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ABSTRACT 

Medical imaging is a modern tool used in diagnosing diseases and 

injuries, including tumors and cancers. Various types, including CT, X-ray, 

MRI, and ultrasound, are used. Ultrasound imaging is popular due to its non-

invasive, cost-effectiveness, high tumor identification ability, and lack of 

anesthesia, offering high frame rates but sacrificing image quality. The type of 

ultrasound imaging that uses no focusing is called Plane-Wave Imaging (PWI). 

Researchers and engineers are enhancing imaging quality through various 

techniques, including adaptive beamforming technologies, with Minimum 

Variance (MV) adaptive beamformer improving resolution and Eigen Space-

Based Minimum Variance (ESBMV) adaptive beamformer enhancing contrast. 

However, ESBMV has a drawback of producing black box regions (BBR) and 

dark spots in the produced images. Partial-ESBMV (PESBMV) method has 

been recently proposed to control those artifacts with a slight reduction in 

contrast. In this dissertation, a beamforming method is proposed to improve the 

imaging quality of PESBMV. This approach uses two factors as detection tools 

to adaptively indicate the different regions of the image. Those factors are the 

number of vectors in the signal subspace matrix produced by ESBMV and the 

weight of ESBMV.  After discrimination, which divides the image into four 

regions, the most suitable beamforming method is applied in each of those 

regions. The results of applying the proposed method, MV, ESBMV, and 

PESBMV to in vitro datasets and simulation data using MATLAB (R2021a) 

show the superiority of the proposed method in improving speckle preservation 

with (55%) resolution improvement, compared to PESBMV, in addition to 

providing excellent contrast compared to the other implemented methods. 
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1 CHAPTER ONE 

                                  INTRODUCTION 

 

1.1 Introduction 

Medical imaging is a non-invasive technology that acquires signals by 

leveraging the physical principles of sound, light, electromagnetic waves, etc., 

from which visual images of internal tissues of the human body are generated. 

Medical imaging is a vital component of modern healthcare, playing a role in the 

diagnosis, staging, and monitoring of many diseases and conditions. There are 

many widely used medical imaging modalities, including ultrasound, digital 

radiography, computed tomography (CT), magnetic resonance imaging (MRI), and 

optical coherent tomography (OCT) [1]. 

Recurrent imaging is used for managing various health conditions and chronic 

diseases such as malignancies, trauma, end-stage kidney disease, cardiovascular 

diseases, Crohn's disease, urolithiasis, and cystic pulmonary disease. However, 

recurrent radiological imaging and associated cumulative doses to patients can lead 

to radiation exposure and cancer risk elevation. Therefore, it is important to 

improve radiation protection of individuals who are submitted to frequent imaging. 

This includes access to dose-saving imaging technologies, improved imaging 

strategies and appropriateness process, specific optimization tailored to the clinical 

condition and patient habitus, wider utilization of the automatic exposure 

monitoring systems with an integrated option for individual exposure tracking in 

standardized patient-specific risk metrics, improved training, and communication. 

Non-ionizing imaging structures like ultrasound can be used to prevent exposure to 

radiation [2].  
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Using ultrasound imaging is advantageous over other imaging methods. It is a 

better option than other imaging procedures like MRI, X-rays, and CT because of 

its non-invasive nature. 

Ultrasound imaging gives real-time body structure images, non-ionizing 

radiation exposure, high tumor detection, no anesthetic required, and may break up 

urinary stones, making it a safe and cost-effective procedure. 

Contrast chemicals are used in several imaging methods, such as CT and MRI 

scans, to boost visibility of specific tissues or organs. The risk of adverse reactions 

to contrast agents is lowered since ultrasonic imaging does not need the use of 

these agents. 

Because ultrasound devices are portable and generally affordable in comparison 

to other imaging equipment, they are more accessible to healthcare professionals in 

distant or low-resource areas.                   

Ultrasound imaging uses high-frequency sound waves that are higher than the 

audible frequency to generate images of inside tissues and organs.[3], [4]. It is one 

of the most rapidly evolving medical imaging techniques. It is used as a popular 

diagnostic tool in a variety of applications, including cardiac imaging, abdominal, 

fetal, and breast imaging. Real-time images are used to provide rapid visual 

guidance for a variety of interventional procedures, such as regional anesthesia and 

pain control. Figure 1.1 shows the components of sonography. 



3 

 

 

 

Figure ( 1.1): Sonography components [5]. 

 

Acoustic waves with frequencies ranging from 20 kHz to 20 MHz represent 

ultrasound signals. Electrical stimulation of a piezoelectric transducer results in the 

generation and detection of those waves. Ultrasound transducers are used to 

transmit and receive ultrasound waves. The transducer is the most essential 

equipment in ultrasonic imaging, which differs according to the number and 

arrangement of the piezoelectric element’s arrays, which shapes the way it is used 

and the application where it is employed [6].  

The Curie brothers demonstrated the piezoelectric effect by mechanically 

stressing a cut piece of quartz [3], [4]. They subsequently discovered the reverse 

piezoelectric effect, which occurs when an electrical current is applied to quartz 

and causes quartz vibrations [3], [7]. When these mechanical sound waves pass 

through body tissues, they create alternating areas of compression and rarefaction. 

A piezoelectric effect is a phenomenon where certain materials generate an electric 
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charge in response to applied mechanical stress. This effect is beneficial for various 

applications, such as photocatalysis, superconductivity and sensing. 

A piezoelectric effect creates sound waves and propagation requires a 

transmission medium [6]. Ultrasound waves are sent to deeper layers, reflect back 

to the transducer as echoes, scatter, and transform into heat while passing through 

tissues. The velocity of propagation differs according to the characteristics of the 

medium, and the images result from the interaction of refraction, reflection, 

scattering, absorption, attenuation, and transmission [6], [8]. Figure (1.2) shows the 

two phases of transmission and reception of ultrasound signals using a linear array 

transducer. 

 

Figure (1.2) :(a) The transducer emitted ultrasound wave into medium. (b) the transducer 

converts the reflected waves into electrical signals [9]. 
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When Ultrasound waves travel through tissues and partly being transmitted to 

deeper structures, echoes are partially being reflected back to the transducer, 

scattered, and converted to heat. In ultrasound imaging, the return of echoes to the 

transducer for imaging purposes is of prime importance. 

Acoustic impedance is a tissue parameter that determines how much echo is 

returned after a tissue interface is contacted. This is a physical property of a 

medium defined as the density of the medium multiplied by the velocity of 

ultrasound wave propagation in the medium. Air-containing organs (such as the 

lung) have the lowest acoustic impedance, whereas dense organs like bone have 

extremely high acoustic impedance  [3]. The intensity of the reflected echo is 

proportional to the difference (or mismatch) in acoustic impedances between two 

mediums. No echo is produced if the acoustic impedance of two tissues is the 

same. Low-intensity echoes are commonly produced at the interfaces of soft tissues 

with similar acoustic impedances. Because of the large acoustic impedance 

gradient, interfaces between soft tissue and bone or the lung produce very intense 

echoes [3]. 

Ultrafast ultrasound imaging is a technique that allows the analysis of rapidly 

changing physical phenomena in human body, such as ultrasensitive flow imaging 

in the cardiovascular system or shear-wave elastography. 

Ultrafast ultrasound, an acquisition technique that has been widely studied and 

applied over the last two decades, As the name implies, ultrafast ultrasound 

imaging can potentially exceed 1,000 frames per second by overcoming the 

conventional frame rate limitation which is usually much less than 1000 frames per 

second [10]. By delaying pulse times across a group of transducer elements, in 

transmission, conventional ultrasonography emphasizes the shape and steering of 

focused acoustic beams. To scan a 2D or 3D space, focused beams are transmitted 

and received line by line. This simple scheme, however, limits the frame rate to 
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about 100 frames per second, which only meets the basic requirements of 

traditional medical applications. 

1.2 Literature Review 

Ultrasound has been used for imaging human body for over 50 years. Dr. Karl 

Theo Dussik, an Austrian neurologist, pioneered the use of ultrasound as a medical 

diagnostic tool to view the brain [3]. In medicine, ultrasound has become one of 

the most widely used imaging modalities. Underwater acoustics, monitoring and 

control applications, medical ultrasonics for therapy, diagnosis, and surgery, 

biotechnology, nanotechnology, and defense are all diverse disciplines of research 

within ultrasonics.  

To generate high-quality images using PWI and overcome unfocused 

transmission drawbacks, resembled by the decreased image quality, in terms of 

both contrast and resolution, various techniques have been proposed in recent 

decades.  

Those methods include the adaptive and non-adaptive beamforming techniques. 

In the medical field, adaptive beamforming methods can increase image quality 

while degrading real-time performance, due to requiring long processing time. 

Researchers have devised an adaptive beamforming method based on minimum 

variance and Deep Neural Network (DNN) to increase image efficiency and speed 

up the beamforming process in ultrafast ultrasound [11]. 

The Eigenspace-Based  Minimum Variance Beamformer (ESBMV)  

is an adaptive beamforming technique used in medical ultrasound imaging. It is 

used to suppress sidelobes, grating lobes and clutter for PWI, and it can improve 

image quality by reducing speckle pattern inconsistencies and removing artifacts. 

This method is utilized in ultrasonic imaging in medicine to improve the resolution 

and contrast of images [12], [13]. 
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ESBMV was first introduced by Van Veen in (1988) [14]. It was developed to 

highly improve the contrast of MV beamformer.  However, it may introduce dark 

region artifacts alongside the hyperechoic scatterers when obtaining obvious 

contrast. A dark region produced artificially in ESBMV is called Black Box Region 

(BBR). In addition to BBR, ESBMV produces dark regions in background speckle, 

distorting its homogeneity. 

Lately, several research groups have investigated and developed several ways to 

improve ESBMV beamforming. 

 In (2010), Mahloojifar and Asl, employing a simulated cyst phantom, proposed 

using iterative ESBMV to determine appropriate imaging parameter choices to 

improve imaging quality. Nonetheless, the impact of changed parameters on BBR 

artifacts was not taken into account in the proposed iterative approach [15]. 

In (2012), Zeng et al. proposed mixing ESBMV with Wiener post-filtering to 

increase ESBMV contrast and resolution.[16]. However, the suggested 

combination failed to eliminate the BBR artifacts and black spots in the 

background speckle. 

In (2013), Zeng et al. suggested a beam-domain ESBMV beamformer by 

combining the beam-space approach with the ESBMV beamformer. The suggested 

approach can achieve performance equivalent to that of the ESBMV beamformer 

in considerably less time, however ESBMV artifacts still exist.[17] . 

In (2015), Aliabadi et al. suggested a technique that able to reduce dark spot and 

enhance contrast in ESBMV through adjusting the focal point value with respect to 

the characteristics of the echo signals received by the surrounding locations [18]. 

However, this proposed technique failed to be removing BBR artifacts. 

 In (2016), Zhao et al. suggested a technique that able to advances image quality 

in clear of speckle homogeneity, contrast, and resolution [19], though associations 

ESBMV with a subarray-based coherence factor. However, this approach failed to 
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be removing BBR artifacts and Subarray smoothing has a negative impact on 

computation efficiency. 

In (2017), Partial-ESBMV (PESBMV) method was suggested to overcome the 

ESBMV limitation and its artifacts. This approach applies or stops ESBMV based 

on the number of eigenvectors in the signal subspace.  As a result, this strategy was 

able to decrease BBR artifacts [20]. However, the contrast in PESBMV is lower in 

comparison to reference ESBMV. Following that, several techniques for improving 

ESBMV's performance were proposed.  

In (2017), Wu et al. proposed an adjustable factor to adaptively assign some 

special imaging parameters, and then combined ESBMV beamformer with it, to 

improve the spatio-temporally smoothed factor beamformer by introducing. 

 However, BBR artifacts were not eliminated [21]. 

In (2017), Wang et al. suggested a synthetic aperture (SA) ultrasound imaging 

technique combining short-lag spatial coherence (SLSC) weighting with ESBMV, 

to improve imaging quality at all depths. Based on the spatial coherence of 

different sources, an adaptive threshold of eigenvalues is designed for ESBMV. As 

a result, this strategy was able to increase contrast while the contrast to noise ratio 

and speckle SNR are decreased due to the presence of BBRs [22]. 

In (2017), Mozaffarzadeh et al. suggested linking ESBMV with Delay Multiply 

And Sum (DMAS) beamformer to reduce sidelobes and raise the signal-to-noise 

ratio through a simulated study. However, this did not reduce the ESBMV artifacts 

[23].  

