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ABSTRACT

To meet the increase in wireless services and applications for the Fifth
Generation (5G), the Ultra-Dense Network (UDN) has recently evolved as
one of the key enabler technologies for future 5G systems.

In UDN, a large number of Small Cells (SCs) are deployed compared
to the number of active users. The deployment density of SCs will increase
the spectrum scarcity problem. Cognitive Radio (CR) has been suggested as
a solution to the problem of limited spectrum resources by exploiting the
unused spectrum that is allocated to the Primary Users (PUs). This approach
enables the Secondary User (SU) to use the spectrum when the PU is not
using it, and this should happen without interfering with the PU. Spectrum
Sensing (SS) is one of the most important functions in CR.

In this work, a model of the SS system was proposed to perform the
sensing process. The Energy Detection (ED) algorithm was relied upon, and
to enhance the performance, three adaptive thresholds have been proposed
utilizing Simulink LabVIEW NXG. To Represent the PU traffic Modes, two
scenarios were adopted. The first scenario was in the form of the semi-
deterministic traffic mode, and the second is the burst traffic mode.

Simulation results of the conventional energy detector (fixed
threshold) have been compared with the first suggested method (which
depends on the average of the total energy of the receiving signals) when the
power of received signals is equal (special case). In comparison to the fixed
threshold, the first suggested method improved detection performance
compared with the fixed threshold in both scenarios. In the general case
where the received power signals depend on the distance between the PUs,
the second and third proposed adaptive thresholds have been applied. The
second adaptive threshold depends on taking the average of the total energy
of the receiving signal plus the average of the energy for the lowest two

bands, while the third adaptive threshold depends on the average of the



lowest and highest energy bands. Simulation results showed that the second
proposed method performed better than the third method in the first scenario,
while the third proposed threshold outperformed the second proposed

threshold in the second scenario.

To provide a reliable performance assessment of the SS system, the
ED algorithm has been implemented using the Universal Software Radio
Peripheral (USRP) X310, one of the Software Defined Radio (SDR)
hardware technology products. By following the same simulation model of
the SS system, the testbed was implemented for the first scenario. Practical
results show that the ED achieved good performance and was closer to that

of the simulation.
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CHAPTER ONE
INTRODUCTION

1.1 Overview

The massive increase in the number and variety of connected devices,
the significant increase in subscriber traffic volume and types, as well as the
performance limitations of Fourth Generation (4G) networks, have
compelled the industrial sector to continue to develop, deploy, and use Fifth-
Generation (5G) technologies. The 5G mobile wireless networks have been
designed to meet various and multiple system requirements. 5G is a secure,
fast, and reliable connected ecosystem comprising machines and humans,
which allows for effective communication, increased communication
density, increased industrial production, etc. Comprehensive studies and
research on 5G show a number of key techniques that have contributed to
meeting the requirements of the system [1].

First, the massive Multiple-Input Multiple-Output (MIMO) technique
was suggested to enhance the spectrum utilization of 5G cellular networks.
Second, millimeter-wave technologies were introduced in order to increase
the bandwidth efficiency of 5G cellular networks. Additionally, the Small
Cell (SC) technique has emerged to increase throughput and improve the
system while reducing energy usage in wireless applications. To provide
perfect service, 5G cellular networks must use a greater number of SCs that
are densely distributed. As a result, Ultra-Dense Networks (UDN) are seen
as one of the key aspects of 5G cellular networks [2].

The evolution of cellular networks, i.e., from First Generation (1G) to
5G, can be seen as the procedure of network densification to some extent.
The cell radius in 1G networks is approximately 10 miles, and cell division
may occur, in which the radio range of one cell is divided into two or even
more SCs to alleviate path loss and enable extra users. The average radius of

a macrocell in a Second Generation (2G) network ranges from several
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hundred meters to many kilometers. SCs, which are low-powered radio
access points with a range of a few tens of meters to one or two kilometers,
are used in 2G networks to offload capacity from macrocells in addition to
cell dividing. SCs are becoming increasingly prevalent in Third Generation
(3G) and 4G networks and are seen as an essential component of increasing
system throughput and regulating network traffic. Because many SCs are
deployed to service a particular geographic area, cell coverage areas become
smaller and smaller, leading to cell split gain. Also, with the deployment of
SCs, homogenous cellular networks become heterogeneous due to
differences in power level and BS transmission range. So, to provide high
data rates and seamless coverage, the number of SCs in 5G technology would
be enhanced in comparison to 4G technology [3].

Many researchers and academics have focused their efforts on many
issues that can be encountered with UDN implementation. At the same time,
the reality of spectrum scarcity is a substantial impediment to achieving good
radio resource utilization. This issue is projected to worsen because of the
increasing density of 5G networks which are necessary to offer continuous
connectivity between humans, systems, and devices. There are many new
challenges with network access, communication, transfer, and handling of
massive amounts of data sent by both devices and users. In addition to many
problems that have a significant impact on dynamic communication
scenarios, such as the shortage of communication resources, complex
electromagnetic environments, interference, etc. The cognitive functions of
Cognitive Radio (CR) devices allow for the effective use of unutilized
spectrum and coexistence between several networks working in the same or
contiguous wide frequency bands, thus providing solutions to the problems
outlined above [4]. By dynamically reusing the frequency bands allotted to
licensed users, CR technology can be an efficient method to deal with low

spectrum use and shortages of the spectrum [5].
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1.2 Literature Review
A number of researchers studied CR technology in terms of Spectrum

Sensing (SS) techniques and have discussed this subject from diverse points

of view.

¢ In 2013, R. Ujjinimatad and S. R. Patil presented an algorithm for SS
based on Random Data Matrix (RDM) created from samples taken from
received signals. Researchers used identically and independently
distributed signals and wireless microphone signals. Simulation results
show that the RDM algorithm performs much better than Maximum-
Minimum Eigenvalue (MME), Energy with Minimum Eigenvalue
(EME), Maximum Eigenvalue Detection (MED), Energy Detection (ED),
and Covariance Absolute Value (CAV) at lower Signal-to-Noise Ratio
(SNR) values. Furthermore, this proposed method is also considered
efficient because it does not demand prior knowledge of noise, signal, and
channel [6].

¢ In 2014, Y. Zhao et al. introduced an algorithm to sense the spectrum
based on the wavelet transform called WATRAB. This idea depends on
the fact that the Primary Users (PUs) signals carry a limited amount of
information as opposed to the noise signals that contain a lot. Researchers
have shown that this difference can be exploited to create different
transform results. They proved that this algorithm performed well in
terms of SS [7].

¢ In 2015, A. Nafkha et al. proposed three SS methods: The first two
algorithms use the MME ratio and the sum of the EME ratio to make their
decisions. However, the third algorithm depends on cyclostationary
feature detection, and it utilizes the symmetry property of the cyclic
autocorrelation function (SPCAF). Two Universal Software Radio
Peripheral (USRP) platforms and the GNU-radio toolkit have been relied
upon to use three types of modulation 8 Phase Shift Keying (8PSK),
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Gaussian Minimum Shift Keying (GMSK), and Frequency Modulation
(FM). This study demonstrated that a cyclostationary feature detector
outperformed eigenvalue detection [8].

In 2015, S. Lavanya, B. Sindhuja, and M. A. Bhagyaveni presented a
comparison between the performance of Matched Filter (MF), ED, and
Eigenvalue technology using MATLAB. When information is available
about the PU signal, the MF technique is applied. If no information is
available about the PU, the ED and Eigenvalue are applied. The study
demonstrated that the performance of the ED does not work well when
the SNR is reduced, so the ED is applied when the SNR is high and the
eigenvalue when the SNR is low [9].

In 2015, L. K. Mathew, S. Sharma, and P. Verma presented an algorithm
for SS based on ED, Because the performance of conventional ED
degrades in low SNR areas, an adaptive threshold-based ED technique is
suggested in order to achieve a better tradeoff between the probability of
miss detection (B,,) and false alarm (P¢,). The numerical results show
that the proposed approach outperforms the conventional one [10].

In 2017, M. Sardana and A. Vohra presented a study to overcome the
fading problem facing channels in wireless environments. Because of this
problem, there is an exponential decrease in the strength of the signal
when it is sent in a wireless environment. The study relies on the
performance analysis of the relay-based Cooperative SS. Researchers
have shown that this method overcomes the problem of fading [11].

In 2018, F. Wasonga, T. O. Olwal, and A. M. Abu-Mahfouz presented a
literature review of single and two-stage SS methods to improve
accuracy, sensor time, and efficiency. In this study, researchers concluded
that the two-stage SS methods are of great computational complexity and
that the sensor accuracy is not good. To improve performance, the
researchers indicated that the ED method must be used in the coarse
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sensing stage, followed by the feature detection method in the fine
sensing stage [12].

In 2018, V. S. Muradi and R. K. Paithane presented a CR system in the
practical environment. The authors rely on a simple method of detecting
the spectrum, which is not dependent on the characteristics of senders or
channels. In this work, the presence of a principal user is recognized using
a Laboratory Virtual Instrument Engineering Workbench (LabVIEW)
code and the NI USRP-2943R transceiver. The USRP features two
channels with a frequency range of 1.2 GHz to 6 GHz for both transmitter
and receiver. The presence of PU was detected using the ED approach, as
well as the ISM spectrum was also used as a free spectrum. The ED
method compares the energy detector output to a threshold energy level
based on the noise floor to detect the existence of PUs. Finally, the
channel must be used by the secondary user (SU) depending on whether
or not the PU is present [13].

In 2019, R. M. Elshishtawy et al. Presented how the ED algorithm is
applied to sensing the spectrum to detect the existence or absence of PUs.
Two USRP-2942R transceivers were used to send and receive the signal.
Simulation results showed different curves in multiple frequency tones
for transmitter and receiver signals using Labview. Researchers explain
that after a comparison with a threshold value, the presence or absence of
signals is determined. As the number of samples grows, so does the value
of the threshold, raising the SNR even further. As well as the P,
diminishes when the threshold value is raised [14].

In 2020, M. Saber et al. Proposed the SS method based on real signals
created by smart embedded devices at wireless transmitters using
Frequency Shift Kenig (FSK) and Amplitude Shift Keying (ASK)
modulations. The receiving interface was built using the RTL- Software
Defined Radio (RTL-SDR) dongle and linked to MATLAB software. The
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signals were detected using four techniques: Support Vector Machine
(SVM), K-Nearest Neighbors (KNN), the Artificial Neural Network
(ANN), and Decision Trees. This study shows that the comparison
between the performances of each technique has shown that the
performance of SVM and ANN can be more accurate than TREE and
KNN [15].

In 2021, D. N. Reeday and Y. Ravinder suggested a method based on
fuzzy logic to sense the spectrum and detect the existence of PU,
assuming that noise follows a non-Gaussian distribution. The results
show that the Laplacian noise leads to a marked deterioration in the
performance of the ED. This study showed that through the appropriate
selection of fuzzy rules and membership functions, fuzzy logic provides
reliable detection [16].

In 2021, A. Brito et al. proposed the Hybrid Matched Filter Detection
(HMFD) method. It is a modern non-cooperative way of detecting the
spectrum. Using MATLAB software, the simulation shows the effect of
the variation of parameters such as SNR, the number of samples, and Py,
on the probability of misdetection (P,). The performance of this
technique has been compared to that of the ED and MF using the same
parameters to show which one is more efficient. The study showed that
the Matched Filter Detection (MFD) and HMFD techniques outperform
the ED technique, HMFD techniques better than MFD techniques in
terms of PU detection [17].

1.3 Problem Statement

To satisfy the demands of explosive data traffic in 5G wireless

communication, UDN has been developed as one of the most important

enabling pillars of 5G technologies. Through UDN, cells will be density

spread, so this dense deployment results in many problems, such as an

unavailable spectrum for all users. In other words, if there is a large number
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of users, the available frequency spectrum will be very little. Through CR

technology, available spectrum frequencies are sensed and exploited by

unlicensed users to send information from one user to another.

1.4 Aims of the Thesis

This thesis is aimed at designing a real-time SS system that can
improve the use of the spectrum. This can be divided into the following
identified objectives:

1. Study CR technology as a solution to the problem of inefficient spectrum
use in UDN.

2. Modeling and simulation of the proposed SS system using the LabVIEW
Next Generation (LabVIEW NXG), in addition to evaluating the
performance of the ED algorithm by three proposed methods for the
adaptive threshold, through which the available spectrum can be
determined.

3. Practical implementation of some scenarios using the SDR platform.

1.5 Thesis Outlines:

The thesis is organized in the following sequence:

Chapter one provides an overview of 5G and the use of UDN in it, a

literature review, and Research Objectives.

Chapter two explains the concept of UDN, its components, and the main

challenges it faces, as well as the CR technology and its most important

functions, and finally, most of the techniques used to sense the spectrum.

