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State Variable Models

 State variable form is a convenient way to work with complex dynamics; it
uses matrix format that is easy to use on computers.

 Transfer functions in classical control theory only deal with input/output
behavior, while state-space form provides easy access to the internal features
and response of the system.

 State-space approach is great for MIMO (multi-input multi-output) system,
which are very hard to work with using transfer functions.

 State variables can be also used for feedback.

Advantages of state-space description

 The system is modeled as a set of first-order differential equations.
 The power of modern control has its roots in the fact that the state-space 

model can represent a MIMO (multi-input multi-output) system due to the 
use of vectors and matrices.

Why use state-space approach?



State Variable Models from differential equation

We consider physical systems described by nth-order ordinary differential equation.
Utilizing a set of variables, known as state variables, we can obtain a set of first-order
differential equations. We group these first-order equations using a compact matrix
notation in a model known as the state variable model.

The time-domain state variable model lends itself readily to computer solution and
analysis. The Laplace transform is utilized to transform the differential equations
representing the system to an algebraic equation expressed in terms of the complex
variable s.

Utilizing this algebraic equation, we are able to obtain a transfer function representation
of the input-output relation ship. With the ready availability of digital computers, it is
convenient to consider the time-domain formulation of the equations representing control
system.

The time domain techniques can be utilized for nonlinear, time varying, and
multivariable systems



A time-varying control system is a system for which one or more of the parameters of
the system may vary as a function of time.

For example, the mass of a missile varies as a function of time as the fuel is expended
during flight. ( multivariable system is a system with several input and output).

The time-domain analysis and design of control systems utilizes the concept of the
state of a system.

The variables used to write these n first-order equations are called state variables. The
collection of state variables at any given time is known as the state of the system, and
the set of all values that can be taken on by the state is known as the state space.



Example.

The system model used to illustrate state variables, is given in Figure 1.

Figure 1: Simple mechanical system.

The differential equation describing this system 
was already determined in 1.

and the transfer function given by

 This equation gives a description of the position y(t) as a function of the force f(t).
 Suppose that we also want information about the velocity.
 Using the state variable approach, we dene the two state variables x1(t) and x2(t) as

1

2



Thus x1(t) is the position of the mass and x2(t) is its velocity.

The state variable model is usually written in a specific format which is given 
by rearranging the equations as



Usually state equations are written in a vector-matrix format as

The most general state space representation of a LTI system is given by

where
x(t) = state vector = (n * 1) vector of the states of an nth-order system
A = (n * n) system matrix
B = (n*  r) input matrix
u(t) = input vector = (r * 1) vector composed of the system input functions
y(t) = output vector = (p*  1) vector composed of the defined outputs
C = (p*  n) output matrix
D = (p*  r) matrix to represent direct coupling between input and output

(3)   state equation

(4)   output equation



Equation (3) is called the state equation, and Equation (4) is called the output equation,
together they are referred to as the state-variable equations.

Equations (3) and (4) are shown in block diagram form in Figure 2.

The heavier lines indicate that the signals are vectors, and the integrator symbol really
indicates n scalar integrators.

Figure 2  State space representation of CT linear system.



Simulation Diagrams

In the previous section we presented examples of finding the state model of a system 
directly from the system differential equations.

However, sometimes only a transfer function may be available to describe a system. We
obtain state models directly from a transfer function by means of a simulation diagram.
A simulation diagram is a certain type of a block diagram or a flow graph that is 
constructed to have a given transfer function or to model a set of differential equations

Simulation diagrams are very useful in constructing either digital or analog computer
simulations of a system

Figure 3 : Integrating device.

The basic element of the simulation diagram is the integrator which can be easily constructed 
using electronic devices. Figure 3 shows the block diagram of an integrating device



The differential equation describing the system in figure  1  is.

Figure 4. Simulation diagrams.

A simulation diagrams for the system as shown in figure 4
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State-Variable Models from Transfer Function

A simulation diagram constructed from the system differential equations will usually be
unique. However, if the transfer function is used to construct the simulation diagram, the
simulation diagram can be of many forms, that is, the simulation diagram is not unique.

Next, we consider two common and useful forms of the simulation diagram, namely, control 
canonical form and observer canonical form. The two different  simulation diagrams are 
derived from the general transfer functions of the form

Where

m < n and      an = 1

- - - - - -1



Control Canonical Form

Also called the phase variable model, as an example consider m = 2 and n = 3 in (1)      
, therefore,



A simulation diagram, called the control canonical form shown in Figure 1 can be drawn.

Once a simulation diagram of a transfer function is constructed, a state model of the system
is easily obtained. The procedure is as follows:
1. Assign a state variable to the output of each integrator starting from right to left. (We

could assign state variables from left to right to obtain what we call input feedforward
canonical form).

2. Write an equation for the input of each integrator and an equation for each system output.

Figure 1: Control canonical form.



Following the procedure above the state variable satisfy:

while the output is

In matrix form this yields the following state-variable model



Note the direct connection with coefficients of the transfer function.

The bottom row of the A matrix contains the negatives of the
coefficients of the characteristic equation (i.e., the denominator of
G(s)), starting on the left with -a0 and ending on the right with -a2.

Above the bottom row is a column of zeros on the left and a22 identity
matrix on the right.
The B matrix is similarly very simple all the elements are zero except 
for the bottom element, which is the gain from the original system.

The C matrix contains the positive of the coefficients of the numerator
of the transfer function, starting on the left with b0 and ending on the 
right with b2.

It is important to note that state matrices are never unique, and each 
G(s) has infinite number of state models.



Observer Canonical Form

In addition to control canonical form, we can draw a simulation diagram
called the observer canonical form. To show how observer canonical form can
be derived, consider the transfer function in (1) with m = 2 and n = 3.
Equation (1) is written in the form

Divide both sides by to obtain

leading to

This relationship can be implemented by using a simulation diagram as shown
in Figure 2.



Figure 2: Observer canonical form.
The state equations are written as 𝑥𝑥1 = 𝑦𝑦 𝑡𝑡

̇𝑥𝑥1 = −𝑎𝑎2𝑥𝑥1 + 𝑥𝑥2 + 𝑏𝑏2𝑢𝑢
̇𝑥𝑥2 = −𝑎𝑎1𝑥𝑥1 + 𝑥𝑥3 + 𝑏𝑏1𝑢𝑢
̇𝑥𝑥3 = −𝑎𝑎0𝑥𝑥1 + 𝑏𝑏0𝑢𝑢

Note



Example 1:Find the state and output equations for

in control canonical form.

