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Energy bands in Solids 
 

All matters are made of atoms; and all atoms consist of electrons, pro- tons, 

and neutrons. In this chapter, you will learn about the structure of the atom, 

electron orbits and shells, valence electrons, ions, and the semi- conductive 

materials. Semi conductive material is important because the configuration of 

certain electrons in an atom is the key factor in determining how a given material 

conducts electrical current. 

 

 
 

Figure 1.1: Atomic structure 

 

1.1 The energy-band theory of crystals 
 

As we have seen, all the electrons of a given atom having the same value of n 

belong to the same prescribed bands (electronic shell). Each shell around the 

nucleus corresponds to a certain energy band and is separated from adjacent shells 

by energy gaps, in which no electron can exist. 

A crystal is a solid consisting of a regular and repetitive arrangement of atoms 

or molecules (strictly speaking, ions) in space. If the positions of the atoms in the 

crystal are represented by points, called lattice points, we get a crystal lattice. 

The distance between the atoms in a crystal is fixed and is termed the lattice 

constant of the crystal. To discuss the behavior of electrons in a crystal, we 

consider an isolated atom of the crystal. If Z is the atomic number, the atomic 

nucleus has a positive charge Ze.  

 



At a distance r from the nucleus, the electrostatic potential due to the nuclear 

charge is (in SI units). 

                         ………………… (1) 

 

Since an electron carries a negative charge, the potential energy of an 

electron at a distance r from the nucleus is: 

 
 …………….. (2) 
 
 
 

 V (r) is positive while Ep (r) is negative. Both V (r) and Ep (r) are zero at 

an infinite distance from the nucleus. Figs. 1.3(a) and (b) show the variation of 

V (r) and Ep (r), respectively with r. 

Now, consider two identical atoms placed close together. The net potential 

energy of an electron is obtained as the sum of the potential energies due to the 

two individual nuclei. In the region between the two nuclei, the net potential 

energy is clearly smaller than the potential energy for an isolated nucleus (see 

Fig. 1.2). 

 

 

 
 
 

Figure 1.2: Variation of (a) Potential in the field of a nucleus with distance, (b) Potential energy 

of an electron with its distance from the nucleus. 

 

 

 



 

 

Figure 1.3: Potential energy variation of an electron with distance between two identical nuclei. 

 

The potential energy along a line through a row of equispaced atomic nuclei, as 

in a crystal, is diagrammatically shown in figure 1.4. The potential energy between 

the nuclei is found to consist of a series of humps. The separation between the split-

off energy levels is very small. This large number of discrete and closely spaced 

energy levels forms an energy band. Energy bands are represented schematically 

by shaded regions in figure 1.4(b). 

The width of an energy band is determined by the parent energy level of the isolated 

atom and the atomic spacing in the crystal. The lower energy levels are not 

greatly affected by the interaction among the neighboring atoms, and hence form 

narrow bands. The higher energy levels are greatly affected by the interatomic 

interactions and produce wide bands.  

 

 

 

Figure 1.4: Splitting of energy levels of isolated atoms into energy bands as these atoms are 

brought close together to produce a crystal. 

 

 



The lower energy bands are normally completely filled by the electrons since the 

electrons always tend to occupy the lowest available energy states. The higher 

energy bands may be completely empty or may be partly filled by the electrons. 

The interatomic spacing, although fixed for a given crystal, is different for 

different crystals. The width of an energy band thus depends on the type of the 

crystal, and is larger for a crystal with a small interatomic spacing. The lower 

energy bands are normally completely filled by the electrons since the electrons 

always tend to occupy the lowest available energy states. The higher energy 

bands may be completely empty or may be partly filled by the electrons. The 

lower energy band calls the valence band and the first, unfilled or partially filled, 

band above the valence is called conduction band. The energy gap between the 

valence and conduction can be calculated as: 

 

Eg  = Ec − Ev ………………(3)  

 
On the basis of the band structure, crystals can be classified into metals, 

insulators, and semiconductors. 

 

 

 
 
 

Figure 1.5: Energy band structure of (a) metal, (b) insulator, and (c) semiconductor. 

 

 

 

 

 



1.1.1 Metals 
 

A crystalline solid is called a metal if the uppermost energy band is partly filled 

[figure 1.5(a)] or the uppermost filled band and the next unoccupied band overlap 

in energy. The electrons in the uppermost band find neighboring vacant states to 

move in, and thus behave as free particles. In the presence of an applied electric 

field, these electrons gain energy from the field and produce an electric current, so 

that a metal is a good conductor of electricity. The partly filled band is called the 

conduction band. The electrons in the conduction band are known as free 

electrons or conduction electrons. 

 
 

1.1.2 Insulators 
 

When the forbidden energy gap between the valence band and the conduction 

band, is very large, only a few electrons can acquire enough thermal energy to 

move from the valence band into the conduction band. Such solids are known as 

insulators. Since only a few free electrons are available in the conduction band, an 

insulator is a bad conductor of electricity. The energy band structure of an insulator 

is schematically shown in figure 1.5(b).



 

1.1.3 Semiconductors 
 

A material for which the width of the forbidden energy gap between the valence 

and the conduction band is relatively small (1 eV) is referred to as a 

semiconductor. As the forbidden gap is not very wide, some of the valence 

electrons acquire enough thermal energy to go into the conduction band. These 

electrons then become free and can move about under the action of an applied 

electric field. The absence of an electron in the valence band is referred to as a 

hole. The holes also serve as carriers of electricity. The electrical conductivity of 

a semiconductor is less than that of a metal but greater than that of an insulator. 

The band diagram of a semiconductor is given in figure 1.5(c). 

At 0 oK the semiconductor becomes insulator because the electrons do not has 

energy to jump to conduction band. 

