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Who Coined the Terms Robot & Robotics

* The term robot was first introduced by the Czech playwright Karel Capek in his 1920 play Rossum’s Universal
Robots, the word robota (meaning “worker.”) being the Czech word for worker. Since then the term has been
applied to a great variety of mechanical devices, such as teleoperators, underwater vehicles, autonomous cars,
drones, etc. Virtually anything that operates with some degree of autonomy under computer control has at some

point been called a robot. [4]

* robot and robotics were coined by science fiction writers. Karel Capek gave us robot in his 1922 play Rossum’s
Universal Robots (RUR), and Isaac Asimov coined the word robotics in the early 1940s to describe the art and

science in which we roboticists are engaged today. [5]



Who Coined the Terms Robot & Robotics

* There is an important distinction between these two science fiction writers. Capek decided that robots would

ultimately become malevolent and take over the world, while Asimov from the outset built circuits into his robots

to assure mankind that robots would always be benevolent. [5]

* In summary, a robot is a programmable machine that can complete a task, while the term robotics describes the

field of study focused on developing robots and automation.



Definitions of Industrial Robot

* Any automatic machine cannot be considered as a robot. Robot is to have a specific set of characteristics.
Interestingly, a 3-axis computer numerical control (CNC) milling machine may have a very similar configuration

and control system of a robot arm. [7]

 However, the CNC machine is just a machine. It cannot do jobs other than milling. But the robot must do
something more. That is why the definitions are proposed for a machine to be a robot. Different countries have

different definitions for a robot. [7]



Definitions of Industrial Robot

* The Robot Institute of America (RIA, 1985) defines the robot as

A robot is a reprogrammable multi-function manipulator designed to move materials, parts, or specialized devices

through variable programmable motions for the performance of a variety of tasks.

This definition restricts robots in industrial applications. The two important key words are ‘ reprogrammable’ and

multi-functional’. If the machine is single functional, it cannot be reprogrammable. Reprogrammable means that
(i) the robot motionis controlled by a written program and
(ii) the program can be modified to change significantly the robot motion.

Multi-functional implies that a robot is able to perform many different tasks depending on the program in the
memory and tooling at the end of arm. This means that the robot can be programmed for welding with a welding

tool at the end of arm and can be reprogrammed if the end of arm has a totally new facility such as for gripping. [7]



Definitions of Industrial Robot

* Another, a little broader definition is proposed by McKerrow (1986) as

A robot is a machine which can be programmed to do a variety of tasks in the same way that a computer is an

electronic circuit which can be programmed to do a variety of tasks.

* This definition excludes numerical control machines because they can be programmed for variations within only
one task. Teleoperators are also not considered as robots because there is a human in the control system. They

provide extended capabilities, not a replacement of a human. [7]



Definitions of Industrial Robot [7]

* The International Standards Organization (ISO 8373) defines a robot in a similar way as follows:

A robot is an automatically controlled, reprogrammable, multi-purpose, manipulative machine with several

reprogrammable axes, which may be either fixed in place or mobile for use in industrial automation applications.

* This definition specifically mentions ‘reprogrammable axes’ for industrial tasks. Such a definition particularly

points out that industrial robots are very suitable to modern industries. [7]

* There are several such definitions on robots — industrial robots in particular. One way or other, each definition has
to be expanded to suit the functioning of the modern industrial robots. In most cases, the definition given by RIA

is accepted to be closer to industrial robots of modern times and such a definition is considered worth designing

industrial robots. [7]



electrical
engineering,

mechanical
engineering,

and
mathematics.

Understanding the
complexity of robots and
their application requires
knowledge of

systems and
industrial
engineering,

computer
science,
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Understanding the complexity of robots new disciplines of engineering, such as

manufacturing engineering, applications
engineering, and knowledge engineering have
emerged to deal with the complexity of the field
of robotics and factory automation. More
recently, mobile robots are increasingly important
for applications like autonomous vehicles and

planetary exploration. [4]
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Why do we use robots?

