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State Variable Models

Advantages of state-space description

» The system is modeled as a set of first-order differential equations.

» The power of modern control has its roots in the fact that the state-space
model can represent a MIMO (multi-input multi-output) system due to the
use of vectors and matrices.

Why use state-space approach?

= State variable form is a convenient way to work with complex dynamics; it
uses matrix format that is easy to use on computers.

= Transfer functions in classical control theory only deal with input/output
behavior, while state-space form provides easy access to the internal features
and response of the system.

= State-space approach is great for MIMO (multi-input multi-output) system,
which are very hard to work with using transfer functions.

= State variables can be also used for feedback.




State Variable Models from differential equation

We consider physical systems described by nth-order ordinary differential equation.
Utilizing a set of variables, known as state variables, we can obtain a set of first-order
differential equations. We group these first-order equations using a compact matrix
notation in a model known as the state variable model.

The time-domain state variable model lends itself readily to computer solution and
analysis. The Laplace transform is utilized to transform the differential equations
representing the system to an algebraic equation expressed in terms of the complex
variable s.

Utilizing this algebraic equation, we are able to obtain a transfer function representation
of the input-output relation ship. With the ready availability of digital computers, it is
convenient to consider the time-domain formulation of the equations representing control
system.

The time domain techniques can be utilized for nonlinear, time varying, and
multivariable systems



A time-varying control system is a system for which one or more of the parameters of
the system may vary as a function of time.

For example, the mass of a missile varies as a function of time as the fuel is expended
during flight. ( multivariable system is a system with several input and output).

The time-domain analysis and design of control systems utilizes the concept of the
state of a system.

The variables used to write these n first-order equations are called state variables. The
collection of state variables at any given time is known as the state of the system, and
the set of all values that can be taken on by the state is known as the state space.




Example.

The system model used to illustrate state variables, is given in Figure 1.

f(t)
The differential equation describing this system ]
was already determined in 1.

) M
) g gy = o)

M dt? dt

and the transfer function given by

Y(s) 1 Figure 1. Simple mechanical system.
F(s) Ms2+Bs+K

G(s) =

= This equation gives a description of the position y(t) as a function of the force f(t).
= Suppose that we also want information about the velocity.
= Using the state variable approach, we dene the two state variables x1(t) and x2(t) as




r1(t) = y(t)

_ dy(t) _ dxy(t)

r2(t) = — dt

= 1 (t)

Thus x1(t) is the position of the mass and x2(t) is its velocity.

di;gt) _ drdgt(t) = da(t) = — (%) Ta(t) — (%) 1 (t) + (%) £(t)

The state variable model is usually written in a specific format which is given
by rearranging the equations as




Usually state equations are written in a vector-matrix format as

4 g
Il(ﬂ]

xa(t)

The most general state space representation of a LTI system is given by

x(t) = Ax(t) + Bu(t) (3) state equation

y(t) = Cx(t) + Du(?) (4) output equation
where
X(t) = state vector = (n * 1) vector of the states of an nth-order system
A= (n*n) system matrix
B = (n* r) input matrix
u(t) = input vector = (r * 1) vector composed of the system input functions
y(t) = output vector = (p* 1) vector composed of the defined outputs
C = (p* n) output matrix
D = (p* r) matrix to represent direct coupling between input and output




Equation (3) is called the state equation, and Equation (4) is called the output equation,
together they are referred to as the state-variable equations.

Equations (3) and (4) are shown in block diagram form in Figure 2.

The heavier lines indicate that the signals are vectors, and the integrator symbol really
indicates n scalar integrators.

+
“(r} - X D + y(rL

|

Figure 2 State space representation of CT linear system.

A(r) 1@




Simulation Diagrams

In the previous section we presented examples of finding the state model of a system
directly from the system differential equations.

However, sometimes only a transfer function may be available to describe a system. We
obtain state models directly from a transfer function by means of a simulation diagram.

A simulation diagram is a certain type of a block diagram or a flow graph that is
constructed to have a given transfer function or to model a set of differential equations

Simulation diagrams are very useful in constructing either digital or analog computer
simulations of a system

The basic element of the simulation diagram is the integrator which can be easily constructed
using electronic devices. Figure 3 shows the block diagram of an integrating device

xs) [ 1 [Vts)

—_— — —
x(t) y(t) S
X(s) I Y(s)
X(s) s Y(s)
O = QO

Figure 3 : Integrating device.



The differential equation describing the system in figure 1 is.

i(0) = —3it) = To(t) + 72 ()

A simulation diagrams for the system as shown in figure 4

flt)
—

y(t) y(t)
—— >

1
M

K
M

Figure 4. Simulation diagrams.
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State-Variable Models from Transfer Function

A simulation diagram constructed from the system differential equations will usually be
unique. However, if the transfer function is used to construct the simulation diagram, the
simulation diagram can be of many forms, that is, the simulation diagram is not unique.

Next, we consider two common and useful forms of the simulation diagram, namely, control
canonical form and observer canonical form. The two different simulation diagrams are
derived from the general transfer functions of the form

T
Z b, s
=0
T
Z {11;51;
i=0

Cbot+ oAby 18T byys™
 agt-Fap_1s"l 4 sn




Control Canonical Form

Also called the phase variable model, as an example considerm=2andn=3in (1)
, therefore,
bﬂ —|— blS —|— 15232

Y —
(5) ap +a1s +ass? + s

sU(s)

Divide numerator and denominator by s”, in this example that is s*, hence,

E}GS_E —l— bls_z —|— ng_l

Y(s)= aps~ 3 4+ a1s 24+ ans—1+1

Uls)

U(s)
ags 3 +ays 24 axs—1+1

W(s) =
This gives
W(s) =Ul(s) — [aps > + a15 2 + ags™ '|W(s)

and
Y(s) = [bos™> + bys 2 + bos W (s)




A simulation diagram, called the control canonical form shown in Figure 1 can be drawn.

Once a simulation diagram of a transfer function is constructed, a state model of the system
Is easily obtained. The procedure is as follows:

1. Assign a state variable to the output of each integrator starting from right to left. (We

could assign state variables from left to right to obtain what we call input feedforward
canonical form).

2. Write an equation for the input of each integrator and an equation for each system output.
U(s) — [aps > +a1s % + ags W (s)

b,

a; |-=

Figure 1: Control canonical form.




Following the procedure above the state variable satisfy:
I1 = I3

Ty = I3

I3 = —apr] — a1y — asTy + H(t}

while the output is

y(t) = boxry + byza + baxs

In matrix form this yields the following state-variable model

0 0
0 1




Note the direct connection with coefficients of the transfer function.

The Dbottom row of the A matrix contains the negatives of the
coefficients of the characteristic equation (i.e., the denominator of
G(s)), starting on the left with -a0 and ending on the right with -a2.

Above the bottom row is a column of zeros on the left and a22 identity
matrix on the right.

The B matrix is similarly very simple all the elements are zero except
for the bottom element, which is the gain from the original system.

The C matrix contains the positive of the coefficients of the numerator
of the transfer function, starting on the left with b0 and ending on the
right with b2.

It is Important to note that state matrices are never unique, and each
G(s) has infinite number of state models.