 

 

1.2 Fermi−Dirac distribution function 
 
 

Fermi Dirac distribution function describes the energies of single particles in a 

system comprising many identical particles that obey the Pauli exclusion 

principle. Electrons are Fermions, and thus follow Fermi Dirac distribution 

function. 

At room temperature, the thermal energy of the atoms may allow a small number 

of electrons to participate in the conduction process in semiconductor. The 

probability for filling the band by electrons depends on temperature. 

 
 

  
 ………………. (4) 
 
 

where f (E) is the probability of occupancy of the state with energy E, EF is a char- 

 



. Σ 

 

acteristic energy for a particular solid and is referred to as the Fermi level, T is 

the absolute temperature in oK and k is Boltzmann’s constant (k = 1.38 ×10−23 J 

K−1 = 8.614 ×10−5 eV K−1). Fermi energy can be defined as the energy at which 

there would be a fifty percent chance of finding an electron. 

 

Figure 1.6 shows the probability f(E) against  E/EF for T=0, 300 and 2000 K.

 

 

 

Figure 1.6: f (E) as a function of E/EF for different values of T 

 
From Fermi Dirac function, equation (4) and figure 1.6, it can be conclude that: 

 

1. At  the absolute zero of temperature, i.e.  at T = 0 K, equation 1.16 shows that  f (E) = 

1 for E < EF and f (E) = 0 for E  > EF  .  Thus all the energy states below EF are occupied 

by the electrons and all the energy states above EF are completely empty. (The 

probability of finding electron above Fermi level at zero 

oK is zero). 

 
2. At temperatures greater than the absolute zero, f (E) > 0 for E > EF , as shown in figure 

1.6. This means that at a finite temperature, some of the electrons in the quantum states 

below EF acquire thermal energy to move into states above EF . The probability of 

electron above Fermi level at T>0 oK is given by: 

f (E) = exp 
− (E − Ef ) 

 
kT………..                    …………………………………...(5) 

  



kT 

. Σ 

1 

kT 8.614×10−5×300 

E−Ef 

kT 

E−Ef 

8.614×10−5×300 

 

3. The probability of electron to fill a state below Fermi level at T>0 oK is given by: 

f (E) = 1 − exp 

.
− (|E − Ef |) 

 
 ……………………(6) 

 
 

Solved problems  

1. Find the probability of an electron to occupy a level (0.1 eV) above Fermi level at 27 

oC? 

Solution: 

Solution 

f (E) = exp 
−(E−Ef ) 

= exp 
.

  −(0.1)  
Σ 

= 0.0209 

 
2. The probability for an electron to occupy a level at 120 oC is (2×10−6). Find the location of 

this level with respect to Fermi level? 

Solution 

f (E) = . Σ = . 
 

 

1+exp 1+exp 

1 

 

 



 



 

Transport Phenomena in 

Semiconductor 

 
—————————————————————————————————– 

The current is defined as the flow of charged particles. In metal the 

current results from the flow of negative charges (electrons), whereas the 

current in a semiconductor results from the motion of both electrons and 

positive charges (holes). A pure semiconductor may be doped with 

impurity atoms so that the current is due predominantly either to 

electrons or to holes. The transport of the charges, i.e. conductivity, in a 

crystal under the influence of an electric field (a drift current), and also 

as a result of a nonuniform concentration gradient (a diffusion current), is 

investigated in this chapter. 

—————————————————————————————————— 
 

 
2.1 Mobility and Conductivity 

 

As it is observed in the preceding chapter, according to the energy band theory, the 

materials can be classified into three types: insulators, conductors, and semiconductors. 

A conductor is a solid in which an electric current flows under the influence of the electric 

field. By contrast, the application of an electric field produces no current in an 

insulator 

 

 



The energy gap for an insulator is so wide that hardly any electrons are acquired 

enough to jump to the conduction band. If a constant electric field is applied to the 

metal, the electrons will move with acceleration equal: 

 

e E 
a = (2.1) 

m 

 

where, E is the electric field in a unit (V m−1) 

But the electron suffering from collisions with other particles in metal and it speed 

between two successive collisions is (a t).  t: is the relaxation time. The distance between 

two successive collisions is called the mean free path and is equal to: 

 
l = vd t (2.2) 

 
Electrical mobility is the ability of charged particles (i.e. electrons) to move through 

a medium in response to an electric field that is pulling them. The external electrical 

field gives electron drift velocity and acceleration, therefore the drift velocity is equal 

to: 

vd = µ E (2.3) 

where µ is the electron mobility in a unit (m2V −1s−1) and it is equal to (et/m). 

The minus sign means the drift velocity is in the direction opposite to that of the external 

electric field. 

Electrical Conductivity: Electrical conductivity is a measure of a material’s ability to 

conduct an electric current. It is commonly represented by the Greek letter σ. The 

following figure shows a box of metal with length L and cross-section area A. The 

voltage V was applied on the ends of the box. According to Ohm’s law: V = I R and; 
 

L 
R = ρ 

A 

Where ρ is the resistivity in a unit 

(Ωm). Since R = V/I 

Then 2.4 become: 

 

(2.4) 

(I/A) = (1/ρ) × (V/L) = J (Current density) 

but (V/L) = E and (1/ρ) = σ, then:



 

2.1 Mobility and Conductivity  
 

 

Figure 2.1:  Box of metal 
 
 

 
J = σ E (2.5) 

 
Where J represents the drift current density. 

