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Abstract 

 

In many applications, the radiating elements of the deployed antenna array 

may be configured in the form of a single linear dimensional, or two planar 

dimensional or even random distributions. Linear or planar array antennas 

are considered uniform when the distances between the array elements are 

regular, and random antenna array when the distances are random.  In such 

applications, a simple optimization algorithm is highly needed to optimally 

determine the excitation amplitudes and phases of the array elements and 

maximize the system’s performance. In this dissertation, a convex 

optimization is used instead of other complex global stochastic 

optimizations to synthesize the linear, planar, and random array patterns 

under pre-specified constraint conditions. These constraints could be either 

fixed beam width when minimizing the sidelobe levels or fixed sidelobe 

levels when minimizing the beam width. First, the problem of obtaining a 

feasible minimum sidelobe level for a given beam width has been 

investigated. Then, the problem was reversed to obtain a feasible minimum 

beam width for a given sidelobe level. Both optimization methods were 

applied to the linear, planar, and random array configurations. Simulation 

results verified the effectiveness of both optimization methods and for all 

considered array configurations. Simulation results show that the feasible 

minimum sidelobe level can be obtained was (-35.74dB) for 5 deg beam 

width in the linear antenna arrays. While for the planar and random arrays, 

the feasible minimum side lobe levels were below -8 dB. This is mainly 

due to the restriction on the limited aperture area in the planar and random 

arrays. 
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CHAPTER ONE 

Introduction  

    

1.1 Overview 

   Low sidelobe levels with narrow beamwidth (i.e., maximum directivity) 

in radiation pattern are essential in most array antennas applications to 

reduce the negative impacts of noise and interfering signals, generating 

misleading target indications and affecting overall system performance. To 

achieve a minimum sidelobe level, proper antenna array design and 

structure are required.  Antenna arrays can be arranged as linear arrays, 

planar arrays, or random planar arrays, depending on their applicability in 

a real-world setting. In the linear and planar arrays, the inter element 

spacing is usually regular and uniform, while in the random arrays they are 

irregular and nonuniform. Unlike the linear arrays where their radiation 

patterns can be scanned either on the azimuth or elevation angles, the 

radiation patterns of the planar arrays can be scanned to any angle in the 

azimuth and elevation planes simultaneously. Thus, the planar arrays are 

widely used in practical application due to their advantages and versatility 

[1]. 

   The regularly spaced and uniformly excited linear and planar antenna 

arrays have many good radiation characteristics such as narrow 

beamwidth, good directivity, and simple excitation weight vector, but they 

suffer from high sidelobe levels (SLLs) of about -13.2 dB, which may 

cause many false target indications and many other problems. It is possible 

to control the beamwidth, sidelobe level, and other array pattern 
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characteristics by adjusting one or more of the following array design 

parameters, the geometrical layout of the array elements, the excitation 

amplitudes and phases of the array elements, interelement spacing, and 

finally the pattern of each individual element [2]. 

    The process of determining antenna settings to obtain desired radiation 

attributes such as null position, sidelobe level, and antenna pattern 

beamwidth is known as pattern synthesis. Many methodologies have been 

developed for the synthesis of linear and planar arrays. Some of the most 

current intelligent optimization methodologies for array antenna synthesis 

include the Genetic Algorithm [3], Particle Swarm [4], simulated annealing 

[5], the differential evolution algorithm [6], and Touring ant colony [7]. 

However, the computational complexity of these global optimization 

methods is high, especially when dealing with large arrays. Many antenna 

problems can be solved analytically or numerically by treating them as or 

converting them to convex optimization problems [9]. 

    Convex optimization techniques are useful for offering structural 

insights into the best solution as well as finding  optimal numerical 

solutions to these problems quickly [8]. Convex optimization methods can 

be used to effectively solve the problem of array synthesis with a feasible 

minimal sidelobe level for a given beam width or feasible minimum beam 

width for a given sidelobe level. This chapter includes the  literature 

survey, problem statement, objectives and the aims of the dissertation. It 

also contains the whole organization of dissertation.    

 

1.2 Literature Survey 

   In the literature, several analytical and optimization strategies were 

examined to discover the element excitations or other design parameters 

that result in a desired radiation pattern with a low side-lobe level [9]. 
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Many scholars researched these design factors in the literature and 

discovered that the SLL may be lowered by tapering the excitation 

amplitudes of the array of components. As a result, several tapers based on 

deterministic equations, such as Dolph, Taylor, triangular, and raised 

cosine, to mention a few [2], were proposed. Dolph-Tschebyscheff 

proposed distribution for element excitations such that the appropriate 

array pattern has the least amount of beam width widening for a given 

sidelobe level. In other words, as the beamwidth decreases, the sidelobe 

level increases and vice versa. 

In 1997, H. Lebret and S. Boyd ,demonstrated how convex 

optimization might be used to create the best layout for any antenna array. 

The procedure either identifies a viable point or unequivocally determines 

that the issue is infeasible. The major objective was to show how powerful 

and efficient convex optimization can be for antenna array design 

syntheses [10]. 

In 2005, M .Khodier and C.Christodoulou, used the particle swarm 

optimization (PSO) technique to synthesize linear array geometry with the 

lowest sidelobe level and null control. The PSO method was successfully 

utilized to optimize array element positions to produce an array pattern 

with suppressed sidelobes, null placement in certain directions, or both. 

Exploring alternative array geometries and adjusting the excitation 

amplitude and phase of each element in the array can give you more control 

over the array pattern [11]. 

In 2007, C. Rocha-Alicano, et al., Combining a binary-coded genetic 

algorithm (GA) with a differential evolution  (DE) approach allowed for 

the sidelobe level problem in planar arrays to be minimized. When 

compared to a linear array with uniform inter-element spacing, DE proved 

to be an effective approach to lower the side lobe level. The use of a GA 

helped to see which factors are most responsible for controlling the 
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sidelobe levels. When both algorithms are used combined, they 

demonstrated that they are extremely well suited to this task [12]. 

In 2007, N.Petrella, et al., used the Practical swarm optimization (PSO) 

method to create a planar array with the least amount of sidelobe and null 

control. The method easily met the optimization target in each of the cases 

provided. The use of particle swarm optimization to construct planar arrays 

was demonstrated in this research. Its goal was to eliminate sidelobe and 

insert nulls in certain directions [13]. 

In 2007, P.J.Bevelacqua and C.A.Balanis, developed a technique for 

determining the best sidelobe-minimizing weights for an arbitrary linear 

array for each scan direction, beamwidth and kind of antenna element 

employed. Using the particle swarm optimization approach, optimal linear 

array placements are then discovered. This can provide a global bound on 

antenna array sidelobe reduction performance [14]. 

In 2008, A. Recioui, et al., discussed the use of genetic algorithms to 

create uniformly spaced linear array geometries with low sidelobe levels 

and beamforming capacity. Several examples are provided to show the 

design's efficacy and adaptability. The Schelkunoff approach, in 

combination with Genetic Algorithms, has proven to be effective at 

synthesizing any well-designed and achievable intended radiation pattern 

[15]. 

In 2013, J.R. Mohammed, studied the radiation pattern of two extra 

elements put at both the edge of the original array provides a null in the 

direction of the original array's main beam, and all of the other lobes of the 

two-element array are almost at the position of the original array's 

sidelobes. The initial array was created with the intention of aligning the 

lobes of both designs. For sum patterns, combining the two patterns 

reduces sidelobes on one side while increases sidelobes on the other. The 

sidelobes on both sides are significantly reduced for different designs [16]. 
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In 2014, J.R Mohammed and K.H Sayidmarie, used convex 

optimization  to optimize the excitations of only the perimeter elements of 

the planar array subject to low asymmetric sidelobe and controlled nulls. 

In comparison to fully optimized planar arrays, these outstanding radiation 

properties were achieved at a lower cost and with a simpler feeding 

network [17]. 

In 2014, Z.Zhang, et al., showed that the side lobe level of  uniformly 

spaced linear array geometries with a specific main beam width is 

minimized by using the real-coded genetic algorithm (RGA) optimization 

approach provided in this research. Utilizing MATLAB, the optimization 

procedure is completed. With different numbers of elements and intervals 

between each element, it was compared to traditional analytical techniques 

like Chebyshev and Taylor. It was discovered to be helpful to use the 

genetic algorithm to the synthesis of patterns [18]. 

In 2016, B.Sun, improved the synthesis sparse array by using a unique 

two-step convex optimization approach. The sparse array's goal and 

constraints function are eased to make it a convex problem for synthesis of 

focused and shaped beam patterns. In both non-uniform and thinned array, 

numerical comparisons show that the suggested technique has reduced side 

lobe level [19]. 

In 2016, N. Dib, applied Symbiotic Organisms Search (SOS) that is a 

robust method to the synthesis of antenna arrays for the first time. It was 

primarily used to create linear antenna arrays with reduced side lobes. The 

amplitudes optimization, placements optimization, and phases 

optimization situations of linear array design were all examined. The 

results were compared to those produced with conventional optimization 

approaches, but without the need for modifying parameters [20]. 

In 2016, A.Safaai-Jazi , et al. , used a novel analytical method for 

manufacturing evenly spaced linear arrays. These arrays are constructed so 
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that their array factor is the m-th power of the array factor of an n-element 

uniformly stimulated array. The advantage of technique is that it always 

results in a monotonically reducing current taper. By removing far-

out components with low amplitudes, this feature allows for array thinning 

[21]. 

In 2017, S. Ur Rahman et al, calculated and optimized the inter-element 

spacing and excitation amplitude in this study using the PSO algorithm 

code. The optimization goals in this work included optimizing the HPBW, 

SLL, directivity, and null steering in certain rotational directions. The PSO 

approach has utilized the two fitness functions in order to accomplish these 

objectives. When using various values for the number of antenna array 

elements, one of the fitness functions is utilized to determine the ideal 

excitation amplitude and inter-element spacing values that result in a 

pattern with the least amount of SLL and HPBW. By maximizing 

excitation amplitude, PSO uses the second fitness function to regulate the 

nulls in a certain direction and reduce SLL and HPBW [22]. 

