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ABSTRACT 

According to World Health Organization records, there are more than 

285 million people who are visually impaired. It is relatively simple for a 

normal human to deal with objects in the surrounding environment, but it 

is one of the major problems for visually impaired people. Another issue, 

money plays an important role in our everyday lives and is required for 

every business transaction. The current thesis proposes a visual impaired 

assistance system to help visually impaired people by converting the visual 

world to audio commands. The system has been developed using deep 

learning based on YOLOv3 two-stage models. Forty four objects have 

been chosen to detect using a completely patient-centered approach. A 

label of the detected object is converted into an audio command using Text 

to Speech library. The trained model performance has been evaluated on a 

test dataset and real-time live video. Results show that the proposed system 

can detect and recognize objects with high mean average precision reaches 

to 88.585%, and 97.647 % for Iraqi banknotes. 

 Two embedded platforms have been used in the hardware 

implementation of the visual impaired assistance system. The first 

embedded system is the Raspberry Pi 3B and the second is the NVIDIA 

Jetson Nano. The results of the two platform implementations show that 

the inference speed of the Jetson Nano is significantly faster than the 

Raspberry Pi 3B.  
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CHAPTER ONE 

Introduction 

1.1 Overview  

 Vision is one of the most important human senses. It is an essential 

part of human life. About 83% of human knowledge is observed using the 

eyes [1]. Therefore, it is very difficult for the visually impaired to perform 

daily tasks and interact with the surrounding world. They have to struggle 

a lot just to do their day-to-day chores. 

 Visually impaired people find it challenging to walk, recognize 

objects, drive, recognize banknotes, or find places alone. For that reason, 

many visually impaired people will bring a sighted friend or family 

member to help deal with unknown environments, which makes their lives 

more difficult than normal people. These social challenges limit a blind 

person from reaching normal people's ability, and this only adds to their 

low self-esteem [2] [3].  

 According to a 2020 World Health Organization (WHO) survey, 

approximately 285 million people are visually impaired, with 39 million 

being blind and 246 million having low vision. The number of visually 

impaired people is exploding with the growth of the newborn population, 

eye diseases, accidents, aging, and so on. Every year this number grows by 

up to 2 million worldwide [4] [5]. People often regard the visually impaired 

as a burden and abandon them to fend for themselves. As a result, the 

visually impaired individual is continuously in need of an assistive 

technology that may assist in visualizing the world to live a normal life [6]. 
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The walking cane (also known as a white cane or stick) and guide dogs are 

the most common and oldest mobility aids for the visually impaired. The 

white cane was chosen for various reasons, including its low cost, 

portability, and widespread acceptance in the blind community. However, 

these assistive have their own limitations when a variety of hurdles and 

situations arise in their daily life [7]. 

 Through the advancement of technology, humanity now has access 

to a lot of possibilities that would have been either impossible or 

miraculous in the past, such as object detection [8]. 

 Object detection can be identified as a technology that imitates the 

functions of the human visual system to detect objects. Object detection is 

a technique that detects objects of a particular class in live videos. There 

are several methods for object detection using computer vision, and some 

methods are more reliable and robust than others. The most modern method 

for object detection is deep learning [9]. 

 With the recent advances in deep learning, it is possible to extend the 

support given to people with visual impaired. As a result, the current thesis 

will shed light on a system that will assist visually impaired people by 

detecting objects and providing necessary information about those objects. 

 

1.2 Literature Review 

 To support the visually impaired people, many technologies have 

been developed. Some relevant works connected to this segment are 

described below: 
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 In 2012, B. Schauerte et al. [10], presented a computer vision system 

that helps blind people find lost objects. It uses color and scale invariant 

feature transform (SIFT) based on object detection with signification to 

guide the hand of the user towards potential target object location. This 

method allows the user's attention to be directed while effectively 

reducing the amount of space in the environment that needs to be 

explored. 

 In 2014, M. Nalawade et al. [11], implemented a system on an android 

device to help blind people navigate without the help of a third person. 

A webcam captures images in front of blind people, then the captured 

image will be processed through algorithms, which will enhance the 

image data. The hardware component will have its own database, and 

the processed image is compared with the database in the hardware 

component. The result after processing and comparing will be 

converted into speech signals which used to guide blind people. 

 In 2016, P. Jadhav et al. [12], implemented a system to help the visually 

impaired people using a simple android application. The goal of this 

system was to search for objects in the camera view using object 

detection and feature extraction. The authors provided an idea to 

implement the oriented fast and rotated brief (ORB) algorithm on a 

field-programmable gate array (FPGA) to increase the execution speed 

by utilizing the reconfigurable nature and pipelining of the FPGA. 

 In 2017, J. Zraqou et al. [13], presented a method for assisting blind 

people using object recognition. To give the essential information about 

the surrounding environment, two cameras are installed on a blind 

person's glasses, a free GPS service, and an ultrasonic sensor are used. 

The GPS service is used to group objects based on their locations, and 

the sensor detects any obstacle at a medium distance. 
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 In 2017, Pachhaiammal [14], proposed a system using a camera to 

capture the image, then the image will be processed to extract the 

features of the object using two algorithms. The simulation results using 

the SIFT algorithm and the Sobel algorithm are used to extract edge key 

points matching that showed good accuracy for detecting objects. The 

captured image will be compared with the images that are already stored 

in the datasets. The images that are matched with the dataset images are 

converted into text messages and then the text is converted into voice 

notes. All the processing is done by using MATLAB. 

 In 2017, Govardhan. S.D et al. [15], developed and implemented a 

smart assistant system for the visually impaired. This system is a 

combination of a smart object detecting wearable module and a 

smartphone, which provides critical environmental information for the 

visually impaired to navigate their surroundings. This system uses the 

Arduino and two sensors, an ultrasonic sensor and a motion sensor. The 

ultrasonic sensor is used to recognize obstacles and the motion sensor 

is used to determine living things. Finally, the proposed system is able 

to detect obstacles and living things by the voice recognition system. 

 In 2018, Nishajith.A et al. [16], developed and built a smart cap to aid 

visually impaired persons in navigating freely by allowing them to 

experience their environment. A camera will be used to capture the 

scene around the person, and the objects in the scene will be detected. 

The earphones will produce a speech output that describes the items that 

have been detected. Raspberry Pi3 processor, camera, earphones, and 

power source are all parts of the system's design. 
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The device makes use of the TensorFlow (TF) API, which is an open-

source machine learning framework for object detection and 

classification developed by the Google Brain team. The details of the 

detected item are converted to speech using text to speech synthesizer 

(TTS) software. 

 In 2018, M. Ghilardi et al. [7], investigated the current   state-of-the-art 

in localization, detection and classification based on deep neural 

networks, and presented a solution for the detection of pedestrian traffic 

lights together with their current state for helping visually impaired 

people to cross the streets with the aid of their mobile device. The 

authors provided a novel public dataset with 4,399 labeled images of 

pedestrian traffic lights and presented a detailed comparison among the 

state-of-the-art methods for classification, localization and detection. 

 In 2019, S. Shadi et al. [17],  developed a mobile-based navigation 

system for helping visually impaired people with outdoor navigation. 

The proposed system will be able to reduce the obstacle collision risks 

by enabling users to walk outside smoothly with voice awareness. The 

suggested solution includes a mobile-based camera and deep learning 

algorithms which are employed for recognizing and detecting different 

objects. The system is used to help visually impaired people to navigate 

in unfamiliar environments. The suggested smartphone-based system is 

not restricted to the defined outdoor environments and does not depend 

on any other positioning systems. 
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 In 2019, B. Kaur and J. Bhattacharya [18], represented a cost-effective 

scene perception system aimed towards visually impaired people. An 

android system integrated with a USB camera and USB laser that is 

attached to the chest. The object detection and classification framework 

exploits a multi-modal fusion based on faster region based 

convolutional neural networks (RCNN) using motion, sharpening, and 

blurring filters for efficient feature representation. 

 In 2019, R. Ribani and M. Marengoni [19], proposed a system that 

implements sensory substitution of vision through a wearable item with 

vibration motors positioned on the back of the user. The system used 

deep learning techniques to detect and classify objects in controlled 

environments. The hardware consists of a simple HD camera, two 

Arduinos, 9 cylindrical DC motors, and a Raspberry Pi. A single shot 

detector (SSD) with ResNet-50 performs a real-time detection 

implemented on the Raspberry Pi, sending the detected object class and 

location as defined patterns to the motors. 

 In 2019, A. Bhandari et al. [20], proposed a system that would provide 

a low-cost portable solution to assist blind people. It consists of shoes 

having ultrasonic sensors to survey the scene. Once the sensors detect 

the object in front of the person, the camera module gets activated and 

captures the image, and then it will be processed to detect the object 

type, according to which information will be sent as audio via a 

Bluetooth headset to the user. The visually impaired will receive audio 

instructions about the obstacles in the dynamic environment. 
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 In 2020, M. Afif et al. [21], proposed a new indoor object detection 

system. The framework is built based on the deep convolutional neural 

network. Evaluation is done by using various backbones such as 

residual neural network (Resent) and dense convolutional network 

(DenseNet) to improve detection performance and processing time. 

 In 2020, A. Salem [22], presented an enhancement and development of 

smart glass system for visually impaired people by using an intelligent 

system to improve the quality of their lives. For totally blind people, 

there are auditory cues developed to inform the direction where they 

can go ahead, an intelligent system to recognize the objects that can face 

visually impaired people through their mobility in an indoor 

environment or travelling. Combining a support vector machine and a 

Gray Wolfe Optimizer yield a powerful hybrid intelligent method for 

object classification. 

 In 2020, K. Singh [23], proposed a system to detect Indian paper 

currencies, which includes six kinds of currency banknote. The 

proposed system takes a given image as input and pre-processes it. The 

inner and outer edges are then extracted using a Sobel algorithm. 

Clustering will be done using You Only Look Once (YOLO) algorithm. 

After that, the recognized input image is compared with the features of 

the image and classified as 200, 500, 2000, or not with the help of the 

YOLOv3 algorithm. 

 In 2020, L. Abraham et al. [8], proposed a system for identifying 

walkable spaces, text recognition and text to speech, identifying and 

locating specific types of objects, and walking navigation. This is 

implemented with the YOLO algorithm for object detection, which uses 

the Common Objects in Context (COCO) dataset.  
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This system helps a blind person to walk easily by finding the path, 

detecting obstacles and thus avoiding them. 

 In 2020, S. Shaikh [24], presented a method to assist the visually 

impaired by developing a system that captures real-time pictures in 

front of the users using a USB camera. For feature extraction, the 

YOLO machine learning approach is utilized. This system uses text-to-

speech technology to provide audio descriptions of the environment, 

allowing visually impaired people to move safely. 

1.3 Problem Definition 

 The problem of the study can be modeled using the following four 

questions:  

1. What are the most common objects that a dataset should include, and 

how are they collected properly? How much training data is needed to 

achieve a good performance? 

2. How existing deep learning models could be leveraged to perform 

object detection and classification with the goal of assisting visually 

impaired people? 

3. What is the accuracy of the trained deep learning model? How to create 

a deep learning model with high accuracy, speed, and robustness for 

object detection at a low cost to assist visually impaired people? 

4. How to propose a system accessible to visually impaired people? 

All these questions exist within the context of proposing a system that will 

assist visually impaired people to detect objects and provide necessary 

information about those objects. 
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1.4 Aims of the Study 

 A synthesis of theory and experimentation will use to answer the 

questions outlined in section 1.3. This combination of theory and 

experimentation will lead to well-structured experiments with deep 

theoretical foundations. The experiments will test in real-world conditions, 

which is an important step to successful implementation. The research 

conducted in different stages and these stages were: 

1) A custom dataset will be collected, which involves performing the pre-

processing steps needed to make the image in the dataset appropriate to 

be used as the input of a deep learning model. 

2) Implementing the YOLOv3 deep learning algorithm by using python, 

then performing a training process with modification on hyper 

parameters of the YOLOv3 deep learning algorithm to produce the final 

model architecture with high accuracy. Then using the trained models 

in the proposed system. 

3) The proposed system will be implemented on a Raspberry Pi processor 

and compared to a NVIDIA Jetson Nano processor to produce object 

detection to assist visually impaired people in their daily lives. 

 

 The system's process begins with image acquisition, which is done 

by using a camera. The camera captured real-time frames, then sets them 

to the deep learning trained model. The system must designed to provide 

audio output to visually impaired people by using text to speech (TTS) 

toolkit. 
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1.5 Thesis Layout 

 Chapter two provides a general introduction to computer vision and 

object detection. The general architecture of convolutional neural networks 

(CNN) is also included. As well as details related to the YOLO algorithm. 

Finally, the last section illustrates the hardware equipment that is used in 

model training. 

 Chapter four presents the training and accuracy results obtained before 

and after applying the optimization, and the analyzing of these results in order 

to develop the proposed system and achieve the desired accuracy. 

 Chapter five presents the hardware implementation of the proposed 

system on a Raspberry Pi processor and a NVIDIA Jetson Nano processor 

to produce an object detection system to assist visually impaired people in 

their daily lives. 

 Chapter six presents conclusions and suggests trends for future work. 
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CHAPTER TWO 

Computer Vision and Object Detection 

 

2.1 Introduction 

 This chapter provides a general introduction to computer vision and 

objects detection. The general architecture of CNN is also included. 

Moreover, details related to the YOLO algorithm, like features extraction, 

challenges, versions and some additional considerations which are relevant 

to the design of the deep neural network are presented in this thesis. Finally, 

the last section illustrates the hardware equipment that is used in model 

training. 

2.2 Object Detection 

 Artificial Intelligence (AI) has been witnessing a monumental 

growth in bridging the gap between the capabilities of humans and 

machines. Researchers and enthusiasts alike work on numerous aspects of 

the field to make amazing things happen. One of many such areas is the 

domain of computer vision. 

 AI is a branch of Computer vision that allows machines and systems 

to extract useful information from digital pictures, videos, and other visual 

inputs and take action or create recommendations based on that data. If AI  

allows machines to think, computer vision allows them to see, observe, and 

understand [25]. One of the most important and challenging branches of 

computer vision is object detection [26]. 
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Object detection can be identified as a technology that mimics the functions 

of human visual systems to detect objects in images and videos and the task 

of localizing and classifying objects in a given image or video. 

 Object detection is closely linked to other computer vision 

technologies like image segmentation and image recognition since it helps 

us comprehend and analyze situations in images or videos. However, there 

are substantial differences. Image segmentation understands the elements 

of a scene at the pixel level, whereas image recognition only outputs a class 

label for an identified object. What separates object detection from these 

other tasks is its unique ability to locate objects within an image or video. 

Object detection relates to many applications such as assisted and 

autonomous driving, navigation aids for the visually impaired, robotics 

applications, and landmark detection etc. [27] [28]. Traditional machine 

learning-based techniques and deep learning-based approaches are two 

types of object detection algorithms [9]. 

 

2.2.1  Object Detection Using Machine Learning-Based Approaches  

 Computer vision techniques are used with more traditional machine 

learning-based approaches to look at various features of an image, such as 

the color histogram or edges, to identify groups of pixels that may belong 

to an object. These features are then fed into a regression model that 

predicts the object's location as well as its label. So, the pipeline of 

traditional object detection models can be divided into three stages [29]: 

1. Feature Extraction: To detect different objects, we need to extract 

visual features that can provide a semantic and robust representation. 

Scale-invariant feature transform (SIFT) [30], histograms of oriented 

gradients (HOG) [31], and Haar-like [32] features are the representative 

ones.  
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This is because these features can create representations associated with 

complex cells in the human brain. However, due to the diversity of 

appearances, illumination conditions and backgrounds, it’s difficult to 

manually design a robust feature descriptor to perfectly describe all 

kinds of objects [29]. 

2. Informative Region Selection: Objects may appear in any position in 

the image and have different aspect ratios. Scanning the full image with 

a multi-scale sliding window is a normal choice. Although this robust 

strategy can detect all object locations, its shortcomings are also 

obvious.  It is computationally costly because of the many candidate 

windows, and it creates too many redundant windows. However, if only 

a fixed number of sliding window templates is applied, unsatisfactory 

regions may be produced [29]. 

3. Classification: A classifier is needed to distinguish a target object from 

all other categories and make the representations more hierarchical, 

semantic and informative for visual recognition. Usually, the supported 

vector machine (SVM) [33], AdaBoost [34], and the deformable part-

based model (DPM) [35] are good choices.  

 Small gains are obtained using this three-step cascated. This is 

correct for the following reasons. The first reason is that the generation of 

candidate bounding boxes with a sliding window strategy is redundant, 

inefficient and inaccurate. 

 The second reason is that the semantic gap cannot be bridged by the 

combination of manually engineered low-level descriptors and 

discriminatively-trained shallow models.  
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2.2.2  Object Detection Using Deep Learning-Based Approaches 

 Object detection has gained a lot of attention in recent years 

because of its wide range of applications and recent technical 

breakthroughs. Among the many reasons and efforts that have led to the 

fast evolution of object detection techniques, notable contributions 

should be attributed to the fast progression of deep learning and the 

continuous improvement of computing power [26]. 