Observer Canonical Form

In addition to control canonical form, we can draw a simulation diagram
called the observer canonical form. To show how observer canonical form can
be derived, consider the transfer function in (1) with m = 2 and n = 3.
Equation (1) is written in the form

Y (s)[ao + ars + ags® + 5°] = [by + bys + bas*|U(s)

Divide both sides by s3 to obtain

Y(s)14ass ' +a15 % +aps ] =[bas '+ bis 2+ bos °]U(s)

leading to

Y(s)=—[ags ' +ays™? +ags )Y (s) + [bas ' +bys™ 2 + bys U (s)

This relationship can be implemented by using a simulation diagram as shown
In Figure 2.




Figure 2: Observer canonical form. Note

The state equations are written as x; = y(t)
— .X:]_ = —ale + xz + qu

—aa 1 I}g
—ay 0 X+ [b1 ]| u
0 E}0 .76:3 = —QgXq T+ bou

X, = —a1X1 + x3 + bju

1 0 0]x




Example 1:Find the state and output equations for c(s) = 35523*;:‘5;‘:2

In control canonical form.
B Solution State egunation

0 1
x=10 0
-2 -6

The output equation is
y=1[4 7 5/x N

1
252 — 54+ 3

Example 2:Find the state and output equations for ¢ (s) =

B Solution State equation

5‘:[—30/2 1}2]”[1]“

The output equation is

y=[1, 0]xm




Example 3:Write a state variable expression for the following
differential equation o5 1+ 3, — 4 — 2y

A useful formulation for state variables here is to obtain a transfer function
and then using a simulation diagram to obtain the state model. The transfer
function of the system is

25%Y(s) —sY(s) + 3Y(s) = sU(s) — 2U(s)

s — 2
Y(s) = 252 — S—I—SU(S}

The state model in control canonical form is given by

a ] [i]
-1 1/2]x




To show that the answer is true let us construct a simulation diagram.
First we have to express the transfer function in standard form:

1.-1 -2
58 S

_ 1. 3.2
1 55 —|—25

Y(s) =

Uls)

Introduce an auxiliary signal W(s):

Y(s)= (%5_1 —s57?)

Therefore,

and




W(s)[1— %s‘l — %3_2] ={l{x)

Y(s)=(3s"' —sH)W(s)

Figure 3: Simulation diagram for Example 3 in control canonical form.

After we assign a state variable to the output of each integrator from right to
left we get,
I = I3

I > + ! +
ITo = ——T —T U
2 9 1 9 2

1
y=—T1+ 5T L
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Transfer Functions from State-Variable Models

Consider a state-variable model initially at rest

Ax(t) + Bul(t), x(0) =0
Cx(t) + Du(t)

Taking Laplace transforms yields

sX(s) = AX(s) + BU(s)
Y(s) = CX(s) + DU(s)
The term sX(s) in 3 must be written as sIX(s), where 1 is the identity matrix.

This additional step is necessary, since the subtraction of the matrix A from the
scalar s is not defined. Then,

sX(s) — AX(s)=(sI - A)X(s) =BU(s)

X(s) = (sI - A)"'BU(s)




Substituting 5 in 2 the output equation, we get

Y(s)=C(sI - A) 'BU(s) + DU(s)

We conclude that the transfer function from Y(s) / U (s) is then

C(sI-A)"'B+D

Example 1:The state equations of a system are given by

N =

y:

2 0 1
ERRIEHE

:3 1]:{

Determine the transfer function for the system.




Solution The transfer function is given by

G(s)=C(sI-A)"'B+D

First, we calculate (sI — A)~". Now,

N 2 0] [s+2 0
sl=A=<1g -3 —1]_[ 3 5—|—1]

Therefore,

det(sI—A)=(s+2)(s+1)=5"+3s5+2

Then, letting det(sI — A) = A(s) for convenience, we have

- s+ 1
Cadj(sI—A) | Als)

T det(sI—A) s+2

L A(s)  Als)

0

(sT—A)"!

and the transfer function is given by




:32—|—3s—|—2

Example 2:

Find the transfer function of the system with state space representation

0 0 1 |x+|0jlu

0 1 0 0
v =
-8 —-14 -7 1

y=[15 5 0]x




Solution

0 0 1 0
sl — A= 0| — 0 0 1
s -8 —-14 -7

The matrix of minors and matrix of cofactors are

(s + 75+ 14) 8 —8s
M = —(s+7) s(s+7) ld4s+8 |, C,f=

1 —8 52

Adj (sI, — A) = —8 s(s+7) s
—8s — (145 +8) s*

(s*+7s+14)  (s+7) 1]

(32 + Ts+
(s+7)
1

|sI, — Al =5(s>+Ts+14) +1(8) +0(—8s) = s° + 75> + 145+ 8

The steps in the calculation of the numerator are

32

1
Adj(sInA)B[ s } CAdj (sI, — A)B =15+ 5s

so the transfer function is

H(s) = 55+ 15 5(s+3)

s3+ 752+ 145+ 8 - (s+1)(s+2)(s+4)

14) -8
s(s+7)

5

G(s) =C(slh—A)'B+D

 CAdj(sI, — A)B
N |sI, — Al

+D




H. W.:

1-Find the transfer function of the system with state space representation

-7 1 0 20
x=|-14 0 1|x+|125|u

-8 0 O 185

y=[1 0 O0]x+][5]u




Solution of State Equations

We have developed procedures for writing the state equations of a system, given
the system differential equations, the system transfer function, or the simulation
diagram.

In this section we present two methods for finding the solution of the state
equations.

The standard form of the state equation is given by

This equation will now be solved using the Laplace transform. Taking Laplace
transforms

sX(s) —x(0) = AX(s)+BU(s)

We wish to solve this equation for X(s); to do this we rearrange the last equation 2

(s — A)X(s) = x(0) + BU(s)




Pre-multiplying by (s1—A)-! , to eq.3 we obtain

X(s) = (sI - A)"'x(0) + (sI — A)"'BU(s)
and the state vector x(t) is the inverse Laplace transform of this equation (4).

Therefore  x(t) = L7[(sI — A)~]x(0) + L7[(s] — A)~BU(s)]

A? A%t2 A3¢t3

I A
-1 _ -1 - -171 —
(SI—A) —E+S—2+S—3+“'- L [(SI A) ]—I+At+ o] + 3]

X(t) = eAtx(0) + /D .

If the initial time is t, then

t
X(t) = eAlt—to)x(0) + / A=) Bu(r) dr
ip




The exponential matrix et is called the state transition matrix &) and is defined
as

The exponential matrix e** represents the following power series of the matrix
At, and

Equation ( 5) can be written as

x(t) = ®(t)x(0) + fn &(t — 7)Bu(r) dr




In Equation (10) the first term represents the response to a set of initial conditions
(zero-input response), whilst the integral term represents the response to a forcing
function u(t) (zero-state response).

Similarly, the output equation is given by

y(t) = CP(t)x(0) + Lt C®(t — 7)Bu(r) dr 4+ Du(t)

Example 1:Use the infinite series in (9) to evaluate the transition matrix ®(¢) if

0 1
=l o
Solution This is a good method only if A has a lot of zeros, since this
guarantees a quick convergence of the infinite series. Clearly,

> [0 0
A=l o




and we stop here, since A2 =0 and any higher powers are zero. Therefore,

At (1t
e —I-I—At—lo 1]

Example 2:Use the Laplace transform to find the transition matrix if A is the same
as in Example 1.

