
University of Mosul

College of Electronic Engineering

FPGA Implementation of H.264/ AVC Decoder

A Thesis Submitted by

Rusul Nabeel Ahmed

To

The Council of College of Electronic Engineering

University of Mosul

In Partial Fulfillment of the Requirements

For the Degree of Master of Sciences

In

Computer and Information Engineering

Supervised by

Dr Mohammed Hazim Aljammas

2018 A.C. 1439 A.H.

رْضِ مِنْ شَجَرَةٍ َ مَا فِي ألْْ ﴿وَلَوْ أَنَّ

هُ مِنْ بَعْدِهِ سَبْعَةُ أَبْحُرٍ بَحْرُ يَمُدُّ
ْ
مٌ وَأل

َ
أَقْلَ

َ عَزِيزٌ ِ إِنَّ أللََّّ مَا نَفِدَتْ كَلِمَاتُ أللََّّ

 حَكِيم﴾

 72: لقمان

Supervisor
'
s Certification

I certify that the dissertation entitled (FPGA Implementation of

H.264 /AVC Decoder) was prepared by Rusul Nabeel under my supervision

at the Department of Computer and Information Engineering, University of

Mosul, as a partial requirement for the Master of Science Degree in Computer

and Information Engineering.

Signature:

Name: Dr. Mohammed Al.Jammas.

Department of Computer and Information Engineering

Date:

Report of Linguistic Reviewer

I certify that the linguistic reviewer of this dissertation was carried out by

me and it is accepted linguistically and in expression.

Signature:

Name:

Date: : / /2018

Report of the Head of Department

I certify that this dissertation was carried out in the Department of

Communication Engineering. I nominate it to be forwarded to discussion.

Signature:

Name:

Date: / /2018
Report of the Head of Postgraduate Studies Committee

According to the recommendations presented by the supervisor of this

dissertation and the linguistic reviewer, I nominate this dissertation to be

forwarded to discussion.

Signature:

Name:

Date: / /2018

Committee Certification

We the examining committee, certify that we have read this dissertation

entitled (FPGA Implementation of H.264 AV\C Decoder) and have

examined the postgraduate student (Rusul Nabeel) in its contents and that

in our opinion; it meets the standards of a dissertation for the degree of Master

of Science in Communication Engineering.

 Signature:

 Name:

Head of committee

Date: / /2018

 Signature:

 Name:

 Member and Supervisor

 Date: / /2018

 Signature:

 Name:

 Member

 Date: / /2018

 Signature:

 Name:

 Member and Supervisor

 Date: / /2018

The college council, in its ………… meeting on / /2018, has

decided to award the degree of Master of Science in Communication

Engineering to the candidate.

 Signature:

Name:

Dean of the College

Date: / /2018

Dedication

My God is not the night except with your thankfulness and the daytime to

your obedience. And the moments are not forgotten except your memory

. Do not wait for the hereafter but Affuk . Do not pray paradise only to

see you.

(God almighty).

To this who reached the message and led the Secretariat. And advised the

nation. To the prophet of mercy and light of the worlds.

(Prophet Muhammad peace be upon him).

To whom God has given glory and glory. To those who taught me tender

without waiting . To whom I carry his name with all pride . I ask God to

extend in your age to see the fruit has come harvested after a long waiting

and will remain your words as stars I promise today and tomorrow and

forever.

(My dear father).

To my angel in life. to the meaning of love and to the meaning of

compassion and dedication .. To the smile of life and the secret of

existence and the secret of my success.

(To my beloved mother).

With all love ... to the companion of my husband's path which is my soul

and all my ambition.

"Who walked with me towards the dream. step by step

We sowed it together ... and harvested it together.

And we will stay together . God willing.

(To My husband and my lover).

To a burning candle illuminates the darkness of my life .To those who

have gained strength and love without limits .To whom you know the

meaning of life.

(To my lovely sister).

To those who have learned the science of siphons of knowledge,

including the professors of the Department of Computer and Electronics.

(To my distinguished lecturers)

To my department in which my future flourished.

(Department Of Computer and Information Engineering).

To my college with which my future was built and laid the foundation

stone for my scientific career.

(Electronics Engineering College).

To this young and mighty scientific edifice university.

(University Of Mosul)

Thanks and praise

 After thanking Allah for his graces by putting me in this

degree of studying, I would like to give my deepest thanks for

the one who supports me and guides me to complete the thesis

by giving me precious advices during the research period , Dr.

Mohammed Al-jammas.

I also thanks all who help me in the Computer and

Information engineering department and electronics department

lecturers specially T.A ' Khalid Fazaa 'in the Electronics

Department and T.A 'Mamoun abd-aljabbar' in Computer and

Information Department.

I

Abstract

The H.264/ AVC considers as a good technical method for

encoding and decoding most types of video formats and provides very

well results. Its power comes from its algorithm in work and how it is

encoding the video frames and it is trying to reach to the ideal access to

gain original video. Our work involves applying the encoding and

decoding process of the standard using MATLAB (2013Ra) program.

The work is focusing in inter frame prediction using the (IBBB) frame

pattern with (28) frames and encoded them in a very record time equal to

() sec, and a decoded time equal to () sec. The video that

was subjected to encoding and decoding processing was (Xylophone

video name) with (240x320) size. In this way, we reached to compression

rate =71%, this is a very good value.

In the second part of this thesis, involve a practical applying of the

H.264/ AVC in FPGA kit (Spartan 6). Intra prediction is using in the

second part because of the determinants that are within the design of the

kit. We were able to achieve the conditions by working within the

appropriate frequency for the kit and within the inner silicon area of the

kit and this is clear from the results we have obtained.

II

TABLE OF CONTENTS

Subject Page

Abstract I

Table of Contents II

 List of Tables V

List of Figures VI

List of abbreviations X

CHAPTER ONE – INTRODUCTION

1.1 Background 1

1.2 The Application of H.264 1

1.3 Literature Survey 3

1.4 The Aim of the Project 4

1.5 Thesis Layout 5

CHAPTER TWO – Theoretical Background of H.264

/AVC encoder and decoder

2.1 Introduction 6

2.2 Video Coding. 6

2.2.1 Video Coding Standard History 7

2.2.2 Video Coding Basic Principles 8

2.3 Color Spaces 9

2.3.1 RGB,YUV and YCrCb color spaces 10

2.3.2 YCrCb Sampling Formats 12

2.4 H.264/ AVC standard 13

2.4.1 H.264 profiles 14

2.5 H.264 Encoder and Decoder 15

2.6 The H.264 working 17

2.6.1 motion estimation and compensation 18

III

2.6.1.1 motion estimation and compensation procedures 18

2.6.1.2 Motion estimation and Compensation algorithms 19

2.6.1.3 The Motion Vector s 23

2.6.1.4 Matching Criteria 24

2.6.2 Intra and inter frame prediction 25

2.6.2.1 Intra Frame Prediction 25

2.6.2.2 Inter Frame Prediction. 28

2.6.3 The H.264transformation , quantization(scaling). 29

2.6.4 H.264Decoder Overview. 30

2.6.4.1 Rescaling and inverse transform. 31

2.6.4.2 Reconstruction. 31

CHAPTER THREE – Implementation of H.264/AVC

encoder and decoder in MATLAB

3.1 Introduction 33

3.2 Encoder process 33

3.3 Encoder initialization 35

3.3.1 Inter prediction steps 36

3.3.2 Transformation and quantization units 42

3.4 H.264 /AVC decoder 44

3.4.1 Rescaling and 2D- IDCT 45

3.5 Compression rate and Bit error 48

3.5.1 Compression rate 48

3.5.2 Bit error rate 48

3.5.3 Timing calculations 49

4.1 Introduction 51

4.2 FPGA chip expression 51

IV

4.3 FPGA Basic parts 52

4.4 Spartan 601 overview 53

4.5 H.264 encoder and decoder in FPGA 54

4.6 The H.264 /AVC Encoder design 54

4.7 H.264 intra prediction FPGA design 56

4.7.1 (4x4)Luma prediction in FPGA 60

4.7.2 Chroma Intra prediction in FPGA. 61

4.7.3 The transformation unit in FPGA. 63

4.7.3.1 DCT transformation or (core transform) 64

4.7.3.2 The DC transform (hadamard transform) 65

4.7.4 The Quantization unit in FPGA 67

4.8 The H.264 decoder design in Fpga . 71

4.8.1 Inverse Hadamard transform . 73

4.8.2 The rescaling or de-quantization unit design. 75

4.8.3 Inverse Core transform 77

4.8.4 The reconstruction of the frame 78

4.9 The overall design results 79

CHAPTER FIVE – Conclusion and future works

5.1 Conclusion Work 80

5.1.1
The H.264/ AVC encoder and decoder design

using matlab
80

5.1.2
The H.264/ AVC encoder and decoder design

using (FPGA)
81

V

5.2 Future works 81

References 83

Appendix A 89

Appendix B 101

Arabic Abstract 1

LIST OF TABLES

Table Title

3.1 Frame in YUV

3.2 Frame in YUV after Motion Estimation .

3.3 Motion Estimation and Compensation of TUV Frame.

3.4 Residual Frame Values.

3.5 Residual frame after 2D-DCT.

3.6 Transformed frame after quantization.

3.7 Rescaling Frame Values.

3.8 Inverse Transform Frame Values.

3.9 Decoding Frame.

3.10 Original Frame.

3.11 I Frame Time.

3.12 B Frame Time.

4.1 FPGA parts specifications

VI

4.2 The basic Equations in intra mode

4.3 The derived Equations in intra mode

4.4 Equation results to predicted values of each pixel

4.5 QP and Q Step Relationship

4.6 Shows the value of (PF)

4.7 The relationship between MF and QP

4.8 Represents the rescaling factor

LIST OF FIGURES

Figure Title

2.1 Encoder and Decoder.

2.2 Temporal and Spatial Samples

2.3 Color (Red, Blue, Green) Sensitivity

2.4 sampling patterns

2.5 H.264 and MPEG comparison

2.6 H.264 Profiles

2.7 H.264 encoder stages

2.8 H.264 Decoder

2.9 Frames to encode .

2.10 Block matching and motion vector

VII

2.11 Full search algorithm.

2.12 2D-Log algorithm

2.13 The TSS algorithm

2.14 The Diamond Search algorithm

2.15 4x4 luma prediction

2.16 The 4x4 luma samples and direction

2.17 16x16 luma prediction

2.18 Transform and Quantization

2.19 The re-scaling process

2.20 Inverse transform

2.21 The reconstruction process.

3.1 The H.264 Encoder steps.

3.2 YUV of the Xylophone video.

3.3 YUV of the Foreman video

3.4 Original frame vs. intra frame

3.5 original frame vs. motion estimated one

3.6 Motion estimation and compensation of the video

3.7.a Motion Vector of Frame #2

3.7.b Motion Vector of Frame #3

3.7.c Motion Vector of Frame #4

VIII

3.8.a Motion Vector of Frame #2

3.8.b Motion Vector of Frame #3

3.8.c Motion Vector of Frame #4

3.9 1D-DCT

3.10 2D-DCT

3.11 H.264 Decoder Steps

3.12 Reconstructing Frame

3.13 Original and Decoding video

4.1 Spartan6 Kit

4.2 Encoder Processes.

4.3 The four RAMs

4.4 Reading from the output memory

4.5 (4x4) Luma prediction.

4.6 (4x4) luma unit architecture .

4.7 Data In and Data Out, the (8x8) Chroma Unit

4.8 Architecture of the (8x8) Chroma Unit.

4.9 Forward Luma transform

4.10 (8x8) forward chroma transform

4.11 The DCT or core transform design.

4.12 Signals of the DCT design.

IX

4.13 Hadamard (DC)transform architecture

4.14 Hadamard (DC)transform signals

4.15 Quantization unit design

4.16 Quantization unit signals and results .

4.17 Decoder process

4.18 (4x4) Luma inverse transform

4.19 (8x8) chroma inverse transform

4.20 simulation results of inverse Hadamard transform.

4.21
The architecture design of inverse Hadamard

transform.

4.22 The simulation results of de-quantization unit

4.23 The architecture design of de quantization unit

4.24 Design of the inverse core transform.

4.25 Simulation results of the inverse core transform.

4.26 Simulation results of the reconstruction unit.

4.27 Reconstruction design unit

4.28 Overall Design Utilization

X

LIST OF ABBREVIATIONS

Abbreviation Name

ALU Arithmetic Logic Unit

AVC Advanced Video Coding.

B frame Bi-directional frame

CABAC Context-adaptive binary arithmetic coding

CAVLC Context-adaptive variable-length coding

CD Compact disc

Chroma Chrominance

CPU Central Processing Unit

DCT Discrete Cosine Transform

DCM Digital Clock Manager.

DDR2 Double data rate synchronous Dynamic Random-

access memory .

DVD Digital Video Disc.

FPGA Field-Programmable Gate Array

GOP Group Of Picture

HD High Definition.

I frame Intra frame.

IDCT Inverse Discrete Cosine Transform

XI

ISE Institute of Software Engineers

ISO International Organization for Standardization

ITU-T International Telecommunication Union

Telecommunication Standardization Sector.

JVT Joint Video Team

Luma Luminance

LUT Look Up Table

MAD Mean Absolute Difference

MATLAB Matrix Laboratory

MPEG Moving Picture Experts Group

MSE Mean Squared Error

NAL Network Abstraction Layer

P frame Predicted frame

PAL Phase Alternating Line

RAM Random Access Memory

RTL Radio Television Luxembourg.

SAD Sum Absolute Difference

SP601 Spartan 601 kit

TSS Three Step Search

TV Television

XII

UART Universal Asynchronous Receiver-Transmitter

USB Universal Serial Bus

UWB Ultra Wideband

VCEG Video Coding Experts Group

VHDL Hardware Description Language

1

Chapter One

Introduction

1.1 Background

In our technological world, the technology and multimedia are

increasing exponentially day by day. Video conferencing and telephony,

TV, streaming Video/Audio online, etc. are demand in video industry.

These applications require a high bandwidth, large storage, and high

latency time to send on network. Achieving these requirements, we must

reduce this huge data by compressing the original video at the transmitter

before sending. At the receiver, it required to decompress the video file to

retrieval original video. Many different video codec standards such as

H.261, MPEG-1, MPEG-2, H.263, and H.264 are implement.

H.264 is the aim of this research and it is the international video

coding standard. This protocol was developed jointly by International

Telecommunication Union–Telecommunication Standardization Sector

(ITU-T), and International Organization for Standardization (ISO). Video

coding has become an integral part for every computing device from

televisions and computers to portable devices such as cell phones.

Achieving high quality resolution over limited bandwidth has led to the

development of the H.264 video standard providing greater encoding

performance [1][2].

1.2 Application of H.264

H.264 / AVC standard enters in almost necessary life joints that

need to use high-resolution videos. This indicates that it has a flexibility

in applying it, because of its ease and the richness of the results obtained

through it. These are some applications of the standard:

2

 Used to monitor the movement of the child inside the house if it

contains cameras dedicated or any place was installed surveillance

cameras inside. The cameras are connect via the internet, if a large size

of video file then, we will need a large bandwidth, for this will reduce

the size by the H.264/ AVC standard.

 Used in a smart house that controls remotely through the internet, the

cameras installed all over the house to monitor.

 Used in medical application. In last some years and through the

improvement and growing in technology the turned attention is to the

medical healthcare field. Easy access to the medical videos and the

three dimensional (3D) medical data sets, such as computed

tomography (CT), magnetic resonance imaging (MRI),

echocardiograph and so on, provides doctors with best capability to

analyze and diagnose the patient conditions. Medical videos and 3D

medical data sets require large amounts of memory for storage and

large transmission bandwidth in telemedicine applications. This calls

for video compression and decompression to reduce the amount of

data needed to represent the video. The best choice for this reasons, is

H.264/ AVC.

 In internet, the security is the magic word of sending and receiving

through the internet. The security of video communication is a

challenging task especially for wireless video applications. The

perceptual video encoding scheme is proposed by exploiting the

special feature of the entropy coding and decoding in H.264. The

encoding scheme is compose of coded block pattern changing, sign of

trailing ones scrambling and levels of the non-zero coefficients

encryption. The important syntax elements and sensitive coded

elements are chose to encode using mathematical operations,

permutation

3

and etc., so the H.264 is suitable for the security multimedia services

like a mobile device and wireless applications.

