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Abstract

The detection of shrapnel in the human body is a medical imaging task that is
typically performed using X-ray, computed tomography (CT), Ultrasounds, or magnetic
resonance imaging (MRI) scans. These imaging techniques can provide detailed images
of the internal organs and bones. However, those methods suffer from not distinguishing
non-metallic shrapnel, causing ionizing radiation, not distinguishing between shrapnels
and bones, and being time-consuming, respectively.

Medical microwave imaging is the method that involves the use of microwave
electromagnetic waves to create images of the internal structures of the human body. It
has the advantage of being non-invasive and safe. Microwave imaging can be combined
with neural networks to enhance the analysis and interpretation of the collected
microwave data.

In this research, the deep neural network was employed to identify the presence
or absence, size, and location of shrapnel. To build a model, an electromagnetic
simulator CST Microwave Studio is employed. The model consists of four layers (skin-
fat- muscle- bone) with different conductivity and relative permittivity. Spherical
shrapnel of different radii (5mm, 10mm, and 15mm) is supposed to be at various places
in the model. The signal is directed at the model using a monopole ultra-wideband
antenna, which is also used to pick up reflected signals. The transmitted signal operates
in the frequency range of 1 GHz to 6 GHz. In order to determine whether shrapnel is
present or not, its size, and where it is located, the collected signals are analyzed using
a deep neural network.

It is important to select an appropriate design and learning algorithm for the
neural network to produce the best results. MATLAB can be used to test various neural
network designs and sizes and conclude on the best model.

The results were acquired utilizing the neural network with 90% success in
shrapnel identification, 86% success in shrapnel sizing, and 78% success in shrapnel

depth. Better results were obtained using CNN, where 99% success was reached in

VI



determining the presence of the fragment and 88% in determining its size and location.

Overall, the combination of microwave imaging and neural networks,
specifically CNNSs, shows great potential in improving the accuracy and reliability of
shrapnel detection systems, especially with a large amount of trained data. Further
research and advancements in this field can lead to enhance medical imaging techniques

and improved patient care.
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CHAPTER ONE
INTRODUCTION

1.1 Overview

Whether in peacetime or wartime, metal may enter the human body in
numerous ways, including trauma, medical accidents, medical implants, and misuse.
The most common injuries are gunshot wounds, shrapnel, and metal fragments
remaining in the human body. It is important to locate the metal in the body quickly
and accurately with effective imaging methods such as X-ray, CT scan, MRI, or
ultrasound. This will help to determine the size, shape, and location of the metal,
which is important for planning any necessary surgery or treatment. Additionally,

this can help in reducing the pain of the patient [1].

Typically, shrapnel material is either steel, copper, or aluminum. This shrapnel
is frequently moves inside the patient's body for a variety of reasons. A surgeon must

find the shrapnel and surgically remove it in order to treat injuries [2].

1.2 Some Hidden Object Detection Techniques

Hidden object-detecting techniques are used to detect concealed items or
objects in various scenarios, such as security checkpoints, baggage screening, or
medical imaging. Here are some commonly used hidden object-detecting techniques
1.2.1 X-Rays

X-rays are a type of electromagnetic radiation that can pass through many
materials, including soft tissue, bones, and metal. They are used to detect hidden
objects in the human body, such as shrapnel, bullets, or other metallic objects that
may be present inside the body in some circumstances. X-rays work by passing
through the body and being absorbed by different materials at different rates. Dense
materials like bone absorb more X-rays, while less dense materials like soft tissue

absorb fewer.

Metals, such as those used in shrapnel, are highly dense, and therefore absorb



a significant number of X-rays, making them visible on an X-ray image. X-ray
Imaging is a non-invasive procedure, it can be done quickly and easily, and it does
not require the patient to have anesthesia. However, X-ray imaging exposes the

patient to ionizing radiation, which can have potential long-term health effects [3].
1.2.2 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is often used to detect hidden objects in
the human body. The technique uses a powerful magnetic field, radio waves, and
computer technology to produce detailed images of internal organs, bones, and other
structures. The MRI system is shown in Figure (1.1). MRI can be used to detect a
variety of foreign objects, such as bullets, shrapnel, and other metallic fragments, as
well as non-metallic objects like glass, wood, and plastic. It can also be used to detect
tumors. The high resolution and contrast of MRI make it a valuable tool for detecting
objects that may not be visible using other imaging techniques However, there are a
few challenges associated with MRI. One problem is the time-consuming nature of
MRI scans, which can limit their use in emergency situations [4]. the MRI technique
exploits the behavior of hydrogen protons in a magnetic field and their response to
RF pulses to create detailed and informative images of the body's internal

structure[5].

Figure 1.1: Magnetic resonance imaging system



1.2.3 Computed Tomography

Computed tomography (CT) can be an effective tool for detecting shrapnel in
the human body. CT scans use X-rays to produce detailed images of the body's
internal structures, including bones and soft tissue. The metal of shrapnel shows up
in white on a CT scan, which makes it easy to be identified and located. In addition,
CT scans can also be used to detect any internal injuries or bleeding that may have
been caused by the shrapnel. CT scans are fast and non-invasive, and they can

provide important information to help guide treatment decisions.

CT can offer more detailed imaging data, and accurate three-dimensional
placement and location are both possible. The cost is a drawback because it is high.
In addition, it cannot be effectively used in the complex environment seen on the
battlefield due to its big size, awkward carrying, and high environmental

requirements.
1.2.4 Ultrasound Imaging

The high-frequency sound waves of ultrasound can create images of internal
organs and tissues, allowing healthcare providers to locate and identify foreign
objects such as shrapnel. It is a non-invasive and relatively safe method for detecting

shrapnel in the body.

During the ultrasound imaging, the sonographer will apply a water-based gel
to the skin and move a handheld transducer over the area of concern. The transducer
sends out sound waves that bounce off of internal structures and return to the
transducer to create an image. The sonographer can adjust the frequency and
intensity of the sound waves to optimize the image for the specific type and size of
shrapnel. Under ultrasound supervision, metallic bodies can be removed safely and
without radiation harm. However, the metallic body appears identical to the bone in

ultrasonic pictures, making it impossible to distinguish between the two [6].



1.2.5 Microwave Imaging

Microwave imaging is one promising technology for seeing internal human
structure by subjecting it to electromagnetic waves at microwave frequencies
between 300MHz and 30GHz [7]. In general microwave technology is reliable,
affordable, and portable, and it can provide the initial diagnosis of a number of
serious medical disorders. The necessary hardware for a microwave-based diagnosis
system typically consists of a transmitter, such as a portable vector network analyzer
(VNA), an array of antennas (or occasionally just one antenna in sensing
applications), and some switching networks to switch between multiple antennas.
This necessary hardware can be made for a small portion of the cost of other

traditional diagnosis tools [8].

Microwave imaging techniques utilize the interaction between microwave
signals and biological tissues to provide information about their composition and
properties. It can provide valuable information about tissue properties, such as

electrical conductivity and permittivity.

This technology is especially relevant in military medicine, as it can detect and
locate shrapnel in soldiers who have been injured by explosive devices, without the
need for invasive surgery. It can also be used in emergency rooms and trauma centers
to quickly identify and locate shrapnel in the bodies of civilians who have been

injured in bombings or other explosions.
1.2 Literature Review

In 2018, Mohammad T. et al. presented a review of concepts and
electromagnetic techniques for microwave breast imaging, with a specific emphasis
on the use of ultra-wideband (UWB) antenna sensors [9]. The use of UWB sensor-
based microwave energy in various imaging applications for breast tumor-related
diseases, tumor detection, and breast tumor detection. In microwave imaging, the
back-scattered signals radiating by sensors from a human body are analyzed for

changes in the electrical properties of tissues. Tumorous cells exhibit higher dielectric



constants because of their high-water content.

In 2018, Oleksandr D. et al. developed an impulse electromagnetic wave that is
used to irradiate the surface, and the reflected field characteristics are analyzed using
an ANN [10]. This data is used to train the ANN to recognize specific objects based
on the characteristics of the reflected field. The ANN is then able to identify objects
based on the input data it receives during testing. This method can be used to detect
and identify a wide range of hidden objects. also investigated the effect of the number

of hidden layers in the ANN on the precision of recognition.

In 2019, Chen H. et al. presented a unified approach that performs thoracic
disease identification and localization using deep learning techniques [11]. The
proposed method is to build an accurate prediction model that can effectively identify
and locate thoracic diseases in radiology images. The method is based on deep learning
techniques, which have shown significant success in medical image analysis tasks.
Deep learning models can automatically learn relevant features from the data, making
them well-suited for complex image recognition tasks. the proposed method shows
promising results in accurately identifying and localizing thoracic diseases in
radiology images, making it a potentially valuable tool for clinical diagnosis and

treatment planning.

In 2020, Ahmed J. et al. presented a small-size UWB monopole antenna to
accurately locate and identify kidney stones within the body [12]. The low profile,
simple structure, and lightweight nature of the antenna design are intended to make it
easy to manufacture and to be comfortable for patients to use during the scanning
process. The UWB antenna was simulated, measured, and tested at an ultra-wideband
frequency range of 3-11 GHz to detect kidney stones. The test results showed that

when a stone is present, the Reflection coefficient (S11) increases.

In 2020, Gennadiy P. et al. proposed UWB antenna systems that can be used for
detection and classification by sending out UWB pulses and analyzing the reflections
[13]. The reflections can be analyzed using artificial neural networks (ANNS) to



classify the object, The ANNSs can then be trained to recognize the characteristics of

hidden objects and differentiate them from other objects in the environment.

In 2021, Vikesh S. et al. proposed automated microwave monitoring a technique
that utilizes microwave signals to detect hidden objects in strategic and security
applications [14]. The technique works by emitting microwave signals and measuring
the reflections, which can reveal the presence of hidden objects. By measuring the S-
parameters of the test region using a horn-lens antenna and a network analyzer in the
wide frequency range of 2-10 GHz, it is possible to detect hidden objects. The
proposed scheme allows for the calculation and comparison of the objects' shape, size,
and depth profile with their actual values in addition to determine their dielectric

properties.

In 2021, Amran H. et al. investigated A YOLOv3 deep neural network to detect
brain tumors in portable electromagnetic imaging systems [15]. a nine-antenna array
setup and a phantom that mimics tissue are used, and the portable head imaging
system can collect detailed scattering data to produce high-resolution images of the
head and brain. These images can be analyzed using a YOLOv3 deep neural network
model to detect and locate brain tumors. A final image data set is created by combining
fifty sample images, that were gathered from various EM head imaging system
development scenarios. The data set is made up of 1000 images, including 50 samples,
of which 80% are used for training and the remaining 20% for validation and testing.
The results of the proposed architecture demonstrate great training, and validation

accuracy with low training and validation loss.

In 2022, Sofia I. et al. proposed a YOLOv3 deep neural network for the
identification of shrapnel in different sizes and locations with respect to a
neurovascular bundle [16]. This makes it possible to employ automated methods to
determine how close shrapnel is near tissue's critical features, which can then be used

to determine whether evacuation or surgical intervention is necessary.