Chapter three contains a simulation analysis and the results of the proposed

work using LabVIEW NXG software simulators.

Chapter four describes the configuration of the SDR and the

implementation of the energy detector on USRP X310 platforms. In addition

to the practical results of the proposed methods.

Chapter five presents the conclusion and the future works.



CHAPTER TWO
COGNITIVE RADIO BASED ULTRA-DENSE
NETWORKS

2.1 Introduction

To meet the expected 1000 times increase in wireless capacity needs
in 5G, network operators will aggressively densify their network architecture
in order to reuse spectrum as much as possible. From here, several techniques
emerge, such as UDN and CR, both of which have been, in their own right,
objects of scientific interest that have vyielded many significant
accomplishments. This chapter illustrates the concept of UDN, which is one
of the leading technologies of 5G, in addition to illustrating the most
important challenges facing this technology. The shortage of spectrum
resources is also discussed and addressed using cognitive radio technology,
which is one of the most important factors of empowerment in 5G.
2.2 5G Fundamentals

5G depends on previous generations of mobile communications, but
it differs in several respects. It’s designed for a broader range of applications
than ever before: This includes not just consumer services such as data,
video, and audio, but also industrial uses such as machine-type
communications. To assist in satisfying such requirements, the network uses
a number of technologies such as software-defined networking, network
slicing, and network function virtualization to conserve flexible, basic
resources that can be readily adjusted to satisfy new demands as they occur.
In order to achieve better system capabilities and larger data speeds, the air
interface uses many antennas and supports more Radio Frequencies (RFs)
than before [18].

The 5G scope can be better understood by investigating the primary

use models targeted by this trend, which are Massive Machine-Type



Communications (mMTC), Ultra-Reliable Low-Latency Communications
(URLLC), and Enhanced Mobile Broadband (eMBB) [1]. Figure 2.1 depicts

the various 5G use case classifications.

/ Enhanced mobile broadband (eMBB) \

capacity enhancements

—— Extremely high-data rate file transfers

-3D video—4K screens

. Work and play in the could
Smart city cameras ¥
Augmented reality

Industrial and vehicular automation
Mission critical services

Voice services
Sensor networks ?o =
/000 @ €

Massive machine type communication Ultra reliable and low-latency communications (URLLC)
(mMTC) massive connectivity mission critical and delay sensitive applications

Self driving cars

Figure 2.1. 5G use case categories [1]

1. Enhanced Mobile Broadband

The eMBB is the first step of the 5G system and can be viewed as an
extension of existing 4G services. The eMBB set primarily addresses
services requiring high data rates and high bandwidth, such as high-
definition videos, mobile broadband, and Virtual and Augmented Reality
(VR/AR). As a result, eMBB is centered on establishing a digital lifestyle.
2. Massive Machine-Type Communications

The mMTC is primarily concerned with services and applications
related to vast and dense Internet of Things (1oT) devices. This involves the
communication solutions for these devices to develop digital societies such
as smart cities.
3. Ultra-Reliable and Low Latency Communications

The uRLLC set focuses on latency-sensitive and high-reliability

applications like industrial control, automated driving, and the Tactile



Internet. As a result, the uRLLC set is focused on reaching the digital
industry [19].

When compared to 4G networks, 5G networks are predicted to provide
roughly 1000 times the system capacity, tenfold the data rates, 25 times the
average cell throughput, 90% less energy use, and a fivefold decrease in
latency. Three main research directions are needed to meet the goals outlined
above: network densification, improved spectrum extension, and spectral
efficiency. UDN is one of the enabling factors, and it is regarded as the basis
for a 1000-fold increase in data traffic. The fundamental idea of UDN is to
densify access nodes per unit area, bringing them closer to the User
Equipments UEs. The following section discusses the concept of UDN in
detail [20].

2.3 Ultra-Dense Networks (UDN) Principles

In 5G, The UDN is seen as a dense deployment of Base Stations (BS)
that use heterogeneous radio access techniques to meet the data rate demands
of users using both unlicensed and licensed spectrum [21].

UDNs are networks that have a high density of low-power radio access
nodes with different levels of transmission power, data/signal processing
capabilities, and radio frequency coverage areas [22]. The density of BSs in
ultra-dense networks (UDNSs) is highly anticipated to come up to 2,500 BSs
per km?, which reaches or even exceeds the UE density [23].

By previous definitions, the concept of UDNs in 5G is about the
densification of SCs and the use of spatial reuse of spectrum to support a
large number of customers, machines, and applications. UDNSs increase
capacity and coverage in 5G networks by utilizing power-efficient and low-
cost infrastructure. 5G UDN deployments are expected to be dense and
heterogeneous, with SCs like picocells and femtocells being used

extensively. Examples of locations where 5G UDN is expected to be
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installed are shopping malls, airports, campuses, apartments, open
gatherings, and train stations [24].

Figure 2.2 shows a transition diagram from traditional networks to
UDN. The expansion of dense networks has provided the requirements for
subscriber data, user throughput, spectrum, and so on [25]. Comparing the

features of UDN to those of the preceding networks is shown in Table 2.1.
[24].
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Figure 2.2. Evolution of dense networks [25]
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Table (2.1). UDN properties in comparison to older networks [24]

Traditional Denser Very dense Ultra-dense
networks networks networks Networks
Period Before 2014 | 2015 -2017 2017 — 2020 Beyond 2020
Subscriber data | 1GB/month | 2-5GB/ 5-10GB/ 20-50GB/
month
month month
Min. user 4 Mb
ps _
throughput 8 Mbps 10 Mbps 10 — 20 Mbps
2x 100
Spectrum 2x 120 MHz | 2x 140 MHz 2 x 160 MHz
MHz
Site / Km2 7 sites 21 sites 26 sites 93 sites

2.3.1 Components of UDN

UDN is made up of several access technologies, each with its own set
of potential and limits. These technologies enable effective reuse of the
spectrum and are considered to be one of the fundamental options for
increasing capacity in next-generation wireless networks. Generally, UDN
cells can be divided into three categories:
1. High-power macrocells that are fully functional (legacy cells).
2. Fully functional SCs (femtocells and picocells) that can perform all

macrocell functions while using less energy and covering a smaller area.
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3. Access points for macrocell extension, like Remote Radio Heads (RRHSs)
and relays, improve macrocell signal coverage [20].

Table 2.2 illustrates the characteristics of the various types of cells
mentioned above.

Table (2.2). Key features of different types of cells [20]

Deployment Transmit
Type of SC _ Coverage
Scenario Power
Macrocell outdoor Few Km 43-46 dBm
Picocells Indoor/outdoor <300 m 23-30 dBm
Femtocells Indoor 10-50 m <23 dBm
Relays Indoor/outdoor 300 m 30 dBm
RRHs outdoor 300-500 m > 30 dBm

To improve signal reception, SCs are deployed in houses, small
business locations, lampposts, or street poles. The goal of SC deployment
Is to improve communication quality when a user is in a low-signal
location, such as the BS coverage boundary or indoors [26]. Figure 2.3
shows the components of UDN.
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Figure 2.3 An example of UDN [27]

2.3.2 Benefits of UDN

The benefits of UDNs are mainly viewed from the three aspects

below:

1.

The UDN:Ss significantly reduce the deployment cost because the SCs can

be deployed by customers.

. The deployment of UDNS is elastic, the interference can be reduced, and

the energy efficiency can be enhanced by using intelligent usage
regulations.
UDNSs not only thoroughly eliminate the influence of blind spots but also

achieve the requirement of load-balancing among the SCs [23].

2.3.3 Challenges of UDN

The challenges facing deploying SCs can be addressed as follows:

. Interference management: Today's networks, which are primarily macro-

based, will be replaced by SC networks containing a few macros.
Operators require a long-term strategy for the deployment of SCs since
interference levels can increase if cells are not planned from the

beginning.

. Mobility concerns: Throughput can be damaged by handovers due to

mobility and the desire of participants to have the highest reliability in
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communication and the highest possible throughput. Therefore, future
networks will need to carefully balance mobility and throughput.

3. Total Cost of Ownership: The Total Cost of Ownership (TCO) for SCs is
significant since the number of sites in a densified network multiplies
exponentially. TCO includes both Capital and Operating Expenses
(CAPEX and OPEX). There are many different components that make up
the TCO for SCs. The largest cost component is often the construction
and acquisition of sites.

4. Backhaul: The backhaul requirement will be determined by the SC use
case and location. In general, there are three possibilities usable:

e When discussing future bandwidth requirements, fixed backhaul,
primarily fiber, comes to mind.

e Point to Point (P2P): Non-Line of Sight (NLOS), Line of Sight (LOS)
wireless transmission.

e Point to multipoint wireless transmission [28].

5. SC site planning: Deploying the right number of SCs requires identifying
hotspots and categorizing their traffic. Misunderstanding of this
information might result in an under-or over-estimation of the number of
deployed cells, affecting both energy and efficiency [29].

2.4 Integrating Cognitive radio Functionalities in Ultra-Dense

Networks

The scarcity of spectrum resources causes a jamming condition in
network capacity improvement. To address this issue, cellular networks have
been pushed to seek out a more efficient radio spectrum. As a result, the
wireless sector has undergone a new metamorphosis through ultra-
densification. UDNSs, heterogeneous networks, device-to-device networks,

CRNs, millimeter-wave networks, and cloud-radio access networks look to

be the key technology for attaining the distinct capabilities that 5G and

beyond networks are likely to provide for many years to come. As a result,
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in terms of capacity, these technologies will be essential enablers for next-
generation mobile communications. Because resources are scarce and must
be shared by several users, resource allocation systems become increasingly
appealing. As a result, resource allocation in cellular networks is intended to
optimize resource utilization, such as power efficiency, spectrum efficiency,
and so on [30].

Both the UDN and CR approaches have sparked strong scientific
attention in their own right, yielding numerous notable successes. Integrating
CR functions into UDN is a feasible solution to the issue of spectrum
scarcity, which is becoming increasingly crucial, particularly in large-scale
deployment states [4]. The following section illustrates the concept of CR
and its main functions.

2.5 Cognitive Radio Fundamentals

The correct use of the radio frequency spectrum is the most important
aspect of wireless communication networks. Due to the nonflexible
assignment of its license for usage, the frequency spectrum is not exploited
effectively. Government organizations manage these licenses, which are
given to service providers for a long time and a large geographic region. The
Defense Advanced Research Projects Agency (DARPA) conducted signal
strength distribution measurements for the wireless communication
frequency spectrum. They found that some bands are very crowded and that
a lot of the spectrum isn't being used. Where only 6% of the frequency is
used. On the other hand, the number of users in a wireless communication
network is increasing very rapidly, and demand for high quality leads to
spectrum scarcity. Because of this contradiction, it is important to manage
the spectrum in a very flexible and intelligent way [31].

CRs are an emerging solution to the problem of spectrum
overpopulation that takes advantage of the spectrum holes (spectrum holes

are the unutilized frequencies in the RF range) that are not being used by
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licensed users (also called PUs) [32]. The idea of CR was first introduced in
1998 by Joseph Mitola I1l. A CR is an intelligent wireless device that has
cognitive, or unlicensed, or secondary users (SUs). These CRs sense the
PU’s licensed spectrum band in order to establish a communication link
between radio nodes in real-time. A CR comes under the Institute of
Electrical and Electronics Engineers (IEEE) 802.22 Wireless Regional Area
Network (WRAN) standard and can detect channel usage, analyze the
channel information, and make a decision on whether and how to access the
channel.

The US Federal Communications Commission (FCC) gave a
generalized definition: “cognitive radio: a radio or system that senses its
operational electromagnetic environment and can dynamically and
autonomously adjust its radio operating parameters to modify system
operation, such as maximizing throughput, mitigating interference,
facilitating interoperability, and accessing secondary markets” [33].

Figure 2.4 depicts the presence of spectrum holes in PU channels. The
SU transmits across these spectrum holes. PU and SU cannot be transmitted
at the same time. As soon as the PU emerges, the SU must leave the channel,
which causes the forced termination of the SU connection. Figure 2.5depicts
a SU connection being forcefully terminated and blocked. The SU's
throughput is determined by the forced termination probability and blocking
probability [34].
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Figure 2.5 Illustration of forced termination and blocking [34]
A- Cognitive Radio Functions

The main roles of the CR are illustrated as follows:

1. SS: The purpose of SS is to determine the state of the spectrum and also
to define the activity of PUs by periodically sensing the required spectrum
band. In particular, users of CR detect the vacant spectrum and determine

a method to reach this spectrum without interference with the licensed
users [35].
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. Spectrum decision: Spectrum decision-making follows the detection of
the vacant spectrum band (spectrum hole), where the CR user selects the
best idle channel following the Quality of Service (QOS) requirements.
The decision on the spectrum has three basic goals:

Spectrum characterization.

Spectrum selection.

Reconfiguration of the CR.