Example 2:Find the state and output equations for

1

𝑦𝑦 = �1
2 0 𝑥𝑥



Example 3:Write a state variable expression for the following 
differential equation

A useful formulation for state variables here is to obtain a transfer function
and then using a simulation diagram to obtain the state model. The transfer
function of the system is

The state model in control canonical form is given by

2𝑠𝑠2𝑌𝑌 𝑠𝑠 − 𝑠𝑠𝑠𝑠 𝑠𝑠 + 3𝑌𝑌 𝑠𝑠 = 𝑠𝑠𝑠𝑠 𝑠𝑠 − 2𝑈𝑈(𝑠𝑠)



To show that the answer is true let us construct a simulation diagram. 
First we have to express the transfer function in standard form:

introduce an auxiliary signal W(s):

Therefore,

and



Figure 3: Simulation diagram for Example 3 in control canonical form.
After we assign a state variable to the output of each integrator from right to
left we get,

𝑊𝑊(𝑠𝑠)
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Consider a state-variable model initially at rest

Transfer Functions from State-Variable Models

Taking Laplace transforms yields

The term sX(s) in 3 must be written as sIX(s), where I is the identity matrix.
This additional step is necessary, since the subtraction of the matrix A from the
scalar s is not defined. Then,

- - - - - - (1)

- - - - - - (2)

- - - - - - (3)
- - - - - - (4)

- - - - - - (5)



Substituting 5   in  2 the output equation, we get

We conclude that the transfer function from Y(s) / U (s) is then

Example 1:The state equations of a system are given by

Determine the transfer function for the system.

- - - - - - (6)

- - - - - - (7)



Solution The transfer function is given by

Then, letting for convenience, we have

and the transfer function is given by



𝑥̇𝑥 =
0 1 0
0 0 1
−8 −14 −7

𝑥𝑥 +
0
0
1
𝑢𝑢

𝑦𝑦 = 15 5 0 𝑥𝑥

Find the transfer function of the system with state space representation

Example 2:



The matrix of minors and matrix of cofactors are

Solution

The steps in the calculation of the numerator are

so the transfer function is

G(s)



H. W.:  

1-Find the transfer function of the system with state space representation

𝑥̇𝑥 =
−7 1 0
−14 0 1
−8 0 0

𝑥𝑥 +
20

125
185

𝑢𝑢

𝑦𝑦 = 1 0 0 𝑥𝑥 + 5 𝑢𝑢



Solution of State Equations

We have developed procedures for writing the state equations of a system, given
the system differential equations, the system transfer function, or the simulation
diagram.

In this section we present two methods for finding the solution of the state
equations.
The standard form of the state equation is given by

This equation will now be solved using the Laplace transform. Taking Laplace
transforms

We wish to solve this equation for X(s); to do this we rearrange the last equation 2

- - - - - - (1)

- - - - - - (2)

- - - - - - (3)



Pre-multiplying by , to eq.3 we obtain

- - - - - - (4)

and the state vector x(t) is the inverse Laplace transform of this equation  (4).  

Therefore

- - - - - - (5)

if the initial time is t0, then

- - - - - - (6)

Note that

𝑥𝑥 𝑡𝑡 = ℒ−1 𝑠𝑠𝑠𝑠 − 𝐴𝐴 −1 𝑥𝑥 0 + ℒ−1 𝑠𝑠𝑠𝑠 − 𝐴𝐴 −1𝐵𝐵𝐵𝐵(𝑠𝑠)

𝑠𝑠𝑠𝑠 − 𝐴𝐴 −1 =
𝐼𝐼
𝑠𝑠

+
𝐴𝐴
𝑠𝑠2

+
𝐴𝐴2

𝑠𝑠3
+ ⋯ ℒ−1 𝑠𝑠𝑠𝑠 − 𝐴𝐴 −1 = 𝐼𝐼 + 𝐴𝐴𝐴𝐴 +

𝐴𝐴2𝑡𝑡2

2!
+
𝐴𝐴3𝑡𝑡3

3!
+ ⋯ = 𝑒𝑒𝐴𝐴𝐴𝐴



The exponential matrix         is called the state transition matrix and is defined 
as

- - - - - - (8)

- - - - - - (7)

The exponential matrix represents the following power series of the matrix
At, and

Equation ( 5 ) can be written as

- - - - - - (9)

- - - - - - (10)



In Equation (10) the first term represents the response to a set of initial conditions
(zero-input response), whilst the integral term represents the response to a forcing
function u(t) (zero-state response).

Similarly, the output equation is given by

- - - - - - (11)

Example 1:Use the infinite series in (9) to evaluate the transition matrix if

Solution This is a good method only if A has a lot of zeros, since this
guarantees a quick convergence of the infinite series. Clearly,



and we stop here, since  and any higher powers are zero. Therefore,

Example 2:Use the Laplace transform to find the transition matrix if A is the same
as in Example 1.

Solution :We first calculate the matrix

The determinant of this matrix is

and the ad joint matrix is



Next we determine the inverse of the matrix

The state transition matrix is the inverse Laplace transform of this matrix



Example 3: Consider the system described by the transfer function

(a) Write down the state equation in observer canonical form.
(b) Evaluate the state transition matrix
(c) Find the zero-state response if a unit step is applied.

Solution (a) The state equation in observer canonical form is given by

(b) To find the state transition matrix, we first calculate the matrix

The determinant of this matrix is



and the ad joint matrix is

Next we determine the inverse of the matrix



The state transition matrix is the inverse Laplace transform of this matrix

(c) If a unit step is applied as an input. Then U(s) = 1/s, and the second term
in (4) becomes



The inverse Laplace transform of this term is
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Diagonal Canonical Form

The diagonal canonical form is a state space model in which the poles of the transfer function
are arranged diagonally in the A matrix.

1-Distinct Real Roots

Given the system transfer function having a denominator polynomial that can be factored into
distinct roots as follows:



The simulation diagram of such a form is shown in Figure1 .

Figure 1: The simulation diagram for the Diagonal Canonical  form



Then the diagonal canonical form state space model can be written as follows:

k1 k2 kn - - - - - - -(2)

- - - - - - -(1)



Example 1: Find the state space model of a system described by the transfer function

Employing the partial fraction expansion (which can be obtained by the MATLAB 
function residue), the transfer function is written as

The state space model, directly written using (1 & 2 ), are



Fig. 2 : Simulation Diagram for the Diagonal Canonical  form (DCF)



Example 2: Let a transfer function containing a pair of complex conjugate roots be given
by

We first group the complex conjugate poles in a second-order transfer function, that is

Then, distinct real poles are implemented like in the case of parallel programming.
A second-order transfer function, corresponding to the pair of complex conjugate poles, is
implemented using direct programming, and added in parallel to the first-order transfer
functions corresponding to the real poles

2-complex conjugate roots

If complex conjugate roots appear they should be combined in pairs
corresponding to the second-order transfer functions, which can be independently
implemented as demonstrated in the example 2.