In 2022, Emily N. et al. developed a deep learning neural network model



specifically designed to identify shrapnel in ultrasound images, termed ShrapML
(ML)[17]. It is faster than traditional deep learning models, ShrapML can minimize
the cognitive burden for medical professionals in high-stress emergency, or military
medicine scenarios by automating some tasks and providing real-time help and

analysis.

In 2022, Gokul N. et al. introduced a UWB Antipodal Vivaldi Antenna (AVA)
for microwave imaging applications [18]. The AVA accomplishes high transmission
capacity from 1.2—14 GHz with a maximum gain of 13 dBi at 10 GHz. The antenna is
utilized for the identification of a metal object located inside a human stomach cross-
section modeled in the simulator. A suitable imaging algorithm is devised to identify
the material inside the stomach. The algorithm can locate the exact coordinates of the
metallic objects along with their actual dimensions used in the simulations. Further,

the resolution of the image has been improved.

1.3 Aims of the Dissertation

The aim of this dissertation is to detect the existence of shrapnel in the human
body and determine its size and its location using microwave imaging and neural
networks (NN). To do that the following steps are to be taken:
1. Constructing a model that mimics the layers of the human body, then apply an
electromagnetic signal to the model.
Creating a planar monopole antenna for UWB microwave imaging.
Analyzing the backscattered signals from the model.

Collecting the signal sets, and prepare the data for use in the neural network.

o & W

Utilizing the data as input, a neural network can be employed to identify the
presence of shrapnel, estimate its size, and determine its location.
6. By analyzing the input data, the neural network learns patterns and correlations

that correspond to the presence, size, and location of shrapnel.



1.4 Dissertation Layout

This dissertation includes the following chapters. Chapter one contains
background about the shrapnel, hidden object detection techniques, and a literature
review about the subject. Chapter Two states the theory of neural networks, the
theory of microwave imaging, and the fundamentals of microwave imaging. Chapter
three includes the theory of Ultra-Wideband Antenna, a planar monopole antenna
that has been developed for this purpose, building a simple two-dimensional
homogeneous model of the human body using CST studio, theory of human model
effect on antenna parameters. Chapter four includes the theory and simulation of
dataset reparation for a homogenous Model, the architecture of neural networks,
results and analysis of one-dimensional locating using artificial neural networks
(ANN), results and analysis of two-dimensional locating using artificial neural
networks (ANN), and results of training Convolutional Neural Network (CNN).

Finally, chapter five presents’ conclusions and some suggestions for future work.



CHAPTER TWO
NEURAL NETWORKS AND MICROWAVE IMAGING
2.1 Neural Network

An Atrtificial Neural Network (ANN) is a machine learning model that draws
inspiration from the structure and function of biological neural networks, which are
found in the human brain. It is composed of layers of interconnected nodes, called
artificial neurons, which process and transmit information. The neurons in each layer
are connected to the neurons of the previous and next layers via pathways called
synapses. The neurons and synapses are used to learn and make predictions or
decisions based on input data. ANNs are widely used for medical applications in
various disciplines of medicine. ANNs have been extensively applied in diagnosis,
electronic signal analysis, medical image analysis, and radiology [19].

ANNs can be trained using supervised, or unsupervised methods. In
supervised learning, the neural network is trained on a labeled dataset, where both
input data and corresponding target outputs are provided. During training, the
network learns to map inputs to desired outputs by adjusting its internal parameters
through an optimization process, typically using techniques like backpropagation
and gradient descent. The goal is to minimize the difference between the network's
predictions and the actual targets.

In unsupervised learning, the neural network is trained on an unlabeled dataset,
where only the input data is provided without any corresponding target outputs. The
network tries to find patterns or structures in the data without explicit guidance.
Common unsupervised learning tasks include clustering (grouping similar data
points) and dimensionality reduction (finding a lower-dimensional representation of
the data) [20].

An artificial neural network is a nonlinear function, represented by a collection
of interconnected artificial neurons, in which an input vector (x) multiplied by a

weights vector (w) summed, and then inserted into a certain activation function



which determines if the neuron is activated, and an output is generated. These
weights are typically adjusted during a training process, where the network is
presented with a set of input-output examples, and the weights are adjusted to
minimize the difference between the network's output, and the target output. The
output can be unidimensional or multidimensional, depending on the problem, and
the architecture of the network. The working principle of an artificial neuron is
shown in Figure (2.1). The mathematical explanation of the artificial neuron model
is below [21].
y(k) = f(EMmow; (k) . x;(k) +b) (2.1)

where:

x;(k) isinput value in a discrete-time k where i goes from 0 to m,

w; (k) is weight value in a discrete-time k where i goes from 0 to m,

b is bias,

F is a transfer function,

¥i (k) is output value in discrete time k.

Information flow >

( Input 1 H x W1

(" Input 2 )4—{ x W2

( Input 3 }-{ x W3
I i

> { Output )

i Multiplication | Sum Transfer function

Figure 2.1: Principle of an artificial neuron[21]
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In an ANN, weights, and biases are the learnable parameters that enable the
network to make predictions and learn from data during the training process. These
parameters are crucial for the network's ability to approximate complex functions
and generalize to new data.

A weight is a scalar value associated with each connection between neurons
in adjacent layers. Each connection represents the flow of information from one
neuron to another. The weight determines the strength and direction of the signal
being passed from one neuron to the next. During the training process, the network
adjusts the weights to find the optimal values that minimize the prediction error on
the training data.

A Dbias is a scalar value associated with each neuron in the network, including
the input layer and all hidden layers. The bias provides an offset or threshold for the
neuron's activation function. It allows the network to adjust the decision boundary
and control the neuron's responsiveness to the input.

The bias term is essential because without it, the output of a neuron would be solely

determined by the weights and inputs, which may not be sufficient to model complex

relationships in the data. The bias allows the network to shift and adjust the activation

function, making it more flexible and adaptable [22].

The main artificial neural network architectures fall into the following categories,
taking into account the neuron disposition, their connectivity, and the makeup of
their layers:

o Single-layer feedforward network: This type of network is also known as a
perceptron, which consists of only one layer of neurons, where each neuron
receives input from the layer, processes it, and sends it to the output layer. These
networks are usually employed in pattern classification, and linear filtering
problems.

e Multilayer feedforward networks: These networks consist of multiple layers of
neurons, where each layer receives input from the previous layer, processes it,

and sends it to the next layer. These networks are also known as multi-layer

11



perceptron, as seen in Figure (2.2). They are used to solve a variety of issues,
including those involving function approximation, pattern classification, system

identification, process control, optimization, and more.

:y1 X1

x, [F
Ym Input layer

1<t Hidden neural

layer
layer ay

Input layer

Output neural layer

2 Hidden neural
layer

() (b)

Figure 2.2: (a) Single layer network, (b) Multiple layers network.

e Recurrent networks: In these networks, the output of a neuron is fed back to
itself, and to the other neurons in the same layer. This creates a feedback loop,
allowing the network to maintain a certain level of internal state, and process
sequential data.

e Mesh networks: These networks are composed of multiple processing nodes
connected by directed edges, where each node can represent a single or
multiple neurons, and the edges represent the connections between them as
seen in Figure (2.3). These networks are utilized for a variety of tasks,
including data clustering, pattern recognition, and system optimization [23].
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Feedback

(a) (b)
Figure 2.3: (a) Recurrent network, (b) Mesh network [23].

2.2  Transfer Functions

The transfer function is a crucial component of an artificial neuron in a neural
network. It maps the input signal to an output signal, and its properties determine the
behavior of the neuron. A transfer function can be either linear or nonlinear. A linear
transfer function produces an output that is directly proportional to the input, while
a nonlinear transfer function produces an output that is not directly proportional to
the input. The choice of a linear, or nonlinear transfer function depends on the
specific problem that the neuron or system is trying to solve. Figure (2.4) illustrates

several of the typical activation functions, command used [24].

Sigmoid : Leaky ReLU
o(z) = = max(0.1z, z)
tanh Maxout
tanh(z) max(w] z + by, wd z + by)
ReLU | ELU
0 x >0

Figure 2.4: Common activation functions of NN [24].
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2.3 Feed-Forward Back Propagation

The FFBPN method is used to train a model that represents the results of two-
way iterations. The feed-forward aspect of the process refers to the flow of data
through the network, moving from the input layer to the output layer, without looping
back. The backpropagation aspect of the process refers to the flow of error
information, moving from the output layer to the input layer, and adjusting the
weights of the connections between the layers in order to minimize the error. This
process is repeated many times, also known as an "epoch," until the network reaches
a satisfactory level of accuracy. The number of iterations or epochs required to train
a neural network can vary depending on factors, such as the complexity of the

network, the size of the dataset, and the learning rate [25].
2.4  The Architecture of Neural Network

The best method for recognizing and distinguishing between various signal
sets is a neural network. It is important to select an appropriate design and learning
algorithm for the neural network to produce the best outcomes. The simplest
approach to achieve that is to decide what is projected to be appropriate based on
prior experience, and then to increase or decrease the size of the neural network until

a suitable output is generated.

Neural networks are typically trained using a process called backpropagation,
where the network is adjusted based on the difference between its output and the
expected target output. During training, the neural network is repeatedly presented
with input/target pairs, and the weights and biases of the network are updated so as

to minimize the difference between the network's output and the target output.

During the implementation of neural networks, it is a common practice to
divide the available data into three sets: training data, validation data, and testing
data.

The training data set is used to teach the network how to map input data to

output data by adjusting the network's parameters based on the errors between the
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predicted outputs and the true outputs. The training process continues until the
network's error on the training data set is minimized and the network has learned to

generalize to new unseen data.

The validation data set is used to evaluate the performance of the network
during training and to prevent overfitting. Overfitting occurs when the network
becomes too specialized in the training data and fails to generalize to new data. The
network is evaluated on the validation data set after each training epoch, and training
is stopped when the error on the validation data set starts to increase, indicating that

the network has started to overfit.

The testing data set is used to provide an independent measure of the network's
performance after training. The testing data set is not used during training or
validation, and the network has not seen this data before. By evaluating the network
on the testing data set, we can estimate the generalization performance of the

network, i.e., how well it can perform on new, unseen data.

It may be possible to use an artificial neural network (ANN) with reflection
coefficient data inputs to predict the depth of shrapnel in a human. Reflection
coefficient data can be used to estimate the dielectric properties of tissues, which can
in turn be used to estimate the depth of penetration of shrapnel.
2.5 Training Process

The training process of a neural network is guided by a learning algorithm,
which is responsible for adjusting the weights, and biases of the neurons in the
network. The goal of the learning algorithm is to find a set of weights and biases that
minimize the error between the predicted output, and the true output. This process is
iterative, and typically uses a dataset of labeled examples, called the training set, to
update the weights and biases. As the training progresses, the network extracts
discriminant features from the input data, that are useful for solving the problem at
hand. These features are learned by the network in the form of weights, and biases

which then can be used to make predictions on unseen data, known as the test set.
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A training epoch is also the term used to describe each complete presentation
of all the samples from the training set during the training of artificial neural
networks in order to modify the synaptic weights and thresholds. Before the training
process begins, the number of training epochs must be set as a hyperparameter. The
training process ends when performance on the validation set stops advancing, or
after a predetermined number of training epochs [26].

