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I 

 

ABSTRACT 

An enhancement of resolution for Angle of Arrival (AoA) estimation is 

useful for incoming radio waves received by uniform linear arrays (ULA). One 

of the modern techniques for determining the angle of any approaching or 

receiving target is the Root Eigenvector (R-EV). 

The Root Eigenvector (R-EV) algorithm, which in this thesis is compared 

to the conventional method of Fast Fourier transforms (FFT), is one of the high-

resolution methods for locating and finding angles. The angle of any 

approaching or receiving object’s radiating wave with a small error rate 

compared to other methods of AoA.  

The high-resolution algorithms concentrate on the distinct properties of the 

signal covariance matrix in addition to dividing the observation space into two 

subspaces, one for the signal and one for the noise. 

Before starting to study the R-EV method, a few determinations for Angle 

of Arrival (AoA) parametric methods are present. These determinations 

preceded the R-EV in terms of the results achieved and the mathematical 

representation such as Pisarenko Harmonic Decomposition (PHD) and Multiple 

Signal Classification (MUSIC). 

The R-EV and FFT methods are implemented in MATLAB environment. A 

range of studies have been simulated with different numbers of antennas, 

different values of angles. Different values for the distance between elements 

whether single or multiple sources. Also, these simulated results are analyzed to 

see the effect of changing these parameters on determining the Angle of Arrival 

using R-EV and FFT by calculating the percentage of error in each case. 

The results proved the super accuracy of R-EV and achieved exceptionally 

low error rates even with the addition of noise the maximum error that got  

reached 4 % when M, number of samples (sensors) equal to 8. For the rest of the 

cases, the error rate did not exceed 2%,. In contrast, FFT did not achieve the 

same efficiency as R-EV because of having higher error rates and requiring a 

greater number of elements than R-EV. 
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CHAPTER ONE 

Introduction and Literature Review 

1.1 Introduction 

The term "array signal processing" refers to the processing of information 

signals obtained from a network of sensors running in different environments 

(e.g., at ground level, above ground level, or underwater). There are various 

kinds of sensors, such as antennae for radio astronomy, radio communications, 

and radar, hydrophones for sonar, geophones for seismology, ultrasound, and X-

ray detectors for medical imaging [1].  

The sensors are developed with the same fundamental goal in each of these 

incredibly varied array signal processing applications: to act as an interface 

between the environment in which the array is embedded and the signal 

processing portion of the system [1], [2]. 

Since Newton's prism experiments with sunlight, spectrum estimation has 

involved assessing the power or energy distribution concerning the signal's 

frequency. Through these studies, Newton was able to prove that sunlight is 

made up of a band of colors, each of which has a unique wavelength[3]. The fast 

Fourier transform (FFT), an effective technique for computing the discrete 

Fourier transform, was rediscovered in 1965, marking a significant turning point 

for the field's future growth [4]. 

John Burg soon afterward published his work, which presented a 

completely novel method of spectrum estimate based on the maximum entropy 

concept. Many academics have followed up on his work over the following 

three decades, creating a plethora of novel spectrum estimation techniques and 

applying them to a wide range of physical processes from different scientific 

domains[5]. 

One of the significant and developing study areas in array signal processing

 is AOA estimation. The term "Angle-of-Arrival (AoA) estimation" describes the 
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procedure of determining the Angle for several electromagnetic radio frequency 

waves from the outputs of several receiving antennas that make a sensor array 

[6]. Radar, sonar, wireless communications, etc. are just a few of the many 

industries where AoA estimation is a significant issue in array signal processing.  

The accuracy of this Angle of Arrival prediction significantly influences the 

effectiveness of antennas. It utilizes the digital output for each sensor array's 

output. A single fixed antenna used for AoA estimate has a low resolution, to 

improve parameter estimation and signal reception a variety of antennas is used. 

An array of antenna sensors performs better, increases accuracy, and enhances 

the resolution [7]. 

 

1.2 Literature Reviews 

There are a lengthy history of research into AoA estimate techniques that 

reaches more than 40 years. Researchers have been trying to solve the issues 

related to AoA, that are accurately estimating the angles of arrival, reducing the 

transmitting power, and locating the beam in the desired direction. 

In general, angle finding methods are categorized into Conventional 

methods and the Subspace methods.  

The first method is the Conventional method, also known as the Classical 

method. For example, spatial filtering or beamforming was the initial method 

used to handle data gathered from an array of sensors in space-time. 

 The notion of colored space-time waveform transmission serves as the 

foundation for space-time coding. It permits the transmission of various 

waveforms with a broad angular coverage in various directions [8]. 

 The traditional (Bartlett) beamformer, which goes back to the Second 

World War, merely applied spectrum analysis based on Fourier to 

spatiotemporally sampled data [9].  

However, the spatial filtering strategy has several serious drawbacks, 

regardless of the available data collecting time and Signal-to-Noise ratio (SNR), 
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the performance of the device in question is particularly directly influenced by 

the physical size of the array (the aperture). The classical methods may be 

thought of statistically as spatial expansions of spectral Wiener filtering [10]. 

After that, the ability to resolve closely separated signal sources was 

improved using adaptive beamformers and traditional time delay estimation 

techniques [11].  With the expansion of time-delay estimating approaches to 

many signals (initially, these methods only employed two sensors), and the 

constrained resolution of beamforming, academics' interest in statistical signal 

processing has grown.  

The output energy in the interference direction can be kept constant while 

the output energy in the desired direction is minimized using the Capon 

approach in 1969. Although this approach is reliable and does not require many 

sources in advance, its resolution falls short [12]. At this point, it is worth 

mentioning that the word "resolution" is employed casually. It refers to the 

ability to separate between two closely spaced signal sources [9]. 

The second category of AoA methods is the subspace Method or the High-

resolution method. These methods outperform more traditional algorithms in 

terms of performance. The decomposition of the Covariance Eigen matrix into 

the Noise Subspace and the Signal Subspace is the foundation of this approach. 

The spatial spectrum of the antenna is determined using this method, and the 

direction of arrival is determined using the spatial spectrum peaks [13]. 

In 1973 Vladilen Fedorovich Pisarenko showed that second-order statistics 

may be used to retrieve AOAs. Pisarenko made the initial discovery of this 

technique while doing research on how to determine the frequencies of complex 

signals that are present in white noise. The Pisarenko Harmonic Decomposition 

Method try to lower the (MSE) Mean Square Error of the Output Array [14]. 

The minimal Norm Method, developed by Kumaresan and Tufts in 1982 

[15], is an approach that is used to solve the AOA estimation issue in a way like 



4 

 

the MUSIC algorithm and is described as "the vector lying in the noise subspace 

whose first element is one having minimum norm”. 

The Min Norm approach attempts to solve the issue of high computational 

complexity, but it encounters difficulty in that it creates spurious peaks in other 

sites, which hinders the algorithm's efficiency [16]. 

The MUSIC algorithm suggested by Schmidt in 1986, the term "multiple 

signal classification" (MUSIC) referred to theoretical and experimental methods 

used to analyze signals received at antenna array elements to extract information 

about the characteristics of numerous wavefronts arriving there [17]. 

The Covariance Matrix was the most important component of the MUSIC 

method since it is divided into the noise subspace and the signal subspace using 

two separate orthogonal matrices. The covariance matrix is diagonal in this 

approach because it assumes that noise is significantly uncorrelated in every 

channel [18].  

Because of its high-resolution capability, the MUSIC algorithm offers 

reliable performance and has been utilized extensively up to this point. Even 

though the MUSIC algorithm has many advantages, it is being constrained by 

several obstacles and competing with current methods. It is unable to detect the 

Direction of Arrival (DoA) of signals that are coupled because it is costly and 

computationally hard since it entails looking for peaks. 

In 1990, a novel method for estimating direction from noisy multi-

experiment data was presented, based on eigen analysis. This novel technique 

which is called the Method of Direction Estimation (MoDE) offers the 

performance of the Maximum Likelihood (ML) method (the MoDE and ML 

estimators coincide as the number of data samples increases), with a modest 

computational effort comparable to other eigen analysis-based techniques like 

the MUSIC algorithm [19]. 
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In 1992 Friedlander and Weiss developed the concepts of spatial smoothing 

and array interpolation combined to create a computationally efficient estimate 

approach [20]. 

In 1995, by Serebryakov a new article was added to the AoA development 

based on examining the capacity of a minimal energy adaptive beamformer for 

communication to determine the positions of two narrowband sources with equal 

energy but near separation [21]. 

In 1997 Shaker Verlag released Haardt’s outstanding PhD dissertation on 

array signal processing for DOA calculations. It gives a thorough analysis and 

investigation of the ESPRIT technique to make it easier for a reader to check on 

this important reference without being too confused [22]. 

In 2000 by Jingqing Luo and Zhiguo Zhang a set of extremely basic 

arithmetic known as the Eigenvalue Grads Methods (EGMs) is introduced in 

this study following some examination of the eigenvalues of the auto-correlation 

matrix, and the simulation results are compared with those of the AIC and MDL 

technique [23]. 

 In 2004 new novel methodology by Chong-Ying and Yong-shun which 

estimates DoAs with high precision and does not need knowledge of the number 

of signal sources, uses the linear prediction (LP) or Pisarenko method in 

combination with the adaptive signal parameter estimation and classification 

technique (ASPECT). ASPECT is used to locate erroneous peaks in DoAs and 

can simultaneously count the number of signal sources. The approach allows for 

the reduction of computational complexity and the enhancement of spectral 

resolution [24]. 

In 2007, Zhang Xiaofei, and Lv Wen developed a unique approach for DoA 

estimation that fully utilizes the signal and noise subspaces. It performs better 

than MUSIC and Improved MUSIC and exhibits superior performance under 

low SNR, tiny snapshot, and coherent source circumstances. This approach is 
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resilient and widely used because, in addition to its low complexity, it is simple 

to implement [25]. 

In 2011, Aifei Liu, and Guisheng Liao proposed an entirely novel DoA 

estimation technique based on the eigen decomposition of an array output 

vector's conjugate and a covariance matrix created by the dot product of the 

array output vector and the latter. A technique provided to concurrently estimate 

the DoA and gain-phase errors without joint iteration by fusing the novel DoA 

estimation with the traditional gain-phase error estimation. Theoretical research 

demonstrates that the suggested approach behaves well regardless of phase 

errors and performs without dependence on phase faults [26]. 

In 2015, Pascal Vallet, Xavier Mestre, and Philippe Loubaton developed 

the MUSIC method. In the asymptotic regime, when the number of samples and 

sensors approaches infinity at the same rate, this study addresses the statistical 

performance of subspace AoA estimation using a sensor array. When the number 

of sources and their AoA stay constant, improved subspace AoA estimators 

known as developed MUSIC and demonstrated to be consistent and 

asymptotically Gaussian-distributed [27]. 

In 2018, Qingli Yan, Jianfeng Chen, and Geoffrey Ottoy is addressed in this 

paper the performance degradation issues of the Angle of Arrival (AoA)-based 

acoustic localization methods in the presence of unreliable bearing 

measurements (outliers) [28]. 

In 2020, Chudnikov and Shakhtarin in their paper discussed methods for 

the direction of arrival estimation (DoA) in MIMO radar sensors with a small 

antenna array with collocated elements. An algorithm for processing a data array 

in the “channel-range-speed” coordinates is presented in the context of signal 

sources localization with the main digital beamforming methods [29]. 

In 2023, Tobias Margiani, Silvano Cortesi presented a paper related to 

AoA, this work provided a thorough analysis and evaluation of Angle of Arrival 

(AoA) UWB measurements utilizing a small, low power integrated  
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a new commercial module with integrated Phase Difference of Arrival 

estimate[30].  

 

1.3 Application for AoA 

In many aspects of radio communications, direction finding is crucial. Most 

of them require determining an emitter's direction in relation to a predetermined 

reference direction (such as true north, magnetic north, or the heading of a ship, 

car, or airplane). 

Fixing the location of emitters is one of the most crucial applications for 

direction finders. This may involve finding shipwrecked people, tracking down 

unauthorized signals like those from unlicensed base stations, unwanted 

emissions from industrial facilities, or even signals used to remotely detonate 

improvised explosive devices (IEDs). Radio position fixing is crucial in the field 

of military radio reconnaissance because it allows for the acquisition of tactical 

structure images, which are then used to evaluate the danger posed by an 

opponent. 

Single-station locators (SSLs) only employ one direction finder, while two 

methods are applied. When using shortwave signals that travel via the 

ionosphere for position fixing, direction finders that measure both the azimuth 

and elevation of the incident wave must be used. The distance to the emitter may 

be calculated using an estimate of the virtual height of the ionosphere's 

reflecting layer; the intersection with the line of bearing (LOB) then provides the 

emitter location. 

1.4 Aim of the Work 

This research aims to study a new method for AoA estimation to obtain 

high accuracy in determining the angle and direction of the received signals. 

The focus will be on a class of Eigenvector algorithms known as Root-

Eigenvector (R-EV), and before starting to study this method, it is necessary to 
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make a quick study of the principles of AoA methods that led to Root-

Eigenvector. 

The study will contain an explanation of the receiving antenna system 

(Uniform linear array), the mathematical description of the previous methods 

gradually from the classical method: Fast Fourier Transform (FFT) to the 

modern method of Root-Eigenvector, and detailed MATLAB simulation results 

for each algorithm will be presented. 

The thesis will focus on the following points: 

1. researching the classical methods for AoA (FFT) and studying the basics 

of the high-resolution methods including Root-Eigenvector (R-EV) method and 

making a complete study. 

2. Studying the eigenvector and eigenvalues of the autocorrelation matrix. 

3. Performing the problem analysis for the two methods (Root-Eigenvector, 

FFT) and making a simulation using MATLAB. 

4. Comparing the performance during changes in the parameters that affect 

the response of the methods. 
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1.5 Thesis Layout 

This thesis is made up of several investigations that were conducted with 

these objectives. Five chapters provide a comprehensive study of the proposed 

method and a comparison to the classical method.  

Beyond this introduction chapter, chapter two offers the background theory 

of frequency estimation that is separated into two parts: Traditional techniques 

DFT or FFT and Subspace approaches like PHD, MUSIC, and R-EV methods. 

Those methods of DoA estimate are contrasted with simulation results, as well 

as the mathematical description for the DoA estimation approach system 

developed in this thesis. 