 Deep learning algorithms have emerged as the state-of-the-art 

approach to object detection. Deep learning-based object identification 

models are typically divided into two parts. An encoder takes an image 

as input and processes it via a series of blocks and layers that learn to 

extract statistical characteristics that may be used to find and label 

objects. The encoder's output is then sent to a decoder, which predicts 

the bounding boxes and labels for each object. 

 When the first convolutional neural network-based object detector 

was proposed, a series of significant contributions were made which 

promoted the development of general object detection by a large margin 

to address the problems existing in traditional machine learning-based 

approaches [26] [36].  
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2.3 Convolutional Neural Network (CNN) 

 CNN is the most representative deep learning model. It consists of a 

multilayered neural network with a special architecture to detect complex 

features in data. Each CNN layer is referred to as a feature map. The input 

layer's feature map is a 3D matrix of pixel intensities for distinct color 

channels. Any internal layer's feature map is an induced multi-channel 

image, whose ‘pixel’ can be viewed as a specific feature. Every neuron is 

linked to a limited number of neurons from the previous layer[29]. CNN is 

designed to learn spatial hierarchies of features automatically and adaptive 

through back propagation by utilizing multiple building blocks such as 

convolutional layers (conv layers), fully connected layers (Fc layers), 

pooling layers, and activation functions such as rectified linear unit 

(ReLU). CNN has been used in image recognition, powering vision in 

robots, and for self-driving vehicles [37] [38] [39]. Figure 2.1 shows an 

example of CNN. 

 

Figure 2.1 Example of CNN. Green layers are convolutional layers, blue 

are pooling layers and yellow are fully connected layers. Gray is the input 

layer and red is the output layer [40]. 
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CNN can be created and trained to solve image classification and object 

detection. In image classification, the goal is to identify object in an image. 

In object detection, the goal is to identify and also locate the objects in an 

image [41]. 

2.3.1  Convolutional Layer 

 Convolution layers are the primary building blocks of a CNN. A 

convolution layer consists of a set of learnable 2D filters. Usually, each 

filter has a small spatial extent (width and height), but it extends through 

the full depth of the input feature. The layer executes a convolutional 

process on the input and filters before passing the output to the next layer. 

The convolution produces a 2D plane known as a feature map. Typically, 

a large number of learnable filters are used to generate the output of the 

convolutional layer in three dimensions, 𝐻 × 𝑊 × 𝐷 where 𝐻 and 𝑊 are 

the spatial dimensions and 𝐷 is the number of feature maps (numbers of 

filters used) [42] [29].  

 Equation 2.1 is a two-dimensional discrete convolution with steps 

from (0, 0) to(m, n) [41]: 

 𝑆(𝑖, 𝑗) = ∑ ∑ K(m, n)I(i −  m, j −  n)𝑛𝑚         ..........   (2.1) 

Where:  

𝑆: represents the output.  

𝐼: represents the input image. 

𝐾: represents the kernel.   

𝑖, 𝑗 : represents coordinates in the output feature map 𝑆. 

(i −  m, j −  n) Represents the coordinates in input 𝐼. 

 m, n : represents the coordinates in the kernel K. 
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To maintain the spatial dimensions, the input volume is often padded with 

zeros. The spatial dimension of the output is determined by Equation (2.2)  

 𝑊𝑜𝑢𝑡 =
𝑊𝑖𝑛−𝐾+2𝑃

𝑆
+ 1        .....................................  [41] (2.2) 

Where:  

𝑊𝑜𝑢𝑡: Output spatial dimension.  

𝑊𝑖𝑛: Input spatial dimension.  

𝐾: Kernel size.    

𝑆: stride.     

𝑃: zero padding. 

A convolutional layer with three 3 × 3 filters, stride 𝑆 =  1, and 

padding size 𝑃 =  1 is shown in figure 2.2. 

Figure 2.2 Convolutional layer [43]  

 

 

 



18 

 

2.3.2  Pooling Layer  

 The pooling layer, like the convolutional layer, is responsible for 

decreasing the spatial size of the convolved feature. By decreasing the 

dimensionality of the data, the processing power required to process it is 

reduced. Furthermore, it is beneficial for extracting dominating features 

that are rotational and positional invariant, allowing the model to be 

efficiently trained [43]. 

 Pooling is classified into three types: MAX pooling, MIN pooling 

and average pooling. Max Pooling provides the maximum value from the 

kernel-covered region of the image, which is mostly used when the image 

has a dark background since max pooling will select brighter pixels. In 

MIN pooling, the summary of the features in a region is represented by the 

minimum value in that region. It is mostly used when the image has a light 

background, since min pooling will select darker pixels. Average Pooling, 

on the other hand, provides the average of all the values from the region of 

the image covered by the kernel, which smooths the harsh edges of a 

picture and is used when such edges are not important [41]. 

 Max Pooling can also be used to reduce noise. It discards the noisy 

activations altogether and also performs de-noising along with 

dimensionality reduction.  

 On the other hand, average pooling simply performs dimensionality 

reduction as a noise suppressing mechanism. As a result, we can conclude 

that Max Pooling performs better than average pooling for this application. 

Figure 2.3 shows the operation of the pooling layer. 
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MAX pooling 

 

MIN pooling 

 

Average pooling 

Figure 2.3 Pooling layer with kernel size 2×2 and stride 2 

 

The convolutional layer and the pooling layer, together, form the i-th layer 

of a convolutional neural network. Depending on the complexity of the 

images, the number of such layers can be increased to capture even more 

low-level details, but at the expense of more computational power. 
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2.3.3 Rectified Linear Unit Layer (ReLU) 

 The ReLU is an activation function that is applied to the feature map, 

resulting from the convolution of the filters with the input array. As seen 

in Figure 2.4, the ReLU is a non-linear mechanism that is used instead of 

tangent and sigmoid activation functions. It helps to prevent the vanishing 

gradient problem, while maintaining the positive features and speeding up 

deep network training [38]. 

  

Figure 2.4 ReLU activation function [23] 

2.3.4 Batch Normalization 

 Deep Neural Network training is complicated by the fact that the 

distribution of each layer's inputs varies during training as the parameters 

of the previous layers change. This slows down training by requiring lower 

learning rates and more careful parameter initialization. This phenomenon 

is known as an internal covariate shift. Batch normalization is a process to 

make neural networks faster and solve the internal covariate shift problem 

through adding extra layers to a deep neural network. The new layer 

performs a normalization operation on the input of a layer coming from the 

previous layer [44]. 
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2.3.5 Fully Connected Layer (FC) 

 Fully connected layers connect the activation in the input feature 

map to each activation in the output feature map. Typically, these 

activations are calculated using matrix multiplication. Modern CNN 

architecture uses FC layers for classification. The output of the 

convolutional and pooling layers represents high-level features. 

 Most of these features may be good for classification, but their 

combination might be even better. Therefore, the last layer of a CNN is the 

FC layer, as it is usually a cheap way of learning non-linear combinations 

of its input features. The last FC layer for classifiers uses SoftMax as the 

activation function, as it converts an input vector to probabilities summing 

to one [41] [43]. 

 The main distinction between the FC and the convolutional layers is 

the neurons in the convolutional layer are only connected to a local area of 

the input, and many of them share parameters. Besides that, both layers 

compute dot products, and hence, any FC layer can be rewritten as a 

convolutional layer and vice versa. 

2.4 You Only Look Once (YOLO) 

 When humans look at a picture, they immediately recognize what 

objects are present, where they are located, and how they interact. The 

human visual system is fast and accurate, allowing us to perform complex 

tasks like driving with little conscious thought. Fast, accurate object 

detection algorithms will allow computers to drive cars without specialized 

sensors, assistive devices to relay real-time scenario details to human users, 

and unlock the potential for general-purpose, responsive robotic systems. 
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Current detection systems repurpose classifiers to perform detection. To 

detect an object, these systems take a classifier for that object and evaluate 

it at various locations and scales in a test image. 

 For object detection problems, CNNs are too slow and 

computationally costly. CNNs could not be trained on too many patches 

created by the sliding window detector. The region based convolutional 

neural network (R-CNN) [36] solves this problem by using a selective 

search object proposal algorithm, which decreases the number of bounding 

boxes fed to the classifier to about 2000 region proposals. Running CNN 

on 2000 regional proposals created by a selective search, on the other hand, 

takes a long time. 

 Girshick et al. wrote a second paper, Fast R-CNN, in 2015 [45]. The 

Fast R-CNN algorithm outperformed the original R-CNN algorithm in 

terms of precision and time required to complete a forward pass. However, 

the model also depends on an external region proposal algorithm. R-CNN 

and Fast R-CNN are also used selective searches to find the region's 

proposal, which made them both slow.  Shaoqing Renetal. [46] has 

developed an object detection algorithm that replaces the selective search 

algorithm and allows the network to learn the region proposals. 

  All the methods mentioned so far examine the image multiple times, 

which increases the total computational time. Both the single shot detector 

(SSD) [47] and YOLO [48] use a one-stage detector technique to further 

improve the speed of deep learning-based object detectors, taking a given 

input image and simultaneously learning bounding box coordinates and 

corresponding class label probabilities. SSD eliminates proposal 

generation and is simpler to train. The accuracy of SSD is close to that of 

Faster-RCNN and its speed is close to the YOLO algorithm. 
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In 2015, Redmon et al. [49] proposed the regression-based YOLO 

algorithm. Instead of proposing regions and classifying those regions, the 

YOLO algorithm, as its name suggests, looks at the complete image and 

uses a single network layer to predict the bounding boxes and their 

confidence levels. It is the state-of-the-art technology used for object 

detection [49].  

 It's worth noting that YOLO just runs the image via CNN once. As a 

result, images can be processed in real time. The original YOLO algorithm 

is exceptionally fast at 45 FPS, and is twice as accurate as other real-time 

algorithms of that time. However, it still lags behind in accuracy compared 

with R-CNN.  

 YOLOv2 [50] is the second version of YOLO that improves 

accuracy significantly while making it faster. YOLOv2 is concentrated on 

improving recall and localization. To enhance YOLO's results, a variety of 

previous ideas and new concepts are combined. The most important of 

those is the introduction of anchor boxes, as proposed in the Faster R-CNN 

algorithm. Using anchor boxes instead of directly calculating bounding box 

coordinates simplifies the issue and allows the network to learn more 

easily. 

  YOLOv2 works with 416×416 pixel input images, and its 

convolutional and pooling layers down-sample the image by a factor of 32 

to produce a feature map with a size of 13×13. YOLOv2 has the extra 

advantage that it has a single center cell. Large objects tend to occupy the 

center of the image, so it helps to have a single center cell to predict these 

objects, instead of 4 close-by cells. 
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The mean average accuracy (mAP) on the VOC2007 test set grows from 

67.4 percent to 78.6 percent when compared to the previous generation. 

However, because each cell is only responsible for predicting one item, the 

recognition proves insufficient when faced with the objective of 

overlapping. 

 YOLOv3 is a new version of the algorithm with incremental 

improvements. YOLOv3 predicts on three distinct scales. It predicts more 

bounding boxes per image and is also more effective at detecting tiny 

images. When the anchor box overlaps a ground truth box more than every 

other anchor box, the abjectness score is expected to be 1, which is 

dependent on logistic regression. Also, instead of using a SoftMax 

classifier to predict the classes of a predicted bounding box, they use 

independent logistic classifiers for each class. A SoftMax classifier is 

unnecessary for good performance, and a SoftMax classifier imposes the 

assumption that each box has exactly one class[51].  

  On the COCO dataset, the mAP50 increases from 44.0 percent for 

YOLOv2 to 57.9 percent. In comparison to RetinaNet, which has a 61.1 

percent, RetinaNet has a 500 input size. The detection speed for 500∗500 

is around 98 ms/frame, but YOLOv3 has a detection speed of 29 ms/frame 

when the input size is 416×416. Figure 2.5 shows a comparison of the 

mAP evaluation metric for object detection algorithms. 
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Figure 2.5 mAP comparison of object detection algorithms 

 

YOLOv3 predicts the bounding boxes and their class probabilities using a 

single forward pass neural network deployed to the whole image. This 

method allows YOLOv3 to be quite fast without losing a lot of accuracy. 

YOLOv3 has 53 convolutional layers called Darknet-53, which are mainly 

composed of Convolutional and Residual structures. 

 YOLOv3 predicts on three different scales. The detection layer is 

used to make predictions on feature maps with strides of 32, 16, and 8, 

respectively. The network down-samples the input image until the first 

detection layer, where a detection is made using feature maps of a layer 

with stride 32. Further, layers are up-sampled by a factor of 2 and 

concatenated with feature maps of previous layers having identical feature 

map sizes. Another detection is now made in the layer of stride 16. The 

same up-sampling procedure is repeated, and a final detection is made in 

the layer of stride 8. 
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2.5  Residual Network (ResNet) 

 A single-layer feedforward network is considered to be sufficient for 

representing any function. The layer, on the other hand, could be very 

large, and the network could be prone to overfitting the data. Therefore, in 

the research community, there is a common trend that network architecture 

could go deeper.  

 An increase in network depth by simply stacking layers together is 

insufficient. Because of the vanishing gradient problem, deep neural 

networks are difficult to train (by making the CNN deeper, the derivative 

becomes almost insignificant in value when back-propagating to the initial 

layers). As a consequence, as the network becomes deeper, its performance 

becomes saturated or rapidly decreases, as shown in figure 2.6. 

 

 

 

 

 

 

Figure 2.6 Increment of network depth leading to worse performance [53] 
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There are various methods for dealing with the vanishing gradient problem 

prior to ResNet, such as inserting an auxiliary loss in the middle layer as 

extra supervision. However, none of them seemed to address the problem 

directly. ResNet's key idea is to introduce "identity shortcut connections" 

that skip one or more layers, as shown in figure 2.7. 

 

 

 

 

 

Figure 2.7 Basic building block of ResNet [53] 

 

The idea is to reroute the input and add the learned concepts from the 

previous network. According to the principle, the next layer will learn from 

both the contributions of the previous layer's input and from the previous 

layer itself. In comparison to other networks, it is intended to improve the 

training process [53]. 

2.6 Transfer Learning  

 In many real world applications, it is expensive or impossible to 

recollect the needed training data and rebuild the models. It would be nice 

to reduce the need and effort to recollect the training data. In such cases, 

knowledge transfer or transfer learning between task domains would be 

desirable [54]. 
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 Transfer learning is a commonly used design method to mitigate the 

effects of too few training images or the lack of processing power. It works 

by reusing the weight configuration from a pre-trained network on a new 

network. 

 Traditional machine learning techniques try to learn each task from 

scratch, while transfer learning techniques try to transfer the knowledge 

from some previous tasks to a target task when the latter has less training 

data [54] [55]. Transfer learning works because the early layers of a CNN 

typically learn basic features such as edges and corners, which many 

objects have in common. The model in the target domain does not need to 

be trained from scratch, which can significantly reduce the demand for 

training data and training time in the target domain [56]. 

 There are two types of transfer learning. With frozen layers, the 

imported weights do not change during further training, and with fine-

tuning, the imported weights are further trained [41].  

2.7 Object Detection Evaluation Metrics  

 Object detection evaluation metrics serve as a measure to assess how 

well the model performs on an object detection task. It also enables users 

to compare multiple detection systems objectively or compare them to a 

benchmark.  

 Since the classification task only evaluates the probability of the 

class object appearing in the image, it is a straightforward task for a 

classifier to identify correct predictions from incorrect ones. However, the 

object detection task localizes the object further with a bounding box 

associated with its corresponding confidence score to report how certain 

the bounding box of the object class is detected.  
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2.7.1 Intersection over Union (IoU) 

 The IoU, also known as the Jaccard index [57], is the most common 

metric used for comparing the similarity between two arbitrary shapes. In 

the context of object detection, the IoU is defined as the overlapping area 

between the predicted and real bounding boxes divided by the area of union 

between them [58], which is attained as [58] : 

 𝐽(𝐵𝑝, 𝐵𝑔𝑡) =  𝐼𝑂𝑈 =
area(𝐵𝑝 ∩ B𝑔𝑡)

area(𝐵𝑝 ∪ B𝑔𝑡)
        .................  (2.3) 

Where:  

𝐵𝑝 : predicted bounding box. 

B𝑔𝑡 : Ground-truth bounding box. 

 Figure 2.8 depicts the IoU.  

 

 

 

 

 

 

Figure 2.8 IoU 

 

When the IoU is compared to a specified threshold t, the detection is 

considered accurate if  𝐼𝑜𝑈 ≥  𝑡 and the detection is considered incorrect 

if  𝐼𝑜𝑈 <  𝑡 [58]. 
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2.7.2 Generalized Intersection over Union (GIoU) 

 IoU is commonly used in academia to evaluate the similarity of two 

bounding boxes. However, IoU has major disadvantages that make it 

unsuitable for the loss function. When there is no coincidence between the 

prediction box and the real box, the first disadvantage occurs. The IoU 

value is zero, resulting in a gradient of zero when optimizing the loss 

function, indicating that it cannot be optimized. In figure 2.9, Scene A and 

Scene B both have an IoU value of zero, but Scene B has a better prediction 

impact than Scene A because the distance between the two bounding boxes 

is less. 

