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Supporter, Guardian, etc.) in this world and in the 

Hereafter, cause me to die as a Muslim (the one 
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Abstract 
 

  One of the biggest problems in the medical world is the existence 

of tumors, especially in the brain. Early detection of the tumor is the key 

to successful treatment. Current medical imaging techniques, such as 

computed tomography (CT) scans, magnetic resonance imaging (MRI), 

and positron emission tomography (PET), have some restrictions. They 

are bulky in size, expensive, and use ionizing radiation in the case of CT 

and PET scans, which increases the risk of developing cancer. Microwave 

imaging is a new hopeful technique that can overcome these restrictions. 

The microwave system is low-cost, portable, and uses non-ionizing 

radiation. However, before the system becomes ready for deployment in 

the hospital, there are still challenges. The reconstructed image has low 

resolution, is noisy, and blurry due to the use of low frequency and 

deficiencies in the reconstruction algorithms. This makes detecting and 

localizing the tumor difficult, especially in its early stages. Furthermore, 

the decision is subjective and dependent on the physician’s experience. 

 

This thesis proposes the use of deep learning to automatically 

diagnose the existence of the tumor, its size, and its location directly from 

the raw electromagnetic data collected from a microwave imaging 

system. A microwave imaging system is designed and simulated in CST 

software using six antipodal Vivaldi antennas around the head phantom 

of (HUGO) over the frequency span 1.5 to 4.5 GHz. 628 scans were taken, 

308 scans represent cases where tumors exist, with 11 tumor sizes 

ranging from 0.2 mm to 12 mm radius over 28 different locations in the x-

z plane, 4 points in the x-direction, and 7 points in the z-direction. The 
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remaining 320 scans, represent cases where tumors do not exist. The data 

was divided into a training set and a test set. A convolutional neural 

network with 12 filters, each with a 3x3 size, was trained on the training 

set and then tested with the test set. The results were promising, as the 

CNN was capable of detecting the existence of the tumor with  100% 

accuracy on both the training and test sets. It was also able to determine 

the radius of the tumor with a root mean squared error (RMSE) as small 

as 0.15 mm and determine the location in the z-direction with an RMSE 

of 3.15 mm. 
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1 Chapter one: Introduction 

1.1 Background 

  Cancer is a complex and dangerous disease, ranked as the second 

leading cause of death worldwide. In 2020 alone, it was responsible for an 

estimated 10 million fatalities, representing one in every six deaths [1] . 

Tumors, broadly classified as either benign or malignant, result from 

uncontrolled growth of abnormal cells in any organ of the human body. 

Benign tumors typically have a uniform cellular structure, grow slowly, 

and do not spread or invade other tissues. Surgery often provides a cure, 

and the risk to life is minimal. In contrast, malignant tumors grow quickly, 

are structurally diverse, and can spread and invade other organs, posing 

a real threat to life. Even benign tumors in the brain are dangerous 

because they push against normal brain tissue as they grow, potentially 

causing severe or life-threatening injuries. Consequently, doctors 

frequently refer to brain tumors instead of brain cancer [2], [3]. Brain 

tumor is the 10th leading cause of death worldwide [4]. In the United 

States, an estimated 700,000 people live with brain tumors, and around 

84,000 new cases were diagnosed in 2021, resulting in 18,000 deaths  [6]. 

Worldwide, approximately 300,000 new cases and 250,000 deaths from 

brain tumors occurred in 2020 [1]. 

 

        To ensure the best chance of successful treatment, it is crucial to 

detect tumors as early as possible. Early detection of cancer can 

significantly increase the chances of the cancer responding to appropriate 
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therapy, resulting in a higher likelihood of survival, lower morbidity rates, 

and more cost-effective treatment options. [1], [7].  

In the field of medicine, the main imaging techniques for identifying 

tumors are computed tomography (CT) scans, MRI (magnetic resonance 

imaging) scanning, and positron emission tomography (PET) [8]. CT scan 

uses a series of cross-sectional x-ray images to create detailed 

representations of inside organs and structures. A computer then merges 

these images into a three-dimensional picture, clearly revealing any 

tumors or other abnormalities. Using magnets and radio waves, the MRI 

scanner generates two-dimensional or three-dimensional images of brain 

tissue. When evaluating the existence of a brain tumor, these pictures are 

more detailed than those produced by a CT scan. In PET imaging, a tiny 

quantity of radioactive material (called a "tracer") is put into the 

circulation of the blood before the test. The tracer will then accumulate 

in regions where cells are actively dividing. Actively dividing tumor cells 

will appear as bright spots on the scan. They are popular imaging 

techniques today; however, they do have some restrictions making them 

unsuitable for early detection. They are very bulky and expensive, which 

limits their availability, especially in rural areas, and are hardly affordable 

for all patients. About three-quarters of the world's population does not 

have access to safe and inexpensive medical imaging technologies, 

according to the World Health Organization (WHO). Furthermore, CT and 

PET scans expose the patients to ionization radiation which increases the 

risk of developing cancer later in life [2], [6], [8]–[10]. Besides that, 

manually segmenting, detecting, and extracting the diseased tumor 

region from medical pictures is a challenging task and time-consuming 

operation undertaken by radiologists or clinical specialists, and the 
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accuracy of their work relies only on their expertise in the field [7], [11]. 

The scientific research community is motivated to develop a new 

complementary technique to overcome these restrictions. 

       The portable, low-cost, non-ionization radiation Advantages of 

microwave systems attracted researchers to employ them to develop a 

new medical imaging system. Microwave medical imaging relies on the 

physical principle that the abnormal tissues dielectric properties, such as 

malignant one, at microwave frequencies are notably different from those 

of normal tissues. This discrepancy in properties of the dielectric produces  

a clear contrast in the reconstructed image of the microwave imaging 

system [12]. An array of antennas constitutes a microwave imaging 

system, where microwaves are transmitted towards the target objects by 

the transmitting antenna. These waves are received by the receiving 

antennas. The reconstructed microwave picture is then created by 

applying the image reconstruction algorithms to the acquired scattering 

signals [2], [13]. There are two branches of microwave image 

reconstruction algorithms, quantitative imaging (microwave tomography) 

and qualitative imaging (radar-based system). Each method has its 

benefits and drawbacks. The main differences between these two 

systems are centered around their frequency characteristics and the way 

they generate the final image. The MWT system aims to calculate the the 

human body's dielectric properties, whereas the radar-based method 

aims to identify the main scatterers within it. multi-band or Narrowband 

antennas are mainly utilized in the MWT to reconstruct the dielectric 

properties of the head, whereas the radar-based approach employs a 

wide-band frequency. MWT gives richer information about the object 

under screening but its algorithms are complex and computationally 
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expensive. An image with MWT could take days to be reconstructed. 

Radar-based images are simple but fast [13] . 

1.2 Literature Review 

          Due to the multiple layers of tissues with high losses, imaging the 

human head using microwave technologies presents a challenge. 

However, preliminary studies have indicated that microwave imaging 

(MWI) of the head is possible and holds potential. Microwave brain 

imaging traces its roots back to a 1982 paper by Lin and Clark. The paper 

experimentally verified the cerebral edema (It refers to the buildup of 

water in the brain) detection using a simple head phantom and a 

microwave 2.4-GHz signal. Using a head model, it is demonstrated that 

the microwave signal correlates with variable amounts of excess water. 

The technology can detect changes in fluid volume by as little as 1 

percent [14]. A low-cost triangular patch antenna was designed by H. 

Trefná and M. Persson. The antenna has the potential to be used as one 

component within an array designed for monitoring brain strokes. and is 

intended to be small and lightweight. To enhance impedance matching, 

For the high-frequency scenario, a bag containing a liquid having a 

relative permittivity of 78 was positioned between the antenna and the 

head. In the low-frequency case, the antenna was immersed in the fluid. 

