting them in real-time to 

steer the beam. The complexity of the DSP algorithms can vary from 

simple phase adjustment to more sophisticated techniques that account 

for channel conditions, interference, and optimization objectives. 

• Control Mechanisms: Software-defined radios (SDRs) or other control 

systems are used to dynamically adjust the beamforming parameters 

based on feedback from the environment or system objectives. This 

includes changing the beam direction, shape, and other characteristics 

to optimize performance. 
 

3.3 Algorithm Design 

The design of the beamforming algorithm is critical for achieving 

the desired control over the beam's direction and shape, especially in the 

elevation plane. The algorithm must consider the array geometry, desired 

beam pattern, and environmental factors. Key considerations includes [29]: 
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• Beam Steering Algorithms: they are algorithms such as phase-shift 

beamforming, which adjusts the phase of the signal at each antenna 

element to steer the beam in a desired direction. 

• Beam Shaping Algorithms: they are techniques that optimize the 

amplitude and phase weights to achieve a specific beam shape, such as 

reducing sidelobes or achieving a flat-top beam. 

• Adaptive Beamforming Algorithms: these algorithms adjust the 

beamforming weights in real-time based on the received signal 

characteristics, and optimizing for metrics such as SINR. 

The following pseudocode shows the system algorithm: 

ALGORITHM 1 BEAMFORMING OPTIMIZATION ALGORITHM 

1 Initialize reinforcement learning agent 

2 Initialize URA array with parameters 

3  for each time step do 

4  Collect signals from users 

5  Estimate DOA and AOA for each user 

6  State ← Current network conditions (user positions, SNR, 

channel conditions) 

7  Action ← RL agent selects optimal beamforming direction and 

power level 

8  Apply beamforming to URA based on selected action 

9  Reward ← Compute reward based on signal quality and power 

efficiency 

10   if reward is below threshold then 

11   Adjust beamforming parameters 

12   Update RL agent with new state, action, and reward 

13  else 

14   Continue with current beamforming parameters 

15  end if 

16  if user mobility detected then 

17   Recalculate user positions 

18   Update state space with new positions 

19  end if 

20  Log performance metrics (BER, throughput, power efficiency) 

21 end for 
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3.3.1 Simulation Environment 

To evaluate the performance of the elevation beamforming system, 

a simulation environment is set up, which models the signal propagation, 

antenna array behavior, and environmental effects. The simulation 

environment allows for testing under various scenarios, including different 

array configurations, elevation angles, and channel conditions. 

• Simulation Tools: Software tools such as MATLAB or Python libraries 

(e.g., NumPy, SciPy) are commonly used for simulating beamforming 

systems. These tools offer extensive libraries for signal processing, 

matrix calculations, and visualization. 

• Performance Metrics: The simulation environment must be capable of 

calculating key performance metrics, including beamwidth, sidelobe 

level, and gain. These metrics are crucial for evaluating the 

effectiveness of the elevation beamforming design. 

• Scenario Testing: The environment should allow for the simulation of 

different scenarios, including varying numbers of users, mobility 

patterns, and physical obstructions. This helps in understanding the 

system's performance in real-world conditions. 

 

3.4 Artificial Intelligence and Reinforcement Learning 

Certain AI algorithms are commonly referred to when considering 

wireless communications systems and beamforming when studying 

complex systems for which simple algorithms are unsuitable due to the 

high dimension or non-linear nature of the system [30].  

RL is that part of machine learning, concerned with the question of 

how intelligent agents should take actions in an environment to maximize 

some cumulative reward. In the case of wireless communications and, 

more particularly, beamforming optimization for 5G systems, RL has 

emerged as a very powerful tool because of its ability to learn optimal 
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policies in complex and dynamic environments without explicit 

programming. The basic idea of RL involves a learning agent in an 

environment that includes one series of observations, actions and rewards. 

The simple objective of the agent is to learn such a policy that is able to 

maximize the expected cumulative reward over time. Therefore, this 

learning process will turn out to be very useful in beamforming 

optimization where the wireless environment may change frequently and, 

correspondingly, the optimal beamforming strategy may have to change 

during real-time. 

In a typical RL framework for beamforming, the components can be 

defined as follows: 

− State (S): Represents the current condition of the wireless environment, 

including channel state information, user locations, and traffic demands. 

− Action (A): Corresponds to adjustments in beamforming weights or 

directions. 

− Reward (R): A scalar feedback signal that measures the quality of the 

action taken, such as achieved throughput or SINR. 

− Policy (π): A strategy that the agent follows to select actions based on 

the current state. 

− Value Function (V): Estimates the expected cumulative reward from a 

given state under a specific policy. 

− Q-Function (Q): Estimates the expected cumulative reward for taking 

a specific action in a given state under a policy. 

The RL agent will learn from the interaction with the environment, 

updating its policy according to the received rewards. In such a way, the 

agent will have the capability to improve over time the beamforming 

strategy and change it with respect to variations of the wireless 

environment or user's behavior. 
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Several RL algorithms have been applied to beamforming 

optimization in 5G systems: 

1. Q-Learning: is a model-free algorithm that learns an optimal action-

value function (Q-function) to determine the best policy. 

2. Deep Q-Networks (DQN): is an extension of Q-Learning that uses 

deep neural networks to approximate the Q-function, enabling learning 

in high-dimensional state spaces. 

3. Policy Gradient Methods: are algorithms that directly optimize the 

policy function, such as REINFORCE (Monte Carlo Policy Gradient) 

and Trust Region Policy Optimization (TRPO). 

4. Actor-Critic Methods: Combine value function estimation with policy 

optimization, examples include Advantage Actor-Critic (A2C) and 

Deep Deterministic Policy Gradient (DDPG). 

5. Proximal Policy Optimization (PPO): is a policy gradient method that 

uses a clipped surrogate objective to ensure stable learning. 

Compliance with these requirements in beamforming optimization 

can be done by adaptation of these algorithms with regards to the unique 

characteristics of the wireless environment and the constraints of the 

beamforming system. 

3.4.1 Advantages of Reinforcement Learning in Beamforming 

Reinforcement Learning offers several key advantages when applied 

to beamforming optimization in 5G systems: 

1. Adaptability to Dynamic Environments: Due to their ability of 

continuous learning, RL algorithms can adapt to changes in network 

conditions and are, hence, well-suited for the dynamism in wireless 

communications. For example, such adaptability is of utmost 

importance when users are mobile, while traffic patterns keep on 

changing and channel conditions vary. 
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2. Model-Free Learning: In contrast to other optimization techniques, 

that require an accurate model of the system, RL is able to learn optimal 

policies directly from the interaction with the environment. This will 

turn out to be particularly useful in complex wireless scenarios wherein 

exact modeling is either difficult or requires large computational effort. 

3. Handling High-Dimensional State and Action Spaces: Advanced RL 

algorithms, more specifically, deep-learning-based ones, are able to 

accommodate large-dimensional state and action spaces typical in 

massive MIMO beamforming systems. 

4. Long-Term Optimization: RL mostly focuses on maximizing the 

cumulative rewards over time, deriving strategies that optimize long-

term performance and not myopic short-term gains. This is valuable in 

scenarios in which short-term optimizations may result in suboptimal 

overall network performance. 