Now, consider that the metal contains (n) of free electrons per unit volume, then the 

total free electrons inside the metal is: 

 

q = −n e A L (2.6) 

but I = (q/t) = q × (vd/L), where vd = (L/t) 

Since I = J × A and from 2.5 we have J = σ E, then it can be written: 

 

 

 

 

Substituting 2.7 in equation 2.3, we can obtain: 

 
(2.7) 

 

 

σ = −n e µ (2.8) 

This equation shows that the conductivity depends on the density of the free 

electrons and the mobility of these electrons. Equation 2.8 can be written in a new 

form as shown below: 

 

n e2l 
σ = 

m vd 

 

(2.9) 

 



 

 

2.2 Diffusion Current 
 

In addition to a conduction current, the transport of charges in a semiconductor 

may be accounted for by a mechanism called diffusion, not ordinarily encountered in 

metals. The essential features of diffusion are now discussed. It is possible to have 

no uniform concentration of particles in a semiconductor. As indicated in figure 2.2, the 

concentration n of electrons varies with distance x in the semiconductor, and there exists 

a concentration gradient, dn/dx, in the density of carriers. The existence of a gradient 

implies the density of electrons immediately on one side of the surface is larger than 

the density on the other side. The electrons are in a random motion as a result of their 

thermal energy. Accordingly, electrons will continue to move back. The net transport 

of electrons across the surface constitutes a current in the positive X direction. 

 

 
Figure 2.2: A no uniform concentration n(x) results in a diffusion current 

 

It should be noted that this net transport of charge is not the result of mutual re- 

pulsion among charges of like a sign, but is simply the result of a statistical phenomenon. 

This diffusion is exactly analogous to the at which occurs in a neutral gas if a 

concentration gradient exists in the gaseous container. The diffusion electron-current 

density Jn (amperes per square meter) is proportional to the concentration gradient 

and is given by: Jdiff ∝ (dn/dx) 

also, Jdiff ∝ D 

where D is diffusion constant (m2sec−1) 
 

dn 
Jdiff = e D 

dx 
(2.10) 

D and µ are related by Einstein's relation: 

 
 
                                                                                                                         (2.11) 

 



 

− 

 

where T is the temperature in oK 

Total Current: Both a potential gradient and a concentration gradient can exist 

simultaneously within a semiconductor. In such a situation the total hole current is the 

sum of the drift current 2.5 and the diffusion current 2.10; 
 

dn 
Jtot = eD

dx 
+ σE (2.12) 

 

2.3 Work Function 
 

A free electron moves in metal by random motion in the absent external operator 

or in addition to drift and /or diffusion motion. The kinetic energy makes electrons 

reach the Fermi level. Then the energy required rising electron to a state outside the 

metal is Es (surface energy), therefore the work function (φ ) is given as: 

 
φ = Es − Ef (2.13) 

The work function is the minimum energy (usually measured in electron volts) 

needed to remove an electron from a solid to a point immediately outside the solid 

surface (or energy needed to move an electron from the Fermi level into a vacuum). Here 

”immediately” means that the final electron position is far from the surface on the 

atomic scale but still close to the solid on the macroscopic scale. The work function is 

a characteristic property of any solid phase of a substance with a conduction band 

(whether empty or partly filled). For a metal, the Fermi level is inside the conduction 

band, indicating that the band is partly filled. For an insulator, the Fermi level lies 

within the band gap, indicating an empty conduction band; in this case, the minimum 

energy to remove an electron is about the sum of half the band gap and the electron 

affinity. When the electron absorbs energy E then the K.E. for this electron outside the 

metal will be: 
 

1 
m v2 = E φ (2.14) 

2 
 

This is called electronic emission. There are four types of electronic emissions: 

Thermionic Emission, Photo Emission,  Field Emission, and Secondary Emission. If 



 

 

thermal energy is supplied to the electrons in the metal, then the energy distribution of 

the electrons changes, because of the increase in the temperature. The thermal energy 

given to the charge carrier overcomes the binding potential (work function) and can 

release it from the metal surface. This is called Thermionic emission. According to the 

Richardson-Dushman equation the emitted electron current density, J(A.m−2), is 

related to the absolute temperature T by the equation: 

 

                                      (2.15) 

 

 

where (Ao) is the Richardson-Dushman constant. As mentioned before, the work 

function is the minimum energy that must be given to an electron to liberate it from the 

sur- face of a particular substance. In the photoelectric effect, electron excitation is 

achieved by the absorption of a photon. If the photon’s energy is greater than the 

substance’s work 

function, photoelectric emission occurs and the electron is liberated from the surface. 

Excess photon energy results in a liberated electron with non-zero kinetic energy. The 

photoelectric work function is: 

φ = hfo 

fo is the minimum (threshold) frequency of the photon required to produce photo- 

electric emission. 

Field emission (FE) (also known as field electron emission and electron field 

emission) is the emission of electrons induced by an electrostatic field. Field emission 

in pure metals occurs in high electric fields and is strongly dependent upon the work 

function. The emission current density is given as: 

 

                   (2.16) 
 

 

 

xo is the gap thickness. 

Secondary electron emission is a phenomenon where primary incident electrons of 

sufficient energy when hitting a surface of the material, induce the emission of secondary 

electrons. It was found experimentally the number of secondary electrons depends on 

the following the number and the energy of primary electrons, the angle of incidence of 

the particles on the material, the type of the material, and the physical condition of the 

surface. The secondary emission ratio (δ) is defined as: 

 



 

 

 
 

 

 

 

Solved problems 

 

 

 

 

(2.17) 

 

1. A silicon crystal having a cross section area of (0.001cm2) and a length of (10−3cm) is 

connected at its ends to (10V ) battery at a temperature (300oK). Find the resistivity 

and the conductivity of the silicon crystal if the current passing through the crystal is 

(100mA). 

Solution 

 

 

 

 

 

 

 
 

..................................................... 
 

2. Calculate the average drift velocity of a hole in a bar of silicon with a cross sectional area 

(10−4cm2), containing a holes concentration of (4.5× 1015cm−3) and carrying a current of 

(45mA)? 