The simulation diagram is given in Figure 3, where the controller canonical form is
used to represent a second-order transfer function corresponding to complex
conjugate poles

Figure 3: Simulation diagram for a system with complex conjugate poles



From this simulation diagram we have

so that the required state space form is



3-Multiple Real Roots (Jordan canonical form)
When the transfer function has multiple real poles, it is not possible to represent the
system in uncoupled form. Assume that a real pole of the transfer function has
multiplicity and that the other poles are real and distinct, that is

The partial fraction form of the above expression is



The simulation diagram for such a system is shown in Figure 4.

Figure 4: The simulation diagram for the Jordan canonical form



Taking for the state variables the outputs of integrators, the state space model is obtained as 
follows 

k1 k2 kn



Example 3: Find the state space model from the transfer function using the Jordan 
canonical form

This transfer function can be expanded as

so that the required state space model is

=
𝑘𝑘𝑘

(𝑠𝑠 + 1)
+

𝑘𝑘2
(𝑠𝑠 + 1)2

+
𝑘𝑘𝑘

(𝑠𝑠 + 3)



Fig. 3 : Simulation Diagram for the Jordan  Canonical  form (JCF)
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Characteristic equations play an important role in the study of linear
systems. They can be defined with respect to differential equations,
transfer functions, or state equations.

Characteristic Equations

1-Characteristic Equation from a Differential Equation
Consider that a linear time-invariant(LTI) system is described by the differential 
equation

where n > m. By defining the operator S as

- - - (1)

Equation (1) is written



The Characteristic equation of the system is defined as

2-Characteristic Equation from a Transfer Function

- - - (2)

The transfer function of the system described by (1) is

The characteristic equation is obtained by equating the denominator polynomial of
the transfer function to zero.

- - - (3)

- - - (4)

𝐺𝐺 𝑠𝑠 =
𝑌𝑌(𝑠𝑠)
𝑈𝑈(𝑠𝑠)



3-Characteristic Equation from a State Equation

Recall that

which can be written as

Setting the denominator of the transfer-function matrix G(s) to zero, we get the
characteristic equation

which is an alternative form of the characteristic equation, but should lead to the
same equation as in (2).

- - - (5)



Eigenvalues

The roots of the characteristic equation are often referred to as the eigenvalues of
the matrix A.

Example 1:Find the eigenvalues of the matrix A given by

Solution The characteristic equation of A is

Therefore, the eigenvalues and

𝜆𝜆2 − 1 = 0

(𝜆𝜆1 − 1)(𝜆𝜆2 + 1) = 0

Replace s by 𝜆𝜆



Eigenvectors
Any nonzero vector pi which satisfies the matrix equation

- - - - - - - (6)

where denotes the         eigenvalue of A, 𝑝𝑝𝑖𝑖 is called the
Eigen-vector of A associated with the eigenvalue 𝜆𝜆𝑖𝑖 : The procedure for
determining eigenvectors can be divided into two possible cases depending on the
results of the eigenvalue calculations.

Case 1: All eigenvalues are distinct.

Case 2: Some eigenvalues are multiple roots of the characteristic equation.



If A has distinct eigenvalues, the eigenvectors can be solved directly from (6).

Example 2 :Consider that a state equation has the matrix .
Find the eigenvectors.

Solution The eigenvalues were determined in Example 1 as and
Let the eigenvectors be written as

Substituting and p1 into (6), we get

Thus, p21 = 0, and p11 is arbitrary which in this case can be set equal to 1.

Similarly, for (5) becomes

which leads to

Case 1: Distinct Eigenvalues

𝜆𝜆𝑖𝑖𝐼𝐼 − 𝐴𝐴 𝑝𝑝𝑖𝑖 = 0



The last equation has two unknowns, which means that one can be set
arbitrarily.
Let then The eigenvectors are

Case 2: Repeated Eigenvalues
Example 3:  Consider the matrix

The characteristic equation is =0

Thus, A has only one eigenvalue that is repeated twice.

,

Making the substitution in the matrix yields

𝜆𝜆2 + 4𝜆𝜆 + 4 = 0
(𝜆𝜆1 + 2)(𝜆𝜆2 + 2) = 0

𝜆𝜆 𝐼𝐼 − 𝐴𝐴 = 0

𝜆𝜆𝑖𝑖𝐼𝐼 − 𝐴𝐴 𝑝𝑝𝑖𝑖 = 0

𝑃𝑃 = 1 1
0 2 = 1 0.4472

0 0.8944



resulting in the equations

Both equations tell us the same thing, that

Thus, one choice for the eigenvector is

For the generalized eigenvector that is associated with the second eigenvalue,
we use a variation of the equation we used to find the eigenvector. That is, we
write

which yields the equations

Either of these equations yields

Choosing

l𝑒𝑒𝑒𝑒 𝑝𝑝21 = 1

𝑃𝑃 = 2 0.5
1 0



Similarity Transformation

In this chapter, procedures have been presented for finding a state-variable model
from system differential equations, from system transfer functions, and from
system simulation diagrams.

In this section, a procedure is given for finding a deferent state model from a given 
state model. It will be shown that a system has an unlimited number of state models

The state model of an LTI single-input, single-output system is given by

- - - - - (1)
- - - - - (2)

Let us consider that the state model of Equations (1) and (2) and suppose that the
state vector x(t) can be expressed as

- - - - - (3)

where P is an n×n nonsingular matrix, called a transformation matrix, or simply,
a transformation. We can write,



- - - - - (4)

Substituting (3) into the state equation in (1) yields

- - - - - (5)

Pre multiplying the above equation (5)  by to solve for          results in the state model 
for the state vector v(t):

- - - - - (6)

Using (3), we find that the output equation in (2) becomes

- - - - - (7)

We have the state equations expressed as a function of the state vector x(t) in (1)
and (2) and as a function of the transformed state vector v(t) in (6) and (7).



The state equations as a function of v(t) can be expressed in the standard format as

- - - - - (9)

- - - - - (8)

Comparing (6) with (8) we get

and

Similarly, comparing (7) with (9), we see that

and

The transformation just described is called a similarity transformation, since in the
transformed system such properties as the characteristic equation, eigenvectors,
eigenvalues, and transfer functions are all preserved by the transformation.



Diagonal Canonical From a State Model

This form makes use of the eigenvectors. If A has distinct eigenvalues, there is a
nonsingular transformation P that can be formed by use of the eigenvectors of A
as its columns; that is

- - - - - (10)

where pi, i = 1; 2; ; n; denotes the eigenvector associated with the eigenvalue
The Av matrix is a diagonal matrix,

where are the n distinct eigenvalues of A.