. Spectrum Sharing: The next section that follows the decision on the
spectrum band is spectrum sharing among PUs and SUs and between
existing SUs in order to optimally exploit resources [36]. Spectrum
sharing is divided into three types:

. Overlay mode: CR can transmit simultaneously with a non-cognitive
user; the interference to the non-cognitive user can be balanced by using
part of the cognitive user’s power to relay the non-cognitive user’s
message.

. Underlay mode: In the underlay mode, SUs can transmit simultaneously
with the PUs, but in that case, to protect the PU, signals the power
constraint is used with the adjustment, meaning, SUs cannot send above
the interference limit allowed by the PUs receivers. Therefore, since PUs
are not aware of the existence of SUs, the measurement of the interference
IS very necessary.

. Interweave mode: in this mode, SUs can use the resource when the
channel is vacant until the PUs return. Therefore, SUs must leave the
resource directly to avoid interfering with PUs. In this manner, the SUs
will use the resource opportunistically without impacting the PUs [37].

The three modes of spectrum sharing are illustrated in Figure 2.6
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Figure 2.6 Spectrum sharing patterns [37]

4. Spectrum mobility

In CR (SU), the primary job of spectral mobility is to maintain
communication continuity as the user goes from one idle channel to another
while using the system.
After the SU detects the idle channel (spectrum hole), it continues to use it
until the PU returns and transmits again. In this case, SU must leave the
channel and transition to another idle channel [38]. The CR functions are
illustrated in Figure 2.7.
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Figure 2.7 Basic functions of a cognitive radio

Based on the spectrum bands, there are two kinds of cognitive radio

networks:

e Licensed bands: The spectrum is licensed into several applications, such
as Long Term Evolution (LTE)-North America: 700 MHz, 800 MHz, 1.9
GHz, 1.7/2.1GHz, 2.6 GHz, AM radio: 535 kHz, and 1.605 MHz, and
aeronautical and maritime communications: 300-535 kHz [39].

e Unlicensed bands: These unlicensed bands involve Industrial, Scientific,
and Medical (ISM) bands like 902-928MHz, 5.725-5.875GHz, and 2.4—
2.5GHz. Certain applications use the ISM band that is not related to ISM.
For example, IEEE 802.11/WiFi: 2.45 and 5.8GHz bands; and IEEE
802.15.4, ZigBee and Bluetooth: (2.402-2.48GHz). [39].

B- Applications of Cognitive Radio Networks

With the capabilities of CRNs, the performance of many networks and
communication systems can improve and coordinate with other nodes in the
networks effectively. Several applications of CR in real-time are illustrated

as follows:
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. CRNs as a Military Network: A military network operates under very
similar conditions to a CRN: avoidance of interference between official
users, sensing spectrum holes or vacant bands for better utilization of
spectrum, localization of other neighboring devices, etc.

. TV White Spaces Applications: Television white spaces are the main
application of CRN. In the TV spectrum, the frequencies between the
channels are either used or left unused. A CRN is one of the keys to
adjusting the change in frequencies and improving the performance of
such networks. This would lead to increased utilization of the TV
spectrum efficiently.

. Emergency Network: An emergency network is one of the most common
applications supported by CRN. Such applications need CRN abilities
that prominently include location determination, sensing spectrum use by
nearby devices, and changing frequency.

. Multimedia: Multimedia can also be considered a prospective application
area for CRNs. CR features such as interference avoidance and spectrum
mobility mainly attract the multimedia domain. [33].

. Healthcare: The Internet of Things (IoT) is used in health care, where
smart sensors are placed on and around a patient to track critical
information like blood pressure, temperature, and glucose levels. A
medical team regularly monitors the parameters through remote
monitoring. Healthcare data can be communicated to medical personnel
without the necessity for spectrum assignment. This may be
accomplished using CR-based 10T frameworks without having to worry

about spectrum availability [40].
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2.6 Spectrum Sensing

SS is a necessary part of the development of a CRN. It is very
important since it detects the current state of frequency band occupancy to
allow for opportunistically re-utilizing it. In other words, the goal of SSis to
provide knowledge of spectrum utilization. It offers knowledge of the
presence of PUs at various points in time and space. As opposed to the
traditional understanding of SS, which is defined as the measurement of the
spectral content of a signal or measuring RF energy over a spectrum of
frequencies, CR is a more public term that refers to getting the spectrum
utilization characteristics over a wide range of dimensions, such as
frequency, code, time, and space. Considering this concept, it is evident that
SS can be considered an enabling technology for the interweaving of CRs
[41].
2.7 Spectrum Sensing Techniques

Due to the dynamic properties of the radio environment and the
differences between PUs, in addition to the unknown effect of interference,
SS has become a challenging issue in CR. In general, SS approaches may be
divided into three categories: transmitter detection, interference-based
detection, and cooperative detection. In this thesis, the focus was on
transmitter detection, which is often used in practical systems. The
transmitter detection method relies on detecting a signal from a primary
transmitter. To enable dynamic spectrum sharing, the CR transmitter must
be able to discern whether a PU signal is available locally in a given spectrum
or not. Three approaches exist for transmitter detection, which is shown in
Figure 2.8 [42].
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Figure 2.8. Spectrum sensing techniques [42]

2.7.1 Matched Filter Detection

This technique is also known as "coherent detection™ and represents
the best spectrum detection technique in the case of providing information
about the PU signal like modulation type, packet format, pulse shape,
transmitting power, pilots, synchronization words, operational frequency,
preambles, spreading codes, and bandwidth. The feature of the Matched
Filter (MF) is that it has a lower sensing time, but its main weakness is that
it requires the PU’s prior information, which is not a preferable solution to
detect the licensed band in the real world. Also, the implementation is

computationally complex [33].

2.7.2 Cyclostationary Feature Detection
A licensed user's sent signal has a periodic pattern in most cases.

Cyclostationarity is a periodic pattern that can be used to detect the existence
of a licensed user. A licensed user's transmitted signal can be differentiated
from noise using this periodic pattern. In general, cyclostationary detection
provides a more precise sensing result and is more resistant to noise power
changes. On the other hand, detection is difficult and necessitates extensive

observation time to achieve the sensing result [35].
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2.7.3 Energy Detection

The ED method is the most commonly utilized SS method since it
does not require any prior knowledge of the primary signal and it has a low
calculation complexity. The cognitive user calculates the energy of the
incoming signal and compares it to a threshold in ED. When the received
signal's energy falls below the threshold, it means the primary transmitter is
turned off. The cognitive user can then use the PU's frequency band [43].

Table 2.3 shows a brief comparison of the SS techniques described above

[44].

Table (2.3). Comparison of spectrum sensing techniques [44]

Spectrum sensing

technique

Advantages

Disadvantages

Matched filter

-Optimal efficiency.

Prior knowledge of the PU's

required.

detection -Low computational cost. signal is required.
-Low complexity. - Underperformance for low
_ -No primary knowledge is SNR.
Energy detection

- Cannot distinguish

between signal and noise.

Cyclostationary

detection

- In the low SNR region, it is

robust.

- Strong in the face of

interference.

- Requires some prior

knowledge.

- High computational cost.
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CHAPTER THREE
SPECTRUM SENSING, PROPOSED SYSTEM, DESIGN,
SIMULATION, AND RESULTS

3.1 Introduction

CR technology has provided solutions to some of the constraints in
wireless sensing networks. Therefore it is important to seek to understand
the key functions that constitute the cognitive cycle. This study focuses on
the aspect of SS, which is the most important part of the CR cycle.

This chapter presents the design simulation and results for the
proposed SS system using the LabVIEW NXG simulation. In addition to
evaluating the performance of the energy detector technique, which is the
most popular SS technique for detecting the presence of the PU signal.

3.2 Model Assumptions

In this work, several assumptions were adopted. The model
assumptions are:

1. Nine transmitters will be built, which represent the PUs signals. The total
bandwidth is 4 MHz, and the bandwidth for each sub-band is 200 KHz.

2. A 16 Quadrature Amplitude Modulation (QAM) will be adopted in each
transmitter.

3. Two scenarios of traffic mode have been used for the primary users. The
first scenario is the semi-deterministic traffic mode, and the second is the
burst traffic mode.

4. The performance of the ED is evaluated over an Additive White Gaussian
Noise (AWGN) channel.

5. The fixed threshold and the adaptive threshold (the first proposed method,
which was determined by relying on the average of the total energy of the

receiving signals), will be presented and their performances in both
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scenarios will be compared. In this proposal, the power of received
signals is assumed to be equal (special case).

. Proposing two methods for the adaptive threshold (as the second and third
proposed methods) and comparing their performances in both scenarios,
in this proposal, the power of all received signals is unequal (general
case).

. The effect of different SNR values on the probability of detection (P,),
Ptq, Py, and Probability of Total Error (P,.) will be evaluated. The range
of SNR starts from -30 dB to 30dB. For each value of SNR, 1000
iterations are taken for the approved measurement.

. The proposed system can be used as one of the 10T applications.

Table (3.1) illustrates a summary of the parameters used for the

simulated SS system.

Table (3.1): Simulation Parameters

Parameters Description
Number of the primary user 9
FFT size 16384
Modulation type 16-QAM
Channel noise AWGN
Bandwidth for each sub-band 200KHZ
Signal-to-noise ratio -30db to 30db
Number of iterations 1000
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3.3 Performance Metrics for the Energy Detection Algorithm
The following are the most important performance parameters that

must be taken into account when conducting sensing:

1- Detection Probability

P, refers to the probability that the PU is detected when the PU
actually existed or the probability of the SU detecting the PU’s signal when
it already exists. To prevent interference and protect the PU from it, the P,
must be high as possible.
2- False Alarm Probability

SU announces the presence of the PU in the case that the spectrum is
actually vacant. To increase the efficiency of the utilized spectrum, the value
of this probability must be low as possible because increasing this probability
reduces the chances of the vacant spectrum.
3- Missed Detection Probability

The SU announces the absence of the PU in case the spectrum is
already busy with the PU. This probability indicates that the SU interferes
with the PU.
4- SNR wall

SNR wall is a minimum SNR below, which signal cannot be detected.
5- Confusion Matrix

A confusion matrix can be defined as a table that can be used to
identify the performance values of a classifier’s mode based on a group of

analyzing data. Table (3.2) shows the confusion matrix [45].
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Table (3.2): Confusion matrix.

Prediction outcome

Negative Positive
0 1
Negative
g 0 True False
r— Negative Positive
>
©
3
e
o
F'osr:ve False True
Negative Positive

The entries in the confusion matrix are classified as follows: True
Negatives (TN), True Positives (TP), False Negatives (FN), and False
Positives (FP). The number of cases that a channel is correctly predicted as
busy is expressed by TP, whereas the number of cases that a vacant channel
is predicted to be busy, is expressed by FP. Conversely, TN represents the
number of right predictions of a vacant channel, and FN denotes the number
of times a busy channel is predicted as vacant.

From the confusion matrix, four different measurements can be
calculated to measure the validity of the ED algorithm that was relied upon
in this thesis.

1- Accuracy = (all correct/all)

Accuracy = (TP +TN)/(TP+TN + FP + FN) ... (3.1)
2- Misclassification = (all incorrect/all)

Misclassification = (FP + FN)/(TP+ TN+ FP +FN) ..(3.2)
3- False positive rate (FPR) is the proportion of true negatives that are

incorrectly predicted positive.

(FPR) = FP/(FP + TN) ... (3.3)
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4- False negative rate (FNR) is the proportion of true positives that are

incorrectly predicted negative.

(FNR) = FN/(FN + TP) ... (3.4) [46]

3.4 Spectrum Sensing System Design

Wireless communication is a broad term that incorporates all
procedures of communicating between two or more devices using wireless
communication technologies. A typical wireless communication system can
be divided into three elements: the transmitter, the channel, and the receiver.

This section explains the design of a system that senses the spectrum
using LabVIEW NXG, which is a graphical programming environment used
for test and measurement. NXG is the next generation of LabVIEW for
communication from National Instruments. The new platform was
developed in 2017 to enhance the user experience, and it is more advanced
for designing wireless communication systems [47]. Figure (3.1) shows the

block diagram of the SS system design.
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3.4.1 The Transmitters Side

In general, transmitters are devices that are used to send out data as
radio waves in a specific band of the electromagnetic spectrum to fulfill a
specific communication. In this work, the transmitter consists of:
A. The Modulator

In this study, a multi-band transmission system was designed and
implemented. QAM has been used in the design of the nine transmitters,
figure (3.2) illustrates one QAM transmitter scheme. The first step in
designing QAM modulation is to generate a sequence of bits by the MT
Generate Bits (Galois, PN Order) node.