The researchers proceeded to design and simulate a system comprising 

eight of these antennas positioned at different intervals. The simulation 

results, which indicate a return loss difference of up to 3 dB, are quite 

encouraging and suggest that the proposed system is sensitive enough 

to detect even minute brain changes [15]. Using computational methods 

for stroke detection, S. Y. Semenov and D. R. Corfield, presented a 
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feasibility study regarding the use of MWT to image the human head. 

realistic electrical properties were used in the simulator of the head's 

tissues, and different stroke sizes were utilized. In the configuration, 

32x32 and 64x64 transmitter and receiver arrays were utilized. These 

elements were placed in a circle of 11-centimeter radius around the 

operating chamber. Both single-frequency and multi-frequency methods 

were employed across the frequency spectrum spanning from 0.5 GHz 

to 2 GHz.. While a higher frequency of 2 GHz provides better spatial 

resolution, it was unable to accurately reconstruct the stroke injury 

region In comparison to the lower frequencies of 0.5 GHz and 1 GHz 

when using the single-frequency method. The reason behind this is that 

as the electromagnetic signal's frequency increases, its attenuation also 

increases. However, the multi-frequency approach  allows the higher 

frequencies  usage of for better capabilities of detection. The critical 

observation is that low-frequency electromagnetic waves are essential 

for better signal penetration into the brain. Furthermore, because the 

skull has a lower water content than other brain tissues like gray matter, 

white matter, and cerebrospinal fluid (CSF), microwave signals can travel 

through it with minimal attenuation. Thus, Anticipated results indicate 

that the skull would not present a significant  barriers to penetration of 

microwave energy into the brain [16]. A new EMT imaging scanner was 

created by the team based on the numerical analysis conducted earlier. 

The scanner depicted in Figure 1.1 was utilized during the initial clinical 

trials to identify strokes in the human brain. 
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Figure 1. 1: EMTensor 1st generation brain imaging scanner. 

 

Operating with a configuration of 160 ceramic-loaded waveguide 

antennas, the 3D EMT system functions by utilizing them in a frequency 

range of 0.9 to 1.1 GHz. A gradient inversion-based iterative solver was 

employed to reconstruct a head image. The system accurately 

reconstructed an ischemic stroke  image  in a patient, and the image 

resulted closely resembled the MRI image of the same patient. Figure 1.2 

demonstrates that the EMT system's capacity for head imaging has been 

confirmed since the stroke area depicted by the system corresponds well 

with the MRI image. 
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(a)                                                                (b) 

Figure 1. 2: stroke in a head of a patient (a) MRI scan (b) EMT scan. 

 

Compared to Alternative MWI systems, like wideband radar-based 

microwave systems, MWT has a significant disadvantage in that 

reconstructing the head's dielectric map requires more computational 

resources[17], [18]. A microwave sensing system (MWS) was proposed by 

A. Fhager and M. Persson with the primary objective of aiding physicians 

in identifying the type of patient’s stroke   in order to provid the 

appropriate treatment . The system utilizes frequencies ranging between 

0.3 and 3 GHz, and Figure 1.3 shows two prototypes  with twelve and ten 

antennas positioned surrounding the head . 
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(a)                                                   (b) 

Figure 1. 3: (a) ten patch antennas MWS  prototype  (b) twelve patch antenna MWS . 

 

Measurements were carried out on patients with known conditions 

to gather scattered data from different transmission channels. The 

obtained data was utilized to train the system using a supervised machine 

learning algorithm that employs a subspace classifier method. According 

to reports, the system was capable of distinguishing stroke patients from 

healthy volunteers and identifying the type of stroke present [19], [20]. 

S. Candefjord created four head phantoms that simulated the 

dielectric characteristics of blood and gray matter using water, sugar, 

agar, and salt solutions. Using the system in [19] and all 12 antennas on 

each phantom, 30 measurements were taken in the frequency range of 

0.1-3 GHz, resulting in 120 observations, with two antennas unused. An 

implemented classification system utilized singular-value decomposition, 

which achieved 100 percent accuracy by assigning each observation to its 

corresponding bleeding-class level [19], [21] . In a more recent prototype, 

J. Ljungqvist, S. Candefjord, M. Persson, and L. Jönsson developed a 
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system for detecting Head-related conditions like subdural hematoma, as 

illustrated in Figure 1.4. 

 

Figure 1. 4: Medfield Diagnostics AB's Strokefinder MD100 device [22]. 

 

In the clinical trial, the system demonstrated a sensitivity of 100 

percent but a specificity of 75 percent. Sensitivity measures the test's 

accuracy in correctly identifying patients with the disease, while 

specificity refers to its accuracy in identifying patients with no  disease. 

The prototype is designed to be portable, and it takes approximately 45 

seconds to complete a full measurement. However, one significant 

drawback of these MWS devices proposed is their incapability of 

determining the size and the location of brain diseases. Such information 

would be extremely worthy to medical professionals in devising 

treatment strategies and planning surgeries based on their patients' 

current conditions [22], [23].  

M. Jalilvand and E. Pancera conducted a feasibility study on head 

imaging using a radar-based technique, employing numerical simulations. 
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In their simulation, they utilized a Vivaldi antenna due to its high gain and 

directional radiation beam. The 3D model of head consisted from 

Different layers of biological tissues, including bone, skin, white matter 

and grey matter, with a 3-cm-diameter hemorrhagic stroke embedded in 

it, having similar dielectric properties to blood. They used a bi-static 

strategy, with one antenna transmitting EM signals and the other 

receiving the backscattered signal. The antennas frequency  of operation  

ranged from 1.5-5 GHz, and the antennas adjacent distance was 

maintained at 20 mm. They repeated the process of sending and receiving 

signals for different predefined positions to scan the head model's entire 

aperture. They used a modified version of the delay-and-sum (DAS) 

algorithm, known as DAS Coherence Factor (DAS-CF), to generate the 

head model's image, as illustrated in Figure 1.5. This study demonstrates 

a promising application of radar-based stroke detection technology [24]. 

For the detection of brain cancer, another numerical simulation was 

conducted by H. Zhang, and B. Flynn. The same technique was applied By 

employing antennas operating within a higher frequency range, 

specifically between 5 and 10 GHz. However, it was shown that higher 

frequencies do not penetrate deeply into the human head, and only 

tumors located In close proximity to the surface of the head model 

displayed noticeable Discrepancies observed in the scattered signals. This 

emphasizes the significance of utilizing low-frequency levels, specifically 

below 4.5 GHz, to ensure optimal penetration [25].  
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Figure 1. 5: Reconstructed head model image using the DAS-CF imaging 
algorithm[24] 

 

  B. J. Mohammed, A. M. Abbosh, and D. Ireland performed a 

numerical simulation to detect hemorrhagic stroke by comparing the 

reflection coefficient (S11) signals acquired from head phantoms 

representing both healthy and unhealthy conditions. Within the 

frequency range of 2 to 3.5 GHz, their study revealed that the probing 

antenna's reflection coefficient experienced a greater loss when exposed 

to a head phantom with a hemorrhagic stroke in comparison to a healthy 

head model [26]. Drawing from this observation, they proceeded to 

develop a comprehensive technique for microwave head imaging based 

on radar that utilized 16 Vivaldi antennas, as illustrated in Figure 1.6. 
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Figure 1. 6: MWI system that utilizes antennas of Vivaldi type [27]. 