 

Figure 2.5 Scene A and scene B 
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When the prediction box and the real box overlap and have the same IoU 

value, the second disadvantage occurs. As seen in figure 2.10, the detection 

impact has a large difference. 

 

Figure 2.60 IoU between three boxes 

 To address these issues, H. Rezatofighi et al. [57] proposes the 

generalized version of IoU as a new metric for comparing any two arbitrary 

shapes. By incorporating GIoU loss into state-of-the-art object detection 

algorithms, this consistently improves their performance on popular object 

detection benchmarks. 

 The IoU for determining the similarity between two arbitrary 

shapes  𝐴, 𝐵 ⊆  𝑆 ∈  𝑅𝑛 is attained as [59]: 

 𝐼𝑜𝑈 =
│𝐴∩𝐵│

│𝐴∪𝐵│
        ....................................................  (2.4) 

 For 𝐴 and 𝐵, find the smallest enclosing convex object 𝐶, 𝑤ℎ𝑒𝑟𝑒 𝐶 ⊆

𝑆 ∈  𝑅𝑛. Where, A is the output result, B is the Ground Truth, S is 

overlapping space. 

The equation of GIoU as follows [59] : 

 GIoU= IoU- 
│𝐶/(𝐴∪𝐵)│

│𝐶│
         ....................................  (2.5) 

0.33 0.33 0.33 
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2.7.3  Average precision (AP) 

 AP is a popular metric for measuring the detection accuracy of image 

and video object detectors involves calculating the area under the curve 

(AUC) of the relationship between recall (R) and precision (P) [58]. 

 Precision is a model's ability to recognize only relevant objects. It is 

the percentage of correct positive predictions, whereas recall is a model's 

capacity to discover all relevant cases. It is the percentage of correct 

positive predictions made out of all provided ground truths. [58]. Precision 

and recall are defined by the following equation: 

 Precision = 
TP

 TP+FP
=  

𝑇𝑃

𝑎𝑙𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠
        ..................  [58] (2.6) 

 Recall = 
TP

 TP+FN
=  

𝑇𝑃

𝑎𝑙𝑙 ground truths
        ...................  [58] (2.7) 

Where: 

TP: True Positives. 

FP: False Positives.  

FN: False Negatives. 

 For object detection, the concept of IoU is used to measure how 

much the predicted boundary overlaps with the ground truth. The threshold 

value for IoU is used to determine if the object detection is valid or not. Set 

the IoU to 0.5, and in that case: 

 If the IoU is greater than 0.5, the object detection is classified as a TP. 

 If the IoU is less than 0.5, the detection is incorrect and is classified as 

a FP. 

 When the ground truth is present in the image but the model fails to 

detect it, it is classified as a FN. 
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 True Negative (TN) is present when the model does not predict an 

object. Because this metric is ineffective for object detection, it is 

ignored. 

 The mAP [60] is a metric for evaluating object detector accuracy 

across all classes in a database. The mAP is the average AP across all 

classes, is[58]: 

 mAP= 
1

𝑁
∑ 𝐴𝑃𝑖

𝑁
𝑖=1          ............................................   (2.8) 

Where 

N: is the total number of classes that are being evaluated. 

𝐴𝑃𝑖 : is the AP in the 𝑖th class. 

 

2.8 Non-Maximum Suppression (NMS)  

 NMS is a strategy used in many computer vision algorithms. It is a 

type of algorithms to select one entity, such as bounding boxes, out of many 

overlapping entities. The criteria can be chosen to provide specific results. 

Most typically, the requirements are some kind of probability number and 

some kind of overlap metric, such as IoU  [60] [61].  

 Most object detection algorithms utilize NMS to reduce a large 

number of observed rectangles to a few. The use of NMS is necessitated 

by the way most object detection algorithms, such as the Faster RCNN, 

YOLOv3, and SSD. 

 Most object detectors do some form of windowing at the most basic 

level. Hundreds of thousands of windows of various sizes and shapes are 

produced, either directly on the picture or on an image feature.  
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These windows are supposedly to have only one object, and a classifier is 

used to calculate a probability score for each class. When the detector 

generates a large number of bounding boxes, the best ones must be chosen. 

The most widely used algorithm for this task is NMS. To eliminate 

duplicate detections, NMS is utilized as a post-processing step. 

2.9  Anchor Boxes  

 Essentially, a grid cell can detect only one object whose mid-point 

of the object falls inside the cell. However, if a grid cell includes more than 

one mid-point of the object, this indicates that multiple objects are 

overlapping. Anchor boxes are used to alleviate this issue. Anchor boxes 

are a set of predefined bounding boxes of a certain height and width. These 

boxes are defined to capture the scale and aspect ratio of specific object 

classes that models want to detect and are typically chosen based on object 

sizes in training datasets [50]. 

 The typical task of training an object detection network consists of 

proposing anchor boxes or searching for potential anchors, then pairing 

proposed anchors with possible ground truth boxes. It is important to note 

that the concept of anchor boxes can be applied to predict a fixed number 

of boxes. The use of anchor boxes enables a network to detect multiple 

objects, objects of different scales, and overlapping objects [62]. 
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2.10 Graphics Processing Unit (GPU)  

 The performance of deep learning approaches increases with respect 

to the increment in the amount of data, as demonstrated in figure 2.11. 

Moreover, big datasets have become widely freely available for researchers 

for many purposes. Thus, deep learning needs a significant amount of 

computer power in order to run well. The training phase of a deep learning 

model is the most resource-intensive task for any neural network [39]. 

 

Figure 2.7 Performance of deep learning with respect to the amount of 

data [39]  
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In a couple of minutes or hours, a PC would be able to manage a neural 

network with 10, 100, or 100,000 parameters. However, training a neural 

network with more than 10 billion parameters would take years using the 

old technique. 

 A GPU is an advanced processor with dedicated memory that 

conducts the floating point calculations required for graphics rendering. It 

is, in other words, a single-chip processor that performs complex graphics 

and numerical computations while freeing up CPU resources for all other 

tasks. The CPU serves as the host, and the GPU serves as a device. 

Although a GPU is smaller than a CPU, it has more logical cores. 

Interest in GPU computing blossomed when this potential was combined 

with a programming language that made GPUs easier to program. 

Therefore, many programmers of scientific and multimedia applications 

today are thinking about whether to use GPUs or CPUs. For programmers 

interested in deep learning, GPUs are currently the preferred platform [64].  

2.10.1  Programming the GPU  

 The early GPUs are built as graphics accelerators, but as the 1990s 

progressed, they became more programmable, culminating in NVIDIA's 

first GPU in 1999. Researchers and scientists are rapidly beginning to 

apply the excellent floating point performance of this GPU to general 

purpose computing. 

 NVIDIA launched the compute unified device architecture 

(CUDA) in 2006, the world's first solution for general-computing 

on GPUs. CUDA produces C/C++ for the system processor (host) 

and a C and C++ language for the GPU. The compiler and the 

hardware can gang thousands of CUDA threads together to utilize 

the various styles of parallelism within a GPU [64].  
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2.10.2  HW/SW GPU Compatibility  

 GPUs are ideal for training artificial intelligence and deep learning 

models because they can do many calculations at the same time. To make 

deep learning work on a GPU, hardware and software must be suitable for 

working on PCs. The NVIDIA deep learning software development kit 

(SDK) accelerates widely-used deep learning frameworks such as TF, 

Theano and Torch as well as many other deep learning applications. 

 The term "hardware" refers to the type of graphics card. Each graphic 

card has a specific microarchitecture called Gencode, and it must be CUDA 

enabled. Software means the type of operating system, utility program, 

CUDA version, and the deep learning framework type and version.   

Matching must be done between the graphic card Gencode and its software 

requirements, for various NVIDIA architectures [64].  
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CHAPTER THREE 

Dataset Preparation and System Development 

 

3.1 Introduction  

 The overall workflow of this thesis will be discussed in this chapter, 

which explains the hardware and software requirements, then dataset 

construction and preprocessing. Moreover, the structure of a proposed 

system which uses the YOLOv3 deep learning neural network and how it 

is implemented in the TF deep learning framework, then goes over the 

model training and the YOLOv3's loss function. Finally, the modification 

is applied to the hyper-parameter to improve the mAP and learning time of 

the model. 

3.2 Hardware and Software Requirements 

 To prepare a computer to be a good environment for implementing 

and training a deep learning neural network for objects detection, NVIDIA 

GPU card with CUDA Compute Capability is required. The GeForce GTX 

1650 GPU is used with these properties: (Compute Capability: 7.5, Core 

Clock: 1.56 GHz, Core Count: 16, Device Memory Size: 4.00 GB, Device 

Memory Bandwidth: 119.24 GB/s) on the Windows. 

Additionally, the following programs, packages and libraries are 

installed on the computer: 

1. Python version 3.7 (64-bit installer for a 64-bit machine): a high-level 

programming language. 

2. Microsoft Visual C++ Redistributable 2019: Microsoft visual C++ 

runtime libraries. 
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3. Microsoft Visual Studio 2019: An integrated development environment 

(IDE). 

4. NVIDIA CUDA Toolkit 10.1 and cudnn 7.6 SDK: A development 

platform for creating GPU-accelerated applications with high 

performance and primitive libraries. 

5. TensorFlow-GPU 2.3.1: A high-performance numerical computing 

library used in the deep learning stable release of TF support for GPU-

accelerated. 

6. LabelImg Tool: A graphical image annotation tool. 

7. yolov3.weights: Original weights file of YOLOv3 model trained on 

COCO dataset. 
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3.3 Dataset Construction 

 Dataset is a key of objects detection, and it is a significant challenge 

to create a dataset that could be used in developing a system to support the 

visually impaired that could be meaningfully integrated with their daily life 

routine. Therefore, items were chosen using a completely patient-centered 

approach. 

 The names of items that were selected mainly without any patient 

involvement are (250 Dinar, 500 Dinar, 1000 Dinar, 5000 Dinar, 10000 

Dinar,  25000 Dinar,  50000 Dinar, Bed, Book, Bottle,  Bus, Cabinetry, 

Camera, Car,  Cat, Chair, Charger, Clothing, Coffee Cup, Computer 

keyboard, Dog, Electric Socket, Fan, Fire, Flip flops, Food, Fork, Fruit, 

Fire Extinguisher, Gas stove, Glasses, House, Kettle, Key, Knife, Laptop, 

Mouse, Medicine Tab, Mobile phone,  Pen, Person, Refrigerator, Remote 

Control, Scissors, Shoe, Shower, Sink, Sofa Bed, Spoon, Stairs, Stick, 

Table, Television, Toilet Seat, Traffic light, Vegetable, Wastebasket,  

Watch, Water Dispenser, Weapon, Window). 

 A survey of 20 visually impaired or people who cared about them 

(see Appendix-A for the survey) has been conducted to select the items. 

The survey opens with a brief introduction to the topic to familiarize 

participants with the aims of the thesis. After that, the participants are asked 

to indicate their names, gender, and age. The participants are then asked to 

rate the items based on their importance in their daily lives, as well as what 

items are typically required to be detected. They are further asked to add 

any items that they missed in the survey.  
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Table 3.1 shows the results of the survey, noting that one of the important 

points is that the participants did not add any new items when they were 

asked to add them if there were any missing items in the survey. This means 

that the identified items met all the visually impairer's daily life 

requirements. 

 One of the dispersion measures has been used to classify the items, 

called "Mode". The items are rated as not important, rarely important, 

important, and most important, based on the high frequency of items in the 

survey results. 

 After excluding items that were rated as not important or rarely 

important, 44 items remained, which are highlighted in table 3. 1, 62 items 

are reduced to 44 items to reduce time for dataset preparation and YOLOv3 

learning. 
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Table 3.1 Survey results 

Items rated  

(most important) 

Items rated 

(important) 

Items rated  

(rarely important) 

Items rated  

(not important) 

250 Dinar Book Bus Building 

500 Dinar Bed Dog Camera 

1000 Dinar Bottle Fork Computer keyboard 

5000 Dinar Cat Food Fire 

10000 Dinar Cabinetry Gas stove Fire Extinguisher 

25000 Dinar  Fan Scissors Fruit 

50000 Dinar Glasses Watch House 

Car Kettle Window Pen 

Chair Knife  Traffic light 

Charger Laptop  Vegetable 

Clothing Mouse   

Coffee Cup Refrigerator   

Electric Socket shower   

Flipflops Sofa Bed   

Key Table   

Medicine Tab Water Dispenser   

Mobile phone Weapon   

Person    

Remote Control    

Shoe    

Sink    

Spoon    

Stairs    

Stick    

Television    

Toilet Seat    

Wastebasket    
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There is no publicly available dataset containing all the needed items and 

good enough for training a deep learning-based approach model. 

Therefore, tedious hours have been spent to create a dataset that consists 

of 1000 images of each item that was selected based on the survey results. 

Three methods are used to construct the dataset: 

1) Images from Google’s open image dataset. 

2) Manually labeled downloaded images.  

3) Manually labeled camera images. 

 

3.3.1  Images from Google’s Open Image Dataset 

 Google’s open Images V4 has a massive scale in several dimensions, 

with 30.1 million image-level labels for 19.8 million concepts, 15.4 million 

bounding boxes for 600 object classes. The open image dataset varies from 

most other datasets in three important aspects. First, all images have a 

creative commons attribution license and may therefore be used more 

easily. Second, images are gathered, starting with Flickr and continuing to 

images discovered elsewhere on the internet. As a result of excluding basic 

images that appear in search engines like Google image search, the dataset 

has a high proportion of interesting, complex images with many objects. 

Third, the images are not scraped based on a preset list of class names or 

tags, which results in natural class statistics and avoids the initial design 

bias of what should be in the dataset [63]. 

 The items that are available for downloading in Google's open image 

dataset are (Bed, Bottle, Car, Cat, Coffee cup, Laptop, Mobile phone, 

Person, Sofa Bed, Stairs, Television, Weapon).The Open Images Dataset 

version 4 toolkit (OIDv4) is used to download all the selected items' images 

with their annotation files found in Google's open image dataset.  
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The flow diagram of downloading images using the OIDv4 toolkit is 

shown in figure 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Flow diagram of downloading images using the OIDv4 toolkit. 

 It should be noted that the class-descriptions-boxable.csv files, as 

well as the train-annotations-bbox.csv and test-annotations-bbox.csv files, 

were required to run the OIDV4 tool kit.  
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The description file contains the names of all 600 classes available in 

Google's open image dataset, while the annotation files contain the current 

image's ID, bounding box coordinates, and bounding box label for the 

OIDv4 train and test sets. 

 The manual verification of image distribution in the training and test 

datasets led to the discovery that not all items had the required number of 

images. In the Google open image dataset, some items are available under 

multiple names. Therefore, two or three items are required to download 

and manually merge and change the text label files to create one class with 

the required image numbers. For example, "Sofa bed" is merged with 

"Studio couch" to create the required image number for the "Sofa bed" 

class, and "Weapon," "Shotgun," and "Rifle" are merged to create the 

required image number for the Weapon images class. 

 The images that are downloaded from OIDv4 are annotated in a way 

that is not compatible with the requirements of YOLOv3. Therefore, the 

dataset could not directly be trained upon. 

 The annotation CSV files downloaded from OIDv4 are as follows: 

[ ClassName Left    Top   Right   Bottom]. But the annotation file of the 

YOLOv3 model should be as following:  

 One row for one image. 

 Row format:  [Image_File_Path   Box1 Box2      …     BoxN].  

 Box format:  [𝑥𝑐𝑒𝑛𝑡𝑒𝑟    𝑦𝑐𝑒𝑛𝑡𝑒𝑟    width    Height   𝐶𝑙𝑎𝑠𝑠𝑖𝑑].   

 

 



46 

 

Therefore, the OIDv4 toolkit is used again in order to convert CSV files to 

XML files annotated in a way that is compatible with the requirements of 

the YOLOv3 model. 

 

3.3.2 Manually Labeled Downloaded Images 

 Wearisome hours have been spent to create a dataset containing the 

images of these items (Book, Cabinetry, Chair, Charger, Clothing, Electric 

Socket, Flip flops, Fan, Glasses, Kettle, Key, Knife, Medicine Tab, Mouse, 

Refrigerator, Remote Control, Shoe, Shower, Sink, Spoon, Stick, Table, 

Toilet Seat, Wastebasket, Water Dispenser). Various internet resources 

were used, and nearly 25000 images were visually examined. The dataset 

is created with a mostly equal distribution of items after manually 

removing all the unsuitable images. All the samples in the dataset have 

varying sizes. 