Solution :We first calculate the matrix (sI — A ),

1 0 0 1 s —1
SI_A:S[U 1]_[0 0]:[0 5]
The determinant of this matrix is

det(sI — A) = s*

and the ad joint matrix is

adj(sI — A) = [g 1]

S




Next we determine the inverse of the matrix (sI — A),




Example 3: Consider the system described by the transfer function

1
s24+35+2

(a) Write down the state equation in observer canonical form.
(b) Evaluate the state transition matrix &(t)
(c) Find the zero-state response if a unit step is applied.

G(s) =

Solution (a) The state equation in observer canonical form is given by

=[5 o>+ i)

(b) To find the state transition matrix, we first calculate the matrix (sI — A),

1o —3 1] [s+3 —1
SI_A_SIU 1}_[—2 0}_[ 9 s}

The determinant of this matrix Is




det(sI - A)=5*+35s+2=(s+1)(s+2)

and the ad joint matrixis  adj(sI — A) = [

Next we determine the inverse of the matrix

(sT—A)!

_adj(sT—A)
T det(sI— A)

5 1
—2 s+ 3
(SI o A):

s 1
(s+1)(s+2) (s+1)(5+2)
—2 s+ 3

L (s—l—l)(s—l—?) (s—l—l)(s—I—Q) J

- —1 n 2 1
s+1 s+2 s+1
—2 2 2

_I_
L s+ 1 s+2 s+1

1 -

+3—|—2
—1

+3—|—2 -




The state transition matrix is the inverse Laplace transform of this matrix

et _ o2t

—et 4 22
ZE—I o E—EE

.i)(t) - _28—£+2E—‘23

(c) If a unit step is applied as an input. Then U(s) = 1/s, and the second term

in (4) becomes

(sI— A)"'BU(s) =

=

X(s) = (sI — A)"'x(0) + (sI - A)"'BU(s)

1

(s+1)(s+2)
—2

RS
s+ 3

L (s+1)(s+2)

- 1
s(s+1)(s+2)
s+3

L os(s+1)(s+2) _

(s+1)(s+2) |

—1

_|_

s+ 1
—2

_I_

_I_

s+ 2

1
2

_I_

o ralee e [eale

s+1

s+2 _




The inverse Laplace transform of this term is

! 1
5 _E—t_|_56—2t

L7H(sI - A)'BU(s)) =

3 1
— — 2t 4 EE_Et
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Diagonal Canonical Form

The diagonal canonical form is a state space model in which the poles of the transfer function
are arranged diagonally in the A matrix.

1-Distinct Real Roots

Given the system transfer function having a denominator polynomial that can be factored into
distinct (py # pa # ... # p,) roots as follows:

Pm(S)
(s +p1)(8+p2)---(5+pu)




The simulation diagram of such a form is shown in Figurel .

X1

1/s :|—> kl
“P1

IH
“Pn :|

Figure 1: The simulation diagram for the Diagonal Canonical form




Then the diagonal canonical form state space model can be written as follows:




Example 1: Find the state space model of a system described by the transfer function

Y(s) _ (s+5)(s+4)
U(s) (s+1)(s+2)(s+3)

Employing the partial fraction expansion (which can be obtained by the MATLAB
function residue), the transfer function is written as

Y(s)  (s+5)(s+4) 6 6 1

Us) GG+ +2)(5+3) s+1 s+2 513

The state space model, directly written using (1 & 2 ), are




| 4 -

s

Integrator 1
p1

1

i

)

Integrator 2
p2

\EI“

1

b - Tl os
|7 Integrator 3

p3

<

Fig. 2 : Simulation Diagram for the Diagonal Canonical form (DCF)




2-complex conjugate roots

If complex conjugate roots appear they should be combined in pairs
corresponding to the second-order transfer functions, which can be independently
Implemented as demonstrated in the example 2.

Example 2: Let a transfer function containing a pair of complex conjugate roots be given
by

4 + 4 + 2 n 3
s+1—73 s+1497 s+5 s+10

G(s) =

We first group the complex conjugate poles in a second-order transfer function, that is

B 8s + 8 + 2 n 3
2492142 545 5410

G(s)

Then, distinct real poles are implemented like in the case of parallel programming.
A second-order transfer function, corresponding to the pair of complex conjugate poles, is
implemented using direct programming, and added in parallel to the first-order transfer
functions corresponding to the real poles




The simulation diagram is given in Figure 3, where the controller canonical form is
used to represent a second-order transfer function corresponding to complex
conjugate poles

Xy X1

I-{+? » 1/5
-5

X5

=

-2

Figure 3: Simulation diagram for a system with complex conjugate poles




From this simulation diagram we have

T
)

T3

T
Yy

—hx| +u

—10x> + u

£y

—2x3 — 224 +u

201 + 3xo + 8x3 + 814

so that the required state space form is




3-Multiple Real Roots (Jordan canonical form)

When the transfer function has multiple real poles, it is not possible to represent the
system in uncoupled form. Assume that a real pole | of the transfer function has
multiplicity 7 and that the other poles are real and distinct, that is

_ N(s)
(s+p1) (s+ps1)(s+pn)

The partial fraction form of the above expression is




The simulation diagram for such a system is shown in Figure 4.

k11

Tl

Xn

Figure 4: The simulation diagram for the Jordan canonical form




Taking for the state variables the outputs of integrators, the state space model is obtained as
follows

| K1 K2 - kn |




Example 3: Find the state space model from the transfer function using the Jordan

canonical form
s” + 65+ 8 _ k1 k2 k3

G(S):(5_|_1)?(5_|_3) B (s+1)+(s+1)2+(s+3)

This transfer function can be expanded as

1'25+ 1.5 0.25
s+1 (s+1) s+3

G(s) =

so that the required state space model is

X +

y=[15 125 —025




p 1

S

Integrator 1

Lg

Integrator 3
P1

Fig. 3 : Simulation Diagram for the Jordan Canonical form (JCF)
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Characteristic Equations

Characteristic equations play an important role in the study of linear
systems. They can be defined with respect to differential equations,

transfer functions, or state equations.

1-Characteristic Equation from a Differential Equation

Consider that a linear time-invariant(LT1) system is described by the differential

equation (B -1yt dy(®)
y Tyt Y
g T n—1Tm Tt E7a aoy(?)
. dMu(t) d™ Lu(t) du(t)
— bm d¢m E:’m—l dgm—1 + -+ E}1 dt

—|— buu(t:} --- (1)

where n > m. By defining the operator S as
d.‘c
k

=—% k=12-n

S

Equation (1) is written




(s" + an_15" '+ - +ays +ao)y(t) = (bms™ +b s b bys+ bo)u(t)

The Characteristic equation of the system is defined as

s"+ap 15"+ +as+ag=0 - (2)

2-Characteristic Equation from a Transfer Function

The transfer function of the system described by (1) is

Y(s bs™ + by 18™ 4+ -+ b b
G(s) = ()| s + 1" + -+ bis+ b @)
U(s) s+ anp_ 18"+ 4 a1s+ ap

The characteristic equation is obtained by equating the denominator polynomial of
the transfer function to zero.

L +a1s4+ag=0 ---(4)

s" + an_1 s




3-Characteristic Equation from a State Equation

Recall that
G(s)=C(sI-A)"'B+D

which can be written as

adj(sI — A)
sT— Al
Cladj(sI - A)]B + |sI - A|D

- sT— Al

G(s)=C B+D

Setting the denominator of the transfer-function matrix G(s) to zero, we get the
characteristic equation

sI-Al=0 ---(5

which is an alternative form of the characteristic equation, but should lead to the
same equation as in (2).