Solution 

 

vd = µ E .... (a) 

σ = pe µ. .. (b) 

J 
J = σE  ⇒  σ = 

E ..... 
(c) 

Therefore equation (b) becomes: 
 

J J 
 

 

From equations (a and d), 
 

E 
= peµ  ⇒ µ  = 

peµ... 
(d) 

 

 



 

 
3. A current of 1µA passing through an intrinsic silicon bar has 3mm length and 50×100µm2 

cross-section. The resistivity of the bar is 2.3×105Ωcm at 300oK. Find the voltage across the 

bar? 

Solution 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

4. The electron density variation along the x-axis is given as [1028 exp(−10−6 x)]. Find the diffusion 

current at (x = 0) and (x = 10−5m) if the mobility of the electron is (4 × 10−3m2V −1s−1) at T = 

300oK? 

Solution 

 

 

 

 

 

 

 

 

 

 

 

 
 

5. A bar of copper of (2cm) length and resistively of (1.8 × 10−8Ωm) is connected to a power 

supply of (10V ). Find the mobility and drift velocity of the electrons if electron density in 

copper is (8.5×1028m−3)? Solution 
 

 

 

 



 

× 

 

µ =
  1 

= 4.08 10−3 m2V −1s−1 

8.5 × 1028 × 1.6 × 10−19 × 1.8 × 10−8 

 

vd=?? 
 

2.4 Generation and Recombination of Charges 
 

Generation = break up of covalent bond to form electron and hole pairs. A pure 

silicon crystal at room temperature derives heat (thermal) energy from the surrounding 

environment, causing some valence electrons to gain sufficient energy to jump the gap 

from the valence band into the conduction band, becoming free electrons. When an 

electron jumps to C.B.,  a vacancy  is left in the valence band.  This vacancy  is called 

a hole.  If n and p is the free electron and hole concentration, respectively, per volume 

unit, 
 

 
Figure 2.3: Free charge carrier generation in semiconductor 

 
at equilibrium status n=p=ni. Where ni is the carrier concentration. Recombination 

occurs when a conduction-band electron loses energy and falls back into a hole in the 

valence band. 

To summarise, a piece of an intrinsic semiconductor at room temperature has, at any instant 

, a number of conduction-band (free) electrons that are unattached to any atom and are 

essentially drifting randomly throughout the material. There is also an equal number of holes 

in the valence band created when these electrons jump into the conduction band. 

 

Electron and Hole Current 

When a voltage is applied across a piece of intrinsic silicon the thermally generated 

free electrons in the conduction band, which are free to move randomly in the crystal 

structure, are now easily attracted toward the positive end. This movement of free 

electrons is one type of current in a semiconductor material and is called electron current.



 

Another type of current occurs in the valence band, where the holes created by the free 

electrons exist. Electrons remaining in the valence band are still attached to their atoms 

and are not free to move randomly in the crystal structure as are the free electrons. 

However, a valence electron can move into a nearby hole with little change in its energy 

level. thus leaving another hole where it came from. Effectively the hole has moved 

from one place to another in the crystal structure. as illustrated in Figure 2.4 This is 

called hole current. 
 

 
 

 
Figure 2.4: Hole current in intrinsic silicon 

 
 

2.4.1 Electrons and Holes Density in an Intrinsic Semiconductor 
 

In a pure (intrinsic) semiconductor the number of holes is equal to the number of 

free electrons and the electrical properties determined by host martial. In intrinsic 

semiconductor the carrier concentration can be determined from Fermi-Dirac function 

distribution:

 



 

Where n and p are the electron and hole concentration, respectively. Nc is the active level 

density at C.B. and Nv is the active level density at V.B. and given by: 

 

and  

 

 

 

 

 

 

m∗
n:  effective mass of the electron.  m∗

p:  effective mass of hole. 

(Effective mass: When we apply an external force to an electron in a crystal, it may not 

respond as if it were a free electron. This is because of the interaction with the crystal 

lattice). Then the number of carriers is: 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 

 

 

 

 

 

It can be observed that the concentration of electrons and holes in pure semiconductors is 

independent of the location of the Fermi level but it is depending on the temperature. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 
2.4.2 Electrons and Holes Density in an Extrinsic Semiconductor 
 

Semiconductor materials do not conduct current well and are of limited 

value in their intrinsic state. This is because of the limited number of free 

electrons in the conduction band and holes in the valence band. Intrinsic 

silicon (or germanium) must be modified by increasing the number of free 

electrons or holes to increase its conductivity and make it useful in 

electronic devices. This is done by adding impurities to the intrinsic 

material as you will learn in this section. Two types of extrinsic (impure) 

semiconductor materials, n-type and p-type, are the key building blocks 

for most types of electronic devices. 

An extrinsic semiconductor can be formed by adding impurity atoms to the 

intrinsic semiconductor in a process known as doping. The electrical 

properties of an extrinsic semiconductor are determined by chemical 

impurities. For example, silicon has four valence electrons. Doping silicon 

with Aluminum (Al) will produce a hole. The dopant atoms have not enough 

number of electrons to share bonds with surrounding silicon atoms. One of 

the silicon atoms has a vacancy for an electron. It creates hole that 

contributes to the conduction process and the semiconductor is called p-type as 

shown in figure 2.5(a). The dopant atoms are called acceptors. While if the 

silicon is doped with Phosphor (P) or Arsenide (As), which have an extra 

electron in valence bands, the dopant atoms contribute an additional 

electron to the crystal and the semiconductor is called n-type as shown in 

figure 2.5(b). The dopant atoms are called donors. 

 

 

 

 

 



 

 

 
 

Figure 2.5: Extrinsic s.c. (a) n-type s.c. (b) p-type s.c. 

 
Determination of electrons density for n-type semiconductor 

If, to intrinsic silicon, there is added a small percentage of phosphor (P ) atoms, a 

doped, impure, or extrinsic, semiconductor is formed. The fifth electron of the phosphor 

(P ) will be released by energy 0.05eV , which is the smallest energy required an electron 

of a silicon atom by 20 times (Eg= 1.1eV ). 