In (2019), Mozaffarzadeh et al. suggested again to link ESBMV with DMAS 

beamformer to reduce sidelobes and raise the signal-to-noise ratio for the 

application of Linear-Array Photoacoustic Imaging. This method raised the signal-

to-noise ratio and increased resolution but BBR and dark spot were sill exist [24]. 
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In (2020), Shamekhi et al. proposed to combine ESBMV beamformer with the 

Sign Coherence Factor (SCF) to reduce noise when they are used in combination 

with each other [25]. But artifacts of ESBMV still occur. 

In (2021), Lan et al. suggested the use of an adaptive eigenvalue threshold for 

subspace development to improve contrast and reduce dark region artifacts [26].  

Image quality can be improved by adaptively altering the subarray length of the 

covariance matrix, this also helps to decrease the size of the covariance matrix and, 

to some extent, increase computational efficiency. However, this suggestion 

produced a lower hyperechoic target brightness compared to classical ESBMV, and 

according to that the borders of hyperechoic targets were suffering from a lack of 

clarity.  

Table 1-1: Literature reviews. 

Year 

of 

Study 

No of 

Reference 

Study Description Advantages Disadvantage 

1988 [14] It was developed to 

highly improve the 

contrast of MV 

beamformer 

Avoidance of 

explicit covariance 

matrix estimation 

and inversion, 

requiring only scalar 

and vector quantities 

to be estimated 

ESBMV 

artifacts 

2010 [15] ESBMV 

beamforming has 

been successfully 

applied to specific 

ultrasound 

techniques, such as 

improved imaging 

resolution and 

contrast, better 

performance, and 

application to 

specific ultrasound 

BBR artifacts 



10 

 

plane wave imaging 

in ultrasound 

computed 

tomography, where 

it has been shown 

to maintain or 

improve the 

resolution and 

contrast ratio of the 

reconstruction 

results 

techniques. 

2012 [16] It has been 

combined with 

Wiener postfilter to 

further improve 

medical ultrasound 

imaging quality 

optimizes the 

ESBMV weights 

with a Wiener 

postfilter, making 

the output power of 

the new beamformer 

closer to the actual 

signal power at the 

imaging point than 

the ESBMV 

beamformer 

failed to 

eliminate the 

BBR artifacts 

and black spots 

in the 

background 

speckle 

2013 [17] It combines the 

beamspace method 

with the 

Eigenspace-Based 

Minimum Variance 

(ESBMV) 

The proposed 

method can achieve 

performance 

comparable to the 

ESBMV 

beamformer within 

ESBMV 

artifacts still 

exist. 
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beamformer much shorter time 

2015 [18] The proposed 

beamforming 

method utilizes a 

kernel to select 

neighbor points, 

and the number of 

selected 

eigenvectors for 

each focal point is 

compared with the 

number of selected 

eigenvectors of its 

neighbor points and 

is changed to a new 

value 

This method 

enhances the 

imaging contrast 

significantly while 

keeping the 

resolution quality 

similar to the 

eigenspace-based 

minimum variance 

(ESBMV) 

beamformer 

failed to be 

removing BBR 

artifacts. 

 

2016 [19] This method 

introducing an 

adjustable factor to 

adaptively assign 

some special 

imaging parameters 

and then combining 

the eigen space-

based minimum 

variance 

beamformer into 

the method to 

The proposed 

method improves 

the robustness of the 

algorithm with 

speckle pattern 

consistency and 

markedly removes 

the artifacts while 

preserving effective 

ability to suppress 

clutter and side-

lobes 

failed to be 

removing BBR 

artifacts and 

Subarray 

smoothing has 

a negative 

impact on 

computation 

efficiency 
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further improve the 

image quality. 

2017 [20] this method, 

ESBMV is applied 

or stopped based on 

the amount of 

eigenvectors in the 

signal subspace 

this strategy was 

able to decrease 

BBR artifacts 

the contrast in 

PESBMV is 

lower in 

comparison to 

reference 

ESBMV. 

2017 [21] proposed an 

adjustable factor to 

adaptively assign 

some special 

imaging 

parameters, and 

then combine 

ESBMV 

beamformer into 

our method, to 

improve the spatio-

temporally 

smoothed factor 

beamformer by 

introducing. 

enhance image 

contrast and 

suppress clutter in 

ultrasound imaging 

BBR artifacts 

were not 

eliminated 

2017 [22] suggested a 

synthetic aperture 

(SA) ultrasound 

imaging technique 

combining short-lag 

improve imaging 

quality at all depths, 

increase contrast 

BBR artifacts 

were not 

eliminated 
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spatial coherence 

(SLSC) weighting 

with ESBMV 

2017 [23] link ESBMV with 

Delay Multiply And 

Sum (DMAS) 

beamformer 

reduce sidelobes and 

raise the signal-to-

noise ratio through a 

simulated study 

did not reduce 

the ESBMV 

artifacts 

2019 [24] This study link 

ESBMV with 

DMAS beamformer 

for the application 

of Linear-Array 

Photoacoustic 

Imaging. 

This method raised 

the signal-to-noise 

ratio and increased 

resolution 

BBR and dark 

spot were sill 

exist 

2020 [25] combine ESBMV 

beamformer with 

the Sign Factor 

(SCF) Coherence 

reduce noise when 

they are used in 

combination with 

each other 

But artifacts of 

ESBMV still 

occur 

2021 [26] suggested the use of 

an adaptive 

eigenvalue 

threshold for 

subspace 

development to 

improve contrast 

and reduce dark 

region artifacts 

 

Image quality 

improved by 

adaptively altering 

the subarray length 

of the covariance 

matrix, increase 

computational 

efficiency 

produced a 

lower 

hyperechoic 

target 

brightness 

compared to 

classical 

ESBMV, and 

according to 

that the borders 
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of hyperechoic 

targets were 

suffering from 

a lack of clarity 

 

 

1.3  The Aims  

The main objective of this dissertation aims to: 

1. study the different types of adaptive beamformers used in ultrafast 

ultrasound imaging.  

2. suggest a method for improving imaging quality in these types of 

beamformers, specifically in ESBMV. 

3. Discriminate hyperechoic targets, hypoechoic targets, speckle 

backgrounds and Black Box Regions from each other. 

4.  Discrimination helps to use the most suitable beamforming method in 

each region, resulting in improved overall resolution and contrast of the 

produced images, with preserved  homogeneity at background tissue. The 

operation includes studying various methods and factors and 

implementing and applying them to the used in-vitro data, in order to 

find the amount of difference factor’s value in the image regions. This is 

followed by testing various types of beamformers in order to select the 

most appropriate type of each imaging region, leading to an 

improvement in the overall image quality. 

1.4 Dissertation Organization 

This dissertation is organized as follows: 

The introduction, and literature review presented in chapter one. 
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In chapter two, the theory and principle of ultrasound imaging, theory of 

beamforming and adaptive beamforming types, and applications of ultrafast 

ultrasound imaging are introduced in detail. 

In chapter three, the model of the proposed method and the flowcharts that are 

used to calculate the parameters using this method are given, with the beamforming 

method used in each imaging region.  Chapter four states the results and 

discussions of applying the proposed method to in vitro datasets. Finally, chapter 

five provides conclusions as well as future related works. 
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2 CHAPTER TWO 

THEORY AND PRINCIPLE OF ULTRASOUND 

IMAGING AND BEAMFORMING TECHNIQUES 

2.1 Introduction 

This chapter presents an overview of ultrasound imaging and its principle, 

wavelength, frequency, applications, transducer types, imaging techniques in 

ultrasound, and beamforming principle. It demonstrates the background method 

behind the standard data-independent and adaptive beamformers and their main 

issues. Finally, this chapter describes the methods suggested in the literature to 

improve the image quality produced by the adaptive beamformer.  

2.2 Principle of ultrasound imaging 

Ultrasound imaging can be carried out by using various imaging techniques. 

The main types of these techniques are linear scan, plane-wave emission and 

synthetic aperture. The technique used in this work is the plane-wave type of 

emission, or Plane-Wave Imaging (PWI).  

Linear array transducers were invented, which consist of a series of elements 

arranged in straight rows, allowing the generation of different sets of directed 

and/or concentrated emitted beams [27], [28]. And this can be achieved by 

manipulating the pulse operation of these parts with specified timing patterns, this 

can be efficiently achieved. 

A single unfocused beam is used by PWI for displaying the imaging region, 

resulting in a high frame rate of several thousand frames per second. PWI can give 

a frame rate that is independent on the number of data lines produced for the 

required imaging width [29]. At each transmit event, an ultrasound wave is 

transmitted from the whole array aperture by pulsing all the elements in the same 
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time. The emitted sound wave will thus produce a plane wave, which propagates 

with no focusing. Backscattered echoes are then recorded using all elements on the 

receive aperture. After the received data is ready, the beamforming operation that 

produces final B-mode images will take place. 

In beamforming operation, the output of the sensor array is processed in order 

to produce an image that has meaning. The purpose of using sensor array is to 

enhance the signal-to-noise ratio compared to a single sensor, which is a collection 

of sensors located at fixed spatial positions. Each element of this array receives 

data that participate in producing the final image from the received ultrasound echo 

signals [20]. This process is the most crucial step in revealing the necessary 

information carried by the reflected echo signals [20]. 

  One of the first major steps in any beamformer is focusing. Delays are 

employed in transmission to manage the contributions from all transducer elements 

and hit a specific point, which is referred to as the focal point of emission. Echoes 

received by elements in reception are delayed to accumulate contributions from the 

same point in the medium (focal point). Focusing performed using received data 

during beamforming is called (dynamic focusing). In PWI, transmit focusing is not 

applied.  

2.3 Ultrasound Wavelength and Frequency  

The frequencies of ultrasound waves are higher than the limit of audible human 

hearing, which is 20 kHz, as shown in figure 2.1. Sound waves with frequencies 

ranging from 1 to 20 MHz are used by medical ultrasonography devices.  
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   Figure (2.1): Shows the range of ultrasound frequency [30]. 

 

The correct transducer frequency selection is critical for achieving optimal 

image resolution in diagnostic and procedural ultrasound imaging. Ultrasound 

waves with high spatial resolution are produced by high-frequency (short 

wavelength) ultrasound waves [3]. This is due to the fact that increasing the 

amount of compression and rarefaction waves over a given distance allows for 

more accurate discrimination of two distinct structures along the wave propagation 

plane. However, because high-frequency waves are more attenuated over a given 

distance than lower-frequency waves, they are best suited for imaging superficial 

structures. Low-frequency (long wavelength) waves have lower resolution but can 

penetrate deeper due to lower attenuation  [3]. As a result, in medical ultrasound 

imaging, high-frequency transducers (up to 10-15 MHz range) are used for 

imaging superficial structures such as stellate ganglion blocks, and low-frequency 

transducers (usually 2-5 MHz) are used for imaging deeper tissues such as deep 

lumbar neuraxial structures. 

Ultrasound imaging waves are generated in the form of pulses (intermittent 

trains of pressure), which usually consist of two or three sound cycles of the same 

frequency. The pulse repetition frequency (PRF) is the number of pulses emitted by 

the transducer per unit of time. Before the next pulse is formed, ultrasound waves 

must be delivered in pulses with enough time between them to allow the signal to 

reach the target of interest and be reflected back to the transducer as echo. PRF in 

medical imaging is also known as (frame rate) [3]. 
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2.4 Types of Ultrasound Imaging Transducers 

The variety of transducer configurations designed for various applications 

reflects ultrasound imaging's high flexibility [31]. The widely used types of 

ultrasound transducers include linear array transducers, phased array transducers 

and curved array transducers. These types differ in their element organizing, and 

they are primarily designed for non-invasive use [9], in addition to the presence of 

other special types of probes that can acquire images invasively. Other types of 

noninvasive imaging probes include single-element probes, mechanical-2D probes, 

and 2D-matrix probes, which can acquire acoustical signals from 1D to 3D spaces, 

respectively [31] 

2.5 B-Mode Ultrasound Images 

B-mode was initially given this name for distinguishing it from the so-called 

Amplitude mode (A-mode). In A-mode ultrasound, it is possible to view the 

amplitude of the signal that is received in a single beam (axial direction) produced 

by a transducer. When altering to B-mode, along with a transducer's element array 

(lateral direction), a series of evenly spaced A-mode beams are obtained. In 

contrast to the beam focusing from a single large element in A-mode, the beam in 

B-mode is primarily shaped by transmitting ultrasound pulses from an aperture 

containing a series of smaller elements. B-mode images are the most widely 

produced image type from medical ultrasound. B-mode image is a two-dimensional 

image of the scanned area [32], figure 2.2 shows an example B-mode ultrasound 

Image. Other imaging modes include Doppler flow images, expanded field of view 

images, and three-dimensional images [6], [32]. The axial direction in a B-mode 

image is the direction of ultrasonic propagation along the beam line, while the 

lateral direction is the direction in the image plane perpendicular to the axial 

direction, parallel to the transducer surface. 
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The significant proportion of ultrasound transducers is used to generate 2D 

images. Volumetric B-mode images can be created by stacking 2D planes obtained 

by mechanical translation along the plane orthogonal to the axial-lateral plane, 

known as the Elevation direction, by rotating the probe, or by extending the 1D 

element array transducers to 3D. The quality of B-mode image can be enhanced by 

improving focusing, producing denser-spaced lines, compounding multiple 

frequencies, focal depths, and steering angles. Signal processing and image 

processing methods are combined with beam shaping techniques to enhance image 

quality in many applications [33]. 