In 2017, J.R Mohammed, showed that because just the final two edge 

elements of the huge uniform array are optimized, the directivity and 

HPBW are unaffected. With pre-specified width and depth, the optimized 

approach may achieve the needed sidelobe nulling. More importantly, the 

suggested array requires a fairly simple feeding network to be 

implemented. As a result, it might be regarded the most practicable way 

for implementation. Additional degrees of freedom must be included in the 

optimization process to generate multi-sectors sidelobe nulling [23]. 

In 2017, S.Saleem, et al., focused on optimizing linear array synthesis 

to obtain shorter half-power beam widths, lower side-lobe levels, and nulls 

management as required by the design. To achieve these objectives, 

researchers looked into optimizing the array's excitation amplitude, phase, 

and inter-element spacing. Particle Swarm Optimization (PSO), which 



 

7 

 

used a fitness function created using null direction and side lobe level 

(SLL) restrictions, was used to optimize the design variables [24]. 

In 2018, G.Sun, et al., examined the synthesizing of the beam patterns 

of the linear antenna array (LAA) and the circular antenna array (CAA). 

The maximum sidelobe level (SLL) of the beam patterns is first reduced 

using an optimization algorithm. The invasive weed optimization (IWO) 

algorithm is then used to solve the specified issue. When compared to other 

algorithms for SLL reductions, the findings revealed that IWO performs 

better in terms of accuracy, convergence rate, and stability [25]. 

In 2019, J.R. Mohammed, designed an arbitrary array with randomly 

distributed components to create the desired beamforming shape 

successfully and effectively. Convex optimization used to optimize the 

amplitude and phase of each random element. Using the compressed 

sensing approach, more research might be done to improve array 

performance with a fewer amount of random elements [1]. 

In 2019, J.R. Mohammed, presented two novel strategies for synthesis 

of array patterns that accomplish deep side-lobe reduction. The suggested 

approaches, unlike previous sidelobe reduction methods, utilize a novel 

process based on the derivation of a cancellation pattern. The method 

consists of the following steps: first, the element excitations of an array are 

disturbed sufficiently so that the corresponding array factor produces a 

specified cancellation pattern; second, the original array is subtracted from 

the original, uniformly excited array to get a new array pattern [26]. 

In 2019, H.Yang, et al., the proper configuration of uniformly 

stimulated and evenly spaced arrays is advised in order to produce the 

desired amplitude distributions in the main planes. The 9-element array's 

SLL in both the E and H planes is less than -27 dB. This approach and 

strategy might be useful in situations when high gain and low SLL are 

required [27]. 
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In 2020, A. Amaireh, et al., used two metaheuristic algorithms, Antlion 

optimization (ALO) and Grasshopper Optimization algorithm (GOA) to 

optimize the design of scanning linear antenna arrays. The goal of this work 

was to minimize the side lobe level while keeping the major lobe 

beamwidth constant. When compared to other approaches such as SOS and 

FA, the findings revealed that the suggested hybrid algorithm is quite 

competitive in lowering SLL [28]. 

In 2021, Y.X.Zhang, et al., suggested a solution framework for antenna 

array directivity maximization issues based on convex optimization 

approaches. The relationship between the problem and the techniques for 

solving it has been thoroughly studied. The presented techniques may be 

used to optimize arbitrary antenna arrays with fixed element placements 

and pre-determined element radiation patterns. The two-stage technique 

may lead to extremely good solutions even under very strict SLL constraint 

conditions [29]. 

In 2021, F.Yang et al., provided an effective optimization strategy for 

the synthesis of sparse arrays. In which, the directivity was entirely 

optimized and the maximum array aperture was restricted. A broad real-

value mixed integer programing problem (MIQP) issue for maximizing the 

sparse rate in a constrained array aperture was construct based on the 

framework of thinned array synthesis. The iterative convex optimization 

approach was then suggest as a solution to this problem [30]. 

In 2021, M.Khalaj‑Amirhosseini, suggested an analytic approach for 

designing uniformly spaced arrays with the lowest feasible sidelobe level 

and directivity as near to that of uniformly excited arrays was suggested. 

The sidelobe levels of the synthesized array may be regulated by the 

expansion factor, which is proportional to the beamwidth of the main lobe 

of the optimum desired array factor [31]. 
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In 2022, Ayşe Müge Zobu et al, to achieve low side lobe levels, the 

antenna array with a feeding network proposed in this study .This paper 

described the design process for a feeding network that makes use of 

Dolph-Tschebyscheff distributed coefficients. This array was designed to 

obtain a side lobe level of -20 dB.  Coefficients were used to create the 

shunt linked series-feeding network. The feeding network's output has 

delay lines added to it, which directs the antenna's radiation pattern in the 

desired directions. The obtained side lobe level was below -15 dB [32]. 

In 2022, M.Khalaj-Amirhosseini, designed Linear antenna arrays to 

provide the highest possible directivity for a given beamwidth. The 

excitation currents were calculated using the Lagrange multiplier approach 

and a matrix equation. The effectiveness of the suggested technique is 

investigated using several examples. The synthesized arrays' directivity is  

proportional to the number of element [33]. 

 

 

1.3Problem Statement 

    In many applications, the performance of the antenna arrays may be 

not appropriate due to high sidelobe level, wide beam width and low 

directivity. Thus, the antenna array may suffer from interference and 

performance degradation. 

The array design should be as simple as possible so that the practical 

implementation can be achieved properly. 

A simple optimization method is highly wanted to design such antenna 

arrays with the requirements to enhance the energy in the main lobe, i.e., 

raise the directivity while lowering the power wasted in the side lobes.  
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1.4 Objectives and Aims of the Dissertation  

 To investigate the performance of three configuration of antenna 

arrays linear, planar and random planar array.  

 To study and compare Half Power Beamwidth (HPBW), First 

Null Beamwidth (FNBW), Directivity and Side Lobe Level 

(SLL). 

 To use convex optimization to optimize array performance under 

certain restrictions for some constants in the radiation pattern. 

 By optimizing the excitation amplitude and phase of the 

individual array elements, the convex optimization was applied 

to the linear, planar, and random arrays to generate the required 

radiation patterns. 

 To use two constraint techniques to carry out the optimization 

procedure. The first one includes the feasible minimum sidelobe 

level for a given beam width, while the other one includes the 

feasible minimum beam width for a given sidelobe level. Both 

methodologies' efficacy in building linear, planar, and random 

arrays was demonstrated and validated. 

 To employ the convex optimization function within the Matlab 

program with  CVX_function [34]  to meet the research's goals. 

 

 

1.5 Layout of the Dissertation 

   The dissertation is divided into five chapters. Chapter two explores 

the background and the theory of antenna array types and its parameters. 

Chapter three presents convex optimization method and the way to use 

it in optimized the three types of antenna arrays. Chapter four presents 

the simulation  results of  optimizing  the amplitude and phase excitation 



 

11 

 

for each elements in the linear, planner and random planner array first 

to obtain feasible minimum sidelobe level for a given beam width, while 

the other one includes the feasible minimum beam width for a given 

sidelobe level. Chapter five gives the conclusions and some suggestion 

for future work. 
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CHAPTER TWO 

Theoretical Background of Array Antennas 

2.1 Introduction 

   Single antennas are generally limited for many applications because of 

the large half power beamwidth and lower Directivity. To satisfy the 

demands for long distance communication, high-gain and narrow pencil 

beam, it is sometimes required to construct antennas with particularly 

directional properties. Increasing the antenna's electrical size is typically 

the only way to do this. Because most antennas are on the order of a 

wavelength, and because beamwidth is inversely related to antenna size, 

many antennas are necessary to sharpen the radiation beam. Without 

necessarily increasing the size of the individual pieces, another efficient 

method is to arrange the radiating components into an assembly in a 

geometrical and electrical structure. An antenna array is a type of multi 

element radiation device [30]. An array of antennas that work together to 

focus energy reception or transmission in a specific direction might extend 

a system's usable range [35]. 

   The capacity of a communication system has constraints as a result of the 

fast development of communication technology and the explosive 

expansion in the number of users. Antenna arrays can help  wireless 

communication system by increasing capacity and spectrum efficiency. 

For example, to increase the system's spectral efficiency and transmission 

rate, fifth-generation (5G) communications use millimeter wave (mm-

wave) and beamforming technologies based on antenna arrays. 

Additionally, utilizing antenna arrays can improve the energy efficiency of 

a communication system [25]. 

   In comparison to a single element, an array provides various benefits. 

Before merging the signals, the signals can be weighted to improve 
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performance aspects like interference rejection and beam steering without 

actually altering the aperture. It is even conceivable to design an antenna 

array that can change how it operates based on its surroundings. These 

appealing characteristics come with an increased expense and complexity 

[36]. 

    In this chapter, the main antenna array parameters as well as the array 

geometries are presented. The array parameters may include, array 

radiation pattern in both linear and dB scales, directivity, sidelobe level, 

and the half power beam width. Where the array geometries will include 

single dimensional linear array, two dimensional rectangular planar array, 

and random planar array where its elements are randomly distributed along 

xy-plane.  Moreover, the most significant and well-known relationships 

and array design parameters will be discussed and explained in this chapter 

 

2.2Antenna Array Parameters  

    Definitions of many criteria are required in order to define an antenna's 

performance. Not all of the characteristics must be included for a thorough 

description of the antenna performance because some of them are 

interrelated. 

 

2.2.1 Radiation Pattern 

   An antenna radiation pattern or antenna pattern is defined as “a 

mathematical function or a graphical representation of the radiation 

properties of the antenna as a function of space coordinates. In most cases, 

the radiation pattern is determined in the far-field region and it is 

represented as a function of the directional coordinates. Radiation 

properties include power flux density, radiation intensity, field strength, 

directivity, phase or polarization.” [2]. 
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   In another word diagrammatic representations of the distribution of 

radiated energy into space, as a function of direction, known, as radiation 

patterns. An antenna's radiation pattern serves as a representation of the 

energy it emits. The two- or three-dimensional spatial distribution of 

radiated energy as a function of the observer's location along a path or 

surface of constant radius is the radiation property of most interest. An 

antenna's spatial response may be evaluated qualitatively overall using 

three-dimensional antenna patterns. However, two-dimensional cuts are 

necessary to get accurate sidelobe levels, null positions, and beamwidth 

measurements. The two-dimensional antenna pattern measured on a large 

circle surrounding the antenna is known as an antenna pattern cut. It is 

common practice to normalize the field and power patterns in relation to 

their maximum value, resulting in normalized field and power patterns. 