1.3 Literature Survey

The bright aim of this work on H.264 is to reduce the huge amount

of the data in a video during the transmission or storage. Video

compression is aimed to make the digital storage or transmission at this

time at the best state because the huge information of many digital videos

became difficult to transmit or storage with a limited bandwidth or

resource for storage. At the transmit side there is a video compression

unit, and on the other side there is a decompression unit to inverse the

operation and to retrieval the original video. Because of the huge benefits

of this talent, produce many researchers work on H.264/AVC (encoder

and decoder):

 In August 2011 YIM, Ka Yee [3], in his thesis, they worked in video

decoder for H.264/AVC, which is supports full HD resolution, by

modulation the baseline profile decoder. Developed and integrate the

CABAC decoder to the baseline profile. The new profile, baseline,

was reused to provide the full HD.

 In May 2010 Samia Sharmin Shimu [4], she present how to use the

H.264 video codec in HD video transmission by Ultra Wide Band

(UWB). The UWB used because of its short range, low power and

cost. She used the JM 15.1 simulation program to reduce some of the

H.264 encoder parameters, which are important to deal with them in

communications applications. These parameters like in–loop de-

blocking filter, GOP length and the quantization parameters for the

frames (I, P and B).

4

 In June 2008 Kermin Fleming, and others [5], are dealing how to

use the H.264 video codec in multiple applications from the phone cell

to the HD TV. They designed the major H.264 and they showed how

many applications could share the design benefits. The practical

worked implemented by Bluespec System Verilog. They designed a

variety of H.264 decoder designs with the resolutions ranges from

(176X144 at 15 fr/sec.) of QCIF to the (1280X1080 at 60 fr/sec.).

They generated multiple RTL design for (IP frames in H.264 codec).

 In July 2003 Michael Horowitz and others [6], they are present a

H.264 decoder in baseline profile. They measured some of basic

computational operations that required by the decoder to do well

results, and measured the frequency of the decoder by using bit

streams that generated from two different encoders of a variety

contents, resolutions, and bit rates. They compared the results of the

decoder to that in Pentium 3 hardware platform. The results from this

comparison takes to compare it with the H.263 baseline decoder

profile. They found that the H.264 profile decoder is more complex

from the H.263 by (2.5 times).

 In October 2011 A. Ben Atitallah, H. Loukil , N. Masmoudi [7],

they designed H.264 encoder by using FPGA. They tried to reduce the

critical path length and increase the throughput using pipeline

architecture. This design implement by Altera Stratix III FPGA and

VHDL language. The throughput of the FPGA architecture reaches a

processing rate higher than 177 million P/sec at 130 MHz.

 1.4 The Aim of the Project

Major manufacturers of video cameras are seeking to improve the

quality and accuracy of videos, the quality and accuracy of the videos

5

have evolved to obey the users desire to take best videos and images.

Everyone need to share his own videos, while maintaining the quality and

accuracy of the video. The aim of this thesis is to implement and design

the main profile of the H.264 decoder. The main profile used to produce

good results. The theoretical work is about programming the H.264

encoder of (IBBB frame types and series) to encode the original video.

We used video named (Xylophone) of size (644) KB, frame size

(320X240) and frame rate equal to (30 fr/sec), implemented using

MATLAB as good environment to explain the results. In the practical

work, the Intra frame coded by VHDL using Spartan-6 SP601 evaluation

kit [3].

1.5 Thesis Layout

This thesis includes five chapters as following:

 Chapter Two includes the general definition of the H.264 encoder and

decoder. It includes the history of the beginning about video coding

and decoding, and explaining how it is important.

 Chapter Three, design H.264 encoder and decoder in MATLAB

program and explain in details how the video frames are encoding and

decoding them.

 Chapter Four, is a practical design of the H.264 /AVC in FPGA using

(VHDL) as a programming language. Our design in the encoder and

decoder include designing each parts individually and gathering them

in main program. This step is a smart step to exploit the specifications

of encoder design. This leads to reduce the area space and stay in the

limited range of the kit storage space.

 Chapter Five, the conclusion of the designing in MATLAB and in

FPGA kit, and it include the useful suggestion for future works.

6

Chapter Two

H.264 Encoder and Decoder

2.1 Introduction

Video coding as a term, is a process of converting the original

video frames in a format which is compatible with many video player

applications. The past decade, videos are stored in magnetic tape or at an

analogue format. With a development in science wheel, the (CD)

Compact Disc was been invented, then (DVD) Digital Video Disc was

set. For the approval of this scientific development, the analogue format

of the video was been replaced by the digital one. It becomes possible for

all to watch and store the high-definition videos thanks to this scientific

progress. The Internet has become an integral part of our daily lives and

anyone can upload or download the high-quality videos. There are many

things to consider when downloading or uploading videos via the network

like video size, video resolution and as these criterion was increased, we

need a high bandwidth, longer time to reach and etc. For these reasons,

video coding technique is a more important part at sender side of the

network and at the receiver, the video decoding is necessary. Data

compression term is the process of reducing the information we need to

send them over the bandwidth and the size of the disk space if it is stored.

2.2 Video Coding.

Video encoding (compressing) is an operation to reduce the desired

video size to be able to send, store and make modifications to the user's

wishes. Uncompressed video, video clip, was taken from the camera

contained a large amount of data. For example, the video clip was been

recorded with a resolution of (720x576) (PAL) Phase Alternating Line,

with a frame rate of (25 fps) and (8-bit) color depth takes:

7

(720 x 576 x 25 x 8) + (2 x (360 x 576 x 25 x 8)) = 1.66 Mb/s. PAL is a

color encoding system for analogue television used in Europe. Another

video clip was HD with resolution (1920X1080) with (60 fps) and (8 bits)

color depth it takes: (1920 x 1080 x 60 x 8) + (2 x (960 x 1080 x 60 x 8))

= 1.99 Gb /s.

In YUV color system, each pixel has one brightness value

(luminance) and two colors values (chrominance). From these two

examples, we notice there are amounts of information to be process in

different applications so we need a large amount of storage (hard disk)

and high processor to deal with them. In every codec system, there is a

complementary element, encoder and decoder [10]. Encoder reduces the

size of the video through the stages built into its design otherwise the

decoder decoding the encoded video by stages built into its design.

2.2.1 Video Coding Standard History

With the development of technology and the emergence of

different and modern types of cameras that competed for the manufacture

of major international companies to obtain the best quality and the image

of the video taken. With the entry of Internet in all joints of life increased

the desire of users to capture videos and send them to those who want,

regardless of the size or quality of the video. It was necessary to invent a

way to shrink the size of this video, whatever its quality and then send it,

but it must be takes into account not to lose the original video information

when encoded it and get the original video information at decoder side.

Since the early 1990s, when the technology was in its infancy,

international video coding standards , H.261, MPEG-1, MPEG-2 / H.262,

H.263 , and MPEG-4 (Part 2) or H.264 have been the engines behind the

commercial success of digital video compression [9].

8

ITU-T H.264 MPEG-4 (Part 10) advance video coding is the

newest series of international video coding standards. The basic of this

standard lie in the series of ITU-T/H.26L digital video compression

standards. It is currently the most powerful and the best in terms of output

standard, and developed by a Joint Video Team (JVT) consisting of

experts from ITU-T’s Video Coding Experts Group (VCEG) and

ISO/IEC’s Moving Picture Experts Group (MPEG). Figure (2.1) shows

the idea of the encoder and decoder.

Figure (2.1) Encoder and Decoder

 2.2.2 Video Coding Basic Principles

The video clip is an expression of a set of footage taken at

successive intervals and continuously consists our video. It consists of a

set of frames, these frames are a group of blocks and therefore they are

composed of a set of pixels. Digital video is a representation of a real

world visual scene that sampled spatially and temporally. The scene of

the video contains shapes, textures, height, depth, colors, and

illuminations. These characteristics determine the smoothness, quality

and clarity of the video [10]. The characteristics of a natural or real video

scene that are relevant to the video processing include spatial

characteristics such as (texture that is varying within scene, number and

shape of objects, color) and temporal characteristics like (object motions

in time, changes in illumination and movement of the camera) [11].

Figure (2.2) explains the temporal and spatial sampling.

9

Figure (2.2) Temporal and Spatial Samples

2.3 Color Spaces

As we know, the light is a characterized by its wavelength

(frequency) and intensity. The color is a visual perception of the light

arriving at the photoreceptor cells in the retina of human eyes. The ability

of the human eyes to distinguish colors is back to the varying sensitivity

of different cells to the light of different wavelengths, and there are two

kinds of photoreceptor cells in the human eyes (Rods and Cones). Rods

are sensitive to the light intensity but insensitive to the colors, but cones

are sensitive to the colors and insensitive to the light intensity. At very

low light levels, visual experience just depends on the rods. For example,

we cannot recognize the colors correctly in the dark rooms, because only

one type of photoreceptor cell is active. The retina contains three types of

cones that they can sense light with the spectral sensitivity peaks in short

(420–440) nm, middle (530–540) nm, and long (560–580) nm

wavelengths corresponding to (blue, green, and red) light respectively

[13]. Figure (2.3) shows the colors (Red, Blue, Green) Sensitivity.

Temporal

sasamples

sample

Spatial

11

Figure (2.3) Color (Red, Blue, Green) Sensitivity

2.3.1 RGB, YUV and YCrCb Color Spaces

In the RGB color space, the image sampled into three values of

equally distributed colors. These colors (Red, Green and Blue) are the

basic color, by mixing them consist the other colors. In human visual

system, it is sensitive to the luminance than color. If there is a video

scene, the eye will be sensitive to the change of the intensity of the light

more than the color changes and that is why in the dark, eyes don't

distinguish colors, but be sensitive to the light and this is because of the

physiology of the eyes. In RGB frame, each color sampled in equal rate

but in other hand, the eye is less sensitive to the color so we can exploit

this property by approved the YCrCb color space.

The YUV, Y is the lumnance (brightness) component while U and

V are the chrominance (color) components. This model used in PAL

composite color video (or in TV) where the Y is refer to the luminance

and UV to the colors [13]. YUV and RGB conversion matrix shown in

equations (2.1) and (2.2).

11

The YCrCb is the new color space and it is mainly based on

principle of it is possible to represent a color image more efficiently by

separating the luminance from the color information and representing

luminance with a higher resolution than color. The Y:Cr:Cb color space is

a popular way of efficiently representing the color images. Y is the

luminance component and can be calculate as a weighted average of R, G

and B in equation (2.3)

Where k are weighting factors. The color (Red, Blue and green)

Information can be represent as color difference (chrominance)

components, from these equations (2.4, 2.5, and 2.6).

The RGB image can be convert to YCrCb after capture to reduce

storage and transmission requirements (channel bandwidth) at encoder

side. At the decoder side and before displaying the image, it is necessary

to convert it to RGB. The green color can be extracted from the YCrCb

representation by subtracting Cr and Cb from Y, because it is not

necessary to store or transmit a Cg component.[12][13].

12

2.3.2 YCrCb Sampling Formats

YCrCb has three pattern of resolution used in video coding

standards (4:4:4, 4:2:2 and 4:2:0).

 In first one (4:4:4) or full resolution is meaning that the three

components (Y, Cr and Cb) have the same resolution and the sampling

of each component exists at each pixel position. The numbers indicate

that the relative sampling rate of each component in the horizontal

direction is equal which means for every Y component (4 Y), (4 Cr)

and (4 Cb).

 In 4:2:2 or YUY2 the chrominance elements have the same resolution

to the luminance in vertical but half in horizontal resolution. In every

of 4 luminance samples in the horizontal direction there are (2 Cr) and

(2 Cb) samples.

 The 4:2:0 or (YV12) is the most popular resolution format used by

H.264 /AVC (Advanced Video coding). Here there is 4 luminance or

Y components and half values of the chrominance components in

vertical and horizontal direction. The 4:2:0 sometimes called (YU12)

because there is 12 bits per pixel. Using 4:2:0 sampling, only 6

samples are required, 4 Y and one each of Cr, Cb, and 8 bits, requiring

a total of (6×8)=48 bits, an average of (48/4)=12 bits per pixel.

Figure (2.4) shows the sampling patterns format.

Figure (2.4) Sampling Patterns

13

2.4 H.264 /AVC Standard

The H.264 /AVC is the new standard improved by the ITU-T

(VCEG) Video Coding Experts Group sharing with the ISO/IEC JTC1

(MPEG) or moving picture experts group. The project cooperation effort

known as the Joint Video Team (JVT). The final drafting work on the

first version of this standard was complete in May 2003, and the other

extensions of its capabilities have been add in subsequent editions. H.264

supposedly best known as being one of the video encoding/decoding

standards for Blue ray discs. It is also widely used by the Internet sources,

like videos from YouTube, I Tunes store, Tube mates and Vimo, Web

software such as the Adobe Flash Player. The advantage of H.264\ AVC

it can get best performance and high quality results compared to the

standards that preceded it. Compared to the MPEG 4 and MPEG 2, the

H.264 has a lower bit rate and high quality in the same compressed

image. For single layer DVD, it is possible to store a movie about 2 hours

in MPEG-2 and MPEG-4, and can store movie of 4 hours with lower bit

rate and best compression, this means (1.5 or 2) times best compression

rate compared with MPEG2 and MPEG4 video coding standards. Figure

(2.5) explains the comparison between the H.264 and MPEG-4.

Figure (2.5) H.264 and MPEG Comparison

14

2.4.1 H.264 Profiles

H.264 defines numbers of profiles and levels for helping to

complete the process with the best formula and the best results. Each

profile uses techniques and tools to produce best results. The H.264

standard has many types of profiles like (baseline, main, extended, and

high) [14]. Figure (2.6) shows the H.264 profiles types.

 The baseline profile mainly used in applications that need low delay

and complexity, it used in applications like mobile or conversational

video transmission. It use (I, and P) types (Intra and Inter frame

processing) with CAVLC.

 Extended profile is the same to the baseline with different in adding

new tools to it that be able to be useful for efficient network streaming

of H.264 data.

 The main profile is a superset of the Constrained Baseline Profile and

it adds a coding tools that can be suitable for an entertainment and

broadcast applications like a digital TV and DVD playback, namely

(CABAC) entropy coding and a bi-directional prediction or B slices

with prediction modes for better coding efficiency.

 The high profile support s higher quality applications, high definition,

extended bit depths, higher color depths. High Profile is a superset of

the Main Profile with adding the following tools (8×8) transform and

(8×8) inter prediction for better coding performance. It may be useful

for high definition applications.

 The High 10 profile, the maximum number of bits per sample

extended to 10 bits in the High10 profile and to 14 bits in the High444

profile.

 The High422 Profile adds support for 4:2:2 video, i.e. higher

Chrominance resolution.

15

 High444 Profile extends this to 4:4:4 video giving equal resolution in

luminance and chrominance components and adds separate coding for

each color component.[12]

Figure (2.6) H.264 Profiles

2.5 H.264 Encoder and Decoder

H.264 encoder is the new technological way to encode and reduce

the size of the indicated video to be able to send it over the network or

store it in storage media like DVD, blue ray, and USB flash memory. It

contents many stages as shown in Figure (2.7).

Figure (2.7) H.264 Encoder Stages.

The encoder has two paths (forward and reconstruction paths).

 In forward path, the input frame is process in units called macro

blocks. Each macro block is encoded in an (intra or inter) mode and

for each block in the macro block, a prediction is formed based on

16

reconstructed picture samples. In the Intra mode, prediction picture is

formed from samples in the current slice in (I frame type) that have

previously encoded, decoded and reconstructed. In the Inter mode, the

prediction picture is formed by the motion compensated prediction

from one or two previous reference picture(s), and the prediction

reference for each macro block partition (in inter mode) may be

chosen from a selection of past or future pictures (P or B frame types)

that have already been encoded, reconstructed and filtered. The

prediction picture is subtracted from the current block to produce a

residual block that is transform (using a block transform) and

quantized to a set of quantized transform coefficients, which are

reorder and entropy encoded. The entropy encoded coefficients,

together with side information required to decode each block within

the macro block (prediction modes, quantize parameter, motion vector

information, etc.) form the compressed bit stream which is passed to a

Network Abstraction Layer (NAL) for transmission or storage.