In training a backpropagation neural network, the mean squared error (MSE)
function is commonly used as the cost function. It calculates the average squared
difference between the predicted output and the actual output for all training samples
[26].

MSE = S 3N (di —y)? =2 e? | (22)
where:
MSE is the mean square error.
N training samples were generated using an EM simulator.
d; the expected output.
y; the corresponding output of neural networks.
e; the sample errors.

2.6 Deep Neural Network

A DNN is a type of ANN that has multiple layers of artificial neurons, also
known as hidden layers. The added layers in a deep neural network can make it more
powerful and capable of solving more complex problems, but they can also lead to
certain issues. The vanishing gradient problem is one such issue. It occurs when the
gradients of the weights in the network become very small, as they are
backpropagated through the layers, causing the weights to update very slowly. As a
result, the network may take a very long time to converge, or may not converge at
all. This can make it difficult to train DNNs. Overfitting is another issue that can

occur when the model becomes too complex and starts to memorize the training data,
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rather than generalizing to new unseen data. This can lead to poor performance on
unseen data or validation set [27].
2.7  Convolutional Neural Network (CNN)

CNN is a type of deep learning model. It consists of multiple layers, including
convolutional layers, pooling layers, and fully connected layers, which work together
to extract features from the input data and make predictions [28]. The training, and
testing of the input data is performed by passing the data through a series of
convolution layers with filters. These filters are also known as kernels. Because of
their ability to automatically learn features from data, CNNs have been widely used
In computer vision tasks such as object detection, image segmentation, and image
classification. A general CNN architecture is shown in Figure (2.5). It consists of
Convolutional Layer, Pooling Layer, Fully connected layer (FC), and Rectified

Linear Unit Layer.

B =
L L
Bk
S K
Input Conv  Pool  Conv Pool FC Output

Figure 2.5: Architecture of CNN.
2.7.1 Convolutional Layer
The main purpose of a convolution layer is to detect local features, or
combinations of local features by applying filters to the input. The convolutional
layer takes the input data x and a set of filters F = {f}, 5, ...... fy, }, and applies the
convolution operation @between them. This operation produces a set of N, feature

maps h:
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he = fr Qx . (2.3)

By sliding the filter over the data, it performs a dot product with the local
region of the data, producing a response that indicates the presence or absence of a
certain feature. This response is then transformed into a feature map, which can be

used as input for the next stage of processing [29].

Imput Filter Result
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Figure 2.6: Operation of the convolutional layer.

2.7.2 Pooling Layer

The main purpose of pooling layers is to down-sample the spatial dimensions
of the input feature map, reducing their size, and the number of parameters in the
network. This can help to reduce overfitting, improve computation efficiency, and
control the size of the feature maps. The most commonly used pooling operations

are Max Pooling and Average Pooling.

Max pooling takes the maximum value among the data in a pooling field, and
average pooling takes the average of all the values in the same field. Figure (2.7)
shows the operation of the pooling layer. The choice between max pooling and
average pooling depends on the characteristics of the data, the task at hand, and the
network architecture. By taking the maximum value, max-pooling preserves the most

prominent feature in that region, making it robust to small variations or noise. This
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property helps the network focus on the most important and discriminative features
while discarding less relevant information. In situations where extreme values exist
in the data, max pooling may emphasize these outliers, potentially leading to a loss
of information about the majority of the data points. In contrast, average pooling
computes the mean value within the pooling window, which can help mitigate the
influence of extreme values and provide a more stable representation of the data.
[30].

Max pooling

/
12 7
S8|7|5]|3
2x2 pooling, 13| 14
1219 | 5| 7 stride 2
13| 2 |110] 3 Average pooling
9|l 4|5|14 9 5
.
7 8

Figure 2.7: Operation of pooling layer.

2.7.3 Fully Connected Layer

The fully connected (FC) layer is used to perform the final classification of
the input data into different classes. The FC layer takes the output from the
convolutional and pooling layers, which have learned high-level features from the
input data, and performs a dot product with a set of weights and biases to produce
the final classification scores. The weights and biases in the FC layer are learned
through the training process, allowing the model to recognize and classify new,

unseen data.
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2.7.4 Rectified Linear Unit Layer (RELU)

Typically, CNN employs the nonlinear RELU activation function. Values
greater than zero remain unaffected by RELU, while values less than zero are

transformed to zero (1) [31].

0, if x <O.

x, otherwise. (2.4)

fo =1

2.8 Deep Neural Network Structure Design

The design of a DNN involves choosing the number, and type of layers, the
number of neurons in each layer, the activation functions, and the type of connectivity
between the layers. The number of hidden layers in a deep neural network is a key
factor in determining its performance. The right number of hidden layers depends on
the complexity of the problem, the size of the input and output layers, and the amount
of training data available. If the network has too few hidden layers it may not be able
to capture the complexity of the problem, and may result in underfitting. If the
network has too many hidden layers, it may become too complex and may result in
overfitting. Therefore, the neural network that will be used in this dissertation has
two hidden layers.

2.9 Microwave Imaging System

The physical basis of microwave imaging techniques is the significant
dielectric between the various tissues of the human body and its surroundings in the

microwave frequency region [32].

Different imaging algorithms have been developed to extract the data from
measurements of the scattered fields depending on the imaging system design. There
are primarily two types of configurations (monostatic and multistatic), which use one
or more spatially varied antennas as transmitters and receivers. In the monostatic
technique, a single antenna serves both the transmitter and receiver. To gather more

details about the imaging domain, the antenna can be shifted to various places. At

20



least two antennas are used in multistatic. Each antenna in this setup sends out a
microwave signal, which is then picked up by all the other antennas. To record every
signal required, this procedure is done for each antenna. While the multistatic
arrangement is more complex than the monostatic method, it can provide more
details about the photographed domain by sending and receiving signals to, and from

every area of the pictured domain.

An Ultra-Wideband (UWB) imaging systems typically consist of two main
parts: a hardware component, usually an antenna, that illuminates the target object
with microwave signals, and collects the signals that are reflected, and a software or
post-processing component that uses these signals to reconstruct an image of the
target object. The image can then be used for visualization and analysis of the target's

internal structure as shown in Figure (2.8) [33].
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Figure 2.8: A schematic illustration of the microwave imaging system's components.

Microwave imaging can be divided into three main categories:

» Passive microwave imaging: The operation principle of passive microwave

Imaging is based on the measurement of microwave radiation emitted by
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2.9.1

objects. The emitted radiation is typically in the form of thermal emission or
scattered radiation. The passive microwave sensor detects the emitted or
scattered microwave radiation, and converts it into an electrical signal, which

Is then processed to produce an image.

Active microwave imaging: It works by transmitting microwave signals into
human tissue, and measuring the reflected signals. The differences in the
reflected signals can then be used to construct an image of the object. The
Image represents the distribution of material properties within the object such
as permittivity and conductivity, which affect the reflection of the transmitted
signals. The process is repeated many times to increase the accuracy of the

image.

Hybrid microwave imaging: The operation principle of hybrid microwave
Imaging is based on the difference in electrical properties between normal and
abnormal tissues. Microwave signals are transmitted into the body, and the
energy from these signals is absorbed and scattered by the tissue. The amount
of energy absorbed and scattered by the tissue depends on its electrical
properties, such as conductivity and permittivity. Abnormal tissue has
different electrical properties compared to normal tissue, and therefore, it
absorbs and scatters microwave energy differently. The expansion of the
abnormal tissue due to the absorbed energy creates pressure waves, which are

then detected by an ultrasound transducer [34].
Microwave Imaging Methods

Microwave imaging methods refer to techniques used to create images or

maps of objects or scenes using microwave radiation. These methods utilize the

interaction of microwaves with the target to extract information about its properties

and structure

22



2.9.1.1 Matching Interface Imaging

Utilizing a matching medium is designed to efficiently couple EM radiation to
the body and reduce reflections at the air-body interface. Additionally, because the
resolution of a microwave imaging system depends on wavelength, using a matching
medium increases the imaging resolution in accordance to:

Ao

I =7

(2.5)

Where 4,,, is the wavelength of an electromagnetic wave in a material medium, A, is

the wavelength in free space, and &, is the permittivity of the medium.

Additionally, the reflections off the boundaries will be limited by a lossy
matching medium. Assure that the scattering from the imaging item dominates the
signals picked up by the receivers and that all other multi-paths are negligible. The
matching medium is considered the best way to transfer microwave energy into an
Imaging Object (10) because it reduces losses at the air-body interface. This is due
to the higher permittivity of biological tissues compared to air, which causes high
losses when coupling microwave energy directly into the tissue. The matching
medium helps to match the permittivity of the tissue and air, reducing these losses

and improving the coupling efficiency of the microwave energy into the 10 [35].
2.9.1.2 Quantitative Imaging

Quantitative imaging techniques, also known as microwave tomography,
create the image based on the electrical conductivity, and relative permittivity values
of the various human tissues. The generated image demonstrates the distribution of
tissues inside the body with wvarious electrical characteristics. In medical
applications, the large differences in the dielectric characteristics of various
biological tissues can lead to an extremely ill-posed inverse scattering problem,
making it challenging to estimate accurately the dielectric permittivity map of the

imaged domain. Nonlinear iterative techniques must be used to solve the inverse
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scattering problem. A large number of transmit, and receive antennas surround the
body that has to be scanned. At a given time, each transmitter antenna illuminates
the body with a microwave signal, and all receive antennas to collect the signal that
the body scatters. This complete setup is typically placed in a homogenous medium
with permittivity, which serves as a matching medium for coupling the microwave
energy delivered to the body, and minimizing any reflection that may have happened

at the air-body contact in the absence of it.
2.9.1.3 Qualitative Imaging

The goal of imaging in some medical applications is not to determine the
electrical characteristics of the tissues, but rather to find and locate the hidden object.
These methods utilize an ultra-wideband (UWB) signal for good time resolution.
However, each antenna only sends out short pulses at a time (UWB in the frequency

domain), and the same antenna only receives the backscatter return [36]
2.9.2 Fundamentals of Microwave Imaging

The use of microwave frequencies for non-ionizing electromagnetic (EM)
waves is regarded as an economical, and low-risk imaging technique. The dispersive
nature of human tissues at RF frequencies leads to signal attenuation, and distortion,
making it crucial to understand the electromagnetic (EM) properties of these tissues

for medical imaging purposes.
2.9.2.1 Propagation of Electromagnetic Waves

The propagation of electromagnetic waves is best described using Maxwell

equations. When the medium is linear (¢ and u independent of E and H ), the

Maxwell equation can be written as [37]:

VXE=—jwuH |, (2.6a)

VxH = jweE +7 , (2.6b)
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V-D=p , (2.6¢)

V-B=0, (2.6d)

D =¢E , (2.66)

B =uH , (2.6f)
where:

V. is the divergence operator, which is represented by a vector symbol (V) followed
by a dot ()

E is the electric field, in volts per meter (V/m).
H is the magnetic field, in amperes per meter (A/m).
D is the electric flux density, in coulombs per meter squared (Coul/m2).