Additionally, the power pattern is sometimes represented in decibels or on 

a logarithmic scale (dB). This scale is typically preferred because a 

logarithmic scale helps emphasize in greater detail the small lobes, or 

extremely low value portions of the pattern. Rectangular plots of these 

identical patterns may be seen in (dB) and in (linear). The nulls, 

beamwidth, and sidelobe levels are exactly located using the rectangular 

plots as show in figure (2.1). In contrast to the dB plot, low side lobes are 

more difficult to notice in the linear display [36]. 
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Figure (2.1): Plot of Power Pattern and its Associated Lobes and 

Beamwidth. 

 

 

2.2.2Radiation Pattern Lobes  

   The term lobe refers to a number of different components of a radiation 

pattern, which can be further divided into major or main, minor, side, and 

back lobes, according to the figure (2.1). 

    A radiation lobe is define as “portion of the radiation pattern bounded 

by regions of relatively weak radiation intensity.” 

    A major lobe (also called main beam) is defined as “the radiation lobe 

containing the direction of maximum radiation.” The main lobe or major 

 
  

Minor lobes 

Side lobes 
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lobe is the largest portion of the radiated field, which extends across a 

wider region. This is the area where the amount of radiation is at its highest. 

This lobe's orientation reveals the antenna's directivity. 

     A side lobe is “a radiation lobe in any direction other than the intended 

lobe.” A minor lobe is any lobe except a major lobe. Side lobes or minor 

lobes refer to the other areas of the pattern where the radiation is spread 

side wards. These are the places where energy is being misused. 

    There is another lobe that faces the main lobe in the exact opposite way. 

It is referred to as the back lobe and is a small lobe. A back lobe is “a 

radiation lobe whose axis makes an angle of approximately 180◦ with 

respect to the beam of an antenna.”[2] .Even here, a lot of energy is lost. 

Additionally, it has been demonstrated that the array creates extra beams 

(grating lobes) if the inter-element spacing is equal to or greater than one 

wavelength. It is important to understand how a grating lobe varies from a 

typical side lobe. Side lobes are a result of both positive and negative 

interference from the antenna's many radiating components. A side lobe's 

level is always lower than the main beam's. A grating lobe is created in 

directions where there is a maximal in-phase addition of radiated fields due 

to the periodicity in the radiation pattern. Instead of being compared to a 

typical side lobe, a grating lobe should be contrasted with the main beam 

[37]. In the linear antenna array has just one beam peak inside the 

observable observation angle area (-900,900) if the distance between the 

neighboring elements is equal to or less than the wavelength λ. The 

undesirable grating lobe arises when 𝑑 > 𝜆. In order to prevent the 

appearance of the grating lobe, the value of the maximum element spacing 

is determined by the observation angle range. 
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2.2.3 Side Lobe Level (SLL) 

   A ratio of the power density of a particular lobe to that of a major lobe is 

typically used to represent the level of minor lobes. This ratio is commonly 

referred to as the side lobe ratio or side lobe level [38] .The side lobe level 

defined as  “The maximum relative directivity of the highest sidelobe with 

respect  to the maximum directivity of the antenna” [39]. 

 

2.2.4 Directivity 

   The directivity is a metric used to compare a given antenna to an isotropic 

antenna emitting a similar amount of power. In other words, the directivity 

is the ratio of an anisotropic antenna's power density to that of an isotropic 

antenna emitting a given amount of power [40]. 

   Therefore directivity of an antenna defined as “the ratio of the radiation 

intensity in a given direction from the antenna to the radiation intensity 

averaged over all directions. The average radiation intensity is equal to the 

total power radiated by the antenna divided by 4𝜋. If the direction is not 

specified, the direction of maximum radiation intensity is implied [2]. 

 

𝑫(𝜽, ∅) =
𝟒𝝅𝑼(𝜽,∅)

∫ ∫ 𝑼(𝜽,∅)𝒔𝒊𝒏(𝜽)𝒅𝜽𝒅∅
𝝅

𝟎

𝟐𝝅

𝟎

                      (2.1) 

 

   The greatest directivity is a fixed quantity and is just Equation 

(2.1)maximum . D0 is often used to indicate the highest directivity. As a 

result, by slightly altering Equation (2.1), the highest directivity may be 

discovered to be 

𝑫𝟎 =
𝟒𝝅𝑼𝒎𝒂𝒙

∫ ∫ 𝑼(𝜽,∅)𝒔𝒊𝒏(𝜽)𝒅𝜽𝒅∅
𝝅

𝟎
𝟐𝝅

𝟎

                (2.2) 
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Where 

D = directivity (dimensionless) 

DO = maximum directivity (dimensionless) 

U = radiation intensity (W/unit solid angle) 

Umax = maximum radiation intensity (W/unit solid angle) 

 

2.2.5 Antenna Beamwidth 

It could be used to compare gains between antennas. The gain, on the other 

hand, is a number that simply uncovers information about the maximum 

radiation. commonly wonder what the shape of the radiation belt is. It 

makes use of the beamwidth for that. It can determine the shape of the main 

lobe from the beamwidth. Beamwidth has a variety of meanings [37]. 

    The Half-Power Beamwidth (HPBW) is one of the most used 

beamwidths, which is defined by IEEE as: “In a plane containing the 

direction of the maximum of a beam, the angle between the two directions 

in which the radiation intensity is one-half value of the beam.” However, 

in actual usage, the HPBW is typically referred to as beamwidth without 

any extra identification. In other words, the beam width is the region where 

the peak power, or the majority of the power, is emitted. Half power beam 

width is the angle in the antenna's effective radiated field when the relative 

power is more than 50% of the peak power. Half power beam width, or 

HPBW, is the angle between two vectors when a line is drawn from the 

origin of the radiation pattern to the half power locations on the main lobe, 

on both sides. As the beamwidth drops, the side lobe grows, and vice versa, 

the antenna's beamwidth is a crucial figure of merit that is usually utilized 

in trade-offs with the side lobe level. 

   The angle between the pattern's first nulls, also known as the First-Null 

Beamwidth (FNBW), is another significant beamwidth .FNBW is just the 

angle measured between the first null points of the radiation pattern on the 



 

19 

 

major lobe and quoted away from the main beam. Drawing tangents on 

both sides, tangential to the main beam, commencing at the radiation 

pattern's origin, is a sign of FNBW. First Null Beam Width is the angle 

formed by those two tangents (FNBW) [38]. 

 

2.3 Antenna Array Configurations (Linear, Planar, 

Random) 

    Any geometric shape is possible for arrays of antennas. Linear arrays, 

circular arrays, planar arrays, and conformal arrays are some of the array 

geometries of importance [40]. The designer must not only choose the 

appropriate radiating elements but also take into account the geometry 

(placement) and excitation of each individual element in order to 

synthesize the overall pattern of an array. The layout of the items and their 

kinds also affect how well the array performs. To help the designer choose 

an efficient array structure, trade-offs for linear and planar arrays are 

described. As was said before, an array of sensors alters the pattern of the 

array as well as the gain and bandwidth of a single sensor. The array 

resolution and interferometer (grating lobe) effects are determined by the 

location of the components within the array. Resolution often rises as array 

dimension (or the distance between items) grows [41]. Physical restrictions 

determine the geometry, and the designer may have limited in choosing the 

array geometry. The linear array with uniform spacing and the rectangular 

planar array with uniform and non-uniform inter element spacing will be 

the two types of antenna array configurations that will be the subject of this 

thesis's study, which will also examine their performance and optimization 

using convex optimization . 
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Figure (2.2): (a) Planar Uniform Array (a) Linear Uniform Array. 

 

 

2.3.1 Linear Array 

    The most fundamental configuration for array elements is the linear 

array shown in figure (2.2 b). Since linear arrays are mostly used 

in wide application, it is possible to use the same techniques to operate 

more intricate array forms. The pattern properties of an array may be 

defined for functioning as a transmitter or receiver, depending on which is 

most convenient, since antennas often match the reciprocity criterion. The 

output of each element may be modified in terms of amplitude and phase. 

Amplitude and phase control enable the radiation pattern to be manipulated 

and scanned in space [42]. 

(a) 

(b) 
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   The element factor (EF) and the array factor (AF) may always be used to 

calculate the far field from an array of identical elements. Pattern 

multiplication is a characteristic that may be seen in action by the simple 

fact that the antenna pattern can be multiplied by the array factor pattern. 

As a result, any array of antennas' far field pattern is always given by (EF) 

× (AF).  

E (total) = [E (single element at reference point)] × [array factor] 

    The AF is influenced by the electrical phase, spacing, and geometrical 

configuration of each element in the array [37]. 

Each array's factor is unique. If the elements' amplitudes, phases, and 

spacing are the same, the array factor will have a simpler form. The array 

factor may be calculated by substituting isotropic (point) sources for the 

actual radiating components since it is independent of the directional 

properties of the elements themselves. It is assumed that each point source 

has the same amplitude, phase, and position as the element it is replacing. 

This type of antenna array named as uniform linear array. “uniform linear 

array: A linear array of identically oriented and equally spaced radiating 

elements having equal current amplitudes and equal phase increments 

between excitation currents” [36].The array factor can be distinguished 

from the element factor. The array factor may be determined for any array, 

regardless of the individual elements used, as long as they are all the same. 

As a result, it is simpler to examine arrays of isotropic items first. When 

the general array design is finished, the design may be put into practice by 

adding the necessary specialized antenna parts. These antenna components 

might consist of patch antennas, waveguide apertures, loops, horns, 

dipoles, and loops, among others [40]. 

     The array factor of uniform linear array of N elements of isotropic 

source and each element has β the progressive phase lead current excitation 



 

22 

 

relative to the preceding one with space between elements equal to d  is 

given by [40]. 