 The reverse path in the encoder include decodes, (reconstructs) each

block in a macro block to provide a reference frame for further

predictions in the next. The coefficients are rescaled and inverse

transformed to produce a difference block. The prediction block added

to the previous decoded block to create a reconstructed block. The

reconstructed reference picture is create from a series of blocks [12].

The H.264 decoder used to decode the encoding video come from the

encoder. The decoder receives the compressed bit stream and decodes

the data elements to produce a set of quantized coefficients, they are

rescale and inverse transformed. Using the header information

decoded from the bit stream, the decoder creates a prediction block

[12]. Figure (2.8) shows the H.264 decoder path.

17

Figure (2.8) H.264 Decoder

2.6 The H.264 Working

The H.264/ AVC have many stages to help it to have best result

(block matching, transform and quantization in the encoder side, and

inverse transform and quantization at decoder side). The motion

estimation (block matching) and composition is the power of H.264

because it reduces the amount of the data in the video overall and frame

in special. A variety of methods used to reduce the video data, both

within an image frame (I frame) and between a series of frames (I, P and

B frame types). Within an image frame or (I frame), data may be reduced

by removing the unnecessary data, which will have an impact on the

image resolution. On the other hand, in a series of frames, the video data

can be reduce by comparing a frame with a reference frame (I- P-or B

frames) and only pixels that have changed with respect to the reference

frame are code. In this way the number of pixels values that are coded

and sent are reduced [17]. Figure (2.9) explains how the frame is

encoded.

Figure (2.9) Frames to Encode.

18

2.6.1 Motion Estimation and Compensation

In H.264, Each frame divided into blocks (16x16) pixels called the

macro blocks (MB). Each macro block encoded by using blocks of pixels

encoded within the current frame or (Intra frame) coding or the micro

blocks can be encoded by using blocks of pixels in previous or future

encoded frames (Inter frame) coding like (P and B frames). The process

of finding the best matching of pixels block in the inter frame is called the

Motion Estimation (ME) and the displacement vector between two blocks

is the Motion Vectors (MV) of the block [18][20]. The motion estimation

is computationally expensive process when the search was doing at every

pixel position over different reference frames [18]. There are several

different integer search algorithm used to find the best matching like:

 Full search algorithm

 Fast integer search algorithms like (2D log algorithm, 3steps

algorithm, diamond search, etc.)

The process of subtracting the two matching blocks after finding the best

match and gain the motion vector called motion compensation.

2.6.1.1 Motion Estimation and Compensation Procedures

These procedures is execute in the MB and it contained:

1. For the reference frame, the search area is define to every block in the

current frame. The search area size as (2 to 3) times the macro block

size (16x16). After the searching process, the best matching value

found in this collected area. The best matching value is determined

based on the minimum displacement motion vector. This done by

subtracting the candidate block in the search area from the current

block located in the current frame. The process to find the best

matching blocks called block based motion estimation. When the best

matching is found, the motion vectors and the residues between the

19

reference and current blocks are computed and found, so the process

of having the motion vectors and the residues is known as the motion

compensation, this values is encoded by the DCT transformation and

quantization. At the decoder, the process is reverse and decode by the

inverse transformation and quantization. Figure (2.10) shows the

block matching and motion vector.

Figure (2.10) Block Matching and Motion Vector

2.6.1.2 Motion Estimation and Compensation Algorithms

There are many types of algorithms are used in H.264/ AVC to find

the best matching between blocks in the search area of the reference

frame and the current or previous frame, these are some algorithms:

1. Full Search or (Exhaustive Algorithm).

It is the most computationally expensive block-matching

algorithm. This algorithm calculates the cost function at each possible

location in the search window in frame. As result, it finds the best

possible matches and gives the highest PSNR amongst any block

matching algorithm .The disadvantage of this algorithm need larger

search window, which require more computations. [19][20].

Figure (2.11) explains the full search algorithm where the shaded blue

color represents search steps of the blocks within the frame.

21

Figure (2.11) Full Search Algorithm

The total number of candidates windows are ((2P+1)^2) with (±Px,

±Py) search window, where Px, and Py are the sizes of the search

window in the x and y direction respectively. For a (512x512) frame

with (P16=number of blocks divisions) so the number of operation per

frame is ((2X16)+1)^2=1089.

And (512x512x1089) = 2.85x10^8

so with a frame rate of (30fps), the number will be

(8.55x10^9) per minute and this is the number of process per minute

and the complexity is (P^2).

2. The 2 D Log Algorithm

This algorithm has steps to find best matching.

 The first step includes (select an initial step size(s) and calculate

the error for the block at the center of the search area and four

points at (x) and (y) axis at distance (s) from center).

 The second step, if the position of the best match at the center of

the candidate block, keep the center unchanged and reduce the step

21

size by half, otherwise the best match becomes the center so repeat

the first step.

 In the last step, if the step size value becomes (1), then all the (8)

neighbor blocks around the collected center will be checked to find

the best match. The 2D-log search algorithm has lesser search

points than TSS, yet its prediction is more accurate, it defines the

step size at the beginning and terminates if the step size is equal to

one.

The 2D-log has the advantage of better prediction quality than the

Full search and TSS algorithms. The complexity of this way is

about ((log (p/2)) where p is the search area size [20]. Figure (2.12)

show the 2D-Log algorithm.

Figure (2.12) 2D-Log Algorithm

3. Three Steps Search Algorithm or (TSS)

This is a good algorithm for the result to find the best matching and

it is involving steps:

 In the first step, we select the initial step size (s) equal or larger

than half of the maximum search range, then calculate the error for

22

the block at the center and (8) square points neighbors at the

distance of is from center.

 The second step includes moving the center to the point with

minimum error and reducing step size by a factor of two. If the step

size is greater than one, then repeat the first step, otherwise,

implement the next step.

 In the last step, the final point with minimum error is the result.

This method has low complexity but it has a high data bandwidth.

The complexity, it is the same at the 2D algorithm (log(P/2)).

Figure (2.13) show the TSS algorithm steps.

Figure (2.13) The TSS algorithm

4. Diamond Search Algorithm

Diamond Search (DS) algorithm uses a diamond search patterns,

there is no limits of the number of steps. There are two different types

of fixed patterns used for searching, the Large Diamond Search

Pattern (LDSP) and the Small Diamond Search Pattern (SDSP). The

search processing is done by the first (LDSP), and it stated with start

with determination the search location at the center and choose the

step size (S=2), then stating search for (8) locations pixels (X,Y) such

that (|X|+|Y|=S) around location (0,0) using a diamond search point

23

pattern. Choose among the (9) locations searched, the one with

minimum error value. If the minimum weight is founding at the center

of search window, then go to the SDSP step, else if the minimum

weight is founding at one of the (8) locations other than the center,

then set the new origin to this location and repeat the LDSP. The

SDSP is also contains steps for searching. It start with setting a new

search origin point and new step size S = S/2=1, then repeating the

processing in LDSP to find the minimum value of error in points. This

algorithm finds the global minimum very accurately as the search

pattern is neither too big nor too small. Diamond Search algorithm has

a peak signal-to-noise ratio close to that of Full Search with less

computational expense. The DS algorithm has a complexity of the

order of (log (p/2)). Figure (2.14) explains the Diamond algorithm

steps.

Figure (2.14) Diamond Search Algorithm

2.6.1.3 Motion Vectors (MV)

MV defined as the displacement between the current block and the

best matching block in the search area in the reference frame. It is the

successive key of motion estimation and it is a directional pair

representing the displacement in the horizontal direction (x-axis) and

24

vertical direction (y-axis). The maximum value of MV determined by the

search range. Traditionally one MV produced from each macro block in

the frame.

2.6.1.4 Matching Criteria

Block based motion estimation gains the best matching by

minimizing the cost function. Many cost functions have been used and

analyzed to find the minimum value. The Sum of Absolute Difference

(SAD), Mean Absolute Difference (MAD), Mean Square Error (MSE)

are some models of calculation the cost function.

 Sum of Absolute(SAD)

SAD is the most common matching method used in the video

coding, because has good performance, low complexity ease in the

hardware implementation. Equation (2.7) is the SAD equation

Where (NxN) is the block size.

CB(i,j) is the current block intensity at location (i,j)

RB() is the reference frame block intensity at location (i,j) [21].

 Mean Absolute Difference (MAD)

The mean absolute difference has its equation and explained in

equation (2.8)

Where (NxN) is the block size.

CB(i,j) is the current block intensity at location (i,j)

RB() is the reference frame block intensity at location (i,j).

In the MAD (m,n) represents MAD at search position (m,n) and

25

(m,n) is the displacement vector of the micro block. The advantage

of the MAD cost function is its simplicity and ease of

implementation in hardware. Unfortunately, MAD tries to focus on

differences of small values, giving a lower result to MSE. The only

difference between SAD and MAD is that SAD takes the sum of

all pixels in the candidate block, but MAD measures the absolute

difference of the average pixel value in its candidate block.

 Mean Square Error (MSE)

This method is measuring the energy in the remaining in the

difference block. The MSE equation:

Where (NxN) is the block size.

CB(i,j) is the current block intensity at location (i,j).

RB() is the reference frame block intensity at location (i,j).).

In the MSE (m,n) represents MSE at search position (m,n) and (m,n)

is the displacement vector of the micro block. The advantage of the

MSE is its accuracy, but its disadvantage is the complexity is high for

both software and hardware implementations.

2.6.2 Intra and Inter Frame Prediction

There is two types of prediction used in h264/ AVC to reduce the

information in the frame, intra and inter frame prediction.

2.6.2.1 Intra Frame Prediction

Is the process to predict the blocks of an individual frame, and try

to reduce the amount of data with minimum loss and high quality. Intra

coding refers also to the case where only spatial redundancies within a

video picture are exploited. In H.264 /AVC, the intra frame prediction is

26

an alternative to the inter frame prediction. If a block is part of a (P-slice

or a B-slice), the encoder decides which prediction gives the best result. If

there is no good motion prediction, then inter prediction is used. The

macro block size may be (16x16) and divided into (16x8), and (8x16) or

its size is (8x8) and divided into (8x4), and (4x8) and we can merge into

size of (8x16), or (16x8). The (4x4) macro block size could not be divide

into smaller size. A bigger macro block covers large area of frame and

more information but low quality in there constructed image, and it

decreases the computation cost and the complexity of algorithm. The

bigger macro block used in the frame to code continuous area of picture.

In the other side, the lower value of macro block used to predict the

smallest details in the frame. The smaller macro block improves the

quality of reconstructed image but increases the computational cost and

complexity of algorithm. Figure (2.15) is about the (4x4) Luma

prediction. There are several modes used to predict the Luma and Chroma

samples in the frame:

1. Intra modes for Luma samples [4 modes for (16x16) blocks, 9

modes for (4x4) blocks, and 4 modes for (8x8) blocks].

2. Intra modes for Chroma samples [4 modes for (8x8) blocks].

Figure (2.15) (4x4 Luma Prediction)

27

The details of each modes in intra mode prediction (Luma and Chroma):

1. The 9 Modes of (4x4) Luma prediction.

2. The 16 samples of the 4x4 block, which labeled as (a - p) are

predicted using prior decoded samples in adjacent blocks labeled as

(A - Q). For each (4x4) block, one of nine prediction modes can be

utilize. Figure (2.16) is show the (4x4) Luma samples and

direction.

Figure (2.16) The 4x4 Luma Samples and Direction

 First mode (mode 0 or vertical prediction) and (mode 1 or

horizontal mode), the samples (4x4) block are copied into

the block as indicated by the arrows in mode 0 the arrows

are to the down but in horizontal the arrows are to left.

 In mode 2 (DC prediction) the adjacent samples are

averaged.

 The remaining 6 modes are (diagonal prediction modes,

which are called diagonal down-left, diagonal-down-right,

vertical-right, horizontal-down, vertical-left, and horizontal

up prediction). As their names indicate, they are suited to

predict the textures with structures. When samples E-H that

are used for the diagonal-down-left prediction mode are not

available (because they have not yet been decoded or they

28

are outside of the slice or not in an intra-coded macro block

in the constrained intra-mode) [23].

3. The 4 modes for 16x16 block size

H.264 supports (16x16) Luma intra coding, in which one of

four prediction modes is chose for the prediction of the entire

macro block. These modes:

 Mode 0 or vertical prediction.

 Mode 1 or horizontal prediction.

 Mode 2or dc prediction.

 Mode3 or diagonal prediction) [23][24].

Figure (2.17) explains the 16x16 Luma prediction model.

Figure (2.17) (16x16) Luma prediction

The intra Chroma has the same modes in (16x16) Luma prediction but

they applied in the Chroma components.

2.6.2.2 Inter Frame Prediction

Inter prediction is using in the motion estimation and compensation

because it takes the advantages of the temporal redundancies which found

between the two successive frames and it is providing a very efficient

coding. If the selected reference frame for is a previously encoded frame

so is referred to a P frame and when a previously encoded frame and a

future frame are chosen as reference frames, then the frame is referred to

a B picture. [25]

29

2.6.3 H.264 Transformation, Quantization (Scaling).

The purpose of the transform in the video coding is to convert the

motion compensated residual data into another domain. The transform

used in this video coding standard must be computationally flexible

which means low memory requirement and low number of arithmetic

operations. Many transforms methods have been propose to do best work

and gain best results. Discreet Cosine Transform or (DCT) is one of the

best method in H.264. The DCT is revisable calculation method and it is

apply the main condition of the transformation process. The blocks of

residual samples that came from motion estimation and compensation

stages are transformed using (4x4) or (8x8) integer transform method or

DCT. The coefficients are the transformation process output and each of

them are weighting values for standard basis patterns and when they are

combined, the weighted basis patterns recreate the block of residual

samples. The output of the transform, a block of transform coefficients, is

quantize, means each coefficient is dividing by an integer value. The

quantization process reduces the precision of the transform coefficients

according to a quantization parameter (QP). There are some laws to

choose the QP value. Setting the (QP) to the high value means that more

coefficients are set to zero and it leads to high compression at the expense

of poor decoded image quality. On the other hand choosing (QP) with

low value means that more of non-zero coefficients remain even after

quantization, resulting in lower compression but better image quality at

the decoder . The DCT operates on block X, a block of (N× N) samples

to create block Y, the coefficients to quantized. The equation (2.10) is a

DCT equation, and the IDCT equation (2.11):

 .

 .

31

Where A is a stander matrix of the evaluated from cosine function

Y is matrix of coefficients, and X is matrix of samples.

A=

 –

Where a =

 , b =

 , and c=

 .

Figure (2.18) show the idea of transformation and quantization.

Figure (2.18) Transform and Quantization

2.6.4 H.264 Decoder Overview

The decoder receives the compressed bit stream data, decodes each

of the syntax elements and extracts the information. The decoder re-scale

the quantized transform coefficients and reconstruction the frame to get

the original one.

31

2.6.4.1 Rescaling and Inverse Transform

The rescaling process is involving multiplying the quantized

transform coefficient by an integer value to restore its original scale. The

integer value is the same in the encoder at quantization step.[26]

 Figure (2.19) explains the rescaling process.

Figure (2.19) Re-Scaling Process

The inverse transform combines the standard basis patterns,

weighted by the re-scaled coefficients to re-create each block of residual

data. Figure (2.20) shows the inverse transform process.

Figure (2.20) Inverse Transform

2.6.4.2 Reconstruction

In the reconstruction step each macro block, the decoder forms an

identical prediction to that one created by the encoder using inter

32

prediction from previous or future decoded frames or intra prediction

from previously decoded samples in the current frame. The decoder then

adds the prediction to the decoded residual to reconstruct a decoded

macro block.[27]. Figure (2.21) shows the reconstruction process.

Figure (2.21) Reconstruction Process.

33

Chapter Three

Implementation of H.264/AVC Encoder and Decoder in

MATLAB

3.1 Introduction

In order to achieve good results in compression and

decompression, it was necessary to design the H.264 encoder and

decoder. The H.264 decoder receives the data that send over network, the

encoder encodes the frames of the video by divide them into blocks. At

the encoder, the predictions we explained are intra prediction and inter

prediction. At the decoder, the original video is obtain.