Example 4 :Consider the matrix

From Example 2 the  eigenvalues are

And the eigenvectors where determined

Thus,

and the diagonal canonical form of A is written

, find the diagonal canonical form of A 

𝜆𝜆 𝐼𝐼 − 𝐴𝐴 = 0

𝜆𝜆𝑖𝑖𝐼𝐼 − 𝐴𝐴 𝑝𝑝𝑖𝑖 = 0



In general, when the matrix A has repeated eigenvalues, it cannot be transformed
into a diagonal matrix. However, there exists a similarity transformation such that
the Av matrix is almost diagonal. the matrix Av is called the Jordan canonical form.
A typical Jordan canonical form is shown below

where it is assumed that A has a repeated eigenvalue and distinct eigenvalues
and . The Jordan canonical form generally has the following properties:

1. The elements on the main diagonal are the eigenvalues.
2. All elements below the main diagonal are zero.
3. Some of the elements immediately above the repeated eigenvalues on the main
diagonal are 1s.

𝜆𝜆3



Example 5 : Consider the matrix

A has only one eigenvalue that is repeated twice

The generalized eigenvector were found in example 3 to be

Thus,

and the Jordan canonical form of A is written

, find the Jordan canonical form of A 

𝐴𝐴𝑣𝑣 = 𝑝𝑝−1𝐴𝐴 𝑝𝑝

𝜆𝜆 𝐼𝐼 − 𝐴𝐴 = 0

𝜆𝜆𝑖𝑖𝐼𝐼 − 𝐴𝐴 𝑝𝑝𝑖𝑖 = 0



Example 6 : Diagonalize the following system dynamics matrices

𝑝𝑝 =
−0.5774 0.2182 − 0.1048

0.5774 − 0.4364 0.3145
−0.5774 0.8729 − 0.9435

𝑝𝑝−1 =
−5.1962 − 4.3301 − 0.8660
−13.7477 − 18.3303 − 4.5826
−9.5394 − 14.3091 − 4.7697

The eigenvalues of A are
the roots of the
characteristic equation,
or –1, –2, and –3.

𝜆𝜆 𝐼𝐼 − 𝐴𝐴 = 0

𝜆𝜆𝑖𝑖𝐼𝐼 − 𝐴𝐴 𝑝𝑝𝑖𝑖 = 0

Using coordinate transformations.

𝐴𝐴𝑣𝑣 = 𝑃𝑃−1𝐴𝐴𝐴𝐴 =
−1 0 0
0 −2 0
0 0 −3



Example 7 :Consider the matrix      𝐴𝐴 =
0 1 0
0 0 1
−6 −11 −6

find the diagonal canonical form 

of  A .
𝜆𝜆𝐼𝐼 − 𝐴𝐴 = 0 𝜆𝜆 = −1 ,−2 ,−3

𝑃𝑃 =
1 1 1
𝜆𝜆1 𝜆𝜆2 𝜆𝜆3
𝜆𝜆1

2 𝜆𝜆2
2 𝜆𝜆3

2
=

1 1 1
−1 −2 −3
1 4 9

Vander Monde Matrix: The Vander monde matrix of order n is a 
square  matrix specified variously as:

𝐴𝐴𝑣𝑣 = 𝑃𝑃−1𝐴𝐴𝐴𝐴 =
−1 0 0
0 −2 0
0 0 −3

𝐵𝐵𝑣𝑣 = 𝑃𝑃1B =
3
−6
3

𝐶𝐶𝑣𝑣 = 𝐶𝐶P = 1 1 1

Note: B =
0
0
1

, C = 1 0 0

Case 1  distinct Eigen value :       𝑃𝑃 =
1 1 1
𝜆𝜆1 𝜆𝜆2 𝜆𝜆3
𝜆𝜆1

2 𝜆𝜆2
2 𝜆𝜆3

2



Case 2 :   Repeated Eigen value        𝑃𝑃 =
1 0 1
𝜆𝜆1 1 𝜆𝜆3
𝜆𝜆1

2 2 𝜆𝜆1 𝜆𝜆3
2

Example 8 :Consider the matrix      𝐴𝐴 =
0 1 0
0 0 1

−18 −21 −8
,find the Jordan canonical form 

of  A 

𝜆𝜆𝐼𝐼 − 𝐴𝐴 = 0 𝜆𝜆1 = 𝜆𝜆2 = −3 , & 𝜆𝜆3 = −2

𝑃𝑃 =
1 0 1
−3 1 −2
9 −6 4

𝐴𝐴𝑣𝑣 = 𝑃𝑃−1𝐴𝐴𝐴𝐴 =
−3 1 0
0 −3 0
0 0 −2
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Control Canonical Form

The transformation matrix P that transforms the state model into control canonical
form is computed from the controllability matrix C.

If this matrix is nonsingular, it will be invertible. Assume that Av and Bv are in
control canonical form. Now

and

𝐶𝐶 = 𝐵𝐵 𝐴𝐴𝐴𝐴 𝐴𝐴2𝐵𝐵 ⋯⋯⋯𝐴𝐴𝑛𝑛−1𝐵𝐵



Therefore,

pn = p1An−1



which implies

therefore, in vector matrix form, we have

Note pn = p1An−1

𝑝𝑝1 𝐵𝐵 𝐴𝐴𝐴𝐴 𝐴𝐴2𝐵𝐵 ⋯𝐴𝐴𝑛𝑛−1𝐵𝐵 = 0 0 0 ⋯ 0 1



Hence,

Having found p1 we can now go back and construct all the rows of . Note
that we are only interested in the last row of to define p1.

pn = p1An−1

C−1



Example 1 : Transform the following state equation

to control canonical form.

Solution:

We first need to construct the C matrix. Therefore,



Next we need to find         , hence,

We are only interested in the last row of        to define p1,

NOTE

Next, we compute p2 and p3 as follows

Therefore,

pn = p1An−1p1 = 0.3333 0 −0.3333

𝑃𝑃−1 =
𝑝𝑝1
𝑝𝑝2
𝑝𝑝2



Hence, the system can be transformed into the control canonical form,

and

Thus, the control canonical form model is given by



A dynamic system is described by the following set of coupled liner
ordinary differential equation

̇𝑥𝑥1 + 2𝑥𝑥1 − 4𝑥𝑥2 = 5𝑢𝑢 −−−−1
̇𝑥𝑥1 − 𝑥̇𝑥2 + 4𝑥𝑥1 + 𝑥𝑥2 = 0 −−−−−2
𝑦𝑦 = 𝑥̇𝑥1 − 𝑥̇𝑥2 −−−−−−−−3

1) Represent the system in state space form.
2) Draw the simulation diagram in control canonical form (CCF).