Eigenvalues

The roots of the characteristic equation are often referred to as the eigenvalues of
the matrix A.

Example 1:Find the eigenvalues of the matrix A given by A = [é :i]

Solution The characteristic equation of Ais |sI— A/ =0

sI-Al=s*—1
Replace s by 2
A —-1=0

L-DA+1) =0

Therefore, the eigenvalues A, =1 and ), = 1.




Eigenvectors

Any nonzero vector pi which satisfies the matrix equation

where )\;, i = 1,2,--- ,n, denotes the ;" eigenvalue of A, p; is called the

Eigen-vector of A associated with the eigenvalue A;: The procedure for
determining eigenvectors can be divided into two possible cases depending on the
results of the eigenvalue calculations.

Case 1: All eigenvalues are distinct.

Case 2: Some eigenvalues are multiple roots of the characteristic equation.




Case 1: Distinct Eigenvalues

If A has distinct eigenvalues, the eigenvectors can be solved directly from (6).
(;"L.;I — A)pi =0

Example 2 :Consider that a state equation has the matrix A = B :ﬂ
Find the eigenvectors.

Solution The eigenvalues were determined in Example 1as Ay = 1and Ay, = —1
Let the eigenvectors be written as

A —A)p; =0 P11 P12
b= [Pn] P2 = [PEE]

o _ 0 1 0
Substituting A; = 1 and p1 into (6), we get [n 2} Eﬂ - H

Thus, p21 =0, and p11 is arbitrary which in this case can be set equal to 1.

Similarly, for ;\2 — —1 (5) becomes |:_2 1:| [plﬂl _ [U]
0 0] |p22 0

which leadsto —2pi2 +p22 =0




The last equation has two unknowns, which means that one can be set
arbitrarily. X
Let pi> = 1. then p22 = 2. Theeigenvectorsare p, = M

p=[ J=[5 i

Case 2: Repeated Eigenvalues

Example 3: Consider the matrix A — E B }
A1 —A| =0
The characteristic equation is |sI — A| = U» s? 4+ 4s + 40 B A2+41+4=0

A4+2) 1, +2)=0
Thus, A has only one eigenvalue \ = —2 that is repeated twice.

/"‘1 — 2 & P11 .
(Al —A)p; =0 -2 A+6), ., |pn
N
f2h1

Making the substitution A = —2 inthe matrix yields




—4p11 + 8pa; =0
—2p11 +4py; =0

resulting in the equations

Both equations tell us the same thing, that P11 = 2p21 » let py,; =1
Thus, one choice for the eigenvectoris = H

For the generalized eigenvector that is associated with the second eigenvalue,

we use a variation of the equation we used to find the eigenvector. That is, we
write

_ o .4 8pay = —2

F 2 8 ] [P”] — H which yields the equations 712 T °722
—2 A+6],_, P2 1 —2p12 +4p22 = —1
—

: P 2p12 — 1
Either of these equations yields p22 = —a

1
Choosing map pi2=1/2 ‘ p2 = [;] b= ﬁ 065]




Similarity Transformation

In this chapter, procedures have been presented for finding a state-variable model
from system differential equations, from system transfer functions, and from

system simulation diagrams.

In this section, a procedure is given for finding a deferent state model from a given
state model. It will be shown that a system has an unlimited number of state models

The state model of an LTI single-input, single-output system is given by

Let us consider that the state model of Equations (1) and (2) and suppose that the
state vector x(t) can be expressed as

x(t) = Pv(t)
where P Is an nxn nonsingular matrix, called a transformation matrix, or simply,
a transformation. We can write,




Substituting (3) into the state equation in (1) yields
Pv(t) = APv(t) + Bu(t)

Pre multiplying the above equation (5) by P—'to solve for v(¢) results in the state model
for the state vector v(t):

v(t) =P 'APv(t) + P 'Bu(t)

Using (3), we find that the output equation in (2) becomes
y(t) = CPv(t) + Du(t)

We have the state equations expressed as a function of the state vector x(t) in (1)
and (2) and as a function of the transformed state vector v(t) in (6) and (7).




The state equations as a function of v(t) can be expressed in the standard format as

v(t) = A, v(t) + Byu(t)

y(t) = C,x(t) + Dyu(t)

Comparing (6) with (8) we get

A, —P AP |

and

B,=P 'B I
Similarly, comparing (7) with (9), we see that

C,=CP I

D,=D |

The transformation just described is called a similarity transformation, since in the
transformed system such properties as the characteristic equation, eigenvectors,
eigenvalues, and transfer functions are all preserved by the transformation.




Diagonal Canonical From a State Model

This form makes use of the eigenvectors. If A has distinct eigenvalues, there is a
nonsingular transformation P that can be formed by use of the eigenvectors of A
as its columns; that is

P= []31 P2 Ps

where pi, i = 1; 2; ; n; denotes the eigenvector associated with the eigenvalue A;
The Av matrix is a diagonal matrix,

where A1, Az.--- , A, are the n distinct eigenvalues of A.




Example 4 :Consider the matrix A = [1 !

0 — ] , find the diagonal canonical form of A

Al —A| =0
From Example 2 the eigenvaluesare )\, =1 and Ay = —1.
Al —Ap; =0

And the eigenvectors where determined p; = H

Thus,

P pl =y o

and the diagonal canonical form of A is written

P C1f2 1]t 1] 1 o1
Ay =P AP_QU 1110 —1]|0 2




In general, when the matrix A has repeated eigenvalues, it cannot be transformed
into a diagonal matrix. However, there exists a similarity transformation such that
the Av matrix is almost diagonal. the matrix Av is called the Jordan canonical form.
A typical Jordan canonical form is shown below

A, 1 0 0
0 A 1 0
0 0 XN O
0 0 0 X O
0 0 0 0 A3

0
0
0

where it is assumed that A has a repeated eigenvalue A, and distinct eigenvalues
A2 and A3 . The Jordan canonical form generally has the following properties:

1. The elements on the main diagonal are the eigenvalues.

2. All elements below the main diagonal are zero.

3. Some of the elements immediately above the repeated eigenvalues on the main
diagonal are 1s.




2

Example 5 : Consider the matrix A = [2 _8], find the Jordan canonical form of A

Al —A|l=0

A has only one eigenvalue A = —2 that is repeated twice

The generalized eigenvector were found in example 3 to be

(A4l —A)p; =0

2
1

ThUS, P= [pl pg] = [

and the Jordan canonical form of Alis written A, =p !4p

_p-1 _ 0 _% &
A, =P AP =-2
-1 2 2




Example 6 : Diagonalize the following system dynamics matrice A —

Using coordinate transformations.

AI—A]l=0 AR 8
AL — A|l=]0 A —1
6 11 A+ 6

— A2 4+ 622+ 11X + 6

=(A+1)(A+2)(A+3)=0
(4l = A)p; =0

0.5774 —0.4364 0.3145

[—0.5774 0.2182 -—0.1048 ]
p =
—0.5774 0.8729 —0.9435

—13.7477 —18.3303 —4.5826

[ ~5.1962 —4.3301 — 0.8660
p~t =
—9.5394 —14.3091 — 4.7697

A, =P14P=[0 -2 o0

-1 0 O]
0 0 -3

|

The eigenvalues of A are
the roots of the
characteristic equation,
or -1, -2, and 3.