 

The antennas used in this study function as both transmitter and 

receiver and operate within a frequency span of 1 to 4 GHz in a monostatic 

configuration. To avoid mutual coupling and increase the number of 

signals for image reconstruction, the table on which the head phantom is 

placed rotates to collect data from different angles. The measured S11 

data were converted to time-domain signals using an inverse Fast Fourier 

transform (IFFT) to apply the confocal imaging algorithm. For testing, a 

realistic artificial human head phantom was created, consisting from a 

combination of corn flour ,water, agar, gelatin, sodium azide, and 

propylene glycol To replicate various brain tissues. A stroke region, 

simulating blood's dielectric properties, was inserted as an ellipsoid object 

into the head phantom, and To minimize system complexity, no matching 

medium was employed. The separation between the antennas and the 

head model remained constant at 5 mm. The reconstructed images 

effectively displayed two hemorrhagic stroke objects positioned within 

the phantoms., as illustrated in Figure 1.7, and the synthesized tissue's 
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dielectric properties matched the measurements within an error of 3% 

[27].  

 

Figure 1. 7: Images depicting two different locations of a hemorrhagic stroke [27] 

In order to avoid high losses of energy in the brain at high 

frequencies, later research replaced the antenna type with small 3-D 

folded dipole unidirectional antennas Operating within the frequency 

range spanning from 1.1 to 2.2 GHz. This allows for a balance between 

penetration depth and image resolution. [28]. The same team of 

researchers created another system designed to detect traumatic brain 

injuries using a portable microwave imaging approach. The system, 

illustrated in Figure 1.8, employs a single unidirectional antenna that 

covers a frequency range of 1.1 to 3.4 GHz for transmitting and receiving 

signals to and from a rotatable head phantom. To enable portability of the 

imaging system, a compact transceiver called the Agilent N7081A was 

custom-made for signal transmission and data acquisition in the 

measurement setupThe N7081A is a modular WB transceiver device 

equipped with a bandwidth of 0.1 MHz to 4 GHz, offering a maximum 

dynamic range of 80 dB. Its operation is managed by an in-house 
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operating system installed on a personal computer, which can be 

connected via USB or local-area network for data post-processing [29]. 

Multiple antenna variations have been reported in [29], [30], and [31]. 

Using 3-D printing technology, a realistic human head phantom was 

created to validate the detection capability of the systems[32]. 

 

Figure 1. 8: the second system, the phantom has the capability to rotate while the 
antenna remains fixed  [29] 

Figure 1.9 shows the improved prototype that included 16 of the 3-

D folded compact antennas utilizing a frequency range between 1 and 2.4 

GHz that was developed by the same team for future clinical trials [34]. 

The microwave system designed for portable head imaging aims to 

provide quick and efficient diagnosis of traumatic brain injuries resulting 

from various causes such as sports injuries or automobile accidents. The 

imaging system was tested on two healthy volunteers at three different 

levels, and the reconstructed images showed no evidence of hematomas 

[33]. Recent publication [34] describes a new enhancement to the system. 

Using an advanced combination of a software-defined radio and a solid-

state switching network, the system acquires imaging data and functions 

within the frequency range of 0.52 to 0.85 GHz. With a range of 
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approximately 106 dB, it can accurately detect realistic brain injuries. 

Experimental data collection and confocal image generation have 

confirmed the concept, and images can be generated in under a minute. 

 

Figure 1. 9: MWI using a 3-D folded compact antennas [33]. 

There have been numerous studies published that suggest 

wearable MWI devices can be utilized for head imaging purposes. In one 

such study, M. S. R. Bashir discusses two different prototypes utilizing 

low-profile and flexible antennas. The first prototype, illustrated in Figure 

1.10, consisted of 12 antennas manufactured on a thin and flexible PET-

film substrate. The wearable also contained an absorber material that 

absorbed any backward signals produced by the antennas. In Figure 1.11, 

a second prototype was shown, which was a head strap-based wearable 

MWI device with 12 directional monopole antennas constructed on 

textile substrates [35]–[37].  
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Figure 1. 10: First prototype of a head-mounted  microwave imaging device utilizes 
thin, flexible antennas placed on a PET-film substrate [35]. 

 

Figure 1. 11: The microwave imaging device, designed to be worn as a head strap, 
incorporates antennas fabricated from textile materials [35]. 

The revolution in artificial intelligence (AI) has created new paths for 

the creation of ground-breaking applications. AI has demonstrated 

outstanding ability in distinguishing patterns in pictures or data. Thanks 

to “deep learning”, Today, machines can see, hear, and recognize figures. 

Deep learning is a special type of algorithm, a subfield of machine learning 

algorithms which is in its turn a subfield of AI algorithms and has 

applications in several fields, including autonomous vehicles, health, 

computer vision, and the Internet of Things (IoT). Researchers are now 

fascinated by the biomedical applications of machine learning and 
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artificial intelligence, particularly in the field of anomaly detection to 

enable automated tumor diagnosis [11]. 

W. Shao and Y. Du, investigated the reconstruction of microwave 

images using a method of deep learning. The neural network can convert 

measured microwave signals acquired from a 24x24 antenna array 

operating at 4 GHz into an image of 128x128 pixels. To reduce the 

difficulty of training, an autoencoder that represented high-resolution 

images (128x128) as 256x1 vectors was created; then a second neural 

network that mapped microwave signals to the compressed features 

(256x1 vector) was created. When both neural networks are successfully 

developed, they can be combined to form a complete network for 

reconstruction. The current two-stage training method makes training 

deep learning networks (DLNs) for inverse reconstruction less challenging. 

The developed neural network is validated by simulation examples and 

experimental data involving objects of varying shapes/sizes, locations, 

and dielectric constants between 2 and 6 [38]. A. Yago, M. Cavagnaro, and 

L. Crocco used A convolutional neural network (CNN)-based U-Net 

segmentation framework to mask the tumor object in MW imaging. The 

main goal is to create a reliable framework that can retrieve unknown 

target shapes without relying on user input. To achieve this, the suggested 

approach uses the orthogonality sampling method, an inversion 

technique that can quickly provide a visual estimation of target shapes. 

The output of the qualitative inversion is then processed by U-Net, a fully 

convolutional deep learning network. U-Net generates binary masks that 

can separate the scattering objects (foreground) from the background, 

thus representing the geometrical properties of the targets. The 

framework was evaluated using only simulated data and no experimental 
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framework was implemented [39]. N. M. Dipu, S. A. Shohan, and K. M. A. 

Salam proposed two deep learning-based techniques for brain tumor 

identification and classification using the cutting-edge object detection 

framework YOLO (You Only Look Once) and the deep learning library 

FastAi. This research was conducted on a subset of the BRATS 2018 

dataset, which included 1,992 Brain MRI images. The accuracy of the 

YOLOv5 model was 85.95 percent, whereas the accuracy of the FastAi 

classification model was 95.78 percent [40]. E. Avşar and K. Salçin, 

analyzed MRI scans to identify tumor-containing regions and categorize 

these regions into three tumor types: meningioma, glioma, and pituitary. 

In this study, faster Region-based Convolutional Neural Networks (faster 

R-CNN), a deep learning technique, have been built using the TensorFlow 

library. A publicly available dataset of 3,064 MRI brain scans of 233 

patients (708 meningiomas, 1,426 gliomas, and 930 pituitaries) was used 

to train and evaluate the classifier. It has been demonstrated that the 

faster R-CNN approach can achieve 91.66 % accuracy. Due to the small 

training dataset, the model's outperformance was rather low, and it failed 

to classify the small tumor in the photos [41]. H. Dong, G. Yang, F. Liu, Y. 

Mo, and Y. Guo used a method for the fully automatic segmentation of 

brain tumors using U-Net-based deep convolutional networks. 