Then the density of electrons in the host semiconductor which is doped by ND atoms is: 

 
n  = ND 

 
ND is the concentration of donor atoms. 

The increasing of the electron density in conduction band case shifting in Fermi- 

level up word to C.B, then the difference in energy between the old and new position 

of Fermi-level is: 

∆En  = Efn − Efi 



 

 
 

 
 

Figure 2.6: Energy band structure in n-type s.c. 
 

The concentration of the electrons in conduction band is: 

  

(2
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It can be observe that the hole density decrease with Fermi level shifting upward: 
 

n p = n2 
 

Since n = ND, then;  
p = n2/ND 

 

Determination of holes density for p-type semiconductor The doping solid is 

aluminum (Al ) or boron (B), which have 3 valence electrons only, so the doping 

atom needs one additional electron to bond with the silicon structure, in this case, it’s 

can be filled from the nearest bond electrons and this will cause break up the bond near 

vacancy. The energy required is (0.05 eV) for the boron (B) atoms, and the number 

of charge carriers is equal to the number of holes (doping atoms). The impurity atoms 

in this case called the acceptors atoms and their density is: 

p  = NA 
 

where NA is the concentration of acceptor atoms. 

 



 

The concentration of holes can be determined from the Fermi-Dirac function as below: 

 

 

 

new position of Fermi-level is: 
 

∆Ep  = Efi − Efp 
 

 

 

 

Figure 2.7: Energy band structure in p-type s.c. 

 

 

 



 

 

.....℘℘℘℘℘℘℘............................................................℘℘℘℘℘℘℘..... 

Solved problems 

........................................................................... 
 

1. The electron density in pure silicon is 1.45×1016m−3 at 300oK. Find the electron density 

when the temperature change to 350oK, take Eg = 1.1eV ? 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

———————————————— 
 

2. Pure semiconductor with energy gap of 1.42 eV and charge carrier den- sity of 

1.79×1012 m−3 at 300 oK. Determine the position of the Fermi level 

with respect of the mid of gap if Nc = 4.7 × 1023 m−3. What is the value of Nv? 

Solution 

Since the charge concentration in pure semiconductor is equal to electron concen- 

tration, so: 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Fermi level located at 0.68 eV under the Ec, but the mid of the energy gap at 0.71 eV 

under the Ec. Therefore the position of Fermi level would be 0.03 eV above the mid of the 

gap. 

** Home work ⇒ Find Nv ** 

———————————————— 
 

3. Pure silicon has electron concentration 1.45×1016 m−3 at 300 oK was doped with 1022m−3 phosphor (P ) 

atoms. Find the electron and hole densities at 300 oK and 500 oK? 

Solution 

ni = 1.45 × 1016 m−3 before doping at 500 oK the doping solid is phosphor (P ) 

which is donor atoms, then; n = ND = 1022m−3 the density of the solid after 

doping at 300 oK 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. The electron concentration in pure silicon is 1.5×1016 m−3 at 300 oK. The silicon was 

doped with 1022m−3 donor atoms. Find the electron and hole densities after doping and 

calculate the position of the new Fermi level with to the initial position? 

 

 



 

× 

 

Solution 

After doping the density of electron is n = ND = 1022 m−3, while the hole density 

is given as; 

 

 

 

 

 

 

 

 

 

The new position of Fermi level is above the initial position by 0.347 eV 

———————————————— 

 
5. If the position of Fermi level in impure semiconductor at 0.3 eV above the mid of the 

energy gap at 300 oK, where the Eg =  1.1  eV  and ni  = 1.45 × 1016 m−3. 

What is type of the impurities and what are its concentration? 

Solution 
 

Since the Fermi level location is above the mid of the energy gap, therefore the 

semiconductor would be from n-type. So the impurities are donor atoms. 

 

 

 

 

 

 

 

 
 

2.5 Electrical conduction in semiconductor 
 

As it was seen that the electron motion and the electrical conduction in metal depend 

on several parameters which describe the electrical motion in metal, this description for 

the electron motion and the electrical conduction is the same as these in semiconductors 

but takes care of the ratio of doping. 
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2.5 Electrical conduction in semiconductor 35 
 

 

2.5.1 Electrical conduction in intrinsic semiconductor 

The electrical conduction in the intrinsic semiconductor is the same as the general 

formula of conductivity in metal: 

σ  = ne µ 

 

Applied this formula on an intrinsic semiconductor, the electrons and holes contribute 

to electrical conduction then: 

 
σi  = ne µn + p e µp (2.30) 

where; 

n=concentration of electrons (m−3) 

µn=electron mobility (m2 V −1 s−1) 

p=concentration of holes (m−3) 

µp=hole mobility (m2 V −1 s−1) 

In a pure semiconductor the concentration of electrons is equal to the concentration 

of holes; i.e., p=n=ni, then equation 2.30 can be written as; 

 
σi  = ni e (µn + µn) (2.31

 



 

Since it is known that; 

 

 

 
and 

 

 

 

 

 

where, tn and tp are the relaxation time of electrons and holes respectively. 

The mobility depends on the related time and effective mass of moving charges. 

Heating the semiconductor causes vibration of atoms and this will affect electron 

motion inside the crystal structure hence the collision of the electrons with atoms will 

increase due to the vibration of atoms and therefore the mobility will decrease. 