5. Multi-Objective Optimization: The reward function of RL may be 

designed to obtain as many objectives as desired. During training, it 

tries to maximize the throughput, decreases energy consumption and 

takes care of fairness between the different users. 

6. Exploration-Exploitation Balance: By design, RL algorithms manage 

a smart tradeoff between the exploration of new strategies and the 

exploitation of known good solutions. That helps to find new 

beamforming techniques that might not come out from traditional 

optimization techniques. 

7. Scalability: The RL approaches can be scaled to tackle large-scale 

MIMO systems with huge numbers of antennas and users, so as to fit 

very well into the next generation of wireless networks. 

8. Transfer Learning Capabilities: Knowledge acquired through 

training in one scenario might be transferred to similar environments 
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and evading the need for extensive retraining every time deployment of 

beamforming systems is done in new locations. 

9. Handling Partial Observability: Some of the RL algorithms are 

designed to work in a partially observable environment, such as in most 

cases in wireless systems when the whole channel state information is 

unavailable. 

10. Integration with Other AI Techniques: It is possible to integrate RL 

with other machine learning methods; for example, using supervised 

learning to train the initial policy or unsupervised learning to obtain the 

state representation for establishing more powerful and efficient 

beamforming. 

Such are some of the gains that make reinforcement learning very 

promising for tackling the beamforming optimization complex challenge 

of 5G and beyond systems related, specifically, to scenarios with massive 

MIMO, millimeter-wave communications, and ultra-dense network 

deployments. 

3.4.2 Hybrid Reinforcement Learning with Domain Knowledge for 

Beamforming Optimization 

From the practical standpoint, an ideal example of RL algorithms 

being efficiently used to optimize the beamforming vectors in the MIMO 

systems. Properly adjusting the weights of antenna elements in an array 

allows radiation pattern shaping. It ensures maximize of the desired signal 

while the further interference propagation is minimized. This factor is of 

the utmost importance considering the ongoing evolution of wireless 

networks [31]. 

This dissertation presents a brand-new approach, based on a Hybrid 

RL method enhanced with domain knowledge, toward beamforming 

optimization in the 5G system. To be more exact, by fusing the adaptive 
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learning capabilities of RL, the researcher manages to put into practice 

knowledge from the area of wireless communications and beamforming. 

The proposed method can be characterized as follows: 

1. Hybrid Nature: It integrates reinforcement learning principles with 

domain-specific heuristics and optimization techniques from 

beamforming and wireless communications. 

2. Adaptive Learning: Quite like the traditional methods based on RL, it 

learns and refines the beamforming strategy by continuous interaction 

with the wireless environment. 

3. Domain Knowledge Integration: Domain knowledge builds in the 

knowledge on beamforming, channel characteristics, and wireless 

network dynamics to guide the learning and speed up its convergence. 

4. Feedback-Driven Optimization: It uses the BER and throughput of 

the system for performance metrics, thus acting as feedback signals that 

tune and fine-tune the beamforming parameters. 

5. Iterative Improvement: Iterative improvement improves its 

beamforming strategies in cycles to find a better performance through 

repeated actions, observation of the environment and adaptation. 

In these complex and dynamic 5G surroundings, this hybrid 

approach makes it possible to efficiently optimize beamforming 

parameters by use of both reinforcement learning's adaptability and the 

reliability of established domain expertise. 

 

3.5 Mathematical  System Model  

The mathematical equations provided are recognized in the 

communications engineering discipline and represents a fundamental 

resource for the proposed model. The system utilizes RL for dynamic 

scaling of user signals. A persistent state switches between different scaling 
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factor sets, allowing the system to explore different configurations and 

optimize performance over time. The adaptive signal processing 

component includes phase shift beamforming and the MUSIC estimator for 

DOA estimation. These adaptive algorithms align with the principles of 

machine learning, facilitating dynamic adjustments for optimal 

beamforming [32], [33]. 

3.5.1 Mathematical Model for Beamforming  

The mathematical model of the simulated AI based beamforming 

system can be described mathematically just as follows; consider a ULA 

with " 𝑁 "  antenna elements spaced at half the wavelength (
λ

2
) apart. The 

array factor for a ULA can be expressed in Eq. (1): 

[𝑨𝑭(𝜽) = ∑ 𝒘𝒏𝒆−𝒋𝒌𝒏 𝒄𝒐𝒔(𝜽)𝒅]

𝑵−𝟏

𝒏=𝟎

 

 

(3-1) 

Where (𝑤𝑛) is the complex weight, applied on the ninth elements, 

represented here as (𝑘 =
2π

λ
) , where ( 𝑑 )  signifies for the distance 

between elements and (θ) is taken to be the arrival of angle of signal. The 

received signal ( x(t) ) at the ULA from a user can be modeled as shown 

in Eq. (2): 

    

[𝒙(𝒕) = 𝑨(𝒕)𝒔(𝒕)𝒆𝒋(𝟐𝝅𝒇𝒄𝒕+𝝓) + 𝒏(𝒕)] 
(3-2) 

       

Where (𝐴(𝑡))  is the signal amplitude, (𝑠(𝑡))  is the transmitted 

signal, (𝑓𝑐) is the carrier frequency, (ϕ) is the phase shift introduced by 

channel and (𝑛(𝑡)) stands for noise is the signal amplitude. 

An AI based beamforming algorithm should strive to optimize the 

weights ( wn ) such that SNR, is maximized, and power consumption is 
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minimized at the user; it is done by reducing the overall radiated 

power( Ptotal ), which is to be transmitted while making sure that the signal 

strength picked up by the intended user fall over a threshold( γ ). It can be 

formulated into an optimization problem as in Eqns. (3,4): 

 

[𝑾𝒎𝒊𝒏𝑷𝒕𝒐𝒕𝒂𝒍 = 𝑾𝒎𝒊𝒏 ∑|𝒘𝒏|𝟐]

𝑵−𝟏

𝒏=𝟎

 

 

(3-3) 

  

[ s.t.  
|𝐀𝐅(𝛉)𝐀(𝐭)|𝟐

𝛔𝐧
𝟐

  ≥  𝛄 ] 
 

(3-4) 

Where (σ𝑛
2 ) is the noise power. 

AI algorithm adjusts according to the characteristics of the received 

signals and difference between users’ locations by iterative updating 

weights(𝑤𝑛). The feedback mechanism used by the AI includes Bit Error 

Rate (BER) and throughput measurements; that are adjusted by means of 

tuning of beamforming weights for the network to adjust accordingly to 

any changes around it or in user behavior. 

3.5.2 Mathematical Model for AI Training  

Consider a case of ( 𝐾 )  users and (𝑠𝑘(𝑡)) represents the signal 

destined for the (𝑘𝑡ℎ) user, while (𝑥𝑘(𝑡)) indicates the received vector at 

ULA by the (𝑘𝑡ℎ) user. The ULA has ( 𝑁 ) antenna elements. The channel 

between the array and each user indicated by(ℎ𝑘), which is itself a complex 

vector that specifies the channel coefficients. 