Multimodal Brain Tumor Image Segmentation (BRATS 2015) datasets 

containing 220 high-grade brain tumors and 54 low-grade tumor cases 

were used to evaluate the method. This method is capable of identifying 

tumors, and cross-validation has demonstrated the method's ability to 

obtain promising segmentation results efficiently [42]. In their research, 

A. Hossain presented a method for detecting brain tumors using a 

portable electromagnetic imaging system and a YOLOv3 deep neural 



19 
 

network model. To gather scattering parameters, they utilized a nine-

antenna array setup with a tissue-mimicking head phantom, where one 

antenna acted as a transmitter and the other eight as receivers. The 

resulting images were reconstructed using a modified delay-multiply-and-

sum algorithm. By collecting fifty images from different head regions, they 

generated a final dataset of 1000 images, including fifty samples with 

single and double tumors, which were augmented for training, validation, 

and testing. Eighty percent of the dataset was used for training, ten 

percent for validation, and the remaining ten percent for testing. The 

accuracy and F1 score achieved were 95.62% and 94.50%, respectively, 

and the training accuracy and validation losses were 96.74% and 9.20%, 

respectively. The performance of detection was evaluated using various 

image datasets [9]. A study conducted by A. Hossain, M. T. Islam, and A. 

F. Almutairi focused on using the YOLOv5 object detection model based 

on deep learning to automatically classify and detect brain abnormalities 

in a portable microwave head imaging system (MWHI). The MWHI system 

collected 400 RMW image samples at the outset, consisting of both non-

tumor and tumor(s) in different locations, with each RMW image sized 

640 by 640 pixels. The images were pre-processed and augmented to 

create a training dataset of 4,400 images. The models were trained using 

80 percent of the images and tested with the remaining 20 percent, while 

20 percent of the training dataset was used to validate the models. The 

performance of detection and classification was assessed using three 

variants of the YOLOv5 model, namely, YOLOv5s, YOLOv5m, and YOLOv5l. 

The study determined that the YOLOv5l model outperformed YOLOv5s 

and YOLOv5m, achieving an accuracy, precision, sensitivity, specificity, F1-

score, mean average precision (mAP), and classification loss of 96.32 
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percent, 95.17%, 94.98%, 95.28%, 95.53%, 96.12 percent, and 0.0130 

percent, respectively. The YOLOv5l model correctly detected tumors in 

RMW images by predicting a bounding box and abjectness score and 

classifying them as benign or malignant [2].  

1.3 The Problem Statement  

The reconstructed images from microwave imaging systems have a 

low spatial resolution, noisy and blurry due to the use of low frequency, 

and the lack of robust reconstruction algorithms. This confuses the 

physician to detect and localize the tumor, especially in its early stage, and 

in the end, the decision is subjective to the physician’s experience. Most 

of the machine learning research has focused on identifying the existence 

of tumors in medical images. No research has been done to determine the 

size of the tumors. No large-scale research has been done to determine 

the location. 

 

1.4 Thesis Aim   

To address the aforementioned challenges in microwave imaging 

systems, this thesis proposes the use of deep learning to automatically 

diagnose the existence of tumors, size, and location directly from the raw 

data collected from a microwave imaging system. CST software will be 

used to design and simulate the transmitted signals in microwave 

frequencies and received signals. The received signals by many antennas 

are to be processed using a suitable deep-learning neural network 
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1.5 Thesis Layout 

The thesis is organized as follows: 

Chapter one gives an introduction and literature review. 

Chapter two presents an overview of deep learning and neural networks. 

Chapter three explains the design of the MWI system in CST and the data 

generation, presents the results and gives a discussion of the results. 

Chapter four gives the conclusions and suggestions for future work. 
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2 Chapter two: Deep learning 

2.1 Introduction  

In order to address a computational issue, an algorithm is essential. 

A series of steps need to be carried out to convert input into output. For 

instance, a sorting algorithm can be devised, where a list of numbers is 

the input, and an arranged list of those numbers is the output. Sometimes 

there is no algorithm for some tasks or it is very difficult to make one, such 

as distinguishing spam emails from non-spam. The nature of the input is 

known, which is a character-based email document. The expected output 

is known as either: a yes/no output indicating whether or not the message 

is spam. It’s unknown how to convert the input into the output. What can 

be considered spam, varies over time and between individuals. Instead of 

creating an algorithm by hand, let the computer(machine) “learn” this 

input-output relationship automatically from a given input-output pair of 

data. That is machine learning. And the algorithms that give the machines 

this ability are called machine learning algorithms [43]. In general, any 

problem in machine learning can be categorized into one of two broad 

categories: supervised learning and unsupervised learning. In supervised 

learning, a data set is provided and the correct output is given with the 

assumption that there is a correlation between the input and output. 

Regression and classification problems are categories of supervised 

learning problems. In a regression problem, results within a continuous 

output are to be predicted by mapping input variables to a continuous 

function. In a classification problem, discrete output results are to be 

predicted. In other words, it’s an attempt of mapping input variables to 

discrete classes.  Unsupervised learning, on the other hand, enables one 

to approach problems with limited or no knowledge of what the expected 
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outcomes should be. a structure can be derived from data even if the 

output is unknown. This structure can be derived by clustering the data 

based on the relationships between the variables. Some machine learning 

algorithms are artificial neural networks, support vector machines, k-

nearest neighbors, and more. Deep Learning refers to the process of 

training Neural Networks, sometimes extremely large Neural Networks 

[44]. This chapter explains the principle of work behind deep learning and 

neural networks 

2.2 Artificial Neural Networks [45] 

Artificial neural networks (ANNs) have been a popular machine 

learning model since their introduction in the 1950s and have been 

extensively studied ever since. A neural network as shown in figure 2.1 

consists roughly of several interconnected computational units called 

neurons that are arranged in layers. There is an input layer where data 

enters the network, followed by one or more hidden layers that transform 

the data as it flows through, and finally, an output layer where the neural 

network's predictions are generated. The network is trained to produce 

useful predictions by recognizing patterns in a set of labeled training data 

fed through it while an objective function compares the network's 

outputs with the actual labels. The network's parameters, which indicate 

the strength of each neuron, are modified throughout the training process 

until the patterns recognized by the network provide precise forecasts for 

the training data. After grasping the patterns, the network can anticipate 

new, previously unseen data by generalizing. 
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Figure 2. 1: neural network representation. 

 

It has been known for a long time that ANNs are highly adaptable, 

and capable of modeling and solving complex problems, but also difficult 

and computationally expensive to train. This has diminished their 

practical utility, causing people to focus on other machine learning 

models until recently. Artificial neural networks are currently one of the 

most studied and dominant machine learning techniques. This transition 

is due to the growth of big data, powerful processors for parallel 

computations (particularly GPUs), key modifications to the algorithms 

used to construct and train the networks, and the development of simple 

software frameworks. Interest in ANNs is exploding, resulting in a rapid 

rate of innovation that is accelerating the development of other areas of 

machine learning. Simple linear functions are used to construct artificial 

neural networks, which are then followed by nonlinearities. The 

multilayer perceptron, or feedforward neural network, is one of the most 
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elementary types of neural network. Writing i for the ith layer and j for 

the jth unit of that layer, the output of the jth unit at the ith layer is: 

                                           𝑧𝑗
(𝑖)

= 𝜃𝑗
𝑇(𝑖)

 𝑥                                (2.1) 

Here, x consists of the previous layer's outputs that have been 

passed through a simple nonlinear function known as an activation 

function, typically a sigmoid function: 

                                           𝜎(𝑧) = 1
1+ⅇ−𝑥                                (2.2)    

  or a rectified linear unit ReLU: 

                               𝑅ⅇ𝐿𝑈(𝑧) = 𝑚𝑎𝑥 (0, 𝑧)                               (2.3) 

or small variations thereof. The network's layers perform 

computations by computing a weighted sum of the preceding layer's 

neuron outputs, followed by a nonlinearity. The resulting activations of 

each layer are then passed on to the next layer until the output layer, 

which produces the network's predictions. This process results in a 

hierarchical representation of the input data, where the earlier features 

tend to be more general and the output features become more specific. 