 These items' images are labeled and bound into boxes by hand. This 

process is known as image labeling. Image labeling is a tedious process 

and very time-consuming. It takes much more time than usual. The 

bounding box label was inserted with great care to get precise detection.  
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The "LabelImg" tool is used for labeling the images and 

specifying where the custom objects are located on the specific 

image, for all dataset images, the accompanying annotation files 

are saved in the xml format. The labeling process is shown in 

figure 3.2. (For more samples, see Appendix-B) 

 

Figure 3.2 A snapshot of image labeling process 

 

3.3.3 Manually Labeled Camera Images  

 The Canon 750D camera with a 24.2MP resolution is used to capture 

images in a variety of situations, including occlusion and illumination, and 

so on. Around 700 images of 7 denominations of Iraqi banknotes were 

acquired by a camera. Image augmentation is carried out in order to create 

a large image dataset that avoids the training model from overfitting and 

preserves the correct features of the dataset images. 
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Using different image augmentation techniques, the 700 images were 

raised to about 7000 images, yielding a dataset for all types of Iraqi 

banknotes. A rotation with six angles was one of the image augmentation 

methods. (90,-90,-45, 180, 135,-135,), as well as half crop, and dark (-1.0,-

0.5, 0.5) as shown in figure 3.3.  

Figure 3.3 Various image augmentation approaches on acquired images 

(a) Original Image, (b) 0.5 dark, (c) -0.5 dark, (d) -1.0 dark , (e) half crop, 

(f) -45 angle rotate, (g) 90 angle rotate, (h) -90 angle rotate, (i) 135 angle 

rotate, (j) -135 angle rotate, (k) 180 angle rotate 

 

Then the "LabelImg" tool was used for labeling the banknotes, and for all 

dataset images, the accompanying annotation files were saved in the xml 

format. 
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Figure 3.4 shows samples of some Iraqi currencies of various 

denominations that were used for training. 

  

Figure 3.4 Samples of Iraqi currency images in dataset  

 

In addition to these seven items, an additional item labeled as "Iraqi 

banknote" is constructed of 1000 images and included all the Iraqi currency 

denominations. This item is included in the main dataset that used to train 

the main detection model. 
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The final dataset consists of approximately 44000 images. It is manually 

examined, and the labeled files are verified to make sure that no errors have 

been made, and no incorrect data has slipped into the training process. 

After that, the dataset is split up into two different sub sets, called the 

training data and the test data. The training data contains around 70% of 

the data from the entire dataset, and the remaining 30% is used as a test 

dataset. The distribution of classes and images count is shown in figure3.5.

 The OIDv4 toolkit is used to convert XML files of all images in the 

dataset into three files required for training the YOLOv3 model: train.txt, 

which contains a list of all training annotation images, one row for each 

image, test.txt, which contains a list of all test annotation images, one row 

for each image, and names.txt, which contains a list of all class names.  

Figure 3.5 Distribution of classes and images count   

Image No. 

Items 
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3.4 Proposed System 

 Most state-of-the-art methods for detection, such as the YOLOv3 

model, work well for what they are designed for, but objects detection 

faults are discovered during experimentation that yield low accuracy for 

the system. These faults are discovered when a dataset contains many items 

and a group of items with approximately the same features relative to the 

overall items, such as the Iraqi banknotes. To compensate for this, in this 

thesis, the YOLOv3 multi-stage system has been presented, which is the 

best alternative to going forward when working on items with similar 

features. 

The proposed design is a YOLOv3 multi-stage system, which is 

constructed of two stage detections and two YOLOv3 models. Each model 

is trained on a specific dataset. This design increases the detection accuracy 

of each stage. The proposed multi-stage system is shown in figure 3.6. 

 

 

Figure 3.6 Proposed multi-stage system  
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The first stage of the system is the YOLOv3 objects detection model, which 

is trained on a dataset containing 38 objects. In the second stage of the 

system, two directions could be taken: Direction A, direct detection of 37 

objects, or Direction B, which is used for Iraqi banknotes detection. When 

Iraqi banknotes are detected in the first stage, a split occurs and Iraqi 

banknotes are classified as: "250 Dinar, 500 Dinar, 1000 Dinar, 5000 

Dinar, 10000 Dinar", 25000 Dinar, 50000 Dinar". 

3.4.1  YOLOv3 Deep Neural Network Implementation 

 In order to implement an applicable YOLOv3 model and train this 

model to obtain the proposed objects detection system with state-of-the-art 

accuracy, and because the official algorithm is deployed on Darknet, which 

is an open-source neural network framework written in C and CUDA. The 

Darknet comes with some difficulty with code modification, and it is not 

the most up-to-date method for exploiting all the capabilities of the GPU. 

Therefore, the YOLOv3 deep learning neural network is built from scratch 

on Windows using Python and the TF framework.  

 To facilitate the process of tracking the work flow of the YOLOv3 

deep neural network, the implementation has been divided into several 

stages, as shown in figure 3.7. 

 

 

  

 

 

Figure 3.7 Flow diagram of YOLOv3 implementation stages 

implement 

main functions 
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The implementation begins by writing the code for the YOLOv3 networks, 

which consists of three different networks. The first network is Darknet-

53, which serves as the network's backbone. Secondly, there is an up-

sampling network and, lastly, the detection layers, called YOLO-layers. 

Additionally, the implementation is composed of a decode function for 

decoding the feature map's and a post-processing function to find the best 

prediction output. The YOLOv3 network structure is shown in figure 3.8. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 8 YOLOv3 structure [51] 

 

 

 

13 × 13 × (3 × (5 + classes)) 

26 × 26 × (3 × (5 + classes)) 

52× 52× (3 × (5 + classes)) 
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3.4.2 Main Functions Implementation 

 YOLOv3 network coding starts by writing the functions of the main 

layers described in figure 3.8.  

 Based on the YOLOv3 structure requirements, TF built-in functions 

such as (convolutional function, a batch normalization function, and the 

residual function) can't be used directly without modification.  

 In YOLOv3, there are two types of convolutional layer, with and 

without a batch normalization layer. The convolutional layer followed by 

a batch normalization layer uses a leaky ReLU activation layer, as well as 

in YOLOv3, no form of pooling is used, and a convolutional layer with a 

stride of 2 is used to down-sample the feature maps. This helps to avoid 

the loss of low-level features that are frequently attributed to pooling. 

Therefore, the TF built-in Conv2D function wasn’t used directly and was 

implemented using a python environment and TF2.3. The flow diagram of 

the convolutional function is shown in figure 3.9. 
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Figure 3.9 Flow diagram of convolutional function 
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The batch normalization layer is a special case when used with transfer 

learning during the training of the model. When layer.trainable = False, the 

batch normalization layer will run in inference mode, and will not update 

its mean and variance statistics. When the unfreeze model is used, the batch 

normalization layers should be kept in inference mode by passing variable 

training = False. Because the updates applied to the non-trainable 

parameters will destroy what the model has learned. Therefore, the built-

in function is modified as follows: 

Class BatchNormalization(BatchNormalization): 

         def call(self, x, training=False): 

               if not training: 

                    training = tf.constant(False) 

               training = tf.logical_and(training, self.trainable) 

               return super().call(x, training) 

 

 A residual block is a block consisting of a pair of 3x3 and 1x1 

convolutional layers together with a shortcut mechanism to address the 

gradient disappearance issue caused by expanding the depth of the neural 

network, the implementation of the residual function is as follows: 

def  resid(in_lay, in_ch, f_n1, f_n2): 

     sh_c = in_lay 

     convl = convol(in_lay, flshape=(1, 1, in_ch,f_n1)) 

     convl = convol(convl, flshape=(3, 3, f_n1, f_n2)) 

     resid_out = sh_c + convl 

     return resid 
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3.4.3  Darknet-53 Network 

 YOLOv3 is used to detect objects at different scales by constructing 

a Feature Pyramid Network (FPN). Darknet-53 is an efficient backbone for 

performing feature extraction with a very deep network that contains 53 

layers, which are mainly composed of convolutional and residual blocks. 

 Every convolutional layer in Darknet-53 is followed by the Leaky 

ReLU activation function and batch normalization layer. A full overview 

of the Darknet-53 architecture is shown in table 3.2. The previously coded 

functions are used in building the Darknet-53 (for more details, see 

Appendix-C for the Darknet-53 coding). 

Table 3.2 Darknet-53 architecture 

 

 

 

1 64 
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3.4.4 Up-Sampling Layers and YOLO Layers 

 The up-sampling layers and the three YOLO layers used the features 

extracted by Darknet-53 to detect objects at three different scales. These 

scales are 1/32, 1/16 and 1/8 of the input size. Figure 3.10 shows the 

architecture of up-sampling layers and YOLO layers. 

Figure 3.10 Up-Sampling layers and YOLO layers 

 

 The up-sampling method is used in order to concatenate with the 

shortcut outputs from Darknet-53 before applying detection on a different 

scale. The feature map is up-sampled using nearest neighbor interpolation. 

The up-sample function was coded as follows: 

def upsample(in_layer): 

    return tf.image.resize (in_layer, (in_layer.shape [1] * 2, in_layer.shape [2] * 

2), method='nearest') 

 

 Each YOLO layer consists of a number of convolutional layers. The 

YOLO layer is coded using a convolution function that is coded in section 

3.3.2 (for more details, see Appendix-C for the YOLO layers coding), and 

the parameters of the convolution layers are set as mentioned in figure 3.10. 
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The parameters of the detection layer are designed to vary depending on 

the number of classes used in a model. The detection is performed on three 

different scales. The first scale produces a tensor of size 13 ×  13 × (3 ×

 (5 +  𝑐𝑙𝑎𝑠𝑠𝑒𝑠)), which was produced by down sampling the input into 

13 ×  13 and produce a detection on layer 82th. Then, in order to perform 

the second detection scale, produce a tensor of size 26 ×  26 ×  (3 ×

 (5 + 𝑐𝑙𝑎𝑠𝑠𝑒𝑠)). The feature map is created from layer 79 by applying it 

to a convolutional layer before being up-sampled by a factor of two to have 

a size of  26 ×  26. Then concatenate the up-sampled feature map with the 

layer 61 feature map. After that, the concatenated feature map is submitted 

to a few additional convolutional layers till the second detection scale is 

done on layer 94. Layer 106 is used for the final detection layer, resulting 

in a tensor of size. 52 ×  52 × (3 ×  (5 +  𝑐𝑙𝑎𝑠𝑠𝑒𝑠)). The feature map 

from layer 91 is applied to a convolutional layer and then concatenated 

with a feature map from layer 36. After that, the combined feature map is 

submitted to a few additional convolutional layers till the third detection 

scale is obtained.  

 Each scale have (3 × (5 +  𝐶𝑙𝑎𝑠𝑠𝑒𝑠)) entries in the feature 

map. Three represents the number of bounding boxes each cell can predict. 

According to the paper [51], each of these three bounding boxes specializes 

in detecting a certain kind of object. Each of the bounding boxes have (5 +

 𝐶𝑙𝑎𝑠𝑠𝑒𝑠) attributes, which describe the center coordinates, the 

dimensions, the object score and  class confidence for each bounding box. 
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3.4.5  Decoder Function   

          YOLO does not predict the absolute coordinates of the bounding 

box, object score and class confidence. Therefore, the output of the 

YOLOv3 network is given to the decode function, which decodes the 

channel information on the feature map. The following formulas describe 

how the decode function transforms the network output to obtain bounding 

box predictions (for more details, see Appendix-C for the decode function 

coding)[51]: 

 𝑏𝑥 = 𝜎(𝑡𝑥) + 𝑐𝑥        ...............................................  (3.1) 

 𝑏𝑦 = 𝜎(𝑡𝑦) + 𝑐𝑦        ...............................................   (3.2) 

 𝑏𝑤 = 𝑝𝑤𝑒 𝑡𝑤         ......................................................  (3.3) 

 𝑏ℎ = 𝑝ℎ𝑒 𝑡ℎ         .......................................................   (3.4) 

Where:  

𝑡𝑥, 𝑡𝑦, 𝑡𝑤, 𝑡ℎ : Output of the network. 

𝑏𝑥, 𝑏𝑦: 𝑥, 𝑦 Center coordinates of prediction box. 

𝑏𝑤, 𝑏ℎ : Width and height of prediction box. 

𝑐𝑥 , 𝑐𝑦 : Top-left coordinates of the grid.  

𝑝𝑤 , 𝑝ℎ : Dimensions of the anchor box. 

  

 The decode function calculates the center coordinates using a 

sigmoid function. This procedure forced the output value to be between 

zero and one, and the result was then added to the grid cell's top left corner 

coordinate that predicted the object. Then the bounding box dimensions are 

predicted by applying a log-space transform to the result and multiplying 

it by an anchor. In YOLOv3, the anchor box is regarded as the a priori 

bounding box, and constraints are imposed on the predicted bounding box. 
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Additionally, the decode function is used to calculate the object score and 

class confidence by running the predicted output through a sigmoid and 

interpreting the result as a probability. 

3.4.6  YOLOv3 Post Processing 

 YOLOv3 predicted ((52 𝑥 52) + (26 𝑥 26)  + (13 𝑥 13)) 𝑥 3 =

 10647 bounding boxes in a 416 ×  416 image. To address the issue of 

multiple detections of the same object, these detection bounding boxes 

have been reduced.  

 As shown in figure 3.11, the post-processing function is used to 

reduce bounding boxes, which takes the predicted list of bounding boxes, 

a threshold score parameter, and the original image size.  

 The bounding box attributes have been , 𝑏𝑦, 𝑏𝑤, 𝑏ℎ , but because it 

was easier to work on the coordinates of two points: the top left and the 

bottom right. Therefore, the output has been converted to this format. Then 

the boxes are scaled to fit into the original image shape. 

 The reduction procedure begins with a threshold of object 

confidence, which is used to remove boxes with low confidence scores. 

Then to avoid having multiple boxes for the same object, a second filter 

named NMS was used to select the appropriate boxes for each class. 
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Figure 3.11 Procedure of YOLOv3 post-processing  
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The following are the key steps for implementing the NMS iterative 

process: 

 Stop iteration, if number of bounding boxes equal zero. 

 Sort the bounding box by score order. 

 Compute the IoU of the first bounding box in respect to all of the 

other bounding boxes, and remove any bounding boxes with IoU 

values that exceed the threshold.  

 Tag the first bounding box as a selected box, repeat the above steps. 

 The IoU is utilized by NMS to eliminate all the boxes that had a 

substantial overlap with the boxes that had previously been selected. Only 

the best boxes remain. 

The following steps are the key to IoU implementation: 

 Calculated the area of the two boxes. 

Box1Area = B1y2-B1y1 * B1x2 -B1x1 

Box2Area = B2y2-B2y1 * B2x2 -B2x1 

 Found the coordinates of the intersection of the two boxes:  

o xi1 = max of the two boxes' x1 coordinates. 

o yi1 = max of the two boxes' y1 coordinates. 

o xi2 = min of the two boxes' x2 coordinates.  

o yi2 = min of the two boxes' y2 coordinates. 

 Calculate intersection area  

IntersectionArea = yi2 – yi1 * xi2 – xi1 

 Calculate IoU  

IoU = IntersectionArea / (Box1Area + Box2Area - IntersectionArea) 
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3.5 Dataset Preprocessing  

 After formatting annotations to match the requirements of the 

YOLOv3 model and before any training, it is important to preprocess the 

images and the annotations of each image in the dataset, as shown in 

figure3.12. Image preprocessing starts by verifying the annotation file to 

ensure that the image path is valid and that the image already exists, to 

ensure that no incorrect data enters the training process. To avoid 

overfitting, image augmentation has been used to increase the variety of 

the dataset. Then the image is resized to the pre-specified shape by keeping 

the aspect ratio, and padding the left-out portions, and updating the ground-

truth box. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12 Dataset preprocessing flow diagram 
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3.6 Optimizer Type and Learning Rate (LR) 

 The LR and optimizer types are hyper parameters with the greatest 

impact on performance. When working on deep learning, choosing the 

hyper parameters is a common issue. In training, the optimizer type and 

learning rate are chosen manually. It is time-consuming, but it makes the 

overall system achieve better results in the long range. 

3.6.1 Optimizer Type 

 According to most studies like [65], stochastic gradient descent 

(SGD) causes divergence very quickly, but the adaptive moment 

estimation optimizer (ADAM) always seems to converge. Therefore, the 

ADAM optimizer is used as the default optimizer in training.  

 One of the key differences between the Darknet implementation and 

the current implementation is that the Darknet used a (SGD) optimizer. 

3.6.2 Learning Type 

 There are two types of learning; traditional machine learning 

techniques which try to learn each task from scratch, and transfer learning 

techniques which try to transfer the knowledge from some previous tasks 

to a target task when the latter has less training data. Even though the model 

was trained on a custom dataset, it was advantageous to use another already 

trained model’s weights as a starting point. 

 Weights of the network are initialized with pre-trained using transfer 

learning in the coco dataset and according to the study [66] [67], the cosine 

decay learning rate had better performance with transfer learning. 

Therefore, it is used instead of the step learning rate schedule which is used 

in Darknet YOLOv3. 
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3.6.3 Learning Rate  

 The challenge of training deep learning neural networks involves 

carefully selecting the learning rate. The learning rate is an adjustable 

hyper parameter that usually has a positive value, often greater than 0.0 

less than 1.0. but in deep learning studies the range of learning rate always 

between 1E-1 to 1E-6, because the deep neural network deal with a large 

amount of input, and it is very unstable at the start of training, to guarantee 

that the network may have great convergence, the weights should change 

less aggressively and the learning rate should be set extremely low at first. 