Chapter three and chapter four are demonstrated using the MATLAB 

program, Chapter three includes an investigation and comparison between the 

two methods of AoA estimations (FFT and Root-Eigenvector) without noise, 

Chapter four studies the effect of adding white noise to the signals, finally 

chapter five focuses on the conclusions and future works. 
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CHAPTER TWO 

Theoretical Background 

2.1 Overview 

This chapter explains the basis of the working principles and theoretical 

background of the topics considered in this thesis. As a start, frequency 

estimation for AoA algorithms was studied, which was classified into two main 

parts: 

(1) non-parametric like Fourier Transform,  

(2) parametric like Pisarenko Harmonic Decomposition (PHD), MUSIC, 

and eigenvector.  

Finally, the main method for the subject of this research is explained, Root-

Eigenvector (R-EV). After that, Angle of Arrival (AoA) detailed study for the 

signal model and data model is illustrated, furthermore, a linear antenna array is 

used to describe this model. Finally, the Root-Eigenvector is employed to find 

the Angle of Arrival estimation. 

 

2.2 Frequency Estimation 

The process of estimating a signal's spectral density (sometimes referred to 

as its power spectral density) from a series of time samples is called spectral 

estimation. 

Spectral estimation (SE) is one of the most important parts of the 

processing and interpretation of signals. It is considered a fundamental analysis 

tool with numerous uses. The following statement captures the core of the 

spectrum estimation issue: "Determine the distribution of total power over 

frequency from a finite record of a stationary data stream".  

Most of the signals encountered in applications are such that their variation 

in the future cannot be known exactly; instead, it is only possible to make 
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probabilistic statements about that variation. The mathematical tool is used to 

describe such a signal of random sequence, which consists of an ensemble of 

realizations, each one having some associated probability of occurrence. Since 

the experimenter often only sees one realization of the signal out of the whole 

ensemble of realizations. Unfortunately, this is not feasible as, when seen as 

discrete-time sequences, the realizations of a random signal lack Discreate Time 

Fourier Transform (DTFT) since they lack finite energy. A random signal's 

average power spectral density used to describe it as random signals typically 

have finite average powers [31]. 

To distinguish between stationary and non-stationary signal for a random 

process 𝑦(𝑚), a process is said to be stationary if every single time the random 

variable at this time has the same density function; this signal is said to be strict 

sense stationary (SSS) if it is stationary for all orders L >0 and has the same 𝐿𝑡ℎ-

order joint density functions for processes 𝑦(𝑚) and 𝑦(𝑚 + 𝑘). 

 Also, Wide-Sense Stationary (WSS) is another type of stationarity; and a 

random process; 𝑦(𝑚) is said to be wide-sense stationary if all three of the 

following requirements are met [32]: 

1. The mean of the procedure is constant, 𝑚𝑦(𝑚) = 𝑚𝑦. 

2. The autocorrelation, r𝑦(k, 𝑙) for the random variables  y(k) and y(l) depends 

only on the difference, (k − 𝑙), this difference is called the lag, r𝑦(k, 𝑙) =

𝑄𝑦(k − 𝑙)  

3. The process variance is finite, 𝑐𝑦 (0) < ∞. 

Additionally, it is supposed that a random process 𝑦(𝑚) is ergodic if, with 

probability one, all the statistical averages can be calculated from a single 

sample according to the function of the procedure. If temporal averages 

generated by a single realization are identical to statistical (ensemble) averages, 

the random process is effectively ergodic. It is possible to try and estimate group 

averages under these circumstances using temporal averages from one 

realization [32].The Discrete Fourier Transform (DFT) is a representation for 
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finite-length sequences that is an easy function of an integer variable, k, and can 

be computed using a digital computer. The M-point DFT for a finite-length 

sequence 𝑦(𝑚) of length M that equals zero outside of the interval [0,𝑀 − 1] is 

[32]: 

 𝑌k = ∑ yme
−2πjkm

M  M−1
m=0   , 𝑘 = 0,1, 2, … . ,𝑀 − 1 , 2.1 

where 𝑌𝑘 is the 𝑘𝑡ℎ  coefficient of the DFT that should be complex and 𝑦𝑚 refers 

to the 𝑚𝑡ℎ  sample of the time series which consists of M samples and complex 

exponential. 

For ease of notation 2.1, is frequently written as [32]: 

 𝑌k = ∑ ymWmk M−1
m=0  , 𝑘 = 0, 1, … . ,𝑀 − 1 , 2.2 

Where 𝑊 = e
−2πj

M  . 

Since that 𝑦𝑚 are sometimes values of a function at points for discrete time, 

the index k is often called the “frequency” of the DFT. The DFT is also known 

as the “discrete time, finite range Fourier transform”. 

The common inverse of the DFT exists, and as its form is extremely close 

to that of the DFT, the inverse of equation (2.1) [32] is: 

 Ym =
1

𝑀
∑ 𝑌ke

2πjkm

M  M−1
k=0 . 2.3 

This equation is called the inverse discrete Fourier transform (IDFT), since 

the FFT is an algorithm for efficiently computing the discrete Fourier transform 

(DFT) for the estimation of the frequency content of a discrete and finite time 

series, it makes use of the possibility of doing an iterative computation of the 

DFT's coefficient, which saves a significant amount of computing time [33]. 

The power spectrum density PSD defined as the DTFT of the covariance 

sequence [32]: 

 𝑃(𝑤) = ∑ R(k)e−jwk ∞
k=−∞ . 2.4 

Given the power spectrum, the autocorrelation sequence R(k) may be 

determined by taking the inverse discrete-time Fourier transform of 𝑃(𝑤) [32]: 
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 R(k) =
1

2 𝜋
∫ 𝑃(𝑤)ejwk𝜋

−𝜋
𝑑𝑤. 2.5 

Therefore, the autocorrelation sequence of the Fourier transform is the 

power spectrum, estimating the power spectrum of FFT is like estimating the 

autocorrelation.  

 For an autocorrelation ergodic process also detriment using the time 

average[32]:  

 Ry(k) = lim
M→∞

{
1

2M+1
∑ y(m + k)y∗(m)M

m=−M } . 2.6 

As a result, in principle, calculating the power spectrum is simple if y(m) is 

known for every m, as all that is required in computing the Fourier transform of 

the autocorrelation sequence 𝑅𝑦(𝑘) using equation (2.6) to estimate the 

autocorrelation sequence. However, there are two drawbacks to this strategy that 

make spectrum estimation a difficult issue. First, there is never an infinite 

quantity of data to deal with, and it is frequently very little. As is the case, such a 

restriction could be a defining feature of the data-collecting process. The second 

issue is that the data is frequently tainted by interference signals or noise, as a 

result, the challenge of spectrum estimation entails predicting 𝑃�̂�(𝑒𝑗𝜔) given a 

limited set of noisy y(m) data. 

For example, if 𝑦(𝑚) is known and has  𝑝𝑡ℎ order autoregressive process, 

then the values measured from  y(m) may be used for estimation of the 

parameters of the all-root  model, 𝑎𝑃(k), and these estimations of the parameters, 

𝑎�̂�(k), may then, in turn, be used to estimate of  the power spectrum as 

follows[32]: 

 Pŷ(e
jω) =

1

|∑ ap̂
p
k=0

(k)e−jkω|
2 . 2.7 
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Figure 2.1 shows the classification of AoA methods. 

 

Figure 2.1 classification of AoA methods. 

2.2.1 Non-Parametric Methods 

The foundation of classical Angle of Arrival (AoA) techniques is 

beamforming. The beamforming approach's basic concept is to "steer" the array 

in a single direction at a time while measuring the output power. The maximum 

output power will be seen when the "steered" direction and a signal's AoA line 

up. The creation of a suitable output power that will be closely connected to the 

AoA is essentially what goes into developing AoA estimate systems[34]. 

The term "nonparametric" refers to an estimation that makes no 

assumptions about the way the data produced. Starting with the provided data, it 

estimates the autocorrelation sequence of the random process. Next, a Fourier 

transform of an approximated autocorrelation sequence used to determine the 

power spectrum. Following are several methods for estimating the 

AOA methods

Parametric 
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(a) 
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Spectrum 
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(b) Subspace 
Method

i.Pisarenko Harmonic Decomposition 

ii. Multiple Signal Classification.

iii. Eigen Vector 

iii.Root Eigen Vector 
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autocorrelation sequence for the process of an ergodic autocorrelation y(m) that 

is only recorded over a finite range, such as 𝑚 = 0, 1, … ,𝑀 − 1. 

Then, using the following, the estimation of autocorrelation sequence is 

calculated: 

 �̂�𝑦(𝑘) =
1

𝑀
∑ 𝑦(𝑚 + 𝑘)𝑦∗(𝑚)𝑀−1

𝑚=0  . 2.8 

The periodogram was the first type of nonparametric estimate proposed by 

Chuster in 1898.  

The Fourier transform of the autocorrelation sequence is the wide-sense 

stationary random process's power spectrum, as given by the following equation:

  

 𝑃𝑦(𝑒𝑗𝑤) = ∑ 𝑟𝑦(𝑘)∞
𝑘=−∞ 𝑒−𝑗𝑘𝜔  2.9 

Consequently, the estimate of the spectrum may be thought of as an 

autocorrelation estimation issue. Equation (2.9) uses the time average to 

calculate the autocorrelation for an ergodic autocorrelation and an infinite 

quantity of data. 

However, the autocorrelation sequence may be obtained if 𝑦(𝑚) is 

measured over a limited range, where 𝑚 =  0, 1,… ,𝑀 − 1 derived for equation 

(2.10). 

It expresses as follows to ensure that the values of 𝑦(𝑚) that are outside of 

the range [0,𝑀 − 1] are eliminated from 2.8: 

 �̂�𝑦(𝑘) =
1

𝑀
∑ 𝑦(𝑚 + 𝑘)𝑦∗(𝑚)𝑀−1−𝑘

𝑚=0  , k=0,1,…,M-1,  2.10 

The discrete-time Fourier transform of �̂�𝑦(𝑘) yields a periodogram, which 

is an estimation of the power spectrum known as periodogram. 

 �̂�𝑝𝑒𝑟(𝑒
𝑗𝑤) = ∑ �̂�𝑦(𝑘)𝑒−𝑗𝜔𝑘𝑀−1

𝑘=−𝑀+1  . 2.10 

Thus, 𝑦𝑀(𝑚) is the product of y(m) with a rectangular window 𝑤𝑅 

 𝑦𝑀 = 𝑤𝑅𝑦(𝑚)  2.11 
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In terms of 𝑦𝑀(𝑚) the autocorrelation sequence estimation may be written 

as follows: 

�̂�𝑦(𝑘) =
1

𝑀
∑ 𝑦𝑀(𝑚 + 𝑘)𝑦𝑀

∗(𝑚) =∞
𝑚=−∞

1

𝑀
𝑦𝑀(𝑘)𝑦𝑀

∗(−𝑘) . 2.12 

 

Taking the Fourier transform FT and using the convolution theorem, the 

periodogram becomes: 

                       𝑃𝑝𝑒𝑟(𝑒
𝑗𝑤) =

1

𝑀
 𝑌(𝑒𝑗𝑤)𝑌∗(𝑒𝑗𝑤)

∗
=

1

𝑀
|𝑌(𝑒𝑗𝑤)|

2
. 2.13 

𝑌∗(𝑒𝑗𝑤) is a complex conjecture of 𝑌(𝑒𝑗𝑤). 

So, 𝑌𝑀(𝑒𝑗𝑤) is the discrete-time Fourier transform of the M-point data 

sequence 𝑦𝑀(𝑚) as follows: 

 𝑌𝑀(𝑒𝑗𝑤) = ∑ 𝑦𝑀(𝑚)𝑒−𝑗𝜔𝑚∞
𝑛=∞ = ∑ 𝑦(𝑚)𝑒−𝑗𝜔𝑚𝑀−1

𝑚=0  . 2.14 

A crucial idea in the investigation of the performance of spectral estimators 

is resolution, which is the capacity to recognize spectral features, although the 

periodogram is straightforward to generate the power spectrum but resolution is 

constrained for short data records [35] .  

 When dealing with sufficiently long data lengths, the periodogram 

approach offers a considerable resolution; nevertheless, because of their large 

variance, which does not decrease with data length, they are poor spectrum 

estimators. 

To enhance its statistical features, the periodogram has undergone a few 

documented revisions. These include the modified periodogram, the 

periodogram averaging Bartlett's approach, the modified averaging periodogram 

Welch's method, and the periodogram smoothing Blackman Turkey method 

[36]. One of the disadvantages of non-parametric methods for AoA estimation, 

the estimating technique is not intended to consider any potential process 

information that may be accessible. This feature may have importance in 

applications especially when information on how the data samples produced is 
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accessible  therefore there was a need to a parametric method that estimates a 

collection of parameters for the received signal [34]. 

2.2.2 Parametric Methods 

The estimation of frequencies contains two or more close frequencies 

signal problem and estimation of θ angle in AoA. 

The following represent a study for some of Parametric Methods: 

(a) Autoregressive Spectrum Estimation 

This section gives a mathematical description of the Autoregressive (AR) 

process corrupted by additive (white) noise. In this section, the special case is 

considered in which the signal is sinusoidal corrupted by additive white noise 

[2]. 

In a communication system, the signal transferred to an array antenna is 

typically distorted by noise. These disturbances are often uncorrelated, but the 

pure signals that various elements receive are associated since they come from 

the same sources [37]. 

The following matrix can be utilized to represent the autocorrelation 

sequence. By considering that y is the sampled data vector [32]: 

 𝒚 =  [𝑦(0), 𝑦(1), 𝑦(2), … . , 𝑦 (𝑝)]𝑇 , 2.15 

Where the T is the transpose operator. Then, the autocorrelation matrix 

𝑹𝒚 of y is the correlation matrix becomes[32]: 

 𝑹𝒚 = 𝑬 {𝒚 𝒚𝑯} , 2.16 

Where E {} is the statistical expression. 