MT Modulate QAM node receives this sequence as data bits, performs
QAM modulation, and returns the modulated complex baseband waveform
in the output complex waveform parameter. MT Modulate QAM node also
depends on the MT Generate QAM System Parameters (M) node which
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accepts an M-ary value that specifies a predefined symbol map with the

number of distinct symbol map values to use as symbols.
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Figure (3.2) QAM Transmitter scheme

Table (3.2) shows the parameters relied upon in the design of the

QAM transmitter scheme.

Table (3.3) QAM Transmitter design parameters

Parameters values
Total bit 1024
Sample per Symbol 40
M-QAM 16
Symbol rate 100KHz
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B. Traffic Mode

The traffic mode for PUs and other SUs is the process of describing
their dynamic behavior. In this study, two types of traffic modes have been
implemented: semi-deterministic and burst traffic modes. The aim is to
understand and analyze the performance of the SS process with more
realistic traffic modes of users. In this work, the spectrum usage mode
depends on the ON/OFF random mode; if the spectrum is not busy by PU or
SU, in this case, it is represented by OFF; if the spectrum is busy by PU or
SU, in this case, it is represented by ON. The following is an explanation of
the traffic modes of users used in this study:

1. First Scenario (Semi-Deterministic Traffic Mode)

As explained in the previous chapter, the PUs may not always use their
assigned spectrum. Hence, SUs can opportunistically utilize the spectrum
when it is not being occupied by PUs. The PU traffic mode has been assumed
to be semi-deterministic in the first scenario. Semi-deterministic traffic can
be observed, for example, in television transmission, where the periods can
be long. Figure (3.3) shows an implementation of the semi-deterministic
traffic mode of PU.
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Figure (3.3) Semi-deterministic traffic mode of primary users

In this work, the traffic of PUs can be described in statistical terms
where the test statistic is assumed to follow a Gaussian distribution under the
hypotheses H, and H;. The test statistic can be defined as the numerical
summary of the received signal data set. Figure (3.4) shows the distribution
of hypotheses H, and H; in the ideal case.
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Figure (3.4) Distribution of hypotheses H,, H;
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2. Second Scenario (Burst Traffic)

In this scenario, the burst traffic mode is introduced, which is another

type of PU traffic mode that is implemented in this work. The burst

represents data transmitted intermittently rather than as a continuous stream.

At low data rates, some 10T applications follow a burst traffic mode, such as

loT applications connected to a sensor or actuator.

The (ON) case indicates that the spectrum is occupied by PU or SU,

while the (OFF) case means that the spectrum is empty or unoccupied. Figure
(3.5) illustrates the traffic pattern of PU (burst traffic).

Active Channels

CH1

CH2

CH3

CH4

CH5

CHé6

CH7

CH38

CH9

Burst traffic model

ﬂ'l\ 0
N 0

N o

0 5 10 15 20 25 30 35 40 45 50 55 60
Time (Sec.)

Figure (3.5) Burst traffic mode

One of the most widely used and oldest traffic modes is the Poisson

Mode, where a Poisson distribution describes a discrete random variable

representing the number of occurrences of an event over a specified interval

of time or space [48].
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A discrete random variable X is said to have a Poisson distribution
with parameter A > 0, if, for k=0, 1, 2, . . ., the probability mass function of
X is given by Eq. (3.5).

AKe=2

P(X =K) = ... (3.5)

K!

Where k! is the factorial of k. The Poisson distribution probability

function diagram is shown in Figure (3.6) [49].
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Figure (3.6) Poisson distribution

C. Frequency Offset

Nine transmitters were built using QAM, which in this work
represents PUs signals with carrier frequencies set to 0.45 MHz, 0.9 MHz,
1.35 MHz, 1.8 MHz, 0 MHz, -0.45 MHz, -0.9 MHz, -1.35 MHz, -1.8 MHz,
carrier signal frequencies were regularly spaced at frequency 450 KHz. The
total bandwidth is 4 MHz, and the bandwidth for each sub-band is 200 KHz.

The power spectrum of all nine transmitters (when the power of all

transmitted signals is equal) is depicted in figure (3.7).
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Figure (3.7) Power spectrum of the nine transmitters (equal power)

Figure (3.8) illustrates the power spectrum of all nine transmitters

(when the power of all transmitted signals is unequal).

Spectrum (dB)
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Figure (3.8) Power spectrum of the nine transmitters (unequal

power)
According to the semi-deterministic and burst traffic modes, figure
(3.9) shows a snapshot of the spectrum of the nine PUs, where it shows that

five of the spectrum bands are used by PUs or SUs, and four are empty.
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Figure (3.9) Snapshot for the transmitters
D. RF up-converter

The RF up-converter is a stage that is intended to convert the baseband
signal to a higher frequency RF signal. This stage will be used in practical

implementation, which will be illustrated in chapter four.

Figure (3.10) shows part of the transmission side design.

38



i (o
= 0\-|
@I unsigned 8-bit integer_29
" a
@B unsigned &-bit integer_30

Timed Loop /

) x = v
I e - R4

Traffic — 2 [JCT

Sequence Structure

O] —
1 e

S nsigned §-BE integer 4
ST unsigned 8-bit integer_3
X3
e+ L]
TX4 ||

model [T value_3
3 —T0 unsigned 8-bit integer_9

[@] unsigned 8-bit integer_10

value_d

— ue_!
unsigned 8-bit integer_12

-I—'»ﬁ unsigned B-bit integer_13 - N
TX9 —
| m—
| samples per symbol (EEE
&) - V5 |

o | duster in S

| | Cluster Properties MT Add AW
unsigned 8-bit integer_15

3

unsigned 8-bit integer_16

SNR (57

Figure (3.10) part of the transmission side design.

3.4.2 Additive White Gaussian Noise Channel

AWGN is a type of noise that exists in the communication channels
generally. The term AWGN originates due to the following reasons:

e (Additive) The noise is additive, i.e., the received signal is equal to the

transmitted signal plus noise. This gives the most widely used equality in
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communication systems. Moreover, this noise is statistically independent
of the signal.

e (White) Just like the white color which is composed of all frequencies in
the visible spectrum, white noise refers to the idea that it has uniform
power across the whole frequency band. As a consequence, the Power
Spectral Density (PSD) of white noise is constant for the working
bandwidth.

e (Gaussian) the noise samples have a Gaussian distribution.

3.4.3 Cognitive Receiver Side

The receiver side consists of a down-converter, SS estimation, and
channel status estimation, they are illustrated as follows:

A. Down-Converter

The RF down-converter is a stage that is intended to convert the high-
frequency RF signal to a lower frequency IF signal. This stage will be used
in practical implementation, which will be illustrated in chapter four.

B. Spectrum Sensing Estimation

The SS is the key enabling technology in CR networks. Thus, SS is
one of the most important issues in CR networks. The main idea of SSis to
provide more chances for a CR user to access the spectrum without causing
interference with PUs.

Based on the information provided by the SS process, unlicensed SUs
can determine whether there are vacant spectrum holes or not. The PUs have
complete control over the assigned frequency band. Unlicensed SUs using
CR technology can sense and use spectrum holes when the frequency
spectrums are not occupied by PUs. It is important to keep sensing to avoid
interference, where SUs must leave the frequency spectrum as soon as the
presence of the PU is sensed.

The performance of the ED algorithm is important for determining CR

efficiency. The ED algorithm can be implemented in the frequency and time
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domains. Theoretically, regardless of whether the implementation of the
energy detection algorithm uses the time domain or the frequency domain,
the results are the same. The time-domain representation of this method is

shown in Figure (3.11).

Input signal | BPF to Squari A Test statistics T
—> select > > [ » Average )
channel ADC of signal N samples

Figure (3.11) Time-domain representation of ED.

In the time domain representation, the received signal passes through
the Band Pass Filter (BPF). After the filtering, the signal is converted from
analog to digital, followed by a square. Finally, the average is calculated to
get the test statistic. The test statistic is compared to a certain threshold, and
then a decision is made about whether or not the signal is present or not.

Figure (3.12) illustrates the frequency domain representation of the

ED algorithm.
Input signal S . Average Test statistics T
— > 5| Squaring > .
ADC FFT of signal NMtil:l!:;z

Figure (3.12) Frequency domain representation of ED

In frequency domain representation, first, to sample the received
signal, the signal is converted from analog to digital. The Fast Fourier
Transform (FFT) is then applied to samples to convert the signal to the
frequency domain, and the FFT is squared. After that, the average is
calculated. Finally, for decision-making, the test statistic is compared with a
specific threshold.

From the time domain representation observation, it is clear that there
must be a pre-filter corresponding to the bandwidth of the received signal.
The need for a filter makes this representation complex and inflexible

compared to frequency domain representation. Also, frequency domain
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representation is beneficial for the following reasons: accuracy and ease of
measurement, simplification of mathematical analysis, and also, for the
frequency domain, visualization tools like spectrum analyzer are commonly
used when visualizing electronic signals.

According to the features mentioned above, the frequency domain is
used in this work to implement the ED algorithm.

The received signals spectrum from the time domain is converted to
the frequency domain using the FFT node in LabVIEW NXG. Figure (3.13)

shows the spectrum of the signal received in the frequency domain.

Signals received in the frequency domain

5000
1000
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Amplitude(dB)

1
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0 2000 4000 6000 8000 10000 12000 14000 17000

No. of samples
Figure (3.13) Spectrum of the signal received in the frequency domain

Using the array subset function in LabVIEW, each of the nine
channels is isolated individually and the energy per channel is calculated
according to the equations (3.11, 3.12, 3.13, and 3.14). This energy is then
compared to the threshold to determine the presence or absence of PU.
C. Channel Status Estimation

Understanding how SS works will be very useful for a more accurate
analysis of CR networks. The SS process can be described as a binary
hypothesis that can be defined as follows:

w(n) H,

y(n) = {S ) + w(n) H, (3.6)[50]
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Where y(n) is the signal received by the cognitive user or SU, s(n) is
the transmitted signal of the PU, and w(n) is the AWGN. H, is a null
hypothesis that refers to the absence of a licensed user signal in a certain
spectrum band. On the other hand, H, is an alternative hypothesis, which
indicates that there exists licensed user signals. There are four possible cases
of signal detection:

1. declare H, when H,, is correct (H, | Hyp).
2. declare H; when H, is correct (H; | Hy).
3. declare H, when H; is correct (H, | H,).
4. declare H; when H,, is correct (H, | Hy).

Figure (3.14) depicts all four possible cases of signal detection:

P(H1IH1)
Figure (3.14) Hypothesis tests

Case 3 is known as the missed detection, while case 4 is a false alarm,
and cases 1 and 2 are correct detection, which are the most important
measures of performance in the SS process.

Assuming the detection metrics and their respective thresholds are
denoted as E and A when a signal is really detected, the P,; can be expressed
as follows [51]:

P, = Pr(E > A|H,) (3.7)

While a false alarm occurs when the spectrum is detected incorrectly
as occupied such that:

Prq = Pr(E > A|H)) (3.8)
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Consequently, miss detections occur when the spectrum is detected as

unoccupied, however, it actually is not, and its P,,is denoted as:

P,=1-P, (3.9)[51]

Figure (3.15) illustrates the receiver side of the system.
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Figure (3.15) Receiver side of the system
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3.5 Improved Energy Detection Algorithm

The ED algorithm is classified as the non-cooperative SS method
(primary transmitter detection). ED is a common SS technique that is
characterized by low implementation complexity and computational. A
priori information about the PU signal is not needed for signal detection. In
general, in the ED algorithm, the calculation of the energy of the receiving
signal gives the test statistic, which is compared to a predetermined
threshold. The threshold is determined by the noise energy, and the accuracy
of the threshold determination is key to the performance of the energy
detector. If the energy of the received signal at CR is greater than the set
threshold, the alternate hypothesis H, is validated, and the PU is concluded
to be present. If the energy is lower, the null hypothesis H, is validated, thus
signifying the presence of a spectrum hole. Figure (3.16) illustrates a block
diagram for an energy detector.

Z(y) » threshold
Sum of N samples Ho/H1
[RF frontend]—-)[ FFT ]—)[Square]—)[ per Band ]—) Z(y) <threshold

A

Threshold (T)
(Adaptive or Static)

Figure (3.16) Block diagram for energy detector.

The test statistic Z(y) can be computed as [50]:
Z(y) = =3 |y[n]|? (3.10)

Here, y[n] is the received signal sample, and Ns is the total number of
received samples. The computed value of the test statistic Z(y) is then
compared with a pre-computed Threshold (T).

The threshold selected to distinguish between the two hypotheses is
the decisive factor determining the performance of the ED. Hence, the choice
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of the threshold for making the decision has a great impact on the
performance of the CR.

3.5.1 Fixed Threshold Technique (The Power of Received Signals is
Equal)

For CR, the most appropriate sensing technique is the conventional
energy detector. The conventional energy detector uses a fixed threshold
value where the fixed threshold value is set above the noise floor to
distinguish spectrum preoccupation. Therefore, information on the noise
floor level is3. Necessary for the threshold to be determined. Too bad the
performance of the conventional energy detector is significantly affected by
noise volatility. As a result, there are more false alarms and missed
detections. A false alarm occurs when the noise signal is mistakenly
identified as the principal signal. Therefore, this results in the
underutilization of the spectrum resource due to the missed transmission
opportunities.