B is the magnetic flux density, in webers per meter squared (Wb/m2).
] is the electric current density, in amperes per meter squared (A/m2).
p is the electric charge density, in coulombs per meter cubed (Coul/m3).
¢ and u are the permittivity and permeability of the medium.
£ = g& . (2.7)

1= Uoly - (2.8)
g =8.85x 10712 and pu, = 4I1 x 10~7are the intrinsic permittivity and
permeability of the vacuum.

The conductive currents in human tissues are typically dominant, due to their
high electrical conductivity. The relative permittivity of a medium is a measure of
its ability to store electrical energy, and is generally represented as a complex value.
The relative permittivity helps to determine the behavior of electromagnetic waves

in a medium, such as how they are transmitted, reflected, and absorbed. It is assumed
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that biological tissues do not have magnetic properties, and therefore the magnetic
permeability u is considered to be zero.
For a medium conductivity o, a corresponding conduction current density j exists
that is proportional to the E vector according to [37]:

J =oE . (2.9)
Equation (2.7) can be re-written as:

VxH = JweE +7]

VxH =]a)eoerﬁ +oE
= Jwg, [sr —jwigo] E . (2.10)
Therefore, the modified complex permittivity can be expressed as:

£E=¢ (er —ijsO) : (2.11)
The wave equation is required to specify other crucial propagation parameters.

VXE = —jwyoﬁ
VX VXE=—jou,V xH

v(v- E) —V2E = w?u,g, [er — jwigo E . (2.12)
V2E + ww?u,e, [er - j=|E=0. (2.13)
wWEy
The wave number in a lossy medium is defined as:
. O

k = a)\],uogo [Er _]w_s()] : (2.14)
The complex wave propagation constant in the medium is given by the following
equation:

y=a+i = jk = jo Juoeo e — ] (2.15)

0

a and B are the attenuation, and phase constants, respectively.
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2.9.2.2 Attenuation Constant

Conductive losses in a medium can lead to signal attenuation, and result in a
reduction of the amplitude, and energy of the propagating signal. This occurs because
some of the energy is absorbed, and dissipated as heat in the medium. The magnitude
of the conductive losses, and the resulting signal attenuation is dependent on the
conductivity of the medium, and the frequency of the signal. The propagation factor
for the positive traveling wave is then as follows:

eV = g~ g7JBZ (2.16)
This indicates that a wave moving in the +z direction with a phase velocity v, = w/f,
Wavelength A = 211 / . The wave's rate of decay is controlled by the attenuation
constant. It can be represented as follows in dB, assuming a 1-meter distance:

Dap/m) = 20logo(e™*) = —20.a.logo(e) = 8.686.a . (2.17)
2.9.2.3 Skin Depth

The skin depth, or penetration depth is a crucial parameter in
electromagnetism, and is defined as the depth at which the magnitude of the
electromagnetic field decreases to 1/e (37%) of its original value at the surface of the
medium. This concept is useful in understanding the interaction of electromagnetic
waves with materials.

1 2
§s=-= |—. (2.18)

wUo
2.9.2.4 Wave Impedance

The wave impedance in a lossy medium can be estimated using the
relationship between the wave's electric field (E), magnetic field (H), the complex
permittivity (&), and complex permeability (u) of the medium. The wave impedance
(2) can be expressed as [37]:

n=\/§= /%=no\/’g‘::- (2.19)

where 1, is the intrinsic wave impedance of vacuum and is equal to 12011, w, is the

relative permeability of the material, &, is the relative permittivity of the material.
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The discussion above, and the introduction of the key wave propagation
parameters lead to the conclusion that it is theoretically possible to estimate the phase
constant, attenuation, penetration depth and wave impedance by knowing the
complex relative permittivity of a medium (the medium's dielectric properties). As a
result, the analysis of wave propagation and its interactions with the human body is
based on the dielectric characteristics of biological human tissues.

2.9.3 Dielectric Properties of Biological Tissues

Dielectric properties of biological tissues play a crucial role in understanding
the interactions of electromagnetic (EM) waves with the human body. These
properties include the ability of a tissue to store electrical energy and the ease with
which it allows the flow of electrical currents. Understanding these properties is
important in fields such as medical imaging and therapeutic applications of EM
waves, that operate in the frequency range of biological tissues.

Different types of tissues have different electrical properties that affect how
they scatter electromagnetic waves. The two most commonly studied dielectric
properties are relative permittivity and conductivity. Relative permittivity is a
measure of a material's ability to store electrical energy, and conductivity is a
measure of its ability to allow electrical current flow. These properties can vary
between different tissues, and even within a single tissue depending on the frequency

of the electromagnetic wave.
2.9.3.1 Debye Model

The Debye model is one commonly used method for predicting the frequency-
dependent dielectric properties of biological tissues. The Debye model provides a
first-order approximation for the complex relative permittivity of a single tissue as a
function of frequency. The equation for the Debye model describes the relationship
between the complex relative permittivity, the frequency of the electromagnetic wave
and a single relaxation time constant which characterizes the electrical properties of
the tissue. This model provides a simple and intuitive way to describe the frequency-

dispersive nature of biological tissues and is used in the field of medical imaging.
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£ =gy +2 (2.20)

1+jwt’
where &, is the saturated permittivity at very high frequencies, & is the static
permittivity at very low frequencies. 4¢ = &5 — &, IS described as the magnitude of
the dispersion and finally 7’ is a relaxation time constant.
2.9.3.2 Cole - Cole Model

The Cole-Cole model is a higher-order approximation compared to the Debye
model, and provides a more accurate description of the electrical properties of
biological tissues, including their frequency-dependent.

2.9.4 Microwave Energy Radiation Safety Issues

The known risks associated with electromagnetic radiation exposure are
thermal impacts. Radio frequency (RF) and microwave radiation are absorbed by the
body and converted to heat.

Since the heating takes place inside the body, it cannot be sensed from the
outside. To avoid exposure to dangerous power levels, it is crucial to establish
acceptable safety levels when using EM waves for medical applications.

Specific Absorption Rate (SAR) measures the amount of dissipated power (heat)
In a unit of tissue mass and is expressed in watts per kilogram (W/kg) of tissue. SAR
Is defined as [37]:

=2 |E|" 221
SAR = - |E|” . (2.21)
where ¢ is the conductivity of the tissue (S/m), p,, is the tissue density (K, /m?>)

and |E| is the electric field inside the tissue.

2.10 Types of Signals

Microwave measurements can be conducted either in the frequency domain or
in the time domain. Both approaches have their advantages and disadvantages and
the choice between them depends on the nature of the system under investigation and

the goals of the measurement.
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2.10.1 Frequency Domain System

Frequency domain systems in microwaves are based on inverse scattering
techniques, which involve the measurement of scattered fields produced by an object,
or a system when it is illuminated by a microwave transmitter. The scattered fields
are then used to determine the object's properties, such as its size, shape and electrical
characteristics. In inverse scattering techniques, the incident field is first measured,
and then subtracted from the total field to obtain the scattered field.

The inverse problem in microwave inverse scattering techniques is to determine
the position and permittivity (or dielectric constant) of a scatterer from the
measurement of the scattered fields. The solution to this problem is often carried out
by using an optimization procedure in which aims to minimize the difference between
the measured and calculated data. The field measurements in the inverse scattering
problem can be carried out either by using a bistatic configuration with mechanical
scanning or an array of antennas with electronic scanning.

In the case of mechanical scanning, the scattered signal data is recorded at each
antenna position and stored in the data processor, which can result in a long data
acquisition time. In the case of electronic scanning, the array of antennas can provide
high-speed data acquisition, potentially reducing the data acquisition time compared
to mechanical scanning. However, the use of electronic scanning requires advanced
signal processing techniques to estimate the scattered field from the measured data.

2.10.2 Time Domain Systems

Time domain systems are commonly used in Ultra-Wideband (UWB) radar
techniques. In medical imaging, UWB radar can be used to obtain images of internal
structures of the body, including highly reflective objects such as shrapnel. The
technique involves transmitting low-power short pulses of radar energy into the body
and detecting the scattered signals with a probe antenna or an array of antennas. The
time delay and shape of the received signals are analyzed to obtain information about
the location of the scatterers. The processed signals from multiple locations can then

be combined to form a 2D or 3D image. In comparison to frequency-domain
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measurements, time-domain measurements could have shorter scan times, and more

cost-effective measurement equipment [38].
2.11 UWSB Imaging Technique

Ultra-Wide Band (UWB) technology is preferred for its good range resolution
and penetration through materials, due to the high bandwidth of UWB radar. The
high bandwidth results in better separation of multiple targets, making UWB a
popular choice for various applications such as real-time location tracking, imaging

and communication [39].

UWB is a type of microwave imaging technique that uses short pulses to probe
a target and gather information about its position, size and composition. The time
delay between the transmitted and scattered signals provides information about the
distance to the target, while the amplitude of the scattered signals provides

information about its reflectivity and composition.

Compared to microwave tomography, UWB radar is considered to be less
computationally complex, as it focuses on detecting and localizing regions with
highly scattered signals, rather than reconstructing the dielectric properties of the
tissues. This makes UWB radar a faster and more efficient method for detecting
certain targets such as abnormal tissues and objects, but it provides less detailed
information about the composition and structure of the target compared to

microwave tomography [34].

UWB systems are known for their ability to transmit large amounts of data
with high accuracy, and low power consumption [41].

(frn—fL)

Fractional Bandwidth = 2 .
(fnt+/1)

(2.22)

where f,, and f; are used to describe the frequency limits of the -10 dB emission limit
in the field of radio frequency. The -10 dB emission limit refers to the maximum
level of radio frequency energy that can be emitted from a device and still be

considered compliant with regulatory standards. The frequency range between f},
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and f; defines the frequency band within which the device must meet the -10 dB

emission limit.
Center Frequency (f;) = % : (2.23)

Lower-frequency electromagnetic waves have better penetrating properties
compared to higher-frequency waves. This property makes them suitable for UWB

applications where the ability to penetrate through objects is important.

UWB radar uses a wide bandwidth of low-frequency signals which increases
its ability to detect hidden objects and provide precise location information. The
wavelength of an electromagnetic wave is inversely proportional to its frequency.
This means that, as the frequency of an electromagnetic wave increases, its
wavelength decreases, making it possible to use smaller receive and transmit

antennas.

On the other hand, increasing the center wavelength of the signal results in a
lower frequency, making it more suitable for penetrating through layers. This makes
the longer wavelength, lower frequency signals more desirable for applications that

require the ability to penetrate through objects [34], [40].
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CHAPTER THREE

SIMULATIONS AND RESULTS OF MICROWAVE IMAGING
SYSTEM

3.1 Introduction

In 2002, the Federal Communications Commission (FCC) approved the use of
UWB technology used within the range of 3.1 to 10.6 GHz [41]. UWB imaging
systems require specially designed antennae to transmit electromagnetic energy and
receive the reflected signal from the human body and any objects within it, such as
a shrapnel. The received signals are then processed to determine the location and size
of the objects including shrapnel. The human body has unique electrical properties
that affect the scattering of electromagnetic (EM) waves, leading to differences in
the way that EM waves are reflected, absorbed and transmitted by the body.
Therefore, it is important to take into account the electrical properties of the human
body when designing UWB antennas for this application. A planar monopole
antenna is one type of antenna that has been developed for this purpose. CST
Microwave Studio is a powerful software tool for designing the antenna. Exporting
the design from CST Microwave Studio allows the user to take the scattered signals
as input to the deep neural network when it is used as a tool in recognition and
discrimination in this work.