Equation (2.17) defines the degree of correlation of the data signals 

received by array elements * denotes complex conjugate transpose[32]: 

𝑹𝒚 = 𝐄{ 𝐲𝒚𝑯 } 

                     =𝑬 [

𝒚(𝟎)𝒚∗(𝟎) 𝒚(𝟎)𝒚∗(𝟏) … 𝒚(𝟎)𝒚∗(𝒑 − 𝟏)

𝒚(𝟏)𝒚∗(𝟎) 𝒚(𝟏)𝒚∗(𝟏) … 𝒚(𝟏)𝒚∗(𝒑 − 𝟏)
⋯ ⋯ ⋯ ⋯

𝒚(𝒑 − 𝟏)𝒚∗(𝟎) 𝒚(𝒑 − 𝟏)𝒚∗(𝟏) ⋯ 𝒚(𝒑 − 𝟏)𝒚∗(𝒑 − 𝟏)

] ,  2.17 
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            =

[
 
 
 
 
 
𝑟𝑦(0)    

𝑟𝑦(1)    

𝑟𝑦(2)    

⋮
𝑟𝑦(𝑝)    

𝑟𝑦
∗(1)    

𝑟𝑦(0)    

𝑟𝑦(1)    

⋮
𝑟𝑦(𝑝 − 1)       

𝑟𝑦
∗(2)

𝑟𝑦
∗(1)

𝑟𝑦(0)

⋮
𝑟𝑦(𝑝 − 2)

…
……
…
…

   

𝑟𝑦
∗(𝑝)

𝑟𝑦
∗(𝑝 − 1)

𝑟𝑦
∗(𝑝 − 2)

⋮
𝑟𝑦(0) ]

 
 
 
 
 

       2.18 

Taking the expected value and using the property of Hermitian, the 

autocorrelation sequence leads to producing the 𝑝 ∗  𝑝 autocorrelation matrix. 

The power spectrum related to a 𝑝𝑡ℎ order autoregressive process[32]: 

 𝐏𝐲(e
jω) =

|𝑏(0)|2

|1+∑ ap
p
k=1

(k)e−jkω|
2  2.19 

Thus, an estimate of the power spectrum may be obtained using the data 

provided by 𝑏(0) that represent the Autoregressive coefficient, and ap(𝑘) can be 

determined. 

 𝐏𝐀�̂�(𝐞𝐣𝛚) =
|�̂�(𝟎)|

𝟐

|𝟏+∑ 𝐚�̂�
𝐩
𝐤=𝟏

(𝐤)𝐞−𝐣𝐤𝛚|
𝟐  2.20 

 Several methods are available for estimating the all-pole parameters, as 

autoregressive spectrum estimation necessitates the identification of an all-pole 

model for the process. 

But each approach produces an estimate of the power spectrum in precisely 

the same manner, i.e., by using equation (2.20), once the all-pole parameters 

have been obtained.  This discussion includes an overview of some of the 

characteristics of Autocorrelation modeling approaches and how they relate to 

spectrum estimation. 

In the autocorrelation method of all-pole modeling, the autoregressive (AR) 

coefficients ap̂(k) in the all-pole modeling autocorrelation approach are found 

by solving the autocorrelation normal equations[32]: 
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[
 
 
 
 
 
𝒓𝒚(𝟎)    

𝒓𝒚(𝟏)    

𝒓𝒚(𝟐)    

⋮
𝒓𝒚(𝒑)    

𝒓𝒚
∗ (𝟏)    

𝒓𝒚(𝟎)    

𝒓𝒚(𝟏)    

⋮
𝒓𝒚(𝒑 − 𝟏)       

𝒓𝒚
∗ (𝟐)

𝒓𝒚
∗ (𝟏)

𝒓𝒚(𝟎)

⋮
𝒓𝒚(𝒑 − 𝟐)

…
……
…
…

   

𝒓𝒚
∗ (𝒑)

𝒓𝒚
∗ (𝒑 − 𝟏)

𝒓𝒚
∗ (𝒑 − 𝟐)

⋮
𝒓𝒚(𝟎) ]

 
 
 
 
 

[
 
 
 
 

𝟏
𝐚𝐩(𝟏)

𝐚𝐩(𝟐)

⋮
𝐚𝐩(𝒑)]

 
 
 
 

= 𝜺𝒑

[
 
 
 
 
𝟏
𝟎
𝟎
⋮
𝟎]
 
 
 
 

    2.21 

 

The autocorrelation sequence of y(m) is known as 

 𝑟𝑦(𝑘) =
1

𝑀
∑ 𝑦(𝑚 + 𝑘)𝑦∗(𝑚)p−1−k

𝑚=0  , k=0,1, 2,…., p. 2.22 

Solving Eq. (2.21) for the coefficients ap(𝒌), results in: 

 ||𝑏(0)|2 = 𝜀𝑝 = 𝑟𝑦(0) + ∑ ap
p
k=1

(k)�̂�𝑦(𝑘)|
2

 2.23 

(b) Subspace Method 

The data for a single signal is constrained to a one-dimensional subspace 

that is defined by the steering vector A (θ), if y(t)=A(θ)x(t) for the L signals, the 

observed data vectors y(t)=A(θ)x(t) are restricted to L-dimensional signal 

subspace is named the signal subspace. An array that receives signals that are 

distorted by noise is named the noise subspace. Normally, these disturbances 

are uncorrelated, however, the pure signals received by various components are 

correlated since they came from the same source. It may be possible to properly 

extract the AoA information by utilizing that property, and the spatial 

covariance matrix presented and used to identify AoA [38]. 

The parametric (subspace) approach, which predicated on the idea that the 

process may be characterized by a parametric model, is a conceptually distinct 

method of estimating the spectrum of a random process. The process spectrum 

then represents in terms of the model's parameters based on the model. The 

method therefore has three steps: 

 (1) choosing a suitable parametric model (typically predicated on prior 

information about the process). 

 (2) estimating the model parameters. 

 (3) computing the spectrum using the parameters so determined. 
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 Because they may attain higher resolution than nonparametric approaches, 

parametric spectrum estimating techniques referred to as high-resolution 

techniques in the literature [5]. 

The high-resolution property is often possessed by approaches that rely on 

the decomposition of the observation space into signal and noise subspaces. 

When two signals, subject to how close they may be in frequency terms, can be 

separated (referred to as resolved or detected) despite the signal-to-noise ratio 

(SNR), it is say that the method has a high resolution. This is the case when the 

model is verified, and the number of samples used for the estimation of the 

correlation matrix and the observations tends to the infinite[39], [40]. 

In summary, these techniques depend on a set of the basic proven 

properties of the space matrix defined by 𝑅𝑦𝑦, firstly, the space is classified into 

two sections subspace for noise and subspace for signal, the steering A(θ) 

vectors approach the signal subspace, finally, the noise subspace is spanned by 

the eigenvectors attached with eigenvalues that have a smaller value of the 

correlation matrix, unlike the signal subspace that attached with larger 

eigenvalues [41]. This section’s focus is on these models, concentrating on the 

parameter estimation issue and implementation format. 

 

i. Pisarenko Harmonic Decomposition (PHD) Method 

For estimating the frequency and magnitude, Pisarenko Harmonic 

Decomposition (PHD) algorithm is proposed [17]. Since it has several uses in 

high-resolution spectrum estimation and array signal processing issues, the 

Pisarenko harmonic decomposition (PHD) approach has lately drawn a lot of 

interest [42]. PHD analysis is mainly used to estimate the frequency and 

magnitude parameters of sinusoidal signals exposed to white noise [43]. 

Pisarenko proved that the frequencies may be obtained from the eigenvector 

corresponding to the least eigenvalue of the autocorrelation matrix based on 
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carathedory theory [32]. Before solving the matrix's eigenvalues and 

accompanying eigenvectors, a correlation matrix made up of the values of all 

sample points' autocorrelation functions must first be produced. Following these 

steps, the frequency value of each component may be calculated using the 

orthogonality between the signal space and noise space as identified by the 

eigenvectors. Finally, the equation for the autocorrelation function may be used 

to solve the magnitude value [43], [44]. 

In PHD method, it is assumed that q complex exponentials in white noise 

make up x(m), and that q is a known quantity. The eigenvector corresponding to 

the lowest eigenvalue spans the noise subspace, which has a size of one, 𝜆𝑚𝑖𝑛 =

𝜎ŋ
2, Assuming that this noise eigenvector is denoted by the symbol 𝑢𝑚𝑖𝑛, it 

follows that each of the signal vectors 𝒒𝐢, and they are orthogonal to each 

other[32]: 

 𝒒𝒊
𝑯𝒖𝒎𝒊𝒏 = ∑ 𝑢𝑚𝑖𝑛(𝑘)𝑒−𝑗𝑘𝜔𝑖𝐿

𝑘=0 = 0; 𝑓𝑜𝑟 𝑖 = 1,2,3, … , 𝐿  2.24 

let Umin be the 𝑘𝑡ℎ component of 𝐮𝐦𝐢𝐧 , 

 𝑈𝑚𝑖𝑛(𝑒𝑗𝜔) = ∑ 𝑢𝑚𝑖𝑛(𝛼)𝑒−𝑗𝑘𝜔𝐿
𝑘=0 = 0  2.25 

for each of the complex exponential frequencies 𝑤𝑖  where 𝑖 =  1, 2, … , 𝐿 is 

equal to zero. The noise eigenvector's z-transform, also known as an eigenfilter 

Umin, has L zeros on the unit circle[32] 

 𝑈𝑚𝑖𝑛(𝑧) = ∑ 𝑢𝑚𝑖𝑛(𝑘)𝑧−𝑘 = ∏ (1 −𝐿
𝑘=1

𝐿
𝑘=0 𝑒𝑗𝜔𝑘𝑧−1)  2.26

  

The roots of the eigen filter may be used to obtain the frequencies of the 

complex exponentials. Additionally, a frequency estimate function is explained 

as [32]: 

 �̂�𝑃𝐻𝐷(𝑒𝑗𝜔) =
1

|𝒒𝐻𝒖𝑚𝑖𝑛|2
  2.27
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The powers 𝑃𝑃𝐻𝐷 can be obtained from the eigenvalues of 𝑅𝑦 by following 

the steps below once the frequencies of the complex exponentials have been 

identified. Let us assume that the signal subspace Eigenvectors 𝑢1, 𝑢2 , 𝑢3, … , 𝑢𝐿  

so will become[32]: 

 𝒖𝑖
𝐻𝒖𝑖 = 1 , 𝑖 =  1,2, … , 𝐿 2.28

  

 𝑹𝒚 𝒖𝒊 = 𝜆𝑖𝒖𝒊 , 𝑖 =  1,2, … , 𝐿 2.29

  

 𝐑𝐲 = 𝐑𝐱 + 𝐑ŋ = ∑ 𝐏𝐢𝐪𝐢𝐪𝐢
𝐇 + σŋ

2𝐈L
i=1   2.30

  

The left side of Equation (2.29) is multiplied by the ui
H,it will result: 

 𝒖𝑖
𝐻𝑅𝑦 𝒖𝑖 = 𝜆𝑖𝒖𝑖𝒖𝑖

𝑯 = 𝜆𝑖 , 𝑖 =  1,2, … , 𝐿  2.31

  

When the formula for 𝑅𝑦 is include from Equation (2.30) into Equation 

(2.31), the equation  get[32]: 

 𝒖𝑖
𝐻𝑅𝑦𝒖𝑖 = 𝒖𝑖

𝐻{∑ 𝑃𝑘𝒒𝑘𝒒𝑘
𝐻𝐿

𝑘=1 + 𝜎ŋ
2𝐼}𝑢𝑖 = 𝜆𝑖  , 2.32

  

Equation (2.32) can summarize as: 

 ∑ 𝑷𝒌|𝒒𝒊𝒖𝒌
𝑯|

𝟐𝐿
𝑘=1 = 𝜆𝑖 − 𝜎ŋ

2 , 2.33

  

 |𝒖𝑖𝒒𝑖
𝐻|𝟐 = |𝑼𝑖(𝑒

𝑗𝜔𝑘)|
2
 , 2.34

  

Where: 

 𝑼𝒊(𝑒
𝑗𝜔𝑘) = ∑ 𝒖𝒊(𝑟)𝑒

−𝑗𝑙𝑟𝜔𝐿
𝑟=0   2.35
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Equation (2.36) may be simplified to: 

 ∑ 𝑷𝒌|𝑼𝑖(𝑒
𝑗𝜔𝑘)|

2𝐿
𝑘=1 = 𝜆𝑖 − 𝜎ŋ

2  2.36

  

A collection of L linear equations with L unknowns: 

 

[
 
 
 
 |𝑈1(𝑒

𝑗𝜔1)|
2

|𝑈1(𝑒
𝑗𝜔2)|

2
… |𝑈1(𝑒

𝑗𝜔𝐿)|
2

|𝑈2(𝑒
𝑗𝜔1)|

2
|𝑈2(𝑒

𝑗𝜔2)|
2

⋯ |𝑈2(𝑒
𝑗𝜔𝐿)|

2

… … … …

|𝑈𝐿(𝑒
𝑗𝜔1)|

2
|𝑈𝐿(𝑒

𝑗𝜔2)|
2

⋯ 𝑈𝐿(𝑒
𝑗𝜔𝐿)|2 ]

 
 
 
 

[

𝑃1

𝑃2

…
𝑃𝐿

] =

[
 
 
 
 
𝜆1 − 𝜎ŋ

2

𝜆2 − 𝜎ŋ
2

…
𝜆𝐿 − 𝜎ŋ

2
]
 
 
 
 

  2.37 

The Pisarenko harmonic decomposition computationally requires 

determining the least eigenvalue and eigenvector of the signal autocorrelation 

matrix This might take a long time to compute for high-order issues, also It 

needs to know how many complex exponentials exist in the signal. 

 

ii.  Multiple Signal Classification Method (MUSIC)  

In 1979, Schmidt introduced the Multiple Signal Classification technique 

(MUSIC), an advancement to the Pisarenko Harmonic Decomposition. Based on 

the characteristics of the signal and noise subspaces, it employs the eigenvectors 

decomposition and eigenvalues of the covariance matrix of the antenna array to 

estimate Angles-of-arrival of sources[45], [46]. Let 𝑅𝑦 be the 𝑀 ∗ 𝑀 

autocorrelation matrix of 𝑦(𝑚) with 𝑀 > 𝐿 + 1. If 𝑅𝑦 eigenvalues are listed in 

descending order λ1 ≥ λ2 ≥ ⋯ ≥ λL and if the related eigenvectors are 

𝑢1, 𝑢2, … , 𝑢𝐿 , these eigenvectors are split into two groups: the 𝑀 − 𝐿 noise 

eigenvectors that, in ideal situations, have eigenvalues equal to σŋ
2 and the L 

signal eigenvectors corresponding to the L biggest eigenvalues. It may be 

possible to calculate the white noise variance by averaging the 𝑀 − 𝐿 lowest 

eigenvalues[47], [48]: 

 σŋ
2 =

1

M−L
= ∑ λk 

M
k=L+1  2.38 
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To calculate the complex exponentials' frequency: 

 Ui(z) = ∑ ui(k)z−k ; i = L + 1,… ,MM−1
k=0   2.39 

The frequency estimation function is used in the MUSIC method to 

average down the impacts of these false peaks [32]: 

 P̂𝑀𝑈(ejw)  =
1

∑ |qH𝐮i|2     M
i=L+1

  2.40 

 P̂𝑀𝑈(𝜃) =
1

𝐮i
H(𝜃) q qH 𝐮i(𝜃)  

  2.41 

The AoA of wave fronts cannot be obtained directly using the MUSIC 

method. It must compute an average over all vectors of an orthonormal basis of 

the noise space to determine the precise angles of arrival of the signals. To put it 

another way, this function's speed and processing capacity are limited since it is 

necessary to compute the pseudo-spectral on the whole parameters space and 

look for its minima [28]. 

iii. Eigen Vector Method (EV) 

 For determining the frequencies of complex exponentials in noise, Johnson 

[49] presented the Eigen Vector (EV) approach in 1982 in addition to the 

Pisarenko and MUSIC methods. 