Moreover, miss detection indicates a circumstance in which the
primary signal is incorrectly categorized as a noise signal. This is an
extremely undesirable state since it leads to interference with the PU’s
transmission. Another disadvantage of fixed threshold systems is that the
decision threshold is fixed at a fixed level above the noise floor. Therefore,
weak primary signals would go undetected if they fell below the detection
threshold, and the secondary transmission might cause severe interference to
the PU. The fixed threshold is considered impractical in the case of CR
sensor networks, where nodes must be completely independent and require
no human intervention to function. As a result, when it comes to CR
applications, adaptive and autonomous threshold approaches are preferable.

In this study, the ED algorithm was implemented with a fixed
threshold where the average energy per available band was calculated and

then compared with the threshold to detect the presence or not of PU.

46



Equation (3.11) shows how the energy for each sub-band is calculated.

Figure (3.17) shows how the energy of the spectrum sub-band is calculated.

E sub = —— Yok L 1X())? (3.11)
Sub size = % (3.12)
Start:n = (K— 1) X sub size (3.13)
Stop = K X subsize (3.14)

Where :

Esub: is energy for the sub-band, which is the test statistic that is compared
with the fixed threshold.

n: is the sample number

K: is the sub-bands number

X (n): is the magnitude of received signal FFT.

N: is the number of FFT samples.

The fixed threshold (T) value was set at 0.8 of the maximum channel average

energy.

SubSize = N/9

/
K = sub-band
number [ "5 3 ... N

Figure (3.17) sub-band divided

The flow chart of the ED algorithm (fixed threshold) is illustrated in
figure (3.18)
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Figure (3.18) ED with a fixed threshold.
3.5.2 Adaptive Threshold Technique (The First Proposed Method -The
Power of Received Signals is Equal)

The fixed threshold is considered impractical, especially in the CR
system, because of the missed transmission opportunities that lead to the
underutilization of spectrum resources. When it comes to CR systems, the
adaptive threshold, also called the dynamic threshold, is preferred because
of its ability to dynamically modify the threshold level, which increases the
dependability of the ED. In this thesis, an adaptive threshold for the ED
algorithm is proposed to enhance the reliability and performance of the work.

The proposed adaptive threshold will change adaptively based on the
signals received. The adaptive threshold was determined by relying on the
average of the total energy of the receiving signals, according to the

following equation:
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ET == BN o[X(n)I? (3.15)

Where ET is the total energy for the received signals, N is the number
of FFT samples, n is the sample number, and X(n) is the magnitude of the
received signals FFT.

The algorithm has been run on each variation of the SNR value, and
accordingly, the threshold value will vary depending on its response to the
energy of the receiving signals, which consists of PUs signals with a noise
signal. Figure (3.19) illustrates the flow chart of the proposed adaptive
threshold algorithm.

start

A

y
K =1
No. of channel =9

[
»>

Y

Calculate total energy (ET)
Eq.(3.15)

Y

Compute the energy

of the sub band (Esub)
Eq.(3.11)

ET > Esub ’ ET < Esub
Decision

K is idle K is occupaid

K <= No. of ch. /;\ K > No. of ch.

Figure (3.19) Flow chart of the first proposed adaptive threshold algorithm
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Table (3.4), presents a comparison of the fixed threshold and the
adaptive threshold in terms of performance.
Table (3.4) Fixed and adaptive thresholds comparison
Fixed threshold Adaptive threshold

e The fixed threshold requires prior

Doesn’t require prior knowledge of the

knowledge of the bandwidth and the bandwidth and the noise level.

noise level
e Human intervention is necessary to | e There is no need for human
adjust the fixed threshold value. intervention to adjust the fixed

threshold value.

The threshold value remains constant
doesn’t change and is set directly

above the noise floor.

There are more false alarms and
missed detection than the adaptive
threshold.

There is a significant degradation in

the performance of an algorithm that

The threshold value is dynamically
determined by relying on a certain set

of measurements.

Helps reduce the missed detection and
false alarm than the fixed threshold.

When compared to fixed threshold

approaches, these technigques are more

is based on the fixed threshold when
low SNR.

robust to noise uncertainty.

3.5.3 Adaptive Threshold Technique (Second Proposed Method-The
Power of Received Signals is Unequal)

When the power of all received signals is unequal, which is the closest
to realism, the first proposed method of adaptive threshold (that depends on
the average of the total energy of the receiving signals) is inefficient and
poorly performed. That is because of the variable power of the signals, the
threshold value may be higher than the low-average signals and will

therefore not be detected. So an adaptive threshold has been proposed that
50



depends on taking the average of the Total Energy (ET) of the receiving
signal plus the average of energy for the lowest two bands (here, as if the
average energy for the two lowest bands represents the noise level). Equation

(3.16) illustrates how to calculate the proposed adaptive threshold.

ave.ET+ave.lowest two band
(3.16)

T =
2
Figure (3.20) illustrates the flow chart of the proposed adaptive

threshold algorithm.
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Compute threshold (T)
Eq.(3.16)

T > Esub I'.‘A T < Esub
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Figure (3.20) Flow chart of the second proposed adaptive threshold
algorithm
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3.5.4 Adaptive Threshold Technique (Third Proposed Method-The
Power of Received Signals is Unequal)

The proposed adaptive threshold approach is based on the average of
the lowest and highest energy bands. Equation (3.17) illustrates how to

calculate the proposed adaptive threshold.

ave.lowest two bands+ave.highest two bands
2

T = (3.17)
Figure (3.21) illustrates the flow chart of the proposed adaptive

threshold algorithm.
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Figure (3.21) Flow chart of the third proposed adaptive threshold algorithm
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3.6 Results and Analysis

In this section, the performance of the energy-based SS is evaluated.
The metrics used to analyze the performance of the ED algorithm in this
work are Py, Psq, Py, and P... The performance of the ED was evaluated
over an AWGN channel.

The performance of the ED is described based on the curve of the
Receiver Operating Characteristics (ROC). This curve offers a mathematical
framework for calculating P;, Pr,, and B, for the fixed and adaptive
threshold technique. The area below the curve denotes accuracy. The
performance of the detector improves when the area under the curve

becomes closer to one unit square, as shown in figure (3.22).
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Figure (3.22) Receiver operating characteristic curves and the area
under the ROC curve [52].

The following sub-sections explain and analyze the results of SS using
the conventional ED and the proposed techniques in both scenarios (first and
second).
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3.6.1 Fixed and First Adaptive Method Simulation Results (Received
Signals Power are Equal)

This sub-section presents the simulation results (for the first and
second scenario) of the conventional energy detector and compares them
with the first proposed method results of the adaptive threshold. The adaptive
threshold was set based on the average of the total energy of the signal that
was being received. Here, it has been assumed that the power of all received
signals is equal (special case).
3.6.1.1 First Scenario (Semi-Deterministic Traffic Mode)-Special Case

In the first scenario, the performance of the ED algorithm is evaluated
when the semi-deterministic traffic mode is adopted for the PUs. The results
of the conventional energy detector and the first proposed method are
compared when the power of all received signals is equal. Figure (3.23)

depicts the relationship between the variance of the P; and the SNR.

ROC curve for SNR vs probability of detection

0.95 | | adaptive thr. s

- | fixed thr. e—

Probability of detection

=30 -20 -10 0 10 20 30
SNR(dB)

Figure (3.23) P; vs SNR for fixed and first adaptive threshold
(semi-deterministic traffic mode)

According to the results obtained, the fixed threshold results show that

there is a significant degradation in its performance at the lower SNR values.
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The ED detection probability is stable at 0.5 when SNR = -30dB to SNR =
5dB, then it starts to increase until it gets closer to 1 at SNR = 18dB. At SNR
greater than 18 dB, it can be noted that the energy detector has no difficulty
in differentiating between the principal signal and the noise signals.
However, when SNR is less than 5 dB, the performance of the energy
detector degrades significantly. The SNR wall represents the minimum SNR
below which a signal cannot be detected; for the fixed threshold The SNR
wall is located at 15dB.

The results of the adaptive threshold show that at SNR values larger
than 5dB, the ED has little trouble differentiating between the primary and
noise signals. The performance of the ED degrades significantly when SNR
values fall below -10dB. The SNR wall is located at 0dB when P, value =
0.77.

For the sake of comparison, it can be seen that the adaptive threshold
method outperforms the fixed threshold method in detection probability. For
example, at SNR= 0 dB, the probability of detection using the proposed
method increased from 0.5 to 0.787.

Another parameter that shows the performance of the ED is the Pg,.
The false alarm occurs when the spectrum is incorrectly detected as busy.
Figure (3.24) illustrates the ROC curve for Pr, VS. SNR from -30 dB to 30
dB. For the fixed threshold ROC curve, Py, is high at the lower SNR values,
and it starts to decrease at SNR = 15 dB until it reaches zero at 20 dB.

The adaptive threshold results indicate that when the SNR is between
5dB and 30dB, the performance of the ED is better. When comparing the
two results of the false alarm, it can be noticed that the adaptive threshold is

more efficient than the fixed threshold.
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1 ROC curve for SNR vs probability of false alarm
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Figure (3.24) Pr, vs SNR for fixed and first adaptive threshold
(semi-deterministic traffic mode)

It is also feasible to assess the ED in terms of the B,,, as illustrated in
figure (3.25). According to the ROC curve, the B, is high at SNR = -30dB
and zero at SNR = 15dB; this is because the SNR is high enough at 15 dB to
prevent misdetection. For the sake of comparison between the performances
of the two thresholds (fixed and adaptive), the fixed threshold seems to be
better than the adaptive threshold, but the reality is not, because, the previous
figure, shows that the P, was 100% at SNR values from -30dB to 5dB. And

by the equation of the P;., which represents the sum of the Pr, and the B,

the matter becomes clearer.
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ROC curve for SNR vs probability of misdetection
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Figure (3.25) P,, vs SNR for fixed and a first adaptive threshold
(semi-deterministic traffic mode)

The results of the fixed threshold in figure (3.26) illustrate the P;,
versus SNR. Py, is (Py) plus ( P¢,). The results show the highest P, ata
low SNR value, which is the worst case, and then it decreases until it reaches
zero at 20dB. At SNR values of between 20dB and 30dB, the performance
of ED works better. The adaptive threshold results show the highest P;, ata
low SNR value and then start to decrease until it reaches zero at 15dB. At
SNR values of between 5dB and 30dB, the performance of the ED is better.
The results show that the adaptive threshold performance is more efficient
than a fixed threshold.

Pte = Pm + Pf (3.18)
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1 ROC curve for SNR vs probability of total error
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Figure (3.26) P;, Vs SNR for fixed and first adaptive threshold
(semi-deterministic traffic mode)
3.6.1.2 Second Scenario (Burst Traffic Mode)-Special Case
To demonstrate the efficiency and the ability of the system to sense
the spectrum, the burst traffic mode for PUs was implemented using the same
algorithm and threshold (fixed and first adaptive threshold) techniques.
Figure (3.27) illustrates the relationship between the variance of the

P, and the SNR.
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1 ROC curve for SNR vs probability of detection
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Figure (3.27) P, vs SNR for fixed and first adaptive threshold
(burst traffic mode)

When assessing the performance of the ED algorithm at fixed
threshold utilization, it was observed that the curve did not start at 0.5
because the burst traffic mode follows the Poisson distribution. In addition,
the threshold value is constant. In this scenario, the fixed threshold value was
set at 0.8 of the maximum channel average energy. According to the results,
at lower SNR values, the performance of the ED degrades. At SNR values
larger than 15dB, the ED has little trouble differentiating between the
primary and noise signals. The performance of the ED degrades significantly
when SNR values fall below 5dB.

The results of the adaptive threshold show that the P; = 1 at SNR =
5dB. The SNR wall is located at 0dB when P, value = 0.818. The utilization
of the adaptive threshold improves the performance of the ED algorithm in
terms of P, in comparison to the fixed threshold.

Figure (3.28) illustrates the ROC curve for Pg, versus SNR. For the
fixed threshold ROC curve, P, is high at the low SNR values but starts to
decrease at SNR = 10dB until it reaches zero at SNR = 15dB.
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At SNR values of between 5 and 30dB, the ED performance using the
adaptive threshold is better. When comparing the performance of the two
thresholds, it can be seen that the adaptive threshold is a more efficient

approach than the fixed approach.