The AI algorithm operates in two phases: training and execution. In 

(Training Phase), the AI uses a set of training signals to learn the optimal 

beamforming weights. The CSI for each user is estimated and stored. In 

this stage, the AI employs a bunch of training signals in order to compute 

the most appropriate beamforming weights. CSI for each user, i.e.,(ℎ𝑘), is 



 

36 

valued and preserved. In (Execution Phase), the AI applies the learned 

weights and calculates estimated CSI to adapt it in real time for 

beamforming vector according to changing conditions. An optimization 

issue of beamforming is the minimization of power with Quality of Service 

(QoS) constraints related to each user as in Eq. (5). 

[𝒎𝒊𝒏
𝑾

= ∑ |

𝑲

𝒌=𝟏

𝒘𝒌|𝟐] 

 

(3-5) 

 

Subject to the following constraints for each user( 𝑘 ), Eq. (6) is 

representing SINR constraint for user( 𝑘 ): 

 

[
|𝒉𝒌

𝑯𝒘𝒌|
𝟐

∑ |𝒉𝒌
𝑯𝒘𝒊|

𝟐
𝒊≠𝒌 + 𝝈𝟐

≥ 𝜸𝒌] 

 

(3-6) 

 

Where (𝑤𝑘) the beamforming vector for user is( 𝑘 ) , (γ𝑘)  is the 

minimum SINR required for user( 𝑘 ), and (σ2) is the noise power. 

 QoS constraints such as the minimum data rate requirement 

modeled in Eq. (7): 

                

[𝒍𝒐𝒈𝟐(𝟏 + 𝑺𝑰𝑵𝑹𝒌) ≥ 𝑹𝒌] (3-7) 

Where (𝑅𝑘)is the minimum data rate required for user( 𝑘 ). The 

objective function seeks to minimize the sum of transmit power for all users 

without damaging their QoS. The real-time channel estimations and the 

QoS requirements change accordingly, while the AI algorithm adjusts in 

time by adjusting its weights(𝑊 = [𝑤1, 𝑤2, … , 𝑤𝐾]).  

The AI could potentially use RL techniques to learn the optimal 

policy for adjusting beamforming weights. For instance, one might train 

deep neural network with the given CSI and QoS specifications as an input 

and the optimal beamforming weights for accessing best BS transmitting 
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state if any or only one user at a time is in a traffic jam. While functional, 

the network would extract current CSI and QoS demands during operation 

that would feed-in to present weights of minimum power with constraints 

gratified. These elements significantly increase the complexity of the 

mathematical model; however, they contribute to greater adaptability and 

efficiency of AI driven beamforming strategy in a mobile multi-user 

environment. This model paves the way for a powerful system, which can 

achieve power optimal usage in such an environment that relies heavily on 

energy-use appliances and people with user satisfaction. 

3.5.3 Mathematical Model for 16-QAM System’s Modulation 

For the proposed system, the following 16-QAM modulation 

equations have been used for beamforming and signal transmission. The 

BER for a 16-QAM modulation in an Additive White Gaussian Noise 

(AWGN) channel can be approximated in Eq. (8): 

         

[BER ≈
𝟒

𝒍𝒐𝒈𝟐(𝑴)
(𝟏 −

𝟏

√𝑴
) 𝑸 (√

𝟑 𝒍𝒐𝒈𝟐(𝑴) ⋅ 𝑬𝒃

(𝑴 − 𝟏)𝑵𝟎
) 

 

(3-8) 

Where ( 𝑀 ) is the modulation order (16 for 16-QAM), (𝑄(𝑥)) is 

the Q-function, which represents the tail probability of the Gaussian 

distribution, (𝐸𝑏) is the energy per bit, (𝑁0) is the noise power spectral 

density, and the (𝐸𝑏/𝑁0) ratio is a normalized measure of the signal energy 

per bit to the noise power spectral density.  The relationship between 

(𝐸𝑏/𝑁0) and the SNR for 16-QAM is given by Eq. (9): 

                

[SNR =
𝑬𝒃

𝑵𝟎
⋅

𝑹𝒃

𝑩
] (3-9) 
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Where (𝑅𝑏) is the bit rate, ( 𝐵 ) is the bandwidth of the channel. Eq. 

(10) can be rearranged to express (𝐸𝑏/𝑁0) in terms of SNR: 

               

[
𝑬𝒃

𝑵𝟎
=

SNR

𝑹𝒃/𝑩
] (3-10) 

  

The SNR can be converted to decibels (dB) in Eq. (11): 

      

[SNR(dB) = 𝟏𝟎 ⋅ 𝒍𝒐𝒈𝟏𝟎(SNR)] (3-11) 

 

3.5.4 Throughput Calculation  

Throughput is the rate of successful message delivery over a 

communication channel. The throughput can be affected by the BER as 

errors require retransmission or error correction. The theoretical 

throughput without considering errors can be expressed in Eq. (12): 

       

[Throughput = 𝑹𝒃 ⋅ (𝟏 − BER)] (3-12) 

However, considering retransmissions because of errors, the 

effective throughput becomes as shown in Eq. (13): 

[Throughput
effective

=
𝑹𝒃 ⋅ (𝟏 − BER)

𝟏 + Retransmissions due to errors
] (3-13) 

 

3.5.5 Array Gain and Beamforming 

The gain of an antenna array due to beamforming is related to the 

number of elements and their patterns. The array gain (G) can be 

approximated by applying Eq. (14): 

                

[𝑮 = 𝑵 ⋅ 𝑮𝒆 ⋅ AF(𝜽)] (3-14) 
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Where ( 𝑁 ) is the number of antenna elements,  (𝐺𝑒) is the gain of a 

single element, (𝐴𝐹(θ)) is the array factor, and (θ) is a function of the 

direction relative to the beam's main lobe. 

For a ULA, the array factor for broadside direction can be simplified 

as in Eq. (15): 

                

[AF(𝜽) =
𝒔𝒊𝒏(𝑵𝝅𝒅 𝒔𝒊𝒏(𝜽) /𝝀)

𝑵 𝒔𝒊𝒏(𝝅𝒅 𝒔𝒊𝒏(𝜽) /𝝀)
] (3-15) 

 

Where ( 𝑑 ) is the distance between elements, ( 𝜆) is the wavelength 

of the carrier signal, and ( 𝜃) is the angle relative to the array axis. 

3.5.6 Beam Steering 

The phase shift (Φ) required for beam steering towards a particular 

user can be calculated by the following Eq. (16): 

                

[𝜱𝒏 =
{𝟐𝝅}{𝝀}

(𝒏 − 𝟏)𝒅𝒔𝒊𝒏(𝜽𝒅)
] (3-16) 

 

Where (Φ𝑛) is the phase shift for the  ( 𝑁 )-th element, (θ𝑑) is the 

desired steering angle, and( 𝑛 ) is the element index in the array. 

3.5.7 MUSIC Algorithm 

The AI uses statistical methods and signal processing algorithms. 

Thus, when noise is present the AI uses an algorithm known as MUSIC for 

determining the direction of signal by leveraging orthogonality between 

signal and noise subspaces. The MUSIC estimator locates peaks in the 

spatial spectrum that correspond to directions of incoming signals. 