* An official definition of such a robot comes from the Robot Institute of America (RIA):

A robot is a reprogrammable, multifunctional manipulator designed to move material, parts, tools, or specialized

devices through variable programmed motions for the performance of a variety of tasks. [4]

The key element in the above definition is the reprogrammability, which gives a robot its utility and adaptability. The

so-called robotics revolution is, in fact, part of the larger computer revolution. [4]

* Even this restricted definition of a robot has several features that make it attractive in an industrial environment.
Among the advantages often cited in favor of the introduction of robots are decreased labor costs, increased
precision and productivity, increased flexibility compared with specialized machines, and more humane working

conditions as dull, repetitive, or hazardous jobs are performed by robots. [4]

30 September, 2024



Automation & Industrial Automation

Automation is based on foundations of automatic control and obviously on feedback theory. [7]

Automation helps the industrial manufacturers in achieving high productivity, high level of accuracy, consistent

quality and increased labour saving. [7]

The term ‘Industrial automation’ is defined as the technology concerned with control of systems in the process of
achieving an end product. The process of achieving the end product has to be with minimum or no human

intervention. [7]

Intuitive inventions were contributing to the development of automatic control and hence automation till 1868
when Maxwell formulated the mathematical model (in terms of differential equations) to describe a system. He
demonstrated the effect of parameters on system performance. The concepts of accuracy and stability were

understood. [7]



Automation & Industrial Automation

The mathematical models in different forms such as transfer function, pulse transfer function, describing function

and state variable modelling were considered as inevitable tools for analysing and designing of control systems.[7]
The idea of using computers in automation emerged during 1950s.

Automation without a computer is now hard to imagine.

Analogue computers were used as on-line controllers in continuous processes such as steel and paper industries.

The cost of analogue controllers increased linearly with increased control loops. On the other hand, even though

initial cost of digital computer was large, the cost of adding additional loops was small.



Automation & industrial robots

* Automation and industrial robots are two closely related technologies. According to definition of automation, an

industrial robot can be considered itself as a form of automation.

* A robot (industrial robots) is a general purpose programmable machine which possesses the characteristics of a
human arm. The robot can be programmed by its computer to move its arm through sequences of motion in
order to perform some useful tasks. It repeats the motions over and over until it is reprogrammed to perform

some other task. Many industrial operations involve robots working together with other equipment.



The Laws of Robotics
* In 1942, Sir Isaac Asimov developed the famous three laws (Law one, Law two and Law three) of robotics which
still remain as worthy industrial design standard. However, the laws have been extended and revised by him and
others since 1985 to accommodate his creations, his attitude to robotics and the modern requirements of

humanity. The extended set of laws is as follows:
* The Meta-Law
A robot may not act unless its actions are subject to the laws of robotics.
* Law Zero

A robot may not injure humanity, or through inaction, allow a humanity to come to harm (humanity is the family of

all human beings and other biologically living things).
* Law One

A robot may not injure a human being, or through inaction, allow a human being to come to harm, unless this would

violate a,higher.order (an earlier stated) law.



The Laws of Robotics

Law Two
A robot must obey orders given by human being, except where such orders would conflict with a higher order law.

A robot must obey orders given by subordinate robots, except where such orders would conflict with a higher
order law.

Law Three

A robot must protect the existence of a subordinate robot as long as such protection does not conflict with a

higher order law.
A robot must protect its own existence as long as such protection does not conflict with a higher order law.
Law Four

A robot must perform the duties for which it has been programmed, except where that would conflict with a

higher order law.



The Laws of Robotics

The Procreation Law

The robot may not take any part in the design or manufacture of a robot unless the new robot’s actions are

subject to the laws of robotics.

The robots which are strictly manufactured in accordance with the above rules do behave better than human

beings.