Example 2 

̇𝑥𝑥1 = −2𝑥𝑥1 + 4𝑥𝑥2 + 5𝑢𝑢 −−−−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (1)

𝑥̇𝑥2 = ̇𝑥𝑥1 + 4𝑥𝑥1 + 𝑥𝑥2 −−−−−−−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (2)

𝑥̇𝑥2 = −2𝑥𝑥1 + 4𝑥𝑥2 + 5𝑢𝑢 + 4𝑥𝑥1 + 𝑥𝑥2 = 2𝑥𝑥1 + 5𝑥𝑥2 + 5𝑢𝑢

𝑦𝑦 = ̇𝑥𝑥1 − 𝑥̇𝑥2 = −4𝑥𝑥1 − 𝑥𝑥2 −− −𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 2&3

Solution  



𝑥̇𝑥 𝑡𝑡 = −2 4
2 5 𝑥𝑥 𝑡𝑡 + 5

5 𝑢𝑢 𝑡𝑡 −−−− 4

𝑦𝑦 = −4 −1 𝑥𝑥 𝑡𝑡 −−−−−−−−− 5

In control canonical form CCF
𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐵𝐵 𝐴𝐴𝐴𝐴 = 5 10

5 35 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
det 𝐶𝐶𝐶𝐶𝐶𝐶 = 125

𝐶𝐶𝐶𝐶𝐶𝐶−1 = 0.28 −0.08
−0.04 0.04 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑝𝑝1 = −0.04 0.04 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶−1
𝑝𝑝2 = 𝑝𝑝1𝐴𝐴 = 0.16 0.04

𝑝𝑝−1 = −0.04 0.04
0.16 0.04 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚



𝑝𝑝 = (𝑝𝑝−1)−1 = −5 5
20 5 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝐴𝐴𝑣𝑣 = 𝑝𝑝−1𝐴𝐴 𝑃𝑃 = 0 1
18 3

𝐵𝐵𝑣𝑣 = 𝑝𝑝−1𝐵𝐵 = 0
1

𝐶𝐶𝑣𝑣= 𝐶𝐶𝐶𝐶 = 0 −25

𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝 𝐢𝐢𝐢𝐢 𝐂𝐂𝐂𝐂𝐂𝐂



LECTURE 7

Similarity Transformation of the
Observer Canonical Form

Advanced Control Systems

Prepared by: Mr. Abdullah I. Abdullah

1



The transformation matrix P that transforms the state model into observer
canonical form is computed from the observability matrix O.

Observer Canonical Form

If this matrix is nonsingular, it will be invertible. Assume that Av and Cv are
in observer canonical form. Now

and

- - -(1)

2



Therefore,

Also, yields

3

𝐼𝐼𝐼𝐼 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑝𝑝𝑛𝑛−𝑚𝑚 = 𝐴𝐴𝑚𝑚𝑝𝑝𝑛𝑛 , where m=1,…,n-1

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ∶ 𝑝𝑝1= 𝐴𝐴𝑝𝑝2 , 𝑝𝑝2 = 𝐴𝐴𝑝𝑝3 , 𝑝𝑝1 = 𝐴𝐴2𝑝𝑝3

𝑝𝑝1 = 𝐴𝐴𝑛𝑛−1𝑝𝑝𝑛𝑛



which implies

therefore, in vector matrix form, we have

4

𝑝𝑝1 = 𝐴𝐴𝑛𝑛−1 𝑝𝑝𝑛𝑛



Hence,

Having found we can now go back and construct all the columns of P. 

Note that we are only interested in the last column of to define 𝑝𝑝𝑛𝑛

5

𝒪𝒪𝑝𝑝𝑛𝑛 =

0
0
0
0
⋮
1

𝑝𝑝𝑛𝑛



Example1 :Transform the following state equation

to observer canonical form.

Solution We first need to construct the O matrix. Therefore,

Next we need to find        , hence,

6



We are only interested in the last column of to define p3, in this case

Next, we compute p1 and p2 as follows

7

𝐼𝐼𝐼𝐼 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑝𝑝𝑛𝑛−𝑚𝑚 = 𝐴𝐴𝑚𝑚 𝑝𝑝𝑛𝑛 , where m=1,…,n-1 n=order of matrix          =3  ,  m=1 ,2



Therefore,

Hence, the system can be transformed into the observer canonical form,

8

𝑃𝑃−1 =
1 1 0
−2 0 4
1 −1 2



and

Thus, the observer canonical form model is given by

9



A dynamic system is described by the following set of coupled liner
ordinary differential equation

̇𝑥𝑥1 + 2𝑥𝑥1 − 4𝑥𝑥2 = 5𝑢𝑢 −−−−1
̇𝑥𝑥1 − 𝑥̇𝑥2 + 4𝑥𝑥1 + 𝑥𝑥2 = 0 −−−−−2
𝑦𝑦 = 𝑥̇𝑥1 − 𝑥̇𝑥2 −−−−−−−−3

1) Represent the system in state space form.
2) Draw the simulation diagram in observable canonical form.

Example 2 

̇𝑥𝑥1 = −2𝑥𝑥1 + 4𝑥𝑥2 + 5𝑢𝑢 −−−−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (1)

𝑥̇𝑥2 = ̇𝑥𝑥1 + 4𝑥𝑥1 + 𝑥𝑥2 −−−−−−−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (2)

𝑥̇𝑥2 = −2𝑥𝑥1 + 4𝑥𝑥2 + 5𝑢𝑢 + 4𝑥𝑥1 + 𝑥𝑥2 = 2𝑥𝑥1 + 5𝑥𝑥2 + 5𝑢𝑢

𝑦𝑦 = ̇𝑥𝑥1 − 𝑥̇𝑥2 = −4𝑥𝑥1 − 𝑥𝑥2 −− −𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 2&3

Solution  



𝑥̇𝑥 𝑡𝑡 = −2 4
2 5 𝑥𝑥 𝑡𝑡 + 5

5 𝑢𝑢 𝑡𝑡 −−−− 4

𝑦𝑦 = −4 −1 𝑥𝑥 𝑡𝑡 −−−−−−−−− 5

In observable  canonical form CCF
𝒪𝒪 = 𝐶𝐶

𝐶𝐶𝐶𝐶 = −4 −1
6 −21 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

det 𝒪𝒪 = 90
𝒪𝒪−1 = −0.2333 0.0111

−0.0667 −0.0444
𝑝𝑝2 = 0.0111

−0.0444 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝒪𝒪−1

𝑝𝑝1 = 𝐴𝐴𝑝𝑝2 = −0.2
−0.2

𝑃𝑃 = −0.2 0.0111
−0.2 −0.0444 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚



𝑝𝑝−1 = −4 −1
18 −18

𝐴𝐴𝑣𝑣 = 𝑝𝑝−1𝐴𝐴 𝑃𝑃 = 3 1
18 0

𝐵𝐵𝑣𝑣 = 𝑝𝑝−1𝐵𝐵 = −25
0

𝐶𝐶𝑣𝑣= 𝐶𝐶𝐶𝐶 = 1 0

𝐒𝐒.𝐃𝐃 𝐢𝐢𝐢𝐢 𝐎𝐎𝐎𝐎𝐎𝐎
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Controllability: In order to be able to do whatever we want with the
given dynamic system under control input, the system must be
controllable.