In this chapter a simple two-dimensional homogeneous model of the human
body has been built. The model can be created by dividing the body into different
layers, each with its electrical properties, such as conductivity and permittivity. The
main layers typically include the skin, fat, muscle and bone.

3.2 UWB Antenna

The antenna is a critical component for UWB systems. The UWB antenna

technology is based on the transmission of short, low-power pulses over a wide

bandwidth, which allows for the detection of hidden objects. This is because the short
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pulses can penetrate through materials and bounce back from the hidden object,
providing information about its location, and composition. The wide bandwidth of
UWB signals also enables high-resolution imaging, making it a promising
technology for microwave hidden object detection. Several fundamental parameters
are used to describe the performance of UWB antenna, including:

e Radiation Pattern

The radiation pattern is a representation of the relative distribution of the
electric and magnetic fields generated by an antenna in space. This space can be
divided into three regions: reactive near field, radiating near field, and far field. The
region in which an antenna operates depends on its physical size compared to the
wavelength of the electromagnetic waves.

When the antenna size is much smaller than the wavelength (D/A << 1), the
antenna operates in the reactive near field region. In this region, the electromagnetic
fields have both reactive and radiating components, and the behavior of the antenna
is strongly influenced by its immediate surroundings.

When the antenna size is comparable to the wavelength (D/A ~ 1), the antenna
operates in the radiating near field region. In this region, the antenna starts to exhibit
more radiating properties, and the reactive components diminish as the distance from
the antenna increases.

When the antenna size is much larger than the wavelength (D/A >> 1), the
antenna operates in the far field region. In this region, the electromagnetic fields are
predominantly radiating, and the antenna behaves as a traditional electromagnetic
radiator.

Radiation patterns are defined in spherical coordinates. The x-y plane
contains the phi component where the theta-component is 90 degrees (¢ = 0 where
6 =90°), and is usually referred to as the azimuthal plane. The x-z plane contains the
theta-component where phi is zero degrees, and usually indicates the elevation plane
(6 = 0 where ¢ = 90°). A linearly polarized antenna is often described in terms of
its principal E-field (electric field), and H-field (magnetic field) patterns. The E-field
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pattern represents the distribution of the electric field in the direction of polarization,
while the H-field pattern represents the distribution of the magnetic field
perpendicular to the direction of polarization [42].
e Bandwidth
The bandwidth (BW) is the range of frequencies where an antenna's
performance complies with a given specification. The antenna must typically offer a
return loss of less than -10 dB over its bandwidth [42].
e Radiation Pattern Lobes
The radiation pattern of a directional antenna is represented by multiple lobes
or peaks, where the main lobe has the highest field intensity, and the other lobes are
called minor or back lobes. The direction of the main lobe determines the direction
of maximum radiation, and sensitivity of the antenna. The HPBW is defined as the
angular separation between the points on the main lobe where the power drops to
half of its maximum value [42].
e Gain and Directivity
The Gain of an antenna is a measure of its ability to direct the radio waves in
a specific direction, rather than distributing it uniformly in all directions. It is
expressed as the ratio of the power density (intensity) in a particular direction to the
power density, that would be obtained if the power were equally distributed in all
directions (isotropic). The gain is usually expressed in decibels (dB) relative to an

isotropic radiator.

radiation intensity — 4] U(o,¢) (3.1)

Gain = : =
total input(accepted) power Pin

Directivity is defined as the maximum gain of an antenna in a particular
direction, relative to the gain of an isotropic radiator, which has equal power output
in all directions. Directivity is a measure of the ability of an antenna to concentrate

its radiated power in a specific direction, and is usually expressed in dB [42].

DO — Umax — 4N Umax . (32)
Uo Prad
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3.3 CST Microwave Studio Software

CST Microwave Studio (CST MWS) is a component of CST Studio Suite that
provides fast and accurate 3-D electromagnetic simulation tools for high-frequency
problems. It offers a variety of different solvers that operate in both time and
frequency domains. The software offers advanced solvers, visualization tools, and
an extensive library of materials and components to help users in the design and
analysis of complex electromagnetic systems [43].

CST Microwave Studio is a software tool used to design antennas by
simulating their electromagnetic behavior. The tool can evaluate various
performance parameters such as reflection coefficient, impedance matching, gain,
radiation efficiency, and radiation pattern. This helps in analyzing the antenna's
performance and improving its design.

The transient solver gives appropriate results of homogeneous human layers
imaging. An antenna that transmits and receives the signal, known as a wideband
planner, has been used to collect data. The decisive parameter S11 is used for
detecting a hidden object. S11 refers to the ratio of signal that reflects from the port
for a signal incident on that port.

In the design of antenna, several important factors are needed to be considered to

ensure that the antenna works effectively and safely:

» Resonant frequency: In medical applications, the resonant frequency must be
chosen to ensure that it falls within the frequency range of the target tissue
layer.

» Dielectric constant: This is a measure of the electrical permittivity of a
material and determines how the material affects the propagation of
electromagnetic waves. In medical applications, it is important to consider the
dielectric constant of the human body.

« Type of tissue layer: There are different types of tissue layers in human body,
such as skin, fat, muscle and bone, which have different electrical properties

that can affect the performance of the antenna.
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« Thickness of tissue layer: This is also an important factor to consider, as it can
significantly impact the performance of the antenna. Thicker tissue layers can
cause greater losses and reduce the efficiency of the antenna.

3.4  Planar Monopole Antenna Design

a monopole antenna can be considered a planar monopole due to its structure,
where the radiator is placed on one side of a substrate and the ground plane is on the
opposite side, forming a planar arrangement.

A UWB monopole antenna with a notched band at (2.44 - 2.77 GHz) is
presented in [44]. The band-notched characteristic of an antenna is made possible by
the C-shaped slot in the round shape radiating patch, and the ground plane.

The slot helps to avoid this electromagnetic interference, as it is designed to
reject specific frequency bands that cause interference. This can be done without
significantly increasing the size or complexity of the system. Additionally, these
slotted antennas can offer great radiation efficiency and low dispersion. Additionally,
slots can help in reducing the size of the antenna by shifting its resonant frequency.
The size and position of the slots determine whether the resonant frequency is shifted
to a higher or lower value. The insertion of slots also helps to reduce the power lost
to surface waves. Surface waves are generated in antennas, due to the interaction of
the radiated field with the surface of the antenna. These waves can cause a significant
reduction in the radiation efficiency of the antenna. By introducing slots, the path of
the surface waves is disrupted, and this helps to reduce their impact on the efficiency
of the antenna [45].

A 1to 6 GHz bandwidth is the design goal, with a 10 dB return loss reference.
The simulations are done by using electromagnetic simulators (CST) as a tool. The
suggested elliptical band-notched UWB antenna’s design as well as a picture of the
constructed antenna is shown in Figure (3.1). The antenna is built using an FR4
substrate having a 1.6 mm thickness and a 4.3 dielectric constant. The type of

materials used in UWB antenna design are listed in Table (3.1).
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The suggested antenna consists of the elliptical radiating patch fed by a
microstrip line of 50 ohms along the principal axis. The aspect ratio of an antenna is
defined as the ratio of the length of its major axis to the length of its minor axis. An
aspect ratio of 1.1 means that the length of the major axis is 1.1 times greater than
the length of the minor axis to get the broadband characteristics. The parameters for

the suggested antenna are listed in Table (3.2).

34.0

©
o
5 10 —pO
- [ -] %
o 15 ©
—)
5o %0
() (b)

Figure 3.1: The suggested antenna's geometry in (a) front and(b) back views. All
measurements are in millimeters.

Table 3.1: Material properties of antenna design.

component Material name Color

elliptical radiator Perfect electrical conductor (PEC) | Red

ground plane Perfect electrical conductor (PEC) |Red
Substrate FR4 Grey
feedline Perfect electrical conductor (PEC) |Red
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Table 3.2: Design parameters of the proposed antenna.

Value
Parameters

(mm)

46*34 Dimensions of the substrate, including its length and width
13.1 The major radius of the elliptical patch
118 The minor radius of the elliptical patch
16.1%3 Length and width of the feedline

Dimensions of the ground plane, including its length and

15*34 width

The lowest frequency of the broadband antenna is f; which is given in the

following equation [46].

c 72

fi=7

A L+r+p

(3.3)

The cylindrical monopole antenna's length (L), and radius (r) are determined

by equating the area of the antenna as follows:

2nrLl = mab . (3.4)
Let, L = 2b . (3.5)
Then, r = % . (3.6)

Where’p’ is the gap between the ground plane and the radiating patch, a and b are
the major axis and the minor axis of the radiating patch respectively.

Slots are utilized to get the band-notch characteristics, two slots are created:
one on the radiating patch and one in the ground plane. The length of the slot is

denoted by L,,, and is calculated by using the equation below.

L,=—e =% (3.7)

- 2f, Eeff 2

where L, denotes the length of the slot, .. the effective dielectric constant

(eeff = sr2_+1) &, 15 the dielectric constant, and ¢ denotes the light velocity, f; is the

resonant frequency [47].
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The return loss for the designed UWB monopole antenna as a function of
frequency is shown in Figure (3.2). The results demonstrate that the antenna's return
loss performance is ultra-wideband, radiating at frequencies between 1 GHz and 6
GHz. It is noticed that at the resonance frequency =2.24 GHz the reflection loss (S11)
Is -40.5dB. The results of simulation of VSWR are illustrated in Figure (3.3). The
VSWR is 1.0190 at f=2.24GHz.

S-Parameters [Magnitude in dB]
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Figure 3.2: Simulated reflection coefficient results of UWB monopole
antenna.

Voltage Standing Wave Ratio (WSWR)
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Figure 3.3: Simulated VSWR with frequency.
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The simulated 3D radiation pattern of the proposed antenna at 2.24 GHz is shown
in Figure (3.4). the antenna shows responsible power gain of 2.067dBi, and the
directivity of 2.653 dBi at 2.24 GHz. The gain must be less or equal to the directivity,
efficiency equal (gain/directivity)x 100, (2.067/2.653)x 100=77.9%.

The simulated E-Plane (y-z), and H-Plane (x-z) radiation patterns of proposed
antenna at resonant frequency 2.24 GHz are shown in Figure (3.5). The E-Plane and
H-Plane refer to two different cross-sectional views of the radiation pattern of an
antenna. The E-Plane shows the electric field pattern, while the H-Plane shows the
magnetic field pattern. in the x-z plane (¢ = 0°) and the y-z plane (o= 90°). While
the E-Plane pattern has the same far-field field radiation pattern as a dipole antenna,
the H-Plane pattern is almost omnidirectional, making it preferable to receive the

signal from all directions.

