

NINEVAH UNIVERSITY

COLLEGE OF ELECTRONICS ENGINEERING

COMPUTER AND INFORMATION ENG. DEPARTMENT

FPGA Implementation of Video Edge Detection

Based on Fractional Order Differentiation

 By

Ibtisam Edrees Kanaan

M.Sc. Thesis

In

Computer and Information Engineering

Supervised by

Dr. Emad Atiya Khalaf

Dr. Majid Dherar Younus

 2021 A.D. 1442 A.H.

FPGA Implementation of Video Edge Detection

Based on Fractional Order Differentiation

A Thesis Submitted

By

Ibtisam Edrees Kanaan

To

The Council of the College of Electronic Engineering

Ninevah University

As a Partial Fulfillment of the Requirements

For the Degree of Master of Science

In

Computer and Information Engineering

Supervised by

Dr. Emad Atiya Khalaf

Dr. Majid Dherar Younus

 2021 A.D. 1442 A.H.

Supervisor
'
s Certification

 I certify that the dissertation entitled (FPGA Implementation of Video

Edge Detection Based on Fractional Order Differentiation) was prepared by

Ibtisam Edrees Kanaan under my supervision at the Department of Computer and

Information Engineering, University of Ninevah, as a partial requirement for the

Master of Science Degree in Computer and Information Engineering.

Signature: Signature:

Name: Dr. Emad Atiya Khalaf Name: Dr. Majid Dherar Younus

Department of Computer and Information Engineering

Date: / /2021

Linguistic Advisor Certification

I certify that the linguistic evaluation of this thesis entitled “FPGA

Implementation of Video Edge Detection Based on Fractional Order

Differentiation’ was carried out by me and it is accepted linguistically and in

expression.

Signature:

Name:

Date: / /2021

Post-Graduate Committee Certification
According to the recommendations presented by the supervisor of this

dissertation and the linguistic reviewer, I nominate this dissertation to be forwarded to

discussion.

Signature:

Name: Assistant Prof. Maan A. S. Al-Adwany

Committee Certification

We, the examining committee, certify that we have read this dissertation entitled

(FPGA Implementation of Video Edge Detection Based on Fractional Order

Differentiation), and have examined the postgraduate student (Ibtisam Edrees

Kanaan) in its contents. In our opinion; it meets the standards of a dissertation for the

degree of Master of Science in Computer and Information Engineering.

Signature:

Name: Assist Prof.

Dr.Mohammed H. AL-Jammas

Head of committee

Date: / /2021

 Signature:

Name: Assist Prof.

Dr.Basma MK.Younis

Member

Date: / /2021

Signature:

Name: Assist Prof.

Dr.Sinan Alkassar

Member

Date: / /2021

Signature:

Name:Dr. Emad Atiya Khalaf

Member and Supervisor

Date: / /2021

Signature:

Name:Dr. Majid Dherar Younus

Member and Supervisor

Date: / /2021

The college council, in its ………… meeting on / /2021, has decided to

award the degree of Master of Science in Computer and Information Engineering to

the candidate.

Signature:

Name:

Dean of the College

Date: / /2021

I

Department Head Certification
 I certify that this dissertation was carried out in the Department of

Computer and Information Engineering. I nominate it to be forwarded to

discussion.

Signature:

Name: Assistant Prof. Maan A. S. Al-Adwany

Date: / /2021

II

ACKNOWLEDGEMENTS

Praise be to ALLAH, Lord of the World. Praise be to ALLAH, who gave

me strength and success during the completion of this study.

I would like to express my sincere gratitude and thanks to my

supervisors, Dr. Emad Atiya Khalaf and Dr. Majid Dherar Younus

for their continuous guidance, valuable suggestions and constant

encouragement throughout this work.

Thanks are due to the Dean of the Electronics Engineering College

for his valuable assistance. My appreciation is extended to the Head and

all the members of the Computer and Information Engineering

Department for their support and assistance.

Also, I would like to thank my parents, who did not leave me feel alone

during my study through their continuous supplications. Also, I would

like to extend my sincere thanks and gratitude to all the members of my

family and my husband for their encouragement, support, and patience

during my postgraduate studies.

.

 Researcher

 Ibtisam Edrees Kanaan

 2021

III

Abstract

Edge detection is one of the vital research issues and a very

important key step towards the realization of image features, image

segmentation, and pattern recognition. It is a relatively old concept that

relies on integer derivatives to detect image edges, mainly of the first or

second-order derivatives. With the emergence of fractional calculus, edge

detection is revisited with non-integer order derivatives. The present

study proposes video edge detection based on five fractional-order Sobel

operators. The design of the fractional-order Sobel filters based on

Yi_Fei-1 to Yi_Fei-5 operators.

Graphical User Interface (GUI) has been developed in Matlab

2017b to analyze the proposed fractional and classical Sobel filters. Edge

accuracy is one of the edge detector challenges; therefore supervised

assessment for the proposed filters and classical one has been performed

by using Mean Square Error, Symmetric Distance Measure, Relative

Distance Error, Misclassification Error, Complemented Performance

Measure and Complemented F Measure. Many images with their ground

truths have been used in the evaluation. The results showed that

fractional-order Sobel filter-based on Yi_Fei-2 outperforms on classical

Sobel and other proposed filters.

Fractional-order Sobel filter based on Yi_Fei-2 has been

implemented by using FPGA. Xilinx Vivado 2018.2 has been used in the

aggregation with Matlab 2017b. HDL verifier through FPGA in the loop

and Co-simulation methodology has been utilized in the FPGA

implementation on Artix-7 NEXYS 4 kit. The root mean square error

between hardware implementation and software simulation is 0.002.

IV

TABLE OF CONTENTS

Subject Page

Acknowledgments II

Abstract III

Table of Contents IV

List of Figures VI

List of Tables VII

List of Abbreviations VIII

List of Symbols X

Chapter One – Introduction

 1.1 Introduction 1

 1.2 Problems Statement 2

 1.3 Related work 2

 1.3.1 Edge Detection Based on Integer Order Derivative 2

 1.3.2 Edge Detection Based on Fractional Order

Differentiation
3

 1.3.3 Performance Evaluation 6

 1.3.4 Hardware Implementation 7

 1.4 Thesis Objectives 9

 1.5 Thesis Layout 9

Chapter Two – Edge Detection Techniques and Performance

Evaluation Metrics

2.1 Introduction 10

2.2 Edge Detection 10

2.3 Classical Edge Detection Techniques 11

2.3.1 Gradient-Based Techniques 11

2.3.2 Gaussian Based Techniques 14

V

2.4 Fractional Calculus Concept 17

2.5 Fractional Calculus Definitions 18

2.6 Evaluation Metrics 19

2.6.1 Error Measures Involving Only Statistics 19

2.6.2 Assessment Involving Distances of Misplaced

Pixels
22

Chapter Three – Design Edge Detection System Based on Fractional

Sobel Operator

3.1 Introduction 23

3.2 Fractional Order Sobel Filters Derivativeation 23

3.3 Software Development 27

3.4 Results Analysis 29

Chapter Four – FPGA Implementation of Video Edge Detection

4.1 Introduction 38

4.2 Hardware in the Loop 38

4.3 Proposed Edge Detection System 39

4.4 Implementation of the Proposed System 40

4.4.1 Hardware Compilation and Co-simulation 41

4.4.2 Hardware Implementation Reports 42

 4.4.3 Results 43

Chapter Five – Conclusions and Future Works

5.1 Conclusions 48

5.2 Future Works 49

REFERENCES

 References 50

 Appendix A A-1

VI

LIST OF FIGURES

Figure Title Page

2.1 Canny operator steps 16

2.2 Workflow of FOC in image processing 18

2.3
An example of a comparison between the result edge

map (DR) and ground truth image (GT).
20

3.1 GUI system of the fractional Sobel edge detection 28

3.2
Complemented Performance Measure for the five

fractional-order Sobel filters
29

3.3
Complemented F Measure for the five fractional-order

Sobel filters
30

3.4
Relative Distance Error for the five fractional-order

Sobel filters
30

3.5
Symmetric distance for the five fractional-order Sobel

filters
31

3.6 MSE and ME for the five fractional-order Sobel filters 31

3.7 TP for the five fractional-order Sobel filters 33

3.8 FN for the five fractional-order Sobel filters 34

3.9 FP for the five fractional-order Sobel filters 34

 3.10
Edge detection using fractional Sobel filter based

Yi_Fei-2
35

 3.11
Fractional Sobel filter based Yi_Fei-2 and Sobel

operator edge maps when original is the ground truth
36

 4.1 HIL co-simulation 39

4.2 Edge Detection System 40

4.3
The equivalent software implementation of the HDL

algorithm
 41

4.4 Hardware model of video edge detection 42

 4.5
Hardware Utilization of video edge detection for Artix-

7 NEXYS 4

 43

4.6 System Co-simulation 43

 4.7
Root mean square error between hardware processing

and simulation
 47

VII

LIST OF TABLES

Table Title Page

3.1 The five operators of Yi_Fei 26

3.2 Minimum Scores of Fractional Sobel operator Yi_Fei-2 36

3.3
Values of Max.TP and Min. FN, FP of classical Sobel

and Fractional Sobel operators.
37

3.4
Scores of Fractional Sobel operator Yi_Fei-2 and Sobel

operator when select GT as original image
37

4.1 Hardware utilization of video edge detection 42

4.2 Samples of Co-simulation frames 44

VIII

LIST OF ABBREVIATIONS

Abbreviation Name

API The Windows Application Interface Function

BER Bit Error Rate

DR Detector Result Edge Map

EDK Embedded Development Kit

FIL FPGA in the Loop Simulation and Verification

filWizard FPGA in the Loop Wizard Matlab Function

FM The Complemented F Measure

FN False Negative Point

FOC Fractional Order Calculus

FOM Figure of Merit

FP False Positive Point

FPGA Field Programmable Gate Array hardware

FS_Yi_Fei-1 Fractional Sobel Filter Based Yi_Fei-1 Operator

FS_Yi_Fei-2 Fractional Sobel Filter Based Yi_Fei-2 Operator

FS_Yi_Fei-3 Fractional Sobel Filter Based Yi_Fei-3 Operator

FS_Yi_Fei-4 Fractional Sobel Filter Based Yi_Fei-4 Operator

FS_Yi_Fei-5 Fractional Sobel Filter Based Yi_Fei-5 Operator

G-L Grümwald-Letnikov Definition

GT Ground Truth Image

GUI The Graphical User Interface

H/W Hardware System

HDL The Hardware Description Language

HIL The Hardware in the Loop Methodology

LoG Laplacian of Gaussian

ME The Misclassification Error Metric

MRI Magnetic Resonance Imaging

IX

MSE Mean Square Error

PM The Complemented Performance Measure

PSNR Peak Signal to Noise Ratio

RDEL Relative Distance Error Measure

R-L Riemann-Liouville Definition

SDM Symmetric Distance Measure

SNR Signal to Noise Ratio

Th The High Threshold of Canny Operator

Tl The Low Threshold of Canny Operator

TN True Negative Point

TP True Positive Point

XSG Xilinx System Generator

Yi_Fei-1 The First Operator of Yi-Fei Pu

Yi_Fei-2 The Second Operator of Yi-Fei Pu

Yi_Fei-3 The Third Operator of Yi-Fei Pu

Yi_Fei-4 The Fourth Operator of Yi-Fei Pu

Yi_Fei-5 The Fifth Operator of Yi-Fei Pu

X

1 LIST OF SYMBOLS

Symbols Name

 Major Operator of Fractional Calculus

(

) Binomial Coefficient

 ̅ The Mean of Gradient Magnitude

Fractional Sobel Filter Based Yi_Fei-2 Mask in x-

direction

Fractional Sobel Filter Based Yi_Fei-2 Mask in y-

direction

Fractional Sobel Filter Based Yi_Fei-3 Mask in x-

direction

Fractional Sobel Filter Based Yi_Fei-3 Mask in y-

direction

Fractional Sobel Filter Based Yi_Fei-4 Mask in x-

direction

Fractional Sobel Filter Based Yi_Fei-4 Mask in y-

direction

Fractional Sobel Filter Based Yi_Fei-5 Mask in x-

direction

Fractional Sobel Filter Based Yi_Fei-5 Mask in y-

direction

|.| The Number of Elements in a Set

 The Gradient Angle

 Intersection symbol

 Union symbol

⌐ The Complement of the Set

DDR (pl)
The Minimal Euclidean Distance Between pl and

DR, pl belonging to GT

DGT (pl)
The Minimal Euclidean Distance Between pl and

GT, pl belonging to DR

F The Source Image

Gx The Gradient in x-direction

Gy The Gradient in y-direction

H The Calculation Step in Image Processing

XI

K The Mask Size

L Parameter in SDM and RDEL

M Magnitude of Gradient for LoG Operator

O Orientation of Gradient for LoG Operator

Pl A Pixel in GT or DR

Rx Roberts Mask in x-direction

Ry Roberts Mask in y-direction

Sx Sobel Mask in x-direction

Sy Sobel Mask in y-direction

 Over all Gradient in x and y direction

 Integer Number

 Fractional Order

Px Prewitt Mask in x-direction

Py Prewitt Mask in y-direction

 The Value of Denominator in Masks Coefficients

A Real Number Used in Complemented F

Measure

1

CHAPTER ONE

Introduction

1.1 Introduction

Edge detection is one of the commonly used techniques for extracting

features of an image. The main purpose of edge detection is to reduce the

quantity of the image data that has to be processed.Therefore, edge detection

is considered as a fundamental stage in various image processing

applications [1].