 

Figure (2.2): Example B-mode ultrasound image [34]. 
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2.6 Plane-Wave Imaging (PWI) 

Plane-Wave Imaging (PWI) is an ultrasound imaging technique that allows for 

faster image acquisition and higher frame rates [35], [36]. In traditional ultrasound, 

to send and receive ultrasonic waves, beam focusing is utilized. However, in PWI 

to transmit and collect ultrasonic signals, a transducer's elements are all activated at 

the same moment to produce an unfocused beam [35], [36]. PWI can be used in 

medical diagnosis and non-destructive testing (NDT) in various industries [35], 

[37]. In medical diagnosis, PWI can produce high-resolution images through scan 

conversion and image reconstruction. PWI has various medical applications. Its 

main benefits are to rise the frame rate and decrease the number of elements 

required in the transducer array, allowing for ultrafast image collection, which is 

capable of imaging at kHz rates [35], [36]. Another application of PWI in the 

medical field is to measure the velocity of blood flow in the body [36]. This 

technique has also been used to improve Doppler images by filtering 

spatiotemporal clutter from ultrafast ultrasound data [36]. 

2.7 Ultrafast Ultrasound Imaging 

Ultrafast ultrasound imaging is a technique that allows the analysis of rapidly 

changing physical phenomena in the human body, such as ultrasensitive flow 

imaging in the cardiovascular system or shear-wave elastography. 

Ultrafast ultrasound, an acquisition technique that has been widely studied and 

applied over the last two decades, As the name implies, ultrafast ultrasound 

imaging can potentially exceed 1,000 frames per second by overcoming the 

conventional frame rate limitation which is usually much less than 1000 frames per 

second [10]. By delaying pulse times across a group of transducer elements, in 

transmission, conventional ultrasonography emphasizes the shape and steering of 

focused acoustic beams. To scan a 2D or 3D space, focused beams are transmitted 

and received line by line. This simple scheme, however, limits the frame rate to 
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about 100 frames per second, which only meets the basic requirements of 

traditional medical applications. Un-focused acoustic waves, like limited 

diffracted, diverging, or plane waves, are transmitted in ultrafast speed to 

illuminate a broad-range space with a fewer number of beams. Ultrafast ultrasound 

has the ability to make an exceedingly high frame rate that exceeds 1,000 frames 

per second, because fewer beams are required to compose a single image frame. 

Implementing the ultrafast ultrasound concept has become feasible in the last two 

decades, thanks to the exponentially increasing computation ability. Due to the 

absence of transmission focusing, the advancement in frame rate in ultrafast 

ultrasound is detrimental to image quality.  

To balance the ratio of frame rate to signal-to-noise ratio and resolution, 

Coherent compounding of steering plane waves has been shown to greatly increase 

both spatial resolution and signal-to-noise ratio, while still obtaining moderate-high 

framerates [10]. To improve image quality without introducing too much 

computational complexity, novel signal processing and beamforming techniques 

have been proposed. 

 The main difference between ultrafast ultrasound imaging and traditional 

ultrasound imaging is the high frame rates of ultrafast imaging, typically over 1 

kHz, where traditional ultrasound imaging provides lower frame rates. This is 

because ultrafast ultrasound imaging requires only a single acquisition to 

reconstruct each image, while traditional ultrasound imaging typically requires 

multiple acquisitions to obtain sufficient image quality. Another difference is that 

ultrafast ultrasound imaging provides poor imaging quality due to unfocused 

beams, while traditional ultrasound imaging is focused, and it thus provides better 

imaging quality. In addition, ultrafast ultrasound imaging suffers from strong 

diffraction artifacts, mainly caused by grating lobes, sidelobes, or edge waves, 

while traditional ultrasound imaging does not have these artifacts. The high frame 
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rate of ultrafast ultrasound imaging is the reason of using it to analyze rapidly 

changing physical phenomena in the human body  [10]. 

2.8 Applications of Ultrafast Imaging 

The basic principle of ultrafast ultrasound imaging was developed in the 1970s. 

However, practical applications of ultrafast ultrasound imaging only arise from the 

early 2000s.  

The initial application of ultrafast ultrasound imaging was to visualize the 

propagation of a shear wave caused by an acoustic radiation force delivered by an 

ultrasonic push pulse. Other applications for functional imaging have been 

explored, such as blood flow imaging, heart function evaluation, and vascular 

viscoelastic characteristics [38]. 

 

2.8.1 Visualization of Blood Flow  

There are two main types of blood flow imaging applications of ultrafast 

ultrasound imaging including vector flow imaging and Coronary Ultrafast Doppler 

Angiography (CUDA) [33]. 

2.8.1.1 Vector Flow Imaging 

Color flow imaging is a technique for visualizing blood flow by measuring 

Doppler shifts and superimposing them on B-mode images. Flow patterns in 

circulation, on the other hand, are generally more complex, with vortices formed as 

blood passes via orifices such as the mitral valve. To image these more complex 

flow dynamics, different echocardiographic approaches have been developed. 

Doppler flow imaging is combined with Left Ventricle (LV) wall motion 

assessment using particle image velocimetry and vector flow mapping. However, 

both methods have intrinsic limitations due to low frame rates. 
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An innovative method based on ultrafast ultrasound combined with Doppler and 

speckle-tracking technology enables users to image complex blood flow without 

the use of contrast agents or mathematical hypotheses. This approach is less angle-

dependent, allowing for two-dimensional imaging of blood flows in two 

dimensions without relying on wall motion assumptions, and has been validated for 

pediatric use on high frequencies curvilinear pediatric probes. The flow velocity 

data obtained can be used to compute energy losses, vorticity parameters, and 

intraventricular pressure gradients. However, challenges include large datasets, 

computational challenges, storage capacity limitations and penetration of ultrafast 

ultrasound plane waves [33]. Blood speckle-tracking techniques are projected to be 

more enhanced and, as technology advances, will probably replace present color 

Doppler techniques. 

2.8.1.2  Coronary Ultrafast Doppler Angiography (CUDA)  

Coronary ultrafast Doppler angiography is a nonsurgical technique that 

visualizes and quantifies distal periarteriolar coronary vessels using ultrafast 

ultrasound technology. This technique separates cardiac movement from blood 

flow using spatiotemporal filters, allowing reconstruction of vessel architecture and 

fluxes. Validated in human’s models, CUDA can quantify coronary flow reserve, 

this makes it an effective noninvasive tool for detecting ischemic heart disease 

[39]. 

2.8.2  Visualization of Tissue Motion  

Because of the availability of ultrafast ultrasound technology, more detailed, 

diverse applications for measuring heart function and tissue properties have been 

created. Shear wave imaging is one of the most sophisticated applications [33]. 
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2.8.2.1  Shear Wave Imaging 

Ultrafast ultrasonic technique catches tissue movements at extremely high 

frame rates. allowing for more detailed investigation of tissue motion. Various 

applications for evaluating heart function and tissue properties have been 

developed. One of the more advanced uses is shear wave imaging [33], [40].                                                          

2.8.2.2 Electromechanical Wave Imaging (EWI) 

The direct association between electrical and mechanical activation that 

occurs between 20 and 50 ms depending on the cardiac region under examination 

is known as electromechanical coupling. As the muscles contract, electrical 

depolarization occurs, resulting in electromechanical activation. At the time of 

activation, the myocardium undergoes a transitory deformation that might be seen 

at very high frame rates. This information can be used to compute 

electromechanical activation times. The feasibility of this technology has been 

demonstrated in both 2D and 3D human patients [33], [41]. 

2.8.3 Tissue Structure and Fiber Orientation  

In vivo myocardial fiber orientation was investigated utilizing diffraction-tensor 

MRI methods. However, recent work using ultrafast ultrasound has showed that 

imaging fiber orientation using ultrasound is feasible. Speckle echoes spatial 

coherence is used by Backscatter Tensor Imaging (BTI) to determine the direction 

of myocardial fibers; The spatial coherence is highest when fibers are parallel to 

the ultrasound wave. Shear wave velocities are utilized by Elastic Tensor Imaging 

(ETI) to construct fiber maps, which exhibit a good correlation with MR DTI using 

animal models. Despite this, clinical use remains a laborious process[42]. 
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2.9 Cardiovascular Diseases Diagnosis  

Ultrafast ultrasound has potential clinical applications in cardiovascular 

diseases, particularly for patients with congenital heart disease. Estimating 

Myocardial Stiffness (MS) has been shown to be promising as a measure of 

contractility and for detecting subclinical problems that standard approaches do not 

detect. MS has been proven in animal models to be a noninvasive indicator of 

cardiac contractility, while in humans, there are differences in end-systolic MS 

between healthy patients and those with amyloid. More geometric and load-

independent systolic function metrics might be advantageous for patients with 

congenital heart disease, where morphology and loading are significantly varied 

[33]. 

2.9.1 Ventricular Function 

Myocardial stiffness measurement is considerably more crucial in diastolic 

assessment, where stiffness and fling pressure assessment are the primary clinical 

issues. The majority of current echocardiographic diastolic assessment has been on 

early diastolic events impacted by myocardial relaxation. Early relaxation may not 

be significantly affected by diastolic dysfunction in children. Myocardial diastolic 

stiffness can be estimated noninvasively using shear wave imaging [33]. 

Myocardial diastolic stiffness has been demonstrated in humans to rise 

dramatically with age and excessively greater in patients with hypertrophic 

cardiomyopathy, hypertension-induced LV hypertrophy, and cardiac amyloidosis. 

Further validation and technical standardization will be needed before widespread 

clinical use becomes possible, but initial findings are promising [33]. 

2.9.2 Evaluating Coronary Perfusion and Cardiac Structure 

Assessment of coronary micro perfusion is crucial for patients with congenital 

heart disease, as it may be relevant for certain congenital defects. Patients with 
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reduced coronary perfusion and flow reserve are at increased risk of sudden death 

and have a reduced survival rate post-Fontan. Identifying patients earlier with 

reduced coronary perfusion and flow reserve could help stratify them and reduce 

the risk of sudden death. CUDA could replace postoperative coronary artery 

Doppler patterns by evaluating post repair coronary flow in 2D and assessing 

coronary flow reserve before leaving the operating room. Myocardial fiber 

orientation that can be visualized using ultrafast imaging plays a significant role in 

cardiac function, and abnormal fiber architecture in congenital heart disease and 

cardiomyopathies may predispose to decreased function. BTI could help 

understand the pathophysiology of congenital heart disease and offer potential for 

novel insights [33]. 

2.9.3 Electromechanical Rhythm Abnormalities  

A previous research on cardiac fiber orientation has been primarily conducted 

on one-time vivo specimens utilizing diffraction-tensor MRI techniques. Recent 

research using ultrafast ultrasound shows that imaging fiber orientation by 

ultrasound is possible. Backscatter tensor imaging (BTI) determines cardiac fiber 

orientation by measuring the spatial coherence (i.e., the degree of similarity) of 

speckle echoes. The highest spatial coherence is found in fibers parallel to the 

ultrasonic wave, whereas the lowest is found in fibers at 90°. Myocardial fiber 

vectors can be constructed based on the degree of spatial coherence using this 

method. This has originally been proven in 2D and 3D models of heart tissue using 

fiber-reinforced composites, demonstrating that fiber orientation correlates with 

spatial coherence [43]. 