Figure 3.4: 3D Radiation plot at 2.24 GHz.
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Figure 3.5: The proposed antenna's radiation patterns, (a) H-plane, and (b) E-plane.
3.5 Modeling Human Body Layers
In this work, the antenna's performance was simulated in simplified human
body phantom layers created in CST Microwave Studio. The layers modeled the
effect of the human body on the antenna's behavior, allowing for a detailed analysis

of the antenna's performance when placed close to the human body.

A model that depicts the main layers of the human body can be used to validate
any imaging approach. The model is made up of four layers: skin, fat, muscle and
bone. The shrapnel is located inside. When an EM wave encounters a layer of human
tissue, it interacts with the electric and magnetic fields of the tissue, causing the wave
to scatter in multiple directions. The amount of scattering and the direction of the
scattered wave depend on the size, shape, and material of the shrapnel, as well as the
frequency and polarization of the incident wave.

In this model, the shrapnel is assumed to be aspherical shape, and the material of
shrapnel is copper. Copper is a highly conductive metal, which means that it will
strongly interact with the electric and magnetic fields of the incident EM wave.

The homogenous model of human layers that has been utilized in this work is
built and depicted in Figure (3.6) which shows a side view in CST simulation and top
cross section view. The model's dimensions were presumed to be those in table (3.3).

The electrical and physical characteristics of several human tissues that has been in
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this work are shown in table (3.4), where &, is the relative dielectric constant, ¢ is
conductivity (S/m), and p is the mass density of the tissue (kg/m3) [48]. The shrapnel

radius size can range from 5 mm to 15 mm, additionally utilized different locations
on the z-axis and on the x-axis.

—Fat
—Muscle
shrapnel——p
— Bone
skin——»
(a) (b)

Figure 3.6: The designed model (a)side view in CST, (b) cross sectional view.

Table 3.3: The dimensions of the designed homogenous model.

component of a model model dimensions
mm

Model width 200

Model length 300
Skin thickness 3
Fat thickness 12
Muscle thickness 15
Bone thickness 20
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Table 3.4: The electrical properties of the designed homogenous model.

Tissue type & 6 [S/m] p [kg/m3]
Skin 38.00 1.46 1010
Fat 5.28 0.11 920
Muscle 52.73 1.74 1040
Bone 11.38 0.39 1850

3.6 Human Model Effect on Antenna Parameters
The human body can be considered as a lossy and dispersive medium, with its
electrical properties varying with frequency. The high conductivity and permittivity
of human body tissues can cause significant signal attenuation losses. The signal
attenuation can be expressed mathematically using the following equation [49]:
L, = 20 logo(e™ %) | (3.8)
Where a (Np/m) is the attenuation constant, and L (m) the distance traveled by the
signal through the body. The attenuation constant can be calculated by the following

equation [49]:

a=olt(1+(2)-1). 39)
w = 2nf . (3.10)

Where o(rad/m) and p(H/m) are angular frequency and permeability of human body

tissue, whereas the € and o are the permittivity, and conductivity, respectively.

The imaginary part of permeability is equal to 0, because bodily tissues are
not magnetic by nature. The losses due to reflections at the boundaries between
tissues are calculated as a component of the total attenuation losses in the tissue. This

takes into account the reduction in the intensity of the electromagnetic waves as they
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pass through the tissue, and reflects off the boundaries between different tissue types.
The losses due to the reflections at the boundary between the tissues is calculated as
[49]:

_ | Jou

N= lsries - (3.12)
_N2-M

r=1mn (3.13)

Where 7 is the intrinsic impedance and I is the tissue's boundary reflection coefficient.

Due to the difference in impedance, and electromagnetic characteristics of the two
mediums, the transmitted signal is also reflected at the boundary between free space
and the skin's outer layer. The received signal power by a receiver is calculated by the
following equation [50]:

Ppyx = Prx + Grx + Gpx — Lp —ep — MLrx — MLgy . (3.14)
Where P(dBm) is the power, G(dB) is the gain and ML (dB) is impedance mismatch
loss. The subscript TX and RX represents transmitter and receiver. LP(dB) is the path
loss and eP (dB) is the polarization mismatch factor. The path loss LP is the reduction
in power density of an electromagnetic wave, as it propagates through human layer it

can be calculated as [50]:

Lp = 10nlog (dio) + 101log (47;‘10)2 +S . (3.15)

0

where n is a path loss component that is dependent on the environment. The reference
distance is d, , and the wavelength is A(m). S represents the mean's random scatter [51].
The gain of a conductive medium (G.,,,) refers to the ability of the medium to amplify

an electrical signal, as it passes through it, is given by [50]:

__ 4mRg?

Geon =722~ . (3.16)

where Rr is the radiation resistance and R is the intrinsic resistance. The following

equation can be used to compute the intrinsic resistance [51]:
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R= |2 (3.17)

20

g is a function involving the medium's parameters, and its value is provided by [51]:

d
g =Hee (3.18)

I

|H| is the magnetic field, d is the distance, I;is the input current, § represents the skin
depth. It is clear from equations (3.16) and (3.18) that the value of g will increase as,
the magnetic field inside the human body increases. The antenna's gain will increase

with a higher value of g [52].

The human body can affect the radiation efficiency and radiated power of an
antenna. When an antenna is placed close to the human body, it can cause absorption
and scattering of electromagnetic waves, which results in a reduction in the radiated
power, and efficiency of the antenna. The radiation efficiency of antennas is given

by the following equation [52]:

n= Praa . (3.19)

Pin
P;,, is the input power, which is made up of the three power components reflected,
absorbed, and radiated (Pref + Pabs + Prad). The near field coupling in the system
causes the absorbed power to be larger than the reflected power, leading to low

radiation efficiency, and reduced radiated power. The absorbed power is given by
the following equation [53]:

P = %fsosrlElz dv . (3.20)

Increases in the absorbed power, and the specific absorption rate (SAR) has
an effect on the antenna radiation efficiency. SAR is a measure of the amount of
energy absorbed by a body, due to the exposure to electromagnetic fields, and high

SAR levels can cause harmful effects on human tissue. The SAR is given by [53]:

SAR = Pr = ?lE” (3.21)
p 2p

where p(kg/m3) is the mass density, and E(\V/m) is electric field. radiation resistance,
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and loss resistance are used to represent the radiation efficiency of an antenna.
Radiation resistance is a measure of the amount of power radiated by an antenna.
Loss resistance is a measure of the power lost in the antenna structure, due to various

causes such as dielectric, and conductor losses.

n = _Rraa (3.22)

B Ryaqqa+Ry
Consequently, the antenna'’s gain would be [53]:
G=nD . (3.23)

where D is the directivity of the radiated power. Directivity is a measure of the ability
of an antenna to radiate power in a specific direction, and is defined as the ratio of
the radiation intensity in a specific direction to the average radiation intensity in all

directions. The average directivity is given by:

_ Uu¢) _ 4mu(6,9)
U(9v¢)avg Dt .

(3.24)

where p, represents the total power radiated. The antenna radiation efficiency also
increases as the antenna radiation resistance increases. The radiated power of the
antenna has a major effect on its radiation resistance. As a result of this connection
between the antenna radiating element, and the body tissues, the antenna's radiation
efficiency decreases inside human body tissues. The human body can have a
significant effect on the radiation pattern of an antenna. When an antenna is placed
near a human body, the body acts as a load, and influences the impedance, and

radiation characteristics of the antenna [53].

When testing the performance of a monopole antenna near a simplified skin
layer as shown in Figure (3.7). The dimensions of the simplified skin layer of the
human body are (200x300x 3) mm. The electrical properties of the human skin tissue
layer are &, = 38 and o =1.46 S/m. The simulated return loss plot of the monopole

antenna in free space and with skin layer is shown in Figure (3.8).
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Figure 3.7: Block representation of monopole antenna near simplified skin layer.
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Figure 3.8: Return loss of monopole antenna in free space and with skin layer.
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When testing the performance of a monopole antenna near a simplified fat layer as
shown in Figure (3.9), the dimensions of the simplified skin layer of the human body are
(200x300x%12) mm. The electrical properties of the human fat tissue layer are &, = 5.28 and
0 =0.11 S/m. The simulated return loss plot of the monopole antenna in free space, and with

skin layer is shown in Figure (3.10).

Figure 3.9: Block representation of monopole antenna near simplified fat layer.
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Figure 3.10: Return loss of monopole antenna in free space and with fat layer.
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When testing the performance of a monopole antenna near a simplified muscle
layer as shown in Figure (3.11). The dimensions of the simplified skin layer of the
human body are (200x300x15) mm. The electrical properties of the human muscle
tissue layer are ¢, = 52.73 and ¢ =1.74 S/m. The simulated return loss plot of the

monopole antenna in free space and with muscle layer is shown in Figure (3.12).

Figure 3.11: Block representation of monopole antenna near simplified muscle layer.
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Figure 3.12: Return Loss of Monopole Antenna in Free Space and with Muscle.
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When testing the performance of a monopole antenna near a simplified bone layer
as shown in Figure (3.13), the dimensions of the simplified bone layer of the human
body are (200x300x20) mm. The electrical properties of the human bone tissue layer
are &, = 11.38 and o =0.39 S/m. The simulated return loss plot of the monopole

antenna in free space and with skin layer is shown in Figure (3.14).

Figure 3.13: Block representation of monopole antenna near simplified bone layer.
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Figure 3.14: Return loss of monopole antenna in free space and with bone layer.
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The planner monopole antenna was simulated in simplified multilayer tissue
(skin, fat, muscle and bone) .The return loss of the antenna in four layers of the

human body phantom is shown in Figure (3.15).
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Figure 3.15: Monopole antenna return loss in multilayer tissues (skin, fat, muscle and

bone).

The increase in return loss, when a layer of the model with a high relative
permittivity is near the antenna, is due to the mismatch in impedance between the
antenna and the layer. where the reflection coefficient is a measure of how much of
the incident power is reflected at the interface between the antenna and the
surrounding medium (in this case, the layer of the model). and a relative permittivity
indicates that the layer has a much higher ability to store electrical energy in the
presence of an electric field compared to free space (which has a relative permittivity
of approximately 1).

The block representation of simplified multilayer tissue phantom, which is

used to designe and monopole antenna is near to the human layers model is

52



shown in Figure(3.16). The electrical properties of different tissues of the human

body are given in Table (3.3). The simulated return loss of the monople antenna

with absence of body model is given in Figure (3.17)
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Figure 3.16: Block diagram of monopole antenna near layer of body model.
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Figure 3.17: Return loss of the monople antenna with absence of body model.
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The received radiation pattern from the homogeneous model is shown in
Figure (3.18). The model acts as a scatterer, causing the electromagnetic waves
radiated by the antenna to interact with the surface of the model, causing changes

in the radiation pattern. Figure (3.19) shows the E-plane and H-plane radiation

pattern.
z
Figure 3.18: 3D radiation pattern received from the model.
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Figure 3.19: Received radiation pattern from the model (a) H-plane (b) E-plane.
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CHAPTER FOUR
NEURAL NETWORKS IMPLEMETATION AND
RESUTS

4.1 Introduction

In this chapter, a new approach for detecting hidden objects based on the use of
a neural network is presented. Reflection coefficients will be used in combination with
deep learning techniques to detect buried objects. In this approach, an UWB antenna is
used to measure the reflection coefficients of the human body model with a shrapnel
inside at various locations. The measured reflection data are then used as input data to
a deep learning model, such as a convolutional neural network, to detect the presence

of buried objects.