When the concept of robot was introduced and strengthened, the necessity of industrial automation was also
deeply felt. Moreover, the technological progress in thermionic valve (1904), hydraulic and pneumatic systems
(1906), logic circuits (1943), digital computer (1946), transistor (1947), microelectronics (1970) and
microcomputer (1977) have all made automation and robotics a reality. The first commercial robot, controlled by
limit switches and cams, was introduced in 1959. Since then, the development in robot technology has been in
constant growth. Nowadays, the service robot within industry and in other areas of applications has made a

breakthrough in robot applications.
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Table 1.1 Chronological Developments of Robot Technology

Year Development

1921 The word Robot' was coined

1939 Early humanoid robot exhibited in 1839, 1940 World Fairs by Westinghouse
Electric Corporation

1942 The word 'robotics’ appears in Sir Isaac Asimov story ‘Runaround’

1952 Numerical control machine demonstrated at Massachusetts Institute of
Technology, USA

1954 George Devol designed the programmable, teachable and digitally controlled
article transfer robot

1956 First robot company UNIMATION formed

1959 First commercial robot controlled by limit switches and cams

1961 First hydraulic drive robot UNIMATE in die casting machine in Ford Motors

1968 Mobile robot designed by Stanford Research Institute

1971 Electrically powered 'Stanford Arm’ developed by Stanford University

1974 ASEA introduced all electric drive IRb6 robot

1974 KAWASAK]I installed arc welding robot

1974 Cincinnati Milacron introduced T* robot with computer control

1978 PUMA robot introduced by UNIMATION for assembly applications

1978 Cincinnati Milacron's T° robot applied in drilling and routing operations

19719 SCARA robot introduced for assembly applications at Yamanashi University

1980 Bin-picking robotic applications demonstrated at the University of Rhode Island

1983 Flexible automated assembly line using robots by Westinghouse Corporation

1986 ‘ORACLE' robot used in commercial wool harvesting from sheep, Australia

1992 Flexible hydraulic microactuator for robotic mechanism developed in Japan

1992 First Humanoid by Honda Corporation, Japan, recognizes human faces

2000 Humanoid robot, ASIMO, put in service to society

2004 NASA in USA developed RED BALL robot with an intention of protecting the
astronaut coming out of space vehicle for repairs

2006 Jumping robot has been developed to investigate the surface of any unknown
areas

2010 RED BALL has been marmufactured for protecting the astronaut

17
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2.1 INTRODUCTION

2.2 DESCRIPTIONS: POSITIONS, ORIENTATIONS, AND FRAMES

e Description of a position
e Description of an orientation
e Description of a frame

2.3 MAPPINGS: CHANGING DESCRIPTIONS FROM FRAME TO FRAME

e Mappings involving translated frames
e Mappings involving rotated frames
e Mappings involving general frames

2.4 OPERATORS: TRANSLATIONS, ROTATIONS, AND TRANSFORMATIONS
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2.1 INTRODUCTION

» Robotic manipulation, by definition, implies that parts and tools

will be moved around in space by some sort of mechanism. [1]

» This naturally leads to a need for representing positions and

orientations of parts, of tools, and of the mechanism itself. [1]

» To define and manipulate mathematical quantities that represent
position and orientation, we must define coordinate systems and

develop conventions for representation. [1]

» We will describe all positions and orientations with respect to the
universe coordinate system or with respect to other Cartesian
coordinate systems that are (or could be) defined relative to the

universe system. [1]

8 October, 2023 Systems & Control Engineering Dept.

User coordinate system 1

User coordinate system 2



* A description is used to specify attributes of various objects with which a manipulation system deals. These

objects are parts, tools, and the manipulator itself.

Point Rotation

TOOL FLANGE AT
WID-POINT OF
TRAVEL {0}

Frame Rotation

4 October, 2024 Systems & Control Engineering Dept. 4



* Once a coordinate system is established, we can locate any point in the (A}

universe with a 3 x 1 position vector.

ap °
 Because we will often define many coordinate systems in addition to the

universe coordinate system, vectors must be tagged with information

identifying which coordinate system they are defined within.

* vectors are written with a leading superscript indicating the coordinate system g igure 2.1: Vector relative to frame (example).

to which they are referenced — for example, ap.