2.9.4 Future Directions Echocardiography  

        The imaging process used to examine both anatomy and functional 

assessment can take up to an hour or more. Multiple angles are used to image 
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structures and hemodynamics and tissue motion measurements are performed 

using multiple methods. Color Doppler, tissue Doppler, chamber volumes, blood 

flow imaging, shear wave imaging, and tissue orientation may all be recorded in 

3D and in a single acquisition with ultrafast ultrasound imaging employing 

simultaneous 4D image acquisition. The acquisition of multiple functional 

parameters simultaneously would lead to better measurement consistency and lead 

to new algorithms and indices for functional assessment. Ultrafast ultrasound has 

yet to be explored in the field of pregnancy.  

Figure 2.3 shows a diagram that represents the most important clinical 

applications of ultrafast ultrasound imaging [33].  

 

 

Figure (2.3): Clinical applications of ultrafast ultrasound imaging [44]. 
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2.10  Limitations in Ultrafast Ultrasound Imaging 

Ultrafast ultrasound is utilized in the preclinical phase for cardiology, with 

improvements in frame rate and spatial resolution. However, it remains imperfect 

due to challenges in tissue penetration, signal attenuation, and diffraction. 

Anatomical location of structures remains a challenge. For 2D flow quantification, 

the angle of sonification is crucial. Although new matrix array probes will enhance 

this, the current clinical use of ultrafast imaging is still limited despite the 

improvements in graphic and data processing [45]. 

 

2.11   Beamforming Principle 

 The basic operation in beamforming is to perform summation of the delayed 

data, received by the ultrasound transducer elements. In order to calculate the 

delays, the ray acoustics theory can be used. Figure 2.4 Explains the primary 

elements utilized in calculating focal delays. In this figure, the 𝑥 value resembles 

the lateral distance, 𝑧 is the axial distance (depth) and 𝑦 resembles the elevation 

distance (third dimension). 
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Figure (2.4): A diagram describing the round-off time required by a signal to travel to and 

reflect from a focal point. 

 

To specify the sample value received from a focal point, it is necessary to know 

how long it takes the ultrasound beam to trip from the transducer to the point and 

then reflect back to the transducer element 𝑖. This can be done through knowing the 

distance of this journey, converting distance to time, and then simply dividing by 

the sampling time Ts. Assuming that the point position is (𝑥𝑓 , 𝑦𝑓 , 𝑧𝑓 ) and the 

center of the element’s position is (𝑥𝑖, 𝑦𝑖 , 𝑧𝑖), where the center of the transducer is 

situated at position (𝑥0, 𝑦0, 𝑧0), then the transmit time in PWI (𝑟𝑡) is calculated 

from the perpendicular space between the transducer and the point, which is equal 

to 𝑧 𝑓, or simply the depth of that point.  Distance (𝑟𝑖) from the point to element 𝑖 is 

calculated as follows  [9]:    

 

 𝒓𝒊 = √(𝒙𝒊 − 𝒙𝒇)
𝟐

+ (𝒚𝒊 − 𝒚𝒇)
𝟐

+ (𝒛𝒊 − 𝒛𝒇)
𝟐

.         (2.1)  
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(𝑥𝑓 , 𝑦𝑓 , 𝑧𝑓 ) is the coordinate of the point position. 

 (𝑥𝑖, 𝑦𝑖 , 𝑧𝑖) is center of the element’s position. 

 

 

The central element of the transducer is situated at the position (x0, y0, z0), and 

its distance to the focal point, 𝒓𝒄 is expressed as:   

𝒓𝒄 = √(𝒙𝟎 − 𝒙𝒇)
𝟐

+ (𝒚𝟎 − 𝒚𝒇)
𝟐

+ (𝒛𝟎 − 𝒛𝒇)
𝟐
.     (2.2) 

 Thus, the delay needed to be applied to the 𝑖th element data in order to 

compensate for the time of flight is equal to [9]:   

 

𝒕𝒊 =
𝟏

𝒄
 𝒓𝒕𝒐𝒕𝒂𝒍 =

𝟏

𝒄
∗ (𝒓𝒄 − 𝒓𝒊) ,                                                        (2.3) 

 

where 𝑐 is the speed of sound in the medium, which is assumed in medical imaging 

to be 1540m/s [9]. Thus, the value of every point can be specified depending on the 

delays expressed in equation (2.2), but under the assumption of having a constant 

value of sound speed. The center of the transducer is assumed to be (0, 0, 0), while 

the value of the third dimension 𝑦 equals to zero for all the points in traditional 2D 

B-mode images. 

 It can be considered in general that for a particular setup with an 𝑀-element 

ultrasound probe (𝑀 also refers to the number of the active elements in the 

transducer) and for the returning echoes recorded using the same ultrasound 

transducer, that  each point in the (𝑧, 𝑥) grid (for which y is equal to 0) will have a 

vector of values that are the delayed signals from each element. Therefore, a matrix 

of (𝑋 , 𝑍 , 𝑀) is produced from beamforming, where summation will be performed 

over the third dimension and a single value will be assigned for each point in the 

final image. After this operation, the point values are normalized to the maximum, 

converted to dB scale, and then displayed as the final B-mode image points. 
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2.12  Data-Independent Beamforming 

After applying focusing to the received data, different weights can be applied to 

this data. Beamformers can be either data-independent (fixed) or data-dependent 

(adapters) depending on the weights applied to the output array of the reflected 

signals. Delay and Sum (DAS) is the most fundamental data-independent 

beamforming, because of its simplicity and efficiency. It is common in medical 

ultrasound imaging, and very likely, the most spread beamformer in ultrafast 

ultrasound imaging. Before being employed for ultrasound imaging [46], [47], the 

technique of DAS has historically been used in ground-based and airborne radar as 

well as telecommunication [47], [48]. It is simple and can be parallelized due to its 

implementation. It is also fast and compatible with real-time applications, and due 

to being data-independent, it preserves the temporal coherence and statistical 

properties of the real envelopes [47], [49], [50]. 

 DAS aims to create the image by delaying the incoming signal from each 

aperture channel then combining the resulting values. The apodization weights for 

the delivered signals are determined by the location of the receiving element. 

Signals from the central elements are given higher weights while those from 

elements farther from the center are given lower weights. Thus, all signals will  

coincide and then summation is performed [20].  

The principle of PWI is illustrated in figure 2.5 on emit side. In emission, as in 

figure 2.5, each transducer element is responsible for controlling both the 

amplitude and time of excitation, such that the transmitted pulses are applied to all 

elements at the same time to produce an unfocused plane-wave. 
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Figure (2.5): Transmission using PWI. 

 

In reception, as shown in figure 2.6, the echoes received by the elements of the 

ultrasound probe, also called raw channel data, are focused (delayed) in order to 

compensate for the delays due to the time-of-flight differences. Then, the resulting 

signals are weighted using a weighting function, which is the receive apodization 

process. Afterwards, samples from each element are summed up to form the final 

beamformer output. Beamforming is more flexible in reception than in emission. In 

emission, once the elements have been excited, they cannot be controlled anymore 

during the process of beamforming. However, in receive, the raw channel data can 

be stored, and the weighting functions can be selected depending on the preferred 

characteristics of the recorded data, or according to the depth. The operation 

performed by DAS at each point 𝑝(𝑥, 𝑧) can be expressed as follows [51]: 
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𝑷(𝒙, 𝒛) = ∑  𝑴
𝒊=𝟏 𝒑𝒊(𝒕 − 𝜟𝒕𝒊),     (2.4) 

 

 𝑝𝑖 is represent, the value received by the receiving element 𝑖𝑡ℎ. 

Δ𝑡𝑖  is total round tip from transmitter to the received element. 

 

To achieve perfect imaging quality, apodization is performed by decreasing the 

sidelobe level. Predefined and data-independent apodization weighting has the 

drawback of reducing the lateral resolution of DAS beamformer by widening the 

main lobe. Compared to conventional data independent beamforming, adaptive 

beamforming yields higher spatial resolution and lower sidelobe levels [20]. 
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Figure (2.6): Delay and sum beamforming after reception. 

 

2.13  Data-dependent Adaptive Beamforming 

The operation of beamforming where output adapts according to the received 

echo data is called adaptive beamforming. Adaptive beamformers calculate the 

weights from the statistics of the received data in order to converge to an optimal 

response through the maximization of the produced SNR at the beamformer output 

[9]. Thus, the contributions of the noise and the signals that arrive from other 

directions than the desired direction are minimized. Figure 2.7 shows a diagram of 

reception operation and the calculation of the weighting in data-dependent 

beamforming. 
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Figure (2.7): A diagram showing the principle of adaptive beamforming. 

 

Adaptive beamformers have been employed in other applications of array signal 

processing, such as sonar and radar, for decades. The adaptive beamformer actively 

updates a set of apodization weights for each point in the image, whereas the 

standard beamformer has a passive procedure that uses precalculated data-

independent apodization weights [52]. 

In the field of adaptive beamforming, there was a real and tangible pursuit by 

researchers and engineers, where the techniques rolled one after the other, and on 

top of these techniques or one of the widely used was the Minimum Variance (MV) 

Based Adaptive Beamforming. 
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2.14  Minimum Variance (MV) 

MV beamformer is one of the widely used methods. It was originally introduced 

by Capon in 1969. MV beamforming is a signal processing technique that has been 

acquiring a wide interest by researchers in the medical ultrasound field [53], [54], 

[55], [56]. The Capon or Minimum Variance (MV) beamformer continuously 

updates the apodization weights, so that the variance (or power) of the weighted 

sensor signals is minimized under the constraint that the signal emerging from the 

point of interest is passed without distortion. 

MV approach achieves higher spatial resolution than classic DAS, by lowering 

overall output power while maintaining the desired signals [56], or in other words, 

by keeping on-axis signals while minimizing off-axis ones [57], [58]. However, 

their execution usually imposes a significant computational load [59]. MV 

beamforming has been used to illustrate how adaptive methods' narrow beamwidth 

and low sidelobe levels can be used to improve resolution and imaging. The aim of 

MV is to apply an optimal set of weights in order to estimate the desired signal 

waveform as accurately as possible, while rejecting the interfering signals [54]. 

Synnevag et al. has highlighted the benefits of MV over DAS for producing 

higher contrast and resolution. They discussed methods that can improve 

robustness. They also demonstrated comparable quality levels while employing 

smaller apertures, fewer transmitted frequencies, or greater penetration depths. 

 The MV beamformer is used in conjunction with covariance matrix-based 

adaptive weighting. It could be used to enhance penetration depth while preserving 

lateral resolution [11]. The covariance matrix is critical in adaptive beamforming. It 

is a matrix that depicts the statistical relationship between the received signals of 

the array members. 

 

The covariance matrix is computed through the received signals and then used 

to weight the array components in adaptive beamforming to improve the intended 
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signal and minimize interference [60], [61]. Various techniques, such as 

interference-plus-noise covariance matrix estimation and sample covariance matrix 

estimation, can be used to estimate the covariance matrix.[61], [62].  

The precision of the covariance matrix estimate can affect the quality of the 

adaptive beamforming process. Generally, the covariance matrix is an important 

component in adaptive beamforming since it allows for the strengthening of 

desirable signals while suppressing interference. However, MV beamforming does 

not increase contrast [63]. Researchers have proposed merging MV beamforming 

with other methods to increase contrast and to overcome this issue., such as Sign 

Coherence Factor (SCF) [58], [64], Coherence Factor (CF) weighting and 

Convolutional Neural Networks (CNN) [63].  

Combining CF weighting with MV beamforming improves contrast and reduces 

sidelobes by enhancing in-phase signals while lowering out-of-phase signals [58]. 

Section 2.16 will introduce the CF concept. 

The use of SCF could also modify the beamformer's input vector, which can 

reduce side lobe noise while requiring nearly no additional calculations [64]. 

 The third proposed method of combining MV beamforming with CNN 

suppresses off-axis scattering signals while the MV beamforming apodization 

weights provide improved image resolution performance [63]. 

Researchers have also proposed combining MV beamforming with Phase 

Coherence Imaging (PCI) to enhance imaging resolution and contrast 

simultaneously. PCI analyzes phase dispersion, generates coherence factors PCF 

and SCF, and weighs the MV beamformed channel output [57].  

Salari and Asl have proposed adaptively generated parameters for MV 

performance balance, ensuring user independence [65].  

MV beamforming has two different types of implementations, in time domain 

and in frequency domain. In the use of time domain implementation, the weighting 

vector and output value for each point are derived by using vectors of data or 
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sensor signals that have been received. In frequency domain implementing, Fourier 

transforms are used to convert sensor signals into the frequency domain. The final 

output is determined by taking the central sample of the result after applying the 

inverse Fourier transform to the weighted output vector. Time domain and 

frequency domain implementations of MV have close performance. Therefore, 

time domain implementation is usually selected because it requires less 

calculations and time. 