The abrupt changes of discontinuities in an image are defined as

edges. Edges of an image are treated as a kind of vital information that can

be separated by using detectors with different approaches. Edge detectors

based on integer order derivative can be principally categorized into two

groups: laplacian-based and gradient-based, which means the use of the

second-order derivative and first-order derivative respectively [2,3]. The

first-order derivative techniques usually result in thicker edges, which cause

loss of image details. The second-order derivative techniques have a robust

response to fine detail, but they are very sensitive to noise [4].

In recent years, the fractional-order calculus has been involved in the

edge detection techniques. Since the characteristic of the fractional-order

derivative can preserve nonlinearly more low-frequency contour features in

those smooth areas, keep high-frequency marginal features where grayscale

changes frequently, and also enhance medium-frequency texture details [5].

Then, to certify that an edge detector is reliable, it must be severely

evaluated before being used in a computer vision application. Hence, a

supervised evaluation measure calculates a dissimilarity criterion between a

detector result and a ground truth edge map, commonly got from expert

judgment or synthetic data [6 - 10].

2

In image processing applications, the Field Programmable Gate Array

hardware (FPGA) is being more and more significant, therefore it can be

utilized in the practical implementation of any digital logic function. FPGA

hardware has been considered as a substitution for the implementation of the

software algorithms. The presentation of FPGA has a significant impact on

image or video processing. This is due to the FPGA's ability to provide

parallel and high computational density, compared to the general purpose of

the microprocessor, and the flexibility in the development of image

processing algorithms on FPGA because of its capability of re-

programmable actuality[11].

1.2 Problems Statement

Many approaches based on integer order derivative have been used to

detect the edges in an image, but a propose edge detector is necessary to

produces thin edges and has the maximum number of true edges and the

minimum number of missing edges that form the borders of the shapes in the

image, additionally, it has the minimum distance of the incorrect edges

(fake and missing edges) from their actual position.

1.3 Related Work

Many researchers have applied many approaches to detect the edge in

the image and video processing, assessed it to get the best one and some are

presented the hardware implementation of edge detector:

1.3.1 Edge Detection Based on Integer Order Derivative

In 2013 D. Poonam and N. Sahu [12] demonstrated a study on the

most commonly utilized edge detection methods such as Roberts, Sobel,

Prewitt, Laplacian of Gaussian, and Canny. The most important thing that

has been noticed was that the canny operator had the best results. However,

the Laplacian of Gaussian presented similar results; but with missing edges

3

comparing to the Canny detector. Roberts, Prewitt, and Sobel's resulted in

actually different from those of Laplacian of Gaussian and Canny.

In 2015 Ş. Öztürk and B. Akdemir [13] presented some of the general

edge detection approaches such as Prewitt, Sobel, Roberts, LoG, and Canny

which were applied to glass texture analysis, their endeavor aimed to define

glass surface defect by using the same image. Comparison has been

performed between detectors. It has been found that LoG operator is superior

to other operators in defining texture analysis.

In 2016 L. Bhargav et al. [14] discussed three edge segmentation

techniques; Sobel operator, Canny operator, and LoG operator, and they

made a comparison between the results of the operators to choose the best

one. It has been found that Sobel operator outperformed among the other

filters.PSNR parameter was used in performance evaluation.

In 2017 K. B. Krishnan et al. [15] analyzed and compared the

performance of various edge detection methods like Canny optimal, Sobel,

Prewitt, and LoG detectors. Canny acts as an optimal technique for edge

detection because of its superior performance in complex images or noise

images in comparison to other methods.

1.3.2 Edge Detection Based on Fractional Order Differentiation

In 2009 Y. Pu et al. [16] proposed six fractional differential masks and

presented individually the structures and parameters of all masks in the eight

directions. Experiments showed that, for a digital image that is rich in

details, the capability of fractional differential-based approaches seemed

obviously better than the classical methodologies.

In 2015 D. Tian et al. [4] proposed a novel fractional-order gradient

detector to extract features from medical image structures. The proposed

operator is considered as a generalization of the integeral Sobel operator

4

based on the G-L definition of non-integer order derivative. The experiments

showed that the modified Sobel operator yields well observable effects.

In 2016 S. M. Ismail et al. [17] presented a comparative study of four

fractional-order filters used for edge detection. The four filters are based on

G-L definition with different modifying. All of them are of size 3x3. It were

used to extract the structural features of two groups of medical brain images

of Alzheimer disease patients. The comparison parameters that used MSE,

execution time, SNR, and PSNR parameters. Two types of noises were

added to the original image, random Gaussian noise, and Salt and Pepper

noise. The performance of filters is explained to be variable depending on

the noise type which was added to the image.

In 2017 W. S. ElAraby et al. [18] presented a comparative

investigation of edge detection techniques based on several fractional-order

filters. The first two operators present several fractional masks to detect

edges. Then, the two other operators employ a genetic algorithm to enhance

edges detected from the preceding fractional masks. The performance

evaluation was done based on the peak signal to noise ratio (PSNR) and bit

error rate (BER). It showed that non-integral edge detection included genetic

algorithm provides better edges compared to the traditional approaches.

In 2018 R. John and N. Kunju [19] presented a comparative survey of

fractional order operator and a first-order operator on MRI Images. The

results explained that the integer-order filter was outperformed by the

fractional filter. It can be predictable to offer good effects in a lot of

applications where the traditional filter is used. Quality assessment was

performed in terms of PSNR and MSE.

In 2019 D. Li et al. [20] proposed a novel fractional-order detector,

united compound derivative operator, and Crone operator. In a complex

derivative operator, a one-dimensional fractional order integral filter was

5

transformed into a two-dimensional fractional order integral filter, and a

two-dimensional differential kernel was built by expanding the horizontal

and vertical components of the differential template of the Crone operator.

The experimental results showed that, for all kinds of noise and non-noise

images, this operator can obtain an objective detection with clear edges and

perfect structures. Detection selectivity and noise tolerance are enhanced

compared to the Crone operator and composite derivative operator, and edge

enhancement and structure preservation are realized.

In 2019 C. Yaacoub and R. A. Z. Daou [21] proposed the construction

of a fractional-order Sobel detector. Traditional Sobel operator was used for

the first-order derivative, and fractional calculus was invited for non-integer

order. In the sense of road obstacle detection, the proposed method was

introduced, tested, and contrasted with the traditional Sobel edge detector.

In 2019 M. Mekideche and Y. Ferdi [22] proposed and then examined

a short edge detector method without denoising operation based on a

steerable order mask used for edge enhancement. It has been shown that the

proposed algorithm has the capability of detecting edges and immunity to

noise, which means that the smoothing pre-process is not very necessary

with the fractional detector and it can be used instead of classical ones to

eliminate the smoothing processing.

In 2020 J. E. Lavín-Delgado et al. [23] proposed a novel fractional

kernel core comprised generalizing the classical Sobel operator using

Caputo–Fabrizio fractional definition without the need to a singular kernel

significant. The results illustrated the effectiveness of the novel detector for

finding both weak edges (texture) and strong edges (object outlines). Also, it

was verified the capability of the new fractional detector to robust the noise.

In 2020 M. Hacini et.al. [24] presented a new operator created for

two-dimensional non-integer order differentiation, a proposed operator based

6

on the one-dimensional extension of Charef fractional differentiation. A new

multi-directional kernel was advised and a new adaptive fractional-order

calculation using the properties of gradient computation was introduced. It

has been used in de-noising and edge detection problems using synthetic and

real images. Due to its low complex computation, the obtained results prove

its validity. FOM, MSE, and PSNR were used to assess the performance of

the proposed kernel for feature extraction.

1.3.3 Performance Evaluation

In 2017 H. Abdulrahman et al. [10] illustrated a semi-automatic way

to label ground truth data and detailed numerous supervised edge detection

assessments and applied them toward a qualitative assessment. Experiments

demonstrated the importance of choosing the precise ground truth map,

where an imprecise ground truth edge map concerning edge localization

penalizes the accurate edge detectors and/or benefits of the imprecise

algorithms.

In 2017 D. Sadykova and A. P. James [25] provided a survey of all the

most significant evaluation metrics which can be utilized for the benchmark

of the qualitative performance for result edge images. Categorizing four

main sets of metrics and also provided a significant perception into the

assessment protocol and major equations.

In 2018 B. Magnier et al. [9] presented a review on reference edge

detection assessment methods to measure the differences between a ground

truth edge map and a candidate, calculated by performance metrics and

suggested a new qualitative metric. The new measure gave a whole

assessment of the quality of an edge map by considering the number of false

negatives and false positives, and the grades of shifting. Experiments

7

demonstrated that the required objects are not always entirely obvious by

using incorrect assessment measurements.

1.3.4 Hardware Implementation

 In 2012 Y. Said et al. [26] presented architecture of Sobel Filter for

edge detection using Xilinx System Generator. The design was implemented

targeting a Spartan3A DSP 3400 device (XC3SD3400A-4FGG676C) then a

Virtex 5 (xc5vlx50-1ff676). The results shown that the implemented Sobel

edge detector architecture using low cost available Spartan 3 development

system with Xilinx chip XC3S50 -5PQ208 has 54.505 MHz maximum

frequency and uses 177 CLB slices with 23% utilization.

 In 2013 A. M. Khidhir and N. Y. Abdullah [11] presented FPGA

implementation of Sobel detector through using Virtex-5 ML506 board to

extract the edges from grayscale images. In the beginning, the standard

Sobel detector was utilized to find the edges from grayscale images. Then,

the Sobel detector was modified to extract the edges with image denoising.

The system for edge detection was performed with the incorporation of

Matlab environments and Embedded Development Kit (EDK). It has been

found that the edge map resulted from the modified Sobel detector was

better than the classical one.

In 2014 P. K. Dash et al. [27] implemented Sobel and Prewitt

technique to detect edges in video and image processing purposes through

using a Model-Based Approach and FPGA, by using ALTERA DE2 FPGA

kit, the whole video edge detection system was implemented on CYCLONE

II FPGA hardware.

In 2015 J. C. T. Hai et al. [28] presented an alternative approach using

a model based design framework based on HDL Coder, Vision HDL

Toolbox and Simulink to accelerate the design of video and image solution.

8

The design was implemented in an Altera DE2-115 FPGA board. The results

shown that the automatic code generation from HDL Coder and high level

of abstraction allowed designer to focus on algorithm design instead of

coding, thus saving valuable project development time.

In 2017 M. Alareqi et al. [29] demonstrated optimization and

developing a real-time Hardware Co-Simulation of edge detection system

with an input coming from a live video acquired from a digital camera, and

outputs were displayed on a video display and verified the video results in

real time. The system was implemented on Virtex-5 XUPV5-LX110T

FPGA, Verification on Xilinx Virtex-5 XUPV5-LX110T development board

was indicated that the system can accurately detect the image edge and

satisfy requirements of the real-time video image edge detection by

providing minimum hardware resources, low power consumption, and high

image quality in terms of improved picture signal to noise ratio (PSNR).

In 2019 O. H. Moustafa and S. M. Ismail [30] presented the FPGA

implementation of edge detection by using fractional order filters. The

design of the offered hardware contributes the single-precision floating-point

arithmetic, IEEE 754 representation, to have accuracy in implementation and

applied, on VIRTEX 5 FPGA kit, the amount of clock frequency is 170

MHz. The fractional filters are utilized to detect edges of an MRI scan as

well as standard images.

In the present work. The classical Sobel filter will be generalized

based on five fractional operators proposed by [16], the five fractional Sobel

filters that will be proposed and the classical one should be evaluated based

on supervised assessment then implement the best filter on FPGA.

9

1.4 Thesis Objectives

The present study aims at investigating the following points:

1. Study of video edge detection algorithms.

2. Study of fractional calculus and its application in edge detection.

3. Develop the required software to implement and examine the

proposed fractional-order operators.

4. Certify the proposed fractional operators based on supervised

assessment.

5. Implement of the proposed fractional-order video edge detection

system on FPGA.

1.5 Thesis Layout

The techniques of edge detection based on integer, non-integer

calculus, and supervised evaluation metrics are presented in chapter two.

Chapter three introduces the design of an edge detection system using

fractional-order Sobel operators based on Yi_Fei-1 to Yi_Fei-5, the software

implementation, and results analysis. Whereas the FPGA implementation of

the proposed video edge detection system is demonstrated in chapter four.

Finally, conclusions and suggestions for further research are proposed in

chapter five.

10

CHAPTER TWO

Edge Detection Techniques and Performance Evaluation

Metrics

2.1 Introduction

 In the present chapter, some of the classical edge detection approaches

have been illustrated, the most famous definitions of fractional order

calculus, and then demonstrated some methods to assess the edge detector.

2.2 Edge Detection

Image edge detection is one of the preliminary standards in pattern

recognition applications and computer vision [1]. In image processing, edge

detection is considered as one of the vital research works and an important

key step towards the realization of image features. Therefore, other image

processing applications such as identification, segmentation, and object

recognition can occur when edges of an object are detected [31].