Matlab considered the best program available to simulate the

reality and used to read In Matlab, sub-program is used to read the video

(Xylophone video), 664 KB, (320x240), 30 fps .The laptop we used has

specifications of (core i3 with RAM of 4GB). In this chapter, we

designed the decoder by relying on our Encoder. This encoder has very

good specifications with (IBBB) patterns of frame.

3.2 Encoder Process

In order to begin coding process through the encoder there are

several stages to follow which is presented in figure (3.1) . The original

video is in (RGB) color space and it is good idea to convert it into (YUV)

color space because the YUV contracts the size of the frame. It depends

on the idea that the human eye is affect by lighting more than gradient

change colors. The colors components (Chroma) and lighting components

(Luma) are sampled based on weight that specific by (4:2:0) sample

format. In real world, videos are in RGB where each colors (Red, Green,

34

and Blue), are sampled equally in same resolution. In new space of color,

the luminance is separated from the colors, and representing luminance

with a higher resolution than colors.[28][29]

IBBB pattern

in DC mode

Original Video

frames

RGB to YUV

With 4:2:0

Sampling

format

First

Frame?

Intra

prediction

2d log block

matching

algorithm for

motion

estimation

Divided

frame into

16x16

Microblocks

size

Motion

Comonsation

2DC-

transform

and

Quantization

Encoded

frame

To The

Decoder

Respecting

as a

reference for

the next

frames

NO Yes

Figure (3.1) The H.264 Encoder steps

From equation (2.1), we gain the frames in YUV color space.

Figure (3.2) and Figure (3.3) show the YUV component of the

(Xylophone) video and another video called (Foreman), as another

model.

35

Figure (3.2) YUV of the Xylophone Video

Figure (3.3) YUV of the Foreman Video

After color space transformation the frames of the video is divide

in blocks of size (16*16).

3.3 Encoding Initialization

The video is initialize and it is ready to be encode by several steps.

The video frame is predicted either (intra prediction) or (inter prediction)

as the encoder design. If there is small details and they need to be predict,

intra prediction is the solution. Supposing there is an action video or

football matching video, there are many details and information inside it,

so intra is best predicted way. The intra prediction is produce using the

neighboring samples of the previously encoded and reconstructed blocks

in the same frame. In this theses, we used it to puncture it with inter

prediction and prove that the inter prediction is best choice for this video.

The (16*16) (Luma) intra prediction and with (mode 2 or DC mode) is

used, where every pixel of the macro block is predicted from the mean of

upper and left neighboring samples of the macro block. [30][31]. Figure

(3.4) explains the different between the original and intra frame.

36

Original Frame Intra Frame

Figure (3.4) Original Frame vs. Intra Frame

We notice that, there is a difference in the vision between original

frame and the intra prediction one .This unclear vision back to that the

video has details that are stayed stable like the xylophone but the hand is

change its place, so for this reason the temporal redundancy must be

utilized by using inter frame prediction.

The Inter frame prediction aimed is to remove the temporal

redundancy of the video. The work is aiming to find a good match for the

current block from the previously coded image, and the block from the

future and previous coded image, this is the work of the (IBBB) frame

pattern. The inter prediction tools contribute to the improved the

compression efficiency of the H.264/AVC standard. The inter prediction

have steps to find the best matching blocks and having a good

compression efficiency [25].

3.3.1 Inter Prediction Steps

The inter prediction includes steps that are representing the power

of the H.264/ AVC because they have the key of compression. They

exploit the high redundancy that happened between successive frames in

the video. To achieve this goal, a block matching algorithms are used.

The real world objects can move, jumping, rotate, etc. These movements

cannot be observe directly, but the light reflected from the object surfaces

37

and projected onto an image. There are some noises happened when the

image is taken by a video camera. Motion compensation is the technique

that uses the redundancy between frames in a video sequence to compress

the data. Once the motion estimation has done, the algorithm of the block

matching only transmits the difference between the successive frames by

applying the motion compensation [26].

In the thesis, we used the (2D log algorithm) as a best result of

block matching algorithm. We choose the search area and divide it into

(16*16) of block size. After that, the search algorithm will done using the

2D-log algorithm.The 2D-Log algorithm is a good way to use, because it

have better compression, rather than other ways. The search algorithm

done in the Luma frame only and for the frame size of (320X 240) and

search area of (16X16). The complexity in this way is Log (P/2) where,

P=16, the number of blocks division. It is equal to Log (16/2) = 0.9 .The

block matching criteria use the SAD, because it is a good performance

and low complexity.

Figure (3.5) shows the frame after motion estimation only without

Appling motion compensation. From the figure (3.5), we notice that the

vision is unclear because there is some redundancy and noise that

happened during the division process and doing searching algorithm. This

noise or distortion can be removed or reduced by apply (motion

compensation). Motion compensation is the next step after motion

estimation process. It based in process to subtract the original frame

with the predicted frame to construct the residue frame. This residual

frame with the motion vector passed to the next stages, transformation

and quantization.

38

Figure (3.5) Original Frame vs. Motion Estimated

Figure (3.6) shows the frame after applying motion

compensation.

Figure (3.6) Motion Estimation and Compensation of the Video

Motion vectors is the power key of the motion estimation process.

It used to represent a macro block in the search area of the predicted

frame based on the position of this macro block in reference frame.

Figures [3.7(a), 3.7(b), 3.7(c)] show the frame after motion

estimation and compensation. Figures [3.8(a), 3.8(b), 3.8(c)] show the

motion vector of frames number (2, 3, 4) after motion estimation only

and without motion compensation. Table (3.1) shows the YUV values of

the frame. The table (3.2) shows the YUV Frame after motion estimation.

The table (3.3) shows the YUV frame, after motion estimation and

compensation.

Table (3.1) Frame in YUV

Frame in YUV

https://en.wikipedia.org/wiki/Motion_estimation
https://en.wikipedia.org/wiki/Macroblock

39

52.9840 52.9840 50.9240 50.9240 55.0440 55.0440 56.0740

54.0140 54.0140 54.0140 54.0140 54.0140 54.0140 54.0140

52.9840 52.9840 52.9840 52.9840 52.9840 52.9840 52.9840

50.9240 50.9240 50.9240 51.9540 52.9840 54.0140 54.0140

Table (3.2) Frame in YUV after Motion Estimation

YUV Frame after Motion Estimation

52.0109 52.1985 52.1729 51.5311 50.2864 48.8870 47.8295

51.6961 51.7589 51.5368 51.4274 51.9408 52.2160 51.1189

53.0722 35.0415 52.2337 51.7522 53.1107 54.5225 53.1264

55.6375 55.7398 54.3402 52.4194 52.4170 53.1848 51.5799

Table (3.3) Motion Estimation and Compensation of TUV Frame.

YUV Frame after Motion Estimation and Compensation

5.1545 4.0968 3.7276 2.4829 2.8711 2.8455 4.0631

2.8951 1.7980 2.0732 2.5866 2.4772 2.2551 2.3179

-0.1424 -1.5385 -0.1267 1.2318 0.7503 -0.0611 -0.0882

-0.6559 -2.2608 -1.4930 -0.4654 -1.3592 -1.7258 -1.6235

41

Figure 3.7(a) Motion Vector of Frame #2

Figure 3.7(b) Motion Vector of Frame #3

Figure 3.7(c) Motion Vector of Frame #4

41

Figure 3.8(a) Motion Vector of Frame #2

Figure 3.8(b) Motion Vector of Frame #3

Figure 3.8(c) Motion Vector of Frame #4

42

3.3.2 Transformation and Quantization Units

In the encoder, after applying the motion estimation and

compensation in the data and gain residual frame with motion vectors,

transformation and quantization units receive the residual frames and

process them. The transform unit reduces the temporal redundancy (inter

frame) in the residual frames. The residual frame has a high correlation

between pixel in one frame (intra frame) or a high correlation between the

frames future and previous (inter frame of B frame type). The data after

transformation is easy to compress rather than untransformed one. The

results are called (transform coefficients) and they quantized by the

quantization unit. There are many types to achieve the transformation like

(2D-DCT).[27][28]

The range of the QP in H.264 from (1 to 100), where QP=1

represents less quality in coding, but high quality at the decoder, where

QP=100 represents a higher quality at the encoder but less quality at the

decoder. These reasons lead more companies to choose the threshold of

QP at (50). So the q in inter prediction =50 and it have a matrix to divide

the coefficients by it, at the encoder and multiply the coefficients by it.

q(50)=

The 2D-DCT equation that used in calculation is

This equation is done in Luma and Chroma components so the loop

is over (6) times, (4) Luma components, and (2) Chroma components (red

and blue).

43

Table (3.4) shows the residual frame values, table (3.5) shows the

coefficients after 2D-DCT and table (3.6) shows the coefficients after

quantization process.

Table (3.4) Residual Frame Valuse

Residual Frame Values

48.8640 48.8640 50.9240 50.9240 51.9450 51.9540 52.9840

51.9540 51.9540 51.9540 51.9540 51.9540 51.9540 51.9540

52.9840 52.9840 52.9840 52.9840 52.9840 52.9840 52.9840

48.8640 48.8640 50.9240 52.9840 54.0140 55.0440 55.0440

Table (3.5) Residual frame after 2D-DCT

Residual frame after 2D-DCT

12.6505 8.6638 3.3989 -2.4672 2.5121 3.6925 -8.2057

-4.6662 -2.8936 -4.6566 -3.5417 -7.2930 -1.5950 -8.6112

3.5197 8.936 1.0166 1.52886 -8.1026 -1.0530 7.5416

-5.1561 -1.5854 5.2176 -1.8712 1.3957 4.9691 1.7447

Table (3.6) Transformed frame after quantization

Transformed frame after quantization

206 11 -1 1 0 0 0

2 -3 -1 0 -1 0 0

-3 -2 0 0 0 0 0

-1 2 0 -1 0 0 0

44

It is good to mention that the 2D-DCT is better than 1D-DCT.

Although they are similar in work but there is a different that the 2D-

DCT is repeating a mathematical process twice and this is leading to

better results. Figures (3.9, 3.10) show the difference between 1D-DCT

and 2D-DCT.

Figure (3.9) 1D-DCT

Figure (3.10) 2D-DCT

3.4 H.264 /AVC Decoder

The H.264 decoder receives the compressed video and decode it to

gain the original video. The decoder receives the quantized data, it rescale

it by multiplying by the same value of QP (50) matrix, doing inverse

transform, reconstruct it and convert the result to the RGB color space

then the video is return.[29][30]. Figure (3.11) shows the decoder steps.

45

Coded

MB?

NO.YES

Inverse

Quantisation

Inverse

Transformati

on

YUV to RGB

Add

prediction

blocks

It is a

prediction

blocks

The original

Video Frame

Received Micro

Block

Figure (3.11) H.264 Decoder Steps

3.4.1 Rescaling and 2D- IDCT

The residual frame is rescaling in inverse quantization unit by

Multiplying it with the same QP matrix value at the encoder (intra frame)

or by (q=16) for inter frame. The receive frame is tailed with motion

vector that indicate to the micro block with best matching in the search

area. The (MB) is a new micro block that store motion vectors in both X

and Y axis. After storing the motion vector and adding them to the blocks

in frame, the rescaling and inverse DCT are applying.[32]

The inverse 2D-DCT equation explained in Equation (3.2)

46

Table (3.7) shows the results of the received frames after rescaling

(multiplying with 16) process.

Table (3.7) Rescaling Frame Values.

Rescaling Frame Values.

412 15.1250 -1.2500 2 0 0 0

3 -4.500 -1.7500 0 -3.2500 0 0

-5.2500 -3.2500 0 0 0 0 0

-1.7500 4.2500 0 -3.6250 0 0 0

The inverse transformed results is shown in Table (3.8)

Table (3.8) Inverse Transform Frame Values.

The Inverse Transform Frame Values.

51.5561 53.1186 53.3263 51.5919 50.2933 50.1092 49.3218

51.7891 52.4069 52.2352 51.5572 51.8601 52.4600 51.3932

53.5538 53.0438 52.1943 52.0437 53.0908 53.7066 52.1459

55.9915 55.0386 53.7442 52.9326 52.3749 51.9800 50.2166

Reconstructing frame is the inverse step to the one in the encoder

(inter prediction). It adds the previous frame predicted by the encoder and

stored in the decoder with the forward one because the decoder is

designed as (IBBB), where (B) is used previous and the future frames.

This operation is do depending on the information that attached with

encoding frame. Motion vectors and residual frame information are attach

with the sending encoding video.

Figure (3.12) shows the frame after reconstructing process but it

still in YUV color space. After frame reconstructed, its color space must

be change to RGB again to be ready to show.

47

 Figure (3.12) Reconstructing Frame

The last step is to format the decoded frame into formula worthily

to the viewer. The decoder form the blocks into frames and view them.

Table (3.9) shows the values of the decoding frame and table (3.10) the

original frame.

Table (3.9) Decoding Frame

The Decoding Frame

51.5561 53.1186 53.3263 51.5919 50.2933 50.1092 49.3218

51.7891 52.4069 52.2352 51.5572 51.8601 52.4600 51.3932

53.5538 53.0438 52.1934 52.0347 53.0908 53.7066 52.1459

55.9915 55.0386 53.7442 52.9325 52.6749 51.9800 50.2166

Table (3.10) Original Frame.

The Original Frame.

52.9840 51.9540 51.9540 50.9240 50.9240 48.8640 48.8640

51.9540 51.9540 51.9540 51.9540 51.9540 51.9540 51.9540

52.9840 52.9840 52.9840 52.9840 52.9840 52.9840 52.9840

55.0440 55.0440 54.0140 52.9840 51.9540 51.9540 51.9540

48

3.5 Compression Rate and Bit Error

To check the quality and the efficiency of H.264/ AVC design ,

compression rate and bit error calculations are used .

3.5.1Compression rate

The term that represent the compression power. It used to calculate

the amount of reduction in video size after using the compression

algorithm, here the H.264 encoder. Equation (3.3) explains the

compression rate calculation

The uncompressed video size is about = (522KB) and the compressed

size is about = (150K). The compression ratio = 71%, and this is a good

result.

3.5.2 Bit Error Rate

In H.264 /AVC, quantization and inverse quantization, units are the

only parts with lossy compression because they used (round) in their

calculation. This rounding calculation is lead to lose some of the

information. The number of frames we used are (28) frame, (7) I frames,

and (21) B frames, I frame are not encoded, there is no losing in data, but

the B frames are only having some bits loosed.

The (X and Y) are the original video frame with decoded one and

they have (4838400 bit). The value of the bit errors are (51204). The bit

error rate is = (0.0106), which means 99% of bits are not lost. It is good

result and it means only (0.0106) of the total frames are lost.

Figure (3.13) shows the video frame after decoding it and with the

original one.

49

Original video Decoding video

Figure (3.13) Original and Decoding video

3.5.3 Timing Calculations

As we know, the compression and decompression algorithm take

time and this time determines one of the properties for calculating the

efficiency of the design. Good design with low storage capacity, low time

for calculations the processing of the design, and high compression and

de-compression, all these are our aims in design.

The time of compression and decompression for the 28 frames and

divided in to two stages (time for I frames and time for B frames).

 The I frame or intra frame takes a time as clear in the table (3.11)

Table (3.11) I Frame Time

No. of frames Frame size Frame type Encode time Decode time

7 (320X240) I frame 0.015(fr\sec) 0.013(fr\sec)

 The B frame or inter frame takes a time as clear in table (3.12)

Table (3.12) B Frame Time

No. of frames (21) Frame size Frame type Encode time Decode time

21 (320X240) B frame 0.0052(fr\sec) 0.0004(fr\sec)

 The total time for encoder and decoder is equal to:

51

Total for encoder

Total for decoder ;

This is a good time to encode 28 frame of (IBBB) pattern frames.

The encoder time is about twice the decoder time because the encoder

contains a decoder in its design, which results in a doubling of time. On

the other hand, the decoder only read the data from the encoder and

decode them.

We must take on respect in time calculating, the specifications of

the personal Laptop we are working on and the size of the video we are

trying to encode and decode it.