Deep learning can be trained on a dataset of measured reflection coefficients with
known hidden objects to learn the relationship between the reflection coefficients and
the presence of hidden objects. During the detection process, the DL takes the measured
reflection coefficients as input, and produces a map of the probabilities of the presence
of hidden objects.

From the perspective of a neural network, it is feasible to state that the
differences between the scattering characteristics of healthy and injured humans
indicate that the dispersed signals captured at various locations around the model carry
the telltale signs of the presence of shrapnel. Table (4.1) shows the hypothesis for
shrapnel detection using a neural network. The hypothesis assumes that dispersed
signals collected at various locations around the model contain distinct features
indicative of the presence of shrapnel.

It is important to note that the accuracy of this approach will depend on the quality and
quantity of the data used to train the network, as well as the architecture, and training
method used. The flow chart in Figure (4.1) illustrates how the process steps is done.
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Table 4.1: Hypotheses and Rationale for shrapnel detection using a neural network.

Hypothesis

Rationale

Dispersed signals collected at various

locations around the model contain distinct

features indicative of the presence of shrapnel.

It is assumed that when an EM wave
encounters shrapnel within the human body
model, the interaction with the electric and
magnetic fields of the tissue causes the
wave to scatter. This scattering behavior is
influenced by the size, shape and material
of the shrapnel, as well as the frequency and
polarization of the incident wave. The
hypothesis suggests that these scattering
characteristics produce discernible features
in the dispersed signals that can be captured

and utilized by a neural network.

The neural network can learn to identify and
extract the distinct features from the dispersed
signals associated with the presence of

shrapnel

Neural networks have the ability to learn
complex patterns, and features from input
data. By training on dispersed signals
captured at various locations, the neural
network can potentially learn to distinguish
the patterns associated with the presence of

shrapnel.

The neural network can accurately classify the
presence of shrapnel with different radius

sizes (5 mm, 10 mm, and 15 mm).

The neural network can generalize its
learning to accurately classify the presence

of shrapnel, regardless of its radius size.

The neural network can accurately pinpoint
the location of shrapnel within the human
body model based on received signals from

various locations.

By comparing received signals collected at
different locations, the neural network can
potentially infer the location of the shrapnel

within the human body model.
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Figure 4.1: The flow chart of process steps.
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The process begins with UWB Antenna Measurement to understand how
electromagnetic waves interact with hidden objects. Data Collection gathers
measured reflection coefficients. Dataset Preparation creates a dataset with reflection
coefficients and labels (presence/absence of hidden objects). Neural Network
Training uses a CNN to learn the relationship between coefficients and object
presence. Detection Process inputs coefficients into the trained CNN for predicting
probabilities. Deep Learning Inference yields an output map of probabilities for
object presence. Result Analysis identifies likely locations of hidden objects. The

process concludes with the End step.

4.2 Dataset Preparation for Homogenous Model

To generate the dataset necessary for detection and recognition, an UWB
monopole antenna is set at 10 mm from the model surface with a view to receive the
scattered signals. The model has shrapnel in a variety of places. The antenna is shifted
on the destination range in x coordinates, and at each 10mm the reflection coefficient

(S11) is examined using the electromagnetic simulator CST Microwave Studio.

The reflection loss of a homogeneous model when shrapnel of different sizes is
immersed is the amount of energy that is reflected back by the model and shrapnel as
a result of the scattering process. The reflection loss is determined by the scattering
properties of the shrapnel and the material of the model. The size of the shrapnel can
affect the reflection loss, as larger shrapnel can scatter more energy than smaller
shrapnel. When the shrapnel is immersed in the model at a depth of 30 mm, change
the radius (5, 10, 15) and each time the reflection coefficient is measured. The
information that depicts the scattered signals, as they were measured at each site is
kept in a database. The simulated reflection loss (S11) of three different sized
shrapnel is displayed in Figure (4.2).
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Figure 4.2: Simulated reflection loss for three different sizes.

4.3  Neural Network Designer in MATLAB
The Neural Network Designer in MATLAB is a graphical user interface (GUI)

tool that allows users to create, design and train models in a visual and interactive
manner. The tool enables users to easily experiment with different network
architectures, hyperparameters and training options and provides visualization and
performance metrics to monitor the training progress. To implement the design of a
neural network in MATLAB:

1- Start the Neural Network Designer application in MATLAB typing >> nnstart in
the MATLAB command prompt and pressing enter.

2- The Neural Network Designer application in MATLAB includes several wizards
to help solving different types of deep learning problems. The wizards guide users
through the process of loading data, defining the network architecture, training
the network and providing visualizations and performance metrics to help in

evaluating the network's performance as shown in Figure (4.3).
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3-

4\ Neural Network Start (nnstart) — >

Welcome to Neural Network Start

Learn how to solve problems with neural networks.

Getting Started Wizards: More Information

Each of these wizards helps you solve a different kind of problem. The last panel
of each wizard generates a MATLAE script for solving the same or similar
problems. Example datasets are provided if you do not have data of your own.

Input-output and curve fitting. &9 Fitting app (nftool)
Pattern recognition and classification. & pattern Recognition app (nprtool)
Clustering. & Clustering app (nctool)
Dynamic Time series. & Time Series app (ntstool)

Figure 4.3: Neural network start in MATLAB.

Click on the pattern recognition application (nprtool), then select the data that are
used as inputs that were generated using EM simulator.

Select the data that are used as target, spli the data into training and validation
sets. For example, if the validation ratio is set to 20%, then 20% of the data will
be used for validation, and the remaining 80% will be used for training.

Choose the number of layers, neurons, as well as activation functions used by the

hidden and output layers.

Set the training parameters such as the number of epochs, minimum accepted
error, learning rate and the performance function.

Click the "Train" button to start the travining process. The training process will
run for the specified number of epochs, and the network's performance on the
training and validation sets will be displayed.

After training, use the "Test" button to evaluate the network on a test set. The
behavior of system can be monitored through the level of the output mean square
error (MSE). In nnstart, the training error curve shows the MSE as a function of

the number of epochs [56].
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4.4 One-Dimensional Locating of Shrapnel Using ANN

Whenever a shrapnel changes its position in the z direction (depth), a dataset
of reflection coefficients is collected using a CST model. This dataset is then used to
train an artificial neural network (ANN) to predict the absence or presence, as well
as the size and location (depth) of any shrapnel. To train the ANN, the collected
dataset of reflection coefficients would be needed to be labeled according to whether

or not a shrapnel was present, and if so, the size and depth of the shrapnel.

In this work, "nnstart” in MATLAB is used to explore different network architectures
and training strategies, and to experiment with different types of data and
input/output mappings. "nnstart" is also used to compare the performance of different

networks, and to optimize network's hyperparameters.

In the Neural Network Start GUI, can create a neural network by selecting a
network type, such as feedforward or radial basis, and specifying the network
architecture, such as the number of layers, neurons per layer, and activation
functions. can also import data, preprocess it and split it into training, validation and

test sets.

To determine the presence or absence of fragments, pattern recognition and
classification tool is used. Pattern recognition involves identifying patterns or
features in data, while classification involves assigning input data to one of several

predefined categories or classes.

In "nnstart”, pattern recognition and classification tasks can be created using
the GUI by selecting the appropriate toolboxes, specifying the input and output data,
and adjusting the network architecture and training parameters. Then training the

network and evaluating its performance on new data can take place.

A two-layer feedforward neural network with sigmoid hidden neurons, an input layer
with 1001 inputs and SoftMax output neurons, that is suitable for a classification task
Is designed. The inputs with 1001 features, where each feature represents the

reflection coefficient at a specific frequency and antenna movement.
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The Sigmoid activation function for the hidden neurons will introduce non-
linearity into the network, allowing it to learn complex patterns in the data. The
SoftMax activation in the output neurons will ensure that the output values represent
probability distributions over the different classes, making it easier to interpret the
network's predictions and make decisions based on those probabilities. The number
of neurons will depend on the number of classes. In this case, equal loutput neuron
for predicting presence or absence of shrapnel. To train the neural network, a cost
function is needed to measure the difference between the predicted output and the
true output for each observation in the training set. For a classification task with
SoftMax output neurons, a common cost function is the cross-entropy loss. it
measures the dissimilarity between the predicted probabilities and the true class
labels. As the network is trained, the cross-entropy loss is minimized, leading to

improved performance on the classification task.

Next, an optimization algorithm is used, such as gradient descent or its
variants, to minimize the cost function by updating the weights and biases of the
neural network. Typically perform multiple iterations over the training set, which is

referred to as epochs.

In this model, 130 observations are set for training and 23 observations are set for

testing. The neural network pattern recognition is shown in Figure (4.4).

The performance plot of cross-entropy loss in pattern recognition neural
networks typically shows the value of the loss function over the course of training.
The x-axis represents the number of training iterations or epochs, while the y-axis
represents the value of the cross-entropy loss. Figure (4.5) shows how the cross-
entropy loss is decreased rapidly, as the network learns to make better predictions.

This curve shows that after 84 epochs, the loss is approximately 10~7.
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Figure 4.4: Pattern recognition neural network to predict the presence of shrapnel.

Best Training Performance is 1.8596e-07 at epoch 84
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Figure 4.5: Cross entropy loss in training.
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To determine the size of shrapnel, Neural network fitting tool is used. This
tool uses an iterative process called backpropagation to adjust the weights and biases
of the neural network to minimize the error between the predicted output and the
actual output. A two-layer feedforward neural network with 10 sigmoid hidden
neurons, an input layer with 1001 inputs and 1 linear output neurons suitable. The
inputs with 1001 features, where each feature represents the reflection coefficient at
a specific frequency and antenna movement. The linear output neuron allows the
network to directly output continuous values for the regression task. The output is 1
to predict a single value (size). During the training, a loss function is used to measure
the error between the predicted output values, and the actual output values, and an
optimization algorithm such as gradient descent is used to adjust the weights and
biases to minimize the loss function. One commonly used loss function for

regression tasks is the mean squared error (MSE) function.

In this model 122 observations are set for training, and 31 observations are set

for testing. The neural network fitting is shown in Figure (4.6).

The mean square error (MSE) is a common metric used to evaluate the
performance of a neural network model. Typically, the MSE will decrease as the
training progresses, indicating that the model is improving its fit to the data. The
performance plot of MSE in fitting neural network is shown in figure (4.7). In this
plot, the x-axis represents the number of training epochs, and the y-axis represents

the MSE. This curve shows that after 11 epochs, the MSE is approximately 10721,
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Figure 4.6: Fitting neural network to predict the size of shrapnel.