 An edge is known as a discontinuity. The discontinuities may be

represented in terms of gray level, color, or texture of the image. Edge

detection aims at extracting significant information about the objects

existing in an image, such as illumination, geometry, and reflectivity [32].

For example, the pixel's gray-level whose value is identical to the other

adjacent pixel’s gray-level; there is maybe not an edge at that position.

Actually, if the neighbors of a pixel have widely varying gray levels, the

pixel will possibly be an edge pixel [33].

All available edge detection operators that are targeted to be sensitive

to certain types of edges depending on the variables involved in the choice

of an edge detection operator which comprises[32]:

11

 Edge Orientation: The characteristic of the operator direction in

which the operator is most sensitive to the edges limited by the

geometry of the operator. It can be used to detect horizontal, vertical,

or diagonal edges.

 Noise Environment: In noisy images, the edge detector result is

different, because both edges and noise have high-frequency content.

Trying to minimize the noise effect in distorted and blurred edges,

operators must be larger in scope so that they can cover enough data

to discount localized noisy pixels. This, indeed, leads to minimizing

the precise localization of the isolated edges.

 Edge Structure: Edges are not limited to a step change in intensity,

but there is a gradual change in intensity as a result of poor focus or

reflection. So operator must be sensitive to a gradual change, hence it

does not have problems of true edge detection, false edges, missing,

edge localization, and high computational time.

2.3 Classical Edge Detection Techniques

Many ways are available to perform edge detection. However, the

classical edge detector can be grouped into two main categories:

2.3.1 Gradient-Based Techniques

 The gradient-based is the most well-known technique for the edge

detection. It detects the edges by finding minimum and maximum

differentiation in the first-order derivative of the image. All the gradient-

based methods have convolution masks that calculate the strength of the

slope in directions that are orthogonal to each other, usually, vertical and

horizontal. Subsequently, the influences of the various components of the

slopes are aggregated to grant the overall value of the edge strength [33, 34].

Gradient-based edge detectors are:

12

 Roberts Operator

It is one of the earliest approaches for edge detection, in which the

image intensity is computed according to the first

order using two 2x2

convolution masks in a 2x2 neighborhood of the subpixel of interest.

The high sensitivity to noise is the main drawback of the Roberts

Operator. The common masks are given by and [23, 32,34].

 *

+ *

+

Using equation (2.1) and equation (2.2) to get the magnitude of the

gradient.

 , (2.1)

 | | | | | | (2.2)

 Where is an image,

 , are the gradients of in x, y-direction respectively.

 Sobel Operator

It contains two 3×3 convolution masks to obtain the gradient in two

directions (i.e. horizontal and vertical orientation). To calculate the

gradient component in both directions, the mask is convolved over an

image separately. The Sobel Operator uses the common masks which

are specified by Sy and Sx.

Sy [

] Sx [

]

Equation (2.3) shows the convolution of input image with the

horizontal mask (Sx) and equation (2.4) shows convolution of the

image with the vertical mask (Sy).

13

 * () () ()+ * (

) () ()+ (2.3)

 * () () ()+ * (

) () ()+ (2.4)

Where, () is an integer pixel coordinate’s value of the input

image .

The two ways of calculating the magnitude of the gradient are

the Euclidean distance equation (2.5) and the city block distance

(Manhattan) equation (2.6) [35,36].

|G|=√(

) (2.5)

| | | | | | (2.6)

The gradient angle is given by:

 (2.7)

 Prewitt Operator

 It seems relatively the same as the Sobel operator with the

dissimilarity of the constant value (C). Prewitt Operator provides a

better performance on horizontal and vertical edges in the images and

higher responses for noisy images. It is a widely used method to

calculate the magnitude (G) of the edges [37,38].

G=√(

) (2.8)

The , partial derivation are given in equation (2.9) and equation

(2.10) respectively.

 = (a2+Ca3+a4) – (a0+Ca7+a6) (2.9)

 = (a0+Ca1+a2) – (a6+Ca5+a4) (2.10)

Where C=1 and a0, a1 …….a7 are:

14

a0 = f (x − 1, y − 1), (2.11a)

a1 = f (x, y − 1), (2.11b)

a2 = f (x + 1, y − 1), (2.11c)

a3 = f (x + 1, y), (2.11d)

a4 = f (x + 1, y + 1), (2.11e)

a5 = f (x, y + 1), (2.11f)

a6 = f (x − 1, y + 1), (2.11g)

a7 = f (x − 1, y) (2.11h)

So the common kernel cores of the Prewitt Operator are:

px [

] py [

]

2.3.2 Gaussian Based Techniques

This technique finds edges by detecting the zero crossings in the

second-order derivative of an image (the maximum difference point in first

order represent zero crossing point in second order). The Gaussian based

techniques are the following:

 LoG Operator

This method is used to calculate the second-order derivate edges of

an image. The laplacian operation is utilized to detect the edges

either in the dark area or light area.

By the end of the laplacian process, the image is applied to a

Gaussian filter to minimize the unwanted noisy pixels though the

edge location is identified accurately. The gradient of laplacian for a

two-dimensional image is given in equation (2.12)

 (2.12)

15

 Then, the resulting convolution kernel is applied to the image.

The masks that can be used to find the magnitude of the

gradient()and orientation() in the Laplacian of Gaussian gradient

edge detector are shown below [39,40].

 [

] [

]

 Canny Operator

A canny algorithm is considered as an optimal algorithm for edge

detection, and it is the most commonly used in practice. The most

important criteria of canny related to catch low error rate and the

location of detected edges should be precise and only one point must

be returned by the detector for each true edge (i.e. the number of

local maxima around the edge must be minimum).

 A canny operator consists of a few simple steps. The first step

is image denoising. Because the noise leads to incorrect localization

of the object's boundaries in the image, it must be smooth. In the

second step, masking in which the image intensity is derivate using

two-dimensional kernels which is taken using an edge detection

operator such as Prewitt, Sobel, then calculating the gradient of the

image based on (Gx, Gy) results. Sy, Sx a 3x3 mask pair that can be

utilized for canny algorithms respectively.

Sx [

] Sy [

]

equation (2.13) shows the formula used to calculate the overall

gradient.

16

| | | | | | (2.13)

The fourth step is non maximum superission which determines the

direction of edge regions by looking at the x and y directions of the

calculated gradient. And the direction of the gradient is specified by

checking the pixels at definite angles (often 0°, 45°, 90°, and 135°),

then suppressing the non-maximum points (i.e. non-edge pixels are

eliminate to 0 levels). Finally, the image is thresholded [41, 42].

Hysteresis threshold is based on two thresholds to detect the

edges. The high threshold (th) and the low threshold (tl) are worked

to find definite and weak edges successively. The magnitude of the

derivative for a pixel detected as the edge compared with th if it is

greater, then, it seeks in the direction of the derivative and if the

derivative magnitude in the succeeding pixel is greater than tl, that

pixel is also defined as an edge. This tracking is nonstop until the

opposite pixel with a derivative magnitude is becomes less than tl

[32, 12]. The flow chart of the canny detector is shown below:

Figure (2.1): Canny operator steps

INPUT IMAGE

NON MAXIMUM

SUPERISSION

DENOISING

MASKING

THRESHOLDD DETECTED IMAGE

TH

17

2.4 Fractional Calculus Concept

Recently, Fractional calculus has been considered as a special interest

in several scientific fields and applications since it can describe models or

physical methods more accurately than any traditional form of integer order

[23, 43].

 Fractional calculus, which is also named as non-integer order calculus,

is a generalization of the classical (integer-order) calculus. The conception

of the derivative is usually related to an integer; assumed a function, one can

differentiate it one, two, three times, and thus. In the same context, the

ability to differentiate a function, a real number of times, known as the

fractional order calculus [24,44].

 Since several researchers in various areas have been investigating

fractional differentiation. Riemann-Liouville (R-L), Grümwald-Letnikov (G-

L), and Caputo have also formed the most commonly accepted meanings

[24, 43]. Fractional order calculus (FOC) is a generalization of derivation

and integration to non-integer order with a major operator as shown in

equation (2.14).

 {

∫ ()

 (2.14)

Where the fractional-order which is a real number, [x, w] is the interval

time and t is the time.

In image processing, the fractional-order workflow is shown in figure

(2.2). It holds three steps. Firstly, the active operator, model, or equation

including usual integration and differentiation is chosen. Subsequently, the

18

usual differentiation and integration are generalized to fractional order

(steerable order) using the fractional calculus definition (G-L, R-L, or

Caputo). Finally, discretization methods will be used to calculate a

numerical approximation of the fractional-order operator, model, or equation

[5].

Figure (2.2): Workflow of FOC in image processing [5].

2.5 Fractional Calculus Definitions[42].

In contrast to integer calculus, till now, the fractional derivative does

not have a standardized definition. The famous definitions of fractional

calculus are:

 Fractional Derivative G–L Definition:

 ()

 ∑ () (

) ()

*

+

 (2.15)

 Where (

) is a binomial coefficient which calculates by Equation

(2.16)

 (

) =

()() ()

 (2.16)

And (h=1)is the calculation step in image processing, k represents

the size of the mask which must be equal to or greater than 3, and [x

w]is the interval time, is a real number(Fractional Order) and is

an integer number.

Input

Image

Classical

 method

Discretization Generalization

Numerical

 Solution

Operator

 equation

Model

G-L

 R-L

Caputo

 Fractional order

 method

19

 Fractional Derivative R–L Definition:

 The Riemann–Liouville fractional derivative is:

 ()

 ()
(

)

∫
 ()

()

() (2.17)

Where Γ (n) =∫

 It can be generalized as

Γ () () Which is the gamma function.

 Fractional Derivative Caputo Definition:

The Caputo fractional derivative is:

 ()

 ()
 ∫

 ()()

()
 ()

 (2.18)

 Where is a real number and is an integer number.

2.6 Evaluation Metrics

The edge detector should be strictly evaluated before being used in a

computer vision tool. To verify the reliability of an edge detector, a

dissimilarity evaluation computes a score between a ground truth edge map

and a detector result image. Various techniques have been developed to

evaluate the desired edge map. Several methods are based on the number of

true positive, true negative, false positive, and/or false negative points

denoted as error measures involving only statistics. Many assessment

methods calculate the distance from the location where an edge point should

be positioned denoted as an assessment involving distances of misplaced

pixels [9,10].

20

2.6.1 Error Measures Involving Only Statistics

 The confusion matrix forms a cornerstone in edge detection

assessment techniques. Let GT be the Ground truth edge map and DR the

result of the edge detector. By Comparing pixel per pixel of GT and DR, the

shared existence of edge/non-edge points is the first measure to be evaluated.

All points are divided into four groups as illustrated in figure (2.3).

Figure (2.3): An example of a comparison between the result edge map (DR)

and ground truth image (GT).

Where

 False Positive points (FPs), fake detected edges of DR:

FP = [⌐GT ∩ DR],

 False Negative points (FNs), missing edge points of DR:

 FN = [GT ∩ ⌐DR],

 True Negative points (TNs), mutual non-edge points:

 TN = [⌐GT ∩ ⌐DR],

 True Positive points (TPs), mutual edge points of GT and DR:

TP = [GT∩ DR].

([.]) denotes the number of elements in a set, (⌐) is the complement of the

set, and (∩) is an intersection symbols.

(d) Legend

of (c)

(c) GT vs. DR

8X8

(b) DR 8X8 (a)GT 8X8

21

 Various edge detection assessments containing confusion matrices are

discussed in [9, 10]. The Misclassification Error (ME), Complemented

Performance Measure (PM), and Complemented F Measure (FM) will be

used as a criterion containing confusion matrices.

 Misclassification Error mirrors the percentage of “True

Negative” pixels wrongly assigned to “True Positive”, and vice

versa, “True Positive” pixels wrongly assigned to “True Negative”

pixels [9, 10, 45]. The ME varies from 0 for the best edge map to 1

for the worst edge map image as shown in equation (2.19).

 (2.19)

 Complemented Performance Measure The performance measure

is a scalar taking values between 0 and 1. If all TP pixels are

detected and no falsely pixels are detected as edge pixels, then

(PM=0). For all other cases, PM takes unified values, which are

closer to 1 as more edge pixels are missed and/or incorrectly

detected by the edge detector [46].

 (2.20)

 Complemented F Measure

 (

) () (

)
 (2.21)

Where [0, 1], does not consider the “True

Negative” pixels, which are dominant in detector result images.

The complement of FM measure translates a value close to 0 as

the best edge map[47].

 Mean Square Error

∑ ∑ ()

 (2.22)

22

 The MSE is also used as an error measure to represent the

cumulative squared errors between the edge map of the proposed

edge detector (DR) and the ground truth image (GT) [23, 42]. The

minimum difference between GT and DR is being when MSE close

to 0.

2.6.2 Assessment Involving Distances of Misplaced Pixels

 A supervised edge map quality measure involves that an emigrant

edge must be penalized in function not limited to FNs and/or FPs, but also of

the distance from the location where it must be located. The most important

criteria including distances illustrated in [48, 49].