 

 

 

 
 

 
 

 

 

 
 

 

 

 

 

 

 

 

As a result of that the semiconductor conductivity affected by temperature as: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  

where, σo is a constant and independent of temperature. Equation 2.32 can also be 

written as: 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

i i i 

i 

2.5.2 Electrical conduction in an extrinsic semiconductor 

When the semiconductor is doped by impurities has ND concentration (n >> p): 

 
σ(n) = ne µn + p e µp (2.34) 

In other words, equation 2.34 can be written as; 
 

 
But n × p = n2 

 
=⇒ ND × p = n2 

σ(n) = σn + σp 

 

=⇒ p  =  (n2/ND),  then  equation  2.34  can  also  be 

written as; 
 

σ(n) = ND e µn +  n
2 

ND 

 

e µp (2.35) 

∵ ND = n >> ni that is meaning the p concentration has no effect and (σn >> σp), so: 

σ(n) = ND e µn In the same manner if the semiconductor is doped by impurities have 

NA acceptor atoms concentration (NA = p >> ni): σ(p) = NA e µp 

 
2.6 Diffusion and Drift currents density in semiconductor 

 

There are two mechanisms by which holes and electrons move through a silicon 

crystal diffusion and drift. 

Diffusion current density: As aforementioned, the diffusion current density is 

given as: 
 

dn 
Jdiff  = −e D 

dx 
(2.36) 

Since the diffusion current density in a semiconductor is due to electrons and 

holes motion, then: 

 
 

 
 

  

 

Drift current density: As aforementioned the drift current density is given as: 
 

Jd = −e nµn (2.38) 

 



 

. Σ 

 

The free electrons will drift in the direction opposite to that of E. The total drift 

current density is obtained by combining the two charge carriers: 

 

Jdrift = Jd  = e E  (nµn + p µp) (2.39) 

 

2.7 Photo-conductivity 
 

When the semiconductor exposure to an electromagnetic wave has energy (hf ) 

then this energy will cause a generation of new charge carriers to contribute to the 

electrical conduction process, this is called Photo-conductivity: If the energy of exposure 

photon is: hf ≥ Eg. In other words, the minimum wavelength of the absorbed 

electromagnetic radiation which can produce a new charge carrier will be given as: 
 

1.24 
λ 

Eg 

 

(µm) (2.40) 

The ability of the semiconductor to absorb photons depend on its nature and 

frequency. If the semiconductor surface exposure to the ray of the photons nph(o) , so 

the number of the photons will decrease with penetration depth (x) of the surface and 

the number of the photons which will arrive to depth (x) would be: 

 
nph(x) = nph(o).exp (−αx) (2.41) 

α : is the absorption constant. α proportion to the absorption of solid ability to photons, 

so if α is large the solid has a good ability to absorb. 

≤ 



 

 
 

Solved problems 
 

1. Pure germanium has (4 × 1022) atom. cm−3 doped by indium atoms, the 

impurity is added to the extent of 1 part in (108) germanium atoms, if 

the intrinsic concentration of germanium 2.5 × 1013 cm−3, note that µn 

= 3800 cm2(V s)−1 and µp = 1800 cm2(V s)−1. 

(a) Find the conductivity and the resistivity before the doping? 

(b) Find the conductivity and the resistivity after the doping? 

(c) What can you conclude from 1 and 2? 

Solution 

1. The conductivity of pure semiconductor (before doping) is given by: 

 
σ = neµn + peµp 

 
since the semiconductor is intrinsic then, n = p = ni 

 
σ = nie (µn + µp) 

 

σ = 2.5 × 1013 × 1.6 × 10−19 × (3800 + 1800) = 0.0224 S cm−1 
1 

ρ = 
σ 

1 
ρ = 

0.0224 
= 44.64 Ω cm 

2. Doping pure germanium with indium will produce increasing in hole density, 

so: 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



 

The conductivity of the germanium increased more than 5 times after doping with indium. 

 

2. Pure silicon doped by antimony has a concentration equal to 2 × 1015 atom. cm−3 , until ND − 

NA 2ni,    note that they represent the replacement of less than 10−5%  of the atoms in the silicon.                                   

Find the conductivities σ(n),  σ(p) and σ and the resistivity ρ of the silicon? note that                        

µn = 1260 cm2 (V s)−1 and µp = 460 cm2 (V s)−1. 

Solution 

When pure silicon doped with antimony atoms means doping by donor atoms: 
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Chapter Three: Junction- Diode Characteristics 

 

3.1  P-N Junction in Equilibrium (Zero Bias) 
 

In a p – n junction, without an external applied voltage, an equilibrium 

condition is reached in which a potential difference forms across the 

junction. This potential difference is called built in potential VD .  

Consider the special case indicated in Fig. 3.1. The left half of the bar is p-

type with a constant concentration NA , whereas the right half is n-type with a 

uniform density ND.  The dashed plane is a metallurgical (p-n) junction 

separating the two sections with different concentration. This type of doping, 

where the density changes abruptly from p- to n-type , is called step grading. 

The step-graded junction is located at the plane where the concentration is 

zero.  

 

 

 
 

Fig. 3.1 Zero Bias (p – n)  Junction. 

 

𝑉𝐷 = 𝑉21 = 𝑉𝑇 ln
𝑝𝑝

𝑝𝑛
 

 

𝑤ℎ𝑒𝑟𝑒   𝑝𝑝 = 𝑁𝐴       𝑎𝑛𝑑      𝑝𝑛 =  
𝑛𝑖

2

𝑁𝐷
 

 

D 



PHYSICAL ELECTRONICS   Chapter Three: Junction-Diode Characteristics 

2 
 

𝑉𝐷 =  𝑉𝑇  ln
𝑁𝐴 𝑁𝐷

𝑛𝑖
2

 

 

VT = KT/e  = T/11600 

 

If donor impurites are introduced into one side and acceptors into the 

other side of a single crystal of a semiconductor, a p-n junction is formed, as 

in Fig. 3.1. Such a system is illustrated in more schematic detail in Fig. 3.2 . 

The donor ion is represented by a plus sign because, after this impurity atom 

"donates" an electron, it becomes a positive ion. The acceptor ion is 

indicated by a minus sign because, after this atom "accepts" an electron, it 

becomes a negative ion. Initially, there are nominally only p-type carriers to 

the left of the junction and only n-type carriers to the right. 