* This means that the components of AP have numerical values that indicate

distances along the axes of {A}.

ap = [P,| —— —(2.1)

4 October, 2024 Systems & Control Engineering Dept. 5



* Figure 2.1 pictorially represents a coordinate system, {A}, with three mutually (A}

orthogonal unit vectors with solid heads.
Ap °

* A point Apis represented as a vector and can equivalently be thought of as a

position in space, or simply as an ordered set of three numbers.

A . %
P=|P,| ———(2.1)
P FIGURE 2.1: Vector relative to frame (example).
z

* For example, in a 3D space, let's consider a point P(3, 2, 1). The position vector

of this point from the origin O(0, 0, 0) would be: Op=3i+2 j+ k

4 October, 2024 Systems & Control Engineering Dept. 6



Vectors and Geometry of Space

For the following equations, assume that vectors d, E, ¢ and are defined as:
C_i — (al; a, Cl3), b = (bl» b2' b3), E — (C1; C2, CB)»

Length of vector a:

ld| = \/a% + a5 + a3
The unit vector corresponding to vector a is:

Ei _ alf+a2f+a3k

a
|l fa%+a§+a§

i.b = I&I|E|c059

The dot product between vectors a and b:

The angle between the two vectors 0 is:
a,b,; + a,b, + azb;

cosO =
| \/af+a§+a§\/b12+b§+b§

QU
S| S

Qu
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e Often, we will find it necessary not only to represent a point in space but also

to describe the orientation of a body in space.

* For example, if vector AP in Fig. 2.2 locates the point directly between the

fingertips of a manipulator’s hand, the complete location of the hand is still

not specified until its orientation is also given. Assuming that the manipulator
has a sufficient number of joints, the hand could be oriented arbitrarily while

keeping the point between the fingertips at the same position in space. FIGURE 2.2: Locating an object in position and orientation.

* In order to describe the orientation of a body, we will attach a coordinate
system to the body and then give a description of this coordinate system
relative to the reference system. In Fig. 2.2, coordinate system {B} has been
attached to the body in a known way. A description of {B} relative to {A} now

suffices to give the orientation of the body.

4 October, 2024 Systems & Control Engineering Dept. 8



* Thus, positions of points are described with vectors and orientations of bodies are described with an attached
coordinate system. One way to describe the body attached coordinate system, {B}, is to write the unit vectors of

its three principal axes in terms of the coordinate system {A}.

« We denote the unit vectors giving the principal directions of coordinate system {B} as Xz, Y, and Zz. When

written in terms of coordinate system {A}, they are called X4, Y4, and Z ,.
* It will be convenient if we stack these three unit vectors together as the columns of a 3 x 3 matrix, in the

orderA)?B, A?B, AZB. We will call this matrix a rotation matrix, and, because this particular rotation matrix

describes {B} relative to {A}, we name it with the notation ARB (the choice of leading sub and superscripts in the

definition of rotation matrices will become clear in following sections):
i1 Ti2 T13
4R =["Xp Wy Zg|= [T21 22 7"23‘ ———(2.2)
3y 7132 T33

4 October, 2024 Systems & Control Engineering Dept. 9



» Hence, whereas the position of a point is represented with a vector, the orientation of a body is represented with
a matrix.
i1 Ti2 Ti13
a1 122 T23| —— —(2.2)
s Tsz Ta3l
Xp. X4 Yp. X, Zp. X,y
Ay Ay A v U O O 7w
gR =["Xg Vg “Zg|=|Xp.V, V.V, ZpV,| ——(2.3)
Xp.Z, Yp.Z, Zy.Z,

gR =[AXB A?B AZB]=

* For brevity, we have omitted the leading superscripts in the rightmost matrix of (2.3).

 The dot product of two unit vectors yields the cosine of the angle between them, so it is clear why the

components of rotation matrices are often referred to as direction cosines.