14 ROC curve for SNR vs probability of false alarm
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Figure (3.28) Pr, vs SNR for fixed and first adaptive threshold
(burst traffic mode)
According to the ROC curve using adaptive threshold, the B,,is high
at SNR =-30dB and zero at SNR = 0dB as shown in figure (3.29).
By comparing the results, the fixed threshold seems to be better than
the adaptive threshold. This is not the case in reality, as the previous figure

shows that the Py, was 100% at SNR values from -30dB to 5dB.
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ROC curve for SNR vs probability of misdetection
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Figure (3.29) B,, vs SNR for fixed and first adaptive threshold
(burst traffic mode)

The fixed threshold results shown in figure (3.30) illustrate the
P;, versus SNR. The results show the highest P,, at low SNR values, which
IS the worst case, and then it starts to decrease until it reaches zero at SNR =
15dB. At SNR values of between 15dB and 30dB, the performance of the
ED works better. For the adaptive threshold, the results show the highest P;,
at the lower SNR values and then start to decrease until it reaches zero at
SNR = 5dB. At SNR values of between 5dB and 30dB, the performance of
the ED is better. The results show that adaptive threshold performance is a

more efficient approach than a fixed threshold approach.
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ROC curve for SNR vs probability of total error
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Figure (3.30) P;, vs SNR for fixed and first adaptive threshold
(burst traffic mode)

3.6.2 Second and Third Adaptive Thresholds Simulation Results (The
Power of Received Signals is Unequal)

This sub-section presents the simulation results for the second and
third adaptive thresholds (when the power of all received signals is unequal
-general case) for the ED algorithm. The comparison between the
performance of each threshold in both scenarios (semi-deterministic and
burst traffic mode) is also introduced.
3.6.2.1 First Scenario (Semi-Deterministic Traffic Mode)-General Case

This sub-section presents the results for the performance of the second
and third suggested adaptive thresholds where the semi-deterministic mode
is adopted for the PUs.

Figure (3.31) illustrates the relationship between the P; and the SNR.
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Figure (3.31) P; vs SNR for 2nd. and 3th. Suggested adaptive threshold
(semi-deterministic traffic mode)
According to the results shown, the performance of the second

adaptive threshold, which was calculated according to equation (3.16),
outperformed the third adaptive threshold, calculated according to equation
(3.17). In the second adaptive threshold, the results show that the curve
doesn’t reach 100% at high SNR values. This is because the power of all
received signals is unequal and, thus, part of the received power may have
very little value. This means it will be within the noise.

In figure (3.31), the performance of the third adaptive threshold is less
efficient than the second threshold. For the second and third thresholds, the
SNR wall is located at 5dB.

The Pg, is shown in figure (3.32), which announces that the spectrum

is busy by PU in case the spectrum is actually empty.
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ROC curve for SNR vs probability of false alarm
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Figure (3.32) Prq vs SNR for 2nd. and 3th. Suggested adaptive threshold
(semi-deterministic traffic mode)
The results show that Py, is high at the second adaptive threshold, and

this leads to a loss in the use and exploitation of the spectrum compared to
the performance of the third adaptive threshold. The performance of both
thresholds at SNR values from 10dB to 30dB is more efficient.

Figure (3.33) illustrates the B,,. It means that the sensor's decision
about the PU signal is absent while it is present. In this case, if the spectrum
is used, it will lead to interference between the PUs and SUs. Results show
that the performance of the third adaptive threshold is deteriorating even if
the SNR is high. The second adaptive threshold is better than the third
adaptive at SNR values from 5dB to 30dB.
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Figure (3.33) B,, vs SNR for 2nd. and 3th. Suggested adaptive threshold
(semi-deterministic traffic mode)
The P;, is shown in figure (3.34). The second adaptive threshold result

shows that the P, is high at lower SNR values. It then starts to decrease until
it reaches zero at SNR = 10dB, and after this value, the performance of this
threshold gets better and improves.

For the sake of comparison between the second and third adaptive

thresholds, the second method is better.
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. ROC curve for SNR vs probability of total error
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Figure (3.34) P;, vs SNR for 2nd and 3rd. Suggested adaptive threshold
(semi-deterministic traffic mode)
3.6.2.2 Second Scenario (Burst Traffic Mode)-General Case

In this sub-section, the performance of the second and third suggested
adaptive thresholds is assessed where the burst traffic mode is adopted for
the PUs. The relationship between P; and SNR is shown in figure (3.35),
which shows the comparison between both adaptive thresholds. The results
show that the third threshold outperforms the second threshold. For the
second and third thresholds, the SNR wall is located at 5dB and -5dB,

respectively.
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Figure (3.35) P; vs SNR for 2nd. and 3th. Suggested
adaptive threshold (burst traffic mode)

In this scenario, it is clear that the second and third proposed adaptive
threshold performs better than the first scenario where the P, is closer to
100% when the value of SNR is high. This is because, in the burst traffic
mode, there will be little interference between channels. In the semi-
deterministic traffic mode, the probability of interference between channels
will be high.

Figure (3.36) illustrates the ROC curve for Pr, versus SNR. For the
second adaptive threshold ROC curve, Py, is high at the lower SNR values
and starts to decrease until it reaches zero at SNR = 10dB.

The results of the third adaptive threshold show that when the SNR is
between values of 0dB and 30dB, the performance of the ED is better. By
comparing the results in terms of P, the performance of the third threshold

is better.
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ROC curve for SNR vs probabitity of false alarm
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Figure (3.36) Pr, Vs SNR for 2nd. and 3th. Suggested
adaptive threshold (burst traffic mode)

In figure (3.37), for the second adaptive threshold, the ROC curve for
the PB,, is depicted in the graph. The probability of misdetection is high at
SNR =-30dB and zero at SNR = -5dB. At SNR between values of -5dB and
30dB, the performance of the second adaptive threshold is better.

In figure (3.37), the performance of the third adaptive threshold for P,
is very bad at low SNR values when compared to the second threshold. The
performance of the third adaptive threshold becomes more efficient at SNR
= 0dB and beyond. In addition, the second adaptive threshold is better in
terms of P,, than the third.
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Figure (3.37) B,, vs SNR for 2nd. and 3th. Suggested
adaptive threshold (burst traffic mode)

Figure (3.38) illustrates the P,, versus SNR for the second adaptive
threshold results. The results show the highest P;, at lower SNR, which is
the worst case, and then decrease until it reaches zero at SNR = 10dB. At
SNR values of between 10dB and 30dB, the threshold performance is better.
The third adaptive threshold results show the highest P,, at low SNR values
and then decrease until it reaches zero at SNR = 0dB. The threshold's
performance is best when the SNR is between 0dB and 30dB. The results
show that the third adaptive threshold performance for P, is more efficient

than the second threshold.
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Figure (3.38) P;. Vs SNR for 2nd. and 3th. Suggested
adaptive threshold (burst traffic mode)

3.6.2.3 Performance Comparison of First Method with Some Relevant
Works

Table (3.5) illustrates the performance comparison between the first
proposed in this thesis and some relevant works in terms of algorithm type,
Py ,and Py,.
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Table (3.5) Comparison the performance of the first proposed in this thesis
to some relevant works.

. SNR
Used Main
Reference range Py P,
algorithm type remarks
(dB)
The comparison is made SNR =- SNR
0.98 0.1
with the wireless 30 =-30
. . . -30 to
[6] RDM microphone signal with a 0
i = SNR
sample size 2 and SNR =0 1 ! 01
L=smoothing factor. =0
The comparison is made
with the cyclostationary, SNR=-1 45 | SNRE | 00
e MME ] ] 18 -18 8
which provided the best | _1gto
[8] e EME .
performance. When using 0
e cyclostationary .
the 8PSK signal as PU and SNR= | 0.0
SNR= -6 1
NS=512, FFT=2048. -6 8
When  information s
. NR= - NR=
available about the PU S u 0.3 514 0.1
e Matched filter | signal, the MF technique is
. . L -20 to
[9] e ED applied. If no information is 20
e cyclostationary | available about the PU, the
) SNR=- 03 SNR= -
ED and Eigenvalue are 14 - 14 -
applied.
This algorithm is dependent
on the adaptive threshold; SNR=- | g g5 | SNR= |
when the spectrum 25 25
o | -25to
[10] ED utilizationis P (H1) = 0.5, it 10
means that SUs are using
_ SNR= - L SNR= |
half of the available 10 10
channels.
The adaptive threshold was SNR= SNR
0.77 0.2
Proposed set based on the average of 30t 0 =0
-30 to
thesis ED the total energy of the 30
designs signal that was being SNR= 1 SNR 0
received. 30 =30
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CHAPTER FOUR
PRACTICAL IMPLEMENTATION OF ENERGY

DETECTION ALGORITHMS USING SOFTWARE-
DEFINED RADIO

4.1 Introduction

This chapter presents the general concept and basic structure of SDR,
the most important features and challenges of this radio, as well as an
explanation of one of the USRP hardware products of SDR. Also in this
chapter, practical implementation of the proposed SS system is performed
using USRP with the help of the LabVIEW NXG simulator.

4.2 Software-Defined Radios Fundamentals

Over the last several decades, telecommunications have been
constantly evolving. The usage of digital technology is one of the most
important technological advances. Digital communication technologies have
proven their efficiency and introduced a new component in the signal
transmitting and receiving chain, the digital processor. The flexibility of a
programmable system is provided by this device to modern radio equipment.
A communication system's behavior may now be changed easily by
modifying its software. This resulted in the development of a new radio
model known as SDR. In this new architecture, the responsibility of
configuring radio behavior is delegated to software, leaving just the RF front-
end implementation to the hardware. As a result, the radio is no longer a
static unit defined by its circuits but rather a dynamic device capable of
changing its operational properties, like modulation, bandwidth, coding rate,
etc. [53].

SDR was proposed by Joseph Mitola. SDR replaces traditional
hardware components with software modules for programmability [54].
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The term SDR is defined as “radio in which the radio frequency (RF)
operating parameters including, but not limited to, frequency range,
modulation type, or output power can be set or altered by software, and/or
the technique by which this is achieved”. In collaboration with IEEE working
group P1900.1, the SDR Forum, currently known as the Wireless Innovation
Forum, has created a definition of SDR: “Radio in which some or all of the

physical layer functions are software-defined” [55].

The main backbone of CR systems is SDR technology. This radio may
be dynamically changed to provide flexible communication across a broad
range of communication protocols. The SDR device is a programmable
terminal that is software-based and designed using programmable
components like Field-Programmable Gate Arrays (FPGAS), smart antennas,
Digital Signal Processors (DSP), reconfigurable amplifiers, accurate and
band. Advanced (Analogue-to-Digital Converter / Digital-to-Analogue
Converter) ADC/DAC, multiband RF circuits, and other programmable
components [56].

4.2.1 SDR Main Functions

1- Wireless data transfers have been supported by SDR across a variety of
frequency spectrums utilized by various wireless access systems, like the
ISM band, TV band, and cellular

2- Multistandard support: Different standards have been supported by SDR
like Wideband Code Division Multiple Access (WCDMA), Worldwide
Interoperability for Microwave Access (WIMAX), Global System for
Mobile (GSM), WiFi, and Code Division Multiple Access (CDMA)
2000. Moreover, different air interfaces within the same standard like
IEEE 802.11a, 802.11b, 802.11g, or 802.11n in the WiFi standard can be
supported by SDR.

3- Multiservice support: Multiple types of services have been supported by
SDR, like broadband wireless Internet access or cellular telephony.
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4- Multichannel support: SDR has been able to operate on many frequency
bands at the same time (i.e. transmit and receive) [35].

4.2.2 Architecture Overview of the Software Defined Radio

A typical SDR transceiver consists of the following components:
antenna, analog RF front end, digital front end, and signal processing as

illustrated in Figures 4.1 (a) and (b).

1- Antenna: SDR platforms usually employ several antennas to cover a
wide range of frequency bands. Antennas are often described as “smart"
or "intelligent™ because of their capacity to choose a frequency range and
interference cancellation or their ability to adapt to mobile tracking.

2- RF Front End: RF circuitry is used for transmitting and receiving signals
at different frequencies. Switching signals to and from the Intermediate
Frequency (IF) is another function of the RF circuitry. Based on the
direction of the signal (i.e., Tx or Rx), the operation will be divided into
two sections:

e During the transmission route, the DAC converts digital samples into
analog signals, which are then sent to the RF Front End. This analog
signal is combined with a predetermined RF frequency, modulated,
and sent.

¢ In the receiving route, the antenna receives the RF signal. To ensure
optimal signal power transmission, the antenna input is connected to
the RF Front End through matching circuitry. It then goes via a Low
Noise Amplifier (LNA), which is located near the antenna, to amplify
poor signals and reduce noise. This amplified signal is fed into the
mixer, with a signal from the Local Oscillator (LO), to be down-
converted to the IF.