 To choose a proper initial learning rate and final learning rate for the 

proposed system experiments done using 20 % of training data to increase 

the speed of this process for 5 epoch each time. Experiment results in table 

3.3 show the inability of the model to learn anything at the too-large 

learning rates (1E-1, 1E-2 and 1E-3) and the model is able to learn well 

with the learning rates (1E-4, 1E-5 and 1E-6) although successively slower 

as the learning rate was decreased. The results suggest a moderate learning 

rate of 1E-4 results in good model performance on the training set.  

 

 Table 3.3 Best initial learning rate 

Total Loss 

LR Start Epoch 0 epoch 1 epoch 2 epoch 3 epoch 4 

1.00E-01 2299.71 nan nan nan nan nan 

1.00E-02 1989.59 nan nan nan nan nan 

1.00E-03 2483.27 nan nan nan nan nan 

1.00E-04 1976.87 30.55 26.72 25.51 24.25 23.11 

1.00E-05 2136.22 107.96 41.86 38.89 36.91 33.42 

1.00E-06 2064.12 894.8 274.37 95.42 55.46 43.5 



67 

 

3.6.4 Warm Up and Scheduler Cosine Decay 

 Learning rate warm up is applied to progressively increase learning 

rate from 0 to the initial learning rate linearly and reach network training's 

"warm-up" stage. The learning rate has been changed to the following 

formula:  

 𝐿𝑅 =
𝑖× 𝜂

𝑚
      ( 1 ≤ i ≤ m)  .......................................   [65](3.5) 

Where  

m: first batches (data for 5 epoch) to warm up. 

𝜂 : Initial learning rate. 

i: batch number. 

 However, if the loss of network training is reduced, it is not 

appropriate to always utilize a higher learning rate, since this would cause 

the gradient of the weight to fluctuate, making it impossible to achieve the 

global minimum loss of training. Therefore, scheduling as cosine decay 

reduction method has been chosen, which has proposed a simplified 

version for decreasing the learning rate from the initial value to end 

learning rate by following cosine function where the learning rate ηt is 

computed as: 

 𝜂𝑡 =∝ + 
1

2
 (1 + cos ( 

𝑡𝜋

𝑇
)) (𝜂−∝)          ...............  [65](3.6) 

Where  

T: total number of epochs. (The warmup stage is ignored). 

t: current epoch. (The warmup stage is ignored) 

𝜂 : initial learning rate 

∝ : end learning rate. 
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Figure 3.13 shows Visualization of learning rate schedules with warm-up. 

Then cosine decay decreases the learning rate slowly at the beginning, and 

then becomes almost linear decreasing in the middle, and slows down again 

at the end. 

Figure 3.13 Visualization of learning rate scheduler cosine decay with 

warm-up 

 

3.7 YOLOv3 Loss Function 

 The loss function is used to measure a model's performance, in terms 

of being able to predict the expected outcome. The loss function of 

YOLOv3 consists of three different parts, which are: 

Confidence loss: Check to see if the prediction frame contains any objects. 

The confidence loss for detection or non-detection in a block is: 

L𝑐𝑜𝑛𝑓 =  ∑ ∑ 𝜁𝑖𝑗
𝑜𝑏𝑗

 (𝑐𝑖 −  𝑐�̌�)
2  + 𝛾noobj  ∑ ∑ 𝜁𝑖𝑗

𝑛𝑜𝑜𝑏𝑗
 (𝑐𝑖 − 𝑐�̌�)

2B
𝑗=0

𝑠2

𝑖=0  B
𝑗=0

𝑠2

𝑖=0 …[68](3.8) 

Where: 

𝜁𝑖𝑗
𝑜𝑏𝑗

 = 1:  if there is object in the block 

𝑐𝑖 : Ground truth box confidence in the block i. 

𝑐�̌� : Prediction box confidence in the block i. 

Steps 
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𝜁𝑖𝑗
𝑛𝑜𝑜𝑏𝑗

 =1:  if there is no object in the block.  

B: number of anchor boxes. 

S: grid cell. 

 The rule for calculating loss of confidence is as follows: it is 

considered to be a background if the IoU of a prediction box and all real 

boxes is less than a specified threshold. It's the foreground else (including 

objects). 

Classification loss: Identifying the object category in the prediction frame. 

The classification loss in each block is the squared error for each class: 

 L𝑐𝑙𝑎𝑠 =  ∑ 𝜁𝑖
𝑜𝑏𝑗𝑠2

𝑖=0  ∑ (𝑝𝑖
(𝑐) − �̌�𝑖

(𝑐))
2

𝑐∈𝑐𝑙𝑎𝑠𝑠𝑒𝑠          ....  [68] (3.9) 

Where: 

�̌�𝑖(𝑐) : denotes the conditional class probability for class c in block i. 

 𝑝𝑖(𝑐) =1 if the ground truth is c, otherwise is zero. 

 The total classification loss is the sum-up of losses in each grid S. 

The cross-entropy of the two classes is utilized as the classification loss. 

That is, all category's classification problem is reduced to whether it 

belongs to this category. As a result, multi-classification is considered a 

two-classification issue. The benefit of this is that it eliminates the mutual 

exclusion of the categories, mainly to address the issue of missing detection 

due to the overlapping of multiple categories of objects. 

Box regression loss: When there are objects in the prediction box, the 

value is computed. The localization error is a measurement of how well the 

prediction and ground truth bounding boxes overlap:  
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L𝑟𝑒𝑔𝑟 = 𝛾
coord  ∑ ∑ 1𝑖𝑗

𝑜𝑏𝑗
 [(𝑥𝑖 − 𝑥�̌�)

2
+ (𝑦𝑖 − 𝑦�̌�)

2
 ] +B

𝑗=0
𝑠2

𝑖=0

             𝛾
coord  ∑ ∑ 1𝑖𝑗

𝑜𝑏𝑗
 [(√𝑤𝑖 − √𝑤�̌�)

2
+ (√ℎ𝑖 − √ℎ�̌�)

2

 ]B
𝑗=0

𝑠2

𝑖=0   ………  [68](3.10) 

Where: 𝛾coord  is the regularization term for the bounding box coordinates. 

There can be multiple bound box B in one grid S. The bounding box co-

ordinate is predicted by knowing its box center (𝑥,̃  �̌�) and its height and 

width (𝑤,̃  ℎ̌)  , where 𝑥, 𝑦, ℎ, 𝑤 is the ground truth. The regression loss was 

coded as follows: 

respbox  = label[:, :, :, :, 4:5] 

bboxesloss = 2.0 - 1.0 * labelxywh[:, :, :, :, 2:3] * labelxywh[:, :, :, :, 3:4] / 

(in_size ** 2) 

gioulos = respbox * bboxesloss * (1 - giou) 

gioulos = tf.reduce_mean(tf.reduce_sum(gioulos, axis=[1,2,3,4])) 

 

 Where respbox denotes that if the grid cell contains objects, the 

bounding box loss will then be calculated. A high GIoU value between the 

two bounding boxes indicates a low loss value. The network will improve 

in the direction of more overlap between the prediction box and the real 

box. In this thesis implementation, the original IoU loss was substituted 

with the GIoU loss. The benefit of GIoU is that it enhances the distance 

measurement method between the anchor box and the prediction box. 

 The final object detection loss for YOLOv3 is the sum of the 

confidence, classification, and regression losses. 



71 

 

3.8 Converting Pre-trained Weights to TF Format 

 To copy all the pre-trained weights from the original Darknet layers, 

which was trained on the COCO dataset, to the YOLOv3 network layers, 

the TF build in function has not been used to load pre-trained model 

weights because the layer ordering on tf.keras and the Darknet is different. 

Therefore, the load weights function is coded from scratch. The flow 

diagram of it is shown in figure 3.14. 

 

Figure 3.14 Load weights function flow diagram 
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The process starts by opening the file, and skipping the first 5 int32 values, 

which are the header information (major version number, minor version 

number, subversion number) followed by int64 value which is number of 

images that the network trained by. After that, start from the first 

convolutional layer, then check the type of the layer following the one 

currently processed and read the appropriate number of values. If it is 

followed by a batch normalization layer, load weights of the batch norm 

layer, then weights of conv layer. In the opposite case, when the conv layer 

is not followed by the batch norm layer, instead of reading batch norm 

parameters, read bias weights. And repeat these steps to the last layer. 

 

3.9 Custom Anchor Boxes 

 In order to pre-specify the shapes of anchor boxes, YOLOv3 

proposes using the K-means clustering algorithm on bounding box shapes 

to find the proper anchor boxes for the data. K-means clustering is used to 

discover suitable candidate anchor boxes. Using the direct Euler distance 

metric, K-means minimizes errors for bigger bounding boxes but not for 

smaller boxes. Therefore, YOLOv3 used IoU as a distance metric. 

 To prepare the data features for K-means clustering, standardized the 

bounding box width and height with the image width and height, the 

coordinates of a bounding box, x and y, are not of concern. IoU needs to 

only compare the shapes of the bounding boxes. The IoU calculations are 

made assuming all the bounding boxes are located at one point, and only 

width and height are used as features. 
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Figure 3.15 shows the height and width plotted against each other for Iraqi 

banknotes dataset and 38 objects dataset. 

 

   

 

 

 

 

   

 

 

 

 

 

 

 

Figure 3.15 Height and width plotted against each other for   

(a) Iraqi banknotes dataset (b) 38 objects dataset 

 

K-means clustering is used by specifying the number of clusters and 

establishing the cluster centers which consists of two basic steps: 

Step 1: Assigning each item to the cluster center that is closest to it. The 

distance to the cluster center is computed using a 1-IoU scale. 

Step 2: Determine the cluster centers by taking the median of all cases in 

the clusters. Steps 1 and 2 should be repeated until the two competing 

iterations produce identical cluster centers. 

(a) 

(b) 
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The mean of the maximum IoU between the bounding box and individual 

anchors is computed using 9 clusters to stay true to the original YOLOv3 

implementation. Figure 3.16 presents IoU vs. number of cluster centers 

data. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16 Mean IoU vs cluster centers data for (a) Iraqi banknotes,  

(b) 38 objects. 

 After plotting the number of cluster centers vs mean IoU, it is clear 

that the more clusters, the larger mean IoU becomes and at 9 anchor boxes, 

the mean IoU was above 87%. Since the results of the K-means algorithm 

are sensitive to the selection of the initial points, the results of each run are 

not the same. 

(b) 

(a) 

(b) 

(a) 
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The k-means algorithm to generate nine anchor boxes based on the 38 

objects dataset through the calculation these nine clusters are: (21, 33), (76, 

76), (59, 260), (199, 107), (160, 334), (123, 188), (381, 371), (270, 334), 

(302,201). And the k-means algorithm to generate nine anchor boxes based 

on the Iraqi banknotes dataset through the calculation these nine clusters 

are :( 218, 105), (142, 168), (283, 131), (139, 293), (215, 216), (331, 151), 

(176, 372), (390, 180), (273, 272). 

3.10 Training and Evaluating the YOLOv3 Model 

 Deep learning training takes a long time due to the large amount of 

data (images and annotations) in the dataset and the complexity of the 

YOLOv3 deep network structure. The GPU is utilized to train instead of 

the CPU to solve this problem. Also, an optimization for the change in 

learning rate is implemented during training.  

 The model is trained on the labeled images via continuous iteration 

for 100 epochs using forward and backward propagation with the Adam 

optimizer and the model configuration. The weights are stored during the 

training process after each epoch. After training, the model is utilized to 

generate detection in real-time live video, making detection requires the 

use of the YOLOv3 model and the specific weights trained with that model. 

The text class prediction of the objects detected in each frame is converted 

to voice feedback using the Google TTS API. Figure 3.17 depicts the 

training and detection workflows. 

          To assess the performance of the YOLOv3 model, the test dataset is 

used to compute the AP for each class and average those to calculate the 

mAP (mentioned in 2.9). Detections are considered TP if the IoU between 

the predicted boundary and the real object boundary exceeded the threshold 

value, and are deemed FP if the IoU did not exceed the threshold value. 
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Finally, when there is a ground truth in the image and the model failed to 

detect the object, the detection is considered an FN. 

 

Figure 3.17 Training and detection workflows 
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CHAPTER FOUR 

Analysis of System Results  

 

4.1 Introduction 

 In this chapter, the results obtained after a series of experiments 

conducted in order to develop the proposed system and achieve the desired 

accuracy and detection time will be presented. A synthesis of theory and 

experimentation has been used. This combination of theory and 

experimentation led to well-structured experiments with deep theoretical 

foundations. 

 Alot of time is needed to exhaustively create and test the model. The 

implementation of the proposed system includes the following stages: 

dataset construction and labeling stage, implementation of the YOLOv3 

deep neural network using Python and TF stage, model training stage, 

evaluation stage, improvement stage, and inference stage. The final system 

has been tested in real-world conditions using live video, which was an 

important step towards successful implementation.  

 The proposed system is designed in such a way to be general that it 

can be extended to detect any objects. 

4.2 Training Results   

 The YOLOv3 model has been trained from scratch using a dataset 

consisting of 44 object classes and approximately 44000 images (which are 

mentioned in table 3.1) and hyper parameters shown in table 4.1.  
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The batch size was set to 1 and the GPU used during training was an 

NVIDIA GeForce GTX 1650 (as mentioned in 3.1). Any higher batch size 

would lead to a CUDA out of memory error. 

Table 4.1 Hyper parameters  

Name Value 

Epoch number 100 

Batch size 1 

Train LR initial 1.00E-04 

Train LR end 1.00E-06 

Warm-up epoch 2 

Input size 416 

Learning policy Adam 

  

 In this thesis, the optimization is done successfully for overall 

training time by changing the value of learning rate adaptively with the 

train loss value. The change in learning rate is based on cosine decay and 

warm-up. In the course of the training, the loss was saved in the log, and 

TensorBoard was used to clearly visualize the progress of the entire 

training. 

 Training was consumed for a very long time, approximately a month, 

then stopped after 100 epochs. Figure 4.1 depicts the TensorBoard training 

loss progress. 
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Figure 4.1 The progression of the training loss is depicted by 

TensorBoard 

 

The model performance was evaluated by computing the mAP metric with 

a 0.5 threshold value for the test dataset. The mAP result value was 

8.564%, with an average evaluation time of 12.17 FPS. 

4.3 Optimization 

 Various optimization methods have been tried and their effect on 

performance has been evaluated, including process time optimization, size 

of the input layer, transfer learning, YOLOv3 multi-stage detection and 

creating custom anchors. 

4.3.1  Process Time Optimization 

 The GPU performance priority on the window was set to high and 

utilized all GPU capabilities. This reduces the time spent on training the 

YOLOv3 model to about two weeks. Figure 4.2 (a, b) depicts the impact 

of changing the priority on GPU performance. 

Steps Steps Steps 

Steps 
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Figure 4.2 GPU performace (a) before, (b) after 

4  

4.3.2  Size of the Input Layer 

 To illustrate the impact of changing the size of the input layer of the 

YOLOv3 network on the accuracy and speed of a model, further 

experiments were carried out. Table 4.2 illustrates the relationship between 

speed, mAP and the input layer size. 

Table 4.2 Illustrating the relationship between speed, mAP and the input 

layer size 

Input Layer Size mAP FPS 

𝟑𝟐𝟎 × 𝟑𝟐𝟎 4.267% 15.65 

𝟒𝟏𝟔 × 𝟒𝟏𝟔 8.564% 12.17 

𝟓𝟏𝟐 × 𝟓𝟏𝟐 10.654% 10.85 

 

(b) (a) 



81 

 

From the results in Table 4.2, one can observe a proportional increase in 

detector accuracy and a decrease in speed in relation to the increase in the 

input layer size. 

          An explanation for this is that the input layer is mapped to the 

resolution of the image to be processed. Larger images contain more data 

and details for the model to process, but require more computing power. 

However, these details lack important key points that have a significant 

impact on the model's detection accuracy. 

 In a scenario where speed is not important, the input layer could be 

increased to have a small impact on accuracy. However, in such cases, it is 

better not to use YOLO at all but an object detector which is designed for 

slow but accurate detection, such as the Fast R-CNN. 

 In order to balance between speed and accuracy, the best input size 

chosen for the proposed system was 416 × 416. 

4.3.3  Transfer Learning   

 The YOLOv3 network training process with the complete dataset, 

which consists of about 44000 images, is time-consuming. Therefore, in 

order to minimize the time during the experiments, 20% of the dataset 

images were used. This reduces the time spent on training the YOLOv3 

model to about 4 days. 

 Transfer learning from a pre-trained model has been utilized and 

evaluated. The COCO pre-trained model was chosen to transfer knowledge 

from it, because it was trained on a Google image dataset, and the relied on 

dataset consisted of 27% of the images were taken directly from the Google 

library, while the rest of the images were close to the images in the Google 

library. 
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The examination results found that transfer learning yields the highest 

increase in the accuracy of the YOLOv3 objects detector, which achieves 

a mAP of 73.403% and 12.53 FPS. 

 This means that the time required in the deep learning process to 

produce an accurate result can be reduced by the careful use of transfer 

learning. Figure 4.3 shows objects' AP before and after using transfer 

learning. 