Vander Monde Matrix: The Vander monde matrix of order n is a
square matrix specified variously as:

1 1 1
Case 1 distinct Eigen value : Mo A A3
_/112 /122 /132_

0 1 0
Example 7 :Consider the matrix A =| 0 0 1 ] find the diagonal canonical form
—6 —-11 -6
of A.
Al — Al =0 A=-1,-2,-3

1 1 1 1 1
=M A2 A|=|-1 -2 —3]
5 % A5° 1 4 9
-1 0 0

A, =P 1AP = 0 —2 0
-3

0
B, —PlB—[ ] Note:B={O], C=[1 0 0]
1

C,=CP=1[1 1 1]




Case2: RepeatedEigenvalue P =

5 21 A5°

0 1 0
Example 8 :Consider the matrix A =] 0 0 1 ] ,find the Jordan canonical form

—-18 —-21 -8
of A

|AI—A|=O /’{1=AZ=_3, &)[3=_2
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Control Canonical Form

The transformation matrix P that transforms the state model into control canonical
form is computed from the controllability matrix C.

If this matrix is nonsingular, it will be invertible. Assume that Av and Bv are in
control canonical form. Now

P'AP=A, = |P'A=AP"

and
P-'B=B,




Let P1.P2,y

Therefore,

.pn, denote the rows of P~!. Then,| A,P~! = P—!A|is given by

1 0 0 P
0 1 0 P2
. : P3
0 0 1 :
—ay —a2 -+ —Gp_1]| |Pn]
P2 =piA

p3 = p2A = p1A?
ps = psA = pA°

Pn = pﬂ—lA — plAn_l

pp = p;A"!




Also,| B, = P~ !'B|yields

0 -plB
0 j‘JgB
1] [pnB]
which implies
Note p, = p;A"?
piB=20

p2B=p,AB=0
psB=pA*B =0

B = p1A“_1 =1
therefore, in vector matrix form, we have

p.[B AB A?B --A"1B]=[0 0 0--0 1]




Hence,

‘plz[ﬁ 0o 0 ... 1]Cct

Having found p1 we can now go back and construct all the rows of P—!. Note
that we are only interested in the last row of ¢-1 to define pl.

Pn = plAn_l




Example 1 : Transform the following state equation

to control canonical form.
Solution: ‘:m =0 0 0 - 1] c-1 I

— O =
— = D
(S Ut
—_ 0 =

We first need to construct the C matrix. Therefore,

|

—t
=

c=[B AB A?B]_[

= =
[ R P

'—I.
=1 o




Next we need to find ¢!, hence,

NOTE
—0.3333 —0.6667 1.3333 .
cl=|_—1 0.3333 1 ‘131:[0 0 0 --- 1]C
0.3333 0 —0.3333

We are only interested in the last row of C—'to define p1,

p; =[0.3333 0 —0.3333] p, = pAn1

p2=pA =[0 0.3333 0

Next, we compute p2 and p3 as follows
ps =p1A*=[0 0.3333 1]

Therefore,
D1 0.3333 0  —0.3333
p~1 =|p, ‘ P'=| 0 03333 0
Dy 0  0.3333 1




Hence, the system can be transformed into the control canonical form,

0.3333 0 —03333 |1 2 1| |3 -1 1
A, =P 'AP = 0 0.3333 0 0 1 3](0 3 0
1 1

0 0.3333 1 1] |0 -1 1
and
0.3333 0 —0.3333] [1
B, =P 'B= 0 0.3333 0 0
0 0.3333 1 1

Thus, the control canonical form model is given by

-

I
w o o
— O =
Lo — O

-

+
= O

I~




Example 2

A dynamic system is described by the following set of coupled liner
ordinary differential equation

X1+ 2x; —4x, =5u ———1
X1 —Xo+4x1+x, =0 ———— =2
Yy =X =Xy ——————— —3

1) Represent the system in state space form.
2) Draw the simulation diagram in control canonical form (CCF).

Solution X1 = —2x1 +4x, +5u ——— —from (1)
Xo = X1 +4x1 + x5 ————— —from (2)
Xy, = —2x1 +4x, +5u + 4x; + x5, = 2x1 + 5x, + Su

Yy =X; — Xy = —4x1 —x, —— —from 2&3




5c(t)=[_22 g]x(t)+[§]u(t) 4

y=[-4 —1lx(t) ———————- -5
_
Con =B AB] [5 3c controlable matrix

det(Con) = 125

1 _[028 —0.08

—0.04 0.04
p; = [-0.04 0.04] lastrowof Con~1

p, =p14=1[0.16 0.04]

1 _ [-0.04 0.04
0.16  0.04

Con invers of controlable matrix

invers of transformation matrix




p = (19_1)_1 = [;5 g] transformation matrix

0
. .70 1
Adv=p - AP=l1g 3
_-1p_ [0
y=p B =]
C,=
| >

simulation diagram in CCF
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Observer Canonical Form

The transformation matrix P that transforms the state model into observer
canonical form is computed from the observability matrix O.

c 1
CA
o= | CA?

CA™ ]

If this matrix is nonsingular, it will be invertible. Assume that Av and Cv are
In observer canonical form. Now

P'AP=A, =— |[AP=PA, ---(])

and

CP — C'i_:'




Let| p1.p2, -+ , pn|denote the columns of P. Then,| AP = PA,|is given by

v

Pt P2 p3s - pal I A O [Ap1 Ap: Aps - Ap,]
—aq 0o o0 --- 1
4y 0 0 - 0
Therefore,  p, = Ap; = Aiﬂ_lp” Note : p;=Ap, ,p, = Aps ,p1 = A’ps
pr=A""py

Pn-3= Apn_o = Aspn
Pn2=Ap, = A2Pﬂ
Pn—1 = Apn In general p,_,, = A™p, , where m=1,...,n-1

Also, |C, = CP| vyields
 >
\[1

0 ... U]Z[Cm Cp, --- Cpﬂ]




which implies

CP1 — CAn_lpn =1

«

Cpn_2 = CAEP’& =0
Cpn—l — CApn =0

Cpn:[]

therefore, in vector matrix form, we have

Pn =

p1 = A" 1p,



-oooo:

Opy, =
Hence, 1.
o
0
Pn = C_)_l 0
_1_

Having found p» we can now go back and construct all the columns of P.

Note that we are only interested in the last column of |0~ to define p,




Examplel :Transform the following state equation

to observer canonical form.

Solution We first need to construct the O matrix. Therefore,

Next we need to find »—1, hence,




0.5 —1.667 0.3333
O 1=105 1.1667 —0.3333
—0.5 —0.3333 0.1667

_\

We are only interested in the last column of |()-!|to define| p3, in this case

0.3333
ps = | —0.3333
0.1667

Next, we compute pl and p2 as follows

In general p,_,, =A™ p, ,where m=1,..,n-1| n=order of matrix|()-1F3 , m=1,2

—0.1667 0.3333
p2 = Apz = | 0.1667 pr = A?%py = |0.6667
0.1667 0.1667




Therefore,

0.3333 —0.1667 0.3333
P = |0.6667 0.1667 —0.3333
0.1667  0.1667 0.1667

Hence, the system can be transformed into the observer canonical form,

1 1 0
Pl=|-2 0 4

1 -1 2
A, =P 'AP

1 1 0 1 2 1 0.3333 —0.1667 0.3333

=1-2 0 4 0 1 3 0.6667 0.1667 —0.3333

1 -1 2 1 1 1 0.1667 0.1667 0.1667




and
0.3333 —0.1667 0.3333

C,=CP=1[1 1 0]|06667 0.1667 —0.3333
0.1667 0.1667  0.1667

Thus, the observer canonical form model is given by




Example 2

A dynamic system is described by the following set of coupled liner
ordinary differential equation

X1+ 2x; —4x, =5u ———1
X1 —Xo+4x1+x, =0 ———— =2
Yy =X =Xy ——————— —3

1) Represent the system in state space form.
2) Draw the simulation diagram in observable canonical form.