To train the network, training data is fed to the network, and the 

outputs and local derivatives at each node are recorded. The 

discrepancy between the output prediction and the true label is 

measured by an objective function, such as mean absolute error (L1), 

mean squared error (L2), cross-entropy loss, or Dice loss. The objective 

function's derivative with respect to the output is computed and used as 

feedback. The error is propagated backward through the network via 

backward propagation, which computes the gradient of the objective 

function with respect to the weights in each node using the chain rule 
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and dynamic programming. The weights are then adjusted using 

gradient descent, an optimization algorithm tasked with minimizing the 

error. 

2.3 Deep Learning [45]–[47] 

In traditional machine learning, models are trained by using manually 

engineered features extracted from raw data or features learned by other 

simple machine learning models to perform useful tasks. However, deep 

learning allows computers to automatically learn useful representations 

and features from raw data, which eliminates the need for this manual 

and tedious step. The fundamental similarity among deep learning 

techniques is their focus on feature learning, which refers to the 

automatic learning of data representations. This is the primary difference 

between deep learning and more conventional machine learning 

methods. Convolutional neural networks (CNNs) are the key driver of 

interest in deep learning as they are an extremely effective technique for 

learning useful representations of images and other structured data. Let's 

delve into the components of CNNs. 

 

2.3.1 Building Blocks of Convolution Neural Network 

While it is possible to use simple feedforward neural networks for 

image recognition, connecting all the nodes of one layer to all the nodes 

of the next can be highly inefficient. One solution is to trim connections 

based on domain knowledge, such as the structure of images, to improve 

performance. Convolutional neural networks (CNNs) are a specific type of 

artificial neural network that have been designed to preserve spatial 

relationships in data with a minimal number of connections between 
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layers. A typical CNN (shown in Figure 2.2) contains multiple convolutional 

and activation layers, often interspersed with pooling layers, and is 

trained using backpropagation and gradient descent, just like 

conventional neural networks. In addition, CNNs often include fully 

connected layers at the end to compute the final outputs. The efficiency 

of CNNs lies in their ability to produce highly effective data 

representations. 

 

Figure 2. 2: typical convolutional neural network[48]. 

2.3.2 Convolutional Layer 

The convolution operation involves two functions, namely an input 

function that consists of values (e.g., pixel values) at a particular position 

in an image and a filter (or kernel) function represented by an array of 

numbers. By computing the dot product of these two functions, an output 

is obtained. The filter is moved to the next position in the image according 

to the stride length, and the computation is repeated until the entire 

image is covered. This produces a feature map that highlights the regions 

where the filter is highly activated, indicating the presence of a specific 

feature, such as a line, a dot, or a curved edge. In the context of CNNs, 

when an image of a face is fed into the network, the initial filters detect 

low-level features, such as edges and lines, which are gradually combined 
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into increasingly complex features, like a nose, an eye, or an ear, as the 

feature maps serve as inputs for the next layer [48]. A convolutional layer 

comprises a set of learnable 2D filters, with each filter having a small 

spatial extent (width and height) but traversing the entire depth of the 

input feature. After applying convolution on the input and filters, the layer 

generates a feature map in two dimensions. Typically, a large number of 

learnable filters are employed to produce the output of the convolutional 

layer in three dimensions, H, W, and D, where H and W are the spatial 

dimensions, and D is the number of filters used. Equation 2.4 shows a 

discrete convolution in two dimensions with steps from (0, 0) to (m, n): 

          𝑆(𝑖, 𝑗) = 𝛴𝑚  𝛴𝑛𝐾(𝑚, 𝑛)𝐼(𝑖 − 𝑚, 𝑗 − 𝑛)                  (2.4)[51] 

Where: 

S: the output. 

I: the input image. 

K: the kernel. 

i,j: represents coordinates in the output feature map S. 

(i-m,j-n): the coordinates in input I. 

m,n: the coordinates in the kernel K. 

Equation (2.5) is used to calculate the spatial dimension of the output, 

which is typically padded with zeros in order to maintain the input 

volume's spatial dimensions 

                         𝑊𝑜𝑢𝑡 =
𝑊𝑖𝑛−𝐾+2𝑃

𝑆
+ 1                                  (2.5)[51] 

Where: 
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𝑊𝑜𝑢𝑡: Output spatial dimension. 

𝑊𝑖𝑛: input spatial dimension. 

K: kernel size. 

S: stride. 

P: zero padding. 

Figure 2.3 depicts a convolutional layer with three 3x3 filters, stride S = 1, 

and padding size P = 1. 

 

Figure 2. 3: Convolutional layer[52]. 

2.3.3 Activation Layer 

Nonlinear activation functions are applied to the feature maps 

produced by a convolutional layer. This enables the neural network as a 

whole to approximate virtually any nonlinear function The RELU is a 

popular activation function that converts negative input values to zero, as 

depicted in Figure 2.4 This simplifies and accelerates calculations and 

training, and prevents the vanishing gradient issue. It is defined 

mathematically as: 
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                   𝑓(𝑥) = max (0, 𝑥)                                  (2.6)[48] 

where x is the neuron's input. Sigmoid, Tanh, leaky RELUs, Randomized 

RELUs, and parametric RELUs are additional activation functions [48]. 

 

Figure 2. 4: ReLU activation function. 

2.3.4 Pooling 

The purpose of the pooling layer is to decrease the spatial dimensions of 

the convolved feature. By reducing the dimensionality of the data, less 

processing power is needed to process it. Moreover, it is beneficial to 

extract dominant features that are invariant to rotation and spatial 

orientation, which enables the model to be trained more  [52]. There are 

three types of pooling: MAX pooling, MIN pooling, and average pooling. 

Max Pooling provides the maximum value from the kernel-covered region 

of the image, and is typically employed when the image has a dark 

background because it selects brighter pixels. In MIN pooling, the 

minimum value in a region represents the summary of the features in that 

region. Min pooling is typically employed when the image has a light 

background because it selects darker pixels. In contrast, Average Pooling 

calculates the mean of all the values within the kernel's region in the 

image, resulting in a smoothing effect that reduces sharp edges. It is 
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suitable for images where such edges are not essential [51]. figure 2.5 

shows the operation. 

 

 

Figure 2. 5: pooling operation with kernel size 2x2 and stride 2. 
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2.3.5 Batch Normalization 

The training of Deep Neural Networks is complicated by the fact that the 

distribution of each layer's inputs changes as the parameters of the 

previous layers are modified. This slows down training by necessitating 

slower learning rates and more cautious initialization of parameters. This 

occurrence is referred to as an internal covariate shift. Batch 

normalization is a technique that speeds up neural networks and solves 

the internal covariate shift problem by adding additional layers to a deep 

neural network. The previous layer's input is normalized by the new layer 

[53]. 

2.3.6 Fully Connected Layer 

The final layer of a convolutional neural network (CNN) is called the Fully 

Connected Layer, which is connected to every neuron in the preceding 

layer. The number of fully connected layers can vary depending on the 

level of feature abstraction required, similar to convolution, RELU, and 

pooling layers. The Fully Connected Layer takes the output of the 

preceding layer, whether Convolutional, RELU, or Pooling, and calculates 

a probability score for classification into different classes. In essence, this 

layer assesses the combination of the image's most highly activated 

features to identify its class [48]. 
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3 Chapter three: Application of Deep Learning in 

Microwave Imaging System 

3.1 Introduction 

       The objective of this study is to utilize deep learning techniques to 

analyze signals received by multiple antennas around the brain in order 

to detect the presence, size, and location of tumors. This chapter provides 

an overview of the workflow involved in achieving this goal. The steps 

involved in this study include:  

1. Designing a microwave imaging system using six antennas placed 

around a head phantom with the aid of CST Studio Suite software. 