 

 

 
 

Fig. 3.2 A schematic diagram of  P-N  junction. 

 

The region of the junction is depleted of mobile charges, it is called the 

depletion region, the space charge region, or the transition region.  

The thickness of this region is of the order of the wavelength of visible 

light (0.5 micron = 0.5μm). Within this very narrow space charge layer there 
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are no mobile carriers. To the left of this region the carrier concentration is 

p=NA and to its right it is n= ND. 

The space charge density is zero at the junction. It is positive to the right 

and negative to the left of the junction. 

The two terminal device (called a junction diode) , as shown in Fig. 3.3, is 

a device that conducts current  in only one direction.  

  

 
 

Fig. 3.3 Diode schematic symbol. 

 

 
 

3.2  P-N Junction Bias 
 

If the external potential of  V volt is applied across the P-N junction this 

will bias the diode. There are two type of diode bias : 

 
 

3.2.1 Forward Bias 
 

Forward Bias  An external voltage applied with the polarity shown in 

Fig. 3.4. Where Connecting the positive terminal of the external voltage 

source to the p-side and the negative terminal to the n-side will cause a 

forward bias for the junction 

 

The application of  Forward Bias potential V will cause an injection of 

electrons from n-side and hole from p-side in opposite direction across the 

junction region and some of these carriers will recombine with the ions near 

the boundary region and reduce the width of depletion region. 

 

On being injected across the junction, these carriers immediately become 

minority carriers. 

P N 

Anode Cathode 

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight
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Fig 3.4  P-N Junction biased in the forward direction. 

 

 

3.2.2 Reverse Bias 
 

Reverse Bias  If the positive terminal of the applied voltage connect to 

the n-type and the negative terminal to p-type, as shown in Fig. 3.5 , the  

junction will bias in reverse direction. The depletion region has been 

winded, that result to overcome the region from the majority carrier more 

and more carriers. 

The current in reverse-bias condition called Reverse Saturation Current 

(IS). 

 

 

 

 

 
 

 

Fig 3.5  P-N Junction biased in the reverse direction. 
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Example 1: 
 

A PN junction was formed from two pieces of silicon contain ND =

1024m−3 and NA = 1020m−3 at 300 K 
o . Calculate the built in potential of 

the p-n junction where ni = 1.45 × 1016m−3. 

 

Sol: 

             𝑉𝐷 =
kT

e
ln

NDNA

ni
2   

 

         =  
1.38 × 10−23 × 300

1.6 × 10−19
ln

1024 × 1020

(1.45 × 1016)2
 = 0.7 volt 

 

 

Example  2: 
 

The conductivity of n-side in the Ge PN junction is 104 s m⁄  and for the 

p-side is 102 s m⁄  . Find the built in potential for the junction at 300 K 
o ?  

where ni = 2.5 × 1019m−3,μn = 0.36 m2 v. s⁄  and μp = 0.16 m2 v. s⁄ . 

sol: 
 

 At  n-side: 

     σ(n)  =  nn e μ
n

+ pn e μ
p

= ND e μ
n

+
𝑛𝑖

2

ND
e μ

p
 

 
 

    104 = 1.6 × 10−19 (0.36 ND +
(2.5 × 1019)2

ND
× 0.16) 

 

    ND = 1.7 × 1023m−3 

 

   At  p-side: 

   σ(p) =  ppeμ
p

+ npeμ
n

= NA e μ
p

+
𝑛𝑖

2

NA
e μ

n
 

 

 

    102 = 1.6 × 10−19 (0.16 NA +
(2.5 × 1019)2

NA
× 0.36) 
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 NA = 3.9 × 1021m−3 

 

 

 

VD =
kT

e
  ln

NDNA

ni
2  

 

     =   
1.38 × 10−23 × 300

1.6 × 10−19
ln

1.7 × 1023 × 3.9 × 1021

(2.5 × 1019)2
 

 

     = 0.36volt 
 

 

 

3.3  The Volt - Ampere Characteristics of Diode 
 

The  relationship between the current that passed through the diode and 

the voltage applied at its ends is exponential relationship, where the 

expression for the diode current  I is :  

 

𝐼 = 𝐼𝑠 ( 𝑒
𝑉

𝜂 𝑉𝑇   −  1)                                                                  …….(3.1) 

 

𝐼 = 𝐼𝑠  𝑒
𝑉

𝜂 𝑉𝑇   −  𝐼𝑠 

 

Where :  V : the applied voltage.  
 

VT   : the volt equivalent of  temperature and is given by : 
 

 VT = T / 11600   = KT/e .  
 

At  room temperature (T = 300o K) , VT = 0.026 V = 26 mV.  
  

Is : Reverse saturation current. 

η : constant , for Ge = 1 , Si = 2 . 

 

The form of Volt -Ampere characteristic described by eqn. (3.1) is shown 

in Fig. 3.6 . 
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Fig. 3.6  The Volt - Ampere characteristic of an ideal diode . 

 

 

 When the diode is Reverse  Biased and V is several times VT , then I ≈ Is  

as shown in the left side of  Fig. 3.6 . The reverse current is therefore 

constant , independent of the applied reverse bias. 

 

In Forward Bias, the current beyond the VD (Cut in or Threshold 

voltage) is rises very rapidly, as shown in the right side of Fig. 3.6. 

VD is approximately 0.3 V for Ge  and  0.7 for Si. 

 

In forward bias,  eqn. (3.1) can be written as : 

𝐼𝐹 = 𝐼𝑠  𝑒
𝑉

𝜂 𝑉𝑇                                                                                        … … . . (3.2) 

 

 

3.5  Diffusion Capacitance (CD)  
 

Diffusion capacitance occurs in a forward biased p – n junction diode. 