Observability: In order to see what is going on inside the system
under observation, the system must be observable.

Motivation Examples

It is often a common practice in control applications to design a
control input u(t) that makes the output y(t) behave in a desired
manner.

Controllability and Observability
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If one has a state space model, then it is possible that while you are
making the outputs behave nicely, some of the states x(t) may be
misbehaving badly. This is best illustrated with the following
examples.

Example 1: Consider the system

We compute the transition matrix

∅ 𝑡𝑡 = 𝑒𝑒𝐴𝐴𝐴𝐴 = ℒ−1 𝑠𝑠𝑠𝑠 − 𝐴𝐴 −1 = 𝐼𝐼 + 𝐴𝐴𝐴𝐴 +
𝐴𝐴2𝑡𝑡2

2!
+
𝐴𝐴3𝑡𝑡3

3!
+ ⋯
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and so, if we use the initial condition x(0) = 0, and the input u(t) is
the unit step function we get

𝑥𝑥 𝑡𝑡 = �
0

𝑡𝑡
1
2

(𝑒𝑒 𝑡𝑡−𝜏𝜏 − 𝑒𝑒− 𝑡𝑡−𝜏𝜏 )
1
2

(𝑒𝑒 𝑡𝑡−𝜏𝜏 + 𝑒𝑒− 𝑡𝑡−𝜏𝜏 )
𝑑𝑑𝜏𝜏 = �

−
1
2
𝑒𝑒(𝑡𝑡−𝜏𝜏) −

1
2
𝑒𝑒−(𝑡𝑡−𝜏𝜏)

−
1
2
𝑒𝑒(𝑡𝑡−𝜏𝜏) +

1
2
𝑒𝑒−(𝑡𝑡−𝜏𝜏)

𝑡𝑡
0

=

1
2
𝑒𝑒𝑡𝑡 + 𝑒𝑒−𝑡𝑡 − 1

1
2
𝑒𝑒𝑡𝑡 − 𝑒𝑒−𝑡𝑡

𝑥𝑥 𝑡𝑡 = ∅ 𝑡𝑡 𝑥𝑥 0 + �
0

𝑡𝑡
∅ 𝑡𝑡 − 𝜏𝜏 𝐵𝐵 𝑢𝑢(𝜏𝜏)𝑑𝑑𝑑𝑑
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Figure 1: Output response of the system to a step input.

The output is which we plot in Figure 1.

𝑦𝑦 = 1 −1 𝑥𝑥 𝑡𝑡 = 1 −1

1
2
𝑒𝑒𝑡𝑡 + 𝑒𝑒−𝑡𝑡 − 1

1
2
𝑒𝑒𝑡𝑡 − 𝑒𝑒−𝑡𝑡

= 𝑒𝑒−𝑡𝑡 − 1
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Example 2 :Consider the system

We compute the transition matrix

and so, if we use the initial condition x(0) = 0, and the input u(t) is 
the unit step function we get

𝑥𝑥 𝑡𝑡 = ∅ 𝑡𝑡 𝑥𝑥 0 + �
0

𝑡𝑡
∅ 𝑡𝑡 − 𝜏𝜏 𝐵𝐵 𝑢𝑢(𝜏𝜏)𝑑𝑑𝑑𝑑



7

The output is
Everything looks okay, the output is behaving nicely, and the states
are not blowing up to ∞
Let's change the initial condition to x(0) = (1; 0). We then compute

and which we plot in Figure 2.

Figure 2: Output response of the system
to a step input and non-zero initial
conditions.

This system is uncontrollable

𝑥𝑥 𝑡𝑡 =
𝑒𝑒𝑡𝑡 0

1
2

(𝑒𝑒𝑡𝑡 − 𝑒𝑒−𝑡𝑡) 𝑒𝑒−𝑡𝑡
1
0 + 0

1 − 𝑒𝑒−𝑡𝑡 =
𝑒𝑒𝑡𝑡

1 +
1
2

(𝑒𝑒𝑡𝑡 − 3𝑒𝑒−𝑡𝑡)

𝑥𝑥 𝑡𝑡 = ∅ 𝑡𝑡 𝑥𝑥 0 + �
0

𝑡𝑡
∅ 𝑡𝑡 − 𝜏𝜏 𝐵𝐵 𝑢𝑢(𝜏𝜏)𝑑𝑑𝑑𝑑
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Controllability Tests

Controllability is a property of the coupling between the input and
the state, and thus involves the matrices A and B.

A linear system is said to be controllable at t0 if it is possible to find
some input function u(t), that when applied to the system will
transfer the initial state x(t0) to the origin at some finite time t1, i.e.,
x(t1) = 0.
The most common test for controllability 𝑛𝑛 × 𝑛𝑛 is that the
controllability matrix C defined as

- - - - (1)

contains n linearly independent row or column vectors, i.e. is of rank n
(that is, the matrix is non-singular, i.e. the determinant is non-zero). Since
only the matrices A and B are involved, we sometimes say the pair (A;B)
is controllable.
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Example 3 :Is the following system completely controllable

Solution From (1) the controllability matrix is

Clearly the matrix is nonsingular since it has a non-zero determinant. Therefore 
the system is controllable.

where

hence



10

Observability Tests

Observability is a property of the coupling between the state and the
output, and thus involves the matrices A and C.

A linear system is said to be observable at t0 if for an initial state
x(t0), there is a finite time t1 such that knowledge of y(t) for

Observability is a major requirement in filtering and state estimation
problems.
In many feedback control problems, the controller must use output
variables y rather than the state vector x in forming the feedback
signals.
If the system is observable, then y contains sufficient information
about the internal states.

is sufficient to determine x(t0).
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The most common test for observability is that the            observability 
matrix  O defined as

- - - - - (2)

is of rank n (that is, the matrix is non-singular, i.e. the determinant is
nonzero). Since only the matrices A and C are involved, we
sometimes say the pair (A;C) is observable.
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Example 4 :Is the following system completely observable

Solution From ( 2) the observability matrix is

where

hence

Clearly the matrix is singular since it has a zero determinant.

The system is unobservable.
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Stability

Stability is the most crucial issue in designing any control system.
One of the most common control problems is the design of a closed
loop system such that its output follows its input as closely as
possible.
Unstable systems have at least one of the state variables blowing up
to infinity as time increases.