 So, for a pixel pl belonging to the detector result DR, DGT (pl) is the

minimal Euclidean distance between pl and GT. If pl belongs to the ground

truth GT, DDR (pl) is the minimal distance between pl and DR. The

coordinates of two pixels pl and o, mathematically, representing (xpl, ypl) and

(xo, yo), respectively; hence, DGT (pl) and DDR (pl) are described by:

For p DGT (pl) = √()

 () (2.23a)

 For p , DDR (pl) = √()

 () (2.23b)

For an optimum edge detection evaluation, the metric should calculate both

distances of FPs and FNs as Symmetric Distance Measure (SDM) [49, 50]

and Relative Distance Error (RDEL).

 SDM(GT, DR)=√
∑

 () ∑

 ()

| |

 (2.24)

 RDEL(GT, DR)= √

| |
∑

() √

| |
∑

 ()

 (2.25)

Where L [6, 7]

 L=2 for [49]

23

Chapter Three

Design Edge Detection System Based on Fractional Sobel

Operator

3.1 Introduction

In the present chapter, the software implementation of the proposed

edge detection algorithm will be presented. The MATLAB 2017b

package has been used as a tool to implement the video edge detection

system software. To validate the proposed edge detection algorithm, a

supervised evaluation has been adopted.

3.2 Fractional Order Sobel Filters Derivativeation

 Let us consider f (x, y) as a digital image, whereas (x, y) denotes

spatial coordinates.

 To get the five fractional filters of the Sobel operator, the equation

(2.3) and (2.4) which represent the Gradient of f in x and y directions

respectively for classical Sobel are derived by the five Yi_Fei operators

based on (G-L) and (R-L) definitions illustrated in the table (3.1) [16].

The first fractional Sobel filter was used in paper [21]. The resulting

Gradient will be to power (1+) as shown in equation (3.1). The

Derivation of the fractional Sobel mask in x-direction using operator2 is

illustrated in equations (3.2), and the fractional Sobel mask based Yi_Fei-

2 in y-direction represents the transpose of its fractional Sobel mask

based Yi_Fei-2 in the x-direction.

The Gradient of Fractional Sobel based Yi_Fei-2 in x and y

directions respectively are shown in equation(3.3).

24

 (3.1)

 () * , () () ()

 () () ()-

 , () () ()

 () () ()-

 , () () () ()

 () ()-

 , () () ()

 () () ()-

 , () () ()

 () () ()-+ ()

 (3.3)

The Fractional Sobel mask using Yi_Fei-2 in the x-direction is given

below:

[

 (

) (

) (

)

 (

) (

) (

)

 (

) (

) (

)

 (

) (

) (

)

 (

) (

) (

)

 (

) (

) (

)

 (

) (

) (

)

]

Where , -

25

Table (3.1): The five operators of Yi_Fei proposed in [16].

The other masks using Yi_Fei-3 to Yi_Fei-5 operators are as follow:

[

 (

) (

) (

)

(

) (

) (

()

)

(

) (

) (

)

(

) (

) (

)

(

) (

) (

)

(

) (

) (

)]

 Where () (), , -

Yi_FeiPU-1

(G-L)

Yi_FeiPU-2

(G-L)

Yi_FeiPU-3 , p < 0

(R-L)

Yi_FeiPU-4 , p < 0

(R-L)

Yi_FeiPU-5,

(R-L)

 0

 0 0 0

 ()()

 ()()

 ()

 ()()

 ()()

 ()

 ()

() ()

 ()

() ()

 (

)

 ()

 ()()

() ()

 ()()

() ()

 ()

26

[

 (

()

) (

()

) (

()

)

(
 ()

) (

 ()

) (

 ()

)

(

) (

) (

)

(

) (

) (

)

(

) (

) (

)

(

) (

) (

)

]

 Where (), , -

[

 (

 ()

) (

 ()

) (

 ()

)

(

) (

) (

)

(
 ()

) (

 ()

) (

 ()

)

(

) (

) (

)

(

) (

) (

)

(

)

(

)

(

)

(

)

(

)

(

)]

Where (), , -

The filtered images by the fractional Sobel filters are thresholding

based on equation (3.4). each pixel in the filtered image is considered as an

edge if the magnitude of gradient for the pixel is greater than as

shown in equation (3.5).

 ̅ (3.4)

 | | (3.5)

27

Where , ̅ is the average of| |, and DR is the detector

result.

3.3 Software Development

The Graphical User interface (GUI) of the fractional Sobel edge

detection system software has been implemented in Matlab, as shown in

figure (3.1). The GUI source code is presented in the appendix A. The GUI

involves the following items:

1- Select Image: To select the source image by using the windows

application interface (API) function browse file.

2- Select Ground Truth: To select its Ground truth image by using API

browse file.

3- FoSobel Parameters: To select detector fractional order () and Scale.

It can be manually passed from the Scale and order slide bars or

edited.

4- Filter: To select the type of detector (classical Sobel, fractional Sobel

based Yi_Fei-1, fractional Sobel based Yi_Fei-2, fractional Sobel

based Yi_Fei-3, fractional Sobel based Yi_Fei-4, fractional Sobel

based Yi_Fei-5).

28

Figure (3.1): GUI system of the fractional Sobel edge detection.

5- Quality Metrics: Detectors assessment are implemented based on the

following metrics which are presented in equations (2.19) to (2.25):

a) Mean Square Error.

b) Symmetric Distance Measure.

c) Relative Distance Error.

d) Misclassification Error.

e) Complemented Performance Measure.

f) Complemented F Measure.

6- Run Filter: To filter the source image using the selected operator and

views metrics score on the Quality Metrics panel.

7- Filer Analysis: To analyze the understudy filters at fractional order

(, in steps of 0.01) based on supervised assessment. All the

results are saved in an Excel file.

8- View Edges: To view the result edge maps of the filters at specified

parameters (initial order value, step value, final order value) using the

Matlab montage built-in function.

29

3.4 Results Analysis

 To validate the best operator; a supervised evaluation on the proposed

operators and classical Sobel operator is performed. Test images and their

ground truth have been used in the evaluation process. The Ground truth

image is an edge map acquired from human judgment or synthetic data. Test

images have been filtered using the proposed filters with orders(p) from 0 to

1in steps of 0.01. The results of utilized assessments are illustrated in figures

(3.2), (3.3), (3.4), (3.5), and (3.6) respectively.

Figure (3.2): Complemented Performance Measure for the five fractional-

order Sobel filters.

30

Figure (3.3): Complemented F Measure for the five fractional-order Sobel

filters.

Figure (3.4): Relative Distance Error for the five fractional-order Sobel

filters.

31

Figure (3.5): Symmetric distance for the five fractional-order Sobel filters.

Figure (3.6): MSE and ME for the five fractional-order Sobel filters.

32

 According to the scores of PM, FM, RDEL, SDM, MSE, and ME the

fractional-order Sobel filter based on Yi_Fei-2 has a better performance than

that of the classical Sobel filter and the other proposed fractional operators

because it qualifies the best scores of evaluators (minimum scores which

close to zero) when the order greater than 0.2 and less than 0.4 as

demonstrated in table (3.2).

 From the scores of MSE and ME, as shown in figure (3.6), it has been

noticed that they have the same values for all the fractional Sobel and

classical one at all values of (p) because GT and DR are binary images. To

justify this: The Mean Square Error as illustrated in equation (2.22), where

MN is the total pixels of the binary edge map image which equal to:

MN=TP+TN+FP+FN,

∑ ∑ ()

 =

MSE=

 (3.6)

The Misclassification Error as shown in equation (2.19):

ME=
() ()

=

 (3.7)

Equations (3.6) and (3.7) prove that the Mean Square Error and

Misclassification Error are equal when used to evaluate a binary edge map.

Whereas the scores of TP, FN, and Fp are shown in figures (3.7), (3.8), and

(3.9) respectively for all operators, as illustrated the fractional-order Sobel

filter based on Yi_Fei-2 has maximum scores of true edge points (TP) and

33

minimum scores of missing points (FN) which refer to its good performance

to detect the true edges in range (0.1<p<0.47). The best edge detector should

have minimum scores of false edges (FP) but the fractional-order Sobel

filter based on Yi_Fei-2 has maximum scores of FP, indeed there are

numerous edges in the source image that doesn't take in GT and the FP

distances of the fractional-order Sobel filter based on Yi_Fei-2 from the

actual edge points are the minimum scores comparing to other proposed

filters and the classical one as shown in SDM and RDEL scores. Values of

Max.TP and Min.FN, FP of classical Sobel and fractional Sobel operators

shown in table (3.3). Figure (3.10) shows the result edge map for

FS_Yi_Fei-2 at the order (=0.25).

Figure (3.7): TP for the five fractional-order Sobel filters.

34

Figure (3.8): FN for the five fractional-order Sobel filters.

Figure (3.9): FP for the five fractional-order Sobel filters.

35

Figure (3.10): Edge detection using fractional Sobel filter based Yi_Fei-2.

 Important notice on FS_Yi_Fei-2 is that when selecting the ground

truth as the original image and comparing the DR with GT, the scores of

metrics are close to zero and enhance the existed edges in the original image

(GT) as illustrated in table (3.4). This enhancement proves the benefits of

fractional order derivative among integer derivative in preserving more low-

frequency contour features in smooth areas, keep high-frequency marginal

features where grayscale changes frequently, and also enhancing medium-

frequency texture details. This is a proposed way to validate edge detector

performance. Figure (3.11) shows the filtered image by Sobel and

Original Ground truth Fractional Sobel filter

based Yi_Fei-2 (p=0.25)

36

FS_Yi_Fei-2 when GT is selected as the source image, and the scores of

metrics at (p=0.5) are illustrated in table(4.3).

Figure (3.11): Fractional Sobel filter based Yi_Fei-2 and sobel operator

edge maps when original is the ground truth.

Table (3.2):Minimum Scores of Fractional Sobel operator Yi_Fei-2.

Original as Ground truth Sobel filter edge map

FS_Yi_Fei-2 edge map

(p=0.5)

Measure

Value

Order(p)

MSE 0.1614 0.23

SDM 0.4391 0.38

RDE 0.6674 0.37

ME 0.1614 0.23

PM 0.1191 0.38

FM 0.1702 0.23

37

Table (3.3): Values of Max.TP and Min.FN, FP of classical Sobel and

Fractional Sobel operators.

Table (3.4): Scores of Fractional Sobel operator Yi_Fei-2 and Sobel operator

when select GT as the original image.

Measure
FS_Yi_Fei-2

Scores(p=0.5)
Sobel operator

TP 245493 242995

FP 1092 14060

FN 29988 32486

MSE 0.10285 0.15404

SDM 0.34915 0.46988

RDE 0.43438 0.6051

ME 0.10285 0.15404

PM 0.11238 0.16076

FM 0.089761 0.10596

Name TP FN FP

Sobel 235376 40105 10208

FS_Yi_Fei-1 236965 38516 10323

FS_Yi_Fei-2 238197 37284 10261

FS_Yi_Fei-3 235590 39891 10256

FS_Yi_Fei-4 235671 39810 9848

FS_Yi_Fei-5 236162 39319 10262

 38

Chapter Four

FPGA Implementation of Video Edge Detection

4.1 Introduction

The implementation of the proposed fractional Sobel filter based

on the Yi_Fei-2 operator will be presented in the present chapter. Xilinx

Artix-7 NEXYS 4 kit has been used as a platform for the implementation.

Xilinx Vivado 2018.2 and MATLAB 2017b are the developing

environment of the implemented system. The hardware system has been

designed through using a high-level Simulink graphical environment of

Xilinx system generator (XSG) that provides graphical modules which

overcome the Hardware Description Language (HDL) coding. The

Simulink helps in abstracting the design using XSG blocks and

subsystems which specifically reduces the hardware implementation time.

Also, Simulink provides FPGA in the loop (FIL) simulation and

verification. This approach makes the hardware verification and

implementation easier in contrast with HDL based approach. FIL

methodology compared to other methodologies, presents a more cost-

effective solution [26, 28].

4.2 Hardware in the Loop

One of the hardware Co-simulation methods is the hardware in the

loop (HIL). In HIL methodology, it is possible to integrate a design

running in an FPGA directly into a simulator. Figure (4.1) illustrates the

hardware design simulated in Simulink and processed in real FPGA

hardware. HIL automatically creates a bitstream of associated hardware

 39

block. HIL Co-simulation is often significantly faster than classical

simulation while testing the hardware's functional correctness. HIL

supports Ethernet and JTAG communication between the Simulink and a

hardware platform.

Figure (4.1): HIL Co-simulation [26].

HIL methodology is a mixture of software and hardware systems

that gets the benefits of both. HIL approach works in real-time; though,

the surrounding components are simulated in the software environment.

This approach enables device flexibility with real-world precision and

hardware speed of execution [26,29].

4.3 Proposed Edge Detection System

 The developing platform of Matlab Simulink encapsulates system

design, system modeling, system simulation, system code generation, and

system implementation. Figure (4.2) displays the proposed edge detection

system using the fractional Sobel filter-based Yi_Fei-2 operator. The

fractional Sobel filter-based Yi_Fei-2 operator model is to be

implemented in Artix-7 NEXYS 4 board.

 40

Figure 4.2: Edge Detection System.