 

Figure 4.3 Objects' AP before and after transfer learning 

 

4.3.4  YOLOv3 Multi-Stage Detection 

 Through careful observation of the AP of items resulting from 

previous experience, (Bed, Book, Key, Knife, Medicinal Tab, Refrigerator, 

Rifle, Shoe, Spoon, Stick, Television ) have an accuracy less than 60%, 

while (1000 Dinar, 250 Dinar, 500 Dinar, 5000 Dinar, 50000 Dinar, 

Electric Socket, Fan, Kettle, Toilet Seat)  have an accuracy more than 90%.  

Before After 
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Noted that most of the items that got high accuracy were Iraqi banknotes, 

which consist of seven items and have approximately the same features. 

That made an impact as one item contained 7000 images. The presence of 

these items with these features cause the model to be biased toward 

detecting these banknotes with high accuracy and obtaining the rest of the 

objects with lower accuracy compared to the banknotes, as shown in table 

4.3. Items with a red highlight have received high accuracy. 

Table 4. 3 Illustrating AP of items 

Object Name AP) Object Name  (AP) Object Name  (AP) 

1000 Dinar 94.609% Clothing 72.831% Remote Control 60.917% 

10000 Dinar 87.057% Coffee cup 72.326% Rifle 27.487% 

250 Dinar 99.015% Electric Socket 92.090% Shoe 52.993% 

25000 Dinar 74.473% Fan 90.220% Shower 79.606% 

500 Dinar 91.957% Flipflops 78.189% Sink 81.810% 

5000 Dinar 97.881% Glasses 74.451% Sofa bed 80.737% 

50000 Dinar 93.677% Kettle 93.714% Spoon 46.054% 

Bed 58.176% Key 56.820% Stairs 84.617% 

Book 55.351% Knife 59.481% Stick 44.130% 

Bottle 88.573% Laptop 81.091% Table 83.672% 

Cabinetry 63.972% Medicinal Tab 34.263% Television 37.747% 

Car 62.590% Mobile phone 81.025% Toilet Seat 90.393% 

Cat 83.702% Mouse 77.414% Wastebasket 82.887% 

Chair 88.786% Person 60.219% Water Dispenser 76.198% 

Charger 82.616% Refrigerator 53.904%   
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To compensate for this, the YOLOv3 multi-stage system has been 

presented. The proposed design is a YOLOv3 multi-stage system, which is 

constructed of two-stage detection and two YOLOv3 models. Each model 

is trained on a specific dataset. This design increases the detection accuracy 

of each stage. 

 The system's first stage is the YOLOv3 objects detection model, 

which is trained on a dataset containing 38 objects and achieved a mAP of 

85.354% and 12.92 FPS. In the second stage of the system, two directions 

could be taken: Direction A, a direct detection and classification of 37 

objects, or Direction B, which is used for Iraqi banknotes classification. 

When Iraqi banknotes are detected in the first stage, a split occurs and the 

banknotes are classified as: "250 Dinar, 500 Dinar, 1000 Dinar, 5000 

Dinar, 10000 Dinar", 25000 Dinar, 50000 Dinar". The Iraqi banknotes 

detector achieved a mAP of 97.506% and 11.80 FPS Figure 4.4 shows the 

effect of using two-stage YOLOv3 detection on the AP distribution of 

objects. 

Figure 4.4 Objects' AP before and after using two-stage detection 

Before After 
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4.3.5  Custom Anchors  

 The k-means clustering algorithm has been applied to datasets to get 

the suitable size of the anchor boxes, which are used during the prediction 

of a bounding box. Three anchor boxes are assigned to each detection scale, 

depending upon the size of the object in the dataset. The 9 anchor boxes 

generated by running the k-means clustering on each dataset are: 

Model-1 (38 Objects): (21, 33), (76, 76), (59, 260), (199, 107), (160, 334), 

(123, 188), (381, 371), (270, 334), (302,201). 

Model-2 (Banknotes): (218, 105), (142, 168), (283, 131), (139, 293), (215, 

216), (331, 151), (176, 372), (390, 180), (273, 272). 

 Each model is trained with these custom anchors, and the mAP and 

evaluation time of each model are shown in table 4.4. 

Table 4.4 Illustrating the mAP of models using costum anchors 

Input Layer Size 
Model-1 (38 Objects) Model-2 (Banknotes) 

mAP FPs mAP FPs 

416×416 86.886% 12.61 97.647% 11.01 

 

 Experiments indicate that there exists a direct relationship between 

the custom anchors used and mAP. Custom anchor boxes have improved 

the detection accuracy of each model. But the improvement has been very 

small because the anchors used in the first experiment were based on the 

Coco dataset, which is similar to the current dataset. But the main effect of 

using custom anchors has been to reduce the number of epochs that are 

needed to reach a learning study state from 100 epochs to almost 50 epochs.  
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4.4 Inference Mode  

Along with the loss and mAP evaluation, the final system has been 

tested on new data from a live video camera and the results are seen 

visually as shown in figures 4.5 and 4.6. All the tested objects in all frames 

are correctly detected and classified. 

 

 

Figure 4.5 Banknotes model inference mode  
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Figure 4.6 YOLOv3 model inference mode  
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4.5 Summary  

 Table 4.5 indicates the results of all the experiments discussed in this 

chapter. All these are results achieved by using 100 epochs except (38 

Objects – Transfer learning, Custom anchors and 7 Iraqi Banknotes – 

Transfer learning, Custom anchors) are achieved using 50 epochs only. 

Table 4. 5 Training results summary 

Model 

Input 

Image 

Size 

mAP FPS 
Training 

time 
Dataset 

GPU 

Performance 

44 Objects – 

Trained from 

scratch 

320

× 320 
4.267% 15.65 2 weeks 100% High 

44 Objects – 

Trained from 

scratch 

416

× 416 
8.564% 12.17 1 month 100% Low 

44 Objects – 

Trained from 

scratch 

512

× 512 
10.654% 10.85 2 weeks 100% High 

44 Objects – 

Transfer learning 

416

× 416 
73.403% 12.53 4 days 20% High 

38 Objects – 

Transfer learning 

416

× 416 
85.354% 12.92 3 days 20% High 

7 Iraqi Banknotes 

– Transfer 

learning 

416

× 416 
97.506% 11.80 1 days 20% High 

38 Objects – 

Transfer learning 

, Custom anchors 

416

× 416 
86.886% 12.61 36 Hr. 20% High 

7 Iraqi Banknotes 

– Transfer 

learning, Custom 

anchors 

416

× 416 
97.647% 11.01 12 Hr. 20% High 
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4.6 Comparison with Other Assistance Systems 

 Although the comparison between the assistance devices proposed 

in this thesis and other assistive devices will not be accurate due to the 

difference in the hardware used, algorithms, the quantity and quality of the 

dataset. But it will help to know where this thesis has reached in general, 

and it indicates that the proposed algorithm gave good results. The 

proposed system was closer to that highlighted in red in table 4.6, which 

had an accuracy of 84.61% with 16 objects taken from the COCO Dataset, 

while the proposed assistance device in this thesis achieved an accuracy of 

up to 88.585% and 97.647 % for Iraqi banknotes, respectively. And detect 

44 objects in a dataset that has been chosen using a completely patient-

centered approach, which includes 44,000 images, 70% were collected 

manually. As shown in table 4.6. Which is highlighted in yellow. 

Table 4.6 Comparison with Other Assistance Systems 

Year Author 
No. of 

objects 

Algorithm/ 

Devices 
Dataset Accuracy FPS 

2017 
J. Zraqou et al. 

[13] 
25 

Matching 

using 

Laplacian/ 

Sensor 

300 

Images 
76% 1  

2018 
Nishajith.A et al. 

[16] 
90 

SSD  and 

MobileNet / 

Raspberry 

Pi3 

COCO 21 / 

2018 
M. Ghilardi et al. 

[7] 

pedestrian 

traffic 

lights sign 

Yolo Full 

YOLO-Tiny 

4,399 

Images 

76.2% 

35.8% 
/ 

2019 
S. Shadi et al. 

[17] 
15 

DeepLabv3+ 

model 

2760 

Images 
78% 

23 - 

30  
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2019 

B. Kaur and J. 

Bhattacharya 

 [18] 

obstacles CNN PASCAL / / 

2019 

R. Ribani and M. 

Marengoni 

 [19] 

4 

SSD with 

ResNet-50 / 

Raspberry 

Pi3 

4 class 

COCO 
22% 1  

2019 
A. Bhandari et al. 

[20] 
obstacles 

YOLO / 

Raspberry 

Pi3 

COCO / / 

2020 M. Afif et al. [21] 16 RetinaNet 
8000 

Images 
84.61% / 

2020 
L. Abraham et al. 

[8] 

walking 

navigation 

YOLO / 

Raspberry 

Pi4 

COCO / / 

2020 
S. Shaikh  

[24] 
/ YOLO COCO / / 

2021 Propose system 44 

YOLOV3 

two-stage 

models / 

Raspberry 

Pi3 and 

NVIDIA 

Jetson Nano 

44000 

Images 

88.585% 

and 

97.647% 

 for Iraqi 

banknotes 

13.1   

1  

5  
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 CHAPTER FIVE 

Hardware Implementation 

 

5.1 Raspberry Pi 3 Implementation 

 The hardware used to implement YOLOv3 and perform objects 

detection on live video feeds from a USB webcam is a Raspberry Pi 3 (RPI) 

Model B, which is a single-board computer that comes with these 

specifications (see Appendix-D for more details): 

 Quad Core 1.2 GHz Broadcom BCM2837 64 bit CPU. 

 1 GB RAM. 

 BCM43438 wireless LAN and Bluetooth Low Energy (BLE) on 

board. 

 100 Base Ethernet. 

 4 USB-2 ports. 

 Full size HDMI. 

 CSI camera port for connecting a RPI camera. 

 Micro SD port for loading your operating system and storing data. 

 The switch has been upgraded to a Micro USB power source capable 

of delivering up to 2.5A.   

 Figure 5.1 shows the RPI 3 Model B which is used to implement the 

proposed system. 
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Figure 5.1 RPI 3 Model B  

 

In order to install the required packages for running YOLOv3 on RPI, the 

RPI operating system image (.IMG) has been downloaded and flashed onto 

a micro-SD card. The RPI runs on a Linux kernel-based operating system 

that runs from the SD card, and it has no built-in memory other than the 

ROM. After that, a local network and wireless connectivity were set up. 

          Then all the needed packages and libraries to run the YOLOv3 

objects detector on RPI have been installed, such as (pip3, OpenCV 

compatible with RPI, TF that satisfies the requirements of RPI, NumPy, 

SciPy, wget, seaborn, tqdm, pandas, awscli, and urllib3). Then the 

YOLOv3 trained model was loaded onto the SD card of the RPI. 
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The direct compilation of YOLOv3 on the RPI resulted an error message 

indicating limited power, and loading the weight files into the model took 

a long time and caused the CPU to run hot. Due to the high temperatures, 

it eventually shut down. The reason for this is that the RPI has a weak 

processor and limited RAM, so the RPI needs to use a model that consumes 

less processing power. The result of compilation YOLOv3 is shown in 

figure 5.2.  

 

Figure 5.2 Error message of YOLOv3 direct compilation 

 

5.2 Tiny-YOLOv3 Implementation 

 Tiny-YOLOv3 is a simplified version of YOLOv3, which has a 

much smaller number of convolution layers than YOLOv3. The Tiny-

YOLOv3 algorithm is well suited for use on embedded platforms. 

Although the detection accuracy is lower than that of YOLOv3, this is due 

to Tiny-YOLOv3 reducing the YOLOv3 feature detection network 

darknet-53 to a 7-layer traditional convolution and a 6-layer max pooling, 

with a 13 × 13 and 26 ×  26 scale prediction network used to predict the 

target [69].  
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Tiny-YOLOv3 has been implemented and trained in the same way as the 

YOLOv3 with 100% dataset. The results of training Tiny-YOLOv3 

indicate that the detection accuracy of large networks of YOLOv3 is higher 

than Tiny-YOLOv3, as well, the evaluation time of Tiny-YOLOv3 is larger 

than the original YOLOv3 model, as shown in table 5.1.  

Table 5.1 Illustrating the mAP of Tiny-YOLOv3 and YOLOv3 models 

Type 
Model-1 (38 Objects) Model-2 (Banknotes) 

Dataset 
mAP FPs mAP FPs 

YOLOv3 86. 886% 12.61 97.647% 11.01 20% 

Tiny-YOLOv3 77.700% 29.30  91.235% 29.59 100% 

 

 Tiny-YOLOv3 model is loaded on RPI and inference mode is 

performed to detect objects in each video frame from the USB camera but 

it still not fast enough which achieve 0.4 -1 FPS as shown in figure 5.3.  
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Figure 5.3 Running Tiny-YOLOv3 on RPI 3 
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5.3 NVIDIA Jetson Nano Implementation  

 The NVIDIA Jetson Nano is an NVIDIA product that can implement 

AI solutions with the power of GPU computation. The major 

characteristics of NVIDIA Jetson Nano are a low cost and great 

adaptability for running a wide range of deep networks, including full 

native versions of popular machine learning frameworks like TF, Caffe, 

PyTorch, Keras, and MXNet. These networks can be utilized to create 

autonomous machines and complex AI systems by incorporating powerful 

capabilities such as image recognition, object identification and 

localization, posture estimation, semantic segmentation, video 

enhancement, and intelligent analytics. The NVIDIA Jetson Nano contains 

a flash-based micro-SD card for non-volatile storage, and operates at 

~10W. The specifications of the NVIDIA Jetson Nano used in the 

YOLOv3 implementation were (see Appendix-E for more details): 

 CPU Quad-core ARM A57 running at 1.43 GHz. 

 Maxwell GPU with 128 cores. 

 4 GB 64-bit LPDDR 25.6 GB/s memory 

 HDMI and display port output. 

 Micro SD card storage (not included). 

 4K video encoding. 

 4K video decoding. 

 USB-C 5V/3A. 

 USB 4x USB 3.0, USB 2.0 Micro-B. 

 Connectivity Gigabit Ethernet, M.2 Key E. 

 Figure 5.4 shows the NVIDIA Jetson Nano which is used to 

implement the proposed system. 
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Figure 5.4 NVIDIA Jetson Nano Kit 

 
The first boot of the NVIDIA Jetson Nano needs four things: a micro-SD 

card (minimum of 32 GB), a 5V 2.5A Micro USB power supply, an 

Ethernet cable, and the JetPack 4.5 NVIDIA Jetson Nano operation (.IMG) 

file flashed to the micro-SD card.  

 In order to configure the NVIDIA Jetson Nano to run the YOLOv3 

model, the system package, NumPy, Keras, TF, and the Jetson Inference 

engine have been installed. Then the python environment has been 

configured using python virtual environments to keep python development 

environments independent and separate from each other and to avoid 

having to maintain a micro-SD for each development environment used on 

the NVIDIA Jetson Nano. The python virtual environment is managed 

using virtualenv and virtualenvwrapper which were installed before. 

 NVIDIA has provided an official release of TF for the NVIDIA 

Jetson Nano. However, the most recent release of TF3.4 is incompatible 

with the current system version (JetPack4.5), so TF2.3 has to be manually 

loaded. 
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The Tiny-YOLOv3 model is loaded on the NVIDIA Jetson Nano and 

detection is performed on each video frame from the USB camera, which 

achieves 4-5 FPS, as shown in figure 5.5. 

 

Figure 5.5 Running Tiny-YOLOv3 on NVIDIA Jetson Nano 

 

5.4  NVIDIA Jetson Nano vs. Raspberry Pi 3 

 Table 5.2 depicts the inference speed measured in FPS, on different 

hardware. It shows that the implementation of the proposed model on 

Raspberry Pi 3B and NVIDIA Jetson Nano produced DNR (did not run) 

results, which occurred due to limited memory capacity. Therefore, Tiny-

YOLOv3 for the proposed model was used on the Raspberry Pi 3B and 

NVIDIA Jetson Nano. 

 The results of the implementation show that the inference speed of 

the NVIDIA Jetson Nano is significantly faster than the Raspberry Pi 3B. 

As well, the speed of PC GPU implementation is higher than others. 
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Table 5.2 Inference time on different hardware 

YOLOv3 Type Pc GPU Raspberry Pi 3B NVIDIA Jetson Nano 

YOLOv3 13.1 FPS DNR DNR 

Tiny-YOLOv3 31 FPS 1 FPS 5 FPS 

  

 

  



100 

 

CHAPTER SIX 

Conclusions and Future Works 

 

6.1 Conclusions  

 The current thesis presents a visual impaired assistance system based 

on deep learning and using a multi-stage YOLOv3 network architecture 

with a total accuracy of 88.585% and 97.647 %for Iraqi banknotes. The 

final developed model has been implemented on the Raspberry Pi 3B and 

the NVIDIA Jetson Nano. The most important conclusions can be 

summarized as follows: 

 The increase in the input layer size of the YOLOv3 network is 

directly proportional to detector accuracy and inversely proportional 

to detector speed.  

 The results show that transfer learning yields an increase in the 

accuracy of the YOLOv3 objects detector from 8.564% mAP to 

73.403%. The time required in the deep learning process to produce 

an accurate result can be reduced by the careful use of transfer 

learning instead of training the model from scratch with random 

initial weight.  