51

Chapter Four

Implementation of H.264/ AVC Encoder and Decoder in

VHDL

4.1 Introduction

After designing the H.264/ AVC (encoder and decoder) in Matlab

and get the results as described in chapter 3, they had to be design and

obtained as a hardware. This design help us to calculate the total storage,

number of operations, time etc. they have been utilized. This can be

achieved by using the (ISE design of version 14.1), program which is

produced by (Xilinx) company. ISE (Integrated Synthesis Environment),

Is Xilinx software tool that produced by Xilinx company. It is used for

synthesis, analysis of designs, enabling the programmers to synthesize

or ("compile") their designs, perform the timing analysis, view the

 RTL diagrams, simulate its design to see the results, and finely to

configure the target device with the programmer. The programming

process on the kit is doing using (Spartan601). In this chapter we will talk

about the intra prediction decoding and how to design our own encoder

where its output we depend.

4.2 FPGA Chip Expression

FPGA (field programmable gate array) is an integrated

circuit design to be configure by a customer or a designer after

manufacturing. Semiconductor device containing programmable

logic components which are called (logic blocks), and the

programmable interconnects. We can program it for any digital

function so we can apply the idea in practice. The programming on

https://en.wikipedia.org/wiki/Xilinx
https://en.wikipedia.org/wiki/Logic_synthesis
https://en.wikipedia.org/wiki/Static_timing_analysis
https://en.wikipedia.org/wiki/Register_transfer_level
https://en.wikipedia.org/wiki/Programmer_(hardware)
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Integrated_circuit

52

FPGA is precedent by steps to be precede by steps taken on the

computer programs to ensure the validity of the idea and the

possibility of practical application. In our work, Matlab program was

the best application program to get the results before implemented in

practice (FPGA kit). This step is necessary in order not to waste the

space inside the FPGA kit and in order not to waste a lot of time in

the experiment and correction while the mistakes are made in the

design and because the kit loses its functionality in case of power

outages.[23][38]

4.3 FPGA Basic Parts

The FPGA kits, although there are differences but they are

common in most parts [24].

Table (4.1) explains the specifications of the parts in FPGA kit.

Table (4.1) FPGA Parts specifications

Parts Specifications

Programmable Logic

blocks

Use to provide the basic computations

and the storage elements that used in

the digital systems.

Programmable

Interconnect(routing)

They provide connections between

(logic blocks) and (I/O blocks).

Programmable

I/O(input/output)

They are necessary because they

interface the logic blocks and the

routing architectures to the wide range

of external components to FPGA,

which are called programmable I/O).

The ALU(arithmetic

logic unit)

The (ALU) is the most important

component of FPGA kit because all the

53

 arithmetic and logical computations are

performed inside it.

RAM Blocks

RAM (random access memory) is the

form that is used to store the data and

functions in the computer

4.4 Spartan 601 Overview

The (SP601) kit board enables the hardware and software

programmers to create or evaluate designs targeting the Spartan 6

XC6SLX16-2CSG324 FPGA. The SP601 provides a board features

that the programmers used like the some commonly used features are

DDR2 memory controller, UART, a tri-mode Ethernet PHY, general-

purpose I/O (GPIO), and a parallel linear flash. The Spartan-6 FPGA

Family is offering an optimal balance of power, cost and

performance. Figure (4.1) shows the board of the Spartan 6.

Figure (4.1) Spartan6 Kit

It has some key features:

 Memory component of DDR2 (128MB).

 JTAG for configuration and serial UART for communication.

 200MHZ oscillator for clock supporting.

54

 4Xled for display.

 4X push buttons and 4X DIP switches for controlling.

4.5 H.264 Encoder and Decoder in FPGA

 The H.264/ AVC has many features in terms of compression

and decompression and this is why it is consider as a global standard.

This standard applies the encoding process in two ways; inter

prediction, or intra prediction. The intra frame consists groups of

micro blocks and everyone is encode from previous micro block in

the same frame. Due to some of the intra prediction properties and

determinants of this type, we have indicated its use. Intra prediction

has three types of prediction (16x16), (8x8), and (4x4) for Luma

prediction and (8x8) only for Chroma prediction. Depending on the

type of choice, when smaller prediction size (4x4) is chosen, it tend

to have more accurate prediction and less number of residual data at

the encoder but less data to reconstruct to original frame at the

decoder, and vice versa at (16x16). The intra prediction sometimes

used when there is more details in the video and needs to be accurate

at the encoder but here the inter predation is unusable way because it

takes more time to calculate this details . Spartan 6 is designed to

perform this type of coding process (encoder and decoder) because in

inter prediction the encoded frame must be store in an external

memory to be used to encode the frame following it in (P type) or at

least 3 frames store to predict the third one at (B type) .[33][34][40]

4.6 The H.264 /AVC Encoder Design

As we explained, the H.264 encoder has steps to perform the

encoding. The dedicated frame read from the external memory of

type (RAMB16BWER). The frame must be read to execute at least

one bit (at the transform and quantize units) and the residual data

55

must be decoded to gain the original frame. The proceeding is intra

prediction, the frame has two processes (4x4 Luma prediction) and

(8x8 Chroma prediction) .This separation between the two processes

is to accelerate the implementation process. The Luma components

applied the calculation at one CLK but the Chroma components

applied the calculation at two CLK. At the end, they assemble and go

to the transformation and quantization units. Figure (4.2) shows the

overall encoder processes.

Intra

Prediction

Original frame from

external memory

Core

transform

Dc

transform

Quantisation

process

Buffer to

store it for

decoding

AC

compone

nts?

NOYES

Figure (4.2) Encoder Processes.

56

4.7 H.264 Intra Prediction FPGA Design

The video frame is stored in an external memory, in every

clock there is (4) byte ready to inter and process. The external

memory is the best solution than LUT because the last one exploits

space within chip and this has a negative impact in terms of storage

and the time it takes to read the data. The memory that is used is type

of (8*32bit) RAMB16_S9 and we used (4) of them because at every

clock there is 4 byte reads. Figure (4.3) shows the external design of

the memory in FPGA.

Figure (4.3) The four RAMs

Figure (4.4) shows the data output after getting address the memory.

Figure (4.4) Reading from the Output Memory

57

The architecture of the intra prediction model depends on the

(Luma and Chroma). Every mode has its own equation and after

analyzing, every equation we can simplify them because they have

common parts and this lead to reduce the architecture design area.

[24][32]

Therefore, instead of dividing the predictor calculations into

individual blocks for each mode to calculate them, the calculation are

divide into two stages: base and derived prediction equations as shown in

Table (4.2) and Table (4.3) respectively.

Table (4.2) Basic Equations in Intra mode

Output Equation

Eq_0 = A + B + 1

Eq_1 = B + C + 1

Eq_2 = C + D + 1

Eq_3 = D + E + 1

Eq_4 = E + F + 1

Eq_5 = F + G + 1

Eq_6 = G + H + 1

Eq_7 = I + J + 1

Eq_8 = J + K + 1

Eq_9 = K + L + 1

Eq_10 = M + A + 1

58

Eq_11 = M + I + 1

Eq_12 = 2H + 1

Eq_13 = 2L + 1

Table (4.3) Derived Equations in Intra mode

Output Equation Derived Equation

Eq_14 M + 2*A + B + 2 Eq_0 + Eq_10

Eq_15 A + 2*B + C + 2 Eq_0 + Eq_1

Eq_16 B + 2*C + D + 2 Eq_1 + Eq_2

Eq_17 C + 2*D + E + 2 Eq_2 + Eq_3

Eq_18 D + 2*E + F + 2 Eq_3 + Eq_4

Eq_19 E + 2*F + G + 2 Eq_4 + Eq_5

Eq_20 F + 2*G + H + 2 Eq_5 + Eq_6

Eq_21 M + 2*I + J + 2 Eq_7 + Eq_11

Eq_22 I + 2*J + K + 2 Eq_7 + Eq_8

Eq_23 J + 2*K + L + 2 Eq_8 + Eq_9

Eq_24 A + 2*M + I + 2 Eq_10 + Eq_11

Eq_25 G + 3*H + 2 Eq_6 + Eq_12

Eq_26 K + 3*L + 2 Eq_9 + Eq_13

Eq_27 A + B + C + D + 2 Eq_0 + Eq_2

Eq_28 I + J + K + L + 2 Eq_7 + Eq_9

59

Eq_29 A+B+C+D+I+J+K+L+4 Eq_27 + Eq_28

The prediction calculator captures all the reconstructed pixels and

then calculates the equations needed to create all predicted values for all

nine modes in parallel. The final operation is to apply the equation results

to predicted values as shown in Table (4.4). The prediction calculator

needs at least one clock to generate all the predicted pixels.

Table (4.4) Equation Results to Predicted Values of Each Pixel

Pixel Modes

0 1 2 3 4 5 6 7 8

A A I Eq_29 Eq_15 Eq_24 Eq_10 Eq_11 Eq_0 Eq_7

B B I Eq_29 Eq_16 Eq_14 Eq_0 Eq_24 Eq_1 Eq_22

C C I Eq_29 Eq_17 Eq_15 Eq_1 Eq_14 Eq_2 Eq_8

D D I Eq_29 Eq_18 Eq_16 Eq_2 Eq_15 Eq_3 Eq_23

E A J Eq_29 Eq_16 Eq_21 Eq_24 Eq_7 Eq_15 Eq_8

F B J Eq_29 Eq_17 Eq_24 Eq_14 Eq_21 Eq_16 Eq_23

G C J Eq_29 Eq_18 Eq_14 Eq_15 Eq_11 Eq_17 Eq_9

H D J Eq_29 Eq_19 Eq_15 Eq_16 Eq_24 Eq_18 Eq_26

I A K Eq_29 Eq_17 Eq_22 Eq_21 Eq_8 Eq_1 Eq_9

J B K Eq_29 Eq_18 Eq_21 Eq_10 Eq_22 Eq_2 Eq_26

K C K Eq_29 Eq_19 Eq_24 Eq_0 Eq_7 Eq_3 L

61

L D K Eq_29 Eq_20 Eq_14 Eq_1 Eq_21 Eq_4 L

m A L Eq_29 Eq_18 Eq_23 Eq_22 Eq_9 Eq_16 L

n B L Eq_29 Eq_19 Eq_22 Eq_24 Eq_23 Eq_17 L

o C L Eq_29 Eq_20 Eq_21 Eq_14 Eq_8 Eq_18 L

p D L Eq_29 Eq_25 Eq_24 Eq_15 Eq_22 Eq_19 L

4.7.1 (4x4) Luma Prediction in FPGA

The H.264 standard exploits the spatial correlation between the

adjacent micro blocks to achieve the Intra prediction. The current micro

block predicted using adjacent pixels in the upper and left micro blocks

that are decoded earlier. The H.264 /AVC Provides a rich sets of

prediction patterns that useful for predicting within i.e. nine prediction

modes for 4x4 Luma blocks. The standard provides equation at each

mode but the DC mode is the best and its equation represents by

(equation 29), in table (4.2). The data received from external memory and

the receiving frame divided into (16x16) block size. The blocks contain

Luma and Chroma. The blocks of data divided into (4x4) micro blocks.

The components are transform, then the transformed are contain (AC and

DC) components. The DC components values tend to be a highly

correlated and they transformed again by using (4x4) Hadamard

transformed so, the all components gathered again to be quantized .The

input data is (32 bits) because we take 1 bytes at each clock so we use 4

memories to get the data. Figure (4.5) shows how the data is read from

the memory and its output from the (4x4) Luma prediction unit.[35][37]

61

Figure (4.5) (4x4) Luma Prediction.

Figure (4.6) shows the architecture of the (4x4) Luma unit.

Figure (4.6) (4x4) Luma Unit Architecture .

4.7.2 Chroma Intra Prediction in FPGA

The greatest idea that used in H.264 is to convert the colors from

RGB to YUV of (4:2:0) domain to reduce the memory needed to store the

62

pixels. The color components is process as well as the Luma components.

The Chroma components divided into (AC and DC) components, for each

red component and blue component. Each component of Chroma is gone

to be (2x2) block size for DC components and (4x4) block size for AC

component. The Hadmard transform is apply over DC components and

integer transform over rest components. Figure (4.7) and (4.8)

respectively show the data input and output to the units and the

architecture of the 8x8 Chroma unit.

Figure (4.7) Data In and Data Out, the (8x8) Chroma Unit

Figure (4.8) Architecture of the (8x8) Chroma Unit.

63

4.7.3 The Transformation Unit in FPGA

The transformation term use to transform data from one domain to

another. In this proposal, design used two types of transforms:

 DCT transform or (core transform) for each (4x4) Luma components

or (8x8) Chroma components.

 Hadamard transform for the DC components of (4x4) Luma

components.

 Hadamard transform for (2x2) the DC Chroma components (cb, cr).

In the default process over Luma components, each (4x4) block

within the (16x16) Luma of the micro block transformed to form

coefficients from (0 to 15). If the micro block predicted by using (16x16)

intra prediction, a second transform must apply to the DC frequency

coefficients of the first transform. This second transform is (4x4) DC

transform or Hadamard transformation. The Chroma components are

also have a part of transformation. The (16x16) micro block has (8x8) cb

and (8x8) cr coefficients and each (4x4) block of cb, cr is transformed

using (DCT transform or core transform), the residual components (DC)

are further transformed by (2x2 Hadamard transform). [39]

Figure (4.9) and (4.10) show respectively each kind of transform over

Luma and Chroma components.

Figure (4.9) Forward Luma Transform

64

Figure (4.10) (8x8) Forward Chroma Transform

4.7.3.1 DCT Transformation or (Core Transform)

For each Luma and Chroma components, DCT transform must be

apply. The Discrete Cosine Transform is operating on X matrix, which is

a block of samples and creates a block of Y matrix of the same

dimension.[39], the transformation equation:

Where A=

Where X is the components matrix. After intra prediction, the dynamic

range of the transform inputs data is 9 bits, i.e. from (-256 to +255) and

because we used arithmetic operations like (additions, subtractions and

shifts), the dynamic range of the pixel data is extended to (16 bit). So, the

4x4 residual data are process in parallel by the transform block, which

consists of two cascade (one 1D row transform) and (one 1D column

65

transform). Figure (4.11) shows the architecture of the (DCT or core

transform) design.

Figure (4.11) The DCT or Core Transform Design.

Figure (4.12) shows the signals in the design that comes from the (4x4)

Luma prediction unit.

Figure (4.12) Signals of the DCT Design.

4.7.3.2 The DC Transform (Hadamard Transform)

If the micro block is encoded in (16x16) Intra prediction mode, in

which the entire (16x16) Luma component is predicted from the

neighbors pixels. Each residual of (4x4) block size is first transform using

the DCT or Core transform described above. The DC coefficients of this

(4x4) micro block transformed again by using (4x4) Hadamard transform.

66

The DC blocks gathered after the DCT transformation. Equation (4.3)

shows the Hadamard transform.

Where X is the blocks of (4×4) DC coefficients

 And B=

 .

The equation (4.3) becomes as describe in equation (4.4)

 …Equation (4.4)

The DC coefficients of each transformed (4x4) Chroma blocks are

grouped and transformed for a second time. The video format is (4:2:0)

and there are four blocks of (4x4) in each Chroma coefficients and the

DC coefficients form a (2x2) block, which is then transformed using the

Hadamard transform equation.[25]

Where X is the matrix of the DC coefficients.

And C is the matrix with values of

C=

 . So the previous equation becomes:

67

 …. ………………………….....Equation (4.6)

Figure (4.13) and Figure (4.14) respectively show the architecture design

and simulation results of the (DC or Hadamard) transform.

Figure (4.13) Hadamard (DC) Transform Architecture

Figure (4.14) Hadamard (DC) Transform signals

4.7.4 The Quantization unit in FPGA

 The quantization process is the mathematical operation that used in

compression algorithms. The bright aim of the quantization unit is to

68

reduce the range of the coefficients and mapping them in to specific

ranges. In the video CODECs standards, quantization can take place in

two steps. First the forward quantization process that is built in the

encoder and an inverse quantization unit in the decoder [25]. The

quantization unit in the H.264 controlled by the Quantization Parameter

(QP). It is the step size between two successive values. If it is large, the

range of quantized value is small which giving a higher compression and

vice versa. The output of the forward quantization unit (at the encoder) is

an array of coefficients mostly converging to zero value, the quantization

general equation:

 …. …………………………….Equation(4.7)

Where (B) is data after the transformation process. It is good to mention

there are (52) of QP values, each one is having its corresponding Q step

value as shown in Table (4.5).