Solution X1 = —2x1 +4x, +5u ——— —from (1)
Xo = X1 +4x1 + x5 ————— —from (2)
Xy, = —2x1 +4x, +5u + 4x; + x5, = 2x1 + 5x, + Su

Yy =X; — Xy = —4x; —x, —— —from 2&3




5c(t)=[_22 g]x(t)+[§]u(t) 4

y=[-4 —1lx(t) ———————- -5
In observable canonical form CCF
[c1_1—4 -1 .
0 = [CA] = [ 6 _21] observable matrix
det(0) =90

o1 — [:0.2333 0.0111

0.0667 —0.0444
- [ 0.0111

P2 = 1 _0.0444

—0.2
p1 = Ap; = [_0_2

0.0111
—0.0444

last columan of 0~1

P = [:8; ] invers of transformation matrix




pT = Eg —_118

Ay =pTAP = [138 (1)]

%@ S.D in OCF
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Controllability and Observability

Controllability: In order to be able to do whatever we want with the

given dynamic system under control input, the system must be
controllable.

Observability: In order to see what iIs going on inside the system
under observation, the system must be observable.

Motivation Examples

It Is often a common practice in control applications to design a

control input u(t) that makes the output y(t) behave in a desired
manner.




If one has a state space model, then it is possible that while you are
making the outputs behave nicely, some of the states x(t) may be
misbehaving badly. This is best illustrated with the following

examples.

Example 1: Consider the system

=7 ofx+ 1]

y=[1 -1]x

We compute the transition matrix | ®(s)=(sI-A)~"

o) =ett =L7(I-A) ] =1+At+ T + T 4 ..




and so, if we use the initial condition x(0) = 0, and the input u(t) is
the unit step function we get

t
x(t) = 0(t)x(0) + f @(t —t) Bu(r)dr
0

e
o % (E{:E—T} _ 6—{:t—’r}}

% (e — o=(t-1)y Lot o]

2

% (e 4 o=(t-0)y ~ 2 el 42 o)

-%(et +e7t) — 1]

1. ¢ -t
2(ef—e™)




y=M -11x@®=[1 -1] |

S (ef—e™)

The outputis y(t)=¢*—1 which we plot in Figure 1.

Lgtddlu
i

Figure 1: Output response of the system to a step input.




Example 2 :Consider the system

o e

y=[0 1]x

We compute the transition matrix

B(t) [ et 0 ]
o %(Et o E—t) et

and so, If we use the initial condition x(0) = 0, and the input u(t) is
the unit step function we get

t
x(t) = @(t)x(0) + j @(t — 1) Bu(t)dt
0

t E{t—’r} 0 0
;/l] % (E{E—T:l o E—{t—T}) E—(t—’r} 1 d




The outputis y(t)=1-¢""

Everything looks okay, the output is behaving nicely, and the states
are not blowing up to oo
Let's change the initial condition to x(0) = (1; 0). We then compute

t
x(t) = B(£)x(0) + f O(t — 1) B u(r)dr
t

x(t) = [

ot
- o = B _
(et — t t 1+E(et—38 t)]

and  y(t)=1+ %(e* — 3¢~ which we plot in Figure 2.

12000

This system is uncontrollable

10000

8000

—
et

= 6000

Figure 2: Output response of the system
poa to a step input and non-zero initial
2000 conditions.




Controllability Tests

Controllability i1s a property of the coupling between the input and
the state, and thus involves the matrices A and B.

A linear system is said to be controllable at tO if it is possible to find
some Input function u(t), that when applied to the system will

transfer the initial state x(t0) to the origin at some finite time t1, I.e.,
X(tl) = 0.

The most common test for controllability n X n is that the
controllability matrix C defined as

C=[B AB A’B ... A™'B] ----()

contains n linearly independent row or column vectors, i.e. i1s of rank n
(that is, the matrix is non-singular, i.e. the determinant is non-zero). Since

only the matrices A and B are involved, we sometimes say the pair (A;B)
Is controllable.

8




Example 3 :Is the following system completely controllable
. -2 0 1
o[ ool
y=[1 —-1]x

Solution From (1) the controllability matrix is

C=[B AB A’B ... A" 'B]

¢c=[B AB]

as= [ Sl =15

¢c=[B AB]= [3 _32]

Clearly the matrix is nonsingular since it has a non-zero determinant. Therefore
the system is controllable.

9




Observability Tests

Observability is a property of the coupling between the state and the
output, and thus involves the matrices A and C.

A linear system is said to be observable at tO if for an initial state
X(t0), there is a finite time t1 such that knowledge of y(t) for ¢, <t <t

Is sufficient to determine X(t0).

Observability is a major requirement in filtering and state estimation
problems.

In many feedback control problems, the controller must use output
variables y rather than the state vector x in forming the feedback
signals.

If the system is observable, then y contains sufficient information
about the internal states.




The most common test for observability is that the » < » observability
matrix O defined as

C
CA
CA*?

Is of rank n (that is, the matrix is non-singular, i.e. the determinant is
nonzero). Since only the matrices A and C are involved, we
sometimes say the pair (A;C) is observable.




Example 4 :Is the following system completely observable
<[ )
y=[1 —1]x

Solution From ( 2) the observability matrixis O = [CCA]

where

o=lea =[5 5]

Clearly the matrix is singular since it has a zero determinant.

The system is unobservable.
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Stability

aSat ol sl avanal 8 draal Y Lzl a4y ) EiY)
Stability is the most crucial issue in designing any control system.
One of the most common control problems is the design of a closed
loop system such that its output follows its input as closely as
possible.
Unstable systems have at least one of the state variables blowing up
to infinity as time increases.

Consider the ball which is free to roll on the surface shown in
Figure 1. The ball could be made to rest at points A, E, F, and G and
anywhere between points B and D, such as at C. Each of these
points Is an equilibrium point of the system.
Jaufmm—.@Jms)ﬁ\%osﬁ_153:;3\9;@.;@\5@“5\9;E}ﬂ\;gzﬁsﬁmﬁm
alasy & Llail) ol (e JS, Cdkaidll die Jiw D 5B (pikddll o g8 ) A5G SF SE A
Al o)) 58



Figure 1: Equilibrium points

In state space, an equilibrium point for a system is a point at which X is zero in
the absence of all inputs and disruptive disturbances. Thus if the system is placed
In that state, it will remain there.

A small perturbation away from points A or F will cause the ball to diverge from
these points. This behavior justifies labeling points A and F as unstable equilibrium
points.

After small perturbations away from E and G, the ball will eventually return to
rest at these points. Thus E and G are labeled as stable equilibrium points.

If the ball is displaced slightly from point C, it will normally stay at the new
position. Points like C are sometimes said to be neutrally stable.