2. Collecting an S-parameters dataset for various tumor sizes and 

locations inside the head. 

3. Dividing the dataset into training and testing sets to ensure 

effective learning and evaluation. 

4. Developing a Convolutional Neural Network (CNN) using MATLAB 

software. 

5. Training the CNN with the training dataset. 

6. Testing the ability of the CNN to detect tumors by evaluating it 

using the test dataset.  

3.2 Microwave Imaging System 

Figure 3.1 depicts the simulated Microwave Imaging (MWI) system 

developed using CST Studio Suite 2022. The system comprises six 

antipodal Vivaldi antennas and a Hugo head model, which is a pre-built 

head model within CST. The antennas are chosen for their wide 

bandwidth, directive radiation patterns, and ease of implementation in 
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CST. The antenna geometry is illustrated in Figure 3.2. The width (w) and 

length (l) of the antenna structure can be determined using Equations [54] 

provided the substrate's thickness (h), lowest operating frequency (fl), 

and dielectric constant (εr) are known: 

                            𝑤 = 𝑙 =
𝑐

𝑓𝑙
√

2

𝜖𝑟+1
                                            (3.1) 

                                 𝑟1 =
𝑤

2
+

𝑤𝑚

2
                                                  (3.2) 

                                 𝑟2 =
𝑤

2
−

𝑤𝑚

2
                                                   (3.3) 

                                  𝑟𝑠1 = 𝑙 + 𝑎                                                    (3.4) 

                                  𝑟𝑠2 = 0.6𝑟2                                                   (3.5) 

 

Figure 3. 1: Microwave Imaging system simulated in CST. 

By utilizing these equations, the antenna structure's dimensions can be 

optimized for the desired frequency range and dielectric properties. This 

optimization process will ensure the optimal performance of the MWI 

system in detecting brain tumors with high accuracy. 
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Figure 3. 2: antipodal Vivaldi antenna. 

The following formula can be used to determine the width of the 

microstrip transmission feeder Wm to yield the characteristic impedance, 

Z0=50. 

                        𝑤𝑚 =
120𝜋ℎ

𝑧0√𝜀𝑟
                                             (3.6) 

The antenna was designed on a RO3010 ROGER substrate, which has a 

dielectric constant of 11.2 and a tangent loss of 0.0022. The substrate has 

a thickness of 1.28 mm, and the antenna's dimensions are optimized to 

achieve the desired operating frequency range. The antenna length is 

110.42 mm, and the width is 130 mm. The transmission line width is 0.7 

mm. Figure 3.3 displays the simulated |S11|, which illustrates the 

antenna's performance in terms of its reflection coefficient. 
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Figure 3. 3: |S11| of the designed antenna. 

The simulated |S11| curve exhibits a significant decrease of -10 dB 

at 1.39 GHz, indicating the antenna's wideband characteristics. The curve 

also displays a resonance peak at 2.44 GHz, which confirms the antenna's 

suitability for operating in this frequency range. Furthermore, Figure 3.4 

illustrates the directive far-field radiation pattern of the antenna, which 

has a maximum gain of 8 dB. 

 

Figure 3. 4: far filed radiation pattern of the antenna. 

 

The CST software provides various readily available bio models for 

the head. Figure 3.5 illustrates the head model (HUGO) with 16 different 

tissues. To characterize the dielectric properties of the head tissues, a 
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frequency of 2.44 GHz was used, which is the resonance frequency of the 

antenna. To optimize computation time, only six tissues, namely bone 

cortical, brain grey matter, brain white matter, cerebellum, fat, and skin 

were selected. The head phantom had dimensions of 174 mm in width (x-

direction), 227 mm in length (z-direction), and 100 mm in height (y-

direction). The system consisted of six antennas positioned 15 mm from 

the head. A spherical malignant tumor was inserted into the head 

phantom with a relative permittivity of 62 and a tangent loss of 0.594 at 

2.44 GHz as illustrated in figure3.6 [2].  

 

Figure 3. 5: tissues of the voxel head model (HUGO) in CST. 

 

Figure 3. 6: dielectric properties of head tissues. (a) permittivity, (b) conductivity. 

 

3.3 Dataset Construction and Generation 

In order to train a neural network to detect the existence, size, and 

location of tumors, a diverse dataset of tumors with varying sizes and 
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locations is required. For this study, a dataset of 628 scans was used, 

which included 308 scans with tumors of 11 different sizes placed at 28 

different locations in the x-z plane (4 points in x-direction and 7 points in 

z-direction) at y=60 mm. In order to create scans without tumors, a small 

tumor of radius 0.0001 mm was used in 320 different locations in the x-z 

plane (18 points in x-direction and 21 points in z-direction) at y=60 mm. 

Tables 3.1 and 3.2 summarize the specific points that were included in the 

dataset, with all dimensions given in millimeters and the radius of the 

spherical tumor denoted as (r). 

 

                                     Table 3. 1 tumor-exist scans 

 Existence  Size (r)  x y z 

1 Yes 0.2 -45 60 -70 

2 0.4 -15 -50 

3 0.6 15 -20 

4 0.8 45 0 

5 1  15 

6 2  35 

7 4  50 
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8 6   

9 8   

10 10   

11 12   

Total  308 cases 11 4 1 7 

                

                                   Table 3. 2 tumor-non exist scans 

 Existence Size (r) x y z 

1 No 0.0001 -45 60 -60 

2 -40.5 -54 

3 -36 -48 

4 -31.5 -42 

5 -27 -36 

6 -22.5 -30 

7 -18 -24 
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8 -13.5 -18 

9 -9 -12 

10 -4.5 -6 

11 0 0 

12 4.5 6 

13 9 12 

14 13.5 18 

15 18 24 

16 22.5 30 

17 27 36 

18 31.5 42 

19  48 

20  45 

21  60 

Total 320 case 1 18 1 21 
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Each scan was imaged by 6 antennas around the head, this 

produces 36 s-parameter (s11, s21…..., s66) per each scan. 1001 samples 

were taken from a frequency span from 1.5 to 4.5 GHz of the measured s-

parameters.  Each s-parameter channel has a magnitude and phase.  The 

data is arranged in a 4-D matrix of 36 (channel) x 1001 (samples) x 2 

(magnitude and phase) x 628 (scan). For simplicity of training, each 

problem of detecting the existence, size, and the location in x-z plane is 

dealt with solely. 

3.4 Training Methods 

3.4.1 Training a Convolution Neural Network (CNN) to Detect the 

Existence of Tumors 

MATLAB 2021b was used. First, the dataset of 36x1001x2x628 was 

normalized and randomly permutated. Then the dataset was divided into 

a training set of 500 scans which is used to train the network, and a test 

set of 128 scans which are used to test the ability of the network to 

generalize well to unseen data. the CNN architecture was: 

● Input layer (36x1001x2). 

● Convolutional layer (12 filters, each of size 3x3x2). 

● Relu activation function. 

● Dense output layer (2 neurons, one for each class). 

● Softmax activation function (this function gives the probability that 

a given class appears). 
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With the cross-entropy cost function, the network was trained by the 

Adam optimizer with the following parameters: 

Table 3. 3 Parameters of the training to predict the existence of the tumor  

Parameter  Value 

Learning rate 0.0001 

Batch size 128 

Learning rate drop period  50 

Learning rate drop factor 0.65 

Regularization parameter  0.0001 

 

 

Figure 3. 7: training/testing loss/accuracy curves of the CNN that detect the 
existence of tumors. 
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The training progress of the neural network is shown in Figure 3.7, which 

displays the accuracy and loss of the network across training iterations. 