Table (4.5) QP and Q Step Relationship

QP 0 1 2 3 4 5 6 7 8………… 51

Qstep 0.63 0.59 0.81 0.88 1 1.13 1.25 1.38 1.625 ... 224

To avoid division in our work, which leads to a lack of values due to

rounding operations and this negatively effects on the decoding process,

although the values are few in encoder, we modified the equation (4.7) to

equation (4.8) .

 …………………………… Equation(4.8)

69

Where (PF) is varying according to coefficient position in matrix and its

values can be Obtain from Table (4.6) that changes according to t matrix

index [4.1].

Table (4.6) The Value of (PF)

PF Position (i,j)

0.25 (0,0), (0,2) ,(2,0),(2,2)

0.4 (1,1), (1,3),(3,1),(3,3)

0.32 Others

 Where

 =

The MF is the combination matrices of coefficients matrix and the scaling

values and its represents the multiplication factor.

 (4.10)

So the

 (4.11)

In intra prediction F= /3). For DC values, DC quantization is

applied and the process has slightly changing.

Where (MF zero) is the multiplication factor at index of (0,0), so value of

MF is depending on QP only and not on the position in the matrix. Table

(4.7) shows the relationship between MF and QP.

Table (4.7) Relationship between MF and QP

71

 MF

QP

Position

(0,0),(0,2), (2,0)

, (2,2)

Position

(1,1) , (1,3) ,

(3,1) , (3,3)

Other positions

0 13107 5243 8066

1 11916 4660 7490

2 10082 4194 6554

3 9362 3647 5825

4 8192 3355 5243

5 57282 2893 4559

Figure (4.15) and (4.16) respectively show the architecture design and the

signal in the simulation of the quantization unit. It is needs only 4 clocks

for (latching, multiplying, scaling and clipping) and get the output.

Figure (4.15) Quantization Unit Design

71

Figure (4.16) Quantization Unit Signals and Results

4.8 The H.264 Decoder Design in FPGA.

As already mentioned, the work of the decoder includes the reverse

of what is in the Encoder and therefore all processes will be reflected and

become (rescaling or de-quantized), inverse transform and reconstruction.

The output of the encoder is the input to the decoder, so the coefficients a

set of operations applied to restore the original values. The encoded

coefficients (DC and AC), the DC coefficients is first inverse transform

(inverse Hadamard transform) and they together with the quantized

coefficient are inversed by inverse core transform. The set of decoded

coefficients are reconstruct to gain the original data. Figure (4.17) shows

the operation of the decoder. Figure (4.18) and Figure (4.19) show

respectively the operation of the inverse Luma and Chroma transform.

72

Encoded

data

Dc

Transform

De-

quantization

Inverse core

tarnsform

Reconstruction

Original

frame

Ac

Compone

nts?

NOYES

Figure (4.17) Decoder Process

Figure (4.18) (4x4) Luma Inverse Transform

73

Figure (4.19) (8x8) Chroma Inverse Transform

4.8.1 Inverse Hadamard Transform.

The DC coefficient (Luma and Chroma) suffered from inverse

Hadamard transform, which is the same in the encoder. For (4x4) Luma

coefficients the equation (4.12) explain the inverse Hadamard equation

 ……………………………………………....Equation (4.13)

where B is the matrix and equal

 , so the equation (4.12) becomes

 …………. Equation(4.14)

For Chroma components, the inverse Hadmard is equal to equation (4.15)

 ………………………………………..……....Equation (4.15)

Where C=

 . So the equation (4.15) becomes

Y

 ……………………..…………..Equation (4.16)

74

The operation is same to that used in the encoder. Figure (4.20) and

Figure (4.21) respectively show the simulation results, and architecture

design of the inverse Hadamard transform.

Figure (4.20) Simulation Results of Inverse Hadamard Transform.

Figure (4.21) Architecture Design of Inverse Hadamard Transform.

The data input is the encoded coefficients that is coming from the

transformation and quantization units are separate to AC and DC. The DC

coefficients are inversed by Hadamard inverse transformed (for both

Chroma and Luma). The results are gather with the quantized coefficients

to be rescaling (de-quantized) and inverse core transform.

75

4.8.2 The Rescaling or De-Quantization Unit Design

The input of the de-quantization are sets of quantized and

transformed coefficients. These coefficients (Luma or Chroma) are

rescale. For (4x4), DC Luma matrix, the inverse quantization is taking

place according to equation (4.11)

 .….Equation(4.17)

for QP . For (2x2) DC Chroma matrix, the inverse quantization is

taking place according to equation (4.12)

 ..Equation(4.18)

For QP ≥ 6. The V is given by table (4.8) which is represents the

rescaling factor.

Table (4.8) Represents the Recalling Factor

V

QP

Position

(0,0),(0,2),(2,0),(2,2)

Position

(0,0),(0,2),(2,0),(2,2)

others

0 10 16 13

1 11 18 14

2 13 20 16

3 14 23 18

4 16 25 20

5 18 29 23

The Figure (4.22) and Figure (4.23) respectively show the simulation

results of the design and the architecture design.

76

Figure (4.22) Simulation Results of de-Quantization Unit.

Figure(4.23) Architecture Design of de-Quantization Unit.

The design needs only (3) clocks of latency (latch, multiply, and

scale) to gain the results. The data input is (data coefficients after core

transform and quantization, and the inverse DC transform for DC

coefficients). By comparing the results with Figure (4.16), the

quantization input is (36c8) and the output of the de-quantization unit is

(36c0), there is a difference in one bit. This different is normal because

the (quantization and de-quantization units) are lossy unit operation and

there is a round in their operation. The one bit different is a good results.

77

4.8.3 Inverse Core Transform

The Inverse Discrete Cosine Transform operates on (Z) matrix

which is a block of (N×N) samples and creates a block X of same

dimensions.

 ………………………………………………. Equation(4.19)

Where

So the equation (4.19) becomes

 …. ……Equation (4.19).

The input is the de-quantized coefficients (AC and DC) and the

output are sets of components that are ready to be reconstruct and to

obtain the original frame. Figures (4.24) and (4.25) show the architecture

design and the simulation results.

Figure (4.24) Design of the Inverse Core Transform.

78

Figure (4.25) Simulation Results of Inverse Core Transform. .

4.8.4 The Reconstruction of the Frame

For each micro block, our decoder forms an identical prediction to

the one created by the encoder using intra prediction from previously

previous decoded samples in the current frame or same frame. The

decoder adds the prediction blocks or samples to the decoded residual to

reconstruct a decoded micro block which can then be a part of the

original video .The data input is the inverse transformed coefficients and

its values and the reconstructed values are explains in the figure (4.26) .

The figure (4.27) shows the reconstruction units design.

Figure(4.26) Simulation Results of the Reconstruction Unit.

79

Figure (4.27) Reconstruction Design Unit

The output of the reconstruction unit is representing the Chroma

and Luma values, which they are combine to represent the original value

of the data in the frame.

4.9 Overall Design Results

Through our results, we found that the complete design of the

encoder and decoder utilized a reasonable area space of the entire kit and

the parameters set by the manufacturer of the Spartan 6 kit. Figure (4.28)

shows the representing of the full exploitation of the design (encoder and

decoder) from the original area space.

Figure (4.28) Overall Design Utilization.

81

Chapter Five

Conclusion and Future Works

5.1 Conclusion Work

In our work, we touched on design the model by two ways, Virtual

programming use Matlab, and actual by implement model use FPGA with

VHDL language. Although there is a decoder, encoder must be design for

comparing the results and ensuring that our work is correct. For this, we

design our encoder based on our decoder properties.

5.1.1 H.264/ AVC Encoder and Decoder Design Using Matlab.

 Through our design of the H.264 encoder and the decoder, we found

that there is a decoder inside the encoder to get the reference frames

for next compression frame.

 The Compression rate in (IBBB) is = 71%, this is a good result we

gain and better than in (IPPP) which is equal to 50%.

 The decoded frame is mostly same to original one with little different.

 The time it takes to complete the overall encoding process is about

 sec. The time it takes to complete the overall decoding

process is about sec.

 We can use intra prediction if there are precise details and we do not

want to lose them. The results are accurate but at the expense of time

to encode it and decode it.

 There is view errors and lose of data at the encoder and decoder

because the quantization and de-quantization units are the only lossy

units in H.264 /AVC.

81

5.1.2 The H.264 /AVC Encoder and Decoder Design Using (FPGA)

 Through the design, we used the Spartan 6 kit, because, it is support

clock of (200MHZ) which is mean fast execution to the design.

 Inter frame prediction, means two frames or more are needs to

reconstruct the reference frame or the next frames which is the motion

estimation and compensation units for encoder and the inter frame

reconstruction units at the decoder.

 The inter frame prediction of (IBBB) needs at least two frames to

store them for reconstruct the third frame except that the first one

stored at the encoder and sent to the decoder without any encoding

process on them.

 This operation ends high speed or frequency and high storage to store

this high amount of data at the encoder and decoder.

 Our design is fox only in intra frame and it utilized approximately

50% of the storage. If we want to design only first pattern of (IBBB),

sure we need over 100% of the storage.

5.2 Future works

Through our own design and implementation in Matlab program and

FPGA kit, we have found it possible to design and add specifications to

this design:

 The inter frame prediction (motion estimation and compensation)

can be implemented practically using the Vertex 5 type chip

because the last has frequency up to 300 MHZ.

 We can design the (IBP) frame along patterns, and we will gain

more quality but in return, we will take more time to implement

and more storage to store the encoded data with high bandwidth in

transmission.

82

 The adaptation may be taking advantage and the design becomes

work like the high efficiency video coding or H.265.

 We can use another algorithm in motion estimation like (four steps

search algorithm, diamond search algorithm, fast three steps

algorithm and so on.).

 The networking application needs more for our design, so the

entropy encoder and decoder is very important to use it. The

advantage for using the entropy is to provide more compression to

the data through the network and decompress the data at the

decoder. Its advantage is appear if there is a noise or distortion over

the network.

83

References

[1] Darshankumar Shah, B.E, H.264 MOTION ESTIMATION AND

MOTION COMPENSATION, Thesis of Master of Science in

Electrical and Electronic Engineering at California State University,

Sacramento, 2011.

[2] By STEPHEN, A Fine Grained Many-Core H.264 Video Encoder,

Thesis of Master of Science in Electrical and Computer Engineering

in the University of California, THE UY LE B.S., March, 2007.

[3] YIM, Ka Yee, Video Decoder for H.264/AVC Main Profile, Power

Efficient Hardware Design, A Thesis of Master of Philosophy in

Electronic Engineering, Chinese University of Hong Kong, August

2011.

[4] Samia Sharmin Shimu, Performance Analysis of H.264 Encoder for

High-definition Video Transmission over Ultra-Wideband

Communication Link, Thesis of Master of Science in the

Department of Electrical and Computer Engineering ,University of

Saskatchewan Saskatoon, May 2010.

[5] Kermin Fleming, Chun-Chieh Lin, Jamey Hicks , H.264 Decoder: A

Case Study in Multiple Design Points, 6th ACM/IEEE International

Conference on Formal Methods and Models for Co-Design PP.165-

174, 20JUNE 2008.

[6] Michael , Anthony Joch, Faouzi Kossentini and Antti Hallapuro,

H.264/AVC Baseline Profile Decoder Complexity Analysis , IEEE

Transactions on Circuits and Systems for Video Technology, VOL.

13, NO. 7, PP 704-716, JULY 2003

84

[7] A. Ben Atitallah, H. Loukil ,Nouri, FPGA Design for H.264/AVC

Encoder, International Journal of Computer Science, Engineering

and Applications (IJCSEA) Vol.1, No.5, PP 119-138, October 2011

[8] Jignesh Patel, Haresh Suthar, Jagrut Gadit, Parul ,VHDL

Implementation of H.264 Video Coding Standard , International

Journal of Reconfigurable and Embedded Systems (IJRES),Vol. 1,

No. 3, pp. 95-102, November 2012.

 [9] Gary J. Sullivan, Pankaj Topiwala, and Ajay Luthra, The

H.264/AVC Advanced Video Coding Standard, Overview and

Introduction to the Fidelity Range Extensions, SPIE Conference

on Applications of Digital Image Processing XXVII Special Session

on Advances in the New Emerging Standard H.264/AVC, August

2004.

[10] LI Man Ho, Variable Block Size Motion Estimation Hardware

for Video Encoders, Thesis of Master of Philosophy in Computer

Science and Engineering, The Chinese University of Hong Kong,

November 2006.

[11] Iain E. Richardson, The H.264 Advanced Video Compression

Standard, John Wiley & Sons, Ltd., Second Edition, Vcodex

Limited, UK, 2010.

[12] Iain E. G. Richardson, H.264 and MPEG-4 Video Compression

Video Coding for Next-generation Multimedia, John Wiley &

Sons Ltd, First Edition, The Atrium, Southern Gate, Chichester,

West Sussex PO19 8SQ, England ,2003.

[13] W. Gao and S. Ma, Advanced Video Coding Systems, Springer

International Publishing Switzerland, Edition Number 1, Book, 2014.

85

[14] MPEG-4 Part 10 AVC (H.264) Video Encoding, PP.1-19,

Scientific-Atlanta ,June 2005.

[15] H.264 Video Compression Standard, New Possibilities Within

Video Surveillance, White Paper, Axis Communications,

WWW.Axis.com.

[16] Rahul Vanam, Motion Estimation and Intra Frame Prediction in

H.264/AVC Encoder, Lecture, University of Washington,

[17] Wissal Hassen and Hamid Amiri , Block Matching Algorithms For

Motion Estimation, e-Learning in Industrial Electronics (ICELIE),

2013 7th IEEE International, IEEE Transactions Evolution

Computation, Vienna, Austria, PP.1-4, 10-13 Nov. 2013.

[18] Sid-Ahmed, Prof. Ahmadi and Elham Shahinfard, 2-Dimensional

Motion Estimation, Research Centre for Integrated Microsystems,

University of Windsor,PP.1-39, December 2006.

[19] R.Mohamed Niyas et ,Implementation of SAD Architecture for

Motion Estimation in H.264/AVC, International Journal of

Engineering and Technology (IJET), Vol 5 No 2, PP.1726-1730,

Apr-May 2013.

[20] Artur Gromek, H.264/MPEG-4 -Advanced Video Coding, Warsaw

University of Technology, Institute of Electronic Systems,

Nowowiejska 15/19, 00-650 Warsaw, PP.1-10, 15/7/ 2016.

[21] Sandya Basavanahalli Sheshadri, Optimization of H.264 Baseline

Decoder on Arm9tdmi Processor, Master of Science in Electrical

Engineering, University Of Texas, December 2005.

[22] Johotech Solutions, H.264 Baseline Profile Video Encoder, Texas

Instrument, PP.1-21, September 11, 2012.

https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Wissal%20Hassen.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Hamid%20Amiri.QT.&newsearch=true
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6684696
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6684696

86

[23] Urvish Lakadiwala1, Soham Hirapara2, Raj Ramani3, Niket

chaudhary, Implementation of ALU on FPGA, International

Research Journal of Engineering and Technology (IRJET) , Volume:

03 Issue: 04, PP 421-423,Apr 2016.

 [24] Umair Aslam, H.264 CODEC Blocks Implementation on FPGA,

Institutionen for systemteknik Department of Electrical Engineering,

Linksping, PP.1- 72, Sweden 2014.

[25] Chaminda Sampath Kannangara, Complexity Management of

H.264/AVC Video Compression, Open Access Institutional

Repository at Robert Gordon University, October 2006.

[26] Jigar Ratnottar1, Rutika Joshi2, Manish Shrivastav3, Comparative

Study of Motion Estimation & Motion Compensation for Video

Compression, International Journal of Emerging Trends &

Technology in Computer Science (IJETTCS) , Volume 1, Issue 1, PP

33-37, May June 2012.

[27] Taheni Damak, Hassen Loukil, Ahmed, Nouri Masmoudi,

Software and Hardware Architecture of H.264/AVC Decoder,

International Journal of Computer Applications, Volume 59,

No.19, PP 20-27, December 2012.