The diffusion capacitance occurs due to stored charge of minority 

electrons and minority holes near the depletion region. 
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When forward bias voltage is applied to the p – n junction diode, 

electrons (majority carriers) in the n-region will move into the p-region 

and recombines with the holes. In the similar way, holes in the p-region 

will move into the n-region and recombines with electrons. As a result, 

the width of depletion region decreases. 

The electrons (majority carriers) which cross the depletion region and 

enter into the p-region will become minority carriers of the p-region 

similarly; the holes (majority carriers) which cross the depletion region 

and enter into the n-region will become minority carriers of the n-region. 

A large number of charge carriers, which try to move into another 

region will be accumulated near the depletion region before the 

recombine with majority carriers. As a result, a large amount of charge is 

stored at both sides of the depletion region as shown in Fig. 3.8.  

 

 
Fig. 3.8 Diffusion capacitance of p - n junction diode. 

 

 

The accumulation of holes in the n-region and electrons in the p-region is 

separated by a very thin depletion region. This depletion region acts like 

insulator of the capacitor and charge stored at both sides of the depletion 

region acts like conducting plates of the capacitor. 
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The formula for diffusion capacitance is given by: 

 

𝐶𝐷 =  
𝑑𝑄

𝑑𝑉
                                                                         ……(3.3) 

 

Where : 

 dQ : the change in number of minority carriers storied outside the 

depletion region. 

dV : the change in voltage applied across diode.  

If  𝝉 is mean life time of charge carriers, and is given by: 

  𝜏 =
𝐿2

𝐷
 

Where L is the diffusion length, and D is the diffusion constant. 

 Then a flow charge Q yields a diode current I is given as : 

  I = 
𝑄

𝜏
                                                                     ……(3.4) 

In case of forward bias current is given by : 

  𝐼𝐹 = 𝐼𝑠  𝑒
𝑉

𝜂 𝑉𝑇     
Substitute eqn.(3.2) in eqn. (3.4) : 

 

  𝑄 =  𝜏 𝐼𝑠  𝑒
𝑉

𝜂 𝑉𝑇                                                              …….. (3.5) 

 

So, diffusion capacitance CD in eqn.(3.3) will become :  

  

𝐶𝐷 =  
𝑑𝑄

𝑑𝑉
 =  

𝑑(𝜏 𝐼𝑠  𝑒
𝑉

𝜂 𝑉𝑇    )

𝑑𝑉
 

 

                    =  
𝜏  𝐼𝑠  𝑒

𝑉
𝜂 𝑉𝑇    

𝜂 𝑉𝑇
 

 

 

∴ 𝐶𝐷 =  
𝜏  𝐼𝐹

𝜂 𝑉𝑇
                                                               …….(3.6) 
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Example  3: 
 

A silicon PN junction has a hole density in p-side 1024m−3 and electron 

density in n-side 1022m−3, the cross-section area for the pn junction is 

10−6m2, the mobility of the holes is 0.2 m2 v. s⁄  and the mobility of the 

electrons is 0.4 m2 v. s⁄ . The diffusion length of the minorities are (Ln =

300μm and Lp = 200μm). If the reverse saturation current equal to 

0.04μ A and  ni = 1019m−3 at 17o C. Determine: 

 

1) The density of majority and minority carriers and the conductivity? 

2) The barrier potential? 

3) The diffusion constant for the both types of the carriers? 

4) The junction current when VF = 0.25v? 

5) The junction current for the reverse bias, at high reverse voltage? 

6) The diffusion capacitance of the junction? 

 

 

Sol: 
 

1) 

 

    𝑨𝒕  p − side 

 

 
  

     np
=

ni
2

pp
=

(1019)2

1024
= 1014m−3 electrons minority 

 

     NA = 1024m−3 holes majority 

 

      σp = e pp μ
p

= 1.6 × 10−19 × 1024 × 0.2 = 3.2 × 104 s m  ⁄  

 

      σn = e np μn  = 1.6 ∗ 10−19 ∗  1014 ∗ 0.4 

        

      σ(p) = σp + σn  

       

 



PHYSICAL ELECTRONICS   Chapter Three: Junction-Diode Characteristics 

11 
 

𝑨𝒕  n − side 

 

pn =
ni

2

nn
=

(1019)2

1022
= 1016m−3holes minority 

 

     ND = 1022m−3 electrons majority 

 

     σn = ennμ
n

= 1.6 × 10−19 × 1022 × 0.4 = 640 s m  ⁄  

 

    σp = epnμ
p
 

 

    σ(n) = σp + σn  

 

 

 

𝟐)    VD =
kT

e
ln

NDNA

ni
2 =

1

40
ln

1022×1024

(1019)2 = 0.46 volt. 

 

 

𝟑)       Dn =
kT

e
μ

n
=

1

40
× 0.4 = 0.01 m2 s⁄  

 

            Dp =
kT

e
μ

p
=

1

40
× 0.2 = 0.005 m2 s⁄  

 

𝟒)    I = IS [exp (
V

η vT
) − 1] 

 

          𝑉𝑇 =  
𝑇

11600
=  

17+273

11600
= 0.025 

 

 

        I = 0.04 × 10−6 [exp (
0.25

2 ∗ 0.025
) − 1] 

 

 

 

 

5)   At high reverse voltage:  

 

        IR = IS = 0.04 μA 
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6)  CD = CDn + CDp  

 

    

      Lp
2 = τp Dp                    τp =  Lp

2 /  Dp 

 

     Ln
2 = τn Dn                    τn =  Ln

2 /  Dn 

 

 

𝐶𝐷𝑝 =  𝜏𝑝  
𝐼𝐹

𝜂 𝑉𝑇
 

 

𝐶𝐷𝑛 =  𝜏𝑛  
𝐼𝐹

𝜂 𝑉𝑇
 

 

 

 