4.4 Implementation of the Proposed System

 The Matlab vision HDL toolbox provides Simulink blocks that

support image and video processing in the HDL environment as shown in

figure (4.3). The video source block provides a frame stream from a video

file. Frame to pixel block transforms the input frame stream to pixels

stream with control signals (vStart, vEnd, hStart, hEnd, and valid data),

the frame size can be configured by using the block properties. The HDL

algorithm block contains a fractional Sobel filter-based Yi_Fei-2

operator. The pixel-to-frame block transforms the incoming pixels stream

to frame stream. The video viewer block displays the incoming frames.

Input video
Color space

conversion

Edge Detection

based FSO

Color space

conversion Output video

 41

Figure (4.3): The equivalent software implementation of the HDL

algorithm.

4.4.1 Hardware Compilation and Co-simulation

 Before hardware Co-simulation, the HDL algorithm block must be

compiled to generate the HDL code of the block using Matlab XSG. Then

using FPGA in the loop wizard (filWizard) to generate the bitstream of

the implemented hardware for the specified Xilinx board (Artix-7

NEXYS 4). The filWizard generates hardware Co-simulation block, then

invokes Xilinx Vivado 2018.2 to generate the bitstream of the Xilinx

chipset according to the configuration constraints of the board. The

hardware Co-simulation block is loaded with the bitstream file. figure

(4.4) shows the generated hardware Co-simulation block (Edge Detection

H/W).

Video_out.avl

V:240x320.0.0fps

Video Source

Uint8[240x320]

frame
Frame To Pixels

HDLAlgorithm

PixelIn PixelOut

CtrlIn CtrlOut

Pixel

Ctrl

Pixels To Frame

Pixels To Frame

Frame To Pixels

frame

validOut

boolean[240x320]

boolean[240x320]

 HDLVideo Viewer

with Enable

In1

[240x320]

To Workspae1

simvideoOutData

boolean

Uint8

Pixel

control

Pixel

control

п

 42

.

Figure (4.4): Hardware model of video edge detection

4.4.2 Hardware Implementation Reports

 The summary of the utilization report for the implemented

hardware on Artix-7 NEXYS 4 is illustrated in table (4.1). Figure (4.5)

demonstrate the utilization of the Artix-7 NEXYS 4 chipset.

Table (4.1): Hardware utilization of video edge detection.

Resources Available Used Utilization

BUFG 32 1 3.13

BRAM 135 15 11.11

FF 126800 2227 1.76

LUTRAM 19000 166 0.87

LUT 63400 1855 2.93

rhinos,avl

V:240x320.0.0fps

Video Source

Edge Detection H/W

FIL

FIL

Pixel To Frame

FIL

Frame To Pixel

Frame

Video Viewer

Video Viewer

Image

Image

Original Video

Edge Detection

E

data1 PixelIn

hstartOut

hEndOut

vStartOut

vEndOut

validOut

ctrlin_hstart

ctrlin_hend

ctrlin_vStart

ctrlin_vend

ctrlin_valid

data1

hstartin

hEndin

vStartin

vEndin

validin

E

Pixelout

ctrlout_hstart

ctrlout_hend

ctrlout_vStart

ctrlout_vend

ctrlout_valid

 43

Figure (4.5): Hardware Utilization of video edge detection for Artix-7

NEXYS 4

4.4.3 Results

 The FIL Co-simulation is composed of the personal computer,

Artix-7 NEXYS 4, and Matlab 2017b as demonstrated in figure (4.6). The

video frame is sent via JTAG port to Artix-7 NEXYS 4 board. The frame

is processed in the FPGA chipset of the board and then sent back to

Simulink. Table (4.2) shows samples of frames for the Rhino video file.

Figure (4.7) shows the root mean square error between the simulation

results and H/W Co-simulation.

Figure (4.6): System Co-simulation.

 44

Table (4.2): Samples of Co-simulation frames.

Frame

No.
Input Frame Output Frame

1

2

3

9

 45

11

14

20

25

30

 46

35

40

45

50

 47

Figure (4.7): Root mean square error between hardware processing and

simulation.

48

Chapter Five

Conclusions and Suggestion for Future Works

5.1 Conclusions

 Video edge detection is considered as one of the vital research works

and an important key step towards the realization of image features, reduces

the amount of data that needs to be processed by extracting only significant

information from an image. In the present thesis, the edge detection based on

fractional Sobel filter has been designed and evaluated to verify its reliability

and then implemented on FPGA by using FIL approach based on Artix7

NEXYS 4 kit. The following points have been concluded:

 The fractional-order Sobel masks based on Yi_Fei-2, Yi_Fei-3,

Yi_Fei-4, and Yi_Fei-5 have been designed. Results based on

supervised assessments showed that FS_Yi_Fei-2 is the best

performance among the other proposed fractional and classical

Sobel operators at ().

 The fractional-order derivative is better than integer-order in

accuracy and flexibility by allowing steerable order which can be

increased or decreased to get a different edge map.

 The results showed that the metrics, Mean Square Error,

Symmetric Distance Measure, Relative Distance Error,

Misclassification Error, Complemented Performance Measure, and

Complemented F Measure behave in the same manner except the

“true positive”, “false negative”, and “false positive”.

 The scores of Mean Square Error and Misclassification Error are

equal if the edge map result and ground truth were binary images

(i.e. zero and one image).

49

 The complement F measure is the most stable among the other

error measure as concluded in [10] because it doesn’t take the

“true negative” in its calculation because it represents the

dominant edge map and reflects an unfair judgment on a detector.

 The FS_Yi_Fei-2 has maximum “true positive” and minimum

“false negative” at the same order which indicates its ability to

detect true edge more than other proposed operators and classical

Sobel operator.

 Many assessments are available but their validity depends on the

measurement itself and ground truth image. Thus an incomplete

ground truth punishes a detector detecting true pixels as edge or

Honors bad one.

 The FPGA in the loop approach has been utilized for the FPGA

hardware implementation of the proposed operators. The root

mean square error between hardware implementation and software

simulation is 0.002.

5.2 Future Works

Some suggestions for further research:

 The improvement of the proposed fractional Sobel filter by using

the Hysteresis thresholding which can decrease the number of

superiors points “false positive” and test immunity to noise.

 The use of the proposed fractional operator for video segmentation.

 The use of the proposed fractional operator for medical applications.

50

Reference

[1] R. C. Gonzalez and R. E. Woods, “Digital image processing,” Prentice

hall Upper Saddle River, Second edition, NJ, 2002.

[2] Pratt, William K, “Introduction to digital image processing,” CRC

press, 2013.

[3] Claudia I. Gonzalez, Patricia Melin, Juan R. Castro and Oscar Castillo,

“Edge Detection Methods Based on Generalized Type-2 Fuzzy Logic,”

Springer International Publishing, pp. 89, 2017.

[4] D. Tian, D. Li, and Y. Zhang, “Medical image segmentation based on

fractional-order derivative,” in 2015 Asia-Pacific Energy Equipment

Engineering Research Conference, pp. 453–456, 2015.

[5] Q. Yang, D. Chen, T. Zhao, and Y. Chen, “Fractional calculus in

image processing: a review,” Fract. Calc. Appl. Anal., vol. 19, no. 5,

pp. 1222–1249, 2016.

[6] B. Magnier, “An objective evaluation of edge detection methods based

on oriented half kernels,” ICISP, pp. 80-89, 2018.

[7] H. Abdulrahman, B. Magnier and P. Montesinos, “A new objective

supervised edge detection assessment using hysteresis thresholds,”

International Workshop on Brain-Inspired Computer Vision held as

part of ICIAP, pp. 3-14, 2017.

[8] B. Magnier, “Edge detection: a review of dissimilarity evaluations and

a proposed normalized measure,” Multimedia Tools and Applications

77, no. 8, pp. 9489-9533, 2018.

[9] B. Magnier, H. Abdulrahman, and P. Montesinos, “A review of

supervised edge detection evaluation methods and an objective

comparison of filtering gradient computations using hysteresis

thresholds,” J. Imaging, vol. 4, no. 6, p. 74, 2018.

51

[10] H. Abdulrahman, B. Magnier, and P. Montesinos, “From contours to

ground truth: How to evaluate edge detectors by filtering,” 2017.

[11] A. M. Khidhir and N. Y. Abdullah, “FPGA based edge detection using

modified sobel filter,” Int. J. Res. Dev. Eng., vol. 2, no. 1, pp. 22–32,

2013.

 [12] Poonam Dhankhar, Neha Sahu, “A review and research of edge

detection techniques for image segmentation,” IJCSMC, Vol. 2, pp.86-

92, 2013.

[13] Ş. Öztürk and B. Akdemir, “Comparison of edge detection algorithms

for texture analysis on glass production,” Procedia-Social Behav. Sci.,

vol. 195, pp. 2675–2682, 2015.

[14] L. Bhargav, D. Nagaraj, and P. Kumar Pareek, “Dynamic resolution of

image edge detection technique among Sobel, Log, and Canny

algorithms,” International Journal of Scientific Research Engineering

& Technology (IJSRET), vol. 5.4, pp. 206-210, 2016.

[15] K. B. Krishnan, S. P. Ranga, and N. Guptha, “A survey on different

edge detection techniques for image segmentation,” Indian J. Sci.

Technol., vol. 10, no. 4, pp. 1–8, 2017.

[16] Y. Pu, J. Zhou and X. Yuan, “Fractional differential mask: a fractional

differential-based approach for multiscale texture enhancement,” IEEE

Trans. image Process., vol. 19, no. 2, pp. 491–511, 2009.

[17] S. M. Ismail, A. G. Radwan, A. H. Madian, and M. F. Abu-ElYazeed,

“Comparative study of fractional filters for Alzheimer disease detection

on MRI images,” 2016 39th International Conference on

Telecommunications and Signal Processing (TSP), pp. 720–723, 2016.

52

[18] W. S. ElAraby, A. H. Madian, M. A. Ashour, “Fractional edge

detection based on genetic algorithm,” 2017 29th International

Conference on Microelectronics (ICM), pp. 1–4, 2017.

[19] R. John and N. Kunju, “Optimization of grunwald-letnikov’s (gl) based

fractional filter used for image enhancement,” in 2018 Second

International Conference on Inventive Communication and

Computational Technologies (ICICCT), pp. 612–614, 2018.

[20] D. Li, C. Zhao, M. Jiang, Y. Huang, and Y. Li, “Fractional order edge

detection method,” in 2019 IEEE 11th International Conference on

Communication Software and Networks (ICCSN), pp. 529–534, 2019.

[21] C. Yaacoub and R. A. Z. Daou, “Fractional Order Sobel Edge

Detector,” in 2019 Ninth International Conference on Image

Processing Theory, Tools and Applications (IPTA), pp. 1–5, 2019.

 [22] M. Mekideche and Y. Ferdi, “Edge detection optimization using

fractional order calculus,” Int. Arab J. Inf. Technol., vol. 16, no. 5, pp.

827–832, 2019.

[23] J. E. Lavín-Delgado, J. E. Solís-Pérez, J. F. Gómez-Aguilar, and R. F.

Escobar-Jiménez, “A new fractional-order mask for image edge

detection based on Caputo–Fabrizio fractional-order derivative without

singular kernel,” Circuits, Syst. Signal Process., vol. 39, no. 3, pp.

1419–1448, 2020.

[24] M. Hacini, F. Hachouf, and A. Charef, “A bi-directional fractional-

order derivative mask for image processing applications,” IET Image

Process., vol. 14, no. 11, pp. 2512–2524, 2020.

[25] D. Sadykova and A. P. James, “Quality assessment metrics for edge

detection and edge-aware filtering: A tutorial review,” International

53

Conference on Advances in Computing, Communications and

Informatics (ICACCI), pp. 2366–2369, 2017.

[26] Y. Said, T. Saidani, F. Smach, and M. Atri, “Real time hardware co-

simulation of edge detection for video processing system,” in 2012 16th

IEEE Mediterranean Electrotechnical Conference, pp. 852–855, 2012.

[27] P. K. Dash, S. Pujari, and S. Nayak, “Implementation of edge detection

using FPGA & model based approach,” International Conference on

Information Communication and Embedded Systems (ICICES2014), pp.

1–6, 2014.

[28] J. C. T. Hai, O. C. Pun and T. W. Haw, “Accelerating video and image

processing design for FPGA using HDL coder and simulink,”2015

IEEE Conference on Sustainable Utilization And Development In

Engineering and Technology (CSUDET), pp. 1-5, 2015.

[29] M. Alareqi, R. Elgouri, K. Mateur, A. Zemmouri, A. Mezouari and L.

Hlou, "Optimization of high-level design edge detect filter for video

processing system on FPGA," 2017 Intelligent Systems and Computer

Vision (ISCV), Fez, Morocco, pp. 1-8, 2017.

[30] O. H. Moustafa and S. M. Ismail, “FPGA-based Floating Point

Fractional Order Image Edge Detection,” in 2019 15th International

Computer Engineering Conference (ICENCO), pp. 91–94, 2019.

 [31] A. Nandal et al., “Image edge detection using fractional calculus with

feature and contrast enhancement,” Circuits, Syst. Signal Process., vol.

37, no. 9, pp. 3946–3972, 2018.

[32] D. Marr and E. Hildreth, “Theory of edge detection,” Proc. R. Soc.

London. Ser. B. Biol. Sci., vol. 207, no. 1167, pp. 187–217, 1980.