Consider the ball which is free to roll on the surface shown in
Figure 1. The ball could be made to rest at points A, E, F, and G and
anywhere between points B and D, such as at C. Each of these
points is an equilibrium point of the system.

.القضیة الأكثر أھمیة في تصمیم أي نظام تحكمھي  الاستقراریة

النقاطعندتستریحالكرةجعلیمكن.1الشكلفيالموضحالسطحعلىالتدحرجفيحرةالكرةأننعتبر
AوEوFوGالنقطتینبینمكانأيوفيBوD،النقطةعندمثلC.نقطةھيالنقاطھذهمنكل

.النظامتوازن



3

Figure 1: Equilibrium points

In state space, an equilibrium point for a system is a point at which       is zero in 
the absence of all inputs and disruptive disturbances. Thus if the system is placed 
in that state, it will remain there.
A small perturbation away from points A or F will cause the ball to diverge from
these points. This behavior justifies labeling points A and F as unstable equilibrium
points.

After small perturbations away from E and G, the ball will eventually return to
rest at these points. Thus E and G are labeled as stable equilibrium points.
If the ball is displaced slightly from point C, it will normally stay at the new
position. Points like C are sometimes said to be neutrally stable.
We say the system is stable locally. Stability therefore depends on the size of the
original perturbation and on the nature of any disturbances.
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Given a state space description

Stability in State Space

The transfer function is given by
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The denominator of this is the characteristic polynomial

The system poles are the roots of the characteristic equation

Example 1

so that both poles are at s= -1. Therefore the system is stable.
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Example 2

The characteristic polynomial is
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Note that the eigenvalues of A appear as exponents in the solution of
state x(t) (although some of them may not appear at the output due to
pole-zero cancellations).

As a result for a given (A;B;C;D) to be stable (internal stability), all 
eigenvalues of A should be stable.

Example 3 Consider the state space  

where
 Eigenvalues of A    are - 2 (stable) and   3 (unstable).
 Output is equal to the first state, which is decoupled from the second state: 

y(t) = x1(t).
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The transfer function of this system:

The transfer function has only a stable pole (-2) !(after the pole-zero 
cancellation).
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Modern Control Design

Classical design techniques are based on either frequency response or
the root locus. Over the last decade new design techniques has been
developed, which are called modern control methods to differentiate
them from classical methods. In this chapter we present a modern
control design method known as pole placement, or pole assignment.
This method is similar to the root-locus design, in that poles in the
closed-loop transfer function may be placed in desired locations.
Achievement of suitable pole locations is one of the fundamental
design objectives as this will ensure satisfactory transient response.
The placing of all poles at desired locations requires that all state
variables must be measured.
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State feedback
Many design techniques in modern control theory is based on the state
feedback configuration. The block diagram of a system with state
feedback control is shown in Figure 1.

Figure 1: State variable feedback system.

The open-loop system, often called the plant, is described in state variable 
form as:

- - - (1)
- - - (2)

The equations which describe 
the state feedback problem 
are (1), (2) and the relation

- - - (3)
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Combining gives

- - - (4)

- - - (5)

With this setup in mind the question is: What changes in overall
system characteristics can be achieved by the choice of K? Stability
of the state feedback system depends on the eigenvalues of

Controllability depends on the pair

Observability depends on the pair
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Pole-Placement Design

Pole-Placement design is based on the state model of the system.
The state model of the plant considered is as given in (1) and (2)
with D = 0.

Initially, we will assume that r(t) = 0. A system of this type (input
equal to zero) is called regulator control system. The purpose of
such a system is to maintain the system output y(t) at zero.

In general, in modern control design, the plant input u(t) is made a 
function of the states, of the form

This equation is called the control law. In pole-placement design, the 
control law is specified as a linear function of the states, in the form

- - - (6)
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- - - (7)

We will show that this control law allows all poles of the closed-loop 
system to be placed in any desirable locations.

- - - (8)

The design objective is: specify a desired root locations of the system 
characteristic equation, and then calculate the gains Ki to yield these 
desired root locations.
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The closed-loop system can be represented as shown in Figure 2.

Figure 2: Pole-placement design.
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Pole Placement Procedure (Direct substitution Method) 

The state equation of the plant is given by

- - - - (10) 

The control law is chosen to be
- - - - (11) 

with
- - - - (12) 

and n is the order of the plant. Substitution of (11) into (10) yields

- - - - (13) 

where is the system matrix for the closed-loop system
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The characteristic equation for the closed-loop system is then

- - - - (14) 

Suppose that the design specifications require that the roots of the 
characteristic equation be at
The desired characteristic equation for the system, which is denoted 
by is

- - - - (15) 

The pole-placement design procedure results in a gain vector K such 
that (14) is equal to (15), that is,

- - - - (16) 
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Example :Consider the system

Find the control law that places the closed-loop poles of the 
system so that they are both at

Solution From equation  (15) we find that

Equation (14) tells us that

- - - - (17) 
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or - - - - (18) 

Equating the coefficients with like powers of s in (18) and (17) yields 
the system of equations

therefore,

The control law is
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Consider the regulator system shown in following figure. The plant is 
given by

Example 2
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16
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%%%%%%%%%%%%%%  Pole placement[Direct method] 3rd order
clc
clear  
t=0:0.001:20;
%%%%%%%%%%%%%%   poles location  %% p1=s+10 ,p2=s+2-4*i, 
p3=s+2+4*i syms K k1 k2 k3 s
p1=input('pole 1 p=[s+?]=')
p2=input('pole 2 p=[s+?]=')
p3=input('pole 2 p=[s+?]=')
%%% plant matrix 
A=[0 1 0;0 0 1; -1 -5 -6];
b=[0; 0 ;1];
c=[1 0 0];
d=0;
I=[1 0 0;0 1 0;0 0 1];
%%%%%%%%%%%%%%%%%%%%%%%%%  Test Controbability
Co=[b  A*b  A^2*b];
n=length(A);
N=rank(Co);
if N==n

disp('The system is controllable')
end
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

ChEqCL=p1*p2*p3;   %   closed loop ch.eq

ChEqOL=det(s*I-A) ;   %%%%% open loop ch.eq

diF=ChEqCL-ChEqOL ;    %%% difference of CH.EQ

F=adjoint(s*I-A)*b;

KP=det(diF);

K1=[k1 k2 k3];