The MUSIC algorithm and the EV have a close relationship. The EV 

technique specifically calculates the exponential frequencies from the eigen 

spectrum peaks [32]: 

  P̂𝐸𝑉(ejw) =  
1

∑
1

λi
|qH𝐮i|2     M

i=L+1

  2.42 

The 𝒖𝑖  is the eigen-vector related to the eigen-value λi ,if the 

autocorrelation and the White Gaussian Noise are known perfectly for then the 

eigen-values in the equation above are like the white noise variance 𝜎ŋ
2[32]: 

 𝜆𝑖 = σŋ
2  2.43 

         To a precise degree, the MUSIC pseudospectrum and the EV eigen 

spectrum will be identical, but with estimated autocorrelations the eigenvector 
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method differs from the MUSIC algorithm and appears to produce fewer 

spurious peaks.  

iv.  Root-Eigenvector Method (R-EV) 

The EV and MUSIC technique have passed through several modifications 

to simplify, improve performance, and improve resolution. This is the situation 

with the linear and equidistant antenna array[50]. 

The benefit of R-EV is that it directly calculates the AoA by searching for 

polynomial zeros, eliminating the need to look for maxima in the case of 

MUSIC and Eigen Vector. This technique is only applicable to networks of 

regularly spaced linear antennas. Additionally, it makes use of certain 

characteristics of the received signals to shorten computation time and enhance 

angular resolution[40]. 

The input data covariance matrix 𝑹𝒚𝒚 is written as[50]:  

 𝑹𝒚𝒚 = 𝑨𝑹𝒙𝒙𝑨
𝑯 + 𝜎ŋ

2𝑰𝑴 , 2.44 

Where 𝑅𝑥𝑥 is the signal correlation matrix, 𝜎ŋ
2 is the noise common 

variance, and 𝐼𝑀 is the identity matrix of rank M,  A is a matrix formed by M 

steering vectors of sources, Suppose that the eigenvalues of 𝑅𝑦𝑦 are {λ1, …, λ𝑀} 

so that. 

 |𝑹𝒚𝒚 − 𝛌𝒊 𝑰𝑴| = 0  2.45 

Then, the substitution of 2.44 into 2.45 results: 

 |𝑨𝑹𝒙𝒙𝑨
𝑯 + 𝜎ŋ

2𝑰𝑴 − λ𝑖  𝑰𝑴| = 0  2.46 

Assume that 𝐴𝑅𝑥𝑥𝐴
𝐻  has eigenvalues e𝑖  then: 

 e𝑖 = 𝜎ŋ
2 − λ𝑖    2.47 

A has full column rank since it consists of an array's linearly independent 

steering vectors, and if the incident signals are not significantly correlated, the 

signal correlation matrix 𝑅𝑥𝑥 is nonsingular. 
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It can be demonstrated that the matrix 𝐴𝑅𝑥𝑥𝐴
𝐻 is positive semidefinite 

with rank L when the number of incident signals (L) is smaller than the number 

of elements (M) due to a complete column rank A and a nonsingular 𝑅𝑥𝑥. 

This suggests that e𝑖 of 𝐴𝑅𝑥𝑥𝐴
𝐻, or 𝑀 − 𝐿 of eigenvalues, are zero. 

According to Equation (2.47), 𝑀 − 𝐿 of the 𝑅𝑦𝑦 eigenvalues are the least and 

equal to the noise variance 𝜎ŋ
2. 

 λ𝐿+1 = ⋯λ𝑚𝑖𝑛 = λ𝑀 = 𝜎ŋ
2 2.48 

However, not every eigenvector corresponding to the noise space will be 

precisely the same when the autocorrelation matrix 𝑅𝑦𝑦 is computed from a 

limited data sample set of the received signals. Instead, as the number of 

samples used to get an estimate of 𝑅𝑦𝑦 increases, they will appear as a closely 

spaced cluster with a decreasing variation in their spread. 

Each eigenvector q𝑖 is linked to a certain eigenvalue λ𝑖  as follows: 

 (𝑹𝒚𝒚 − λ𝑖  𝑰𝑴)𝐪𝒊 = 0      𝑖 = 𝐿 + 1, 𝐿 + 2,… ,𝑀  2.49 

Regarding of these eigenvectors linked to the 𝑀 −  𝐿 lowest eigenvalues,  

can obtain: 

 (𝑹𝒚𝒚 − 𝜎ŋ
2𝑰𝑴)𝐪𝒊 =  𝑨𝑹𝒙𝒙𝑨

𝑯𝐪𝒊 + 𝜎ŋ
2𝑰𝑴𝐪𝒊 − 𝜎ŋ

2𝑰𝑴𝐪𝒊 2.50 

 =  𝑨𝑹𝒙𝒙𝑨
𝑯𝐪𝒊 = 0  2.51 

 

Since 𝑹𝒙𝒙is nonsingular and A has full rank, this implies that: 

 𝑨𝑯𝐪𝒊 = 0  2.52 

This indicates that the L steering vectors that comprise A are orthogonal to 

the eigenvectors linked to the M – L lowest eigenvalues. 

So, the Root-Eigenvector is based on the idea of an orthogonal vector 

method that considers there is a vector, orthogonal to a matrix A (𝒊. 𝒆. , 𝑨𝑯𝒒𝒊  =

 𝟎), 𝒒 = 𝑞0, 𝑞1, … , 𝑞𝑀−1 which means that q is located in the noise subspace  , 

given that the structure of the columns of A for the uniform linear array is 



27 

 

known and that the dot product of q with any of the i columns of A is zero, the 

dot product expansion that follows may be expressed as: 

 𝒒 𝒂(𝜷𝑖) = 𝑞0 + 𝑞1𝑒
−𝑗𝜷𝑖 + 𝑞2𝑒

−2𝑗𝜷𝑖 + ⋯+ 𝑞𝑀−1𝑒
−𝑗(𝑀−1)𝜷𝑖 = 0  2.53 

The polynomial of u(z) is defined as: 

 𝒒(𝒛) = 𝒒𝟎 + 𝒒𝟏𝒛 + 𝒒𝟐𝒛
𝟐 + ⋯+ 𝒒𝑴−𝟏𝒛

𝑴−𝟏 = 𝟎  2.54 

This analysis indicates that the covariance matrix 𝑹𝒚𝒚 eigenvectors 

correspond to two orthogonal subspaces: the non-principal eigen subspace 

(noise subspace) and the principal eigen subspace (signal subspace). 

 The steering vectors corresponding to the AoA are in the signal subspace 

and orthogonal to the noise subspace.  

The AoAs may be found by looking through all potential array steering 

vectors to identify those that are perpendicular to the space that the non-

principal eigenvectors span.  

The noise eigenvectors must be arranged in a matrix to create the noise 

subspace 𝐐ŋ = [𝐪L+1,……, 𝐪M] ,the projection of the steering vector on the noise 

subspace for a linear antenna array with uniform spacing may be described by 

taking the inverse of 𝛂𝐻(𝜷) 𝑸ŋ 𝑸ŋ
𝑯𝛂(𝜷) = 0, [32]: 

 P̂𝐸𝑉(𝛽) =
1

1

λ𝑖 
 {𝛂i

H
(𝜷) 𝐐ŋ 𝐐ŋ

H 𝛂i(𝜷)}  
  2.55 

The Root-Eigenvector algorithm's basic idea is to create a polynomial of 

degree 2(𝑀 − 1) and retrieve its roots[51].  

The Root-Eigenvector technique calculates all the roots, and it then uses 

the largest-magnitude roots inside the unit circle to estimate the signal AoAs 

[52].  

As mentioned previously, 𝐐ŋ is the noise eigen vector.  

 𝚪ŋ = 𝐐ŋ 𝐐ŋ
H  2.56 

PR−EV
−1 (β) =

1

λ𝑖 
 {𝛂i

H
(𝛽) 𝐐ŋ 𝐐ŋ

H 𝛂i(𝛽)}  2.57 
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PR−EV
−1 (β) =

1

λ𝑖 
 {𝜶𝐢

𝐇
(𝜷)𝚪ŋ 𝜶𝐢(𝜷)} 2.58 

Using the representation of analytical expression for the steering vector 

𝛼𝑘(𝜷) = e−𝑗𝛽(𝑘−1)𝑑 of the 𝑘𝑡ℎ elements of the linear network (k=1,2 ,…, M), 

equation 2.58 can rewrite to be: 

PR−EV
−1 (β) = ∑

1

λk
∑ e−𝑗𝛽(𝑘−1)𝑑Γkhe

𝑗𝛽(ℎ−1)𝑑M
h=1

M
k=1  2.59 

 Γkhis the element of the 𝑘𝑡ℎ line and the ℎ𝑡ℎ column of Γ. By merging the 

two sums in 2.59, the following representation are obtain:  

 PR−EV
−1 (β) = ∑

1

λC
 {ΓCe

−𝑗𝐶𝜷𝑑M−1
C=−M+1 } 2.60 

And Γc = ∑ Γkhk−h=C  ,Equation 2.94 can be written into R-EV polynomial 

which is a function of z represents by: 

 R(z)=∑ DCz
CM−1

C=−M+1   2.61 

 and 

 z = e−𝑗𝑑𝛽  2.62 
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2.3 Angle of Arrival (AoA)Estimation 

The main goal of Angle-of-arrival estimation, also known as Angle finding, 

is to determine the angle at which electromagnetic (radio or acoustic) or auditory 

signals will impinge on a sensor or antenna array [53], [54] 

 In both military and civilian applications, such as search and rescue, 

seismology, and other fields, it is necessary to locate and monitor signal sources, 

this necessitates the use of AoA estimation. 

Regarding AoA estimates, several theories and methods have been 

established for array signal processing that will be discussed until explain the 

main method in this thesis, known as the Root-Eigenvector method. 

2.3.1 Data model for AoA 

Most modern techniques for signal processing are model- based, meaning 

they make assumptions about the data that is seen in the actual world [34]. 

The following assumptions are: 

• Far-field assumption 

The far-field approximation assumes that the L signal sources are spaced 

apart from the array. So that, the signals formed by each source propagate to 

each element in an equal direction. Thus, the propagating fields of the L signals 

arriving at the array are parallel to each other. 

This assumption can, in general, be realized by making the distance 

between the signal sources and the array much larger than the dimension of the 

antenna array. As a rule of thumb, the distance should be more than 𝑑 ≫
2D2

γ
 

where 𝐷 is the array's size and γ is the wavelength of the signals. 

• AWGN channel 

A complex Additive White Gaussian Noise (AWGN) has been suggested to 

be the source of the noise in the AWGN channel. Additive, because it is 
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combined with any possible inherent information system noise, a zero means 

that a spatially uncorrelated random process that is uncorrelated with the signals 

is used to generate the additive noise. White refers to the notion that the 

information system's power spectral density is constant over the whole 

frequency range [55]. 

 The noises are uncorrelated between all elements and have a common 

variance 𝜎𝑁
2 Throughout the whole array. 

• Transmission Medium 

The signals are produced by L sources, pass through a medium, and then 

meet an M-element antenna or sensor array. It is assumed that the transmission 

medium between the sources and the array is linear and isotropic, meaning that 

the medium's physical characteristics are the same in all directions; signals or 

waves at any given place may be superimposed linearly; the position of the 

target in relation to the antenna system and the direction of signal transmission 

have no effect on the medium's characteristics[29]. 

A signal traveling through the medium and then impinging on or being 

received by any element of the M-element array can be computed as a linear 

superposition of signals wavefronts produced by the L source element because 

the medium's isotropic and linear characteristics, which guarantees two things, 

First, the propagation property of the waves does not change with the 

DOAs of signals, and second, the DOAs of the signals do not affect the wave 

propagation properties of the waves. Additionally, it is assumed that each 

receiver elements piece has a gain of one. 

• Narrowband Approximation 

The signals come from various sources, but since they share a carrier 

frequency 𝑓𝑐 , their frequency contents are concentrated close to that frequency. 

Any one of the instantaneous signals with respect to r that refer to narrowband 

coming from the sources can be described mathematically as[40]: 

 𝑥𝑖
𝑟(𝑡) = 𝑎𝑖(𝑡)𝑐𝑜𝑠[2𝜋𝑓𝑐𝑡 + 𝛽𝑖(𝑡)],   1 ≤ 𝑖 ≤ 𝐿 2.63 
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The signals are narrowband as long as their amplitudes 𝒂𝒊 (t), and 

information-bearing phases 𝜷𝒊 (t) vary slowly with respect to 𝜏, where is the 

propagation time of the wave signals between elements[40]. Otherwise: 

 𝑎𝑖(𝑡 − 𝜏) ≈ 𝑎𝑖(𝑡) 𝑎𝑛𝑑 𝛽𝑖(𝑡 − 𝜏) ≈ 𝛽𝑖(𝑡), 2.64 

The Fourier transform in equation 2.63 has most of its frequency 

components close to the carrier frequency fc ensured by the slow varying of 

𝑎𝑖(𝑡)  and phases 𝛽𝑖(𝑡). A phrase that works well can get a mathematical 

analysis by defining the complicated signal's or phasor's envelope[40]: 

 𝑥𝑖
𝑒𝑛𝑣(𝑡) = 𝑎𝑖(𝑡)𝑒

𝑗𝛽𝑖(𝑡) 2. 65 

Such that 

 𝑥𝑖
𝑟(𝑡) = 𝑅𝑒𝑎𝑙{𝑥𝑖

𝑒𝑛𝑣(𝑡)𝑒𝑗2𝜋𝑓𝑐𝑡}, 2.66 

Most receivers, which divide the received signals into in-phase (the real 

portion) and quadrature (the imaginary part) components, enable this type of 

complex (or analytical) signal. 