Best Training Performance is 2.6942e-21 at epoch 11
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Figure 4.7: MSE in training process to predict size of shrapnel.
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To determine the location (depth) of shrapnel, Neural network fitting tool is used.
In this model 138 observations are set for training and 15 observations are set for
testing. In the model, shrapnel was placed at various depths, and at a random location
in the middle. Figure (4.8) shows how error varies with the number of trials (epochs).

This curve shows that after 230 epochs, the MSE is approximately 107>,

Best Training Performance is 2.3597e-05 at epoch 230
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Figure 4.8: MSE in training process to predict depth of shrapnel.

When all targets are present (the presence or absence of shrapnel, and its size
and location with one dimension (depth)), The feedforward neural network is used.
The feedforward neural network is a type of neural network that consists of an input
layer, one or more hidden layers, and an output layer. In this case, there are two
hidden layers, with 10 and 6 neurons, respectively .an input layer with 1001 inputs,
and an output layer with 3 outputs (presence or absence, size, location). The training
parameters are then set using the property of the neural network object. The epochs

parameter specifies the maximum number of training epochs, learning rate, and
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minimum gradient, which determines when the training process will stop. Finally,
the train function is called to train the neural network using the inputs and targets

data. The structure of the feedforward neural network is shown in Figure (4.9).
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Figure 4.9: Feedforward neural network construction.



The goal of training the neural network is to adjust its weights and biases so
that it can accurately predict the size and depth of the shrapnel given the input data.
The weights and biases of the network are updated iteratively until the error reaches
a minimum, or until a predetermined number of epochs (training iterations) have

been completed.

At this point, the trained neural network can be used to make predictions on
new data. The detection rate of shrapnel was (90%), while the results to size
specification rate were (86%), and the results to the depth detection rate of the
shrapnel were (78%). The relationship between the error and the number of epochs
in neural network training is shown in Figure (4.10). This curve shows that after 75

epochs, the error is approximately 10~%.

, Best Validation Performance is 0.012293 at epoch 69
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Figure 4.10: Error curves of training set and validation set performance across
epochs.

Plotting regression in feedforward neural network involves visualizing the
relationship between the predicted output values and the actual output values based
on a set of input values. The neural network training regression is shown in Figure
(4.11).
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Figure 4.11: Regression in feedforward neural network.
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4.5 Two-Dimensional Locating of Shrapnel Using ANN

Whenever a shrapnel changes its position in both the x and z directions, a
dataset of reflection coefficients is collected using a CST model. This dataset is then
used to train an ANN to predict the absence, or presence, as well as the size and
location of shrapnel. To train the ANN, the collected dataset of reflection coefficients
would be needed to be labeled according to whether or not shrapnel was present, and
if so, the size and location of the shrapnel.

To predict the absence of shrapnel, pattern recognition and classification tool is
used. In this model, 1980 observations are set for training and 349 observations are
set for testing. the training performance is shown in Figure (4.12). This curve shows

that after 107 epochs, the loss is approximately 1077,

o Best Training Performance is 4.7317e-07 at epoch 107
107 ¢

Train
Test

1072 }

10

Cross Entropy (crossentropy)

10°

0] 10 20 20 40 50 60 70 80 a0 100
107 Epochs

Figure 4.12: Training Performance of Pattern Recognition Neural Network.

To predict the size of shrapnel, Neural network fitting tool is used. After
training the neural network on this data (two dimensions), the mean square error
increased, and for this we resort to using an CNN to estimate the size of the

fragment. Figure (4.13) shows how the MSE is approximately 0.1 after 67 epochs.
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Best Training Performance is 0.19769 at epoch 67
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Figure 4.13: Training performance for predicting the size of shrapnel.

Well, when training the network for predicting the depth of shrapnel in the
model, the curve shows how after 136 epochs the MSE is approximately 0.4 as
shown in the Figure (4.14).

Best Training Performance is 0.4861 at epoch 136
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Figure 4.14: Training performance for predicting the depth of shrapnel.
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4.6  Convolutional Neural Network (CNN) Training Results for Shrapnel
Detection

If the MSE increases, it will indicate that the model is performing poorly and
its predictions are further away from the actual values. One approach for building a
machine learning model for this problem would be to use a convolutional neural
network (CNN). A CNN is a type of neural network that is commonly used for
Imaging recognition tasks, but can also be used for other types of data, such as
matrices. In a CNN, the input matrix is passed through a series of convolutional
layers, which are able to identify patterns in the data. The output of the convolutional
layers is then passed through a series of fully connected layers, which are used to

make the final predictions.

The output of the machine learning model should be a set of four values, that
describe the classification of the case, the size of the fragment, and the location of

the fragment in X and Z.

Classification: The classification variable could be a categorical variable, that
indicates the presence, or absence of a fragment in the body. In this case, it could be
a value of 0 for no fragment, indicating the absence of a fragment, and 1 for the

presence of a fragment.

Size: The size variable would have a limited set of possible values, which would be
0, 5, 10, and 15. The different possible size categories for the fragments that are
being tried to be detected and classified would be represented by these values. During
training, the machine learning model would be learned to associate specific input
patterns with the different size categories, allowing it to predict the size of new
fragments in future inputs.

Location in Z: The location in Z variable would have a limited set of possible values,
which would be 25, 30, and 35. The different possible locations for the fragments
along the Z-axis, which are being tried to be detected and classified, would be

represented by these values.
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Location in X: The location in X variable would have a limited set of possible values,

which would be the values between 0 and 160 with increments of 10 (i.e., 0, 10, 20,
30, 40, 50, ..., 160). The different possible locations for the fragments along the X-

axis, which are being tried to be detected and classified, would be represented by

these values.

The machine learning model takes the input matrix as input and produces the

four output values as its output, based on what it has learned from the labeled dataset

during training. The data set is labeled in excel as shown in Figure (4.15).

The architecture of convolutional neural network consists of:

1-

Sequence Input Layer: This layer specifies the input size of the network, which
Is the number of features in each input matrix. In this case, it is the number of

rows in the input matrix, which is 1001.

convolutionldLayer: This layer performs a 1D convolution operation on the input
sequence using a set of learnable filters. The first convolution layer has 128 filters

of size 3, followed by a RELU activation function and layer normalization layer.

convolutionldLayer: This layer has 2*num Filters (256) filters of size 3 followed

by RELU activation function and layer normalization layer.
convolutionldLayer: This layer has 4*num Filters (512) filters of size 3 followed
by RELU activation function and layer normalization layer.
Global Average PoolingldLayer: This layer calculates the meaning of each

feature map across time steps, and returns a 1D output vector.

Fully Connected Layer: This layer connects every element of the input vector to
every element of the output vector with learnable weights, followed by a SoftMax

activation function to generate class probabilities.

Classification Layer: This layer computes the cross-entropy loss between the
predicted probabilities, and the true labels, and backpropagates the gradient to

update the weights of the network.
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The network is trained using mini-batch stochastic gradient descent with the
Adam optimizer. Adam optimization algorithm is a variant of stochastic gradient
descent that is commonly used to train deep neural networks. Adam stands for
"Adaptive Moment Estimation.” The algorithm computes individual adaptive
learning rates for each parameter in the network based on estimates of the first, and
second moments of the gradients. The first moment is the mean of the gradient, and
the second moment is the variance of the gradient. These moments are calculated for
each parameter and used to update the learning rate and weight parameters during
training. Adam is known for its efficiency in training deep neural networks, as it can
automatically adjust the learning rate during training and converge to a good solution

faster than other optimization algorithms.

The validation data is used for monitoring the performance of the network
during training and preventing overfitting. The network is trained for a maximum
of 250 epochs or until convergence, whichever occurs first. The final trained

network is stored in the "net" variable.

For classification to indicate the presence or absence of a fragment, CNN is
used. In this case, it could be a value of 0 for no fragment, indicating the absence of
a fragment, and 1 for the presence of a fragment. The training process of CNN is

shown in Figure (4.16).
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Figure 4.16: Training process for classification using CNN.
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A validation accuracy of 99% indicates that the model is performing well on
the validation set and is able to classify accurately the presence, or absence of a

fragment.

To train the network to predict both the size and location of the fragment, it is
required to modify output layer of the network. Instead of output that represents the
presence or absence of a fragment, the output must be represent the size and location
of the fragment. The training process for predicting the size and location are shown
in Figure (4.17).

A validation accuracy of 88% after 900 epochs indicates that the model is

able to accurately predict the size and location of the fragment.
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CHAPTER FIVE
CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

Specifying the size and location of a shrapnel within the human body is a

challenging task in the field of hidden object detection. There are several factors that

contribute to this challenge, such as the variability of human tissue properties and

the interaction of electromagnetic waves with them. to solve this problem:

1-

A model depicting the main layers of the human body (skin, fat, muscle, and
bone) was designed to represent the anatomical structure, and test detection
methods. The fragment was incorporated into the model, assuming an aspherical

shape, and using copper as its material representation.

It is possible to use a single antenna to detect hidden object by using the reflection
coefficient. The antenna can transmit a signal toward the model, and the reflection

of that signal can provide information about the presence of shrapnel.

The data which was collected from scattered signals at various locations around
the model, and a neural network was employed to analyze this data, and determine

the fragment's location and size.

It is possible to use neural networks for detecting shrapnel, and having a large
number of trained data can be beneficial for improving the network's

performance.

A CNN can be an effective approach for detecting and locating shrapnel in model,

and can help to improve the accuracy, and reliability of the detection system.

In order to use a convolutional neural network (CNN), the input data is typically
represented in the form of images, which can be thought of as matrices of pixel
values. the input data for the CNN would be represented as dimensions of

1001*17 (1001 represent frequency steps, 17 represent antenna movements).

79



7-

8-

5.2

During the training process of a CNN, the model can be trained to detect and

locate the presence of shrapnel in two dimensions, as well as estimate their size.

From results, a convolutional neural network (CNN) improves the rate of
detection and position determination as compared to regular neural network. The
results were acquired utilizing the neural network with 90% success in shrapnel
identification, 86% success in shrapnel sizing, and 78% success in shrapnel depth.
Also, better results were obtained when using the CNN, where 99% was reached
to determine the presence of the fragment and 88% to determine the size and

location.

Future Work

Based on the work done in this dissertation, there are several aspects that can be

considered to extend the research further. Some of these aspects include:

1-

Incorporating more complex network architectures: The dissertation discusses the
use of a basic convolutional neural network for detecting hidden objects.
However, more complex architectures such as ResNet, can be explored to further
improve the performance of the network.

Increasing the size of the dataset: While the dataset used in this dissertation is
sufficient to train the network, increasing the size of the dataset can help improve
the accuracy of the model.

Investigating the use of multiple sensors: The dissertation uses a single antenna
to detect hidden objects. However, the use of multiple sensors, such as a radar
system, can potentially improve the accuracy of the detection, and locating of the
hidden object.

Testing the model with various types of materials for initial tests can help to
evaluate the performance of the model in detecting hidden objects under different
conditions. This can help to improve the model's accuracy and reliability, and

make it more effective in real-world scenarios.
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