For signal model, each user signal can be represented as a delta 

function in time. For the ( 𝑖 )-th user, the signal (𝑠𝑖(𝑡)) at time ( 𝑡 ) is 

given by Eq. (17): 
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[𝒔𝒊(𝒕) = 𝜹(𝒕 − 𝒕𝟎𝒊)] (3-17) 

 

Where ( δ) is the Dirac delta function, and (𝑡0𝑖) is the time of arrival 

for the ( 𝑖 )-th user's signal. 

The AOA for the ( 𝑖 )  -th user is represented as a vector (θ𝑖 =

[θ𝑎𝑧,𝑖; θ𝑒𝑙,𝑖]), where (θ𝑎𝑧,𝑖)is the azimuth angle and (θ𝑒𝑙,𝑖) is the elevation 

angle. The AOA determines the phase shift across the antenna elements 

and is critical for beamforming. 

The response of an antenna array can be mathematically described 

by its array factor(𝐴𝐹(θ)). For a ULA, the array factor is given by Eq. 

(18): 

             

[𝑨𝑭(𝜽) = ∑ 𝒆−𝒋
𝟐𝝅
𝝀

𝒅(𝒏−𝟏)𝒔𝒊 𝒏(𝜽)
]

𝑵

𝒏=𝟏

 (3-18) 

  

Where ( 𝑁 ) is the number of elements, ( 𝑑 ) is the element spacing, 

( λ) is the wavelength, and ( θ)  is the AoA. The beamforming levels 

assigned to all antenna elements direct the beam towards a certain 

direction. These weights ( w ) are complex numbers applied to the phase 

and amplitude of the received signal on each element. The weights for the 

( 𝑁 )-th element to direct the beam towards (θ) are given by Eq. (19):  

                

[𝒘𝒏 = 𝒆𝒋
𝟐𝝅
𝝀

𝒅(𝒏−𝟏)𝒔𝒊𝒏(𝜽)
] 

(3-19) 

 

The power ( 𝑃 ) of the signal after applying the scaling factor ( 𝑎 ) 

is calculated using Eq. (20): 

 

[𝑷 = ∑|𝒂 ⋅ 𝒔(𝒕)|𝟐]

𝒕

 
(3-20) 
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The MUSIC algorithm estimates the DOA by forming a spatial 

spectrum and identifying its peaks. The spatial spectrum for MUSIC is 

given by Eq. (21): 

                

[𝑷(𝜽) =
𝟏

𝒂(𝜽)𝑯𝑬𝒏𝑬𝒏
𝑯𝒂(𝜽)

] (3-21) 

 

Where (𝑎(θ))is the steering vector, (𝐸𝑛) is the noise eigenvector 

matrix, and ( 𝐻 ) denotes the Hermitian transpose. 

The beam is steered by adjusting the weights applied to the received 

signals. The beamforming output ( 𝑦 ) is shown in Eq. (22): 

                

[𝒚(𝒕) = 𝒘𝑯𝒙(𝒕)] (3-22) 

 

Where (𝑥(𝑡)) is the received signal vector at the antenna elements, 

and (𝑤) is the weights vector. 

 

3.6 Brief Overview for the Models 

Generally, in the current study, the researcher applies two different 

system models with different configurations. The first model is designed 

on the bases of horizontal users and the second model is more advanced to 

cover vertical users as well in the elevation section. 

3.6.1 Horizontal System Model 

The strategy involves guiding the beam to those users and detecting 

the user which has an extremely low measurement of power under the 

preservation of signal integrity. Figure 3.1 shows how machine learning 

algorithms (MLAs) can be used to look at and change beamforming 

weights in real time with a phased array system that works at 28 GHz 

carrier frequency for two users. 
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Fig. 3.1. Beamforming System Model 

Referring to Figure 3.2, the system starts by collecting the signals 

from the users in the network, then calculates their AoA and sets a scaling 

factor based on their distance relative to the power level of the users.  

After the operation is done, the AI chooses the user with the least 

power in the network and adjusts the beam towards the user with the least 

power.  
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Fig. 3.2. Horizontal System’s Flowchart. 

If the user moves or changes, UE power is restored; a recalibration 

happens by sending feedback to the station, which makes the system re-do 

the scaler calculation. 

3.6.2 Vertical System Model 

The system model, as shown in Figure 3.3, is placed within a mobile 

network context, where the central communication hub is a BS, interacts 

with a number of UEs within a defined coverage area. The BS is equipped 
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with complex signal processing systems and it is responsible for guiding 

the beam and maintaining a dependable link to the UE. In such network, 

mobile users (referred to as User 1 and User 2) are mobile all the time and 

make the direction of arrival (DoA) of the signal dynamic; hence, there is 

a need for an adaptive signal processing. On the contrary User 3 and User 

4 are static, being inside a building of different heights, where signal 

transmission meets multipath propagation effects caused by reflections, 

causing phase and time delays. The model shows the realities of signal 

propagation in the real world and the need for advanced beamforming 

methods to meet the complex communication needs within a 5G network 

environment. 

 

Fig. 3.3 Proposed System Model 

The flowchart in Figure 3.4 outlines an AI-enhanced beamforming 

system designed for 5G networks, starting with the initialization of a URA, 

crucial for capturing and processing signals in a multi-user environment. 

Signals for multiple users are generated and then subjected to a unique set 

of scaling factors, optimizing their power levels for improved reception and 

processing efficiency. These signals undergo a beamforming process 
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where the system dynamically selects the optimal direction based on the 

lowest power signal, demonstrating the adaptive nature of the system to 

focus on weaker signals and enhance overall network performance. 

A feedback loop is incorporated to evaluate the system's 

performance continually, with BER and throughput calculations serving as 

key metrics. This loop allows for real-time adjustments to the beamforming 

strategy, ensuring the system's adaptability to varying network conditions 

and user requirements. Additionally, the system employs DoA and AoA 

estimation techniques, further refining the beamforming process by 

accurately determining the signal's origin. This precise localization is 

essential for targeting the beamforming efforts more effectively and is 

indicative of the system's capability to handle complex urban scenarios. 
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Fig. 3.4. Vertical System’s Flowchart 

 

3.7 System Assumption and Configuration  

The following section contain system assumption, configuration the 

simulated MATLAB model, and the designed system’s flowchart as 

follows: 
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3.7.1 System Assumptions 

• Modulation Scheme (16-QAM) 

• Beamforming Algorithm is Hybrid Phased 

• AI Algorithm for Beam Steering for optimizing power consumption 

and maintaining signal integrity. 

• Distinct signals are generated to represent users, each with a unique 

time of arrival. 

• The angles of arrival (AoA) for each user are randomized within a 

range of -90 to 90 degrees. 

• The AI algorithm assigns scaling factors to the signals, which adjust 

their amplitude and, consequently, their power. 

• Power calculations for each user's signal are performed to determine 

which user has the lower power signal. 

• Noise is artificially added to the signals to simulate a realistic 

communication environment. 

• The signals for both users are received through an antenna array with 

noise components. 