Figure 2.2 represents the configuration of the system and explains the four 

assumptions, d acts the distance between the source and the first (antenna) 

element. 
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Figure 2.2 Data model for AoA with some assumption [56] 

 

2.3.2 Linear Antenna Array 

A collection of antennas located in a certain arrangement used for sending 

or receiving the same signals is known as an antenna array. When the distance 

between elements is equal, it is also known as a Uniform Linear Antenna array 

(ULA). A common term for each antenna in an array is an element transducer or 

sensor [57], [58]. 

 Each transducer changes the received electromagnetic wave or mechanical 

vibration into a voltage. The signals that all the array members in ULA have 

received will be processed for several purposes, including the AoA estimates. 

 The reason for using this type of antenna is to offer several advantageous 

characteristics, such as the ability to apply fast subspace algorithms, like Root-

Eigenvector (R-EV), to improve computing efficiency. Typically, increasing the 

array aperture is preferred to increase resolution. When the ULA's inter-element 

spacing is fixed, this can be accomplished by adding more sensors. 
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The uniform linear array geometry consists of M elements numbered 0, 1, 

…, M-1. The numbers and spacing of a ULA's components have a significant 

impact on the array performance. More electromagnetic fields can be collected 

by a big array than by a small array. So, the array performance of a ULA is 

strongly influenced by the numbers of sensors and spacing of its elements [59]. 

The Nyquist sampling theorem states that two samples are needed for each 

period of the signal's highest-frequency Fourier component. In this instance, 

every wavelength requires two spatial samples, resulting in an element spacing 

of d=0.5 γ. 

For numbering items, the right antenna is known as element-1 and 

represents the reference item; the second and third antennas are known as 

element-2 and element-3, respectively, from right to left until reach the last 

antenna, element-M. 

The distance between any two antennas is represented by d, and the waves 

received by the array at the angle are represented by θ.  

 The receiving path from the source to the second and third element is 

longer than the path of the source to the first element (reference) and equal to: 

                         cm = (m − 1)d. sinθ      , m=1,2 ,3  2. 67 

 𝑐2 = 𝑑. 𝑠𝑖𝑛𝜃  2. 68 

 𝑐3 = 2𝑑. 𝑠𝑖𝑛𝜃 2. 69 

In this case, let's suppose that the reference element received a wave signal:

 𝑦1=𝑥(𝑡) 2. 70 

The signals obtained by antenna 2 and 3 may therefore be expressed as 

follows: 

 𝑦2 = 𝑥𝑒−𝑗𝜑𝑐2 = 𝑥𝑒
−𝑗

2𝜋𝑑

𝛾
𝑠𝑖𝑛𝜃

 2. 71 

 𝑦3 = 𝑥𝑒−𝑗𝜑𝑐3 = 𝑥𝑒
−𝑗2

2𝜋𝑑

𝛾
𝑠𝑖𝑛𝜃

 2.72 

Here 𝜑 =
2π

γ
 is the phase shift constant for propagating waves in air with 

the wavelength of propagating γ . 
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Figure 2.3 three antennas array configuration 

 

The signals received by the three components may be expressed in a more 

generic form as: 

 y=[

𝑦1

𝑦2

𝑦3

] = [

1

𝑒
−𝑗

2𝜋𝑑

𝛾
𝑠𝑖𝑛𝜃

𝑒
−𝑗2

2𝜋𝑑

𝛾
𝑠𝑖𝑛𝜃

] 𝑥 = [
1

𝑒−𝑗𝜇

𝑒−𝑗2𝜇
] 𝑥 =  𝛼(𝜇)𝑥 2.73 

 

Let 𝜇= 
2𝜋𝑑

γ
𝑠𝑖𝑛𝜃 and as mentioned previously 𝛼(𝜇) is the steering vector. 

An M-element array can be included in equation 2.73 it may be written as 

follows: 
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 y=[

y1

y2

…
yM

]=

[
 
 
 
 

1

e
−j

2πd

γ
sinθ

…

e
−j(M−1)

2πd

γ
sinθ]

 
 
 
 

𝑥=[

1
e−jμ

…
e−j(M−1)μ

] x = α(μ)x   2. 74 

and the steering vector for M-elements: 

 𝛼(𝜇) = [1 𝑒−𝑗𝜇 … 𝑒−𝑗(𝑀−1)𝜇]
𝑇

 2. 75 

2.3.3 Signal Model of AoA 

A signal model suppose a radar system with an array of M sensors 

y1, y2, … , yM (antenna components) that receives signals in all directions from L 

sources  x1, x2, … , xL (targets),M > L The signals detected can be represented 

as[40] : 

 y(t)=A(𝜃)x(t)+ ŋ (t) 2. 76 

where y(t) is the M×1 received elements data vector[38]: 

 y(t) = [𝑦1, 𝑦2, … , 𝑦𝑀]T 2. 77 

x(t) is the L×1 source signal vector[38]: 

 x(t)= [ 𝑥1, 𝑥2, … , 𝑥𝐿]T 2.78 

noise vector ŋ (t) is an M×1 uncorrelated zero-mean white noises with 

spatial a covariance matrix that equals to  

 ŋ (t)= [ŋ1, ŋ2, … , ŋ𝑀]T  2.79 

A (𝜇) is an M*L matrix that of steering vectors: 

 A (𝝁𝒊) = [ 𝛼(𝜇1), 𝛼(𝜇2), … . , 𝛼(𝜇𝐿)], 1 ≤𝑖≤ 𝐿 2.80 

𝛼(𝜇𝑖) is the geometric phase shift defined at the element of the network 

and signal depending on the angles of arrival (𝜃𝑖). 

So, 

 𝛼(𝜇𝑖) = [1, 𝑒
−𝑗2𝜋𝑑𝑠𝑖𝑛(𝜃𝑖)

𝛾 , … , 𝑒
−𝑗2𝜋𝑑(𝑀−1)𝑠𝑖𝑛(𝜃𝑖)

𝛾 ]

𝑇

 , 2. 81 
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Where d is the Array Element Spacing, γ is the wavelength of propagating 

signals, 𝜃𝑖 is the angle of arrival of the target signal from the 𝐿𝑡ℎ source. 

 

2.3.4 AoA Problem Formulation 

To simplify the problem, suppose the system have a  plane wave result from 

source L falls on array at an angle 𝜃0 as shown in fig.2.3. The received signals 

are propagated on all the elements (antennas) of the array and archive an extra 

distance comparing with the reference element [38]. 

To find the distance, the following equation can be used: 

 Cmi = (m − 1)dsinθi , 1 ≤𝑖≤ L  2. 82 

Notice that the signal received by the M elements is the same as the 

transmitted signal by L elements, but there is a phase shift with amount of 

e−j(m−1)μi. 
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Figure 2. 4 M- antennas array configuration 

These factors affected by two functions: 

1. spatial frequency 𝜇𝑖  that is limited by −π ≤ μi ≤ π  

2.element’s position with respect to the first element. 

For each incoming signal there is an angle θi  that limited by -90≤ θi ≤ 90 

and this angle have a special frequency 𝜇𝑖
 . 

Also, the element spacing should be less than 
γ

2
, if this condition does not 

achieve, solutions put for the angle that is determined special frequency 𝜇𝑖
. 

The received M signal and their noises ŋnare deliver from L source x𝑖, 

1 ≤𝑖≤ L  can be represent as: 

 Ym = ∑ xie
−j(m−1)μiL

i=1 + ŋm , m=1, 2,…, M  2. 83 

The symbol Y used to distinguish between the pure signals created by the 

sources and the noise-added or corrupted signals received or identified. The 

matrix representation of Equation (2. 83) is as follows[38]: 
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   𝒀 = [ 𝜶(𝜇1), 𝜶(𝜇2), 𝜶(𝜇3), … , 𝜶(𝜇𝐿)][

𝑥
𝑥2

…
𝑥𝐿

]+ ŋ =Ax+ ŋ 2. 84 

Where Y= [y1, y2, … , yM]T is the data vector received by the arrays, the 

array steering vector that is dependent on spatial frequency μi is define as: 

 𝛂(μL) = [1 e−jμi   e−j2μi … e−j(M−1)μL]
T
, 2.85 

They contain the steering matrix M*L: 

 A=[ α(μ1), …  , α(μL)], 2. 86 

 = [

𝟏 𝟏 … 𝟏
𝐞𝐣𝛍𝟏 𝐞𝐣𝛍𝟐 … 𝐞𝐣𝛍𝐋

… … … …
𝐞𝐣(𝐌−𝟏)𝛍𝟏 𝐞𝐣(𝐌−𝟏)𝛍𝟐 … 𝐞𝐣(𝐌−𝟏)𝛍𝐋

], 2. 87 

Figure 2.5 represents angle of arrival flow chart that act the procedure for 

the process followed in this work starting from receiving the signals by uniform 

linear array until getting the required estimated angle by using Root eigen 

vector. 
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Figure 2.5 The flow chart for AoA 
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2.3.5 Root-Eigenvector Method for AoA Estimation  

In this section of the thesis, the method of root eigenvector to find the angle 

of arrival estimation is employed. 

For 𝑖 = 0, 1, … , 𝑟 − 1, the polynomial u(z) evaluated at 𝑒−𝑗𝜔𝑖 is zero, 

according to equations (2.53) and (2.54). The roots of 𝑞(𝑧) may be used to drive 

𝜃𝑖 since the angles, 𝜔𝑖, of these roots are functions of the AoAs (given 𝑡ℎ𝑎𝑡 

𝜔𝑖 =  2𝜋𝑑𝑠𝑖𝑛(𝜃𝑖)). 

The orthogonal vector methods are summarized as: 

1. The first thing to do is to compute any vector that is in the noise 

subspace. 

2. The components of that vector then become the coefficients of a 

polynomial that is created.  

3. The AoAs are calculated using the roots of the polynomial that lie on 

the unit circle. 

Using the representation of analytical expression for the steering vector 

𝛼𝑘(𝜷) = e−𝑗𝛽(𝑘−1)𝑑 where 𝛽 =
2πsinθ

 γ 
  , substituting 𝛽 into the equation𝛼𝑘(𝛽)   

results 𝛼𝑘(𝜃𝑖) = e
−j2π(k−1)dsin𝜃𝑖

 γ  of the kth elements of the linear network (𝑘 =

1,2 , … ,𝑀), γ is the wavelength for the signals received by ULA and d is the 

spacing of elements. 

Equation 2.58 can rewrite to be: 

PR−EV(θ) = ∑
1

λk
∑ e

−j2π(k−1)dsinθ

 γ Γkhe
j2π(h−1)dsinθ

 γ M
h=1

M
k=1  2.88 

 Wkhis the element of the 𝑘𝑡ℎ line and the ℎ𝑡ℎ column of Γ. By mix the two 

sums in Equation 2.88, we obtain the following representation: 

 PR−EV(θ) = ∑
1

λN
 {ΓNe

−j2πNdsinθ

γM−1
N=−M+1 } 2.89 
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and Γ𝑁 = ∑ Γkhk−h=N  ,Equation 2.89 can be written into Root-EV 

polynomial which is a function of z represent by: 

 R(z)=∑
1

λN
 {ΓNzN}M−1

N=−M+1   2.90 

 and z = e
−j2πdsinθ

𝛾  

Angle-of-arrival of received signals being functions of z, calculating the 

polynomial's (M-1) double roots, whose usable zeros are so on the unit circle, is 

the issue. These intricate roots' phases line up with the anticipated variations in 

electric phase. The following equation may then be used to calculate the angles 

of arrival of signals: 

 Θ𝑘 = − sin−1 [
γ

2πd
arg(𝑧𝑘)]  2.91 

where is the m closest roots to the unit circle. 
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CHAPTER THREE 

Simulation Results without Noise 

3.1 Overview 

In this chapter, the simulation results for Angle of Arrival (AoA) estimation 

methods using MATLAB program are presented, which focus on non-parametric 

method (FFT) and parametric methods Root_Eigenvector (R-EV) and Eigen 

Vector (EV). 

Various cases are studied using single source and double sources without 

noise with a different number of antennas that form the uniform linear arrays. 

For every case the results, discussion, and a comparison will be presented.  

Also, a comparison between Root_Eigenvector (R-EV) and the classical 

method Fourier Transform (FFT) in terms of resolution, accuracy, and 

complexity. Also, EV is used to implement the spectrum of the signals.  

 

3.2 Simulation Results for Single Source AoA Estimation without Noise 

As a start, the simulation is presented for a single source without noise 

using the two methods of FFT and R-EV, the following variables' values are 

used in MATLAB program: the spatial sampling interval d is equal to 0.8 cm, 

the wavelength is equal to 2, the numbers of elements are variable, and the 

values of angles are variable in different cases. 

Firstly, when (FFT) method is used, the angle theta (Ө) is set to 20° as 

shown in Fig. 3.1 and another angle theta (Ө) is set to 50° in Fig. 3.2.  

The angles in these figures are clear but there is a group of sidelobes that 

affect the accuracy of the required angles. In Fig. 3.1-the number of elements M 

is limited to 8 in the ULA receiving system, and in Fig. 3.1-b M is equal to 16, 

the beam is wide because of the uncertainty in estimating AoA. The uncertainty 

causes problem in estimating AoA for the application that requires precise 

angles values like military. As the number of elements increases the width of the 
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required peak becomes less but at the expense of complexity and the same 

illustration applies to the case in Fig. 3.2. 

 

(a) 

(b) 

Figure 3. 1 Single-source simulation using FFT using a Ө =20° without 
noise at (a) M = 8 and (b) M = 16. 
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(a) 

 

(b) 

Figure 3.2 Single-source simulation using FFT using Ө =50° without noise at 
(a) M = 8 and (b) M = 16. 

After that, the efficiency of FFT method using a negative angle (-20) in 

Fig. 3.3 -a and Fig. 3.3 -b is examined. Moreover, it is possible to find the angles 

values, but with the presence of a group of small peaks in addition to the 

required peak that may cause some confusion in the resulted information of the 

signal. 
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(a) 

 

(b) 

Figure 3.3 Single-source simulation using FFT using Ө =-20° without noise 
at (a) M = 8 and (b) M = 16. 