The loss metric indicates the degree to which the network's predictions 

deviate from the true values, and it was observed to decrease as expected 

over the course of training. Similarly, the accuracy metric, which 

measures the proportion of correct classifications, showed an expected 

increase over time, suggesting successful training. After 174 epochs, both 

the training and validation (test data) accuracy reached 100%, indicating 

that the network had learned a strong relationship between the raw data 

of the s-parameters and the presence of tumors. Furthermore, the 

network was able to classify unseen data with perfect accuracy, which is 

a highly promising result.. 

3.4.2 Training a Convolution Neural Network (CNN) to Predict the 

Size of the Tumor 

To train the network to predict the size of the tumor, only the tumor-

exist data is needed which is in the form of 36x1001x2x308. As was done 

before the 308 scan data was normalized and randomly permutated. Then 

it was divided into 250 scan trainsets and 48 scan test sets. the CNN 

architecture was: 

● Input layer (36x1001x2). 

● Convolutional layer (12 filters, each of size 3x3x2). 

● Relu activation function. 

● Dense output layer (one neuron) 
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With the mean squared error MSE as the cost function, The network was 

also trained with Adam optimizer with the following parameters: 

Table 3. 4 parameters of the training to predict the size of the tumor 

Parameter  Value 

Learning rate 0.0001 

Batch size 128 

Learning rate drop period  200 

Learning rate drop factor 0.65 

Regularization parameter  1 

 

Notice that in problems where the neural network has to predict 

continuous values like the size, The root mean squared error (RMSE) is 

considered to represent the accuracy because it represents how much the 

predicted value deviates from the true value and should be decreased as 

the training progresses. 
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Figure 3. 8: training/testing loss /RMSE of a CNN that predicts the size of the tumor. 

The training progress of the neural network  is shown in Figure 3.8, 

where both the root mean squared error (RMSE) and the loss start at high 

values and gradually decrease as the training proceeds, indicating that the 

training is progressing as expected. After 637 epochs, the test RMSE and 

training RMSE were measured at 0.15 mm and 0.03 mm, respectively. 

These values suggest that the network has learned a relationship between 

the raw data s-parameter and the radius (r) of the tumor, and is able to 

generalize to unseen data with good or acceptable average error. 

3.4.3 Training a Convolution Neural Network (CNN) to Predict the 

Location of the Tumor in the x-z Plane 

The 308 scans were divided into 280 train sets, and 28 test set. The 

following CNN architecture was used: 

● Input (36x1001x2). 

● Convolutional layer (12 filters, each of size 3x3x2). 
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● Relu activation function. 

● Dense layer (5 neurons) 

● Softplus activation function 

● Dense output layer (one neuron) 

The cost function is MSE, and the network was again trained by Adam 

optimizer with the following parameters: 

Table 3. 5 parameters of the training to predict the location 

Parameter  Value 

Learning rate 0.0001 

Batch size 128 

Learning rate drop period  200 

Learning rate drop factor 0.65 

Regularization parameter  0.0001 
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Figure 3. 9:  training/testing loss /RMSE of a CNN that predicts the z-direction of the 
tumor. 

 

Figure 3. 10 training/testing loss /RMSE of a CNN that predicts the x-direction of the 
tumor. 

As seen in figures 3.9 and 3.10, The relatively wide difference 

between the training RMSE and test RMSE indicates that the model may 

overfit the training data (overfit: a case where the network can learn 

relationship on the trainset but fails to generalize to unseen data the test 

set). This may be due to the small amount of location data, (only 7 points 
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in the z-direction and 4 points in a span of almost 150 mm in the z-

direction and 100 mm in the x-direction), and getting more data is likely 

help to enhance the generalization of the model. To check this a 

convolutional neural network was trained on the tumor-non exist data to 

detect the location, since this dataset has more points in z and x directions 

(21 points in z and 18 points in x). the 320 scans were divided into 280 

scan train set and 40 scan test set. the CNN architecture was: 

● Input layer (36x1001x2). 

● Convolutional layer (12 filters, each of size 3x3x2). 

● Relu activation function. 

● Dense output layer (one neuron) 

The cost function is MSE, and the network was trained by Adam 

optimizer with the following parameters: 

Table 3. 6 parameters of the training to predict the location using tumor-non exist 
data 

Parameter  Value 

Learning rate 0.0004 

Batch size 128 

Learning rate drop period  125 

Learning rate drop factor 0.65 
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Regularization parameter  0.1 

 

 

Figure 3. 11: training/testing loss /RMSE of a CNN that predicts the z-direction of the 
tumor-non exist dataset. 

After 443 epochs the training and validation RMSE were 1.5,3.14 

mm, this close and relatively small value indicates that the network 

learned a relationship between s-parameter data and was able to 

generalize well. The more data in the tumor-non exist dataset allowed the 

network generalization to be better.   
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4 Chapter 4: Conclusion and Future Work 

4.1 Conclusion 

This study investigated the capability of using deep learning to detect 

the existence, size, and location of brain tumors from the raw 

electromagnetic data gathered from a microwave imaging system 

consisting of 6 antennas around the head. The following findings can be 

drawn: 

1. The antipodal Vivaldi antenna is suitable for investigating the 

microwave imaging system and machine learning application as it 

is simple to design, offers wide bandwidth(1.39GHz-6GHz), and has 

a suitable gain of 8 dBi. 

2. The use of Six antennas around the head in the microwave imaging 

system over frequency band of 1.5 to 4.5 GHz is feasible as a 

starting point. 

3. A convolutional neural network (CNN) of 12 filters of size 3x3 with 

relu activation function can be trained to detect the presence of 

tumors from the raw electromagnetic data and was able to classify 

unseen tumors data as small tumors as 0.2 mm radius at the 

accuracy of 100%. 

4. A CNN of 12 filters of size 3x3 with relu activation function can be 

trained to predict the size of the tumors from the raw 

electromagnetic and was able to predict the radius of unseen 

tumors data with average deviation from the true size of 0.15 mm 

(RMSE). 
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5. A CNN 12 filter of size 3x3 with relu activation function can be 

trained to predict the location of the tumors from the raw 

electromagnetic data and was able to predict the location in z-

coordinate of unseen tumors data with average deviation from the 

true location of 3.14 mm. 

6.  using 308 tumor-exist scans (11 sizes in 28 locations in the x-z 

plane) and 320 tumor-non exist scans (a tumor of the size of 0.0001 

mm in 320 locations was assumed) was acceptable to get the CNN 

to be trained to detect the presence of tumors and generalize to 

unseen data. 

7. Using 11 tumor sizes of (0.2,0.4,0.6,0.8,1,2,4,6,8,10,12) mm in 28 

different locations in the x-z plane was acceptable to get the CNN 

to be trained to determine the radius of the tumors and generalize 

to unseen data. 

8.  Using 7 tumor locations in the z-direction of (-70, -50, -

20,0,15,35,50) mm and 4 points in the x-direction of (-45, -15,15,45) 

led the CNN to overfit the training data (fails to generalize to 

unseen data). And this could be due to the large step size.Using the 

tumor-non exist scans to train the CNN to predict the location in 

the z-direction was acceptable to get the network to generalize to 

unseen data. this is because tumor-non exist scans has rich location 

data (21 point in z and 18 points in x). 

This study highlights the importance of having sufficient and 

appropriate data for training deep neural networks, which can then 
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achieve remarkable accuracy in detecting brain tumors from raw 

electromagnetic data. 