 The adaptation of the learning rate of the YOLOv3 model is based 

on cosine decay with warm-up and ADAM optimizer produced 

robust results. 

 GIoU enhances the distance measurement between the real box and 

the prediction box. 

 The Multi-stage YOLOv3 model solves the problem of training 

distinct types of objects by enhancing the learning process. 
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 The main effect of using custom anchors is to reduce the number of 

epochs that are needed to reach a learning study state from 100 

epochs to almost 50 epochs. 

 The implementations of the two embedded system platforms show 

that the detection speed of the NVIDIA Jetson Nano (5 FPS) is faster 

than the Raspberry Pi 3B (1 FPS).  

 The proposed system is designed in such a way to be general that it 

can be extended to use it in different field of object detection. 

 

6.2 Future Works  

Some suggestions for future works can be summarized as follows: 

 Using Tensor RT to increase objects detection speed on GPU. 

  Adding a color detection model. 

 Adding a detection model to recognize the members of the blind 

person family 

  



102 

 

References 

[1] A. Parab, R. Nagare, O. Kolambekar, and P. Patil, “Electronic 

Orientation Aid for Visually Impaired using Graphics Processing 

Unit (GPU),” ITM Web Conf., vol. 32, p. 03054, 2020, doi: 

10.1051/itmconf/20203203054. 

[2] R. Rajwani, D. Purswani, and P. Kalinani, “Proposed System on 

Object Detection for Visually Impaired People,” Int. J. Inf. Technol., 

vol. 4, no. 1, pp. 1–6, 2018. 

[3] S. Vaidya, N. Shah, N. Shah, and R. Shankarmani, “Real-Time 

Object Detection for Visually Challenged People,” Proc. Int. Conf. 

Intell. Comput. Control Syst. ICICCS 2020, no. Iciccs, pp. 311–316, 

2020, doi: 10.1109/ICICCS48265.2020.9121085. 

[4] “WHO | World Health Organization.” https://www.who.int/en 

(accessed Oct. 08, 2020). 

[5] H. Jabnoun, F. Benzarti, and H. Amiri, “Object detection and 

identification for blind people in video scene,” in International 

Conference on Intelligent Systems Design and Applications, ISDA, 

Jun. 2016, vol. 2016-June, pp. 363–367, doi: 

10.1109/ISDA.2015.7489256. 

[6] R. C. Joshi, S. Yadav, and M. K. Dutta, “YOLO-v3 Based Currency 

Detection and Recognition System for Visually Impaired Persons,” 

2020 Int. Conf. Contemp. Comput. Appl. IC3A 2020, pp. 280–285, 

2020, doi: 10.1109/IC3A48958.2020.233314. 

[7] M. C. Ghilardi, G. Simoes, J. Wehrmann, I. H. Manssour, and R. C. 

Barros, “Real-Time Detection of Pedestrian Traffic Lights for 

Visually-Impaired People,” Proc. Int. Jt. Conf. Neural Networks, vol. 



103 

 

2018-July, pp. 1–8, 2018, doi: 10.1109/IJCNN.2018.8489516. 

[8] L. Abraham, N. S. Mathew, L. George, and S. S. Sajan, “VISION- 

Wearable Speech Based Feedback System for the Visually Impaired 

using Computer Vision,” Proc. 4th Int. Conf. Trends Electron. 

Informatics, ICOEI 2020, no. Icoei, pp. 972–976, 2020, doi: 

10.1109/ICOEI48184.2020.9142984. 

[9] O. Masurekar, O. Jadhav, P. Kulkarni, and S. Patil, “Real Time 

Object Detection Using YOLOv3,” Int. Res. J. Eng. Technol., vol. 

07, no. 03, pp. 3764–3768, 2020. 

[10] B. Schauerte, M. Martinez, A. Constantinescu, and R. Stiefelhagen, 

“An assistive vision system for the blind that helps find lost things,” 

Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. 

Lect. Notes Bioinformatics), vol. 7383 LNCS, no. PART 2, pp. 566–

572, 2012, doi: 10.1007/978-3-642-31534-3_83. 

[11] M. R. Nalawade, V. Wagh, and S. Kamble, “An Approach for Object 

and Scene Detection for Blind Peoples Using Vocal Vision .,” vol. 4, 

no. 12, pp. 1–3, 2014. 

[12] P. S. P. Jadhav, S. Tomy, S. S. Jayswal, H. D. Dhaware, and A. R. 

Vijapure, “Object Detection in Android Smartphone for Visually 

Impaired Users,” Int. J. Adv. Res. Comput. Commun. Eng., vol. 5, no. 

11, pp. 332–334, 2016, doi: 10.17148/IJARCCE.2016.51171. 

[13] J. S. Zraqou, W. M. Alkhadour, and M. Z. Siam, “Real-Time Objects 

Recognition Approach for Assisting Blind People,” Int. J. Curr. Eng. 

Technol., vol. 7, no. 1, pp. 120–125, 2017. 

[14] Pachhaiammal@Priya M, “SMART NAVIGATION TO ASSIST 

BLIND PEOPLE FOR OBJECT,” vol. 5, no. 4, pp. 2682–2687, 



104 

 

2017. 

[15] Govardhan.S.D, Kumar.G, Mariyappan.S, N. Kumar.G, and N. 

Asir.J, “SMART OBJECT DETECTOR FOR VISUALLY 

IMPAIRED,” Int. J. Recent Trends Eng. Res., no. March-2017 

[ISSN: 2455-1457] DOI : 

10.23883/IJRTER.CONF.20170331.038.5C8TI, pp. 192–196, 2017. 

[16] Nishajith.A, Nivedha.J, Shilpa.S.Nair, and P. M. Shaffi.J, “Smart 

Cap – Wearable Visual,” 2018 Int. Conf. Inven. Res. Comput. Appl., 

no. Icirca, ISBN:978-1-5386-2456-2, pp. 275–278, doi: 

10.1109/ICIRCA.2018.8597327., 2018. 

[17] S. Saleh, H. Saleh, and W. Hardt, “Outdoor navigation for visually 

impaired based on deep learning,” CEUR Workshop Proc., vol. 2514, 

no. November, pp. 397–406, 2019. 

[18] B. Kaur and J. Bhattacharya, “Scene perception system for visually 

impaired based on object detection and classification using 

multimodal deep convolutional neural network,” J. Electron. 

Imaging, vol. 28, no. 01, p. 1, 2019, doi: 10.1117/1.jei.28.1.013031. 

[19] R. Ribani and M. Marengoni, “Vision substitution with object 

detection and vibrotactile stimulus,” VISIGRAPP 2019 - Proc. 14th 

Int. Jt. Conf. Comput. Vision, Imaging Comput. Graph. Theory Appl., 

vol. 4, no. Visigrapp, pp. 584–590, 2019, doi: 

10.5220/0007577205840590. 

[20] A. Bhandari, R. Gorad, S. Thakur, and J. Sangoi, “Charanatra : A 

smart assistive footwear for visually impaired,” Int. J. Adv. Res. Ideas 

Innov. Techn, vol. 5, no. 2, pp. 850–852, 2019. 

[21] M. Afif, R. Ayachi, Y. Said, E. Pissaloux, and M. Atri, “An 



105 

 

Evaluation of RetinaNet on Indoor Object Detection for Blind and 

Visually Impaired Persons Assistance Navigation,” Neural Process. 

Lett., vol. 51, no. 3, pp. 2265–2279, 2020, doi: 10.1007/s11063-020-

10197-9. 

[22] A. Salem and B. Sama, “Enhancement and Development of Smart 

Glasses System for Visually Impaired Persons by Using Intelligent 

System,” Int. J. Comput. Sci. Mob. Comput., vol. 9, no. 8, pp. 40–49, 

2020. 

[23] S. Yadav, Z. A. Ansari, and K. G. Singh, “CURRENCY 

DETECTION FOR VISUALLY,” Int. J. Emerg. Technol. Innov. 

Res. www.jetir.org | UGC issn Approv. ISSN2349-5162, vol. 7, no. 

5, pp. 999–1002, 2020. 

[24] Shifa Shaikh, “Assistive Object Recognition System for Visually 

Impaired,” Int. J. Eng. Res. Technol. ISSN 2278-0181, vol. V9, no. 

09, pp. 736–740, 2020, doi: 10.17577/ijertv9is090382. 

[25] J. F. Peters, “Foundations of Computer Vision,” B. Intell. Syst. Ref. 

Libr. ·, vol. 124, no. March 2017, p. 431, 2017, doi: 10.1007/978-3-

319-52483-2. 

[26] L. Jiao et al., “A survey of deep learning-based object detection,” 

IEEE Access, vol. 7, no. 3, pp. 128837–128868, 2019, doi: 

10.1109/ACCESS.2019.2939201. 

[27] A. Sobti, C. Arora, and M. Balakrishnan, “Object Detection in Real-

Time Systems: Going beyond Precision,” Proc. - 2018 IEEE Winter 

Conf. Appl. Comput. Vision, WACV 2018, vol. 2018-Janua, pp. 1020–

1028, 2018, doi: 10.1109/WACV.2018.00117. 

[28] P. F. Felzenszwalb, R. B. Girshick, D. Mcallester, and D. Ramanan, 



106 

 

“Object Detection With Partbase,” IEEE Trans. Pattern Anal. Mach. 

Intell., vol. 32, no. 9, pp. 1627–1645, 2010. 

[29] Z. Q. Zhao, P. Zheng, S. T. Xu, and X. Wu, “Object Detection with 

Deep Learning: A Review,” IEEE Trans. Neural Networks Learn. 

Syst., vol. 30, no. 11, pp. 3212–3232, 2019, doi: 

10.1109/TNNLS.2018.2876865. 

[30] D. G. Lowe, “Distinctive image features from scale-invariant 

keypoints,” Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004, doi: 

10.1023/B:VISI.0000029664.99615.94. 

[31] R. Rai, S. Shukla, and B. Singh, “Histograms of Oriented Gradients 

for Human Detection,” IEEE Trans. Ind. Informatics, vol. 16, no. 7, 

pp. 4714–4725, 2005, doi: 10.1109/TII.2019.2950094. 

[32] R. Lienhart and J. Maydt, “An extended set of Haar-like features for 

rapid object detection,” IEEE Int. Conf. Image Process., vol. 1, pp. 

900–903, 2002, doi: 10.1109/icip.2002.1038171. 

[33] N. H. Farhat, “Support-Vector Networks CORINNA,” IEEE Expert. 

Syst. their Appl., vol. 7, no. 5, pp. 63–72, 1995, doi: 

10.1109/64.163674. 

[34] R. Barmaki, “A Decision-Theoretic Generalization of On-Line 

Learning and an Application to Boosting* Yoav,” J. Comput. Syst. 

Sci. 55, 119?139 Artic., vol. 139, pp. 651–655, 1996, doi: 

10.1145/2818346.2823306. 

[35] D. M. and D. R. P. F. Felzenszwalb, R. B. Girshick, “Object 

Detection with Discriminatively Trained,” IEEE Trans. Pattern 

Anal. Mach. Intell., vol. 32, no. 2, pp. 1627–1645, doi: 

10.1109/TPAMI.2009.167., 2010. 



107 

 

[36] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature 

hierarchies for accurate object detection and semantic segmentation,” 

Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 

580–587, Sep. 2014, doi: 10.1109/CVPR.2014.81. 

[37] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 

521, no. 7553, pp. 436–444, 2015, doi: 10.1038/nature14539. 

[38] C. G. Pachón, D. M. Ballesteros, and D. Renza, “Fake banknote 

recognition using deep learning,” Appl. Sci., vol. 11, no. 3, pp. 1–20, 

2021, doi: 10.3390/app11031281. 

[39] M. Z. Alom et al., “A state-of-the-art survey on deep learning theory 

and architectures,” Electron., vol. 8, no. 3, 2019, doi: 

10.3390/electronics8030292. 

[40] C. Borngrund, Machine vision for automation of earth-moving 

machines : Transfer learning experiments with YOLOv3,” Luleå 

Univ. Technol. Dep. Comput. Sci. Electr. Sp. Eng., p. Retrieved from 

http://urn.kb.se/resolve?urn=urn:nb, 2019. 

[41] J. N. Slettevold, “Deep learning in Dynamic Imager,” Master’s 

Thesis; NTNU, no. June, 2018, [Online]. Available: 

http://hdl.handle.net/11250/2566506. 

[42] M. Lin, Q. Chen, and S. Yan, “Network In Network,” 2nd Int. Conf. 

Learn. Represent. ICLR 2014 - Conf. Track Proc., Dec. 2013, 

Accessed: Aug. 14, 2021. [Online]. Available: 

https://arxiv.org/abs/1312.4400v3. 

[43] V. N. Nguyen, “Advancing Deep Learning for Automatic 

Autonomous Vision-based Power Line Inspection,” IEEE Power 

Energy Technol. Syst. J., vol. 6, no. 1, 2019. 



108 

 

[44] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep 

network training by reducing internal covariate shift,” 32nd Int. Conf. 

Mach. Learn. ICML 2015, vol. 1, pp. 448–456, 2015. 

[45] R. Girshick, “Fast R-CNN,” Proc. IEEE Int. Conf. Comput. Vis., vol. 

2015 Inter, pp. 1440–1448, 2015, doi: 10.1109/ICCV.2015.169. 

[46] S. R. K. H. R. G. J. Sun, “Faster R-CNN: Towards Real-Time Object 

Detection with,” Proc. 28th Int. Conf. Neural Inf. Process. Syst., vol. 

1 NIPS'15, pp. 91–99, 2015, doi: 10.2307/j.ctt1d98bxx.10. 

[47] W. Liu et al., “SSD: Single shot multibox detector,” Lect. Notes 

Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes 

Bioinformatics), vol. 9905 LNCS, pp. 21–37, 2016, doi: 

10.1007/978-3-319-46448-0_2. 

[48] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look 

once: Unified, real-time object detection,” Proc. IEEE Comput. Soc. 

Conf. Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 779–

788, 2016, doi: 10.1109/CVPR.2016.91. 

[49] A. F. Joseph Redmon∗, Santosh Divvala∗, Ross Girshick, “You Only 

Look Once: Unified, Real-Time Object Detection Joseph,” J. Chem. 

Eng. Data, vol. 27, no. 3, pp. 779–788, 2016, doi: 

10.1021/je00029a022. 

[50] J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,” 

Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 

2017, vol. 2017-Janua, pp. 6517–6525, 2017, doi: 

10.1109/CVPR.2017.690. 

[51] J. Redmon and A. Farhadi, “YOLO v.3,” Tech Rep., pp. 1–6, 2018, 

[Online]. Available: 



109 

 

https://pjreddie.com/media/files/papers/YOLOv3.pdf. 

[52] Z. Deng, R. Yang, R. Lan, Z. Liu, and X. Luo, “SE-IYOLOV3: An 

accurate small scale face detector for outdoor security,” 

Mathematics, vol. 8, no. 1, pp. 1–12, 2020, doi: 

10.3390/math8010093. 

[53] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for 

image recognition,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. 

Pattern Recognit., vol. 2016-Decem, pp. 770–778, 2016, doi: 

10.1109/CVPR.2016.90. 

[54] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans. 

Knowl. Data Eng., vol. 22, no. 10, pp. 1345–1359, 2010, doi: 

10.1109/TKDE.2009.191. 

[55] R. Ribani and M. Marengoni, “A Survey of Transfer Learning for 

Convolutional Neural Networks,” Proc. - 32nd Conf. Graph. 

Patterns Images Tutorials, SIBGRAPI-T 2019, pp. 47–57, 2019, doi: 

10.1109/SIBGRAPI-T.2019.00010. 

[56] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A survey 

on deep transfer learning,” Lect. Notes Comput. Sci. (including 

Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 

11141 LNCS, pp. 270–279, 2018, doi: 10.1007/978-3-030-01424-

7_27. 

[57] H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, and S. 

Savarese, “Generalized intersection over union: A metric and a loss 

for bounding box regression,” Proc. IEEE Comput. Soc. Conf. 

Comput. Vis. Pattern Recognit., vol. 2019-June, pp. 658–666, 2019, 

doi: 10.1109/CVPR.2019.00075. 



110 

 

[58] R. Padilla, S. L. Netto, and E. A. B. Da Silva, “A Survey on 

Performance Metrics for Object-Detection Algorithms,” Int. Conf. 

Syst. Signals, Image Process., vol. 2020-July, pp. 237–242, 2020, 

doi: 10.1109/IWSSIP48289.2020.9145130. 

[59] H. Choi, H. Lee, H. You, S. Rhee, and W. Jeon, “and Error Matrix 

for Vegetation Cover Classification Assessment,” Sensors Mater., 

vol. 31, no. 11, pp. 3849–3858, 2019. 

[60] P. Henderson and V. Ferrari, “End-to-end training of object class 

detectors for mean average precision,” Lect. Notes Comput. Sci. 

(including Subser. Lect. Notes Artif. Intell. Lect. Notes 

Bioinformatics), vol. 10115 LNCS, pp. 198–213, 2017, doi: 

10.1007/978-3-319-54193-8_13. 