Then, the high-resolution method Root-Eigenvector (R-EV) is used, the 

required angle is equal to 20° and maintained an accurate value for the estimated 

angle that equal to 20°, that is mean it achieved error percentage equal to zero 

with several elements of less than 10. 

In Figure 3.4, using Eigen Vector (EV) method the spectrum is plotted, A 

comparison between the two forms in Figs. 3.4-a and 3.4-b are presented; there 

is no noticeable difference, and a number of antennas of less than 9 is enough to 

get the true value. Also, there are no sidelobes beside the highest peak, and there 
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is no need to increase the number of elements more than ten, because 8 elements 

give an acceptable result. 

 

 

(a) 

 

(b) 

Figure 3.4 Single-source simulation using EV using Ө =20° without noise at 
(a) M=8 (b) M=16 

The performance of Root Eigenvector method (R-EV) is examined but on 

the negative angle by specified the angle to -20° and also we maintained an 

accurate value for the estimated angle that equal to -20°, with error equal to zero 

%. 
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Therefore, the eigenvector (EV) spectral estimation method is implemented 

for the negative angles in Figs. 3.5-a and 3.5-b are obtained, and the negative 

angle value -20 directly and with a small number of antennas that is equal to 8 

elements. 

 

(a) 

 

(b) 

Figure 3.5 Single-source simulation using EV using Ө =-20° without noise at 
(a) M=8 (b) M=16 
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Figure 3.6 shows the implementing performance of the FFT and R-EV 

methods to estimate an accurate value for the required angles. It represents a 

relation between a number of elements (receiving antenna) that are changeable 

and the percentage error. 

 By changing the number of antennas of ULA (M) from 8 to 26 and 

computing the percentage error, when using FFT method, the value of error is 

constant for all value of M being 6.3% at angle is equal to 15°. This value is 

considered large by considering the absence of noise too Furthermore, the same 

relation between error and number of elements is applied for Root-Eigenvector 

R-EV in the same figure , the error are compute  and as its clear the percentage 

error is zero for all values of M, that is prove R-EV method estimate the exact 

angle for all the impacting singles to ULA without any difference with the real 

value. 

 
Figure 3.6 Relation between error and number of elements using FFT and 

R-EV using Ө =15 for single source without noise 



49 

 

3.3 Simulation Results for Double Sources AoA Estimation without Noise 

Previously, a study for the receiving signals using a single source was 

studied for the two methods R-EV and FFT. In this section, the same steps were 

repeated but using multiple sources. 

First, the two angles and the difference between them are set to 10°, these 

values are applied to the FFT method. As shown in Fig 3.7-a when the number 

of elements is 8 it looks like there is only one source contrary to the fact that 

there are two sources and two angles (the signals overlap with each other). 

Again, in Figures. 3.7-b, as the number of elements  increased to 16, the 

two angles appeared. This is represented by the two maximum peaks in the 

figure. Although the two angles appeared. This required many elements, and 

there is a group of side lobs on the side of the two real angles that made some 

uncertainty in the results achieved. The percentage error equal to 8.7% and 5.6% 

respectively for the two used angles. 
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(a) 

 

 

  (b) 

Figure 3.7 Double- sources simulation using FFT at Ө1 =20 ° and Ө2=30 ° 
without noise (a) M=8 (b) M=16 

The same case is implemented but using negative angles. When the number 

of elements was small (8 element), it is not able to distinguish between the two 

angles, as it is clear in Fig. 3.8-a. 

In Fig. 3.8-b the numbers of elements are increased to 16 elements, the 

angles values reached -17.1° and -30.6° for -20°and -30° respectively. The 
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percentage error is equal to 15 % for theta1 (th1) equal to -20° and minor error 

rate for the second angle when (theta2) th2 equals to -30°. 

 

(a) 

 

 (b) 

Figure 3.8 Double- sources simulation using FFT at Ө1 =-25 ° and Ө2=-35 
without noise (a) M=8 (b) M=16 

        Figure 3.9 the difference between the two angles is increased to 15° one of 

them 20° and the other is 35°.When M is equal to 8, FFT distinguishes the two 

angles, however, the signals are almost overlapping, there is a need to either 

increase the number of elements or increase the difference between the two 

angles to recognize between them. 
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 Figure 3.9-b when M is equal to 16 and the difference between the two 

angles is equal to 15° it can distinguish between the two angles easily but the 

sidelobe problem still appears. Also, the percentage error for the two angles (20° 

and 35°) that is equal to 2.9 % and 3.33% respectively. In figure 3.9-b when M 

is equal to 16 and the difference between the two-angles equal to 15° it can 

distinguish between the two angles easily but the sidelobe problem still happens 

also the percentage error for the two angles (20° and 35°) that equal to 2.9 % 

and 3.33% respectively. 
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(a) 

 

 

(b) 

Figure 3.9 Double- sources simulation using FFT at Ө1 =20 ° and Ө2=35 
without noise (a) M=8 (b) M=16 

After FFT failed to distinguish the angles that the difference between them 

is five degrees, the same values are repeated, but using the high-resolution 

method of R-EV. This method achieved super results. Although the two angles 

are convergent, the difference between them is equal to 5° (Ө1 =25 ° and Ө2=30), 

and the numbers of elements do not exceed 10, it detects the two angles that run 
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into uniform linear array and estimate exact values of angles equal to Ө1 =25 ° 

and Ө2=30. 

 In figure 3. 10 using Eigen vector method by implement the spectrum at 

number of elements M equal 8, there are no side lobes, there are no need to 

increase number of elements. 

 

(a) 

 

(b) 

Figure 3.10 Double- sources simulation using EV Ө1 =25 ° and Ө2=30 
without noise (a) M=8 (b) M=16 

A comparison between the two figures 3.10 and 3.11 is presented, we 

observe that whether the difference between the angle is 5° or 10° this method 
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could distinguish between signals but in the next case when the difference 

between angles equal 10° the waveform has a better performance. 

 

(a) 

 

(b) 

Figure 3.11 Double- sources simulation using EV Ө1 =25° and Ө2=35° 
without noise (a) M=8 (b) M=16 

In contrast to the FTT, the EV succeeded in distinguishing the negative 

angle with an error rate of zero, as  see in Fig. 3.12. 
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(a) 

 

(b) 

Figure 3.12 Double-sources simulation using EV at Ө1 =-25 ° and Ө2=-35 
without noise (a) M=8 (b) M=16 

 

The figures 3.13-a and 3.13-b represent a relation between the number of 

elements and the percentage of error for FFT and R-EV methods when the 

sources are double. The number of antennas (M) varies from 8 to 26 and the 

percentage error is computed also the two angles are set to 20° and 35°. 

 For FFT method , the error has different values and reaches a maximum 

15% when M is equal to 9 elements while the percentage error is zero for all 

values of M. This means that the R-EV method estimates the exact angle for all 
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the impacting singles to ULA without any deviation from the real value as 

shown in the comparison table 3.1. 

Table 3.1 comparison between the percentage error for FFT and R-EV without noise for 

different number of elements. 

FFT method R-EV method 

Ө1 Number of 

elements 

error Ө2 Number of 

elements 

error 

20° 8 8.5806% 35° 8 0% 

20° 9 14.4768% 35° 9 0% 

20° 10 11.5335% 35° 10 0% 

20° 11 8.5806% 35° 11 0% 

20° 12 5.6175% 35° 12 0% 

20° 13 2.6439% 35° 13 0% 

20° 14 0.3406% 35° 14 0% 

20° 15 3.3366% 35° 15 0% 

20° 16 3.3366% 35° 16 0% 
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(a) 

 

(b) 

Figure 3.13 Relation between error and number of elements using FFT for 
double sources without noise (a) Ө1=20 (b) Ө2=35 

 

 

 

 

 



59 

 

CHAPTER FOUR 

Simulation Results with Noise 

4.1 Overview 

In this part the noise is generated using MATLAB software for AoA 

Estimation. The MATLAB function AWGN additive white Gaussian) noise to a 

data array of inputs up to the appropriate final signal to noise ratio (S/N) power 

level, which by default is set in dB. The method used by the function AWGN to 

produce an array that represents the noise at a specified noise power level. 

 

4.2 Simulation Results for Single Source AoA Estimation with Noise 

Root eigenvector (R-EV) and FFT methods will be used to represent AoA 

initially under the assumption that there is a single source with noise, by setting 

the values of the variables for the spatial sampling interval to 0.8 cm, the 

number of elements M is variable, the angles have different values and as a start, 

the value of the signal to noise ratio (S/N)  is set to 10 dB. 

First, the noise is added to the signal, the angles are determined, and the 

resulting wave is observed. Therefore, by adjusted the angle (th1) in Figs. 4.1 

and 4.2 to 20° and -20° respectively. The number of elements used in the 

uniform linear array receiving system is set between 8 and 16 in the two figures. 

As expected, adding noise causes an increase in the inaccuracy of AoA 

estimating.  

For example, in the case of the number of elements equal to 8, the obtained 

value of the angle is equal to 21.66°. By calculating the error rate, it equaled 

8.33%, and this is not a small percentage, considering this case is the simplest 

case, which is having only one source. Furthermore, when the number of 

elements  increase to 16, we noticed that the value of the resulting angle did not 

change, and we obtained the same error value, also the width of the desired peak 

is less but the error is still high. 
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(b) 
Figure 4.1 Single source simulation using FFT using Ө =20° with noise at  

(a) M=8 (b)M=16 

Likewise in the case of the negative angle, th1 equal to -20 as shown in Fig 

4.2 the angle, it should be noted the resulted angle is equaled to -18, and the 

error percentage equaled to 11% and, as we increase the number of antennas to 

M equal to 16 the beam width is decrees. 

(a) 
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Figure 4.2 Single source simulation using FFT using a negative angle of -20° 
with noise at (a) M=8 (b) M=16 

 

 On the other hand, to demonstrate the Root Eigenvector (R-EV) method, 

the noise is added and by setting the angle to 20 ° we get a value of 19.93°, so 

the error percentage is equal to 0.35 %. After increasing the value of M to 16 the 

resulting value is equal to 19.98° and the error rate decreased to 0.1%. 

The spectrum is implemented using Eigen Vector (EV) as shown in Fig. 4.3 

(a&b).  
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(a) 

 

(b) 

Figure 4.3 Single source simulation using EV using Ө=20° with noise at  

(a) M=8 (b) M=16 

Likewise, for the negative angle, the modern method R-EV also succeeded to 

distinguishing the angle with the lowest error rates, reaching a limit to 0.3% 

which is considered a very small percentage, compared to the previous 

percentages at the same angle when FFT was used. 

The spectrum is implemented using Eigen Vector (EV) as shown in Fig. 4.4 

(a&b). 
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(a) 

 

 

 

 

 

 

(b) 

Figure 4.4 Single source simulation using EV using Ө= -20° with noise at 
(a) M=8 (b) M=16 

4.3 Simulation Results for Double Sources AoA Estimation with Noise 

An equally significant aspect is applied to both methods for double sources 

with additional noise and in the same conditions. 

When the number of elements M is equal to eight, the FFT fails to 

distinguish between the two signals, and it’s assumed that there is only one 

source, as shown in Fig. 4.5-a. 

After increasing the number of elements, as it is clear in Fig 4.5-b, the 

appearance of two peaks one of them 23° representing the angle 25° and the 
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other is 38.1° representing the angle 35°, and the errors for them are 8.1365% 

and 8.7% respectively. 

 

 

(a) 

 

 

(b) 

Figure 4.5 Double- sources simulation using FFT at Ө1 =25° and Ө2=35°   
with noise (a) M=8 (b) M=16 

 

In the last case of dual-source FFT, using negative angles, we can see in Fig. 4.6 

the detection of the negative angle is like the positive angle in terms of the 
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inability to detect when the number of elements is small, but when the number 

of elements increases, it is able to distinguish between the two signals and the 

percentage error equal to 9% and 6% when M equal to 16. 

(a) 

 

 (b) 

Figure 4.6 Double sources simulation using FFT at Ө1 =-25° and  

Ө2=-35°    with noise (a) M=8 (b) M=16 

Moreover, after the dual sources with noise using FFT according to 

different values of M are studied, all the previous steps of FFT are applied to the 

Root eigenvector methods. 

The R-EV method has a high ability to distinguish between two angles 20° 

and 30° even when the angle is less than 9. Therefore, the angles values are 
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simulated and found their values are closed to the true values (20° and 30°), and 

when calculating the error percentage, we get 1.6% and 0.5% for the two angles 

nonetheless M equal to 8, the same step for M is equal to 16 are maintained, 

errors reached to 1.1% and 0.02% for the same angle also the sidelobes 

insignificant values close to zero. 

 
 (a) 

(b) 

Figure 4.7 Double sources simulation using EV at Ө1=20 ° and Ө2=30° with 

noise(a) M=8 (b) M=16 
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The second case for R-EV is using negative angles for the two angles 

therefore this method succeeded in distinguishing between the two negative 

angles at M is equal to 8, and we also calculated the error rate for both angles. 

The resulted angles values are equal to -20.0418°, -30.3413° for the two 

angles and the error is equal to 1.12% and 0.2% for M is equal to 16 and less 

than 3% for M is equal to 8. 

As shown in Fig. 4.8 (a & b), the spectrum is implemented using the Eigen 

Vector method (EV), and the two angles are represented by the two peaks as it is 

clear in the figure. 
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(a) 

 

 (b) 

Figure 4.8 Double sources simulation using EV at Ө1=-20 ° and Ө2=-30° 
with noise (a) M=8 (b) M=16 
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(a) 

 

 (b) 

Figure 4.9 Double sources simulation using EV at Ө1=20° and Ө2=43° with 
noise (a) M=8 (b) M=16 

After we studied the response for a range of angles using the two methods 

(R-EV and FFT), we studied the relation between the error rate of angles by 

changing the number of elements from 8 to 26. 

In simulation of figure 4.10, the angles are set to 25° and 35°, the 

difference between angles fixed to 10°, the distance between element d is equal 
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to 0.8 cm and SNR equal to 10 dB, also the number of antennas was variable 

between 8 to 26 and the behavior of the methods are observed.  

In figure 4.10-a when theta1 (Ө1) is equal to 25°, the error rate of R-EV 

does not exceed 1% except at no. of samples M equal to 10 achieved 2% which 

is also considered a small percentage that means we obtained accurate angle 

values with high accuracy and a negligible error rate.  