3- Analog-to-Digital and Digital-to-Analog Conversion: As indicated in
the preceding section, the DAC is responsible for generating the analog
signal that will be transferred from the digital samples. The ADC is
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located on the receiver side and is an important component in radio

receivers. The ADC converts a continuous-time signal into a discrete-

time signal.
4- Digital Front End: The digital front end of an SDR transceiver performs
the following tasks:

e On the transmitting side, the Digital Up Converter (DUC) converts the
above-mentioned baseband signal to IF (Figure 4.1 (a)). The digital IF
samples are then converted to an analog IF signal by the DAC
connected to the DUC. After that, the analog IF signal is converted to
RF frequencies by the RF up-converter.

e The ADC transforms the IF signal into digital samples on the receiving
side (Figure 4.1(b)). These samples are then passed into the Digital
Down Converter (DDC). The DDC consists of a numerically
controlled oscillator and a digital mixer. The baseband digital signal
Is extracted from the ADC by DDC and sent to a high-speed digital
signal processing block after being processed by the Digital Front End.

5- Signal Processing: This block performs signal processing actions such
as modulation/demodulation, interleaving/deinterleaving,

scrambling/descrambling, and encoding/decoding [57].
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Figure (4.1) SDR architecture. Sub-figure (a) SDR transmitter block
diagram, and sub-figure (b) SDR receiver block diagram [57].
4.2.3 SDR Benefits
1- Seamless ubiquitous communication; It is feasible by picking the wireless
network that is best suited to the area and needs of the user.
2- Re-configurability; capable of changing all of its radio parameters in
accordance with internal and external policies.
3- Interoperability; capable of exploring and communicating with many

wireless networks.

76



4- Providing the necessary service quality while improving the service
economy based on data rate and cost [56].
4.2.4 SDR Challenges
Cost: the biggest challenge to the spread of SDR use is cost. SDR is generally
more complex than single-function radio systems, so it is more expensive.
High power consumption: the second challenge facing the SDR is the high
power consumption of devices using this technology. There are two reasons
that contribute to the power consumption of the SDR: the large bandwidth
of these systems and the increased complexity of the DSP unit.
Complexity: another challenge facing the SDR is the additional complexity
that this type of system requires. The complexity case has at least three
components:
Increase the cost and time of implementation of SDR.
Complex specifications and requirements, where SDR is designed to support
specific basic waveforms, also support some waveforms that are expected to
emerge in the future.
Increase risk where there are at least two sources of risk to consider.
e |nability to complete designs on time and within budget due to the
unpredictability of SDR project timelines.
e Inability to thoroughly test the radio in all of the supported and anticipated
modes [58].
4.3 Universal Software Radio Peripheral
USRP is a product developed under the concept of SDR by Ettus
Research, a subsidiary of National Instruments (NI) [59].
The USRP offers one-of-a-kind possibilities for research and development
in the wireless sector. It allows for the creation of a communication system
on a software level from the lower to the higher levels by enabling the user
to select the data scheme, symbol rate, modulation, coding scheme, packet

size, antenna configuration, frequency, and error correction scheme, etc. The
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user defines all of these system parameters using the software. LabVIEW,
MATrix LABoratory (MATLAB), GNU Radio, and other software
platforms operate on a computer linked to the USRP through a Gigabit
Ethernet (GIgE) interface. These drivers translate computer code into
machine language and make it accessible to the USRP through an Ethernet
wire. When used as a transmitter, the USRP hardware is an interface that can
take baseband signals and output an RF signal or vice versa when used as a
receiver [60].
4.4 USRP X310 Device

The Ettus Research USRP X310 is a high-performance, scalable SDR
platform for building and deploying next-generation wireless
communications systems. The hardware architecture combines two
extended-bandwidth daughterboard slots covering DC—6 GHz with up to 160
MHz of baseband bandwidth, multiple high-speed interface options (dual 10
GigE, dual 1 GigE, Peripheral Component Interconnect Express (PCle)),
and a large user-programmable Kintex-7 FPGA [61].
4.4.1 Key Features of the USRP X310
1- Kintex-7 XC7K410T FPGA from Xilinx
2- 16 bit 800 MS/s DAC
3- 14 bit 200 MS/s ADC
4- When used with an appropriate daughterboard, the frequency range is
from DC to 6 GHz.
Up to 160MHz of bandwidth per channel is enabled.
Two slots for wide-bandwidth RF daughterboard.
Optional GPSDO.
Multiple high-speed interfaces (Dual 1G, Dual 10G, PCle Express,
Express Card) [62].

® N
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4.4.2 USRP Interfaces and Connectivity

In this sub-section, the interfaces and connectivity for the X310 are

illustrated where the details of both the front and rear panels of the X310 are

presented.

A-

USRP X310 front panel

Figure (4.2) represents a detailed view of the front and back panels of the
USRP X310. The front panel consists of:

1-
2-

O-

JTAG: USB for the on-board USB-JTAG programmer.

RF A set.

TX/RX LED: indicates that data is flowing on the TX/RX channel of
daughterboard A.

RX2 LED: indicates that data is flowing on the RX2 channel of
daughterboard A.

REF: It refers to a locked external reference clock.

PPS: refers to a valid PPS signal with pulses once per second.

AUX 1/O: Front panel GP1O connector.

GPS: refers to that GPS reference is locked.

LINK: refers to the computer being connected to the device.

RF B set.

TX/RX LED: indicates that data is flowing on the TX/RX channel of
daughterboard B.

RX2 LED: indicates that data is flowing on the RX2 channel of
daughterboard B.

PWR: Power switch [62].
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Figure (4.2) USRP detailed view: (a) Front panel (b) Back panel.

B- USRP X310 back panel
The Rear Panel consists of:
1- PWR: Adapter for the power supply of the USRP-X Series.
2- 1G/10G ETH: SFP+ Ethernet interface ports
3- REF OUT: The exported reference clock's output port.
4- REF IN: Input for the reference clock.
5- PCle x4: adapter for wired PCI express link.
6- PPS/TRIG OUT: The PPS signal's output port.
7- PPS/TRIG IN: The PPS signal's input port.
8- GPS: GPS antenna connection [62].
4.5 System Structure in Practical Implementation

The USRP offers a combination of NI’s software and hardware that
provides the functionality and flexibility for physical layer design. All
system settings, such as modulation scheme, data, frequency, antenna
configuration, etc., are software-defined by the user. The software platform,
such as GNU Radio, MATLAB, LabVIEW, etc., operates on a computer that
is linked to the USRP through a GigE port or other interfaces. In this study,
LabVIEW has been used to control the USRP X310 hardware, where the
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USRP connects to the host Personal Computer (PC) through an Ethernet

cable, as shown in Figure (4.3).

og Periodic
antenna
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Platform
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RF Software processing
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board
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. :;‘.“‘ . : Q
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Figure (4.3) Practical implementation structure

This study used an Ettus USRP X310 radio, When USRP works as a
transmitter, the main role of the URSP platform is to convert the digital
baseband signal received from the computer via the 1 GigE port (the
baseband In-phase and Quadrature components (1Q) signal samples) to an
analog signal in the RF stage. This process is realized in two steps. The first
step is converting the digital signal to the digital IF domain through the DUC
this stage is achieved through the motherboard, which is the basis of the
USRP platform. After that, the signal is processed on the daughter-board,
which is responsible for transforming the digital IF signal to its analog form
in the RF band (The daughter-boards are the physical radio front-ends);

finally, the analog signal is mixed to the required carrier frequency, and then
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the signal is radiated by the RF antenna. Figure 4.4 depicts the Motherboard
and Daughterboard in the USRP X310.

When USRP works as a receiver, the analog signal is acquired from
the selected RX port. The received RF signal is converted to IF, then
converted to the baseband IQ signal. Finally, the baseband 1Q signal is

transmitted to the PC via a 1GigE port for further processing.

Motherboard TX1/RX1

10/1 GigE Ports

—— L . Kl v T ¥ ol
e TT R iRERRS ST STT e - - g - -

Daughterboards
¥ UBX-160
Channel RF B

Channel RF A

TX1/RX1 RX2

Figure (4.4) USRP X310 components

4.6 USRP Configuration in LabVIEW NXG

LabVIEW offers the concept of Virtual Instruments (VIs). In
LabVIEW, every program appears as a VI. LabVIEW includes a block
diagram and a front panel. The front panel of a VI has the same function as
the actual instrument’s front panel; designers can add inputs like

connections, switches, numeric inputs, etc., in addition to indicators such as
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graphs. The actual programming is done in the block diagram. When creating
a designer interface element in the front panel, a corresponding icon is also
created in the block diagram. The project is done by connecting the icons
together to form a block diagram of the specific project. In addition, NI
provides a large number of built-in functions and toolkits that may be used
for a variety of applications and are highly efficient to use when
programming, the basic control of USRP is simple through built-in functions
available in LabVIEW, as shown in figure (4.5). This control can be divided

into the following steps:

1- Configuration of the USRP parameters according to the designer's
demands, like carrier frequency, gain, active antenna, 1Q sampling rate,
and so on.

2- Starting read (receiver) or write (transmitter) processes to receive or send
data depending on the parameters chosen in the first step. Loops are often
used in this stage to constantly receive or transmit.

3- The USRP connection must be closed when the transmitting and/or

receiving has been completed.

: Read/

Figure (4.5) Basic steps of controlling USRP by LabVIEW NXG

In LabVIEW, there are eight built-in functions for controlling USRP,
which are split into three groups according to the steps indicated above.
Figure (4.6) depicts the eight most frequently utilized NI USRP functions.
The five specified functions in the leftmost column are used to configure and
start the USRP. The two functions in the middle read and write data from
and to the USRP. At the end of the process, the functions in the right-most

column are used to close the connection between the PC and the USRP.

83



/niUSRP Open Rx Session \

(NI-USRP |
™
niUSRP Abort
: ) : niUSRP Fetch Rx [(NEVsRe]
niUSRP Configure Signal Data (CDB) .
[NI-USRP | N
niUSRP Close Session
niUSRP Initiate [NI-USRP |
= } xl;
/ niUSRP Open Tx Session \
[NI-USRP ]
Fa.
RX niUSRP Write Tx niUSRP Close Session
Data (CDB)
(NI-USRP | [NI-USRP |
niUSRP Configure Signal * Xi
N
X rusep V.4
o S—

Figure (4.6) eight most frequently utilized NI USRP functions

4.7 Spectrum Sensing Algorithm Practical Implementation

This section shows how the proposed SS system is implemented in
real-time, based on the first scenario when the traffic mode for the PU is
semi-deterministic, (mentioned in chapter 3, sub-section 3.4.1)

The transmitted signals of the nine channels are modulated with QAM.
These signals are transmitted and received to/from the communication
channel via the same USRP chain. The center frequency of the transmitted
signals is set at 915 MHz. Using the LabVIEW NXG software platform's
graphical programming environment and the USRP X310, it is easy to make
the transmitter and receiver chains. The implementation requires the
following equipment:

1- Single USRP X310 SDR platform.

2- Personal Computer (Laptop).

3- Two Antennas (log-periodic operate from 850 MHz to 6500 MHz).
4- Spectrum Analyzer device.

5- GigE and Sub Miniature version A (SMA) cables.
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4.7.1 Practical Implementation Procedures
In this study, practical implementation depends on the same
specifications that were presented in the simulation part in chapter three. The
following steps illustrate the practical implementation of the spectrum
sensing system based on the energy detection algorithm.
1. In the first step, signals to be transmitted are prepared (QAM modulated
signals), where the transmitted signals' data (on the transmission side) is
written in a (TX) Tag (a Tag can store a single value of any data type that

represents the state of a process), as shown in figure (4.7).

________

- - - P =

: Write Transmit Signals
i -— Information in the TX Tag|

-------

Transmite Side

Figure (4.7) Transmit side block diagram

2. A new VI is created to prepare the signals for transmission to the USRP
device. In this code, the 1Q signals are read from the TX Tag, then the
data is written to the specified channel using the (niUSRP write TX) node.
The 1Q signals are sent to the USRP via Ethernet. Figure (4.8) shows the

preparation of transmission signals.
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Figure (4.8) LabVIEW NXG transmission signals configuration diagram
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3- Transmitting and receiving parameters are configured as in figure (4.9)

ﬁ B> Function.gvi : P TiRXgvi® ‘ B Rgvi : # Resources.grsc : W tagearsc |+ -
D @ (#] EIE m Diagram lcon L[x! v D y | 100% W
Jo)
0 Configure Transmission Configure Reception
* Parameters Parameters
ﬁ device name TX device name RX
0.1 ? 192.168.10.2 |~ 7 192.168.10.2 |
K Carrier Frequency[HZ] TX Carrier Frequency[HZ] RX
= 9.15E+08 |- 9.15E408 |
N TX Active Antenna RX Active Antenna
E X1 RX1
TX Active Channel RX Active Channel
[ 0 o
om
L TX 1Q Rate RX IQ Rate
[ 4E+06 4E+06 |
4 TX Gain RX Gain
[ u] . .
0 . 0

Figure (4.9) Setting parameters for USRP

4- The 1Q signals are transmitted using a USRP device via the (TX1) channel

and broadcast by the antenna.