𝐴𝐹 = ∑ 𝑒(𝑛−1)𝜓                                                  𝑁
𝑛=1 (2.3) 

𝑤ℎ𝑒𝑟𝑒  𝜓 = 𝑘𝑑𝑐𝑜𝑠𝜃 + 𝛽                           (2.4) 

𝑘 =
2𝜋

𝜆
                                                     (2.5 ) 

    The array factor in Equation (2.3) of the isotropic elements were 

considered to have a unity amplitude in the preceding calculation for the 

array factor. This assumption allows the AF to be reduced to a simple 

series. The greatest sidelobes for a linear array with uniform weights are 

down around 24% from the highest value. The array is emitting energy in 

untended directions if sidelobes are present. Additionally, the array is 

getting energy from unexpected directions as a result of reciprocity. The 

sidelobes may pick up the same signal from different directions in a 

multipath environment. This is the underlying cause of the fading in 

communications. It is recommended to direct the beam in the intended 

direction and shape the side lobes to exclude unwanted signals if the direct 

transmission angle is known [40]. Side lobes may be suppressed by 

weighting the array elements as show in the figure (2.3). 
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Figure (2.3): Linear Array with Weighting. 

 

   The array factor will become as equation (2.6) for the symmetric linear 

array with an even number of elements N.  

𝐴𝐹𝑒𝑣𝑒𝑛 = ∑ 𝑤𝑛 cos((2𝑛 − 1)𝑢)                                                     𝑀
𝑛=1 (2.6) 

 

Where     𝑢 =
𝜋𝑑

𝜆
sin 𝜃                                                                      (2.7) 

Where 2M = N = total number of array elements. When the argument is 

zero, the array factor is at its maximum, which implies that θ= 0. The total 

of all the array weights is thus the maximum. 

To obtain the quasi-normalized odd array factor, we may once more add 

up all of the exponential contributions from each element of the array 

[40].   

 

𝐴𝐹𝑜𝑑𝑑 = ∑ 𝑤𝑛 cos (2(𝑛 − 1)𝑢)𝑀+1
𝑛=1                             (2.8) 
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Where 2M+1=N. The weights wn represents the amplitude and phase 

excitations of the N element uniform linear antenna and can be uniform or 

can be in any form according to the designer’s needs. The array weights 

can be optimized by using any optimization algorithm to find the required 

array parameters. This issue will be discussed and present in the next 

chapter. 

 

2.3.2 Planar Array 

     Individual radiators may also be arranged in a rectangular grid to create 

a rectangular or planar array in addition to arranging elements in a line (to 

produce a linear array) as shown in figure (2.2 a). With planar arrays, you 

have more control and shaping options for the array's pattern. The 

flexibility of planar arrays is greater, and they can produce more 

symmetrical designs with smaller side lobes. Additionally, they may be 

used to scan the antenna's main beam in any direction. Radar tracking, 

search, communications, remote sensing, and many more uses are 

examples of applications [2]. 

    Following the investigation of planar arrays may go to a few somewhat 

more complicated geometries by determining the pattern for rectangular 

planar arrays. An M ×N array of elements created when there are M items 

in the x-direction and N elements in the y-direction. The weight of the m-

nth element is wmn. Both the x- and y-directed elements are separated by 

dx and dy, respectively. It is possible to think of the planar array as either 

N linear arrays of M elements or as M linear arrays of N elements. We 

begin by assuming that the planar array antenna's elements are arranged on 

a regular grid or lattice, just as we did with the linear array antenna. 

Although this is not essential for the operation of an array antenna, it will 

simplify the conversation and depict the scenario that occurs in real-world 

settings the most regularly. We assume the lattice to be rectangular. 
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We can use pattern multiplication to identify the pattern of the full M N 

element array because we already know the array factor for a M or N 

element array operating alone. 

 

 By multiplying patterns, we have [2]. 

𝑨𝑭 = 𝑨𝑭𝒙 × 𝑨𝑭𝒚 

𝐴𝐹(𝜃, ∅)

= ∑ ∑ 𝑤𝑛𝑚𝑒𝑗
2𝜋

𝜆
[(𝑛−1)(𝑑𝑥𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(∅)+𝛽𝑥)+(𝑚−1)(𝑑𝑦 𝑠𝑖𝑛(𝜃) 𝑠𝑖𝑛(∅)+𝛽𝑦]

𝑀

𝑚=1

𝑁

𝑛=1

 

(2.9) 

    The weights𝑤𝑛𝑚 represents the amplitude and phase excitations of the 

(n,m) element and can be uniform or can be in any form according to the 

designer’s needs. where λ is the wavelength at the operating frequency, θ 

and ϕ is the elevation and azimuth angles, respectively, if beam steering is 

desired then the phase delays βx and βy are given by [2]. 

𝛽𝑥 = −𝑘𝑑𝑥𝑠𝑖𝑛𝜃0𝑐𝑜𝑠∅0   (2.10) 

𝛽𝑦 = −𝑘𝑑𝑦𝑠𝑖𝑛𝜃0𝑠𝑖𝑛∅0  (2.11) 

 

 

    In the above equations, observe that the array weights can be optimized 

by using any optimization algorithm to find the required array parameters. 

This issue will be discussed and present in the next chapter. 

 

 

2.3.3 Random Planar Array 

   A typical planar array of sensors cannot be constructed in many 

applications owing to practical reasons. These include the localization of 



 

26 

 

tumors in biomedical research, environmental sensing such as water 

quality monitoring, traffic management, seismic exploration, radio 

telescopes made up of several randomly placed sensors, the detection of 

forest fires, and flood control. In recent times, both military and civilian 

applications have successfully deployed wireless sensor networks (WSN) 

in monitoring regions. These applications include placing sensors across 

an area where a phenomenon is to be observed. The sensors are employed 

in the military to identify enemy incursion, while in civilian applications, 

they are utilized to identify geo-fencing around gas or oil pipelines [43]. 

The sensor nodes in each wireless sensor network should be configured to 

function as a smart array or to collaborate in beamforming in order to get 

the best performance in all of the aforementioned applications. If the array 

components inside the constrained region exchange information and 

broadcast synchronously, a steerable beam may then be produced to scan 

the horizon and determine the required direction. The sensors in this system 

are randomly arranged across an arbitrarily restricted region, in contrast to 

the uniformly distributed planar arrays. An antenna with a single element 

makes up each sensor node. It is better to combine these random nodes into 

an array than to use a single element antenna or even a straightforward 

linear array. The primary goal of the arbitrary arrays, which are made up 

of a random collection of sensor nodes, is to enhance the performance of a 

wireless sensor network by allowing these random components to 

cooperate in beamforming. The coherent or incoherent combination of 

each sensor node yields the overall electromagnetic fields of such arbitrary 

arrays. As a result, the position, phase, and amplitude excitation of each 

array member may be used to control the radiation pattern in the far-field 

area of an arbitrary array with randomly dispersed elements [1]. 

    For random arrays, the elements are randomly located along the x and 

y-axes and the interelement spacing is irregular. Thus, (can be rewritten as 
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𝐴𝐹(𝜃, ∅)

= ∑ ∑ 𝑤𝑛𝑚𝑒𝑗
2𝜋

𝜆
[(𝑛−1)(𝑥𝑛,𝑚𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(∅)+𝛽𝑥)+(𝑚−1)(𝑦𝑛,𝑚 𝑠𝑖𝑛(𝜃) 𝑠𝑖𝑛(∅)+𝛽𝑦]

𝑀

𝑚=1

𝑁

𝑛=1

 

 

(2.12) 

 

     Where 𝑥𝑛,𝑚 and 𝑦𝑛,𝑚are the random locations of the (n, m) element.The 

weights 𝑤𝑛𝑚 represents the amplitude and phase excitations of the (n,m) 

elements of the random planar array which used to optimized the antenna 

array pattern [2]. 

     From (2.9) and (2.12), it is clear that the total number of the adjustable 

excitation elements,𝑤𝑛𝑚, is 𝑁 × 𝑀 which is quite large and ,thus, the use 

of global stochastic optimizations such as genetic algorithms is associated 

with high complexity and slow convergence. Further, in many cases, the 

optimal solution may not require such a highly complex and global 

optimization algorithm since the searching spaces may be convex. Instead, 

this problem can be solved efficiently by the convex optimization where 

the unknown array excitations,𝑤𝑛𝑚 , constitutes a set of linearfunctions on 

a convex space. 

      The fundamental benefit of the analysis described in the preceding 

paragraphs is that it is straightforward, making it possible to develop a 

computer program that can quickly analyze a large number of 

configurations and, as a result, optimize designs within certain user-

defined limitations. 
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CHAPTER THREE 

CONVEX OPTIMIZATION 

3.1 Introduction 

    An effective way to identify and analyze signals coming from many 

directions is to use antenna arrays. An array of sensors' beam pattern may 

be altered by an amplitude and phase distribution known as the array's 

weights, as opposed to a single antenna, which has constrained directivity 

and bandwidth. The antenna array beam pattern is produced by summing 

and weighting the signals after preprocessing the antenna outputs. Finding 

weights that meet a set of requirements on the beam pattern is the core of 

the antenna array pattern synthesis challenge. In this study, stress the use 

of convex optimization in the planning of antenna arrays. Of course, not 

every issue with antenna array design is convex. Nonconvex issues include 

those where the antenna weights have a fixed magnitude (i.e., phase-only 

weights), those with lower bound constraints (contoured beam antennas), 

and situations where the number of nonzero weights is constrained. 

However, some significant synthesis issues are convex and may be 

resolved by recently developed extremely effective methods. Furthermore, 

a particularly strong version of "solution" is meant here: Global solutions 

are discovered with computing times that are consistently minimal and 

increase smoothly with the size of the issue. Although the quantity and 

diversity of issues that may be addressed are substantially greater, the 

calculation time is naturally not as short as that required by a "analytical" 

technique. On the other end of the spectrum, nonconvex optimization, 

which is entirely universal, may be used to formulate any synthesis issue. 
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The drawback of using such approaches is that they cannot provide global 

optimality, quick computation, or a smooth increase in computation time 

as a function of issue size. Convex optimization offers a superior 

efficiency/generality tradeoff compared to both the (quick but constrained) 

analytical approaches and the (slow but thorough) general numerical 

procedures [10]. One of the most significant methods in the area of 

mathematical programming, which has several applications, is convex 

optimization. It also applies to fields like machine learning, data science, 

economics, medicine, and engineering on a far wider scale than just 

mathematics. 

 

3.2 Convex Optimization 

    Searching for variables that reach the global maximum or minimum of 

the sum function is known as optimization. Convex optimization is a subset 

of optimization where you work with "convex" functions, which simply 

mean "bowl-shaped" functions. This makes finding maxima and minima 

easy since you can just get there by walking on the bowl's surface in the 

direction with the most slop. Convex uses the common comparison 

operators =, ≤ , and ≥  to specify constraints. They outline the relationships 

that two expressions must have [44]. 