54

[33] Z. Othman, H. Haron, M. R. A. Kadir, and M. Rafiq, “Comparison of

Canny and Sobel edge detection in MRI images,” Comput. Sci.

Biomech. Tissue Eng. Group, Inf. Syst., pp. 133–136, 2009.

[34] G. T. Shrivakshan and C. Chandrasekar, “A comparison of various edge

detection techniques used in image processing,” IJCSI International

Journal of Computer Science Issues, vol. 5, no. 9, pp. 272-276, 2012.

[35] S. Israni and S. Jain, “Edge detection of license plate using Sobel

operator,” 2016 International Conference on Electrical, Electronics, and

Optimization Techniques (ICEEOT), Chennai, India, pp. 3561-3563,

2016.

[36] Mehra, Rajesh, and Rupinder Verma, “Area efficient fpga

implementation of sobel edge detector for image processing

applications,” International Journal of Computer Applications vol.

56,no.16 ,2012.

[37] S. Ghodrati, M. Mohseni, and S. G. Kandi, “Application of image edge

detection methods for precise estimation of the standard surface

roughness parameters: polypropylene/ethylene-propylene-diene-

monomer blend as a case study,” Measurement, vol. 138, pp. 80–90,

2019.

[38] G.M.H.Amer and A.M.Abushaala, “Edge detection methods,” 2015 2nd

World Symposium on Web Applications and Networking (WSWAN),

Sousse, Tunisia, pp. 1-7, 2015.

[39] Z. Hussain and D. Agarwal, “A comparative analysis of edge detection

techniques used in flame image processing,” Int. J. Adv. Res. Sci. Eng.

IJARSE, no. 4, 2015.

55

[40] J. Chen, C. Huang, Y. Du and C. Lin, “Combining fractional-order edge

detection and chaos synchronisation classifier for fingerprint

identification,” IET Image Process., vol. 8, no. 6, pp. 354-362, 2014.

[41] Ding, Lijun, and Ardeshir Goshtasby, “On the Canny edge detector,”

Pattern Recognition , vol.34, no.3, pp.721-725, 2001.

[42] R. Jain, R. Kasturi, and B. G. Schunck, “Machine vision,” vol. 5.

McGraw-hill New York, 1995.

[43] S. Kumar, R. Saxena, and K. Singh, “Fractional Fourier transform and

fractional-order calculus-based image edge detection,” Circuits, Syst.

Signal Process., vol. 36, no. 4, pp. 1493–1513, 2017.

[44] B. G. Yazgaç and M. Kırcı, “Fractional order calculus based fruit

detection,” in 2019 8th International Conference on Agro-

Geoinformatics (Agro-Geoinformatics), pp. 1–4, 2019.

[45] Sezgin, Mehmet, and Bülent Sankur, “Survey over image thresholding

techniques and quantitative performance evaluation,”Journal of

Electronic imaging, vol.13,no.1, pp. 146-165 , 2004.

[46] C. Grigorescu, N. Petkov and M. A. Westenberg, “Contour detection

based on nonclassical receptive field inhibition,” IEEE Transactions on

Image Processing, vol. 12, no. 7, pp. 729-739, 2003.

[47] D. R. Martin, C. C. Fowlkes and J. Malik, “Learning to detect natural

image boundaries using local brightness, color, and texture cues,”IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 26,

no. 5, pp. 530-549, 2004.

[48] S. Yang-Mao, Y. Chan and Y. Chu, “Edge Enhancement Nucleus and

Cytoplast Contour Detector of Cervical Smear Images,” IEEE

Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),

vol. 38, no. 2, pp. 353-366, 2008.

56

[49] M. -P. Dubuisson and A. K. Jain, “A modified Hausdorff distance for

object matching,” Proceedings of 12th International Conference on

Pattern Recognition, Jerusalem, Israel, pp. 566-568 vol.1, 1994.

[50] C. Lopez-Molina, B. De Baets and H. Bustince, “Quantitative error

measures for edge detection,” Pattern Recognition, vol. 46, no. 4, pp.

1125-1139, 2013.

[51] S. Singh and R. Singh, “Comparison of various edge detection

techniques,” 2015 2nd International Conference on Computing for

Sustainable Global Development (INDIACom), IEEE, pp. 393-396,

2015.

A-1

Appendix A

Source Code

function varargout = gui_edge(varargin)

% GUI_EDGE MATLAB code for gui_edge.fig

%

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

 'gui_Singleton', gui_Singleton, ...

 'gui_OpeningFcn', @gui_edge_OpeningFcn, ...

 'gui_OutputFcn', @gui_edge_OutputFcn, ...

 'gui_LayoutFcn', [] , ...

 'gui_Callback', []);

if nargin && ischar(varargin{1})

 gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

 gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before gui_edge is made visible.

function gui_edge_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% Choose default command line output for gui_edge

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

clc;

%===

%Initialization
% ==

global Im1;

global X;

global Im2;

global Xgt;

global F_Index;

%===

Im1=0;

Im2=0;

F_Index=2;

%===

set(handles.radiobutton3,'Value',1);

set(handles.axes1,'XColor', 'none','YColor','none');

set(handles.axes2,'XColor', 'none','YColor','none');

set(handles.axes3,'XColor', 'none','YColor','none');

title(handles.axes1,sprintf('Orginal Image'),'fontsize',12);

title(handles.axes2,sprintf('Ground Truth'),'fontsize',12);

A-2

title(handles.axes3,sprintf('Filtered Image'),'fontsize',12);

%==

b=get(handles.slider1,'Value');

set(handles.edit1,'String',num2str(b));

%==

b=get(handles.slider2,'Value');

set(handles.edit2,'String',num2str(b));

% --- Outputs from this function are returned to the command line.

function varargout = gui_edge_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{1} = handles.output;

% --- Executes on button press in pushbutton1.

function pushbutton1_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton1 (see GCBO) select image

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

global X;

global Im1;

[file,folder]= uigetfile(...

 {'*.png'; ...

 '*.jpg'; ...

 '*.tiff'; ...

 '*.gif'}, ...

 'Enter image');

filename1 =fullfile(folder,file);

set(handles.text2,'String', filename1);

if length(filename1)>4

 X=imread(filename1);

 imshow(X,'Parent',handles.axes1);

 Im1=1;

end

title(handles.axes1,sprintf('Orginal Image'),'fontsize',12);

% --- Executes on button press in pushbutton2.

function pushbutton2_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton2 (see GCBO) Select GT

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

global Xgt;

global Im2;

[file,folder]= uigetfile(...

 {'*.png'; ...

 '*.tiff'; ...

 '*.jpg'; ...

 '*.gif'}, ...

 'Enter ground truth');

filename2 =fullfile(folder,file);

set(handles.text3,'String', filename2);

if length(filename2)>4

A-3

 Xgt=imread(filename2);

 imshow(Xgt,'Parent',handles.axes2);

 Im2=1;

end

title(handles.axes2,sprintf('Ground Truth'),'fontsize',12);

% --- Executes on button press in radiobutton1.

function radiobutton1_Callback(hObject, eventdata, handles)

%==

%Sobel
%==

global F_Index;

 F_Index = 0;

 set(handles.radiobutton1,'Value',1);

 set(handles.radiobutton2,'Value',0);

 set(handles.radiobutton3,'Value',0);

 set(handles.radiobutton4,'Value',0);

 set(handles.radiobutton5,'Value',0);

 set(handles.radiobutton6,'Value',0);

% --- Executes on button press in radiobutton2.

function radiobutton2_Callback(hObject, eventdata, handles)

%==

%FoSobel-1
%==

global F_Index;

 F_Index = 1;

 set(handles.radiobutton2,'Value',1);

 set(handles.radiobutton1,'Value',0);

 set(handles.radiobutton3,'Value',0);

 set(handles.radiobutton4,'Value',0);

 set(handles.radiobutton5,'Value',0);

 set(handles.radiobutton6,'Value',0);

% --- Executes on button press in radiobutton3.

function radiobutton3_Callback(hObject, eventdata, handles)

%==

%FoSobel-2
%==

global F_Index;

 F_Index = 2;

 set(handles.radiobutton3,'Value',1);

 set(handles.radiobutton2,'Value',0);

 set(handles.radiobutton1,'Value',0);

 set(handles.radiobutton4,'Value',0);

 set(handles.radiobutton5,'Value',0);

 set(handles.radiobutton6,'Value',0);

% --- Executes on button press in radiobutton4.

function radiobutton4_Callback(hObject, eventdata, handles)

%==

%FoSobel-3
%==

global F_Index;

 F_Index = 3;

 set(handles.radiobutton4,'Value',1);

A-4

 set(handles.radiobutton2,'Value',0);

 set(handles.radiobutton3,'Value',0);

 set(handles.radiobutton1,'Value',0);

 set(handles.radiobutton5,'Value',0);

 set(handles.radiobutton6,'Value',0);

% --- Executes on button press in radiobutton5.

function radiobutton5_Callback(hObject, eventdata, handles)

%==

%FoSobel-4
%==

global F_Index;

 F_Index = 4;

 set(handles.radiobutton5,'Value',1);

 set(handles.radiobutton2,'Value',0);

 set(handles.radiobutton3,'Value',0);

 set(handles.radiobutton4,'Value',0);

 set(handles.radiobutton1,'Value',0);

 set(handles.radiobutton6,'Value',0);

% --- Executes on button press in radiobutton6.

function radiobutton6_Callback(hObject, eventdata, handles)

%==

%FoSobel-5
%==

global F_Index;

 F_Index = 5;

 set(handles.radiobutton6,'Value',1);

 set(handles.radiobutton2,'Value',0);

 set(handles.radiobutton3,'Value',0);

 set(handles.radiobutton4,'Value',0);

 set(handles.radiobutton5,'Value',0);

 set(handles.radiobutton1,'Value',0);

% --- Executes on slider movement.

function slider1_Callback(hObject, eventdata, handles)

% hObject handle to slider1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider

% get(hObject,'Min') and get(hObject,'Max') to determine range

of slider

b=get(handles.slider1,'Value');

set(handles.edit1,'String',num2str(b));

% --- Executes during object creation, after setting all properties.

function slider1_CreateFcn(hObject, eventdata, handles)

% hObject handle to slider1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

A-5

% Hint: slider controls usually have a light gray background.

if isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor',[.9 .9 .9]);

end

% --- Executes on slider movement.

function slider2_Callback(hObject, eventdata, handles)

% hObject handle to slider2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider

% get(hObject,'Min') and get(hObject,'Max') to determine range

of slider

b=get(handles.slider2,'Value');

set(handles.edit2,'String',num2str(b));

% --- Executes during object creation, after setting all properties.

function slider2_CreateFcn(hObject, eventdata, handles)

% hObject handle to slider2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: slider controls usually have a light gray background.

if isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor',[.9 .9 .9]);

end

function edit1_Callback(hObject, eventdata, handles)

% hObject handle to edit1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit1 as text

% str2double(get(hObject,'String')) returns contents of edit1

as a double

b=get(handles.edit1,'String');

set(handles.slider1,'Value',str2num(b));

% --- Executes during object creation, after setting all properties.

function edit1_CreateFcn(hObject, eventdata, handles)

% hObject handle to edit1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

A-6

function edit2_Callback(hObject, eventdata, handles)

% hObject handle to edit2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit2 as text

% str2double(get(hObject,'String')) returns contents of edit2

as a double

b=get(handles.edit2,'String');

set(handles.slider2,'Value',str2num(b));

% --- Executes during object creation, after setting all properties.

function edit2_CreateFcn(hObject, eventdata, handles)

% hObject handle to edit2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

% --- Executes on button press in pushbutton4.

function pushbutton4_Callback(hObject, eventdata, handles)

%RUN Filter

global Im1;

global X;

global Im2;

global Xgt;

global F_Index;

if Im1==0

 uiwait(msgbox('Please, select Image'));

end

if Im2==0

 uiwait(msgbox('Please, select Image Ground truth'));

end

if Im1==1 && Im2==1

 p = get(handles.slider2,'Value');

 switch F_Index

 case 0

 [Mx, My]= dfsobdf1(0.0);

 case 1

 [Mx, My]= dfsobdf1(p);

 case 2

 [Mx, My]= dfsobdf2(p);

 case 3

 [Mx, My]= dfsobdf3(-p);

 case 4

 [Mx, My]= dfsobdf4(p);

 case 5

 [Mx, My]= dfsobdf5(p);

A-7

 end

 Scale = get(handles.slider1,'Value');

 Ix = imfilter(X,Mx,'replicate');

 Iy = imfilter(X,My,'replicate');

 I3 = sqrt(double(Ix.^2+Iy.^2));

 Thresh = sum(I3(:),'double') / numel(I3);

 I3 = I3>Scale*Thresh;

 I3 = (1-I3)*255;

 imshow(I3,'Parent',handles.axes3);

 title(handles.axes3,sprintf('Filtered Image'),'fontsize',12);

 I3 = I3 > 0;

 Gt1 = Xgt > 0;

 mse = sum(sum((I3-double(Gt1)).^2))/numel(I3);