On the contrary, when the same mentioned values are set but for FFT 

method, we observed error values ranging between 8% to 2%. 

 An important point must be pointed out if we look closely at the FFT 

curve, it starts from M is equal to 10, that means when the number of antennas 

M equal to 8 FFT could not differentiate between the angles.  

The same applies to figure 4.10-b. The error values for R-EV are less than 

one, except for M is equal to 10 the error value is 3%. As for the FFT, the error 

rates range between 12% to 3%. 
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(a) 

 

 (b) 

Figure 4.10 Relation between error and number of elements for double sources 

with noise (a)Ө1=25° (b) Ө2=35° 
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Table 4.1 comparison between the percentage error for FFT and R-EV for different number of 

elements with noise. 

(a)Ө1=25° 

FFT method R-EV method 

Theta 1 Number of 

elements 

error Theta 2 Number of 

elements 

error 

25° 8 un-define 25° 8 0.6446% 

25° 10 5.1967 25° 10 2.0000% 

25° 12 7.6449 25° 12 1.1199% 

25° 14 5.1967     25° 14 0.0788% 

25° 16 2.7370     25° 16 0.5051% 

25° 18 0.2654     25° 18 0.1220% 

25° 20 2.2188     25° 20 0.6802% 

25° 22 2.2188     25° 22 0.0483% 

25° 24 2.2188     25° 24 0.1657 

 

(b)Ө2=35° 

FFT method R-EV method 

Theta 1 Number of 

elements 

error Theta 2 Number of 

elements 

error 

35° 8 un-define 35° 8 0.1319% 

35° 10 8.9843% 35° 10 3.3615% 

35° 12 11.0352% 35° 12 0.1399%    

35° 14 8.9843% 35° 14 0.9613% 

35° 16 6.9535%     35° 16 0.0222% 

35° 18 4.9417%     35° 18 0.3892% 

35° 20 2.9482%    35° 20 0.0006%     

35° 22 2.9482% 35° 22 0.1936%    

35° 24 2.9482% 35° 24 0.1216%    
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We repeated the same operations, but for the negative angles -35° and -45°, 

at Fig. 4.11 a and b, FFT could not distinguish between the two angles except 

when the number of elements reached to 14 with error range between 11% to 

3%, while using R-EV the curve starting with M is equal to 8 and low error less 

than 2%. 

In figure 4.11 ,the curve of R-EV it is still limited to a small value of error 

not exceed 2% from M values between  8  to 26 , notes in the case of FFT there 

is an ups and down of the curve and there is no stable state , for example the 

errors  when the number of elements equal to 14 is equal to the error when the 

numbers of elements equal to 26 and reached around 4%. 
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(a) 

 

 (b) 

Figure 4.11 Relation between error and number of elements using FFT for 
double sources with noise (a)Ө1=-35° (b) Ө2=-45° 

 

 

 

 

 

 



75 

 

Table 4.2 comparison between the percentage error for FFT and R-EV for different 

number of elements with noise. 

(a) Ө 1=-35 

 

FFT method R-EV method 

Theta 1 Number of 

elements 

error Theta 2 Number of 

elements 

error 

-35° 8 un-define -35° 8 1.5957% 

-35° 10 un-define -35° 10 0.8513% 

-35° 12 un-define -35° 12 0.0523% 

-35° 14 10.5544   -35° 14 0.0372% 

-35° 16  10.5544  -35° 16 0.1219% 

-35° 18    8.6694   -35° 18 0.0808% 

-35° 20   6.7707   -35° 20 0.0609% 

-35° 22   4.8578   -35° 22 0.0977% 

-35° 24   4.8578    -35° 24 0.0024% 

(b) Ө 2=-45 

 

FFT method R-EV method 

Theta 1 Number of 

elements 

error Theta 2 Number of 

elements 

error 

-45° 8 un-define -45° 8 1.3723% 

-45° 10 un-define -45° 10 0.1556% 

-45° 12 un-define -45° 12 0.0207% 

-45° 14 3.3548% -45° 14 0.0395% 

-45° 16 3.3548% -45° 16 0.0069% 

-45° 18 3.8000% -45° 18 0.0565% 

-45° 20 3.0000% -45° 20 0.0848% 

-45° 22 2.5000% -45° 22 0.0476% 

-45° 24 1.9706% -45° 24 0.0347% 
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The last case for the relation between the error rate of angles and the 

variable number of elements (M) is using two angles, one of them is positive 

(20°), and the other is negative (-20°).  

The error curve for FFT starting from M is equal to 8, by comparing this 

result with the previous case in Figures 4.10 and 4.11, we notice in Fig 4.10 (two 

positive angles) that FFT distinguishes between the two angles when M is equal 

to 10, also in Fig. 4.11 (two negative angles) until M is equal to 14  FFT 

distinguish between the two angles, so we consider this result in Fig. 4.12 is 

better than others.  

In Figures 4.12-a R-EV reached less than 1% when the angle was equal to -

20° and 2% when the angle was equal to 20°, also in Fig. 4.12-b R-EV reached 

3% when the angle was equal to-20°. 
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(a) 

 

 (b) 

Figure 4.12 Relation between error and number of elements for double sources 

with noise (a)th1=-20° (b) th2=20° 
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4.4 Simulation for  The Relation Between Error Rate and The Difference 

Between Angles with Noise. 

This relation is based on fixing some elements and making others variable 

for double sources. In each case, we fixed the SNR to 10 dB, the number of 

elements M changed in different values, and fixed the first angle to 20° but set 

the second angle variable so that the difference between the two angles 5°, 10°, 

15°....,30°.  

Start analysis with a number of elements equal to 8 in Fig. 4.13, firstly, the 

R-EV was able to distinguish between the two angles despite the difference 

between the two angles being the smallest value, which is 5° and M is equal to 8  

the resalted error rate reached 5%, we can consider it an acceptable percentage if 

we notice the small difference between the angles (5°), After that, as the 

difference between the two angles increases, we notice the error rate disappears, 

reaching a value close to 1%. As for FFT, if we observe the curve in the same 

figure, we will find that when the difference between the two angles began to 

increase to the point of 15°, this method was able to differentiate between the 

two angles with an error reached to 14%. 

 

 
Figure 4.13 Relation between the error and the difference between angles at 

M=8 
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In the same manner and with the same variables, except that we increased 

the number of elements to 12 and observed the behavior of both methods. In the 

case of the difference between the two angles was 5°, the error rate was equal to 

4%, and compared to the previous case when M was 8, the error rate began to 

decrease gradually, so, the greater the difference between the angles, the lower 

the error rate. 

The FFT shows a significant improvement, when the difference is equal to 

10°, it begins to distinguish between the two angles with an error rate of 13 %. 

 

Figure 4.14 Relation between the error and the difference between angles at 

M=12 

Afterward, the number of elements are increased to 14, In R-EV there is a 

significant change compared to M is equal to 12, and the error rate is less than 

2% at a difference equal to 5°, However, for FFT, it still couldn’t differentiate 

between the two angles at  a difference 5° but differentiate at a difference 10° 

with error rate higher than 10% as shown in Fig 4.15.. 
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Figure 4.15 Relation between the error and the  difference between angles at 

M=14 

Finally, we increased the number of elements to 16, the error reached 

around 1% and less for Root  Eigenvector method, also FFT couldn’t 

recognized when difference equal 5° and the error at difference 10 starting with 

9% as shown in Fig. 4.16. 

This relation prove that it is possible to increase accuracy and reduce the 

error rate by increasing the number of antennas, but at the expense of cost and 

complexity, also it is possible to use a little number of antennas but instead of 

increasing the difference between angles at the expense of less ability to detect 

the angles of the close signals. 
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Figure 4. 16 Relation between the  error and the  difference between angles at 

M=16 

4.5 The effect of Inter-Elements  Distance Between Elements on  AoA  

This section indicates the effect of changing the distance between elements 

d and the influence of increasing and decreasing this value on the relation 

between the error rate and the number of elements. 

 The study is conducted at a fixed angle difference equal to 10° and the 

number of elements M ranging between 8 to 24, in all previous cases, we fixed 

the value of d to 0.8 cm, in this case, the value of d changed between 0.8 cm and 

0.6 cm. Figure 4.17 -a simulation for the relation between error rate and 

difference between angles at d is equal to 0.8 cm, If we start analyzing this 

curve, a low level of error is achieved when the number of elements (M) equals 

8, and it continues to decrease until M is equal to 16. There is a slight increase 

when the number of elements equals 20, but the error rate is still less than 0.5%. 
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Figure 4. 17  Relation between the error and number of elements at a difference 

between angles equal to10 and d=0.8 cm  

Also, the results are represented in a table 4.3 as shown: 

 

Table 4.3 The results for the Relation between error and number of elements at 

a difference between angles equal to10 and d=0.8 cm. 

 

 

 

Percentage error Number of 

elements 

Distance Between 

Elements 

0.49% 8 0.8 cm 

0.41% 12 0.8 cm 

0.13 % 16 0.8 cm 

0.2 % 20 0.8 cm 

0.09 % 22 0.8 cm 
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The second case represented in Figure 4.18, in which d is equal to 0.6 cm if 

we start comparing this extent with the previous result (d equal to 0.8 cm), we 

notice the error rate starts from 3.5% when the number of elements are equal to 

8, and then it begins to decrease gradually, and this is the effect of reducing the 

distance between the elements to this extent. 

 

Figure 4. 18 Relation between the error and number of elements at a difference 

between angles equal to10 and d=0.6cm. 
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Also, the results are represented in a table 4.4 as shown: 

Table 4.4 The results for the Relation between error and number of elements at 

a difference between angles equal to10 and d=0.6 cm. 

 

 

4.6 The Relation  Between the Error Percentage and the Distance Between 

Elements  

These simulations are based on the relation of the distance between 

elements (d) and the error rate. In this section, the effect of changing the values 

of d from 0.5 cm to 0.9 cm are studied, also by fixing the number of elements to 

16, and changing the values of the difference between the angles once when the 

difference is equal to 5°, another case when the difference is equal to 10°, and 

finally when the difference is equal to 15°. 

In the first case in figure 4.19, the difference was equal to five degrees, and 

it is considered little value, we notice that when d is equal to 0.5 cm the error 

rate reaches 10 %. After that, as the value of d increases, the error rate decreases 

to a limit of 2%, and at 0.8 cm it stays in the same range. 

Percentage error Number of elements  Distance 

Between Elements  

3.6 % 8 0.6 cm 

2.9 % 12 0.6 cm 

1.9 % 16 0.6 cm 

0.1 % 20 0.6 cm 

0.4 % 22 0.6 cm 
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Figure 4.19 Relation between error and distance between elements at a 

difference between angles equal to 5° and M=16 

The results of this relation are represented in table 4.5: 

Table 4.5 The results for the Relation between error and distance between 
elements at a difference between angles equal to 5° and M=16 

Percentage error Distance Between 

Elements 

Difference between 

angles 

10 % 0.5 cm 5 ⁰ 

1.7 % 0.6 cm 5 ⁰ 

0.5 % 0.7 cm 5 ⁰ 

1.9% 0.8 cm 5 ⁰ 

1 % 0.9 cm 5 ⁰ 

 

In the second case at figure 4.20 when the difference is equal to 10°, we 

have obtained better results with a small error rate, this is the case when the 

number of elements is equal to 16.  
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 When d is equal to 0.5cm, the error rate is around 2%, as d increased to a 

value of 0.6cm, the error rate decreased to a limit of 0.2% and finally at a value 

of d equal to 0.8cm the error rate remains in the same region near 0.2%. 

 

Figure 4.20 Relation between error and distance between elements at a 

difference between angles equal to 10° and M=16 

Percentage error Distance Between 

Elements 

Difference between 

angles 

1.9 % 0.5 cm 10 ⁰ 

0.2 % 0.6 cm 10 ⁰ 

0.21% 0.7 cm 10 ⁰ 

0.19% 0.8 cm 10 ⁰ 

0.4 % 0.9 cm 10 ⁰ 

Table 4.6 The results for the Relation between error and distance between 

elements at a difference between angles equal to 10° and M=16 
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In the third case in Figure 4.21, we have been increasing the difference 

between 

 the angles to 15° to observe the effects of this increase with changing 

values of d, we noticed that the value of the error rate is between 1.4% and 

0.1%. 

When the value of d is equal to 0.5 cm the error rate will become around 

1.4% as the value of d increases the error value decreases to a value of 0.1%. 

We obtained an error rate equal to 1.4%, which is a small error rate, 

however if we compare it with 0.1%, we realize that there will be a difference of 

1.3%, wherefore we can rely on d equal to 0.5 cm, nevertheless our goal is to 

reduce the error rate to the lowest value. Therefore, in our research to determine 

the angle of arrival, we depend on the value equal to 0.8 cm which is why we 

obtained a small error rate. 

 

Figure 4.21  Relation between error and distance between elements at a 

difference between angles equal to 15° and M=16 
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In the previous cases, when the values of M were equal to 16, as we 

changed the values of d, the highest error value of 10% was obtained when the 

difference was equal to 5° and d was equal to 0.5 cm, therefore, we reduce the 

number of elements to 8 and increase the difference to 10° for observation the 

effect of these values on the error rate. 

In Figure 4. 22, the value of error reached 19% when d is equal to 0.5 cm, 

in the rest of the cases, we notice that the error rate decreases to 4% and then to 

a value less than 1% when d is equal to 0.7cm and 0.8cm. 

 

Figure 4.22 Relation between error and distance between elements at a 

difference between angles equal to 10° and M=8 
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CHAPTER FIVE  

Conclusions and Future Works 

5.1 Conclusion 

This thesis presents a robust comparative analysis of the performances of 

the two methods: the classical fast Fourier transform (FFT) and,high-resolution 

Root_Eigenvector (R-EV) for the Angle-of-Arrival (AoA) electromagnetic 

waves, so the performance and resulted for the two methods are compared. 

Conclusions for all circumstances of noise and noiseless are presented. The 

FFT method's percentage errors are significantly larger than those of the 

Root_Eigenvector, probably  this error results from presence  a group of 

sidelobes around the required peaks, sometimes, if we have two angles with two 

different signals, they can overlap each other and result as there is only one 

angle also to achieve reasonable error rates, we need more than 12 elements 

(sensors) in the uniform linear array as a result, increasing these elements leads 

to increased complexity and cost. 