Convex optimization problems are of the following two types: 

1. Constrained convex optimization: The convex function to optimize is 

subject to convex constraints. 

2. Unconstrained convex optimization: The convex function to optimize is 

not subject to any convex constraints. 

 

   The convex optimization algorithm is optimization for convex function 

in the condition of convex constraint. Both equality constraints and 

inequality constraints are applied to the objective function. While equality 
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constraints demand that the answer reside precisely at a certain location, 

inequality constraints suggest that the solution should be in some range. 

An inequality constraint for a convex problem states that all variables must 

be bigger than or equal to zero (or alternatively less than or equal to zero). 

𝑓𝑖(𝑥) ≤ 0 ,   𝑖 = 1, … . , 𝑚           (3.1) 

ℎ𝑖(𝑥) = 0,     𝑖 = 1, … … , 𝑝 (3.2) 

 

Where 𝑓𝑖(x) are the inequality constrain function, and ℎ𝑖(𝑥) are the equality 

constraint function . 

    This kind of convex function can never become trapped at a local 

minimum that isn't a global minimum since its gradient always points 

upward. Two gradients on opposing sides of the graph cannot slope up and 

down simultaneously because they are not differentiable at the point of 

junction. This means that when utilizing convex optimization techniques 

there is no need for iterations because they just move downhill until they 

reach the optimal value. Convex minimization or convex maximization 

problems can be used to tackle convex challenges. An algorithm may be 

improved via convex optimization, which will optimize the rate at which it 

converges to the answer. 

    Convex optimizations include convexity, which is crucial. The first 

derivative of a convex function's continuity is referred to as convexity. It 

makes sure that convex optimization problems are smooth and have 

specified derivatives so that gradient descent may be used. Linear, 

quadratic, absolute value, logistic, and exponential functions are a few 

examples of convex functions. 

    As a result, changing the element excitations and setup to have control 

over the aforementioned parameters creates a complicated issue that may 

be solved using a variety of techniques. In order to identify the right 

solution with the necessary properties without thoroughly examining all 
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the alternatives in the solution space, numerical optimization methods are 

frequently utilized 

 

     Convex sets are the most significant for convexity. Any set that has all 

of the points on or inside of its boundary and all convex combinations of 

points in its inside is said to be convex. A collection of all convex functions 

is referred to as a convex set. The convex function, to put it simply, is 

shaped like a hill. The global maximum or minimum of a convex function 

is hence what constitutes a convex optimization problem. Because convex 

sets may be used to modify a convex function through certain sorts of 

operations to maximize or minimize a convex function, convex 

optimization approaches frequently employ convex sets. A convex hull, 

which is the smallest convex set that may contain a certain convex set, is 

an illustration of a convex set. 

 

     On every convex interval, a convex function only takes the value 

between its minimal and maximal values. This indicates that this convex 

function has no local extremes (on the convex region). Additionally, it 

shows that just one point in this group of points that are on the convex hull 

is closest to the minimum. 

     Convex optimization is widely used in both combinatorial optimization 

and global optimization to determine boundaries on the optimal value and 

approximations of solutions [45]. 

    Convex objective function and constraint function optimization 

problems have both of these characteristics. The fact that every local 

optimum solution is also the global optimal solution is a key and significant 

characteristic of the unconstrained convex optimization problem. This 

optimization method is only applicable to the problems that can be 

specified as a convex and its solution is with such convex cone. Convexity 
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is essential for both objective functions and constraint functions. In the case 

of objective functions, convexity ensures that any local optimal solution is 

also the global optimal solution if the feasible region is a convex set. In the 

case of constraint functions, convexity ensures that the feasible region is a 

convex set and that neither is dispensable. On the other hand, will not be 

able to acquire the significant property that the local optimal is also the 

global optimal if just the objective function is convex but the constraint 

functions are not. 

     There are several contexts in which convex optimization issues are 

used: A fundamental class of unconstrained convex optimization problem 

is the ordinary least square (OLS) regression in statistics [46]. 

 The wanted an algorithm whose performance is unaffected by the initial 

situation and quickly approaches the ideal outcome. Normally, this would 

be challenging to estimate, however because its convexity, can assess 

constraints on how far from optimum the result is. 

 

3.3 Advantages of Convex Optimization 

Recognizing or expressing an issue as a convex optimization problem has 

several benefits as follows: 

1. contains particular examples of least-squares issues and linear programs 

that can be solved precisely and have a comparable level of complexity as 

linear programs [45]. 

2. It is true that the inverse image of a convex set under a linear transformation 

is also convex, and vice versa [45]. 

3. The most fundamental benefit is that convex optimization techniques may 

then be used to address the issue in a highly efficient and reliable manner. 

These problem-solving techniques are trustworthy enough to be included 

into real-time reactive or automated control systems as well as computer-

aided design or analysis tools. 
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4. If a convex set consists of more than one point, it is linked and has feasible 

directions at every point. This is essential for optimization since it enables 

a calculus-based comparison of the cost of x with the cost of its near 

neighbors and serves as the foundation for several crucial algorithms. 

Furthermore, convexity eliminates a large portion of the complexity that is 

frequently related to discrete constraint sets (arising, for instance, in 

combinatorial optimization) [47]. 

5.  The formulation of an issue as a convex optimization problem also has 

theoretical or conceptual benefits. When the corresponding dual problem 

is taken into account, for instance, the original problem might sometimes 

be interpreted in an intriguing way that leads to an effective or widespread 

solution [45]. 

6. It can see that convexity is more inclusive than linearity since inequality 

takes the role of the more constrained equality and only applies to certain 

values of and. It  may think of convex optimization as an extension of linear 

programming as each linear program is a convex optimization issue [45]. 

7.  Tractable, both in theory and practice [45]. 

 

3.4 Mathematical Optimization 

A convex optimization problem is one of the form [45]. 

Minimize 𝑓0 (𝑥) 

Subject to𝑓𝑖(𝑥) ≤ 𝑏𝑖 ,   𝑖 = 1, … … . . , 𝑚 

Where the functions 𝑓0, … . . , 𝑓𝑚: 𝑅𝑛 → 𝑅 are convex, i.e., satisfy 

𝑓𝑖(𝛼𝑥 + 𝛽𝑦) ≤ 𝛼𝑓𝑖(𝑥) + 𝛽𝑓𝑖  (𝑦)          

For all  𝑥, 𝑦 ∈  𝑅𝑛  and all 𝛼, 𝛽 ∈  𝑅 with  𝛼 + 𝛽 =  1 , 𝛼 ≥  0, 𝛽 ≥  0.  

    In this work, the function f(x) will be considered as an array factor of the 

antenna array and the optimization conditions will be representing the 

desired constraints such as sidelobe level or main beam width. 
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Gain in the direction of the desired signal must be enhanced while gain in 

the direction of the interfering signals must be lowered in order to improve 

the reception of a desired signal. By correctly changing the signal 

amplitude or phase at all or part of the components, this objective is 

achieved. An array that has its amplitude tapered or thinned results in low 

side lobes at the necessary angles. The amplitude of interference entering 

the side lobes is proportional to the sidelobe level. 

 

    Optimal multichannel filtering is an issue in optimal array processing. 

In a signal environment with many interference signals, the goal of array 

processing is to improve the receipt (or detection) of a desired signal, which 

may be random or deterministic. It may be useful to estimate one or more 

unknown properties that the desired signal may include, such as its 

geographical position, signal energy, or phase. The employment of 

complementary techniques, such as the insertion of restrictions, minimizes 

any performance loss caused by departure of the actual operating 

circumstances from the expected ideal ones. Vector weighting of the input 

data successfully matches the desired signal when used under the 

aforementioned ideal circumstances [41]. 

     In many circumstances, the cost per sensor is substantial due to the 

sensor and related electronics. As a result, even if space is available, prefer 

to enhance processing complexity in order to limit the number of sensors. 

 There is a significant incentive to optimize processing performance. 

In many circumstances, the "optimal array processor" will use one of the 

beamforming designed using deterministic methodologies as a 

fundamental building component in its implementation [48].  
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3.5 The Convex Optimized Method  

    A regularly spaced two dimensional rectangular planar array composed 

of N rows and M columns of isotropic elements is considered. The 

elements are distributed uniformly on the xy plane with separation 

distances  𝑑𝑥 = 𝜆 2  ⁄ and 𝑑𝑦 = 𝜆
2⁄ on the x and y directions, respectively. 

For uniformly spaced linear arrays, the array size will be either 𝑁 × 1 or 𝑀 

×1 

according to the considered axis. In general, the array factor of two-

dimensional elements can be given by: 

 

𝐴𝐹(𝜃, ∅)

= ∑ ∑ 𝑤𝑛𝑚𝑒𝑗
2𝜋

𝜆
[(𝑛−1)(𝑑𝑥𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(∅)+𝛽𝑥)+(𝑚−1)(𝑑𝑦 𝑠𝑖𝑛(𝜃) 𝑠𝑖𝑛(∅)+𝛽𝑦]

𝑀

𝑚=1

𝑁

𝑛=1

 

(3.3) 

 

𝛽𝑥 = −𝑘𝑑𝑥𝑠𝑖𝑛𝜃0𝑐𝑜𝑠∅0                                   (3.4) 

𝛽𝑦 = −𝑘𝑑𝑦𝑠𝑖𝑛𝜃0𝑠𝑖𝑛∅0                                   (3.5) 

 

 

Where 𝛽𝑦,𝛽𝑥 are the progressive phase shifts in the x and y directions, 

respectively, θ and ϕ is the elevation and azimuth angles, respectively, and 

λ is the wavelength at the operating frequency 

   Finally, 𝑤𝑛𝑚 represents the amplitude and phase excitations of the (n,m) 

element. For random arrays, the elements are randomly located along the 

x and y-axes and the interelement spacing is irregular.  