• A beamforming algorithm is applied to the noisy signals and 

combining them in such a way to form a single beam directed towards 

the chosen user's signal. 

• The AI employs a DOA estimation algorithm (MUSIC estimator) to 

find the direction from which the signals are arriving amidst the noise. 

• The AI uses the calculated power to decide which user to direct the 

beam towards and opting for the user with the lower power signal to 

optimize system performance. 

• The AI controlled system dynamically adjusts the beam direction to 

align with the estimated DOA of the selected user. 
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3.7.2 System Configurations 

The systems implemented in this dissertation have similar 

properties, but there are few distinct differences between them. The most 

distinct difference between the two systems is the different uses of array 

model. The horizontal system utilizes ULA and the vertical system utilizes 

Uniform Rectangular Array (URA). Further explanation about their usage 

will be discussed in the results section in this dissertation. 

3.7.2.1 Horizontal System Configuration 

Referring to Table I shown below, which shows the configurations 

parameters that has been used for the MATLAB simulated modeled 

system, along with their direct impacts and effects on the calculated results. 

 

Table 3.1: Parameters Impact on the Results 

Parameter Setting Impact on Results 

Carrier Frequency 28 GHz 
Affects wavelength and antenna 

design 

Signal Amplitude 1V 
Influences power calculation and 

beam direction 

Antenna Array 

Elements 
10 

Impacts the array's ability to form and 

steer beams 

Element Spacing λ/2 
Affects the array's spatial resolution 

and side 

Modulation Order (M) 16 Affects BER and throughput 

SNR -25 to 25 dB 
Challenges the AI in correctly 

estimating DOA 

Angle of Arrival (AoA) MUSIC Determines beam steering direction 

Scaling Factors 0-1 
Used by the AI to prioritize users 

based on power 

Frame Duration/s 1ms Affects the data transmission 

Symbol Rate / Hz 1 MHz Rate at which symbols are transmitted 
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3.7.2.2 Vertical System Configuration 

Table II shows a summary for the important parameters and 

techniques used in the MATLAB simulation. It is also worth to mention 

that the main numerical parameters including frequency values, element 

layout, signal characteristics, noise level and the methods employed for 

signal processing, beamforming, and angle of arrival estimation in the 

context of a phased array system simulation are also included. 

 

Table 3.2: Parameters Assumptions of the Chosen Modeled System 

Parameter/Technique Value/Description 

Carrier Frequency 28GHz 

Number of Elements in Array 8x8 

Element Spacing (𝜆/2) 

Frequency Range 27GHz to 29GHz 

Angle of Arrival (Horizontal) Random integer between -90 and 90 degrees 

Angle of Arrival (Vertical) Random integer between 0 and 70 degrees 

Noise Power 1.5 (1.76 dB) 

Beamforming Direction 
Based on the user with the lowest power 

signal 

Phased Array Technique Uniform Rectangular Array (URA) 

DoA Estimation MUlti SIgnal Estimator (MUSIC Estimator) 

Modulation Order (M) 16 (QAM) 

Symbol Rate 1 MHz 

Frame Duration 1 ms 

Eb/No Values -25 to 25 dB 

Number of Symbols Per Frame 100 
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CHAPTER FOUR 

RESULTS EVALUATION AND DISCUSSION  

 

4.1 Introduction 

In this chapter, the researcher initiates the evaluation of findings of 

the study, focusing on the performance of the AI-driven system in handling 

complex signal environments. This part of the dissertation is dedicated to 

exploring how artificial intelligence manages noise and enhances signal 

clarity, thereby improving communication efficiency under varied and 

challenging conditions.  

The analysis not only underscores the AI’s utility in signal 

processing, but also showcases its potential applications in real-world 

scenarios. By examining the system’s ability to maintain high integrity and 

precision in signal handling, this section provides critical insights into the 

technological advancements that drive modern communication systems. 

The results discussed here lay the groundwork for understanding the 

broader implications of AI in enhancing network performance and 

reliability. 

 

4.2 ULA and URA Choice of Matter 

The choice between ULA and URA in beamforming is largely 

determined by the specific requirements of the system and the environment 

in which it operates. A ULA, which consists of antennas arranged in a line, 

is capable of forming beams in one dimension (azimuth), but it lacks the 

ability to form beams in the elevation dimension. This is because the 

antennas in a ULA are aligned along a single axis, which limits their ability 

to steer the beam in multiple dimensions. 



 

51 

On the other hand, a URA, which has antennas arranged in a 

rectangular grid, can form beams in both azimuth and elevation 

dimensions, making it suitable for 3D beamforming or Massive MIMO 

[34]. This is particularly useful in urban environments where users may be 

located at different heights, such as in multi-story buildings [35]. 

The ability of URAs to perform 3D beamforming is due to their two-

dimensional structure, which allows them to steer the beam in both 

horizontal and vertical directions. This provides more degrees of freedom 

and increases the number of high-throughput users [36]. 

However, it's important to note that the choice between ULA and 

URA isn't about one being "better" than the other, but rather about choosing 

the right tool for the job based on the specific requirements of the system 

and the environment. Both ULA and URA have their own advantages and 

can be effectively used in different scenarios. For instance, ULA might be 

preferred in environments where the users are spread out in the horizontal 

plane, while URA might be more suitable in environments where users are 

distributed in three dimensions. 

 

4.3 Horizontal System 

System analysis starts with Figure 4.1, which illustrates a time-

domain signal depiction for two different users. Figure 4.1 shows the users 

being spread out in time domains, and they are separated from each other 

to make them more distinct. 
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Fig. 4.1: Time-Domain Signal for Two Users 

 

In Figures 4.2 and 4.3, noise has been added to the received signals 

at each antenna element to emulate these real-world conditions. This 

addition lets us make a thorough assessment of the AI system’s ability to 

handle noise and filter it out while it concentrates on the desired signal. The 

simulation of the noise addition process includes the generation of a noise 

signal that resembles the characteristics of real noise—random, 

unpredictable, and of different magnitudes. This noise signal is then added 

to the signal collected by the antenna elements. The AI system processes 

the combined signal (the original signal coupled with noise). 
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Fig. 4.2: Noise Signal Added to Users1 

 

Fig. 4.3: Noise Signal Added to Users2 

Figures 4.4 and 4.5, draw polar plots that depict the adopted angles 

of arrival (AOA) for their respective users. In hindsight, these plots are 

very important for showing how well the AI fixes on AOA, which is a big 

part that is needed and it is enough to keep power usage low while signal 

integrity stays high. 
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Fig. 4.4: Angles of Arrival (AoA) for Users1 

 

 

Fig. 4.5: Angles of Arrival (AoA) for Users2 
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Figures 4.6 and 4.7 give detailed DOA estimation plots, which are 

practically very useful to the successful beam steering mechanism of the 

system. These plots represent a kind of graphical proof that the AI can 

precisely pinpoint the location of the user. Discussing such a figure 

comprehensively would also require addressing the accuracy level of the 

DOA estimation for different conditions and special cases like non-line-of-

sight scenarios and dynamically changing environments. 