[61] A. Neubeck and L. Van Gool, “Efficient non-maximum 

suppression,” Proc. - Int. Conf. Pattern Recognit., vol. 3, no. January 

2006, pp. 850–855, 2006, doi: 10.1109/ICPR.2006.479. 

[62] “Anchor Boxes for Object Detection - MATLAB & Simulink.” 

https://www.mathworks.com/help/vision/ug/anchor-boxes-for-

object-detection.html (accessed Jun. 12, 2021). 

[63] A. Kuznetsova et al., “The Open Images Dataset V4: Unified image 

classification, object detection, and visual relationship detection at 

scale,” Int. J. Comput. Vis., vol. 128, no. 7, pp. 1956–1981, Nov. 

2018, doi: 10.1007/s11263-020-01316-z. 

[64] S. D. Al-Sheekh and M. D. Younus, “Real-Time Pose Estimation for 

Human-Robot Interaction,” in 2020 2nd Annual International 

Conference on Information and Sciences (AiCIS), Nov. 2020, pp. 86–

90, doi: 10.1109/AiCIS51645.2020.00023. 



111 

 

[65] T. He, Z. Zhang, H. Zhang, Z. Zhang, J. Xie, and M. Li, “Bag of 

tricks for image classification with convolutional neural networks,” 

Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 

2019-June, pp. 558–567, 2019, doi: 10.1109/CVPR.2019.00065. 

[66] Z. Zhang, T. He, H. Zhang, Z. Zhang, J. Xie, and M. Li, “Bag of 

Freebies for Training Object Detection Neural Networks,” 2019, 

[Online]. Available: http://arxiv.org/abs/1902.04103. 

[67] A. Ammar, A. Koubaa, M. Ahmed, A. Saad, and B. Benjdira, 

“Vehicle detection from aerial images using deep learning: A 

comparative study,” Electron., vol. 10, no. 7, pp. 1–31, 2021, doi: 

10.3390/electronics10070820. 

[68] Z. Wang, “SEG-YOLO: Real-Time Instance Segmentation Using 

YOLOv3 and Fully Convolutional Network,” 2019, [Online]. 

Available: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-271652. 

[69] X. Gong, L. Ma, and H. Ouyang, “An improved method of Tiny 

YOLOV3,” IOP Conf. Ser. Earth Environ. Sci., vol. 440, no. 5, 2020, 

doi: 10.1088/1755-1315/440/5/052025. 

  

 

 

 

 

 



1A -  
 

Appendix-A 

Survey Form 

 / Items   الادوات

 Dinar 1 250  / دينار 250    

 Dinar 2 500  / دينار 500    

 Dinar 3 1000  / دينار 1000    

 Dinar 4 5000  / دينار 5000    

 Dinar 5 10000  / دينار 10000    

 Dinar  6 25000  / دينار 25000    

 Dinar 7 50000  / دينار 50000    

 Bed 8  / سرير    

 Book 9  / كتاب    

 Bottle 10  / قنينة ماء    

 Building 11  / بناية    

 Bus 12  / حافلة    

 Cabinetry 13  / خزانة    

 Camera 14  / كاميرا    

 Car 15  / سيارة    

 Cat 16  / قطة    

 Chair 17  / كرسي    

 Charger 18  / شاحنة موبايل    

 Clothing 19  / ملابس    

 Coffee Cup 20  /  كوب    

 Computer keyboard 21  / لوحة مفاتيح الحاسبة    

 Dog 22  / كلب    

 Electric Socket 23  / مقبس كهرباء    

 Fan 24  / مروحة    

 Fire 25  / نار    

o 

o 
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 Fire Extinguisher 26  / مطفئة حريق    

شبشب -نعال      /  Flipflops 27 

 Food 28  / طعام    

 Fork 29  / شوكة    

 Fruit 30  / فاكهة    

 Gas stove 31  / طباخ    

 Glasses 32  / مناظر    

 House 33  / منزل    

 Kettle 34  / قوري    

 Key 35  / مفتاح    

 Knife 36  / سكين    

 Laptop 37  / لابتوب    

 Medicine Tab 38  / دواء    

 Mobile phone 39  / موبايل    

 Mouse 40  / ماوس حاسبة    

 Pen 41  / قلم    

 Person 42  / شخص    

 Refrigerator 43  / ثلاجة    

ريموت -جهاز تحكم       /  Remote Control 44 

 Scissors 45  / مقص    

 Shoe 46  / حذاء    

 shower 47  / دوش    

 Sink 48  / مغسل    

 Sofa Bed 49  / قنفة    

 Spoon 50  / ملعقة    

درج -سلالم      /  Stairs 51 

 Stick 52  / عصا    

 Table 53  / منضدة    

 Television 54  / تلفاز    

 Toilet Seat 55  / مقعد تواليت    

 Traffic light 56  / ترفك لايت    

 Vegetable 57  / خضراوات    

 Wastebasket 58  / سلة مهملات    

 Watch 59  / ساعة    

 Water Dispenser 60  / ثاجة ماء    

 Weapon 61  / سلاح    

 Window 62  /  نافذة    
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Survey Voting Results 
 

No Items 
Most 

important 
important 

Rarely 

important 

not 

important 

1 250 Dinar 15 3 1 1 

2 500 Dinar 18 2 0 0 

3 1000 Dinar 18 2 0 0 

4 5000 Dinar 17 2 1 0 

5 10000 Dinar 17 2 1 0 

6 25000 Dinar 15 3 1 1 

7 50000 Dinar 15 3 1 1 

8 Bed 7 10 2 1 

9 Book 0 11 6 3 

10 Bottle 7 10 3 0 

11 Building 0 2 2 16 

12 Bus 0 4 11 5 

13 Cabinetry 6 9 5 0 

14 Camera 0 0 0 20 

15 Car 15 3 1 1 

16 Cat 0 8 7 5 

17 Chair 18 2 0 0 

18 Charger 20 0 0 0 

19 Clothing 17 3 0 0 

20 Coffee Cup 20 0 0 0 

21 Computer keyboard 0 0 0 20 

22 Dog 0 0 13 7 

23 Electric Socket 17 2 1 0 

24 Fan 3 12 4 1 

25 Fire 2 2 7 9 

26 Fire Extinguisher 0 0 0 20 

27 Flipflops 18 2 0 0 

28 Food 0 1 13 6 

29 Fork 0 3 14 3 

30 Fruit 1 0 3 16 

31 Gas stove 1 3 9 7 

32 Glasses 3 11 6 0 

33 House 0 0 3 17 
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34 Kettle 7 9 4 0 

35 Key 20 0 0 0 

36 Knife 3 13 4 0 

37 Laptop 7 10 1 2 

38 Medicine Tab 19 1 0 0 

39 Mobile phone 20 0 0 0 

40 Mouse 5 12 1 2 

41 Pen 0 0 2 18 

42 Person 10 7 3 0 

43 Refrigerator 2 9 6 3 

44 Remote Control 10 9 1 0 

45 Scissors 0 2 11 7 

46 Shoe 16 4 0 0 

47 shower 4 9 7 0 

48 Sink 10 10 0 0 

49 Sofa Bed 7 9 4 0 

50 Spoon 11 7 2 0 

51 Stairs 15 5 0 0 

52 Stick 12 7 1 0 

53 Table 8 9 2 1 

54 Television 13 7 0 0 

55 Toilet Seat 10 10 0 0 

56 Traffic light 0 0 0 20 

57 Vegetable 0 0 0 20 

58 Wastebasket 17 3 0 0 

59 Watch 0 0 18 2 

60 Water Dispenser 6 14 0 0 

61 Weapon 1 10 5 4 

62 Window 0 1 11 8 
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Appendix-B 

This examples illustrates the labeling process of images using the 

"LabelImg" tool. 
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Appendix-C 

Code 

=================== Darknet-53 coding ===================  

def dark53(indata): 

    indata = convol(indata, (3, 3, 3, 32)) 

    indata = convol(indata, (3, 3, 32, 64), dnsamp=True) 

    for i in range(1): 

          indata = resid(indata, 64, 32, 64) 

    indata = convol(indata, (3, 3, 64, 128), dnsamp=True) 

    for i in range(2): 

        indata = resid(indata, 128, 64, 128) 

    indata = convol(indata, (3, 3, 128, 256), dnsamp=True) 

    for i in range(8): 

        indata = resid(indata, 256, 128, 256) 

    route_1 = indata 

    I = convol(indata, (3, 3, 256, 512), dnsamp=True) 

    for i in range(8): 

        indata = resid(indata, 512, 256, 512) 

    route_2 = indata 

    I = convol(indata, (3, 3, 512, 1024), dnsamp=True) 

    for i in range(4): 

        indata = resid(indata, 1024, 512, 1024) 

    return route_1, route_2, indata 

================= YOLO layers coding =================== 

def YOLOv3(in_lay, N_CLSS): 

     route_1, route_2, convl = dark53(in_lay) 

    convl = convol(convl, (1, 1, 1024, 512)) 

    convl = convol(convl, (3, 3, 512, 1024)) 
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    convl = convol(convl, (1, 1, 1024, 512)) 

    convl = convol(convl, (3, 3, 512, 1024)) 

    convl = convol(convl, (1, 1, 1024, 512)) 

    conv_lobj_branch = convol(convl, (3, 3, 512, 1024)) 

    convlbox = convol(conv_lobj_branch, (1, 1, 1024, 3 * (N_CLSS + 5)), 

activate=False, bn=False) 

    convl = convol(convl, (1, 1, 512, 256)) 

    convl = upsample(convl) 

    convl = tf.concat([convl, route_2], axis=-1) 

    convl = convol(convl, (1, 1, 768, 256)) 

    convl = convol(convl, (3, 3, 256, 512)) 

    convl = convol(convl, (1, 1, 512, 256)) 

    convl = convol(convl, (3, 3, 256, 512)) 

    convl = convol(convl, (1, 1, 512, 256)) 

    conv_mobj_branch = convol(convl, (3, 3, 256, 512)) 

    convmbox = convol(conv_mobj_branch, (1, 1, 512, 3 * (N_CLSS + 

5)), activate=False, bn=False) 

    convl = convol(convl, (1, 1, 256, 128)) 

    convl = upsample(convl) 

    convl = tf.concat([convl, route_1], axis=-1) 

    convl = convol(convl, (1, 1, 384, 128)) 

    convl = convol(convl, (3, 3, 128, 256)) 

    convl = convol(convl, (1, 1, 256, 128)) 

    convl = convol(convl, (3, 3, 128, 256)) 

    convl = convol(convl, (1, 1, 256, 128)) 

    conv_sobj_branch = convol(convl, (3, 3, 128, 256)) 

    convsbox = convol(conv_sobj_branch, (1, 1, 256, 3 * (N_CLSS + 5)), 

activate=False, bn=False) 

    return [convsbox, convmbox, convlbox] 
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================= decode function coding ================== 

def decode(convout, N_CLSS, i=0): 

    conv_shape = tf.shape(convout) 

    batch_size = conv_shape[0] 

    outsize = conv_shape[1] 

    convout = tf.reshape(convout, (batch_size, outsize, outsize, 3, 5 + 

N_CLSS)) 

    conv_raw_dxdy = convout[:, :, :, :, 0:2]   

    conv_raw_dwdh = convout[:, :, :, :, 2:4]   

    conv_raw_conf = convout[:, :, :, :, 4:5]   

    conv_raw_prob = convout[:, :, :, :, 5:]   

    y = tf.range(outsize, dtype=tf.int32) 

    y = tf.expand_dims(y, -1) 

    y = tf.tile(y, [1, outsize]) 

    x = tf.range(outsize, dtype=tf.int32) 

    x = tf.expand_dims(x, 0) 

    x = tf.tile(x, [outsize, 1]) 

    xy_grid = tf.concat([x[:, :, tf.newaxis], y[:, :, tf.newaxis]], axis=-1) 

    xy_grid = tf.tile(xy_grid[tf.newaxis, :, :, tf.newaxis, :], [batch_size, 1, 

1, 3, 1]) 

    xy_grid = tf.cast(xy_grid, tf.float32) 

    pred_xy = (tf.sigmoid(conv_raw_dxdy) + xy_grid) * ST[i] 

    pred_wh = (tf.exp(conv_raw_dwdh) * ANCHORS[i]) * ST[i] 

    pred_xywh = tf.concat([pred_xy, pred_wh], axis=-1) 

    pred_conf = tf.sigmoid(conv_raw_conf)   

    pred_prob = tf.sigmoid(conv_raw_prob)   

    return tf.concat([pred_xywh, pred_conf, pred_prob], axis=-1) 
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Appendix-D 

 Raspberry Pi 3 Model B  Datasheet 

Physical Specifications 

 

 

 

 

 

 

Warnings 

 This product should only be connected to an external power supply 

rated at 5V/2.5 A DC. Any external power supply used with the 

Raspberry Pi 3 Model B shall comply with relevant regulations and 

standards applicable in the country of intended use.  
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Warnings 

 This product should be operated in a well-ventilated environment 

and, if used inside a case, the case should not be covered.  

 Whilst in use, this product should be placed on a stable, flat, non-

conductive surface and should not be contacted by conductive items.  

 The connection of incompatible devices to the GPIO connection 

may affect compliance, result in damage to the unit, and invalidate 

the warranty.  

 All peripherals used with this product should comply with relevant 

standards for the country of use and be marked accordingly to ensure 

that safety and performance requirements are met. These articles 

include but are not limited to keyboards, monitors, and mice when 

used in conjunction with the Raspberry Pi.  

 The cables and connectors of all peripherals used with this product 

must have adequate insulation so that relevant safety requirements 

are met. 

Safety Instructions 

To avoid malfunction of or damage to this product, please observe the 

following: 

  Do not expose to water or moisture, or place on a conductive surface 

whilst in operation. 

  Do not expose to heat from any source; the Raspberry Pi 3 Model 

B is designed for reliable operation at normal ambient temperatures.  

 Take care whilst handling to avoid mechanical or electrical damage 

to the printed circuit board and connectors. 

  Whilst it is powered, avoid handling the printed circuit board, or 

only handle it by the edges to minimize the risk of electrostatic 

discharge damage. 
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Appendix-E 

NVIDIA Jetson Nano Datasheet and Jetpack 

 

 
Developer Kit Interfaces  

Developer kit module and carrier board 
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Jetpack 

 NVIDIA Jetpack SDK is the most comprehensive solution for 

building AI applications. It includes the latest OS images for Jetson 

products, along with libraries and APIs, samples, developer tools, and 

documentation. This section briefly describes each component of Jetpack 

OS Image  

Jetpack includes a reference file system derived from Ubuntu.  

Libraries and APIs  

Jetpack libraries and APIs include:  

• TensorRT and cuDNN for high-performance deep learning applications  

• CUDA for GPU accelerated applications across multiple domains  

• NVIDIA Container Runtime for containerized GPU accelerated 

applications  

• Multimedia API package for camera applications and sensor driver 

development  

• VisionWorks, OpenCV, and VPI (Developer Preview) for visual 

computing applications  
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 الخلاصة

ً لسجلات منظمة الصحة العالمية ، هناك          مليون شخص  285 مايقاربوفقا

ً أن يتعامل الإنسان  مع الأشياء  الطبيعي يعانون من إعاقة بصرية. من السهل نسبيا

في البيئة المحيطة، ولكنها واحدة من المشكلات الرئيسية التي يواجهها  الموجودة

 ً ً  بالاضافة الى ،الأشخاص المعاقين بصريا كبيرة في مشكلة  ذلك يواجه المعاقين بصريا

  .حياتنا اليومية دورا اساسيا في التي تلعب التعرف على العملات النقدية

ً عن طريق لمساعدة الأشخطروحة الحالية نظام تقترح الأ        اص المعاقين بصريا

تطوير النظام باستخدام التعلم العميق  حيث تمالمرئي إلى أوامر صوتية. تحويل العالم 

كل نموذج على مجموعة بيانات  درُب حلتين،ذات المر YOLOv3على أساس نماذج 

المستخدمة في تدريب النماذج باستخدام نهج يركز على  قاعدة البيانات تم بناءمحددة. 

 ً قيُم أداء النظام . ، حيث تم اختيار أربعة وأربعين عنصرا للكشف عنهمالمريض تماما

الاشياء في كذلك من خلال الكشف على ختبار والامجموعة بيانات المقترح باستخدام 

ترح يمكنه الكشف عن الأشياء النتائج أن النظام المقفيديو مباشر من الكاميرا. أظهرت 

عن  للكشف 97.647٪ دقةو 88.585٪والتعرف عليها بمتوسط دقة عالية تصل إلى 

  الأوراق النقدية العراقية.

تم تنفيذ أول نظام في تنفيذ نظام مساعدة ضعاف البصر.  تم استخدام جهازين       

أظهرت  NVIDIA Jetson Nano.والثاني على Raspberry Pi 3B مضمن على

كانت أسرع بكثير NVIDIA Jetson Nano ائج تطبيق النظامين أن سرعة كشف نت

 .Raspberry Pi 3Bمن 
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( في محتوياتها وفيما له علاقة بها  رغد رائد محمود ( وناقشنا الطالبة )YOLOv3المبني بشبكة  البصر
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