 

Thus, (3.3) can be rewritten as 
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𝐴𝐹(𝜃, ∅)

= ∑ ∑ 𝑤𝑛𝑚𝑒𝑗
2𝜋

𝜆
[(𝑛−1)(𝑥𝑛,𝑚𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(∅)+𝛽𝑥)+(𝑚−1)(𝑦𝑛,𝑚 𝑠𝑖𝑛(𝜃) 𝑠𝑖𝑛(∅)+𝛽𝑦]

𝑀

𝑚=1

𝑁

𝑛=1

 

(3.6) 

 

   Where 𝑥𝑛,𝑚and 𝑦𝑛,𝑚 are the random locations of the (n,m) element. From 

(3.3) and (3.6), it is clear that the total number of the adjustable excitation 

elements, 𝑤𝑛𝑚 , is 𝑁 × 𝑀 which is quite large and ,thus, the use of global 

stochastic optimizations such as genetic algorithms is associated with high 

complexity and slow convergence. Further, in many cases, the optimal 

solution may not require such a highly complex and global optimization 

algorithm since the searching spaces may be convex. Instead, this problem 

can be solved efficiently by the convex optimization where the unknown 

array excitations,𝑤𝑛𝑚 , constitutes a set of linear functions on a convex 

space. 

     The present work develops an innovative methodology for convex 

optimization problem is formulated as the determination of the excitation 

amplitudes and phases of the array elements such that the resulting 

radiation pattern obeys one of the following two constraints:  
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Constraint 1: Obtaining Feasible Minimum Sidelobe Level for a Given 

Beam Width 

    In this case, the convex optimization minimizes the sidelobe level 

outside the beamwidth of the array pattern and it has a unit sensitivity at 

target direction to avoid any distortion in the main beam. These constraints 

are written as follows: 

 

|𝐴𝐹(𝜃, ∅)| is minimum   (3.7 ) 

Subject to 𝐴𝐹(𝛽𝑥 , 𝛽𝑦) = 1   (3.8 ) 

|𝐴𝐹(𝜃𝑖 , ∅𝑖)| ≤ 𝑆𝐿𝐿            (3.9) 

 

-900 ≤ 𝜃𝑖 ≤ −𝛺𝐵𝑊 , and    𝛺𝐵𝑊 ≤ 𝜃𝑖 ≤ 900 

 

      Where 𝑆𝐿𝐿, is the feasible starting value of the sidelobe level in the 

elevation plane for fixed value of azimuth angle,𝛺𝐵𝑊 and is the required 

first null to null beam width in the elevation plane. The constraint in (3.8) 

aims at preserving the unit gain in the target direction, while the constraint 

in (3.9) is for obtaining the feasible minimum sidelobe level for a given 

beam width. The constraint 1 can be seen in figure (3.1)   
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Constraint 2: Obtaining Minimum Beam Width for a Given Sidelobe 

Level 

     In this case, the optimized array pattern is designed such that it has unit 

sensitivity at desired target direction, obeys the constraint on the sidelobe 

level outside the main beam, and minimizes the beamwidth of the array 

pattern.  The constrain two can be seen in the figure (3.2).The results of 

applying these two cases are shown in the chapter four. 

 

Figure (3.1) :Constraint 1, Obtaining Feasible Minimum Sidelobe Level for a Given Beam Width. 
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Figure (3.2): Constraint 2, Obtaining Minimum Beam Width for a Given 

Sidelobe Level. 

 

 

 

 

 

 

 

 

 

 

Constraint 2 
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CHAPTER FOUR 

SIMULATION RESULT  

     The implementation of the convex optimization theories suggested in 

the previous chapters will be covered here, also with comparisons and 

comments on the results. 

The convex optimization used to optimizing three-antenna array 

configuration, linear array with uniform inter element space, uniform 

rectangular planar array and random planar array. The convex optimization 

problem is formulated as the determination of the excitation amplitudes 

and phases of the array elements such that the resulting radiation pattern 

obeys one of the following two constraint the first constraint, which state 

obtaining feasible minimum sidelobe level for a given beam width ,and the 

second constraint, which state obtaining minimum beam width for a given 

sidelobe level .Numerous examples are given and evaluated using 

simulations in order to evaluate the effectiveness of the provided 

optimization strategy.  

 

 

4.1 Obtaining Feasible Minimum Sidelobe Level  for a 

Given Beam Width, with Constant Number of Array 

Element 

     In this case, the excitation amplitudes and phases are optimized such 

that the corresponding array factor complies with the imposed constraints  

in chapter three according to (3.7), (3.8), and (3.9). Note that the total 

number of the array elements in all array configurations (linear, planar, and 

random) was fixed to 36 elements. 
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     In the first, a uniformly spaced linear array having a total number of 

elements equal to 36 (i.e., N=36 and M=1) that are spaced by 𝜆
2 ⁄ is 

considered (selected an inter-element spacing equal to half a wavelength 

to prevent grating lobe effects from obscuring the results of the amplitude 

weighting or tapering [37]) 

     The required first null to null beam width (ΩBW) of the optimized array 

pattern was chosen to be equal to that of the standard uniformly excited 

linear array with 36 elements which is 50, (ΩBW = 50). Note that the FNBW 

of the optimized array is restricted to be as narrow as that of the standard 

uniformly excited linear array while solving for feasible minimum sidelobe 

level. The target direction is assumed to be known and equals to 00. Fig 

(4.1) shows the radiation pattern of the optimized linear array.  For 

comparison purposes, the radiation pattern of the standard uniformly 

excited linear array is also shown in this figure. The elements locations, 

optimized excitation amplitudes and phases are shown in Fig (4.2), (4.3) 

and (4.4). 
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Figure (4.1): The Optimized Radiation Pattern of the Uniformly Spaced Linear Array with 36x1 

Elements for ΩBW=50. 
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Figure (4.2): Array Elements Locations. 

 

 

 

Figure (4.3): Amplitude Excitation of Uniform and Optimized Array. 
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Figure (4.4): Phase Excitation of Uniform and Optimized Array . 

 

   In the figure (4.1) the optimization radiation pattern of the uniformly 

spaced linear array satisfy the constraint one, obtaining feasible minimum 

sidelobe level for a given beam width, perfectly when obtain the minimum 

SLL equal to (-35.74dB) in comparison with (-13.2dB) and directivity 

equal to (34.363 dB) which is higher than (32.2524 dB)  ,directivity of 

standard uniformly excited linear array with 36 elements ,with fixed  

HPBW . 

From figure (4.2) ,it can be seen  that the array element location along line 

with uniform space 𝑑 = 𝜆 2⁄   which mean L=17.5(L is the overall length 

of the array) [38].The array element location can be implement easy for 

this situation.  
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    In the second, a uniformly spaced planar array with 𝑁×𝑀 = 6 × 6 

elements is considered again, the same optimization constraints as in the 

previous example was imposed to obtain the feasible minimum sidelobe 

level for a given narrow beam width, ΩBW = 50 . The pattern of the 

optimized planar array shown in Figure (4.5) 

 

 

Figure (4.5): The Pattern of the Optimized Planar Array with 6x6 

Elements for ΩBW = 50. 
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Figure (4.6): Array Element Location of  Optimized Planar Array. 

 

 

 

 

Figure (4.7): Amplitude Excitation of Uniform and Optimized Uniform 

Planar Array with 6x6 Elements for ΩBW = 50. 
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Figure (4.8): Phase Excitation of Uniform and Optimized Uniform Planar 

Array with 6x6 Elements for ΩBW = 50. 

 

    It can be seen from the figure (4.5), the pattern of the optimized planar 

array with 6x6 elements for (ΩBW = 50), and from the MATLAB code result 

the SLL equal (-8.59 dB) which is higher than that of the standard 

uniformly excited linear array, -13.2 dB. The directivity equal to (23.526) 

which is lower than of the standard uniformly excited linear array, (32.2524 

dB), because of the space between elements chosen to be fixed to (𝜆 2⁄ ) 

which means that aperture of the uniform planar array is lower than the 

optimized linear array in first step. 

   The planar array element distribution uniformly on rectangular with 

(2.5×2.5) can see the elements location in figure (4.5).  
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   In the third, a randomly spaced planar array with also N × M = 6 × 6 

elements is considered. Again, the beam width constraint was ΩBW = 50 as 

in the previous examples. The results for the optimized random array are 

shown in Fig4.9. From this figure, it can be seen that the feasible minimum 

sidelobe level was -7.7 dB, which is also higher than that of the standard 

uniformly excited linear array, -13.2 dB. 

 

Figure (4.9): The Pattern of the Optimized Random Planar Array with 

N=36 and ΩBW=50. 
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Figure (4.10): Random Planar Array Element Location with 6x6 

Elements for ΩBW = 50. 

 

Figure (4.11): Amplitude Excitation of Uniform and Optimized Random 

Planar Array with 6x6 Elements for ΩBW = 50. 
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Figure (4.12): Phase Excitation of Uniform and Optimized Random 

Planar Array with N=36 Elements for ΩBW = 50. 
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4.2 Obtaining Feasible Minimum Sidelobe Level for a 

Varied Beam Width, from ΩBW = 30 up to ΩBW = 200 

     Nevertheless, much lower SLL can be obtained for wider beam width 

for this reason the beam width was varied from ΩBW = 30 up to ΩBW = 200, 

all theories for the previous case are still valid, and the corresponding 

feasible minimum SLL and the directivities of the three array 

configurations was recorded in three table (4.1),(4.2)and (4.3). For these 

values of beam widths, the directivities of the three array configurations 

were plotted as shown in Figure(4.13) and feasible minimum SLL of the 

three array configurations were also plotted as shown in Figure(4.14) . 

  

Table (4.1) Optimized Uniform Linear Array with N=36 and 

d=λ
2⁄ . 