 

 
Fig. 4.6: Direction of Arrival (DOA) for Users1 

 
Fig. 4.7: Direction of Arrival (DOA) for Users2 
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Figure 4.8 is a key illustration in depicting the effect of AI driven 

beamforming iterations on signal integrity after post-processing. The 

enhanced clarity of the user’s signal in one distinct peak above any ambient 

level is illustrated in Figure 4.8 when a beamforming operation has been 

applied to it. This peak is not just a graphical construction but also stands 

for a measurable manifestation of the AI’s ability to enhance controllable 

features and eliminate unwanted noise and interference. In a detailed 

analysis of this figure, one must elaborate on the AI algorithms that can 

adaptively optimize beamforming weights. This optimization is essential 

to ensuring the high signal clarity in Figure 4.1. The AI system also uses 

state-of-the-art techniques like machine learning models that have been 

trained to comprehend all the essential substances in different signal 

environments.  

The system can do this by using models that allow the beamforming 

weights to be adjusted in real-time based on dynamic feedback about such 

things as signal environment, user location, etc. In addition, it is necessary 

to consider the trade-offs that the AI system may make in its quest for such 

clarity in a signal. For example, when the system aims at improving the 

signal for a given user or group of users, it can assign less power or 

attention to other sections of the network. One of the fundamental 

approaches to providing a realistic view of the abilities and potential 

outcomes generated by this AI system is discussing how it balances these 

trade-offs. In addition, the analysis should consider the technical details of 

how it is possible for AI to maintain signal integrity.  

One of the important facets that may be considered for a dialog is 

how the AI handles situations such as multipath propagation, where signals 

bounce off several surfaces before reaching a receiver, and how the same 

would lessen if any were understood about what is happening by the AI 

algorithm to isolate or strengthen only the desired signal path. 
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Fig. 4.8: Received Signal after Beamforming 

In Figures 4.9 and 4.10, the focus of analysis is on power distribution 

vs. different azimuth angles for two cases with and without beamforming 

weights. Of course, the increase in the concentration of the central lobe 

when using beamforming is a vivid proof that AI-driven steering is 

successful in steering to the correct UE.  

A more detailed analysis here will be made to compare the side lobe 

levels in different scenarios, which gives some valuable indications on the 

efficiency of the ML algorithm’s work in interference cancellation and 

estimator precision as well.  Furthermore, the establishment of the gain 

obtained from this process and how it augmented total network production 

results in a complete picture of system capabilities. 
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Fig. 4.9: Azimuth Angles for User1 

 

Fig. 4.10: Azimuth Angles for User2 

The simulated BER analysis for the system is shown in Figure 4.11. 

The points of blue stars represent the results of the BER simulation using 
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the AI algorithm for beam steering. In fact, the performance is excellent at 

high Eb/No. This means that when a signal is much more powerful than 

noise, the AI algorithm runs precisely and steers the beam towards the user.  

At the lower Eb/No values, it can be observed a slight departure from the 

theoretical curve because there are imperfections in the real world, which 

include quantization errors, phase noise, and non-linearity within the 

system. The red curve shows the theoretical BER, which also helps 

determine the quality of performance of the system. That is because BER 

establishes an ideal 16-QAM modulation without including any 

impairments or loss systems—particular losses.   There are multiple factors 

that may be the reason behind this gap between the estimated BER and 

theoretical BER, including imperfections in the AI algorithm that are not 

allowing it to align the beam perfectly, practical constraints of the hardware 

of the phased array for physical realization, signal processing errors and 

delays, etc. However, the minimization of power while steering the beam 

by the AI algorithm should not compromise BER beyond acceptable levels.  

 

Fig. 4.11: BER vs. EbNo. (dB) 
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Figure 4.12 indicates the throughput, which shows that despite its 

Eb/No being in the negative region, the system is able to sustain data 

transmission. In theory, as the value of Eb/No decreases, errors tend to rise, 

therefore reducing the overall throughput through retransmissions and 

error correction overheads.  

However, if the system uses strong error correction and 

retransmission techniques, it can hold a base throughput. The robustness of 

the system is observed at negative Eb/No values of throughput. This is 

because the AI algorithm can keep the beam alignment despite less-than-

full signal-to-noise ratio levels. Error-correcting codes can allow for data 

recovery.  

It can be seen that the throughput is sufficiently increasing until it 

reaches saturation at 10 Eb/No. The reason behind that might be due to 

system limits like the maximum symbol rate, finite modulation levels (16-

QAM), or a constraint in the processing capacity of the AI algorithm.  

However, the AI can still guide the beam properly by utilizing peeks from 

these noises. The detailed plots and much of the obtained results clearly 

show how effective it is to have precise implementation of these algorithms 

and estimate very accurate signal parameters. These visuals show that the 

AI can work in a noisy environment and will ensure beam steering to 

maximize communication between the intended users.  

This paves the way for beamforming to couple with numerous 

parameters such as complex interaction and an ever-changing acoustical 

signal environment; therefore, the system will manage to control it. 
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Fig. 4.12: Throughput vs. Eb/No 

 

4.4 Vertical System 

The actual signal representation for four different users is shown in 

Figure 4.13. The signals are generated and sampled over a 0.3s and a carrier 

frequency of 28 GHz, and thus represents signals used in millimeter-wave 

communications. Each subplot depicts a single, brief high-amplitude pulse 

submerged in mostly 1V amplitude signal; these are digital pulses 

visualized in the time-domain. Each of the signal is further aligned with an 

element in a URA. The signals are timed in such a way that each time at 

most one user signal is present; thus, the ultra-wide band spectra 

correspond directly to the spectrum for the four signals. 
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Fig. 4.13: Four Signals for End Users 

Proceeding to Figure 4.14, which shows a three-dimensional spatial 

representation of user distribution with respect to a BS positioned at the 

center. The BS is defined at the coordinate origin to enable beamforming 

operations. The horizontal users (User 1 and User 2) exhibit the proximity 

of the BS in the XY plane and the vertical users (User 3 and User 4) are 

positioned along the Z axis reflecting a multi-story user environment that 

represents the urban high-rise conditions. 

 

Fig. 4.14: 3D Representation of Users Locations 
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     Figures 4.15, 4.16 and 4.17 present the spatial spectrum analysis 

utilized to infer the DOA for each user and their spectrum. Peaks are 

discernible for User 1 at approximately +57 azimuth degrees, User 2 at +73 

azimuth degrees, User 3 at -8 azimuth and +9 elevation degree, and User 4 

at -15 azimuth and +63 elevation degrees, with spectral magnitudes 

approaching unity. This precision in peak detection exemplifies the 

system's adeptness at resolving UE directions amidst a high noise 

backdrop, attributable to the MUSIC algorithm's high-resolution 

capabilities. DOA estimation in azimuth and elevation further validates the 

MUSIC estimator's proficiency.  

Horizontal user’s exhibit closely clustered azimuthal estimates, 

while vertical users are close at azimuth angles. 