The weighting vector in MV beamformer is always reorganized to minimize the 

output power by giving a unity value for the focal point's response. This criterion 

can be mathematically described as [66], [67], [68]: 

 

𝐰MV = arg 𝑚𝑖𝑛
𝐰

 𝐰𝐻𝐂𝐌 𝐰         

 subject to      𝐰𝐻𝐚 = 1 ,        (2.5) 

 

The weighting vector is 𝑤,CM is the echo data's covariance matrix 𝐰𝐻 is weight 

transpose. 𝑎 is defined as the steering vector accustomed to recompense for the 

delays from the focal point for every element that is received. The final result of 

the weight value is displayed as [66], [68]: 

 

𝒘𝑴𝑽 =
𝑪𝑴−𝟏𝒂

𝒂𝑯𝑪𝑴−𝟏𝒂
 .                                              (2.6) 

 

The analytical form of CM is unknown, and it is typically estimated from the 

data. In spatial smoothing, the transducer array is subdivided into 𝑝 subarrays, with 

one element being shifted between each two adjacent subarrays [69]. Temporal 

smoothing, where (2𝐾 +  1) is a vector of specific number of samples for each 

focal point [70], is included in the CM calculation. The covariance matrix can be 

expressed as [66], [68]: 
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𝑪𝑴 =
𝟏

𝑷
∑  𝑷−𝟏

𝑷=𝟎 𝑽𝒑𝑽𝒑
𝑯 ,                                                                                          (2.7) 

 

where the number of subarrays is called 𝑝, and it is equivalent to (𝑀 −  𝐿𝑝 +  1). 

 𝐿𝑝 is the length of the subarray in the spatial smoothing operation. The total 

amount of transducer elements is 𝑀. 𝑉𝑝 is the 𝑝𝑡ℎ subarray, calculated as follows 

[66], [68]:  

𝑽𝒑 = [𝒚𝒑(𝒏)    𝒚𝒑+𝟏(𝒏)     …     𝒚𝒑+𝑳𝒑−𝟏(𝒏)]
′
,                    (2.8) 

  

where 𝑦𝑝(𝑛) is a portion of the input signal received by the 𝑝𝑡ℎ  element, 𝑝 =

 0, 1, . . . , 𝑃 − 1. 

 𝑦𝑝(𝑛) represents a vector of length (2𝐾 +  1).  

The beamformer's output value is computed by multiplying the subarray 

average by the weighting vector, as follows [66], [68]: 

 

𝒀 = 𝒘𝑴𝑽
′ 𝟏

𝑷
∑  𝑷−𝟏

𝒑=𝟎 𝑽𝒑  .                                                                                 (2.9) 

 

By studying the effect of  𝐿𝑝 on contrast and resolution in MV and method, it is 

observed that decreasing the value of 𝐿𝑝 leads to lowering contrast ratio and 

contrast to noise ratio (approaching DAS beamforming method), and also 

decreases resolution and increases brightness, while the background speckle 

appears homogeneous and clear. On the other side, the increase in 𝐿𝑝 value has a 

very positive and noticeable effect on resolution and contrast but at the expense of 

reducing the robustness of the method towards noise and off-axis signals. 
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In summary, MV offers improved resolution and adaptive capabilities, but it 

comes with high computational complexity and potential limitations in the overall 

image contrast. 

2.15  Eigenspace-Based Minimum Variance Beamforming (ESBMV) 

ESBMV is a technique used in medical ultrasound imaging to improve image 

quality. It is a type of adaptive beamforming that is used to suppress sidelobes, 

granting lobes and clutter in PWI [21], [71]. ESBMV was first introduced by Van 

Veen in (1988). It is based on the minimum variance (MV) beamforming 

algorithm, which is designed to improve image resolution in ultrasound imaging  

[71]. ESBMV overcomes the shortcomings of the MV algorithm by using 

eigenspace-based projection to estimate the covariance matrix [21], [71]. ESBMV 

method has been shown to improve the robustness of the algorithm with speckle 

pattern consistency and markedly remove noise while preserving the effective 

ability to suppress clutter and side lobes [72]. However, it usually introduces dark 

region artifacts alongside hyperechoic scatterers when obtaining improved contrast, 

which is called Black Box Regions (BBR). 

 Lately, several research groups have investigated and developed several ways 

to improve ESBMV beamforming. Mahloojifar and Asl have proposed an iterative 

ESBMV implementation for improving imaging parameter choices in a simulated 

cyst phantom. Zeng et al. suggested combining Wiener post-filtering with ESBMV 

to improve ESBMV resolution and contrast. Aliabadi et al. has developed a method 

for improving contrast in ESBMV by modifying the focal point value based on the 

qualities of the echo signals received by the surrounding points.  Zhao et al. 

suggested an original technique that combines a coherence factor based on 

subarrays with ESBMV. This technique aids in the enhancement of imaging quality 

in terms of resolution, speckle homogeneity and contrast. Other techniques that 

have been proposed to improve ESBMV's performance include short-lag spatial 



42 

 

coherence, DMAS beamformer, SCF, adaptive eigenvalue threshold and adaptive 

image quality. These methods aimed to remove BBR artifacts, reduce sidelobes, 

and improve signal-to-noise ratio. However, they had not totally remove ESBMV 

artifacts or noticeably improve imaging quality. 

It is based on the minimum variance (MV) beamforming algorithm, which is 

designed to improve image resolution in ultrasound imaging  [71]. ESBMV 

overcomes the shortcomings of the MV algorithm by using eigenspace-based 

projection to estimate the covariance matrix [21], [71]. ESBMV method has been 

shown to improve the robustness of the algorithm with speckle pattern consistency 

and markedly remove noise while preserving the effective ability to suppress 

clutter and side lobes [72]. 

In ESBMV, Signal and noise subspaces are found from the MV covariance 

matrix (CM), then the weight vector is projected onto the signal subspace. CM can 

be written as [15], [16]: 

 

𝑪𝑴 = 𝑼𝜦𝑼𝐻 = 𝑼𝑺𝜦𝑼𝑺
𝐻 + 𝑼𝑵𝜦𝑼𝑵

𝐻 = 𝑪𝑴𝑺 + 𝑪𝑴𝑵,            (2.10) 

 

where the diagonal matrix is Λ = diag [𝜆1, 𝜆2, … , 𝜆𝐿𝑝] CM's eigenvalues are 

represented by the diagonal of Λ, where 𝜆1 ⩾ 𝜆2 ⩾ ⋯ ⩾ 𝜆𝐿𝑝 are arranged in 

descending order. 𝑈 =  [𝑢1, 𝑢2, . . . , 𝑢𝐿𝑝] where 𝑢𝑖 is the 𝑖𝑡ℎ orthonormal 

eigenvector for 𝜆𝑖 with 𝑖 = 1, … , 𝐿𝑝. In this method, 𝐶𝑀 is divided based on its 

Eigen structure, into signal and noise subspaces. Subsequently, weighting vector in 

MV is subjected onto the corresponding subspace-constructed signal. As a result of 

the high coherency of on-axis signals, the energy produced by the mainlobe is 

focused on the eigenvectors related to the larger eigenvalues. Depending on this 

description, the signal subspace matrix (𝑈𝑠) is written as [15]: 
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  𝑼𝒔 = [𝒖𝟏, 𝒖𝟐, … , 𝒖𝑵𝒖𝒎] ,                                                         (2.11) 

  

where 𝑁𝑢𝑚 is the number of eigenvectors included in the signal subspace. The 

signal subspace is constructed from the eigenvectors whose corresponding 

eigenvalues are greater than δ times the highest eigenvalue (𝜆𝑚𝑎𝑥), where δ is a 

value that can be set by the user from 0 to 1[13]. New weights are then calculated 

by projecting the MV weight to the signal subspace using the following equation 

[15]: 

 𝒘𝐸𝑆𝐵𝑀𝑉 = 𝑼𝑺 𝑼𝑺
𝑯 𝒘𝑀𝑉 .                                 (2.12)  

 

Where𝑼𝑺  is the signal subspace matrix. 

 𝐻  is denotes the transpose of the matrix. 

In summary, ESBMV beamforming offers improved resolution and contrast, but 

it suffers from dark spots and BBRs artifacts which appear in background speckle. 

2.16  Partial Eigenspace-Based Minimum Variance (PESBMV) 

Contrast and resolution in MV adaptive beamformers are improved by ESBMV 

beamforming. Nevertheless, two types of artifacts reduce the overall image quality 

in ESBMV. Firstly, BBR around hyperechoic targets, and secondly dark spots in 

background speckle regions. Therefore, PESBMV was proposed to overcome those 

limitations. By depending on the value of 𝑁𝑢𝑚, this method can distinguish or 

divide the image into two areas. The first area contains hyperechoic objects, wires 

(or point targets), and sidelobes, while the second area contains hypoechoic objects 

and speckle backgrounds. The weight in this method can be written as [20]: 
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  𝑾𝑷𝑬𝑺𝑩𝑴𝑽 = {
𝑼𝑺𝑼𝒔

𝑯𝒘𝑴𝑽     if 𝑵𝒖𝒎 > 𝑳𝒑. 𝜼

𝒘𝑴𝑽     otherwise. 
 ,               ( 2.13) 

 

where 𝜂 is a user-specified coefficient that is between 0 and 1. δ has a direct effect 

on the reduction of the noise level and 𝑁𝑢𝑚. Depending on the type of the 

processed data the value of δ is selected, since it balances between imaging 

artifacts and the darkness and delineation of hypoechoic targets. 

PESBMV was able to achieve a quantum leap in the PWI field by averting the 

BBR artifacts and controlling the dark spots through controlling the value of 𝜂. The 

ability of the factor 𝑁𝑢𝑚 in discriminating the imaging regions will be further 

clarified in chapter four. 

In summary, PESBMV beamforming overcomes the limitation of ESBMV, by 

decreasing the BBR and sidelobes, with a little reduction in contrast.  

2.17  Coherence Factor (CF) 

CF is an adaptive method that measures the coherency of signals. It is also used 

to describe the superiority of adaptive imaging focusing [73]. The CF originally 

introduced as a method of quantifying the quality of ultrasound imaging. The use 

of CF is widespread to enhance imaging quality in both ultrasound and 

photoacoustic imaging [74], [75]. The ratio between the coherent and incoherent 

sums of the received signals after applying focusing delays [75]. CF is defined as 

[75] : 

Where: 

 𝑥𝑖(𝑘) represents the data received from channel 𝑖 after applying     focusing   

delays 

  𝑘 is the time index. 

 𝑀 number of elements. 
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𝑪𝑭(𝑲) =
|∑  𝑴−𝟏

𝒊=𝟎 𝒙𝒊(𝒌)|
𝟐

𝑴 ∑  𝑴−𝟏
𝒊=𝟎 |𝒙𝒊(𝒌)|𝟐  ,                                           (2.14) 

 

In ultrasonic imaging, CF value is commonly utilized as a weight to eliminate 

sidelobes.  By using coherent signals, the value of CF increases, allowing the 

beamformer output to pass with no distortion.  On the other hand, the beamformer 

output is attenuated by incoherent signals, which lowers the value of CF. By 

utilizing this property in the CF, artifacts and sidelobe levels can be reduced, and 

spatial resolution can be enhanced in point target imaging. The ultimate 

beamformed output is found by multiplying the CF by the final beamformer output. 

By computing the CF for each image point and then multiplying it by the 

beamformer output at that point, the CF can be used to adaptively weight the 

output of any form of beamformers as shown in figure 2.8.  Despite those 

advantages of CF, there are two main disadvantages of using this type of adaptive 

weighting. Firstly, due to its high sensitivity to incoherency, the CF cannot 

maintain the homogeneity of speckle-generating targets, which results in reducing 

the intensity level and increasing the variance in background tissue. Secondly the 

generation of BBR artifacts on the sides of hyperechoic targets in the region of 

interest. The incoherence created by the sidelobes of the lesion that intersect in this 

area produces artifacts, that diminish the value of the CF [75].  
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Figure (2.8): Block diagram of coherence-weighted beamforming using CF  [76]. 

 

In summary, the advantages of coherence factor beamforming include high 

enhancing resolution, despite the distortion which is usually introduced in 

background speckle by dark spots and BBRs. 