 [TP,FP,FN,FM,PM,SDM,RDE,ME] =

score_of_evaluators(Gt1,I3,1,0.2);

 set(handles.edit3,'String',num2str(mse));

 set(handles.edit4,'String',num2str(SDM));

 set(handles.edit5,'String',num2str(RDE));

 set(handles.edit6,'String',num2str(ME));

 set(handles.edit7,'String',num2str(FM));

 set(handles.edit8,'String',num2str(PM));

 set(handles.edit10,'String',num2str(TP));

 set(handles.edit11,'String',num2str(FP));

 set(handles.edit12,'String',num2str(FN));

end

function edit3_Callback(hObject, eventdata, handles)

% hObject handle to edit3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit3 as text

% str2double(get(hObject,'String')) returns contents of edit3

as a double

% --- Executes during object creation, after setting all properties.

function edit3_CreateFcn(hObject, eventdata, handles)

% hObject handle to edit3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

A-8

function edit4_Callback(hObject, eventdata, handles)

% hObject handle to edit4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit4 as text

% str2double(get(hObject,'String')) returns contents of edit4

as a double

% --- Executes during object creation, after setting all properties.

function edit4_CreateFcn(hObject, eventdata, handles)

% hObject handle to edit4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function edit5_Callback(hObject, eventdata, handles)

% hObject handle to edit5 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit5 as text

% str2double(get(hObject,'String')) returns contents of edit5

as a double

% --- Executes during object creation, after setting all properties.

function edit5_CreateFcn(hObject, eventdata, handles)

% hObject handle to edit5 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function edit6_Callback(hObject, eventdata, handles)

% hObject handle to edit6 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit6 as text

% str2double(get(hObject,'String')) returns contents of edit6

as a double

A-9

% --- Executes during object creation, after setting all properties.

function edit6_CreateFcn(hObject, eventdata, handles)

% hObject handle to edit6 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

% --- Executes on button press in pushbutton6.

function pushbutton6_Callback(hObject, eventdata, handles)

% Filter Analysis

global Im1;

global X;

global Im2;

global Xgt;

global F_Index;

if Im1==0

 uiwait(msgbox('Please, select Image'));

end

if Im2==0

 uiwait(msgbox('Please, select Image Ground truth'));

end

Scale = get(handles.slider1,'Value');

Y1=[];Y2=[];Y3=[];Y4=[];Y5=[];Y6=[];Y7=[];

if Im1==1 && Im2==1

 for p=0:0.01:0.95

%===

% 1

%===

 [Mx, My]= dfsobdf1(p);

 Ix = imfilter(X,Mx,'replicate');

 Iy = imfilter(X,My,'replicate');

 I3 = sqrt(double(Ix.^2+Iy.^2));

 Thresh = sum(I3(:),'double') / numel(I3);

 I3 = I3>Scale*Thresh;

 I3 = (1-I3)*255;

 I3 = I3 > 0;

 Gt1 = Xgt > 0;

 b1 = sum(sum((I3-double(Gt1)).^2))/numel(I3);

 [TP1,FP1,FN1,FM1,PM1,SDM1,RDE1,ME1] =

score_of_evaluators (Gt1,I3,1,0.2);

A-10

%==

%2

%====================+=====================================

 [Mx, My]= dfsobdf2(p);

 Ix = imfilter(X,Mx,'replicate');

 Iy = imfilter(X,My,'replicate');

 I3 = sqrt(double(Ix.^2+Iy.^2));

 Thresh = sum(I3(:),'double') / numel(I3);

 I3 = I3>Scale*Thresh;

 I3 = (1-I3)*255;

 I3 = I3 > 0;

 Gt1 = Xgt > 0;

 b2 = sum(sum((I3-double(Gt1)).^2))/numel(I3);

 [TP2,FP2,FN2,FM2,PM2,SDM2,RDE2,ME2] =

score_of_evaluators (Gt1,I3,1,0.2);

%==

%3

%==

 [Mx, My]= dfsobdf3(-p);

 Ix = imfilter(X,Mx,'replicate');

 Iy = imfilter(X,My,'replicate');

 I3 = sqrt(double(Ix.^2+Iy.^2));

 Thresh = sum(I3(:),'double') / numel(I3);

 I3 = I3>Scale*Thresh;

 I3 = (1-I3)*255;

 I3 = I3 > 0;

 Gt1 = Xgt > 0;

 b3 = sum(sum((I3-double(Gt1)).^2))/numel(I3);

 [TP3,FP3,FN3,FM3,PM3,SDM3,RDE3,ME3] =

score_of_evaluators (Gt1,I3,1,0.2);

%==

%4

%==

 [Mx, My]= dfsobdf4(-p);

 Ix = imfilter(X,Mx,'replicate');

 Iy = imfilter(X,My,'replicate');

 I3 = sqrt(double(Ix.^2+Iy.^2));

 Thresh = sum(I3(:),'double') / numel(I3);

 I3 = I3>Scale*Thresh;

 I3 = (1-I3)*255;

 I3 = I3 > 0;

 Gt1 = Xgt > 0;

 b4 = sum(sum((I3-double(Gt1)).^2))/numel(I3);

 [TP4,FP4,FN4,FM4,PM4,SDM4,RDE4,ME4] =

score_of_evaluators (Gt1,I3,1,0.2);

%==

A-11

%5

%==

 [Mx, My]= dfsobdf5(p);

 Ix = imfilter(X,Mx,'replicate');

 Iy = imfilter(X,My,'replicate');

 I3 = sqrt(double(Ix.^2+Iy.^2));

 Thresh = sum(I3(:),'double') / numel(I3);

 I3 = I3>Scale*Thresh;

 I3 = (1-I3)*255;

 I3 = I3 > 0;

 Gt1 = Xgt > 0;

 b5 = sum(sum((I3-double(Gt1)).^2))/numel(I3);

 [TP5,FP5,FN5,FM5,PM5,SDM5,RDE5,ME5] =

score_of_evaluators (Gt1,I3,1,0.2);

%==

 if p==0

b3=b1;SDM3=SDM1;RDE3=RDE1;ME3=ME1;FM3=FM1;PM3=PM1;TP3=TP1;FP3=FP1;FN3

=FN1;

b4=b1;SDM4=SDM1;RDE4=RDE1;ME4=ME1;FM4=FM1;PM4=PM1;TP4=TP1;FP4=FP1;FN4

=FN1;

b5=b1;SDM5=SDM1;RDE5=RDE1;ME5=ME1;FM5=FM1;PM5=PM1;TP5=TP1;FP5=FP1;FN5

=FN1;

 end

 Y1=[Y1;p b1 b2 b3 b4 b5] ;

 Y2=[Y2;p SDM1 SDM2 SDM3 SDM4 SDM5] ;

 Y3=[Y3;p RDE1 RDE2 RDE3 RDE4 RDE5] ;

 Y4=[Y4;p ME1 ME2 ME3 ME4 ME5] ;

 Y5=[Y5;p FM1 FM2 FM3 FM4 FM5];

 Y6=[Y6;p PM1 PM2 PM3 PM4 PM5];

 Y7=[Y7;p TP1 FP1 FN1 TP2 FP2 FN2 TP3 FP3 FN3 TP4 FP4

FN4 TP5 FP5 FN5];

%==

==

 %Y5=[Y5;p s2];

 end

%==

==

%Mean Square Error
 figure,

plot(Y1(:,1),Y1(:,2),Y1(:,1),Y1(:,3),Y1(:,1),Y1(:,4),Y1(:,1),Y1(:,5),

Y1(:,1),Y1(:,6));

 legend('Operater 1','Operater 2 ','Operater 3','Operater

4','Operater 5') ;

 ylabel(' Mean Square Error'); xlabel('order (p)');grid;

%==

==

% Symmetric Distance
 figure,

A-12

plot(Y2(:,1),Y2(:,2),Y2(:,1),Y2(:,3),Y2(:,1),Y2(:,4),Y2(:,1),Y2(:,5),

Y2(:,1),Y2(:,6));

 legend('Operater 1','Operater 2 ','Operater 3','Operater

4','Operater 5') ;

 ylabel(' Symmetric Distance '); xlabel('order (p)');grid;

%==

==

% Relative Distance Error
 figure,

plot(Y3(:,1),Y3(:,2),Y3(:,1),Y3(:,3),Y3(:,1),Y3(:,4),Y3(:,1),Y3(:,5),

Y3(:,1),Y3(:,6));

 legend('Operater 1','Operater 2 ','Operater 3','Operater

4','Operater 5') ;

 ylabel(' Relative Distance Error'); xlabel('order (p)');grid

%==

==

% Misclassification Error
 figure,

plot(Y4(:,1),Y4(:,2),Y4(:,1),Y4(:,3),Y4(:,1),Y4(:,4),Y4(:,1),Y4(:,5),

Y4(:,1),Y4(:,6));

 legend('Operater 1','Operater 2 ','Operater 3','Operater

4','Operater 5') ;

 ylabel(' Misclassification Error'); xlabel('order (p)');grid;

%==

==

% FM Complement
 figure,

plot(Y5(:,1),Y5(:,2),Y5(:,1),Y5(:,3),Y5(:,1),Y5(:,4),Y5(:,1),Y5(:,5),

Y5(:,1),Y5(:,6));

 legend('Operater 1','Operater 2 ','Operater 3','Operater

4','Operater 5') ;

 ylabel(' FM Complement '); xlabel('order (p)');grid;

%==

==

 figure,

plot(Y6(:,1),Y6(:,2),Y6(:,1),Y6(:,3),Y6(:,1),Y6(:,4),Y6(:,1),Y6(:,5),

Y6(:,1),Y6(:,6));

 legend('Operater 1','Operater 2 ','Operater 3','Operater

4','Operater 5') ;

 ylabel(' PM Complement '); xlabel('order (p)');grid;

%==

==

% True Positive

 figure,

plot(Y7(:,1),Y7(:,2),Y7(:,1),Y7(:,5),Y7(:,1),Y7(:,8),Y7(:,1),Y7(:,11)

,Y7(:,1),Y7(:,14));

A-13

 legend('Operater 1','Operater 2 ','Operater 3','Operater

4','Operater 5') ;

 ylabel(' True Positive '); xlabel('order (p)');grid;

%==

==

% False Positive
 figure,

plot(Y7(:,1),Y7(:,3),Y7(:,1),Y7(:,6),Y7(:,1),Y7(:,9),Y7(:,1),Y7(:,12)

,Y7(:,1),Y7(:,15));

 legend('Operater 1','Operater 2 ','Operater 3','Operater

4','Operater 5') ;

 ylabel(' False Positive '); xlabel('order (p)');grid;

%==

==

% False Negative

 figure,

plot(Y7(:,1),Y7(:,4),Y7(:,1),Y7(:,7),Y7(:,1),Y7(:,10),Y7(:,1),Y7(:,13

),Y7(:,1),Y7(:,16));

 legend('Operater 1','Operater 2 ','Operater 3','Operater

4','Operater 5') ;

 ylabel(' False Negative '); xlabel('order (p)');grid;

%==

==

% Excel File

 xlhead={'Order','FoS-Yi_FeiPU-1','FoS-Yi_FeiPU-2','FoS-

Yi_FeiPU-3','FoS-Yi_FeiPU-4','FoS-Yi_FeiPU-5'};

 Mtrics={'Mean Square Error','Symmetric Distance','Relative

Distance Error','Misclassification Error','F Measure','Performance

Measure','(TP, FP, FN)'};

 name='Result1.xls';

 xlswrite('Result1.xls',Mtrics(1),1,'C4');

 xlswrite('Result1.xls',xlhead,1,'D4');

 xlswrite('Result1.xls',Y1,1,'D5');

%==

==

 xlswrite('Result1.xls',Mtrics(2),1,'C104');

 xlswrite('Result1.xls',xlhead,1,'D104');

 xlswrite('Result1.xls',Y2,1,'D105');

%==

==

 xlswrite('Result1.xls',Mtrics(3),1,'C204');

 xlswrite('Result1.xls',xlhead,1,'D204');

 xlswrite('Result1.xls',Y3,1,'D205');

%==

==

 xlswrite('Result1.xls',Mtrics(4),1,'C304');

 xlswrite('Result1.xls',xlhead,1,'D304');

 xlswrite('Result1.xls',Y4,1,'D305');

A-14

%==

==

 xlswrite('Result1.xls',Mtrics(5),1,'C404');

 xlswrite('Result1.xls',xlhead,1,'D404');

 xlswrite('Result1.xls',Y5,1,'D405');

%==

==

 xlswrite('Result1.xls',Mtrics(6),1,'C504');

 xlswrite('Result1.xls',xlhead,1,'D504');

 xlswrite('Result1.xls',Y6,1,'D505');

%==

==

 xlswrite('Result1.xls',Mtrics(7),1,'C604');

 % xlswrite('Result1.xls',xlhead,1,'D604');

 xlswrite('Result1.xls',Y7,1,'D605');

%==

==

 msgbox('Results is stored in Excel File');

end

function edit7_Callback(hObject, eventdata, handles)

% hObject handle to edit7 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit7 as text

% str2double(get(hObject,'String')) returns contents of edit7

as a double

% --- Executes during object creation, after setting all properties.

function edit7_CreateFcn(hObject, eventdata, handles)

% hObject handle to edit7 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function edit8_Callback(hObject, eventdata, handles)

% hObject handle to edit8 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit8 as text

A-15

% str2double(get(hObject,'String')) returns contents of edit8

as a double

% --- Executes during object creation, after setting all properties.