 

Fig. 4.15: DOA Presentation in 2D 
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Fig. 4.16: 3D Representation of DOA 

 

Fig. 4.17: Spatial Spectrum for all Users 

Figure 4.18, shows the original signal with heavy noise added to it 

to make it more challenging for the system to detect the signal. The right 

side shows that the signal is altered heavily beyond recognition as the noise 

figure added to the signal is 1.76 dB to imitate real environment scenario. 

The noise is added to every element in the array before transmitting the 

signal out. 
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Fig. 4.18: Signal with Heavy Noise Addition 

Figures (4.19 to 4.22), show the response of azimuth and elevation 

arrays with and without beamforming weights implementation.  The 

normalized power in the beamforming application are significantly 

improved from an average level of -100 dB to a central peak at -20 dB, 

which is a strong 80 dB gain.   This fact supports the effectiveness of the 

beamforming strategy in signal directivity improvement. 

 

Fig. 4.19: Array Response for User1 
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Fig. 4.20: Array Response for User 2 

 

 

Fig. 4.21: Array Response for User3 
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Fig. 4.22: Array Response for User 4 

Figure 4.23 represents the temporal characteristic of the magnitude of 

the received signal after applying beamforming. Sporadic peaks ranging 

over 1.2 magnitudes break the plot and show that the system is a dynamic 

adaptation to the best beam alignment in the face of temporal changes in 

channel conditions. 

 

Fig. 4.23: Beamforming User’s Signal 
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Figure 4.24 evaluates BER performance with respect to Eb/No 

which is a quantitative measure of data integrity. The BER estimates 

closely aligns with the theoretical BER with a clear exponential 

improvement seen as Eb/No grows.  The BER falls under an acceptable  

10-5 level at about 13 dB Eb/No which is suitable for reliable digital 

communications.  

 

Fig. 4.24: Bit Error Rate Analysis 

Finally, Figure 4.25 represents throughput comparison between 

azimuth and elevation beamforming with respect to the energy per bit to 

noise power spectral density ratio (Eb/No). It's observed that both strategies 

exhibit an increasing throughput with the rising Eb/No levels, eventually 

reaching a saturation point. The curve shows a vertical growth from 2.2 

Mbps throughput at -25 dB Eb/No to a peak where it reaches its saturation 

at 3.8 Mbps, from 5 dB Eb/No. Notably, despite a higher noise figure in 

elevation beamforming, the use of an URA allows for spatial diversity 

utilization, enabling the elevation strategy to match the performance of 

azimuth beamforming at higher Eb/No values and outperforming the 

azimuth by 3.45% at lower Eb/No. Meanwhile, the azimuth approach, with 
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its lower noise power, outperforms elevation beamforming by 6.25% at 

higher Eb/No; however, the gap closes as the Eb/No ratio improves, 

indicating effective compensation mechanisms within the system for noise.  

 

Fig. 4.25: Throughput Analysis 

 

4.5  Various Evaluation Settings 

In this section the researcher explores more settings for the selected 

system and observe its work under simpler modulation schemes, more 

amount of array elements and different frequencies. Table III shows the 

different settings changed to the system structure.  
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Table 4.3: Parameters of the Chosen System 

Parameter/Technique Value/Description 

Carrier Frequency 26, 28, 30 GHz 

No: of Elements in Horizontal ULA 

Array 
8, 10, 12 

No: of Elements in Array Vertical URA 

Array 
8x8, 10x10, 12x12 

Element Spacing (𝜆/2) 

Frequency Range 25GHz to 31GHz 

Angle of Arrival (Horizontal) 
Random integer between -90 and 90 

degrees 

Angle of Arrival (Vertical) 
Random integer between 0 and 70 

degrees 

Noise Power 0.5 - 1.5 

Beamforming Direction 
Based on the user with the lowest power 

signal 

Modulations schemes QPSK, QAM, 8QAM, 16QAM 

DoA Estimation 
MUlti SIgnal Estimator (MUSIC 

Estimator) 

Modulation Order (M) 4, 4, 8, 16 

Symbol Rate 1 MHz 

Frame Duration 1 ms 

Eb/No Values -25 to 25 dB 

Number of Symbols Per Frame 100 

 

The researcher starts first by changing the number of elements in the 

horizontal system’s array under the influence of different frequencies and 

observe the changes in the system results. Figures 4.26, 4.27, and 4.28 

show the BER under different frequencies and elements respectively. From 

the BER results, it can be seen that the system is independent on frequency, 

but rather dependent on the number of elements in the array.  
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Figure 4.26: BER for 8 Elements 

 

 

Figure 4.27: BER for 10 Elements 
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Figure 4.28: BER for 10 Elements 

Then, a simulation run with the throughput under the same 

environment. Figures 4.29, 4.30, and 4.31 show the throughput simulated 

under different number of elements and frequencies.  The results show that 

the system throughput increases as the number of elements in the array 

increase and this is due to increasing in gain and efficiency, thus increasing 

the overall performance of the system. 
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Figure 4.29: Throughput for 8 Elements 

 

 

Figure 4.30: Throughput for 10 Elements 
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Figure 4.31: Throughput for 12 Elements 

As for the analog beamforming signal, its clarity increases and the 

noise gets reduced for every increase in the elements in the system’s array. 

Figures 4.32, 4.33, and 4.34 shows the beamforming signal at different 

number of array elements. 

 

Figure 4.32: Beamforming Signal for 8 Elements 
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Figure 4.33: Beamforming Signal for 10 Elements 

 

 

Figure 4.34: Beamforming Signal for 12 Elements 

The same settings were placed for the vertical system excluding the 

frequency because the system is independent on the frequency as was 

shown previously. Starting with calculating the BER for the system under 
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different number of array elements, Fig 35 shows BER performance under 

different number of array elements, then evaluating the throughput of the 

system under the same conditions. Figure 4.36 shows the throughput of the 

system under different number of array elements. It is noticed that there is 

a slight improvement in BER and throughput at a higher number of array 

elements. The overall performance of the vertical system is slightly better 

because it has a rectangular array and not linear. The number of arrays is 

much higher compared to the horizontal system, where the rectangular 

system takes [NxN] number of elements. The horizontal system can run 

with only [N] number of elements reducing the cost and simplicity of the 

system by a large amount. 

 

Figure 4.35: BER for Different Number of Elements 
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Figure 4.36: Throughput for Different Number of Elements 

 

Continuing to test the clarity of the analog beamforming signal, the 

researcher ran the model at previous conditions and observed the signal 

clarity.  

Figures 4.37, 4.38, and 4.39 shows the analog beamforming signal 

at different number of array elements. As it is assumed, the system’s 

performance at receiving signals is slightly better than the horizontal 

system, as of the increase system’s resilience to noise. 
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Figure 4.37: Beamforming Signal for 8 Elements 

 

 

Figure 4.38: Beamforming Signal for 10 Elements 
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Figure 4.39: Beamforming Signal for 10 Elements. 

 

Finally, a different modulation schemes, QPSK, QAM, 8QAM, and 

16 QAM, were investigated to study the effect of modulation on the 

beamforming process into the system. Figure 4.40 Shows the BER for the 

system under the standard conditions mentioned in table I and II.  