2.18   Wiener Post Filter 

The Wiener post-filter, also known as the Wiener filter, is a signal processing 

filter that uses linear time-invariant (LTI) filtering of an observed noisy process to 

give an estimate of a desired or target random process, assuming known stationary 

signal and noise spectra, and additive noise. In ultrasound imaging, the Wiener 

filter is a denoising technique used to minimize speckle noise and improve image 

quality. It is a universal filter that minimizes the mean square error between the 

estimated and the original signal to give an estimate of the uncorrupted signal [77]. 
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𝑯Wiener =
|𝒀|𝟐

|𝒀|𝟐+𝒘𝑯𝑪𝑴𝒏𝒘
            (2.15) 

 

where 𝑤𝐻𝐶𝑀𝑛𝑤 represents the noise of the output power, with w being the weight 

of the used beamformer. 

 𝐶𝑀𝑛 is the noise covariance matrix for the used beamformer. 

 |𝑌|2 represented the power of the output signal of the used beamformer.  

The noise covariance matrix is obtained by the following equation.  

 

𝐂𝐌𝐧 =
𝟏

𝐌
∑  𝐌

𝐢=𝟏 (𝐱𝐢(𝐤) − 𝐘(𝐤))𝟐 ∗ 𝐈          (2.16) 

 

where 𝑥𝑚(𝑘) the signal received by the 𝑖𝑡ℎelement. 𝐼  is Identity matrix.𝑌(𝑘) is the 

power of the output signal of the used beamformer. 

  

In summary, the Wiener post-filter offers optimal noise reduction and 

adaptability but requires prior knowledge and may lead to over-suppression of 

artifacts in certain scenarios. 

2.19  Standard Deviation 

In statistics, the standard deviation is a measure of the amount of variation or 

dispersion of a set of values. It tells how spread out from the center of the 

distribution the data is on average. A low standard deviation indicates that the 

values tend to be close to the mean of the set, while a high standard deviation 

indicates the opposite. The standard deviation is calculated as the square root of the 

variance. The standard deviation is calculated using the formula  [86]: 
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𝝈 = √
∑  𝑴

𝒌=𝟏 (𝒙(𝒌)−𝝁)𝟐

𝑴
     .                                                              )2.17) 

Where 𝜇 is the mean value. 

𝑥(𝑘) is represent the received data. 

𝑀 is represent number of elements. 
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3 CHAPTER THREE 

SIMULATION -BASED EVALUATION OF 

PROPOSED METHOD 

3.1 Introduction  

This chapter displays the suggested method and its flowchart, as well as 

investigating the proposed method and other beamformers performance by 

applying them to point spread function simulations. The obtained results are also 

discussed in this chapter. 

3.2 Proposed Method 

The method proposed in this work aims to maintain high imaging quality via 

discriminations between the different areas of an image. Rather than discriminating 

the image region into two groups of areas as in PESBMV, the proposed method 

further discriminates the image so that four different image areas are distinguished 

from each other. This is done relying on the 𝑁𝑢𝑚 value as well as the weight of 

ESBMV method. This method is proposed to take advantage of the positives of 

ESBMV, MV and CF, each in the most suitable region, where the most suitable 

beamformer is applied. 

Thus, the idea is exploiting the positives of a number of beamforming methods, 

where depending on specific values that detect different areas in the image, the best 

performance of the methods is included  in each region to obtain high-quality 

images. 

Initially, two factors are proposed to distinguish between the different areas of 

the image. The first parameter is the value of 𝑁𝑢𝑚 that is the number of vectors in 
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the signal subspace matrix produced by the ESBMV technique. By using this 

factor, image can be divided into two regions. The first region includes 

hyperechoic targets, point targets (or wire points) and sidelobe regions, where the  

value of this factor is found to be less than its half maximum possible value, which 

is the subarray length (𝐿𝑝). 

 The second area distinguished by Num is the hypoechoic targets and 

background speckle, where it is found that the value of Num is above half the 

subarray length (𝐿𝑝) . This behavior of Num is shown in figure 3.1 and figure 3.2, 

on two different in-vitro data sets. The objects included in the areas for which these 

two data sets are taken is shown in (a) for figure 3.1 and figure 3.2. The value of 𝐿𝑝 

used during producing this figure is 32. This is proved previously in PESBMV 

method, where the use of ESBMV is blocked in the first area and allowed in the 

second area. In this way, BBR artifacts are prevented from occurring at the side 

lobe regions and dark spots are reduced in many points in the background speckle. 

Afterwards, the role of the method proposed in this work comes through further 

discriminating each of the two areas into other two subareas. This gives flexibility 

in the use of different types of beamforming in each of the four regions, allowing 

for further improvement in imaging quality. This discrimination is performed by 

depending on Num value, where it is found, as can be clearly seen in (b) for both 

figure 3.1 and figure 3.2, that Num can distinguish between the elements in the first 

region (including hyperechoic and point targets and sidelobes), by giving values of 

larger than 1 to sidelobes and 1 to hyperechoic and point targets. It is also found 

that the weight produced by ESBMV method can very well distinguish between the 

elements of region two (which includes hypoechoic targets and speckle 

backgrounds), by giving dark values to hypoechoic targets that are very 

distinguishable from the bright values given to the speckle background. 
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After discrimination, the proposed method uses four different types of 

beamforming techniques in each of the four regions as follows. Firstly, ESBMV 

(𝐿𝑝 = 𝑀/2) multiplied by CF is used where hypoechoic targets exist. Secondly, 

MV(𝐿𝑝 = 1) is used at the background speckle and hyperechoic target regions. 

Finally, MV(𝐿𝑝 = 𝑀/2) is used for areas that include BBRs resembled by the 

sidelobe regions. The flow chart that explains the steps followed by this method is 

shown in figure 3.3. 
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Figure (3.3):  Flow chart outlining the steps followed by the proposed method. 
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3.3 Differences Between PESBMV and the Proposed Method 

The main difference between the proposed method and PESBMV is look like by 

the levels of image discrimination. PESBMV includes a single level of 

discrimination that divides image structures into two regions, while the proposed 

method further discriminates each of these two regions into two subregions, 

allowing for the use of four types of beamforming methods instead of only two. 

 

PESBMV has been mainly proposed to minimize the artifacts of ESBMV 

resembled by BBRs and dark spots, without adding improvement to image quality. 

Unlike PESBMV, the proposed method adds another level of image decomposition 

so that image quality can be improved without reducing the ability of the method to 

reduce artifacts. 

 

Another difference between PESBMV and the proposed method is the 

dependence of the proposed method on a new discrimination factor (ESBMV 

weight), in addition to Num used in PESBMV. Figure 3.4 shows a comparison 

between the flow charts of the two methods,  
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3.4 PSF Imaging Using Field II Simulation Program 

Point spread function (PSF) imaging is commonly used to evaluate the imaging 

quality of an ultrasound systems, by displaying the spatial impulse response of the 

ultrasound system. [82]. The PSF images result from imaging point targets located 

in various locations in the imaging area. The main property measured for PSF is 

spatial resolution, which is defined as the width of the mainlobe at the center of 

PSF along lateral, axial or elevational direction, after a specific drop in amplitude 

from the peak value. In addition to spatial resolution, the pattern of side lobes and 

grating lobes can also be assessed using PSF imaging [82]. Thus, PSF is often 

analyzed to determine the image quality of an ultrasound systems and algorithms.  

The formation of PSF is determined by several practical factors such as the 

transducer aperture, element directivity, apodization, pitch, imaging position and 

steering angles. Conventional numerical simulations are usually used to provide the 

ability to examine those factors’ effects and produce empirical expressions based 

on PSF performance.  

Field II simulation software is one of these simulators. Field II is a software that 

uses linear acoustics to simulate ultrasonic translator fields and ultrasound imaging. 

It was created at Duke University in 1991-92 and has been available for free 

download since 1995. The program calculates pulsed ultrasound fields using the 

Tupholme-Stepanishen approach and is capable of estimating emission and pulse-

echo fields for both pulsed and continuous wave scenarios for a wide number of 

various transducers. 

The software allows users to simulate ultrasonic transducer fields and 

ultrasound imaging, making it a powerful tool for learning and creating novel 

ultrasound imaging techniques. 

The program comes in a variety of variants, including MATLAB, Octave, and C 

library versions, making it compatible with a variety of programming environments 

and systems. Field II can be downloaded for free. 
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Figure (3.5): Field II simulation program initialization background [78] . 

 

3.5  Specifications of Simulated System 

 A linear array consisting of 128 elements with a width of 0.27 mm, a height of 

6.0 mm, and a pitch of 0.304 mm is simulated. The central frequency of the 

transmitted sinusoidal pulse is 6 MHz, with 100% bandwidth, and 100MHz 

sampling frequency. All 128 elements are used during the transmission and 

reception, with no focusing at the transmission and dynamic focusing at the 

reception. The sinusoidal wave consists of 2.5 cycles. A medium sound speed of 

1540m/s is assumed. 
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3.6 Quality Metrics  

This work employs well-known quality metrics for the quantitative analyses of 

the performance of the proposed method. Those metrics are Contrast-to-Noise 

Ratio (CNR), Contrast Ratio (CR), Full Width at Half Maximum (FWHM), and 

Speckle signal-to-Noise Ratio (SSNR). 

As indicated in the following equation, CR is calculated to evaluate imaging 

contrast from the absolute difference between the cystic area's mean value and the 

background tissue mean value [83]: 

 

𝑪𝑹 =  |𝝁𝒊 − 𝝁𝒃|,                                                         (3.1) 

 

where the mean values within the cyst target and speckle are 𝜇𝑖 and 𝜇𝑏, 

respectively. CNR is another measure of contrast that is found as follows [83]: 

 

𝑪𝑵𝑹 =
|𝝁𝒊−𝝁𝒃|

√𝝈𝒊
𝟐+𝝈𝒃

𝟐
  ,                                                               (3.2) 

 

where 𝜎𝑖 and 𝜎𝑏 are the equivalent standard deviations, within the cyst target area 

and the speckle background area, respectively. In the contrast dataset, two 2x1 mm 

rectangles inside the two cysts at the center of the image, with two 11x15 mm 

rectangles to the left and right top corners of the image are the areas for which CR 

and CNR are calculated depending on equations 3.1 and 3.2. 

Background Speckle Signal-to-Noise Ratio (𝑆𝑆𝑁𝑅Bg) is used to evaluate the 

quality of background speckle. The following formula is used to determine 

𝑆𝑆𝑁𝑅Bg  [84], [85]: 
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𝑺𝑺𝑵𝑹𝑩𝒈 =
𝝁𝒃

𝝈𝒃
  ,                                             (3.3)  

 

 In contrast dataset, an 11 x 17 mm rectangle in the right top corner is used to 

measure the background speckle's homogeneity using 𝑆𝑆𝑁𝑅Bg. A similar formula 

to that used in equation 3.3 is used to calculate the BBR's Speckle Signal-to-Noise 

Ratio (𝑆𝑆𝑁𝑅BBR) as follows [84], [85]: 

 

𝑺𝑺𝑵𝑹𝑩𝑩𝑹 =
𝝁𝑩𝑩𝑹

𝝈𝑩𝑩𝑹
 ,                                                            (3.4) 

  

where 𝜇𝐵𝐵𝑅 and 𝜎𝐵𝐵𝑅 are the BBR's standard deviation and mean values, 

respectively. In the resolution phantom, two 2x2 mm squares to the sides of the 

point target at a depth of 9mm indicates the area for which, BBR artifacts are 

evaluated using 𝑆𝑆𝑁𝑅BBR. 

 

3.7 Simulations of PSF Imaging 

 The PSF module simulated in Field II consists of three-point targets located 

at depths, 30 and 35 mm, perpendicular to the middle of the transducer (x=0). 

Lateral resolution is assessed for the point at 30 mm depth.   

Ultrasound images of this PSF model were produced using different 

beamforming methods, and the resulting B-mode images are as illustrated in figure 

3.6. The images in this figure are all produced with a dynamic range of 60dB. 

In figure 3.6 image (a) shows the result of using MV beamforming at subarray 

length of 32. In figure 3.6 (b), ESBMV beamforming is used with subarray lengths 

of 32. Finally, images (c) and (d) in Figure (3.6) show the results of using 

PESBMV beamforming and the proposed method respectively, the beamforming 

performance at the 30 mm depth was evaluated in terms of sidelobe levels and 



62 

 

resolution using Full Width at Half Maximum (FWHM), where calculating the 

FWHM at 6 dB drop from the peak of the main lobe in the lateral direction gives 

the lateral resolution [79]. FWHM measurements are given in Table (3-1). 