[28] CARREIRA, J.F.M., A Two-Stage Approach for Robust HEVC

Coding and Streaming, IEEE Transactions on Circuits and Systems

for Video Technology, PP.1-14, 2016.

[29] Michael Horowitz, Anthony Joch, Faouzi Kossentini, and Antti

Hallapuro, H.264/AVC Baseline Profile Decoder Complexity

Analysis, IEEE Transactions on Circuits and Systems for Video

Technology , Volume 13, Issue 7, PP.704-716, JULY 2003.

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=76
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=76
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=76
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=76
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=27384

87

[30] LI, X., EDIRISINGHE, E.A.and BEZ, H.E., Shape Adaptive

Integer Transform for Coding Arbitrarily Shaped Objects in

H.264/AVC, Visual Communications and Image Processing, 2006.

[31] Fernando Pereira, Thomas Stockhammer, and Thomas Wedi, Video

Coding with H.264/AVC, Tools, Performance, and Complexity,

IEEE Circuits and Systems Magazine , Volume 4, Issue 1, PP. 7-28,

2004.

[32] Senay Amanuel Negusse, Improving Intra Pixel Prediction for

H.264 Video Coding, Thesis of Master of Science in Electrical

Engineering, Multimedia Technology, Ericsson research, Blekinge

Institute of Technology (School of Engineering, Department of

Signal Processing), Blekinge Institute of Technology, May 2008.

[33] A. Elyousfi, A. Tamtaoui, and E. Bouyakhf , A New Fast Intra

Prediction Mode Decision Algorithm for H.264/AVC Encoders,

World Academy of Science, Engineering and Technology

International Journal of Electrical and Computer Engineering, Vol

1, No 3, PP 89-95, 2007.

[34] Priyanka P James1, Chirappanath B Albert2, Inbanila.K3, Analysis

of Integer Transformation and Quantization Blocks using H.264

Standard and the Conventional DCT Techniques, International

Journal of Computer Science and Mobile Computing, IJCSMC, Vol.

3, Issue. 3, PP.873 – 878, March 2014.

[35] S. Valarmathi, R. Vani and Dr. M. Sangeetha, Hardware Software

Co-Simulation of Motion Estimation on H.264 Encoder,

Natarajan Meghanathan, et al. (Eds), ITCS, SIP, JSE-2012, CS & IT

04, PP. 263–271, 2012.

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7384
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=28691

88

[36] Bharathi S.H. and K. Nagabhushana Raju and S. Ramachandran,

Implementation of Horizontal and Vertical Intra prediction

Modes for H.264 Encoder, International Journal of Electronics and

Communication Engineering, PP.105-114, Number 1 (2011).

[37] Gary J. Sullivan, Pankaj Topiwala, and Ajay Luthra, The

H.264/AVC Advanced Video Coding Standard, Overview and

Introduction to the Fidelity Range Extensions, SPIE Conference

on Applications of Digital Image Processing XXVII, Special Session

on Advances in the New Emerging Standard: H.264/AVC, PP 1-22,

August, 2004.

[38] Sara Hamdy, Mostafa E. A. Ibrahim, Abdelhalim Zekry, VHDL

Realization of Efficient H.264 Intra Prediction Scheme Based on

Best Prediction Matrix Mode, International Journal of Computer

Applications, Volume 77 - No. 13, PP 1-7, September 2013.

[39] Jin Li, Advances on Video Coding Algorithms for Next

Generation Mobile Applications, The Thesis of Doctor of Science

in Technology, Tampere University of Technology, PP. 1-70,5th of

August 2011.

[40] Bojun Meng, Oscar C. Au*, Chi-Wah Wong, Hong-Kwai Lam,

Efficient Intra-Prediction Mode Selection for 4x4 Blocks in

H.264, Multimedia and Expo, 2003 ICME International

Conference on, IEEE, PP 521-524,2003.

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8655
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8655

89

APPENDIX A

Matlab Code: H.264/ AVC Encoder and Decoder

1. Encoder code in MATLAB

function myencoder

% function to encode the video frames

fprintf('\nencoder Project\n')

nf =28;

fprintf('%i frames\n',nf)

nb = getmov(nf);

tic

mpeg = encmov(nb);

fprintf('Encode time: %s\n',sec2timestr(toc))

 tic

mov2 = decmpeg(mpeg);

fprintf('Decode time: %s\n',sec2timestr(toc))

save ('N.mat','nb');

save ('D.mat','mpeg');

save('S1.mat','mov2');

save lastmov nb mpeg mov2

X=nb(:,:,:,:);

Y=mov2(:,:,:,:);

biterr=Biter(X,Y);

save lastmov3 biterr

%% Reading the frame information

function movdata = getmov(nf)

load nbb

if nf == 0

nf = length(nb);

91

end

movdata = repmat(uint8(0),[size(nb(1).cdata), nf]);

for i = 1:nf

movdata(:,:,:,i) = nb(i).cdata;

end

%%

function mpeg = encmov(nb)

fpat = 'IBBB';

k = 0;

pf = [];

progressbar

for i = 1:size(nb,4)

f = rgb2ycbcr(f); % convert from RGB to YUV

k = k + 1;

if k > length(fpat)

 k = 1;

end

ftype = fpat(k);

[mpeg{i},pf] = encframe(f,ftype,pf);

progressbar(i/(2*size(nb,4)))

end

 %% Encode the frame

function [mpeg,df] = encframe(f,ftype,pf)

 [M,N,i] = size(f);

mbsize = [M, N] / 16;

f=f(1:floor(mbsize(1))*16,1:floor(mbsize(2))*16,:);

 [M,N,i] = size(f);

 mbsize = [M, N] / 16;

mpeg = struct('type',[],'mvx',[],'mvy',[],'scale',[],'coef',[]);

91

mpeg(mbsize(1),mbsize(2)).type = [];

 pfy = pf(:,:,1);

df = zeros(size(f));

for m = 1:mbsize(1)

for n = 1:mbsize(2)

x = 16*(m-1)+1 : 16*(m-1)+16;

y = 16*(n-1)+1 : 16*(n-1)+16;

[mpeg(m,n),df(x,y,:)] = encmacroblock(f(x,y,:),ftype,pf,pfy,x,y);

end

end

%% Encode the micro block(luma and chroma)

function b = getblocks(mb)

 b = zeros([8, 8, 6]);

 b(:,:,1) = mb(1:8, 1:8, 1);

b(:,:,2) = mb(1:8, 9:16, 1);

b(:,:,3) = mb(9:16, 1:8, 1);

b(:,:,4) = mb(9:16, 9:16, 1);

 b(:,:,5) = 0.25 * (mb(1:2:15,1:2:15, 2) + mb(1:2:15,2:2:16, 2) ...

 + mb(2:2:16,1:2:15, 2) + mb(2:2:16,2:2:16, 2));

b(:,:,6) = 0.25 * (mb(1:2:15,1:2:15, 3) + mb(1:2:15,2:2:16, 3) ...

 + mb(2:2:16,1:2:15, 3) + mb(2:2:16,2:2:16, 3));

%% Transformation and quantisation

function [mpeg,dmb] = encmacroblock(mb,ftype,pf,pfy,x,y)

persistent q1 q2

if isempty(q1)

q1 = qintra;

q2 = qinter;

end

 % Quality scaling

92

% for inter

 scale = 1;

%for intra

% scale = 32;

% Init mpeg struct

% mpeg.type = 'I';

mpeg.type = 'IBBB';

mpeg.mvx = 0;

mpeg.mvy = 0;

if ftype=='B'

mpeg.type = 'B';

[mpeg,emb] = getmotionvec(mpeg,mb,pf,pfy,x,y);

mb = emb;

q = q2;

else

q = q1;

 end

b = getblocks(mb);

for i = 6:-1:1

mpeg.scale(i) = scale;

coef = dct2(b(:,:,i));

mpeg.coef(:,:,i) = round(8 * coef ./ (scale * q));

end

toc

dmb = decmacroblock(mpeg,pf,x,y);

%% Motion estimation and compensation

function [mpeg,emb] = getmotionvec(mpeg,mb,pf,pfy,x,y)

mby = mb(:,:,1);

[M,N] = size(pfy);

93

% Logarithmic search

step = 8; %

dx = [0 1 1 0 -1 -1 -1 0 1];

dy = [0 0 1 1 1 0 -1 -1 -1];

mvx = 0;

mvy = 0;

while step >= 1

minsad = inf;

for i = 1:length(dx)

 tx = x + mvx + dx(i)*step;

if (tx(1) < 1) || (M < tx(end))

continue

end

ty = y + mvy + dy(i)*step;

 if (ty(1) < 1) || (N < ty(end))

continue

end

sad = sum(sum(abs(mby-pfy(tx,ty))));

 if sad < minsad

ii = i;

minsad = sad;

end

if sad< minsad

ii = i;

minsad = sad;

 end

 end

mvx = mvx + dx(ii)*step;

mvy = mvy + dy(ii)*step;

94

step = step / 2;

end

mpeg.mvx = mvx;

mpeg.mvy = mvy;

emb = (mb-pf(x+mvx,y+mvy,:));

function nb = decmpeg(mpeg)

movsize = size(mpeg{1});

nb = repmat(uint8(0),[16*movsize(1:2), 3, length(mpeg)]);

pf = [];

for i = 1:length(mpeg)

f = decframe(mpeg{i},pf);

pf = f;

f= ycbcr2rgb(f);

f = min(max(f,0), 255);

nb(:,:,:,i) = uint8(f);

progressbar((i+length(mpeg))/(2*length(mpeg)))

end

%%

function fr = decframe(mpeg,pf)

mbsize = size(mpeg);

M = 16 * mbsize(1);

N = 16 * mbsize(2);

fr = zeros(M,N,3);

for m = 1:mbsize(1)

for n = 1:mbsize(2)

x = 16*(m-1)+1 : 16*(m-1)+16;

y = 16*(n-1)+1 : 16*(n-1)+16;

fr(x,y,:) = decmacroblock(mpeg(m,n),pf,x,y);

 end

95

end

%%

function mb = putblocks(b)

 mb = zeros([16, 16, 3]);

mb(1:8, 1:8, 1) = b(:,:,1);

mb(1:8, 9:16, 1) = b(:,:,2);

mb(9:16, 1:8, 1) = b(:,:,3);

mb(9:16, 9:16, 1) = b(:,:,4);

z = [1 1; 1 1];

mb(:,:,2) = kron(b(:,:,5),z);

mb(:,:,3) = kron(b(:,:,6),z);

%%

function mb = decmacroblock(mpeg,pf,x,y)

persistent q1 q2

if isempty(q1)

q1 = qintra;

q2 = qinter;

end

mb = zeros(16,16,3);

if mpeg.type == 'B'

mb = pf(x+mpeg.mvx,y+mpeg.mvy,:);

q = q2;

else

q = q1;

end

 for i = 6:-1:1

coef = mpeg.coef(:,:,i) .* (mpeg.scale(i) * q) / 8;

b(:,:,i) = idct2(coef);

end

96

mb = mb + putblocks(b);

%%

function q = qintra

q = 16;

%%

function q = qinter

q=[16 11 10 16 24 40 51 61;

 12 12 14 19 26 58 60 55;

 14 13 16 24 40 57 69 56;

 14 17 22 29 51 87 80 62;

 18 22 37 56 68 109 103 77;

 24 35 55 64 81 104 113 92;

 49 64 78 87 103 121 120 101;

 72 92 95 98 112 100 103 99];

%%

function y = dct2(x)

persistent d

if isempty(d)

d = dctmtx(8);

end

y = d * x * d';

 y = dct(x); % Columns

y = dct(y')'; % Rows

%%

function y = idct2(x)

persistent d

if isempty(d)

d = dctmtx(8);

end

97

y = d' * x * d;

y = idct(x); % Columns

y = idct(y')'; % Rows

% toc

2.Decoder code in MATLAB

function mydecoder % decoder the video frames

fprintf('\nDecoder Project\n')

nf =28 ;

fprintf('%i frames\n',nf)

fprintf('Decode time: %s\n',sec2timestr(toc))

tic

load N;

load D ;

mov2 = decmpeg(mpeg);

fprintf('Decode time: %s\n',sec2timestr(toc))

save('S1.mat','mov2');

save lastmov nb mpeg mov2

X=nb(:,:,:,3);

Y=mov2(:,:,:,3);

biterr=Biter(X,Y);

save lastmov4 biterr

%% for configrate the frame and reading the frame proparties

function nb = decmpeg(mpeg)

movsize = size(mpeg{1});

nb = repmat(uint8(0),[16*movsize(1:2), 3, length(mpeg)]);

pf = [];

for i = 1:length(mpeg)

f = decframe(mpeg{i},pf);

pf = f;

98

f= ycbcr2rgb(f);

f = min(max(f,0), 255);

nb(:,:,:,i) = uint8(f);

end

%%

function fr = decframe(mpeg,pf)

mbsize = size(mpeg);

M = 16 * mbsize(1);

N = 16 * mbsize(2);

fr = zeros(M,N,3);

for m = 1:mbsize(1)

for n = 1:mbsize(2)

x = 16*(m-1)+1 : 16*(m-1)+16;

y = 16*(n-1)+1 : 16*(n-1)+16;

fr(x,y,:) = decmacroblock(mpeg(m,n),pf,x,y);

end

end

%%

function mb = putblocks(b)

mb = zeros([16, 16, 3]);

mb(1:8, 1:8, 1) = b(:,:,1);

mb(1:8, 9:16, 1) = b(:,:,2);

mb(9:16, 1:8, 1) = b(:,:,3);

mb(9:16, 9:16, 1) = b(:,:,4);

z = [1 1; 1 1];

mb(:,:,2) = kron(b(:,:,5),z);

mb(:,:,3) = kron(b(:,:,6),z);

%% for reconstruct block

99

function mb = decmacroblock(mpeg,pf,x,y)

persistent q1 q2

if isempty(q1)

q1 = qintra;

q2 = qinter;

end

mb = zeros(16,16,3);

 if mpeg.type == 'B'

mb = pf(x+mpeg.mvx,y+mpeg.mvy,:);

q = q2;

else

q = q1;

end

for i = 6:-1:1

coef = mpeg.coef(:,:,i) .* (mpeg.scale(i) * q) / 8;

b(:,:,i) = idct2(coef);

end

mb = mb + putblocks(b);

%%

function q = qintra

q = 16;

%%

function q = qinter

q=[16 11 10 16 24 40 51 61;

 12 12 14 19 26 58 60 55;

 14 13 16 24 40 57 69 56;

 14 17 22 29 51 87 80 62;

 18 22 37 56 68 109 103 77;

 24 35 55 64 81 104 113 92;

111

 49 64 78 87 103 121 120 101;

 72 92 95 98 112 100 103 99];

%% for inverse dct transform

function y = idct2(x)

persistent d

if isempty(d)

d = dctmtx(8);

end

y = d' * x * d;

y = idct(x); % Columns

y = idct(y')'; % Rows

3.The Bit Error Rate Code in MATLAB

function [out]=Biter(X,Y)

[m, n, l]=size(X);

errate=0;

for i=1:m

for j=1:n

if(X(i,j,l)==Y(i,j,l))

errate=errate+0;

else

errate=errate+1;

end

end

end

err=errate;

out=(errate)/numel(X);

111

APPENDIX B

FPGA Design of H.264 /AVC encoder and decoder

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

use ieee.numeric_std.ALL;

use std.textio.all;

use work.h264.all;

use work.misc.all;

entity h264encdec is

 generic (

 IMGWIDTH : integer := 352;

 IMGHEIGHT : integer := 288;

 j: INTEGER :=8);

 port (

 signal rst : in std_logic:= '0';

 DIV_CLK : in std_logic;

 signal CLK : inout std_logic; --clock

 signal CLK2 : inout std_logic;

signal Dataout : out std_logic_vector(31 downto 0);

 -- controls

 signal NEWSLICE : in std_logic;

 signal NEWLINE : in std_logic;

 signal QP : in std_logic_vector(5 downto 0);

 signal xbuffer_DONE : out std_logic := '0';

 signal intra4x4_READYI : out std_logic := '0';

112

 signal intra4x4_STROBEI : in std_logic := '0';

 signal intra8x8cc_readyi : out std_logic := '0';

 signal intra8x8cc_strobei : in std_logic := '0';

 signal intra8x8cc_datai : in std_logic_vector(31 downto 0)