 
ΩBW 

(degree) 

SLL (dB) Directivity of optimized array 

(dB) 

20 -10.84 29.373 

40 -27.37 35.2 

50 -35.74 34.363 

60 -44.13 33.545 

80 -60.99 32.244 

100 -77.96 31.258 

120 -95.09 30.469 

140 -112.4 29.817 

160 -129.91 29.266 

180 -147.39 28.7886 

200 -163.4 28.3556 
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Table (4.2) Optimized Uniform Planar Array with N*M=36 and  

dy =dx=𝜆
2⁄  

 

ΩBW (deg) SLL (dB) Directivity of optimized 

array (dB) 

20 -1.86 14.306 

40 -6.63 21.71 

50 -8.59 23.526 

60 -11.12 25.517 

80 -18.74 27.565 

100 -25.68 27.161 

120 -32.08 26.407 

140 -37.52 25.631 

160 -43.75 25.021 

180 -50.68 24.507 

200 -53.75 23.817 
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Table (4.3) Optimized Random Planar Array with N=36 

 
ΩBW (deg) SLL( dB) Directivity of optimized 

array (dB) 

20 -1.38 13.515 

40 -5.34 19.683 

50 -7.68 22.406 

60 -9.88 24.258 

80 -15.42 26.344 

100 -21.18 26.463 

120 -26.41 25.715 

140 -31.34 25.006 

160 -34.72 24.205 

180 -41.28 23.790 

200 -49.20 23.501 
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Figure (4.13): Variation of Directivity (dB) Versus Given Beam Width 
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Figure (4.14): Variation of Feasible Minimum SLL Versus Given Beam 

Width 

 

 

 

    From these two figures and three tables  it can be seen that the linear 

array gives the feasible minimum SLL and higher directivity. This is 

mainly because the linear array configuration has wider space diversity 

than the planar and random arrays, thus, narrower beam width and better 

directivity can be obtained. Moreover, the feasible minimum SLL can be 

significantly reduced with an increase in the given beam width value. 
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4.3Obtaining Feasible Minimum Sidelobe Level for a 

Given Beam Width, with Varied Number of Array 

Element 

       Firstly, a uniformly spaced linear array changing a total number of 

elements from 36 to 49 (i.e., N=49 and M=1) that are spaced by 𝜆
2 ⁄ is 

considered .The required first null to null beam width (FNBW) of the 

optimized array pattern was chosen to be equal to that of the standard 

uniformly excited linear array with 49 elements which is equal to 3.70, 

(ΩBW =3.70). When optimizing for a feasible minimum sidelobe level, it 

should be noted that the FNBW of the optimized array is constrained to be 

as narrow as that of the standard uniformly excited linear array. The target 

direction is considered to be known and equal to 00.In this case, the 

excitation amplitudes and phases are optimized such that the corresponding 

array factor with constraint one, Obtaining feasible minimum sidelobe 

level for a given beam width, its methodology in chapter three in (3.7),(3.8) 

and (3.9).Figure (4.15) shows the radiation pattern of the optimized linear 

array. 

    For comparison purposes, the radiation pattern of the standard uniformly 

excited linear array also shown in these figures. From this figure, it is found 

that the FNBW of the optimized array is exactly equal to that of the 

standard uniformly excited linear array and the feasible minimum sidelobe 

level was (–37.46dB) which is much lower than that of the standard 

uniformly excited linear array, -13.2 dB and the lower than optimized 

uniform linear array with number of element equal to 36 . The directivity 

is become more higher than the optimized uniform linear array with 
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number of element equal to 36 ,which is varied from (34.363dB) to(36.907 

dB). 

 

 

Figure (4.15) The Optimized Radiation Pattern of the Uniformly Spaced 

Linear Array with 49x1 Elements for ΩBW=3.70. 
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Figure (4.16): Array Element Location of Optimized linear Array 49×1 

Element. 

 

 

 

Figure (4.17): Amplitude Excitation of Uniform and Optimized linear 

Array with 49×1 Elements for ΩBW=3.70. 
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Figure (4.18): Phase Excitation of Uniform and Optimized Linear Array 

with 49×1 Elements for ΩBW=3.70. 

 

 

 

       The second case for linear optimized array changing the array element 

number only  to become   N=64, M=1 and the FNBW become (ΩBW=2.840), 

that is equal to the uniform linear array FNBW. The figures 

(4.19),(4.20),(4.21) and (4.22) shown the results for this case. 
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     Figure (4.19): The Optimized Radiation Pattern of the Uniformly Spaced Linear Array with 64x1 

Elements for ΩBW=2.840. 
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Figure (4.20): Array Element Location of Optimized Linear Array 64×1 

Element. 

 

 

Figure (4.21): Amplitude Excitation of Uniform and Optimized Linear 

Array with 64×1 Elements for ΩBW=2.840. 

 



 

62 

 

 

Figure (4.22): Phase Excitation of Uniform and Optimized linear Array 

with 64×1 Elements for ΩBW=2.840. 
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 For uniform  planar array the first case changing the array elements to  

N=7,M=7 and ΩBW=3.70   the results for this case are shown in figures 

from (4.23)  to (4.26)   

 

Figure (4.23): The Optimized Radiation Pattern of Planar Uniform Array 

N×M=49 Element and ΩBW=3.70. 
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Figure (4.24): Array Element Location of Optimized Uniform Planar 

Array 7×7 Element. 

 

 

Figure (4.25): Amplitude Excitation of Uniform and Optimized Planar 

Array with 7×7 Elements for ΩBW=3.70. 
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Figure (4.26): Phase Excitation of Uniform and Optimized Planar Array 

with 7×7 Elements for ΩBW=3.70. 
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 For uniform planar array in second case changing the elements 

number to N=8,M=8 and ΩBW=2.840 and the results shown in figures 

from(4.27) to (4.30). 

 

 

 

Figure (4.27):The Optimized Radiation Pattern of the Uniformly Spaced Planar Array with 8×8 

Element for ΩBW=2.840. 
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Figure (4.28): Array Element Location of Optimized Uniform Planar 

Array 8×8 Element. 
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Figure (4.29):Amplitude Excitation of Uniform and Optimized Planar 

Array with 8×8 Elements for ΩBW=3.70. 

 

 

 

Figure (4.30): Phase Excitation of Uniform and Optimized Planar Array 

with 8×8 Elements for ΩBW=2.840. 
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 For Random planar array the first case changing the array elements to  

N=49 and ΩBW=3.70   the results for this case shown in figures from 

(4.31)  to (4.34).   

 

 

 

Figure (4.31): The Optimized Radiation Pattern of the Random Planar Array with N=49 Element for 

ΩBW=3.70. 
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Figure (4.32):Array Element Location of Optimized Random Planar 

Array 49 Element. 

 

Figure (4.33):Amplitude  Excitation of Uniform and Optimized Random 

Planar Array with 49 Elements for ΩBW=3.70. 
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Figure (4.34): Phase Excitation of Uniform and Optimized Random 

Planar Array with 49 Elements for ΩBW=3.70. 
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 For Random planar array the second case changing the array elements 

to  N=64 and ΩBW=2.840   the results for this case shown in figures 

from (4.35)  to (4.38)   

 

Figure (4.35):The Optimized Radiation Pattern of the Random Planar 

Array with  64 Element for ΩBW=2.840. 
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Figure (4.36): Array Element Location of Optimized Random Planar 

Array 64 Element. 

 

 

 

Figure (4.37): Amplitude Excitation of Uniform and Optimized Random 

Planar Array with 64 Elements for ΩBW=2.840. 
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Figure (4.38): Phase Excitation of Uniform and Optimized Random 

Planar Array with 64 Elements for ΩBW=2.840. 
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Table (4.4) Compromised  for varied number of element for 

three types of  optimized array Linear ,planar and random planar  

 
 

 

Optimized 

uniform linear 

array 

N×M ΩBW 

(deg) 

SLL(dB) Directivity(dB) 

36 50 -35.74 34.363 

49 3.70 -37.46 36.907 

64 2.840 -37.53 39.248 

Optimized 

uniform planar  

array 

36 50 -8.59 23.526 

49 3.70 -7.44 22.879 

64 2.840 -5.81 22.074 

Optimized 

random planar  

array 

36 50 -7.68 22.406 

49 3.70 -5.25 19.563 

64 2.840 -3 17.458 

 

 

      From the figures  for varying  the number of elements for three types 

the linear ,planar and random planar antenna array  and table (4.4) only for 

linear array when increasing the number of element the SLL lowering and 

the directivity increase but in uniform and random planar array the reverse 

occurred. 
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4.4 Feasible Minimum Beam Width for a Given SLL 

In this  example, a feasible minimum beam width for a given SLL  is 

investigated where the SLL was fixed at -30 dB and a feasible minimum 

beam width for linear, planar, and random arrays was computed . In all 

cases the number of element fixed to (36 element) and target angle to 00   

.The results for  uniform linear array ,uniform planar array and random 

planar array with  a feasible minimum beam width for a given SLL  are 

shown in figures(4.39) to(4.48) . From these figures, it can be seen 

that the feasible minimum beam width for linear, planar, and random arrays 

was ΩBW =50, ΩBW = 110, and ΩBW = 130 respectively for getting 

SLL=-30 dB. 
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Figure (4.39): Array Pattern of Linear Optimized Array for SLL=-30dB and N=36 Element. 
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Figure (4.40): Linear Array Elements Locations. 
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Figure (4.41): Amplitude Excitation of Uniform and Optimized Linear 

Array. 

 

 

 

 

Figure (4.42): Phase Excitation of Uniform and Optimized Linear Array. 
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 Planar uniform Array with SLL=-30dB and N×M=36 

Figure (4.43): Array Pattern of Uniform Planar Optimized Array for SLL=-30dB and N×M=36 

Element. 
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Figure (4.44): Planar Array Elements Location. 

 

 

Figure (4.45): Amplitude and Phase Excitation of Optimized Planar Array 

with SLL=-30dB and N×M=36. 
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Random planar array with SLL=-30dB and N=36 

 

 

 

Figure (4.46): Array Pattern of Random Planar Optimized Array for SLL=-30dB and N×M=36 

Element. 
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Figure (4.47): Array Element Location of Optimized Random Planar 

Array 36 Element. 

 

 

Figure (4.48):Amplitude and Phase  Excitation of Optimized Random 

Planar Array. 
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   Finally, the two figures (4.49) and  (4.50) and tables (4.5),(4.6)(4.7) show 

the variations of the minimum feasible beam width and the directivities for 

different values of the SLL start from -10 to -45  for three types of array  

(linear ,planar and random planar array). It can be seen that the higher SLL 

results in narrower beam width. These results fully confirm the 

effectiveness of the convex optimization algorithm for linear, planar, and 

random array configurations. 

 

 

Figure (4.49): Variation of Directivity (dB) and Versus Given SLL (dB) 
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Figure (4.50):Variation of Minimum Feasible Beamwidth(deg)and 

Versus Given SLL(dB) 
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Table (4.5): Uniform Linear Array with Varied  Side Lobe Level 

SLL and N=36. 