Figure 3.6 show that PESBMV has a main lobe equivalent to MV (𝐿𝑝 = 32). 

Image quality in ESBMV compared to MV (𝐿𝑝 = 32)  is slightly improved, as 

shown in figure 3.6 (a, b). according to this figure, it can be confirme that ESBMV-

based methods have better lateral resolution compared to MV methods. The 

sidelobe and FWHM are both improved when using the proposed algorithm 

compared to the other simulated beamformers. Figure 3.7 shows the lateral profile 

of the four simulated beamformers, for the point centered at the 30 mm depth. This 

figure shows that the proposed method is superior inside lobe reduction and in 

resolution value, compared to the other simulated beamformers. 
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Figure (3.6) :Simulated point targets using beamforming methods: (a) MV (𝐿𝑝 = 32) (b) 

ESBMV (δ = 0.2 , 𝐿𝑝 = 32) (c) PESBMV (δ = 0.2, η = 0.5, 𝐿𝑝 = 32) (d) proposed method (δ = 

0.2, η = 0.5). All images are shown in a dynamic range of 60 dB. 
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Table (3-1( Full Width at Half Maximum for the point located at the 30mm depth, for the 

beamformers shown in figure 3.6. 

Method 

 

FWHM (mm) 

MV (𝑳𝒑 = 𝟑𝟐) 

 

0.539 

ESBMV (𝑳𝒑 = 𝟑𝟐) 

 

0.441 

PESBMV ((δ = 0.2, η = 0.5) 

 

0.539 

Proposed method (δ = 0.2, η = 0.5) 

 

0.241 
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4 CHAPTER FOUR 

IN VITRO DATASETS RESULTS 

4.1 Introduction 

This chapter is dedicated for evaluating the proposed method used in vitro 

datasets. In addition to B-mode images evaluating, the proposed method is 

evaluated and compared to other beamforming method using a number of 

ultrasound imaging quality metrics. These metrics include both contrast resolution 

and speckle SNR.  

4.2 In Vitro Datasets  

Two in vitro datasets are used in this dissertation to evaluate the proposed 

method. The datasets are obtained from the web platform of the International 

Ultrasound Symposium IEEE 2016 held in Tours, France [80]. A Verasonics 

Vantage 256 research scanner and an L11 probe are used to collect data (Verasonics 

Inc., Redmond, WA). CIRS Multi-Purpose Ultrasound Phantom (Model 040GSE) 

is used to collect those datasets for the modules shown in (a) for both figure 3.1 

and figure 3.2 [81]. The first dataset for the module in figure 3.1(a) has three 

anechoic cysts and a single point target. They are embedded in background 

speckles. During this chapter, this dataset will be called (contrast dataset), due to 

including hypoechoic targets, allowing for doing contrast measurements. 

The second dataset is shown in figure 3.2 (a). It includes a single hyperechoic 

lesion and seven point targets, embedded in background speckles [82]. This dataset 

will be called (resolution dataset) during this dissertation, due to including several 

point targets allowing for doing measurements of resolution at various imaging 

depths. MATLAB program is used to implement the proposed method as well as 

MV, ESBMV, and PESBMV methods for assessment and compression.  
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A linear array is used, consisting of 128 elements, each element has a width of 

0.27 mm, a height of 6.0 mm, and a pitch of 0.3 mm. 6 MHz central frequency, 

100% bandwidth, and 20.832 MHz sampling frequency are used. All the 128 

elements were used during the transmission and reception, with a dynamic focus on 

the receiver and no focusing at the transmitter.  The excitation sinusoidal wave has 

a pulse duration of 2.5 cycles. It is assumed that the medium sound speed is 

1540m/s. 

4.3 Results   

In this dissertation, a variety of beamformers are applied to the in vitro datasets 

to be compared with the proposed beamformer's performance. Figure 4.6 displays 

the superiority of the proposed method in improving CR. Where, as shown in (a)  

and (b) in figure 4.1, MV (𝐿𝑝 = 1) and MV (𝐿𝑝 = 𝑀/2) produce blurred 

boundaries for the hypoechoic cyst targets. 

 

Figure (4.1): Images of in vitro data of the contrast dataset using: (a) MV (𝐿𝑝 = 1) (b) MV 

(𝐿𝑝 = 𝑀/2). 
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While there is noticeable distortion in background homogeneity due to the produced artifacts 

in ESBMV (𝐿𝑝 = 𝑀/4, 𝑀/2), as shown in figure 4.2 and 4.3. Figure (4.2): Images of the 

contrast dataset using: (a) ESBMV (𝐿𝑝 = 𝑀/4) (b) ESBMV (𝐿𝑝 = 𝑀/2) 

 

 

 

Figure (4.3): Images of in vitro data of the contrast dataset using: (a) ESBMV (𝐿𝑝 = 𝑀/

4) (b) ESBMV (𝐿𝑝 = 𝑀/2) 
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Figure (4.4): Images of in vitro data of the resolution dataset using: (a) ESBMV (𝐿𝑝 = 𝑀/

4) (b) ESBMV (𝐿𝑝 = 𝑀/2). 

 

 

ESBMV (𝐿𝑝 = 𝑀/4) and PESBMV (𝐿𝑝 = 𝑀/4) have a reduced CR compared 

to ESBMV (𝐿𝑝 = 𝑀/2) as can be seen in table 4.1. 

The speckle pattern produced by MV (𝐿𝑝 = 𝑀/2) is homogeneous, while in 

ESBMV method, the background speckle suffers from strong BBRs. PESBMV 

method is better than ESBMV in limiting dark spots and BBR. Nevertheless, the 

background speckle using MV (𝐿𝑝 = 1 and 𝑀/2) as in figure 4.1 is still superior. 

This is comparable to DAS beamforming technique, which is known to give a 

highly homogeneous background. 

 Table 4.1 indicates that SSNR for the proposed method and MV with (𝐿𝑝 = 1) 

are close, which illustrates the  strength of the proposed method in preserving the 

homogeny of speckle background. 
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Lateral responses of the implemented beamformers for the point target 

positioned at the 18.75 mm depth in the resolution phantom dataset are given in 

figure 4.7 to aid intuitive observations of their lateral resolution performance. The 

graphs show that when 𝐿𝑝 increases, both of MV and ESBMV methods 

considerably result in reducing mainlobe width, where, compared to the other 

approaches, MV (𝐿𝑃 = 1) is less effective in improving lateral resolution since its 

mainlobe width is theoretically equivalent to that of DAS. Lateral resolution in 

PESBMV approaches that in ESBMV method using the same subarray length 

(𝐿𝑝), from table 4.2, it can be noticed  that the smallest value of FWHM has been 

achieved using the proposed method, with an improvement by (52%) compared to 

the resolution achieved using PESBMV as shown in figure 4.4. One exception is 

FWHM in ESBMV at 𝐿𝑝 = 𝑀/4, which produces very strong BBR artifacts as can 

be noticed from table 4.2 (the values of 𝑆𝑆𝑁𝑅BBR) and in figures 4.5 and 4.6. 
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Figure (4.5) : Images of in vitro data of the resolution dataset using (a) PESBMV (δ = 0.2, η 

= 0.5, 𝐿𝑝 = 𝑀/4) (b) proposed method (δ = 0.2, η = 0.5). 
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Figure (4.6): Images of in vitro data of the resolution dataset using different beamforming 

method. All images are shown in a dynamic range of 60 dB. 
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Figure (4.7): Images of in vitro data of contrast dataset using different beamforming method. 

All images are shown in a dynamic range of 60dB. 
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Table (4-1): Measurement of contrast and speckle statistics for the contrast dataset using 

different beamforming techniques. 

 

Method 

 

CR (dB) CNR (dB) SSNR 

MV (𝑳𝒑 = 𝟏) 12.36 2.05 1.74 

MV (𝑳𝒑 = 𝑴 /𝟐) 11.85 1.97 1.65 

ESBMV (𝑳𝒑 = 𝑴/𝟒) 15.67 2.44 1.63 

ESBMV (𝑳𝒑 = 𝑴/𝟐) 17.17 2.12 1.30 

PESBMV (δ=0.2, η=0.5) 15.57 2.42 1.63 

Proposed method (δ=0.2, 

η=0.5) 
16.26 2.55 1.70 
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Table (4-2): Measurements of SSNR at BBR and FWHM for the point target at 18.75 mm 

depth for the resolution phantom dataset using different beamforming techniques. 

 

Method FWHM (mm) 𝑺𝑺𝑵𝑹𝑩𝑩𝑹 

MV (𝑳𝒑 = 𝟏) 1.086 5.82 

MV (𝑳𝒑 = 𝑴/𝟐) 0.709 6.33 

ESBMV (𝑳𝒑 = 𝑴 /𝟒) 0.978 2.29 

ESBMV (𝑳𝒑 = 𝑴 /𝟐) 0.648 2.56 

PESBMV ((δ = 0.2, η = 0.5) 0.987 6.03 

Proposed method (δ = 0.2, η = 0.5) 0.704 5.89 
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4.4 Analysis of Results 

The proposed algorithm proves to be highly effective in increasing the quality 

of imaging through improving image contrast and preserving speckle pattern. It 

also proves to be significantly increasing lateral resolution. This is done by sensing 

the details of the image first through the value of 𝑁𝑢𝑚, which can efficiently 

distinguish hyperechoic targets and sidelobe regions from the rest of the regions, as 

it gives a value (1) for the hyperechoic target and a value between 2 and half 

subarray length to sidelobe regions as can be noticed from (b) in figure 3.1 and 

figure 3.2. Secondly by using the value of the weights of ESBMV (𝐿𝑝 = 𝑀/4). 

This is because the values of this weight given to the cyst are found to be within 

the range from 0 to 0.5, as can be noticed from (c) in figure 3.1 and figure 3.2. 

Figure 4.6 illustrates that the cyst is much more visible using the proposed 

method and that the proposed beamformer significantly improves CNR, exceeding 

all the implemented beamforming methods. 

 The main reason for that is the ability of the proposed method to detect the 

areas of the cysts, and because of the use of the CF that justifies the weight of the 

beamformer based on the coherency of these signals and due to the projection of 

the MV weights onto the signal subspace. Also, to improve speckle statistics and 

contrast in tissue areas, temporal smoothing is applied, where the final value of the 

focal point is determined by a vector of samples instead of a single sample.  

The proposed method's superiority in terms of CR and CNR is confirmed 

through the results of table 4.1. When the weight of ESBMV(𝐿𝑝 = 𝑀/4) is higher 

than (0.5), this indicates being inside the areas of the speckle. The proposed 

method uses MV (𝐿𝑝 = 1) in this region to produce more homogenous background 

speckle and thus higher values of SSNR are achievable. 
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The issue of the underestimation of the amplitude of hyperechoic targets when a 

large length of the subarray is used  has been solved by surrounding the hyperechoic 

and wire areas by MV (Lp = M/2), while beamforming inside the regions of the 

hyperechoic and wire targets using MV (Lp = 1). The results of using this method 

are described in tables 4.1 and 4.2. 

4.5 Unsuccessful Examined Methods 

This part discusses a set of methods that have been examined for discriminating 

image regions before reaching the final algorithm proposed in this dissertation. 

Those implemented methods were not considered due to either providing 

unsignificant improvement to the final image or because they were unable to 

distinguish image parts from one another. Those factors include Coherence Factor 

(CF), coherent sum, standard deviation, and Wiener postfilter. 

4.5.1 Coherent Summation of Received Signals 

Coherent sum means to coherently add the values of x(k) for each focal point. It 

also represents the numerator in the equation of CF. It was suggested to be 

examined for discrimination due to  having the ability to highly discriminate 

between hypoechoic targets which have highly coherent signals, and speckle 

background which include incoherent signals. For the same reason, coherent 

summation is expected to be able to discriminate hyperechoic targets from sidelobe 

regions. Figure 4.8 shows the result of coherent summation of contrast dataset. 
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Figure (4.9): (b)The result of coherent summation of the contrast phantom shown in (a). 

 

However, the result of coherently summing received data, as shown in figure 

4.b, has failed to distinguish between hypoechoic targets and background. This is 

because this summation is not a ratio and therefore it becomes lower as depth 

increases and therefore the use of coherence factor (CF) was suggested to solve this 

problem. 

4.5.2 Coherence Factor 

One of the examined methods for discrimination is the coherence factor 

explained in section (2.16). This factor was proposed due to having the ability to 

highly discriminate between hyperechoic targets and sidelobe regions, while it is 

expected not to make a good discrimination in the other region containing 

hypoechoic targets and background speckle, due to its inability to retain 

homogeneity and producing dark spots in background speckle, which makes it hard 

to discriminate many points in this area from cysts. Figure (4.9) shows the value of 

CF using contrast phantom. 