K1.*F==KP;

disp('Direct Method  K=[k1   k2  k3] =')

disp(coeffs(KP)); %%%% Note:KP=[k2 k1] %%%%%%% Direct 

Method 

K=coeffs(KP);
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%%%%%%%%%%%%%% AckerMan Method 
pause
pcofficient=coeffs(ChEqCL);
pNote=[pcofficient(:,4)  pcofficient(:,3)  pcofficient(:,2)  
pcofficient(:,1)]
p=input('coffecient of pNote [    ] =')
Yacker = polyvalm(p,A);
Coinv=inv(Co);
Kaker=[0 0 1]*Coinv;
KackerM=Kaker*Yacker;
%%%%%   AckerMan Method   [K1 K2]
disp('ackerman gain K=[K1 K2 K3]')
disp(KackerM)
%%%closed Loop Acl
Acl=A-b*KackerM;
bb=b*KackerM;
figure(1)
y1=step(A,b,c,d,1,t);
y2=step(Acl,bb,c,d,1,t);
plot (t,y1,t,y2)
title('Pole Placement Controller')
legend('Without pole placement','With pole placement')
xlabel('Time (sec)')
ylabel('Response')
grid
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pole 1 p=[s+?]=s+2-4*i

p1 = s + 2 - 4i

pole 2 p=[s+?]=s+2+4*i

p2 =s + 2 + 4i

pole 2 p=[s+?]=s+10

p3 =s + 10
The system is controllable
Direct Method  K=[k1   k2  k3] =
[ 199, 55, 8]
pNote =[ 1, 14, 60, 200]
coffecient of pNote [    ] =[ 1, 14, 60, 200]
p =[  1    14    60   200]
ackerman gain K=[K1 K2 K3] =[199    55     8]



21

0 2 4 6 8 10 12 14 16 18 20

Time (sec)

0

0.2

0.4

0.6

0.8

1

1.2

R
es

po
ns

e

Pole Placement Controller

Without pole placement

With pole placement

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2
Step Response

Time (seconds)

Am
pl

itu
de

System: sys
Rise time (seconds): 0.387

System: sys
Settling time (seconds): 1.96

 
Peak amplitude: 1.18
Overshoot (%): 18.4

At time (seconds): 0.901

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Step Response

Time (seconds)

Am
pl

itu
de

System: sys
Rise time (seconds): 8.33

System: sys
Settling time (seconds): 15

System: sys
Peak amplitude: 0.996
Overshoot (%): 0

At time (seconds): 20



LECTURE 11
Pole placement

(Ackermann ’s Formula) 

Advanced Control Systems

Prepared by: Mr. Abdullah I. Abdullah

1



Pole Placement (Ackermann’s Formula) 

• Following are the steps to be followed in this particular
method.

1.Check the state controllability of the system

𝐶𝑀 = 𝐵 𝐴𝐵 𝐴2𝐵 ⋯ 𝐴𝑛−1𝐵



Pole Placement (Ackermann’s Formula) 

• Following are the steps to be followed in this particular
method.

2. Use Ackermann’s formula to calculate K

𝐾 = 0 0 ⋯0 1 𝐵 𝐴𝐵 𝐴2𝐵 ⋯ 𝐴𝑛−1𝐵
−1∅(𝐴)

∅ 𝐴 = 𝐴𝑛 + 𝛼1𝐴
𝑛−1 +⋯+ 𝛼𝑛−1𝐴 + 𝛼𝑛𝐼



Pole Placement (Ackermann’s Formula) 
• Example-1: Consider the regulator system shown in following

figure. The plant is given by

𝑥1
𝑥2
𝑥3

=
0 1 0
0 0 1
−1 −5 −6

𝑥1
𝑥2
𝑥3

+
0
0
1

𝑢(𝑡)

• The system uses the state feedback control u=-Kx. The desired
eigenvalues are 𝜇1 = −2 + 𝑗4, 𝜇2 = −2 − 𝑗4 ,𝜇3 = −1. Determine
the state feedback gain matrix K.



Pole Placement (Using Transformation Matrix P) 
• Example-1: Step-1

• First, we need to check the controllability matrix of the system. Since
the controllability matrix CM is given by

• We find that rank(CM)=3. Thus, the system is completely state
controllable and arbitrary pole placement is possible.

𝑥1
𝑥2
𝑥3

=
0 1 0
0 0 1
−1 −5 −6

𝑥1
𝑥2
𝑥3

+
0
0
1

𝑢(𝑡)

𝐶𝑀 = 𝐵 𝐴𝐵 𝐴2𝐵 =
0 0 1
0 1 −6
1 −6 31



Pole Placement (Ackermann’s Formula) 

• Following are the steps to be followed in this particular
method.

2. Use Ackermann’s formula to calculate K

𝐾 = 0 0 1 𝐵 𝐴𝐵 𝐴2𝐵 −1∅(𝐴)

∅ 𝐴 = 𝐴3 + 𝛼1𝐴
2 + 𝛼2𝐴 + 𝛼3𝐼

• 𝛼𝑖 are the coefficients of the desired characteristic
polynomial.

𝛼1 = 14, 𝛼2= 60, 𝛼3= 200

𝑠 + 2 − 4𝑗 𝑠 + 2 + 4𝑗 𝑠 + 10 = 𝑠3 + 14𝑠2 + 60𝑠 + 200



Pole Placement (Ackermann’s Formula) 

∅ 𝐴 =
0 1 0
0 0 1
−1 −5 −6

3

+ 14
0 1 0
0 0 1
−1 −5 −6

2

+ 60
0 1 0
0 0 1
−1 −5 −6

+ 200
1 0 0
0 1 0
0 0 1

𝑥1
𝑥2
𝑥3

=
0 1 0
0 0 1
−1 −5 −6

𝑥1
𝑥2
𝑥3

+
0
0
1

𝑢(𝑡)

∅ 𝐴 = 𝐴3 + 14𝐴2 + 60𝐴 + 200𝐼

∅ 𝐴 =
199 55 8
−8 159 7
−7 −34 117



Pole Placement (Ackermann’s Formula) 

∅ 𝐴 =
199 55 8
−8 159 7
−7 −34 117

𝐵 𝐴𝐵 𝐴2𝐵 =
0 0 1
0 1 −6
1 −6 31

𝐾 = 0 0 1 𝐵 𝐴𝐵 𝐴2 −1∅(𝐴)

𝐾 = 0 0 1
0 0 1
0 1 −6
1 −6 31

−1 199 55 8
−8 159 7
−7 −34 117

𝐾 = 199 55 8



Pole Placement
• Example-2: Consider the regulator system shown in following

figure. The plant is given by

• Determine the state feedback gain for each state variable to place
the poles at -1+j, -1-j,-3. (Apply all methods)

𝑑

𝑑𝑡

𝑥1
𝑥2
𝑥3

=
1 2 1
0 1 3
1 1 1

𝑥1
𝑥2
𝑥3

+
1
0
1

𝑢(𝑡)
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