5- The signals are received on the same USRP device via the (RX1) channel

and then transferred to the computer via the Ethernet cable.

6- A new code is created to prepare the signals for receipt from the USRP.
In this code, the received signals' data is written in the RX Tag as shown in
figure (4.10).
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Figure (4.10) Configuration of receive signals in LabVIEW NXG

7- In the same project in LabVIEW, the last IV is created to present the entire
receiving procedure by reading the received signals' data from the RX Tag.

The ED algorithm is then implemented to sense the spectrum and detect the
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presence or absence of the signals. Finally, the received and transmitted
signals’ data is stored in a text file to evaluate the performance of the
algorithm as shown in figure (4.11). Using a code in MATLAB, the data is

processed and the results are obtained.
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Figure (4.11) LabVIEW NXG diagram of the detection algorithm
Figure (4.12) shows the laboratory testbed setup of the real-time ED for

the first scenario (semi-deterministic traffic mode of the PU signal). The PC
is connected to the USRP (transceiver) using a 1 GigE cable with Registered

Jack-45 (RJ-45) connectors as well as a Log-periodic antenna.
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Figure (4.12) laboratory testbed for the first scenario (semi-

deterministic traffic mode of the PU signal)

The effect of SNR on the signals' spectrum can be observed at 915MHz
using a Siglent SSA3032X spectrum analyzer. Figure (4.13) shows the
signals received at SNR = 30dB, where through the spectrum sensing process
based on the ED algorithm, five busy channels were detected, as well as four
idle channels that SUs exploit opportunistically. Figure (4.14) also shows the
signal received at SNR = 20dB.
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Figure (4.14) Spectrum of received signals at SNR = 20dB

91



Figure (4.15) illustrates a summary of the transmitting and receiving
processes using the USRP device.

TX Processing RX Processing

Channel

Figure (4.15) Transmit/Receive process summary for spectrum
sensing.

4.7.2 Practical Results and Analysis

This sub-section describes the practical implementation of energy
detector-based sensing using the USRP X310 and an average of 1000

realizations.

In this implementation, the effect of different SNR values on (Py, Py,
and B,,) have been tested, varying the SNR value from -30 dB to 30 dB with
a step of 5dB. Each measurement result is the average value of 1000
measurement results for the same SNR value. The results of the first scenario
of the three proposed adaptive thresholds techniques are presented.
4.7.2.1 First Proposed Adaptive Threshold (The Power of Received
Signals is Equal)

In the first proposed adaptive threshold, the adaptive threshold was set
based on the average of the total energy of the signal that was being received.
Figure (4.16) illustrates the LabVIEW NXG simulation and USRP
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implementation of the P,; versus SNR for the first scenario (the PUs traffic

mode is semi-deterministic).

ROC curve for SNR vs Probability of detection
simulation

0.95
Practical —

e
© » °
© o«

T

Probability of detection
o
~l (5]

-30 -20 -10 0 10 20 30
SNR(dB)

Figure (4.16) P,; vs SNR for the first adaptive threshold

By comparing Labview simulation and USRP implementation, there
is a difference between them. This is a difference because the signal, when
sent through the communication channel, suffers from distortion due to the
many phenomena facing wireless signals, such as absorption, multipath, and
scattering. In addition, thermal noise from the USRP hardware also
contributed to this difference.

Practical results show that energy detector performance is good at high
SNR values, and performance declines at SNR values of less than -5 dB. In
the simulation results, at SNR values greater than 5dB, the ED has little
trouble differentiating between the noise and primary signals. The
performance of the ED degrades significantly when SNR values fall below -
10dB.
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Figure (4.17) illustrates the simulation and USRP implementation of
the Pr, vs SNR.

ROC curve for SNR vs Probability of false alarm

simulation

practical —

Probability of false alarm
o o o o o e
N w - (3, ] (2] ~

e
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Figure (4.17) P¢, vs SNR for the first adaptive threshold

In the simulation result, when the SNR is between values of 5dB and
30dB, the performance of the ED works better. The results of practical
implementation show that Py, is high at the low SNR values but starts to
decrease until it reaches zero at 10dB. It can be seen that practical results are
worse than simulation results due to the loss caused by practical
implementation.

Figure (4.18) depicts the PB,,. The results show that the P, is high at
low SNR values but starts to decrease at high SNR values until it reaches
zero at 5dB in both results. It can be seen that simulation results are worse

than practical results.
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Figure (4.18) P,, vs SNR for the first adaptive threshold

As seen in Figure (4.19), both the implementation and the simulation
results show that the total error probability is high when the SNR is low. It
then starts to decrease as the SNR increases until it reaches zero at SNR =
5dB in simulation and SNR=10dB in practical implementation. As seen in
Figure (4.19), the performance of the LabVIEW simulation is better than the

practical implementation.
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Figure (4.19) P;, vs SNR for the first adaptive threshold
4.7.2.2 Second Proposed Adaptive Threshold (The Power of Received
Signals is Unequal)

In the second proposed adaptive threshold, when the threshold relies
on taking the average of the total energy ET of the receiving signals plus the
average of energy for the lowest two bands, the results in figure (4.20) show
P; vs SNR for simulation and practical implementation. As seen in this
figure the measurement results of the practical implementation are similar

compared to the simulation results.
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Figure (4.20) P; vs SNR for the second adaptive threshold

Figure (4.21) shows that the Py, in simulation and practical implementation

improves at SNR = 10dB and beyond. The measurement results of the

implementation are similar compared to the simulation results.
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Figure (4.21) Pr, vs SNR for second adaptive threshold
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Figure (4.22) illustrates the P,,, which declares that the spectrum is not
busy but is busy in fact. The figure shows that practical results are better
compared to the simulation at SNR values from -30dB to -5dB, but the
simulation results are better than the practical results at SNR values from -
5dB to 10dB.

ROC curve probability of misdetection VS SNR

Simulation

Practical

0.15

011

Probability of misdetection

0.05

-30 -20 -10 0 10 2v0 30
SNR(dB)

Figure (4.22) P,, vs SNR for the second adaptive threshold

Figure (4.23) illustrates the P,,vs SNR. Both the practical
implementation and the simulation results show the highest P,, when the
SNR is low, which is the worst case, and then decreases as the SNR increases
until it reaches zero at 10dB. When the SNR is between 10dB and 30dB, the

performance of the threshold works better.
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Figure (4.23) P,, vs SNR for the second adaptive threshold
4.7.2.3 Third Proposed Adaptive Threshold (The Power of Received
Signals is Unequal)

In the third proposed adaptive threshold, when the threshold relies on
the average of the lowest and the highest energy bands, figure (4.24) shows
the simulation and practical implementation of the P; vs SNR. As shown in

this figure, USRP implementations are closer to LabVIEW simulations.
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Figure (4.24) P,; vs SNR for third adaptive threshold
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Figure (4.25) illustrates the Pr,vs SNR. As shown in this figure, the

simulation results are better compared to the practical at SNR values from -
30dB to -5dB. In both the practical implementation and the simulation

results, performance improves at SNR = 10dB and beyond.
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Figure (4.25) P, vs SNR for the third adaptive threshold

Figure (4.26) illustrates the P,,, The results show that the P,, is high

at low SNR values but starts to decrease at high SNR values.

Roc curve SNR vs probability of misdetection

Simulation

0451 Practical _

04

0.35

031

Probability of misdetection

0.25

02 . . . . .
230 20 -10 0 10 20 30
SNR (dB)

Figure (4.26) P,, vs SNR for the third adaptive threshold

100



Figure (4.27) illustrates the P;, vs SNR. In both simulation and
practical implementation results, the third adaptive threshold shows that the
total error probability is high when the SNR is low, and it starts to decrease
when the SNR increases. As shown in this figure, USRP implementations

are closer to LabVIEW simulations.
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Figure (4.27) P;, vs SNR for the third adaptive threshold
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CHAPTER FIVE
CONCLUSIONS AND FUTURE WORK

5.1 Conclusion

This thesis deals with the problem of limited spectrum resources,
which is one of the challenges facing UDN technology in 5G. CR technology
represents the solution to the issue of inefficient use of the spectrum. SS
algorithms are the effective key to CR performance. Hence the need to
evaluate the performance of SS algorithms. This study focused on evaluating
the performance of the energy detector-based SS technique using simulations
with the LabVIEW NXG software. Since the performance of the ED depends
on the accuracy of the threshold, this thesis presented a study of the fixed
threshold technique as well as three proposed methods for the adaptive
threshold to improve the performance. The real-time system was realized on
an SDR platform, built using USRP X310 kits from Ettus Research, with the
energy sensor implemented on a personal computer using LabVIEW NXG.

The conclusions are presented as follows:

1- In the special case, when the received signals power are equal.

A. In the first scenario, the semi-deterministic traffic mode has been adopted
for the PUs. The ED algorithm was introduced using a fixed threshold
and the first proposed adaptive threshold (that depends on the average of
the total energy of the receiving signals). Although the fixed threshold
approaches are relatively simple to apply, the fixed threshold is prone to
error due to the fluctuating nature of noise signals. The results showed
that the adaptive threshold outperformed the fixed threshold, where the
detection process begins with small SNR values compared to the fixed
threshold.

In the fixed threshold, the P; value was 0.5 at SNR = -30 dB, then it
started to increase until it got closer to 1 at SNR = 18dB, while in the first
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adaptive method, the P, value was 0.51 at SNR = -30dB and continuously
increased until it got close to 1 at SNR = 5dB.

In the second scenario, the burst traffic mode has been adopted for PUs
to demonstrate the algorithm’s efficiency and ability to sense the
spectrum. The same algorithm and thresholds used in the first scenario
were reused for the second scenario. The results showed good
performance of the adaptive threshold compared to the fixed threshold.
In the fixed threshold, the P; value was 0.13 at SNR = -30 dB and went
up to 1 at SNR = 15dB, while in the first adaptive method, the P, value
was 0.5 at SNR = -30dB and increased to 1 at SNR = 5dB.

In both semi-deterministic and burst traffic modes, it is not recommended
to use the fixed threshold, especially when the SNR is lower, but the

adaptive threshold is recommended.

2- In the general case, when the power of all received signals is unequal.

A

In the first scenario, two adaptive threshold methods have been proposed
(the second and third adaptive thresholds). The second adaptive threshold
depends on taking the average of the total energy of the receiving signal
plus the average of the energy for the lowest two bands, while the third
adaptive threshold depends on the average of the lowest and highest
energy bands. The results showed that the second proposed threshold in
signal detection performed better than the third proposed threshold. In the
second adaptive method, the P, value was 0.5 at SNR =-30 and went up
to 0.97 at SNR = 30dB. While in the third adaptive method, the P, value
was 0.5 at SNR = -30dB and increased to 0.89 at SNR = 30dB.

In the semi-deterministic traffic mode, it is recommended to use the
second adaptive method instead of the third adaptive method, especially
when SNR > 10dB.

In the second scenario, the third proposed threshold outperformed the

second proposed threshold. Where in the second adaptive method, the P,
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value was 0.34 at SNR = -30dB and increased to 0.99 at SNR = 10dB.
While in the third adaptive method, the P, value was 0.5 at SNR =-30dB
and increased to 0.99 at SNR = 5dB. In the burst traffic mode, it is not
recommended to use the second adaptive threshold, especially when SNR

is lower, but the third adaptive threshold is recommended.

3- The semi-deterministic traffic mode has been practically implemented

using SDR. The obtained practical performance is worse than that
obtained in the simulations. This was attributed to the fact that the
transmitted signals were affected by more than propagation factors in the
channel. In addition, thermal noise from the USRP hardware also
contributed to this disparity.

In the first adaptive method, the P,; value was 0.50 at SNR = -30dB and
continuously increased until it got close to 0.97 at SNR = 15dB, while in
the second adaptive method, the P,; value was 0.5 at SNR =-30 and went
up to 0.97 at SNR = 30dB, and in the third adaptive method, the P, value
was 0.5 at SNR =-30dB and increased to 0.84 at SNR = 30dB.

4- In general, the study showed the impact of SNR on signal detection, where

the higher the SNR, the greater the probability of detecting the signal.

5.2 Future Work

1.

Implementing the proposed SS system in the LabVIEW NXG simulator
on the FPGA of the USRP for faster transmission (offloading).

. Using other types of channels and noise, for example, (Rayleigh, fading

colored noise, etc.).

Applying parallel or sequential multistage SS algorithms in order to
enhance the performance and overcome the limitations of conventional
SS techniques.

Applying the cooperative SS technique (more than one detector to check
the spectrum and share information among CR users) because the SS of

individual nodes cannot achieve high detection accuracy.
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5. Applying the ED algorithm using other types of adaptive thresholds.
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