(a) (b) 
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Figure (4.10):(b) The result of the coherence factor of the contrast phantom shown in (a). 

 

As expected, figure 4.9 shows that CF highly distorts background homogeneity 

and thus fails to be suitable for distinguishing in the first region (hypoechoic 

targets and background). In the second region (containing hyperechoic targets and 

sidelobes), CF was efficiently able to discriminate between regions. This means 

that it could be used as a discrimination tool in this area. However, it was not 

considered for this job, and this is because the use of 𝑁𝑢𝑚 was able to give an 

even better results and the latter is therefore considered as a discrimination tool in 

this region in the proposed method. 

4.5.3 Standard Deviation 

In statistics, the standard deviation is a measure of the amount of variation or 

dispersion of a set of values. It tells how spread out from the center of the 

distribution the data is on average. A low standard deviation indicates that the 

(a) (b) 
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values tend to be close to the mean of the set, while a high standard deviation 

indicates the opposite.  

Due to the mentioned properties of standard deviation, it was suggested for 

distinguishing image regions, where standard deviations are calculated for the 

signal subspace matrix of ESBMV. Figure 4.10 shows these values of 𝜎 using the 

contrast phantom.    

 

Figure (4.11): (b) The results of the value of standard deviation of the contrast phantom 

shown (a). 

 

From figure 4.10 it can be seen that 𝜎 was not able to discriminate between 

wires and sidelobes, while it was able to discriminate between cysts and 

backgrounds but with lower performance than the proposed method.     

(a) (b) 
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4.5.4 Wiener Post Filter 

The Wiener filter, also known as the Wiener post-filter, as explained in section 

(2.17), is tested for discriminating image regions. Figure 4.11 shows the output 

values of wiener postfiltering applied to the contrast phantom. 

 

Figure (4.12): (b) The results of wiener filter applied to the contrast phantom shown in (a). 

 

From figure 4.11 it can be seen that Wiener post filter fails as a discriminating 

tool in the region containing cysts and speckle background, because of the highly 

distorting speckle and producing dark spots, in addition to providing widened and 

distorted wire target in the region containing hyperechoic targets and sidelobes, 

which makes Wiener post filter unsuitable for this task. 

  

(a) (b) 
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5 CHAPTER FIVE 

CONCLUSIONS AND FUTURE WORK 

 

5.1   Conclusions 

The technique of transforming received echo signals into a picture to 

characterize the region of interest is known as beamforming. This dissertation 

focuses on Plane-Wave Imaging (PWI) beamformers, which create a complete 

ultrasound image for the area of interest with a single transmission. This enables 

data acquisition at rates greater than 1000 frames per second, enabling for new 

ultrafast imaging applications such as shear wave tracking and flow motion 

estimates. Meanwhile, other beamforming techniques have been developed to 

compensate for PWI's lack of focusing, which reduces imaging quality. This 

dissertation deals with different types of beamformers. 

For PESBMV, it is concluded that PESBMV is a good method suggested to 

eliminate BBR artifacts appear in reference ESBMV, but with decreasing the 

contrast ratio as a drawback. This dissertation introduces a novel approach for 

improving image quality produced by PESBMV. The new algorithm which 

discriminates imaging area based on 𝑁𝑢𝑚 and the weight of ESBMV is meant to 

improve lateral resolution and speckle preservation while simultaneously 

increasing contrast by using different beamforming types in each defined area. The 

results show that the proposed approach can achieve increased image contrast and 

very well keep speckle patterns with a significant increase in lateral resolution. 

Most importantly, it can keep BBRs, and dark spots minimized. Additionally, the 
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proposed approach has the potential to be an effective strategy for improving image 

quality in other imaging methods such as Compound Plane Wave Imaging (CPWI). 

5.2  Future work 

The current work can be extended by performing the following: 

1. Combining the proposed algorithm with other types of beamforming 

methods such as CPWI. This is because merging beamformers with this 

method usually results in further improvement in imaging quality. 

2. Merging the  proposed method with (Salaris method) which suggests to 

adaptively generating the parameters that control MV performance balance 

so that this beamformer is fully independent on the user. 

3. Using Wiener post filtering with proposed method in specific region.  
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Dealing With Datasets In Hdf5 File Format 

Appendix-A: 

HDF5 (Hierarchical Data Format version 5) is a data model, library, and 

file format for storing and managing data. It is designed for flexible and efficient 

input/output (I/O).  It is commonly used in scientific and engineering applications 

to store large, such as astronomical data, bioimage informatics data, and data 

from radio telescopes, complex datasets. HDF5 files can store a wide variety of 

data types, including numerical data, text, images, and more, and it is an open-

source file format that is widely used in neuroscience, molecular dynamics, and 

other fields.  

HDF5 files are organized into a hierarchical structure of groups and datasets, 

which can be easily navigated using the HDF5 library. The format also supports 

compression and chunking to optimize storage and I/O performance. HDF5 files 

can be read and written using a variety of programming languages, including 

MATLAB, Java, Python, and C++. 

In MATLAB, the hdf5 library allows users to read and write data to and from 

HDF5 files. It provides a set of functions and tools that can be used to access 

and manipulate HDF5 files in MATLAB. With hdf5, users can read and write 

large datasets, work with complex data structures, and easily exchange data with 

other software tools that support the HDF5 format. 

In MATLAB, the 'hdf5info' function can be used to obtain information about the 

contents of an HDF5 file. The 'hdf5read' can be used function to read data from 

an HDF5 file into a MATLAB variable. The 'hdf5write' function used to write 

data from a MATLAB variable to an HDF5 file. By using the HDF5 file format, 

large data sets can store and manipulate efficiently, without having to load the 

entire data set into memory. This can save memory space and reduce the time 

required to perform data analysis. 

To export data from an HDF5 file in MATLAB, the `h5read()` function can be 

used to read data from the file and then save it to a file in a different format. 

Here's an example of how to export data from an HDF5 file to a CSV file: 



 

 

 

 

```matlab 

% Open the HDF5 file 

file = 'example.h5'; 

h5info(file); 

 

% Read the data from the HDF5 file 

data = h5read(file, '/path/to/dataset'); 

 

% Save the data to a CSV file 

csvwrite('example.csv', data); 
1 ``` 

`h5info()` is used to display information about the HDF5 file, including the 

names and paths of the datasets it contains. The `h5read()` function is then used 

to read the data from a specific dataset in the file. Finally, the `csvwrite()` 

function is used to save the data to a CSV file. 

`h5read()` function can also be used to read only a portion of a dataset by 

specifying a subset of indices. Additionally, the `csvwrite()` function can be 

replaced with other functions for exporting data to different file formats, such as 

`save()` for saving data to a MAT file. 

There are several advantages of using HDF5 over other file formats like MAT 

files in MATLAB: first large dataset support: HDF5 can handle significantly 

larger datasets than MAT files. This is particularly advantageous for scientific 

data applications where the amount of data can be very large. second Flexibility: 

HDF5 provides more flexibility in handling data objects in terms of data types 

and organization. It can store a variety of data types including numerical data, 

images, audio, and video. third Hierarchical structure: HDF5 has a hierarchical 

structure that allows for efficient organization of data. This structure of HDF5 

files makes it easy to navigate and access data elements. fourth Cross-platform: 

HDF5 is designed to work on multiple platforms, making it easy to exchange 

data between different systems. It is also compatible with a variety of 

programming languages including Python, R, and C++. fifth Compression: 

HDF5 provides a built-in compression feature that can be used to reduce file 

size. This can be useful when working with large datasets, as it can reduce 



 

 

storage requirements and improve I/O performance. While HDF5 is a popular 

open format, it has some drawbacks related to its complex specification, which 

has initiated discussions for an improved replacement. One alternative to HDF5 

is the Experimental Directory Structure (Exdir), which is an open standard for 

data storage in experimental pipelines. Exdir uses file system directories to 

represent the hierarchy, with metadata stored in human readable YAML files, 

datasets stored in binary NumPy files, and raw data stored directly in 

subdirectories. Storing data in multiple files makes it easier to track for version 

control. 
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 لمستخلصا

بما في ذلك الأورام   والإصابات،حديثة تستخدم في تشخيص الأمراض    الطبي أداةالتصوير  يعتبر

أنواع   استخدام  يتم  السينية    مختلفة،والسرطانات.  والأشعة  المحوسب  المقطعي  التصوير  ذلك  في  بما 

والتصوير بالرنين المغناطيسي والموجات فوق الصوتية. يحظى التصوير بالموجات فوق الصوتية بشعبية  

العالية على تحديد    التكلفة،وفعاليته من حيث    ،جراحيةال خاصة نظرا لطبيعته غير   عدم و  الورم،وقدرته 

 التصوير نوع يسمى .الصورة بجودة يضحي ولكنه ،عالية إطارات  معدلات  يوفر مماالتخدير.    الحاجة الى

 الباحثون عمل. ي(PWI)المستوية   بالموجات  التصوير التركيز يستخدم لا الذي الصوتية فوق بالموجات 

 الحزم تشكيل تقنيات  ذلك في بما ،مختلفة تقنيات  خلال من التصوير جودة تحسين على والمهندسون

الفضاء الذاتي المستند الى و  الدقة،للشعاع التكيفي الذي يحسن  (  MVمع الحد الأدنى من التباين )  ،التكيفية

الدنيا التباين  ومع  (ESBMV)  حزمة  للتباين.  فإنعزز  مناطق    ESBMV  ذلك  إنتاج  في  عيب  له 

( الأسود  طريقة  (  BBRالصندوق  اقتراح  تم  المنتجة.  الصور  في  الداكنة   Partial-ESBMVوالبقع 

(PESBMV  )  الأطروحةمؤخرا للتحكم في تلك القطع الأثرية مع انخفاض طفيف في التباين. في هذه ،  

تصوير   جودة  لتحسين  الحزم  تشكيل  طريقة  اقتراح  عاملين  .  PESBMVللتم  الأسلوب  هذا  يستخدم 

كأدوات كشف للإشارة بشكل تكيفي إلى المناطق المختلفة للصورة. وهذه العوامل هي عدد المتجهات في  

تنتجها   التي  للإشارة  الفرعي  الفضاء  يقسم   التمييز،بعد  .   ESBMVووزن    ESBMVمصفوفة  الذي 

في كل منطقة من تلك المناطق. أظهرت   يتم تطبيق أنسب طريقة لتشكيل الحزم  مناطق،الصورة إلى أربع  

على مجموعات البيانات في المختبر    PESBMVو    ESBMVو    MVنتائج تطبيق الطريقة المقترحة  

تفوق الطريقة المقترحة في تحسين حفظ البقع مع    )MATLAB )R2021aوبيانات المحاكاة باستخدام  

( دقة  ب  (٪55تحسين  بالطرق    ،PESBMVة  طريقمقارنة  مقارنة  ممتاز  تباين  توفير  إلى  بالإضافة 

 الأخرى المنفذة. 

 

 

 

 

 

 

 

  







 

 

 

 

  وزارة التعليم العالي والبحث العلمي
 نينوى  جامعة

 كلية هندسة الالكترونيات 
 قسم هندسة الاتصالات 

 

طريقة جديدة لتحسين جودة الصورة في التصوير فوق الصوتي فائق  
 السرعة

 

ا رسالة تقدمت به  

ذنون  معبد السلاشهد        

 إلى
 مجلس كلية هندسة الالكترونيات 

 جامعة نينوى 
 كجزء من متطلبات نيل شهادة الماجستير 

 في
 هندسة الاتصالات 

 
 

 بإشراف 

حمد محمود الزبيديأ أ.م.د. محمود    

العُمري   رامي صالح بزين د.   
 

 

م٢٠٢٤ ه ـ ١٤٤٥    



 

 

 

 

 

 

 

طريقة جديدة لتحسين جودة الصورة في التصوير فوق الصوتي  

 فائق السرعة 

 

 

 شهد عبد السلام ذنون

 

في هندسة الاتصالات مماجستير علورسالة   

 

 

 بإشراف 

حمد محمود الزبيديأأ.م.د. محمود   

العمُري  زينب رامي صالحد.  
 

 

 

 

     العلمي وزارة التعليم العالي والبحث 
 نينوى  ةجامع

 كلية هندسة الالكترونيات 

 قسم هندسة الاتصالات 

م٢٠٢٤  هـ١٤٤٥     