 

4.2 Future Work 

For future work, one can take into consideration the following: 

1. Classifying the type of the tumor whether it’s malignant or benign. 

2. Finding the location in 3D. 

3. Use all the tissues in the head in the simulation. 
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 الخلاصة

الأورام وخاصة في الدماغ. الكشف المبكر عن الورم هو  من أكبر المشاكل في عالم الطب وجود  

( ،  CTمفتاح العلاج الناجح. تقنيات التصوير الطبي الحالية ، مثل التصوير المقطعي المحوسب )

( ، PET( ، والتصوير المقطعي بالإصدار البوزيتروني )MRIوالتصوير بالرنين المغناطيسي )

وتستخدم الإشعاع المؤين في حالة التصوير المقطعي    لها بعض القيود. فهي ضخمة الحجم ومكلفة

المحوسب والتصوير المقطعي بالإصدار البوزيتروني ، مما يزيد من خطر الإصابة بالسرطان.  

التصوير بالموجات الدقيقة هو أسلوب جديد يبعث على الأمل يمكنه التغلب على هذه القيود. نظام  

الدقيقةالم ،  وجات  ذلك  إشعاعات غير مؤينة. ومع  ويستخدم   ، التكلفة  هناك  منخفض  فانه لازال 

من ضمن .تحديات يجب التغلب عليها قبل ان يصبح هذا النظام جاهزا للاستخدام في المستشفيات 

بسبب استخدام التردد   وغير واضحةالصورة المعاد بناؤها ، ذات دقة منخفضة    هذه التحديات ان

ور في خوارزميات إعادة بناء الصور. هذا يجعل من الصعب الكشف عن القص  بسبب المنخفض و 

على فان اتخاذ القرار يعتمد  الورم وتحديد موقعه ، خاصة في مراحله المبكرة. علاوة على ذلك ،  

 خبرة الطبيب. 

حجمه  من عدمه وتحديد  تقترح استخدام التعلم العميق للتشخيص التلقائي لوجود الورم  هذه الرسالة  

. تم تصميم نظام  وجات الدقيقةه مباشرة من البيانات التي تم جمعها من نظام التصوير بالم وموقع

موزعة   Vivaldiباستخدام ستة هوائيات    CSTومحاكاته في برنامج  وجات الدقيقة  التصوير بالم 

،   حالة  628  اخذ جيجاهرتز. تم    4.5إلى    1.5ى تردد يتراوح من  تعمل بمد الرأس  نموذج  حول  

مم في    12مم إلى    0.2يتراوح نصف قطرها من    باحجام مختلفةأورام  حالة منها وجود    308تمثل  

أورام . تم   فهي تمثل عدم وجود المتبقية  حالة    320الـ    اما  .  x-zموقعًا مختلفًا في المستوى    28

تقسيم البيانات إلى مجموعة تدريب ومجموعة اختبار. تم تدريب شبكة عصبية تلافيفية تحتوي على 

، على مجموعة التدريب ثم تم اختبارها باستخدام مجموعة   3×    3رشحًا ، كل منها بحجم  م  12

  من اكتشاف وجود الورم   CNNالمصممة      الشبكة  الاختبار. كانت النتائج واعدة ، حيث تمكنت 

٪ في كل من مجموعات التدريب والاختبار. كانت أيضًا قادرًة على تحديد   100بدقة    من عدمه

مم وتحديد الموقع    0.15( صغير يصل إلى  RMSEم بخطأ جذر متوسط التربيع )نصف قطر الور

 . مم 3.15يبلغ   RMSEباستخدام   zفي الاتجاه 
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 قرار لجنة المناقشة إ

كشف )  نشهد بأننا أعضاء لجنة التقويم والمناقشة قد اطلعنا على هذه الرسالة الموسومة

حيدر ( وناقشنا الطالب )بالموجات الدقيقة باستخدام التعلم العميقورم الدماغ عن طريق التصوير  

نيل شهادة ب  اً جدير  قد وجدناهو  2023/  /   ( في محتوياتها وفيما له علاقة بها بتاريخ  صلاح محمود

 هندسة الاتصالات. في اختصاص  علوم- الماجستير

 

 التوقيع:  

 رئيس اللجنة: 

 2023/    /     التاريخ:

 

 

      التوقيع:

 : اللجنة عضو

 2023/    /     التاريخ:

 

 

 التوقيع:  

 عضو اللجنة: 

 2023/    /     التاريخ:

 

 التوقيع: 

     :)المشرف(اللجنة عضو

 2023/    /     التاريخ:
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 قرار مجلس الكلية 

 2023/    /    بتاريخ : المنعقدة          بجلسته  هندسة الالكترونيات اجتمع مجلس كلية   

 .هندسة الاتصالات علوم في اختصاص   منح الطالب شهادة الماجستير المجلس وقرر 

 : مجلسالمقرر 

  2023/    /     التاريخ:

 رئيس مجلس الكلية: 

 2023/    /     التاريخ:

 

 إقرار المشرف 

الة الموسـومة )ن هد بأن هذه الرسـ بالموجات الدقيقة  كشفف ورم الدماغ عن طريق التصفوير  شـ

ــراف( حيدر صففلاح محمودالطالب ) والمعدة من قبل(  باسففتخدام التعلم العميق ــة    في  ناتحت اش ــم هندس قس

علوم في شــهادة الماجســتير الاتصــالات / كلية هندســة الالكترونيات / جامعة نينوى، كجزء من متطلبات نيل  

 .هندسة الاتصالات

 

          التوقيع:                                                 التوقيع:

 ضياء محمد علي أ.م.د الاسم:                       عبوش محمود يونسأ.م.د الاسم: 

 /   /2023   التاريخ:                               2023/  /      التاريخ:

 إقرار المقوم اللغوي

ــالة من  ــهد بأنه قد تمت مراجعة هذه الرس ــحيح ماورد فيها من أخطاء لغوية اش الناحية اللغوية وتص

 وتعبيرية وبذلك أصبحت الرسالة مؤهلة للمناقشة بقدر تعلق الأمر بسلامة الأسلوب أو صحة التعبير.

 

 التوقيع:

 الاسم: 

 2023التاريخ:    /  /

 إقرار رئيس قسم هندسة الاتصالات

 وم اللغوي أرشح هذه الرسالة للمناقشة.بناءً على التوصيات المقدمة من قبل المشرف والمق

 

 التوقيع:

 أ.م.د محمود احمد محمودالاسم: 

 2023التاريخ:   /  /

 إقرار رئيس لجنة الدراسات العليا 

ــالات  ــة الاتص ــم هندس ــرف والمقوم اللغوي و رئيس قس ــيات المقدمة من قبل المش بناءً على التوص

 أرشح هذه الرسالة للمناقشة.

 التوقيع: 

 الاسم: 

 2023/  /   التاريخ:
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 نينوى جامعة  

 هندسة لالكترونيات كلية 

 

كشف ورم الدماغ عن طريق التصوير  

 بالموجات الدقيقة باستخدام التعلم العميق 

 رسالة تقدم بها

 حيدر صلاح محمود
 

 

 الى مجلس كلية هندسة الالكترونيات 

 جامعة نينوى 

 في علوم  متطلبات نيل شهادة الماجستير كجزء من

 هندسة الاتصالات 

 

 

 بإشراف 

 أ.م.د يونس محمود عبوش 

 أ.م.د ضياء محمد علي 

 

ه ـ 5144 م 3202           

 

 نينوى جامعة      

 هندسة الالكترونيات كلية 
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كشف ورم الدماغ عن طريق التصوير  

 بالموجات الدقيقة باستخدام التعلم العميق 

 

 حيدر صلاح محمود

 

 فيعلوم  رسالة ماجستير

 هندسة الاتصالات 

 

 

 بإشراف 

 أ.م.د يونس محمود عبوش 

 أ.م.د ضياء محمد علي 

ه ـ 5144 م 3202           

 