Consequently, the Root-Eigenvector’s performance in the presence of noise 

has superior results, from the simulation figures in chapter 4, the maximum error 

reached 4 % when M, number of samples (sensors) equal to 8. For the rest of the 

cases, the error rate did not exceed 2%, that is a great example of the ability of 

this method to detect angle with low level errors.  

 As mentioned earlier in the disadvantage of FFT that  the side lobes are 

obvious, but it is important to mention when using Root_Eigenvector there are 

no sidelobes except when using a small number of elements, they may appear 

(sidelobes), but it is very small proportions (negligible).  

From the simulation of the difference between  angles and the error rate in 

chapter 4, R-EV have the ability to distinguish between the angles even the 

difference between angles reached to 5 degrees (very low) and number of 

elements not exceeding 8 elements , while  for FFT, the minimum acceptable  

difference between the angles must be exceeded 15 in order to be able to 
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distinguish between adjacent angles when the number of antennas are equal to 8 

elements. Also exceed difference between angles to 10° when M is equal to 12, 

14, and 16 elements. Despite the increase in the number of elements, it was not 

possible to differentiate between signals whose angle difference was equal to 5°. 

 Therefore, the proposed method R-EV could improve the poor angular 

resolution provided by a small number of antenna components. Through our 

study of the relation between the distance between elements d and the 

percentage error, concluded when d is equal to 0.5 and 0.6, and using number of 

elements equal to 16, the value of the error ratio does not exceed 2%, and 

whenever the values of d increase to 0.7, 0.8 and 0.9, the error values do not 

exceed 0.4%.  

The suggested strategy (Root_Eigenvector) will be an effective and straight 

forward way to enhance AoA estimation. Moreover, the proposed method 

(Root_Eigenvector) would improve AoA estimation in a simple and effective 

manner. 

5.2 Suggestion for future work 

- Doing some experimental set to get experimental data and compare it 

with noisy data. 

- Studying the problem for different wavelengths. 
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Appendix 

Matrices  

A (𝑧 ∗ 𝑘 ) matrix is an array of numbers or mathematical functions 

containing z rows and 𝑘 columns,  

 𝑽 = {𝒗𝒛𝒌} = [

𝒗𝟏𝟏 𝒃𝟏𝟐 ⋯ 𝒃𝟏𝒌

𝒗𝟐𝟏 𝒃𝟐𝟐 ⋯ 𝒃𝟐𝒌

⋯ ⋯ ⋯ ⋯
𝒗𝒛𝟏 𝒗𝒛𝟐 ⋯ 𝒃𝒛𝒌

]  (1) 

Is a 𝑧 ∗ 𝑘 matrix of 𝑣𝑧𝑘 ,if 𝑧 = 𝑘 then the resulted matrix is a square matrix 

of 𝑧 rows and 𝑘 columns. 

If 𝑉 is a 𝑧 ∗ 𝑘 matrix, then the transpose represented by 𝑉𝑇, is the 𝑘 ∗ 𝑧 

matrix that is contained by replacing rows by columns of V. Thus, the element 

{𝑧, 𝑘} becomes the element {k, z} and vice versa. 

If V is square, then the transpose 𝑽𝑻 is easily by reflecting the element of V 

around the diagonal. For a square matrix if V is equal to its transpose, then V is 

a symmetric matrix. 

 𝐕 = 𝑽𝑻  (2) 

For a matrix that is formed by a complex number, the Hermitian transpose 

is the complex conjugate transpose of 𝐕 represented by 𝑽𝑯 Thus. 

 𝑽𝑯 = (𝑽∗)𝑻=(𝑽𝑻)∗  (3) 

When a square matrix (complex values) is equal to its Hermitian transpose, 

𝑽 = 𝑽𝑯 then the matrix is said to be Hermitian. 

Eigenvectors and Eigenvalues  

The eigenvalues and eigenvectors of a matrix can provide the most 

valuable and significant information about the matrix. It is feasible to tell 

whether the matrix is positive definite based on the eigenvalues. The matrix's 
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invertibility and the sensitivity of the calculation of the inverse to numerical 

error may both be determined using the eigenvalues [60]. 

Two subspaces, the signal subspace and the noise subspace can be formed 

from the signal. To achieve this decomposition, eigenvectors are used. They 

offer a crucial eigenvalue decomposition representation for matrices. Pisarenko 

Harmonic Decomposition (PHD), Multiple Signal Classification (MUSIC), 

Eigenvector spectrum estimation, and Root-Eigenvector will all be explained 

using this decomposition[28]. 

Let D be a n×n matrix and consider the following set of linear equations 

𝑫𝒔 = 𝜆 𝒔 Where λ is a constant, it can also be stated as a set of homogeneous 

linear equations of the following form:  

 (𝑫 –  𝜆 𝑰)𝒔 = 𝟎  (4) 

The matrix 𝐷 –  𝜆 𝐼 must be singular (a matrix is said to be unique if it does 

not have an inverse) for a nonzero vector to be a solution to this equation, 

therefore, the determinant of the singular matrix (𝐷 –  𝜆 𝐼) must be zero. 

 𝐷𝑒𝑡 (𝐷 –  𝜆 𝐼) 𝑠 = 0  (5) 

Equation (5) is called the characteristic equation of the matrix D and its m 

roots, A, for λ𝑖 = 1, 2, . . . , 𝑚 are the eigenvalues of 𝐷.  

For every eigenvalue λ𝑖   the matrix (𝐷 –  𝜆 𝐼) will be singular and at least 

one nonzero vector will be present, 𝑠𝑖 , that act as the solution of Equation 5, i.e. 

 D𝑠𝑖 = λ𝑖  𝑠𝑖   (6) 

The term "eigenvectors of 𝐷 refers to these vectors, 𝑠𝑖 . It is obvious that 

α𝑠𝑖  will also be an eigenvector for any constant for every eigenvector 𝛼. As a 

result, eigenvectors are frequently normalized to have a unit norm[32] 

Eigen Decomposition of Autocorrelation Matrices   

While it is theoretically feasible to calculate the frequencies of complex 

exponents from the peaks of the spectrum calculated using any method, this 

strategy would not fully use the process's presumed parametric shape. Utilizing 
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frequency estimate techniques while taking into consideration the process's 

characteristics is an alternative. These techniques are built on the autocorrelation 

matrix's eigen decomposition into a signal subspace and a noise subspace. 

Consider The first-order process as a method for frequency estimate [32], [61], 

[62]: 

 𝒚(𝒎) = 𝐴1 𝑒𝑗𝜔1𝑀 +  ŋ (𝒎)  (7) 

 𝑦(𝑚) = 𝑥(𝑚) + ŋ(𝑚)  (8) 

That consists of a single complex exponential in white noise, The 

amplitude of the complex exponential A1 = |A1 |ej∅1 ∅1 is a uniformly random 

distributed variable, the autocorrelation sequence of y(m) is: 

 𝑟𝑦(𝑘) =  𝑃1𝑒
𝑗𝜔1𝑘 + 𝜎 ŋ

2𝛿(𝑘)      𝑘 = 0,±1,… … ,±(𝐿 − 1) (9) 

where 𝑃1 = |A1|2 is the power in the complex exponential. The M * M 

autocorrelation matrix for y(m) is, therefore, the sum of the autocorrelation 

matrices for the signal, 𝑅𝑥, and the noise, 𝑅 ŋ as shown below: 

 𝑹𝒚 = 𝑹𝒙 + 𝑹 ŋ  (10) 

where the signal autocorrelation matrix is: 

 𝑹𝑥 = P1

[
 
 
 
 1 𝑒−𝑗𝜔1 𝑒−𝑗2𝜔1 ⋯ 𝑒−𝑗(𝑀−1)𝜔1

𝑒𝑗𝜔1 1 𝑒−𝑗𝜔1 ⋯ 𝑒−𝑗(𝑀−2)𝜔1

𝑒𝑗2𝜔1 𝑒𝑗𝜔1 1 ⋯ 𝑒−𝑗(𝑀−3)𝜔1

⋯ ⋯ ⋯ ⋯ ⋯
𝑒𝑗(𝑀−1)𝜔1 𝑒𝑗(𝑀−2)𝜔1 𝑒𝑗(𝑀−3)𝜔1 ⋯ 1 ]

 
 
 
 

  (11) 

and has a rank of one, and the autocorrelation matrix of the noise is 

diagonal, 

 𝑹ŋ = 𝜎ŋ
2𝑰 , (12) 

and has full rank. Note that if we assume: 

 𝒒𝟏 = [1, 𝑒𝑗𝜔1 , 𝑒𝑗2𝜔1 , … , 𝑒𝑗(𝑀−1)𝜔1]
𝑇
, (13) 

then 𝑅𝑥 can be written in terms of 𝑞1 as follows: 

 𝑹𝐱 = 𝑃1 𝒒𝟏𝒒𝟏
𝑯, (14) 
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Since the rank of 𝑅𝑥 is equal to 1, then 𝑅𝑥 has only one nonzero 

eigenvalue. With: 

 𝑹𝒙𝒒𝟏 = 𝑃1(𝒒𝟏𝒒𝟏
𝑯)𝒒𝟏 = 𝑃1𝑞1(𝒒𝟏

𝑯𝒒𝟏) = M 𝑃1𝒒𝟏  (15) 

it follows that the nonzero eigenvalue is equal to 𝑀𝑃1, and that 𝑞1 is the 

corresponding eigenvector. 

 In addition, since 𝑅𝑥 is Hermitian then the remaining eigenvectors, 𝑢2, 𝑢3, 

..., 𝑢𝐿, will be orthogonal to 𝑞1 

  𝒒𝟏
𝑯 𝒖𝒊 = 0 where i=2,3, 4,…, M  (16) 

 

Finally, note that if it allow to make  𝜆𝑖
𝑥 be the eigenvalues of 𝑅𝑥, then: 

 𝑹𝒚𝒖𝒊 = (𝑅𝑥 + 𝜎ŋ
2𝑰)𝒖𝒊 = λ𝑖

𝑥 𝒖𝒊 + 𝜎ŋ
2 𝒖𝒊 = (λ𝑖

𝑥 + 𝜎ŋ
2 )𝒖𝒊  (17) 

Therefore, there is a similar between the eigenvectors of 𝑅𝑦 𝑎𝑛𝑑 𝑅𝑥 ,but 

the eigenvalues of  𝑅𝑦 are: 

 λ𝑖 = λ𝑖
𝑥 + 𝜎ŋ

2 (18) 

As a result, eigenvalue of 𝑅𝑦 are represent by: 

 λ𝑚𝑎𝑥 = 𝑀𝑃1 + 𝜎ŋ
2  (19) 

and the remaining M-1 eigenvalues are equal to 𝜎ŋ
2 so, all information 

about y (m) from the eigenvalues and eigenvectors of 𝑅𝑦 are got as shown: 

1. Achieving an eigen-decomposition of the autocorrelation matrix, 𝑅𝑦 the 

largest eigenvalue is equal to 𝑀𝑃1 + 𝜎ŋ
2 and the eigenvalues that remain will be 

equal to 𝜎ŋ
2. 

2. Using the eigenvalues of 𝑅𝑦 to find a solution for the power 𝑃1 and the 

noise variance as follows: 

 λ𝑚𝑖𝑛 = 𝜎ŋ
2  (20) 

 𝑃1 =
1

𝑀
(λ𝑚𝑎𝑥 − λ𝑚𝑖𝑛)   (21) 
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3. Determining the frequency 𝜔 from the eigenvector 𝑢𝑚𝑎𝑥 that is deal 

with the largest eigenvalue. 

 𝜔 = 𝑎𝑟𝑔{𝑢𝑚𝑎𝑥 }  (22) 
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 لخلاصةا

التي تستقبلها  AoAزاوية الوصول )  خمينيعد تحسين دقة ت الواردة  الراديوية  للموجات  مصفوفة  ( مفيدا 

 لتحديد زاوية أي هدف يقترب أو يستقبل هيحديثة  واحدة من التقنيات ال .  (  ULA)من الهوائيات الخطية
 . Root Eigenvector (R-EV) جذور المتجهات الذاتية

خوارزمية   بالطريقة    Root Eigenvector (R-EV)تعد  الأطروحة  هذه  في  مقارنتها  تتم  والتي   ،

وقيم  لتحديد الزوايا والعثور عليها.   ( ، إحدى الطرق عالية الدقةFFTالتقليدية لتحويلات فورييه السريعة )

أو يستقبللأزاوية  ال  يقترب  لجسم  بالطرق الأخرى ل   تكون    ي موجة مشعة  مقارنة  بمعدل خطأ صغير 

AoA . 

لمصفوفة   المميزة  الخصائص  على  الدقة  عالية  الخوارزميات  بالإضافة   تركز  للإشارة  المشترك  التغاير 

 إلى فضاءين فرعيين ، أحدهما للإشارة والآخر للضوضاء. الاشارة إلى تقسيم 

البدء في دراسة طريقة   البارامترية    R-EVقبل  التحديدات للطرق  زاوية الوصول  لتحديد  ، توجد بعض 

(AoA  سبقت هذه التحديدات .)R-EV    من حيث النتائج المحققة والتمثيل الرياضي مثل التحلل التوافقي

Pisarenko (PHD) ( وتصنيف الإشارات المتعددةMUSIC .) 

. تمت محاكاة مجموعة من الدراسات بأعداد مختلفة MATLABفي بيئة    FFTو    R-EVتم تنفيذ طرق  

قيم مختلفة للمسافة بين العناصر سواء كانت مصادر مفردة أو متعددة.  ية ويم مختلفة للزوا ق ,تمن الهوائيا

-Rعلى تحديد زاوية الوصول باستخدام    لعناصرنتائج المحاكاة لمعرفة تأثير تغيير هذه ا   تم تحليلأيضا ،  

EV   وFFT   .عن طريق حساب النسبة المئوية للخطأ في كل حالة 

ل   الفائقة  الدقة  النتائج  إضافة    R-EVأثبتت  مع  حتى  استثنائي  بشكل  منخفضة  خطأ  معدلات  وحققت 

إلى   عليه  حصلنا  الذي  للخطأ  الأقصى  الحد  وصل   ، عندما  4الضوضاء   ٪M    عدد  عناصرال ، 

الخطأ  8)المستشعرات( يساوي   يتجاوز معدل  لم  الحالات ،  لبقية  بالنسبة  لم يحقق 2.  المقابل ،  ٪ ،. في 

FFT    كفاءة العناصر    R-EVنفس  من  أكبر  عددا  ويتطلب  أعلى  خطأ  معدلات  وجود  .بسبب 
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