 
SLL(dB) Directivity (dB) Beamwidth(deg) 

-10 34.407 2 

-15 36.073 3 

-20 35.827 4 

-25 35.432 4 

-30 34.9586 5 

-35 34.439 5 

-40 33.933 6 

-45 33.469 7 

 

 

 

Table (4.6): Uniform Planar Array with N*M=36 and Varied 

Side Lobe Level (SLL). 

 

SLL(dB) Directivity (dB) Beamwidth(deg) 

-10 24.804 6 

-15 26.968 7 

-20 26.955 9 

-25 25.507 12 

-30 26.821 11 

-35 24.780 15 

-40 25.720 14 

-45 25.575 15 
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Table (4.7): Random Planar Array with Varied Side Lobe Level 

(SLL) and N=36. 

 

SLL(dB) Directivity (dB) Beamwidth(deg) 

-10 23.574 7 

-15 23.20 7 

-20 24.607 12 

-25 25.935 11 

-30 25.484 13 

-35 25.232 14 

-40 24.569 16 

-45 24.299 17 
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CHAPTER FIVE 

CONCLUSIONS AND FUTURE WORK 

5.1 CONCLUSIONS 

    In this thesis, the three antenna array configurations uniform linear array, 

uniform planar array, and random planar array have all been successfully 

optimized using convex optimization to achieve the desired radiation 

patterns of each type to obtain the desired characteristics, which in most 

applications is to have the lowest side-lobe level with increased directivity 

and without  changing half power beam width  . The excitation amplitudes 

and phases of the array components are subjected in the optimization 

approach to either minimize sidelobe levels for a given beam width or 

minimize the beam width for a given sidelobe level. It has been 

demonstrated from the outcomes of the linear, planar, and random array 

topologies that a much lower SLL may be achieved for greater beam width 

values at the expense of poorer directivities. Moreover, the performance of 

the linear arrays was found to outperform in terms of minimum feasible 

SLL for a given narrow beamwidth compared to other two configurations. 

When the number of elements was raised in proportion to the first case's 

maximum directivity and minimize side lobe level, the uniform linear array 

outperformed the uniform planar array and random planar array in terms 

of performance. 

   This is mainly due to the fact that the linear array has wider space 

diversity. On the other hand, the three array configurations perform well 

and provide feasible minimum beam width for relatively high SLL. These 

results fully confirm the capability of the proposed two optimization 

methods. 
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5.2. FUTURE WORK 

       Future research can expand on and go deeper into the methodologies 

outlined in this thesis. The following are some ideas: 

1. In this thesis, the element excitation amplitudes and phases are 

only optimized to obtain the minimum side lobe level with fixed half 

power beam width and obtain minimum half power beam width with 

fixed side lobe. The distance between the elements, their number, and 

other parameters can be employed in optimization to get the same or 

different characteristics. 

2. The array configuration not only uniform linear ,planar array ,and 

random planar array there are another configuration  like circular 

array and  conformal array which can  also be optimized with convex 

optimization.  
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 الخلاصة

لمصفوفة في الانظمة العملية، يمكن ترتيب اعتمادًا على كيفية استخدام هوائي ا

. تعد  المستويالعناصر المشعة لمصفوفة الهوائي بأي شكل هندسي مثل الخطي او 

المصفوفة الخطية ذات البعد الواحد او المستوية ذات البعدين  أكثر التصميمات 

ة المستخدمة في التطبيقات العملية. تعتبر هوائيات المصفوفة الخطية أو المستوي

منتظمة عندما تكون المسافات بين عناصر المصفوفة منتظمة ، ومصفوفات عشوائية 

عندما تكون المسافات عشوائية. للحصول على افضل اداء للنظام وتحديد اتساع 

الإثارة ومراحل مكونات الصفيف في مثل هذه التطبيقات ، من الضروري اتباع نهج 

توليف مخططات صفيف الهوائي  تحسين بسيط. في هذه الأطروحة ، يتم تحقيق

الخطي والمستوي والعشوائي في ظل ظروف تقييد محددة باستخدام خوارزمية 

المتكررة التي التحسين المحدب بدلاً من الخوارزميات المثلى ذات الطبيعة العشوائية 

صعبة وتحتاج الى وقت اطول. يمكن أن تكون هذه المحددات إما عرض تتميز بكونها 

للفص الرئيسي لنمط اشعاع هوائي المصفوفة عند تقليل مستوى  الحزمة ثابت

الفصوص الجانبية لنمط الاشعاع. أو بالامكان جعل مستوى الفصوص الجانبية ثابتا 

 عند قيمة معينة عند تقليل عرض الحزمة للفص الرئيسي .

 أولاً ، تم التحقيق في مشكلة الحصول على الحد ألادنى الممكنة من مستوى الفصوص 

. بعد ذلك ، تم اعادة المشكلة لغرض الحصول على ادنى ةالجانبية لعرض حزمة معين

عرض حزمة ممكنة للفص الرئيسي عند مستوى معين للفصوص الجانبية. تم تطبيق 

كلتا طريقتي التحسين على تكوينات هوائي المصفوفة الخطية والمستوية والعشوائية. 

لية طرق التحسين المقترحة حيث تم تخفيض أظهرت نتائج المحاكاة بالحاسبة من فعا

الفصوص الجانبية لمستويات منخفضة جدا مع الحفاظ على عرض حزمة مساوي 

لهوائيات المصفوفة المنتظمة. أفضل النتائج كانت لمصفوفة الهوائيات الخطية, بينما 

لوحظ زيادة في الفصوص الجانبية لمصفوفات الهوائيات المستوية والعشوائية بسبب 

 احة محددةحديد توزيع عناصرها ضمن مست
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 إقرار المشرف
مستوى الفصوص الجانبية باستخدام تحسين عرض الحزمة وتقليل ) شهد بأن هذه الرسالة الموسومةن

تم اعدادها  )خوارزمية التحسين المحدب في هوائيات المصفوفات الخطية والمستوية والعشوائية
كلية هندسة الالكترونيات /  /الاتصالات قسم هندسة  فيتحت اشرافنا رنا رعد شاكر( ) ةالطالب من قبل

 .تصالات الاهندسة في اختصاص علوم /ستيرشهادة الماججامعة نينوى، وهي جزء من متطلبات نيل 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 إقرار المقوم اللغوي 

ورد فيها من أخطاء لغوية وتعبيرية  اشهد بأنه قد تمت مراجعة هذه الرسالة من الناحية اللغوية وتصحيح ما
 الرسالة مؤهلة للمناقشة بقدر تعلق الأمر بسلامة الأسلوب أو صحة التعبير.وبذلك أصبحت 

 التوقيع:
  أ.م.د.اسماعيل فتحي حسنالاسم: 
 2022/  /   التاريخ:

 إقرار رئيس لجنة الدراسات العليا

 بناءً على التوصيات المقدمة من قبل المشرف والمقوم اللغوي أرشح هذه الرسالة للمناقشة.

 التوقيع: 
 محمود احمد محمودأ.م.د  الاسم:

 2022/ /   التاريخ:

 إقرار رئيس القسم

بناءً على التوصيات المقدمة من قبل المشرف والمقوم اللغوي ورئيس لجنة الدراسات العليا أرشح هذه 
 الرسالة للمناقشة.

 التوقيع: 
 محمود احمد محمودأ.م.د  الاسم:

 2022/ /   التاريخ:

 

    التوقيع:
 د.جعفر رمضان محمد.أ الاسم:

 2022/  /   التاريخ:
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 قرار لجنة المناقشةإ

تحسين عرض ) نشهد بأننا أعضاء لجنة التقويم والمناقشة قد اطلعنا على هذه الرسالة الموسومة

الحزمة وتقليل مستوى الفصوص الجانبية باستخدام خوارزمية التحسين المحدب في هوائيات 

ا في محتوياتها وفيم (رنا رعد شاكر ) ةوناقشنا الطالب(  المصفوفات الخطية والمستوية والعشوائية

في  علوم/نيل شهادة الماجستيربة جدير  اقد وجدناهو  2022/ 11 /30  له علاقة بها بتاريخ

 .تصالات الاهندسة اختصاص 

 التوقيع:

 يونس محمود عبوشأ.م.د. اللجنة: رئيس

 2022/ /   :التاريخ

  التوقيع:

  ياسر احمد فاضل.د. أ عضو اللجنة:

  2022/ /   :التاريخ
 

      التوقيع:

  ادهم معن صالحد.م. :اللجنة عضو

 2022/ /   :التاريخ

 

 التوقيع:

 جعفر رمضان محمد .د أ :)المشرف( عضو اللجنة

 2022/  /   :التاريخ

 
 ةقرار مجلس الكلي

 /    /    بتاريخ: المنعقدة     ..…………بجلسةةةةةته  هندسةةةةةة الالكترونياتاجتمع مجلس كلية  
202 
 الالكترونيكهندسة علوم في اختصاص  شهادة الماجستير ةمنح الطالب المجلس وقرر

 
 د. صدقي بكر ذنون أ.م. :مجلسالمقرر 

 2022/    /     التاريخ:

 د. خالد خليل محمدأ. رئيس مجلس الكلية:

 2022/    /    التاريخ:
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باستخدام  ةالجانبيوص تحسين عرض الحزمة وتقليل مستوى الفص
هوائيات المصفوفات الخطية والمستوية  محدب فيالتحسين خوارزمية ال

 والعشوائية 

 رسالة تقدمت بها

 رنا رعد شاكر العبيدي 
 إلى 

 مجلس كلية هندسة الالكترونيات
 معة نينوى جا

 كجزء من متطلبات نيل شهادة الماجستير
 في

 هندسة الاتصالات
 
 

 بإشراف
 دمحم رمضان جعفر .د.أ
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 نينوى جامعة     

  هندسة الالكترونياتكلية 

 قسم هندسة الاتصالات

 

الفصوص الجانبية  تحسين عرض الحزمة وتقليل مستوى

باستخدام خوارزمية التحسين المحدب في هوائيات المصفوفات 

 الخطية والمستوية والعشوائية

 

 رنا رعد شاكر العبيدي 

 

 الاتصالاترسالة ماجستير علوم في هندسة 

 

 

 بإشراف

 دمحم رمضان جعفر .د.أ
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