We say the system is stable locally. Stability therefore depends on the size of the
original perturbation and on the nature of any disturbances.



Stability in State Space

Given a state space description

x = Ax+ Bu.
vy =Cx+Du

The transfer function is given by
H(s)=C(sI-A4)"'B+D

 C|adj(sI-4)|B N
- |57 — A

 Cladj(sI-4)|B+D|sI - 4
- ‘Sf—;'j[‘




e I ——
The denominator of this is the characteristic polynomial
A(s)=|sI— 4.

The system poles are the roots of the characteristic equation

Example 1

=s’ +2s+1=(s+1)°
s+2

s

0 | S
Let x=Ax=| x. Then Q(S')Zl

so that both poles are at s= -1. Therefore the system is stable.



Example 2

_ 0 1 0 L
Let x:A.:erBH:l 0.1‘+ 13:‘, j’:Cx:[—l l]x.

The characteristic polynomial is
a. The characteristic polynomial 1s

A(s) =

, —1 ] _
° =5 —1=(s+1)(s—1). The poles are at s=-1, s=1. so the system 1s

A

not AS. It is unstable. The natural modes are ¢ . " .

b. The transfer function 1s
H(s)=C(sI-Ay'B=—>3"1 _ 1
(s—=D(s+1) s+1

which has poles at s=-1. Therefore, the system 1s BIBOS. Note that the unstable pole at
s=1 has cancelled with a zero at s=1.




Note that the eigenvalues of A appear as exponents in the solution of
state x(t) (although some of them may not appear at the output due to
pole-zero cancellations).

As a result for a given (A;B;C;D) to be stable (internal stability), all
eigenvalues of A should be stable.

Example 3 Consider the state space
—2 0

x(t) = 0 3

where
= Eigenvaluesof A are -2 (stable) and 3 (unstable).
= Output is equal to the first state, which is decoupled from the second state:

y(t) = x1(t).



The transfer function of this system:

Adj(sT—A) B

C - pr——

m[s_;a 0 Hl]

0 542
(s —3)(s + 2)

Y rl

det(sT—A)

H(s) =

(s — 3) 1

(s=3)(s+2) s+2

The transfer function has only a stable pole (-2) !(after the pole-zero
cancellation).
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Modern Control Design

Classical design techniques are based on either frequency response or
the root locus. Over the last decade new design technigues has been
developed, which are called modern control methods to differentiate
them from classical methods. In this chapter we present a modern
control design method known as pole placement, or pole assignment.
This method is similar to the root-locus design, in that poles in the
closed-loop transfer function may be placed in desired locations.
Achievement of suitable pole locations is one of the fundamental
design objectives as this will ensure satisfactory transient response.
The placing of all poles at desired locations requires that all state
variables must be measured.



State feedback

Many design techniques in modern control theory is based on the state
feedback configuration. The block diagram of a system with state

feedback control Is shown in Figure 1.

The open-loop system, often called the plant, is described in state variable

form as:

x=Ax+Bu ---(1)

The equations which describe
the state feedback problem

y=Cx+Du ---(2 r +<_‘_/u

» D

" x
+

+
+
¥

K

are (1), (2) and the relation

u(t) =r(t) — Kx(t) |---(3)

Figure 1: State variable feedback system.

3



Combining gives

Xx=[A-BK]x+Br [---(4)

y=[C-DK]x+Dr |--(5)

With this setup in mind the question is: What changes in overall
system characteristics can be achieved by the choice of K? Stability
of the state feedback system depends on the eigenvalues of (A — BK)

Controllability depends on the pair |([A — BK], B).

Observability depends on the pair | (A — BK], [C — DK]).




Pole-Placement Design

Pole-Placement design is based on the state model of the system.
The state model of the plant considered is as given in (1) and (2)
with D = 0.

Initially, we will assume that r(t) = 0. A system of this type (input
equal to zero) iIs called regulator control system. The purpose of
such a system is to maintain the system output y(t) at zero.

In general, in modern control design, the plant input u(t) Is made a
function of the states, of the form

u(t) = fix@®)] ---©)

This equation is called the control law. In pole-placement design, the
control law Is specified as a linear function of the states, in the form




u(t) = —Kx(t)
.
L2
- [K, K, - K,|. - (7)
-:ILI-T1

We will show that this control law allows all poles of the closed-loop
system to be placed in any desirable locations.

u(t) = —Kyx1(t) — Koxa(t) — - — Kpan(t) ---(8)

The design objective is: specify a desired root locations of the system
characteristic equation, and then calculate the gains Ki to yield these
desired root locations. ,



The closed-loop system can be represented as shown in Figure 2.

rit)=0 +

y(t)

u(t)
= Plant
K | Xt} ... xztt)
K, |
K, |-

Figure 2: Pole-placement design.

X1 (t)

T



» There are three approaches that can be used to

determine the gain matrix K to place the poles at
desired location.

— Direct Substitution Method.
— Ackermann’s formula.

— Using Transformation Matrix P.

= All those method yields the same result.



Pole Placement Procedure (Direct substitution Method)

The state equation of the plant is given by

Xx=Ax+Bu ----(10)

The control law Is chosen to be

with

u(t) = —Kx(t) ----(11)

K=[K K, - K,]----(12)

and n Is the order of the plant. Substitution of (11) into (10) yields

where

x(t) = Ax(t) — BKx(t) =[(A — BK)x(t)|= Arx(¢) ----(13)

A; = (A-BK

)

IS the system matrix for the closed-loop system



The characteristic equation for the closed-loop system is then

sT - A¢=IsT-A+BK|=0 ----(14)
f

Suppose that the design specifications require that the roots of the
characteristic equation be at —X\;, — Ao, ---. —\,,.

The desired characteristic equation for the system, which is denoted
by a.(s) IS

' —1
ap(s) =s"+ap 15" 4+ Fars+ ag

=5+ A)(s+A) - (s+A,)=0 ----(15)

The pole-placement design procedure results in a gain vector K such
that (14) is equal to (15), that is,

sI- A+ BK|=a.(s) =s" ta, "M +ast+ag ----(16)




" Sleps:
1. Check the state controllability of the system.
Cr=|B AB A?B ... An-1p]
2. Define the state feedback gain matrix as
K - [kl kz kg"' kﬂ]

— And equating |s/ — A + BK| with desired characteristic
equation.

sl - A+BK| =a.(s) =s" Yap 18"+ tas+ag



Example :Consider the system

x=|° é] X + H u
y=1[1 0]x

Find the control law that places the closed-loop poles of the

system so that they are both at s = —2.

Solution From equation (15) we find that
ac(s) = (s + 2)?
—s? 445+ 4 ----(17)
Equation (14) tells us that
s 0 0 1 0 - .
3

sI— A+BK|=




of 2+ Ky,s+1+K,=0 .- --(18)

Equating the coefficients with like powers of s in (18) and (17) yields
the system of equations

s+ Kos+1+K, =s>+4s+4

Ky =4

therefore,

The control law is

K=K K, =|[3 4]



e Y
Example 2
Consider the regulator system shown in following figure. The plant is

given by
X1 0 1 0 1[X1 0
lxz] = [ 0 0 1 ] X2 | + [[} u(t)
X3 -1 =5 -=6l11X3 1

i B @ﬁ _f i>

—
K e

The system uses the state feedback control u=-Kx. The desired
eigenvalues are ;; = —2 + j4, u» = —2 — j4 ,u3 = —1. Determine
the state feedback gain matrix K.