:= (others => '0');

 reg_out :out std_logic_vector(3 downto 0));

end h264encdec;

architecture hw of h264encdec is

component rr is

 port(clk:in std_logic;

 address:in std_logic_vector(10 downto 0);

 dout: out std_logic_vector(7 downto 0));

 end component;

component rram2 is

 port(clk:in std_logic;

 address:in std_logic_vector(10 downto 0);

 dout: out std_logic_vector(7 downto 0));

 end component;

component rram3 is

 port(clk:in std_logic;

 address:in std_logic_vector(10 downto 0);

 dout: out std_logic_vector(7 downto 0));

 end component;

component rram4 is

 port(clk:in std_logic;

 address:in std_logic_vector(10 downto 0);

 dout: out std_logic_vector(7 downto 0));

 end component;

signal PAKET1:std_logic_vector(31 downto 0);

113

signal Delay: integer range 0 to j:= 0;

signal cd : std_logic_vector(31 downto 0) := (others => '0');

signal intra4x4_DATAI :std_logic_vector(31 downto 0) := (others => '0');

signal address1 :std_logic_vector (10 downto 0):="00000000000";

signal address2 :std_logic_vector (10 downto 0):="00000000000";

 signal address3 :std_logic_vector (10 downto 0):="00000000000";

signal address4 :std_logic_vector (10 downto 0):="00000000000";

signal dout1: std_logic_vector(7 downto 0);

signal dout2: std_logic_vector(7 downto 0);

signal dout3: std_logic_vector(7 downto 0);

signal dout4: std_logic_vector(7 downto 0);

signal n:integer :=0;

signal intra4x4_TOPI : std_logic_vector(31 downto 0) := (others => '0');

signal intra4x4_TOPMI : std_logic_vector(3 downto 0) := (others => '0');

signal intra4x4_STROBEO : std_logic := '0';

signal intra4x4_READYO : std_logic := '0';

signal intra4x4_DATAO : std_logic_vector(35 downto 0) := (others =>

'0');

signal intra4x4_BASEO : std_logic_vector(31 downto 0) := (others =>

'0');

signal intra4x4_MSTROBEO : std_logic := '0';

signal intra4x4_MODEO : std_logic_vector(3 downto 0) := (others =>

'0');

signal intra4x4_PMODEO : std_logic := '0'; --prediction type same

signal intra4x4_RMODEO : std_logic_vector(2 downto 0) := (others =>

'0');

signal intra4x4_XXO : std_logic_vector(1 downto 0) := (others => '0');

signal intra4x4_XXINC : std_logic := '0';

signal intra4x4_CHREADY : std_logic := '0';

114

signal intra8x8cc_TOPI : std_logic_vector(31 downto 0) := (others =>

'0');

signal intra8x8cc_STROBEO : std_logic := '0';

signal intra8x8cc_READYO : std_logic := '0';

signal intra8x8cc_DATAO : std_logic_vector(35 downto 0) := (others =>

'0');

signal intra8x8cc_BASEO : std_logic_vector(31 downto 0) := (others =>

'0');

signal intra8x8cc_dcstrobeo : std_logic := '0';

signal intra8x8cc_dcdatao : std_logic_vector(15 downto 0) := (others =>

'0');

signal intra8x8cc_CMODEO : std_logic_vector(1 downto 0) := (others

=> '0');

signal intra8x8cc_XXO : std_logic_vector(1 downto 0) := (others => '0');

signal intra8x8cc_XXC : std_logic := '0';

signal intra8x8cc_XXINC : std_logic := '0';

signal coretransform_READY : std_logic := '0';

signal coretransform_ENABLE : std_logic := '0';

signal coretransform_XXIN : std_logic_vector(35 downto 0) := (others

=> '0');

signal coretransform_valid : std_logic := '0';

signal coretransform_ynout : std_logic_vector(13 downto 0);

signal dctransform_VALID : std_logic := '0';

signal dctransform_yyout : std_logic_vector(15 downto 0);

signal dctransform_readyo : std_logic := '0';

signal quantise_ENABLE : std_logic := '0';

signal quantise_YNIN : std_logic_vector(15 downto 0);

signal quantise_valid : std_logic := '0';

signal quantise_zout : std_logic_vector(11 downto 0);

115

signal quantise_dcco : std_logic := '0';

signal dequantise_enable : std_logic := '0';

signal dequantise_zin : std_logic_vector(15 downto 0);

signal dequantise_last : std_logic := '0';

signal dequantise_valid : std_logic := '0';

signal dequantise_dcco : std_logic := '0';

signal dequantise_wout : std_logic_vector(15 downto 0);

signal invdctransform_enable : std_logic := '0';

signal invdctransform_zin : std_logic_vector(15 downto 0);

signal invdctransform_valid : std_logic := '0';

signal invdctransform_yyout : std_logic_vector(15 downto 0);

signal invdctransform_ready : std_logic := '0';

signal invtransform_valid : std_logic := '0';

signal invtransform_xout : std_logic_vector(39 downto 0);

signal recon_BSTROBEI : std_logic := '0';

signal recon_basei : std_logic_vector(31 downto 0) := (others => '0');

signal recon_FBSTROBE : std_logic := '0';

signal recon_FBCSTROBE : std_logic := '0';

signal recon_FEEDB : std_logic_vector(31 downto 0) := (others => '0');

signal xbuffer_READYI : std_logic := '0';

signal xbuffer_CCIN : std_logic := '0';

COMPONENT DIV

 PORT(

 clk : IN std_logic;

 rst : IN std_logic;

 clk1_100M : INOUT std_logic;

 clk2_200M : INOUT std_logic

);

END COMPONENT;

116

 COMPONENT REG

 PORT(

 CLK : IN std_logic;

 rst : IN std_logic;

 Data_IN : INOUT std_logic_vector(31 downto 0);

 Data_out : OUT std_logic_vector(31 downto 0)

);

 END COMPONENT;

begin

p1:rr

 port map (clk=>clk,

address=>address1,

dout=>dout1);

 p2:rram2

 port map (clk=>clk,

address=>address2,

dout=>dout2);

p3:rram3

port map (clk=>clk,

address=>address3,

dout=>dout3);

 p4:rram4

port map (clk=>clk,

address=>address4,

dout=>dout4);

process1 :process(clk)

begin

if (CLK'event and CLK ='1')

117

then

if (n>0)then

intra4x4_DATAI(7 downto 0)<= dout1;

intra4x4_DATAI(15 downto 8)<= dout2;

intra4x4_DATAI(23 downto 16)<= dout3;

intra4x4_DATAI(31 downto 24)<= dout4;

address1 <= address1 + "00000000001";

address2 <= address2 + "00000000001";

address3 <= address3 + "00000000001";

address4 <= address4 + "00000000001";

else

n <= n+1;

end if;

end if;

end process;

reg_sav : reg

PORT MAP(

clk =>clk2 ,

rst =>rst ,

Data_IN =>cd,

 Data_out =>Dataout

);

process(CLK2)

begin

if rst='1' then

PAKET1<=(others=>'0');

Delay<=j-8;

elsif(CLK'event and CLK='1') then

Delay<=Delay+1;

118

PAKET1<=cd;

PAKET1<=PAKET1(27 downto 0)&PAKET1(31 downto 28);

reg_out<=cd(31 downto 28);

end if;

end process;

 intra4x4 : h264intra4x4

 port map (

CLK => clk2,

NEWSLICE => NEWSLICE,

NEWLINE => NEWLINE,

STROBEI => intra4x4_strobei,

DATAI => intra4x4_datai,

READYI => intra4x4_readyi,

TOPI => intra4x4_topi,

TOPMI => intra4x4_topmi,

XXO => intra4x4_xxo,

XXINC => intra4x4_xxinc,

FEEDBI => recon_FEEDB(31 downto 24),

FBSTROBE => recon_FBSTROBE,

STROBEO => intra4x4_strobeo,

DATAO => intra4x4_datao,

BASEO => intra4x4_baseo,

READYO => intra4x4_readyo,

MSTROBEO => intra4x4_mstrobeo,

MODEO => intra4x4_MODEO,

PMODEO => intra4x4_PMODEO,

RMODEO => intra4x4_RMODEO,

CHREADY => intra4x4_CHREADY

);

119

intra4x4_readyo <= coretransform_ready and xbuffer_readyi

intra4x4_TOPI <= toppix(conv_integer(mbx & intra4x4_XXO));

intra4x4_TOPMI <= topmode(conv_integer(mbx & intra4x4_XXO));

 intra8x8cc : h264intra8x8cc

 port map (

CLK2 => clk2,

NEWSLICE => NEWSLICE,

NEWLINE => NEWLINE,

STROBEI => intra8x8cc_strobei,

DATAI => intra8x8cc_datai,

READYI => intra8x8cc_readyi,

TOPI => intra8x8cc_topi,

XXO => intra8x8cc_xxo,

XXC => intra8x8cc_xxc,

XXINC => intra8x8cc_xxinc,

FEEDBI => recon_FEEDB(31 downto 24),

FBSTROBE => recon_FBCSTROBE,

STROBEO => intra8x8cc_strobeo,

DATAO => intra8x8cc_datao,

BASEO => intra8x8cc_baseo,

READYO => intra4x4_CHREADY,

DCSTROBEO => intra8x8cc_dcstrobeo,

DCDATAO => intra8x8cc_dcdatao,

CMODEO => intra8x8cc_cmodeo

);

intra8x8cc_TOPI <= toppixcc(conv_integer(mbxcc &

intra8x8cc_XXO));

coretransform : h264coretransform

111

 port map (

CLK => clk2,

READY => coretransform_ready,

ENABLE => coretransform_enable,

XXIN => coretransform_xxin,

VALID => coretransform_valid,

YNOUT => coretransform_ynout

);

coretransform_enable <= intra4x4_strobeo or intra8x8cc_strobeo;

coretransform_xxin <= intra4x4_datao when intra4x4_strobeo='1' else

intra8x8cc_datao;

recon_bstrobei <= intra4x4_strobeo or intra8x8cc_strobeo;

recon_basei <= intra4x4_baseo when intra4x4_strobeo='1' else

intra8x8cc_baseo;

dctransform : h264dctransform

generic map (TOGETHER => 1)

port map (

CLK2 => clk2,

RESET => newslice,

ENABLE => intra8x8cc_dcstrobeo,

XXIN => intra8x8cc_dcdatao,

VALID => dctransform_valid,

YYOUT => dctransform_yyout,

READYO => dctransform_readyo

);

dctransform_readyo <= intra4x4_CHREADY and not

coretransform_valid;

 quantise : h264quantise

 port map (

111

CLK => clk2,

ENABLE => quantise_ENABLE,

QP => qp,

DCCI => dctransform_VALID,

YNIN => quantise_YNIN,

ZOUT => quantise_zout,

VALID => quantise_valid

);

quantise_YNIN <= sxt(coretransform_ynout,16) when

coretransform_valid='1' else dctransform_yyout;

quantise_ENABLE <= coretransform_valid or dctransform_VALID;

invdctransform : h264dctransform

 port map (

CLK2 => clk2,

RESET => newslice,

ENABLE => invdctransform_enable,

XXIN => invdctransform_zin,

VALID => invdctransform_valid,

YYOUT => invdctransform_yyout,

READYO => invdctransform_ready

);

invdctransform_enable <= quantise_valid and quantise_dcco;

invdctransform_ready <= dequantise_last and xbuffer_CCIN;

invdctransform_zin <= sxt(quantise_zout,16);

dequantise : h264dequantise

generic map (LASTADVANCE => 2)

 port map (

CLK => clk2,

ENABLE => dequantise_enable,

112

QP => qp,

ZIN => dequantise_zin,

DCCI => invdctransform_valid,

LAST => dequantise_last,

WOUT => dequantise_wout,

VALID => dequantise_valid

);

dequantise_enable <= quantise_valid and not quantise_dcco;

dequantise_zin <= sxt(quantise_zout,16) when invdctransform_valid='0'

else invdctransform_yyout;

invtransform : h264invtransform

 port map (

CLK => clk2,

ENABLE => dequantise_valid,

WIN => dequantise_wout,

VALID => invtransform_valid,

XOUT => invtransform_xout

);

recon : h264recon

 port map (

CLK2 => clk2,

NEWSLICE => NEWSLICE,

STROBEI => invtransform_valid,

DATAI => invtransform_xout,

BSTROBEI => recon_bstrobei,

BCHROMAI => intra8x8cc_strobeo,

BASEI => recon_basei,

STROBEO => recon_FBSTROBE,

CSTROBEO => recon_FBCSTROBE,

113

DATAO => recon_FEEDB

);

Inst_DIV: DIV PORT MAP(

clk =>DIV_CLK,

rst =>rst,

clk1_100M =>clk,

clk2_200M =>clk2);

end hw;

1

 الخلاصة

 تنسيق أنواع معظم تشفير وفك لتشفير جيدة تقنية طريقة بمثابة H.264 /AV C يعتبر

 من h.264ة و جودة اداء المشفر وفاتح التشفير قوت تأتي. للغاية جيدة نتائج ويوفر الفيديو

 لكسب المثالي للحصول على الناتج محاولتهو الفيديو طارا لإ تشفيره وكيفية العمل خوارزمية

 برنامج باستخدام للمعيار التشفير وفك التشفير عملية تطبيق عملنا يتضمن. الأصلي الفيديو

MATLAB (2013Ra). إطار نمط باستخدام الأطر بين التنبؤا في العمل يركزو

(IBBB) ووقت ، ثانية(2482.8) يساوي لذياو جدً قياسي وقت في ومشفرة إطارًا (82) مع

 اسمهالتشفير وفك ترميز لعملية خضع الذي الفيديو كان. ثانية(...242) يساوي ريشفتال فك

(Xylophone) هذهو ،٪ 12= الضغط معدل إلى وصلنا الطريقة بهذه. (082× 8.2) بحجم

 .جدًا جيدة قيمة

واستخدامنا رللمعيا عملي تطبيقال على يتركز الأطروحة هذه من الثاني الجزء

هذا في intraنوع التنبؤ استخدمنا نمط. FPGA المنطقية المبرمجة حقليامصفوفة البوابا ل

مصفوفة البوابا المنطقية المبرمجة تصميم ضمن هي التي المحددا بسبب الجزء من العمل

وضمن FPGAلل المناسب التردد نطاق في العمل خلال من الشروط تحقيق من تمكنا وقد.حقليا

 .واضح من النتائج العملية التي حصلنا عليهاالمساحة السيليكونية له وهذا

 إقرار المشرف

 على مصفوفة H.264/AVCتمثيل فاتح التشفير)شهد بأن هذه الرسالة الموسومة أ

 فيتحت اشرافي (رسل نبيل احمد) ةالطالب والمعدة من قبل(البوابات المنطقية المبرمجة حقليا

 . شهادة الماجستيرجامعة الموصل، كجزء من متطلبات نيل / / قسم

 :التوقيع

 :الاسم

 : التاريخ

 إقرار المقوم اللغوي

اشهد بأنه قد تمت مراجعة هذه الرسالة من الناحية اللغوية وتصحيح ماورد فيها من

أخطاء لغوية وتعبيرية وبذلك أصبحت الرسالة مؤهلة للمناقشة بقدر تعلق الأمر بسلامة الأسلوب

 .أو صحة التعبير

 :التوقيع

 : الاسم

 : التاريخ

 رار رئيسإق

بناءً على التوصيات المقدمة من قبل المشرف والمقوم اللغوي أرشح هذه الرسالة

 .للمناقشة

 :التوقيع

 : الاسم

 : التاريخ

 إقرار رئيس لجنة الدراسات العليا

بناءً على التوصيات المقدمة من قبل المشرف والمقوم اللغوي أرشح هذه الرسالة

 .للمناقشة

 : التوقيع

 : الاسم

 : التاريخ

 جامعة الموصل
 هندسة لالكترونياتكلية

على مصفوفة H.264/AVCتمثيل فاتح التشفير
 البوابات المنطقية المبرمجة حقليا

 رسل نبيل احمد

 رسالة ماجستير

 هندسة الحاسوب والمعلوماتية

 بإشراف
 الدكتور الأستاذ

 محمد حازم الجماس
 م1038 هـ 3419