 

Figure 4.40: BER for Vertical and Horizontal Systems 
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From the observation, it can be noticed that the QPSK is of the worst 

performance, but of course, since beamforming is a technique that utilizes 

phase domain and QPSK works on the same domain so it is expected to be 

of reduced performance, but as the Eb increase, it follows the path of 

normal QAM and takes a steady steep. 8QAM comes after them being 

suitable for modulation at a lower cost, and then, ideally, the 16QAM is 

performing well in the system. Moving on to verify the throughput of the 

systems under different modulation schemes, Figure 4.41 shows the 

systems throughput under different modulation schemes.  

An interesting effect can be noticed on the system. When observing 

the system’s throughput, one can see that QPSK being the lowest then 

followed by QAM at certain Eb point, but the important point is that the 

stability of the system is constant at 6dB. Moreover, a limitation can be 

observed on the amount of data the system can absorb. QPSK and QAM 

being capped at 2Mbps, 8QAM being capped at 3Mbps, and lastly and 

ideally the 16QAM at 4Mbps. 

 

Figure 4.41: Throughput for Vertical and Horizontal Systems 
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CHAPTER FIVE 

CONCLUSION AND FUTURE WORK  

 

5.1. Conclusion 

This dissertation thoroughly explored the central role of elevation 

beamforming in Full Dimension Multiple Input Multiple Output systems 

and extensively demonstrated the potential of such an approach for 

revolutionary improvement of future wireless networks.  The combination 

of elevation and azimuth plane of one of the vital degrees of freedom in 

signal processing opened opportunities for solving most pressing issues 

related to signal quality, resilience to interference, and scalability in 

settings with extreme density like multiflora buildings in urban 

configurations that cause signal blockage and destructive path loss.  

The dissertation utilized comprehensive simulations to show that 

elevation beamforming does not only help create network coverage and 

capacity but also allows avoiding expensive and complicated infrastructure 

enhancements to increase data rates and coverage at the same time by using 

fewer BSs or antenna systems. However, the employment of advanced 

beamforming strategies has one serious obstacle because they are very 

computation-expensive and require the most sophisticated real-time signal 

processing capacity.  

Moreover, beamforming algorithms need to be adapted to different 

network conditions that change in minutes or even faster, which requires 

solid software tools and even more robust hardware solutions. It is both a 

challenging and promising direction for the improvement of global 

communication systems.  
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The simulation results provided robust evidence supporting the 

efficacy of elevation beamforming.  

− Signal enhancement was notable, with beamforming user signal 

magnitudes reaching peaks over 1.2V. BER performance showed  

a significant improvement, with BER falling below the acceptable 10-5 

level at 13 dB Eb/No and closely aligning with theoretical estimates.  

− Throughput analysis indicated a substantial increase from 2.2 Mbps at 

-25 dB Eb/No to a peak of 3.8 Mbps at 5 dB Eb/No, with elevation 

beamforming outperforming azimuth beamforming by 3.45% at lower 

Eb/No levels and matching azimuth performance at higher Eb/No.  

− Power distribution analysis revealed a significant 80 dB gain in central 

peak power when applying beamforming weights, improving from an 

average level of -100 dB to a central peak at -20 dB.  

− The system's ability to dynamically adapt to optimal beam alignment in 

response to temporal changes in channel conditions was evident from 

the signal integrity improvements. 

 

5.2. Future Work 

The results of this dissertation establish the basis for extensive 

academic research to advance the implementation and operational use of 

elevation beamforming in FD-MIMO. It is reasonable to expect more 

research works to try to find optimal solutions to overcome the obstacles 

discussed in this work and unlock the full capacity of this technology for 

future-generation wireless systems.  

As future work, there are areas that provide a roadmap for continued 

research and development in the field of AI-enhanced adaptive vertical 

beamforming for 5G networks and beyond: 
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• Increasing the users is a difficult task as it requires increasing demands 

on managing the interference between them and raises higher concerns 

when facing environments with same or higher noise. 

• Focusing on the deployment of elevation beamforming in urban settings 

to overcome challenges related to high-rise buildings and dense 

infrastructures. 

• Exploring quantum computing methods to handle the complex 

calculations required for real-time beamforming in dense network 

environments. 

• Reducing the computational complexity of current beamforming 

algorithms to facilitate faster processing and lower power consumption.        
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 الخلاصة

في الدراسة  هذه  الاصطناعي  تقنيات  دمج    امكانية   تبحث  أنظمة الحديثة  الذكاء    في 

خوارزميات  في    يستند عليها   قاعدة نظرية  هالجعل  FD-MIMO  الاتصالات من نوع 

الحزم أدائها  (Beamforming)  تشكيل  في    يوه ,  وتحسين  الأساسية  الميزات  أحد 

 . FD-MIMOتطوير أنظمة  

م المعزز  ي نهجًا أفضل يجمع بين أساليب الذكاء الاصطناعي والتعلتوفر هذه الدراسة  

(Reinforcement Learning  وذلك خوارزميات  لتحقيق  (  في  ممكن  اداء  افضل 

مقارنة    تتمحيث  سيناريوهات الشبكة المتغيرة ديناميكيًا،    وفق  ةفي الحزم التكي    تشكيل 

باستخدامبنوعيها  الحزم    تشكيلاستراتيجيات  مختلف   والرأسية    مصفوفات   الأفقية 

ULA   وURA . 

على    اعتمد الأداء  الرئيسية  اهم  تقييم  و BER  وهيالمقاييس  البيانات،  نقل  ،  سرعة 

و Eb/Noو  ا.  تحسينات    ت ظهرقد  حيث  النتائج  من  والكفاءة جيدة  الإشارة  سلامة 

النظرية    النتائج  القيم التي نتجت من  قد لوحظ قرب نتائج المحاكات من تلك الطيفية، و 

زيادة بحدودفي    واضحة   مع  كانت  والتي  البيانات  نقل  في    2.2من    سرعة  ميجابت 

لكل    ديسيبل  5ميجابت في الثانية عند    3.8إلى    Eb/Noلكل    ديسيبل   25-الثانية عند  

Eb/No    في   تحسينات   وايضا اظهرت النتائج  SINR    ديسيبل من خلال    80في حدود

حسّنة.  (Beamforming Weights)  الحزم تشكيل عناصرتطبيق   الم 

في المناطق  تحديات  اهم الالتغلب على    النهائية لهذه الدراسة قدرتها في   النتائج   اظهرت 

افضلللعمل    جيدة  فرصة  واتاحةالكثافة    ةعالي   السكنية الشبكة    باداء  تحسين  على 

 . استراتيجيات تشكيل الحزم المدعمة بالذكاء الاصطناعي تطبيق من خلال  اللاسلكية
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 رسالة تقدم بها 

 يوسف ماهر عبد الحميد

 

 إلى 

درجة  نيل متطلبات وهي جزء من / جامعة نينوى   اتمجلس كلية هندسة الالكتروني 
 الماجستير في العلوم في 

 هندسة اتصالات 
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 جامعة نينوى 

 كلية هندسة الالكترونيات 

 قسم هندسة الاتصالات 
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 يوسف ماهر عبد الحميد

 

 

 ماجستير  رسالة 

 تصالات الا ةهندس
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