= Step-1
X1 0 1 01[* 0
lxz]=[0 0 1] X2 + 10| u(t)
X3 -1 -5 -—611%3 1

* First, we need to check the controllability matrix of the system.
Since the controllability matrix C; is given by

0 0 1
Cr=[B AB A?Bl=1|0 1 -6
1 -6 31

» We find that rank(C;)=3. Thus, the system is completely state
controllable and arbitrary pole placement is possible.



= Step-2:
= LetKbe
K=[k1 kz ka]
s 0 0 0 1 0 0
|sI — A+ BK| = [[} S 0]—[{] 0 1|+ |0|[k1 kp k3]
0 0 s -1 -5 -6 1

S+ (6+ky)s*+(B5+ky)s+1+k

* Desired characteristic polynomial is obtained as

(s+2—4))(s+2+4j)(s+10) =5+ 14s% + 60s + 200
» Comparing the coefficients of powers of s

14 = (6 + k3) ky =8
200 =1 + ky ki =199



%%%%%%%%%%%%%% Polle placement[Direct method] 3rd order
clc

clear

t=0:0.001:20;

%%%%%%%%%%%%%%  poles location %% pl=s+10 ,p2=s+2-4*1,
p3=s+2+4*i syms K k1l k2 k3 s

pl=input(“pole 1 p=[s+?]=")

p2=input(“pole 2 p=[s+?]=")

p3=input(“pole 2 p=[s+?]=")

%%% plant matrix

A=[0 1 0;0 O 1; -1 -5 -6];

b=[0; 0 ;1];
c=[1 O 0];
d=0;

I=[1 0 0;0 1 0;0 0 1];
%0%%%%%%%%%%%%%%%%%%%%%%%% Test Controbability
Co=[b A*b A"2*Db];
n=length(A);
N=rank(Co);
IT N==n
disp("The system is controllable™)
end



%9%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % %% % % %% %% %% %% %% %% %
ChEqCL=pl1*p2*p3; % closed loop ch.eq
ChEqOL=det(s*I1-A) ; %%%%% open loop ch.eq
diF=ChEqCL-ChEgOL ; %%% difference of CH.EQ
F=adjoint(s*I1-A)*b;

KP=det(diF);

Ki=[kl k2 k3];

K1.*F==KP;

disp("Direct Method K=[kl k2 k3] =7)
disp(coeffs(KP)); %%%% Note:KP=[k2 k1] %%%%%%% Direct
Method

K=coeffs(KP); 8



%%%%%%%%%%%%%% AckerMan Method

pause

pcofficient=coeffs(ChEqCL);

pNote=[pcofficient(:,4) pcofficient(:,3) pcofficient(:,2)
pcofficient(:,1)]

p=input(“coffecient of pNote [ 1 =7)

Yacker = polyvalm(p,A);

Coinv=inv(Co);

Kaker=[0 O 1]*Coinv;

KackerM=Kaker*Yacker;

%%%%%  AckerMan Method [K1 K2]

disp(“ackerman gain K=[K1l K2 K3]")

disp(KackerM)

%%%closed Loop Acl

Acl=A-b*KackerM;

bb=b*KackerM;

figure(l)

yl=step(A,b,c,d,1,t);

y2=step(Acl,bb,c,d,1,t);

plot (t,yl,t,y2)

title("Pole Placement Controller™)

legend("Without pole placement®,*With pole placement”)
xlabel("Time (sec)") 19
ylabel ("Response™)

grid



pole | p=[s+?]=s+2-4%
pl =s+2-4i

pole 2 p=[s+?]=s+2+4%
p2 =s + 2 + 4i

pole 2 p=[s+?]=s+10

p3=s+ 10

The system is controllable

Direct Method K=[kl k2 k3] =

[ 199,55, 8]

pNote =[ |, 14, 60, 200]

coffecient of pNote [ ] =[ I, 14, 60, 200]

p=[ | 14 60 200]

ackerman gain K=[K| K2 K3] =[199 55 8] 2
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LECTURE 11
Pole placement

(Ackermann ’s Formula)

Prepared by: Mr. Abdullah I. Abdullah



Pole Placement (Ackermann’s Formula)

* Following are the steps to be followed in this particular
method.

1.Check the state controllability of the system

CM=[B AB A%B ... gn-1p]



Pole Placement (Ackermann’s Formula)

* Following are the steps to be followed in this particular
method.

2. Use Ackermann’s formula to calculate K

K=[0 0 -0 1][B AB A%B ... 4n-1g]71@(A)

0(A) =A"+ A"+t a1 A+ a,l



Pole Placement (Ackermann’s Formula)

* Example-1: Consider the regulator system shown in following
figure. The plant is given by

X1 0 1 011*% 0
X2l=10 0 1 |[X2|+10 u(t)
X3 -1 -5 —-611x3 1
U B J‘ X>
A —
K K——.

* The system uses the state feedback control u=-Kx. The desired
eigenvalues are u; = —2 + j4, u, = —2 — j4 ,u3 = —1. Determine
the state feedback gain matrix K.



Pole Placement (Using Transformation Matrix P)
* Example-1: Step-1

X1 0 1 0 7[*1 0
lxz] = [ 0 0 1 [ |X2]+0|u(t)
X3 -1 -5 -—6l1l1X3 1

First, we need to check the controllability matrix of the system. Since
the controllability matrix CM is given by

0 0 1
CM=[B AB A%B]=[0 1 -6
1 —6 31

We find that rank(CM)=3. Thus, the system is completely state
controllable and arbitrary pole placement is possible.



Pole Placement (Ackermann’s Formula)

* Following are the steps to be followed in this particular
method.

2. Use Ackermann’s formula to calculate K
K=[0 0 1][B AB A2B] '@(4A)
(Z)(A) — A3 + (XlAZ + azA + (131

* a; are the coefficients of the desired characteristic
polynomial.

(s+2—4)(s+2+4j)(s+10) =53+ 14s% + 60s + 200

a1 = 14‘, a, = 60, 3= 200



Pole Placement (Ackermann’s Formula)

X1 0 1 07[*] [0
=0 o 1 [|x]+]|o|u®
xl -1 -5 —6llxs]l 11

0(A) = A3 + 144% + 604 + 200!

3 2

0O 1 0 0 1 0 0 1 0 1
o(4A)=(o0o o 1| +14l0 o0 1| +60]l0 o0 1 +200[o
-1 -5 —6 -1 -5 —6 -1 -5 —6 0
199 55 8
®(A) =|-8 159 7]
-7 =34 117




Pole Placement (Ackermann’s Formula)

0 0 1 199 55 8
[B AB A4%B]=|0 1 -6 0(A)=|-8 159 7
1 —6 31 —7 =34 117

K=[0 0 1][B 4B A%]7'0(4)

-1 199
K=[0 0 1] 159 7
—6 31 —34 117

=[199 55 8]




Pole Placement

* Example-2: Consider the regulator system shown in following
figure. The plant is given by

411 [1 2 1][*1] 1
ph X2l=10 1 3f|X2]+]|0]u(t)
X31 [1 1 111X3] 1
u B J' X>
A K—
K K——

* Determine the state feedback gain for each state variable to place
the poles at -1+j, -1-j,-3. (Apply all methods)
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