function edit8_CreateFcn(hObject, eventdata, handles)

% hObject handle to edit8 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function edit9_Callback(hObject, eventdata, handles)

% hObject handle to edit9 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit9 as text

% str2double(get(hObject,'String')) returns contents of edit9

as a double

% --- Executes during object creation, after setting all properties.

function edit9_CreateFcn(hObject, eventdata, handles)

% hObject handle to edit9 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function edit10_Callback(hObject, eventdata, handles)

% hObject handle to edit10 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit10 as text

% str2double(get(hObject,'String')) returns contents of edit10

as a double

% --- Executes during object creation, after setting all properties.

function edit10_CreateFcn(hObject, eventdata, handles)

% hObject handle to edit10 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

A-16

% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function edit11_Callback(hObject, eventdata, handles)

% hObject handle to edit11 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit11 as text

% str2double(get(hObject,'String')) returns contents of edit11

as a double

% --- Executes during object creation, after setting all properties.

function edit11_CreateFcn(hObject, eventdata, handles)

% hObject handle to edit11 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function edit12_Callback(hObject, eventdata, handles)

% hObject handle to edit12 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit12 as text

% str2double(get(hObject,'String')) returns contents of edit12

as a double

% --- Executes during object creation, after setting all properties.

function edit12_CreateFcn(hObject, eventdata, handles)

% hObject handle to edit12 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

A-17

% --- Executes on button press in pushbutton8.

function pushbutton8_Callback(hObject, eventdata, handles)

% View Edges

global Im1;

global X;

global Im2;

global Xgt;

global F_Index;

warning off;

clc;

if Im1==0

 uiwait(msgbox('Please, select Image'));

end

if Im2==0

 uiwait(msgbox('Please, select Image Ground truth'));

end

Scale = get(handles.slider1,'Value');

Y=[];

if Im1==1 && Im2==1

 prompt={'Enter order of differentiation - initial vale:','Enter

step value:','Enter final value:'};

 name='Input range of differentiation';

 numlines=1;

 defaultanswer={'0','0.1','0.9'};

 options.Resize='on';

 options.WindowStyle='normal';

 options.Interpreter='tex';

 answer=inputdlg(prompt,name,numlines,defaultanswer,options);

 oder_I=str2num(answer{1});

 oder_S=str2num(answer{2});

 oder_F=str2num(answer{3});

 for p=oder_I:oder_S:oder_F

%===

 % 1

%===

 [Mx, My]= dfsobdf1(p);

 Ix = imfilter(X,Mx,'replicate');

 Iy = imfilter(X,My,'replicate');

 I3 = sqrt(double(Ix.^2+Iy.^2));

 Thresh = sum(I3(:),'double') / numel(I3);

 I3 = I3>Scale*Thresh;

 I1 = (1-I3)*255;

%==

 % 2

%====================+=====================================

A-18

 [Mx, My]= dfsobdf2(p);

 Ix = imfilter(X,Mx,'replicate');

 Iy = imfilter(X,My,'replicate');

 I3 = sqrt(double(Ix.^2+Iy.^2));

 Thresh = sum(I3(:),'double') / numel(I3);

 I3 = I3>Scale*Thresh;

 I2 = (1-I3)*255;

%==

 % 3

%==

 [Mx, My]= dfsobdf3(-p);

 Ix = imfilter(X,Mx,'replicate');

 Iy = imfilter(X,My,'replicate');

 I3 = sqrt(double(Ix.^2+Iy.^2));

 Thresh = sum(I3(:),'double') / numel(I3);

 I3 = I3>Scale*Thresh;

 I33 = (1-I3)*255;

%==

 % 4

%==

 [Mx, My]= dfsobdf4(-p);

 Ix = imfilter(X,Mx,'replicate');

 Iy = imfilter(X,My,'replicate');

 I3 = sqrt(double(Ix.^2+Iy.^2));

 Thresh = sum(I3(:),'double') / numel(I3);

 I3 = I3>Scale*Thresh;

 I4 = (1-I3)*255;

%==

 % 5

%==

 [Mx, My]= dfsobdf5(p);

 Ix = imfilter(X,Mx,'replicate');

 Iy = imfilter(X,My,'replicate');

 I3 = sqrt(double(Ix.^2+Iy.^2));

 Thresh = sum(I3(:),'double') / numel(I3);

 I3 = I3>Scale*Thresh;

 I5 = (1-I3)*255;

 if p==0.0

 x=[uint8(Xgt);

uint8(I1);uint8(I1);uint8(I1);uint8(I1);uint8(I1)];

 Y=[Y x];

 else

x=[uint8(Xgt);uint8(I1);uint8(I2);uint8(I3);uint8(I4);uint8(I5)];

 Y=[Y x];

 end

 end

 figure, montage(Y),title(' Ground Truth First row FoS-1 :Second

row FoS-2 :Third row FoS-Yi_FeiPU-3 :Fourth row FoS-4 :Fifth

row FoS-5');

end

 البحوث المنشورة

[1] Eng. Ibtisam Edress, Dr. Emad A. Al-Sabawi, and Dr. Majid Dherar

Younus, “Design of Fractional-order Sobel Filters for Edge

Detections,” 1st International Ninevah Conference on Engineering

and Technology(INCET2021), Mosul,Goverence,Iraq for the period

from (5-6) April 2021. The conference will publish the papers in

IOP Conference Series: Materials Science and Engineering, Scopus

indexed.

 الخلاصــة

سئٛسٛت يًٓت جذًا َذٕ ةٔخطٕ تانذٕاف أدذ يشكلاث انبذث انذٕٛٚ ٚعذ اكخشاف

ٚعخًذ عهٗ يشخماث الأعذاد اسخخلاص يٛضاث انصٕسة ٔرنك نخجضئخٓا ٔانخعشف عهٗ اًَاطٓا.

يٍ انذسجت الأٔنٗ أٔ انثاَٛت. يع ظٕٓس تانصذٛذت لاكخشاف دٕاف انصٕسة ، خاصت انًشخم

 انًشخمّباسخخذاو ٙاكخشاف انذٕاف حًج اعادة انُظشفٙ ساب انخفاضم ٔانخكايم انكسش٘ ، د

 خًستحى فٙ ْزا انعًم الخشاح طشٚمّ نهكشف عٍ انذٕافٙ فٙ انفٛذٕٚ اسخُادًا إنٗ انكسشٚت.

إنٗ Yi_Fei-1بُاءا عهٗ يعايلاث انذساب انكسش٘ نـ Sobelنـ انًشحبتيششذاث كسشٚت

Yi_Fei-5.

نًششذاث (نخذهٛم اMatlab 2017b(فٙ)GUIحى حطٕٚش ٔاجٓت سسٕيٛت نهًسخخذو)

 أ٘نـ ٔانكلاسٛكٛت. حعخبش دلت انذٕافٙ ادذٖ اْى انخذذٚاث Sobelكسشٚت انًشحبت انًمخشدت نـ

كاشف دٕاف ؛ نٓزا حى إجشاء حمٛٛى خاضع نلإششاف بٍٛ انًششذاث انًمخشدت ٔانًششخ

 Mean Square Error ٔ Symmetric Distance Measureٔانكلاسٛكٙ باسخخذاو

Relative Distance Error ٔMisclassification Error Complemented

Performance Measure ٔ Complemented F Measure ٍدٛث حى اسخخذاو انعذٚذ ي .

انًعخًذ انًشحبتكسش٘ Sobelأٌ يششخ انُخائج أظٓشث انخمٛٛى. فٙانذمٛمٛت دٕافٓاانصٕس يع

 خشدت الأخشٖ.ٚخفٕق عهٗ انًششخ انخمهٛذ٘ ٔانًششذاث انًم Yi_Fei-2عهٗ

باسخخذاو يصفٕفت Yi_Fei-2انًعخًذ عهٗ Sobelحى حُفٛز انًششخ انكسش٘ انًشحبت نـ

 Xilinx(دٛث اسخخذيج بشيجٛاث ششكت صاٚهُٛكس)FPGAبٕاباث يُطمٛت يبشيجت دمهٛا)

Vivado 2018.2(بانخكايم يع)Matlab 2017bنـ(. حى اسخخذاو يذمك ا HDL يٍ خلال

(FPGA in Loop)ٔ (Co-simulation) ٙدمهٛا عهٗ تيبشيج تبُاء يصفٕفت بٕاباث يُطمٛف

انكٛاٌ يذاكاة(بٍٛ root mean square error) ٔجذ اٌ. Artix-7 NEXYS 4 نٕدت

 (.0.002ْٕ) ٛتيجًذاكاة انبشانانًاد٘ ٔ

 اقرار لجنة المناقشة

بناء مصفوفة) بأننا أعضاء لجنة التقويم والمناقشة قد اطمعنا عمى ىذه الرسالة الموسومةنشيد
وناقشنا (التفاضل كسري المرتبةبوابات مبرمجو حقميا لكشف حوافي الفيديو بالاعتماد عمى

 اوقد وجدناى 2021محتوياتيا وفيما لو علاقة بيا بتاريخ / / في (ابتسام ادريس كنعانة)الطالب
 عموم في اختصاص ىندسة الحاسوب والمعموماتية.-شيادة الماجستيرجدير بنيل

 التوقيع: التوقيع:

 :عضو المجنة رئيس المجنة:

 د.بسمة محمدكمال يونس د.محمد حازم الجماس

 2021التاريخ: / / 2021التاريخ: / /

 التوقيع:

 عضو المجنة:

 د.سنان حسام ميدي

 2021التاريخ: / /

 التوقيع: التوقيع:

 :)المشرف(عضو المجنة :)المشرف(عضو المجنة

 د.ماجد ضرار يونس د.عماد عطيو خمف

 2021التاريخ: / / 2021التاريخ: / /

 قرار مجمس الكمية

وقرر المجمس منح 2021بجمستو المنعقدة بتاريخ : / / جتمع مجمس كمية ىندسة الالكترونيات ا
 والمعموماتية. الطالب شيادة الماجستير عموم في اختصاص ىندسة الحاسوب

 رئيس مجمس الكمية: مقرر المجمس: د.
 2021التاريخ: / / 2021/ التاريخ: /

 إقرار المشرف

الفيديو حوافيبناء مصفوفة بوابات مبرمجه حقميا لكشف " بان الرسالة الموسومة ب اشهد
 شهادةجزء من متطلبات نٌل ًاشرافً وھ تمت تحت "المرتبة كسري التفاضل بالاعتماد عمى

 الحاسوب والمعلوماتٌة ھندسةالماجستٌر فً

 :انخٕلٛع :انخٕلٛع

 ياجذ ضشاس َٕٚسد. : فانًششعًاد عطّٛ خهف د. : فانًشش

 2021 / /: انخاسٚخ 2021 / /: انخاسٚخ

 إقرار المقيم اللغوي

بناء مصفوفة بوابات مبرمجه حقميا لكشف " بانً قمت بمراجعة الرسالة الموسومة ب اشهد
من الناحٌة اللغوٌة وتصحٌح ما ورد "التفاضل كسري المرتبة الفيديو بالاعتماد عمى حوافي

تعلق الامر بسلامة للمناقشة بقدر مؤھلةفٌها من أخطاء لغوٌة وتعبٌرٌة وبذلك أصبحت الرسالة

 .وصحة التعبٌر الأسلوب

 :انخٕلٛع

 :انًمٕو انهغٕ٘

 2021 / / :انخاسٚخ

 إقرار رئيس لجنة الدراسات العليا

 .بناء على التوصٌات المقدمة من قبل المشرف والمقوم اللغوي أرشح ھذه الرسالة للمناقشة

 :انخٕلٛع

 يعٍ أدًذ شذارة انعذٔاَٙ .و .أ :سىالا

 2021 / / :انخاسٚخ

 إقرار رئيس القسم

بُاء عهٗ انخٕصٛاث انًمذيت يٍ لبم انًششف ٔانًمٕو انهغٕ٘ ٔسئٛس نجُت انذساساث انعهٛا أسشخ ْزِ

 .نهًُالشت انشسانت

 :انخٕلٛع

 أدًذ شذارة انعذٔاَٙ يعٍ و. أ. :سىالا

 2021 / / :انخاسٚخ

الفيديو بالاعتماد عمى حوافيبناء مصفوفة بوابات مبرمجه حقميا لكشف
 المرتبة كسري التفاضل

 بيا ترسالة تقدم

 ابتسام ادريس كنعان سميمان

 إلى
 مجمس كمية ىندسة الالكترونيات

 جامعة نينوى
 كجزء من متطمبات نيل شيادة الماجستير

 في
 ىندسة الحاسوب والمعموماتية

 بإشراف
 ماجد ضرار يونسد. عماد عطيه خمف د.

 م١٢١٢ هـ ٢٤٤١

 نينوىجامعة

 هندسة الالكترونياتكمية

 قسم هندسة الحاسوب والمعموماتية

الفيديو حوافيحقميا لكشف ةبناء مصفوفة بوابات مبرمج
 المرتبة كسري التفاضلبالاعتماد عمى

 ابتسام ادريس كنعان سليمان

 رسالة ماجستير علوم في هندسة الحاسوب والمعلوماتية

 بإشراف

 ماجد ضرار يونسد. عماد عطيه خلف د.

 م ١٢١٢ھـ ٢٤٤١