ﬁR Z[A)A(B A?B AZB]= Yil —-(2.4)

AR =ER"T —— —(2.5)

4 October, 2024 Systems & Control Engineering Dept. 10



R N i1 Ti2 T13
R =["Xp ¥y “Zg|=|r21 T2z T23| ———(2.2)
_ a1 T3z Ts3l
Xp. X4 Y5.X4 Z3.X4
R =["Xp Yy “Zg|= |Xp.¥Y, V¥, Zp¥,| —-(2.3)
Xg.Z2, Y32, Z3.2Z,
B)’Zzl‘
R =["Xg ¥y “Zg]= |5V —-(2.9)
BZZ;
BR =4R" —— —(2.5)
A)’Zg
AR aR" =|YL|[4Xp Vg Zg]=13———(2.6)
AZT
B

4 October, 2024 Systems & Control Engineering Dept.
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* For convenience, the point whose position we will describe is chosen as the origin of the body-attached frame.

* The situation of a position and an orientation pair arises so often in robotics that we define an entity called a

frame, which is a set of four vectors giving position and orientation information.

* Note that a frame is a coordinate system where, in addition to the orientation, we give a position vector which
locates its origin relative to some other embedding frame. For example, frame {B} is described by gR and

AP sorc, Where 2Py .. is the vector that locates the origin of the frame

{B} ={gR , "Pgope}---(2.8)

A}

4 October, 2024 Systems & Control Engineering Dept.
FIGURE 2.2: Locating an object in position and orientation.



* In Fig. 2.3, there are three frames that are shown along with the universe coordinate system. Frames {A} and {B}

are known relative to the universe coordinate system, and frame {C} is known relative to frame {A}.

* In Fig. 2.3, we introduce a graphical representation of frames, which is convenient in visualizing frames. A frame
is depicted by three arrows representing unit vectors defining the principal axes of the frame. An arrow
representing a vector is drawn from one origin to another. This vector represents the position of the origin at the
head of the arrow in terms of the frame at the tail of the arrow. The direction of this locating arrow tells us, for

User coordinate system 1

example, in Fig. 2.3, that {C} is known relative to {A} and not vice versa.

User coordinate system 2

Y

World coordinate system

4 October, 2024 FIGURE 2.3: Example of several frames.
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* In summary, a frame can be used as a description of one coordinate system relative to another.

* A frame encompasses two ideas by representing both position and orientation and so may be thought of as a

generalization of those two ideas.

* Positions could be represented by a frame whose rotation-matrix part is the identity matrix and whose position-

vector part locates the point being described.

* Likewise, an orientation could be represented by a frame whose position-vector part was the zero vector.

4 October, 2024 Systems & Control Engineering Dept. 14



MAPPINGS: CHANGING DESCRIPTIONS FROM FRAME TO FRAME

* In a great many of the problems in robotics, we are concerned with expressing the same quantity in terms of
various reference coordinate systems. The previous section introduced descriptions of positions, orientations, and

frames; we now consider the mathematics of mapping in order to change descriptions from frame to frame.

4 October, 2024 Systems & Control Engineering Dept. 15



Mappings involving translated frames

* In Fig. 2.4, we have a position defined by the vector Bp._we wish to express this point in space in terms of frame

{A}, when {A} has the same orientation as {B}. In this case, {B} differs from {A} only by a translation, which is
given by “P,rc, a vector that locates the origin of {B} relative to {A}
Ap = Bp + APporc —— —(2.9)

* Note that only in the special case of equivalent orientations may we add vectors that are defined in terms of

different

~

X4
4 October, 2024 Systems & Control Engineering D

FIGURE 2.4: Translational mapping.



Mappings involving rotated frames
AR =BR 1 =BRT —_ _(2.10)

Yrl———(2.11)

oS
=
I
e
>
™
"
~)
[~ ]
=
N
[~ ]
I
o)
-

(B} {A}

Ap=4R Bp —— —(2.13)

4 October, 2024 Systems & Control Engineering Dept.
FIGURE 2.5: Rotating the description of a vector.



Mappings involving general frames

AP = 8R BP + Pgopc —— —(2.17)
Ap AT Bp __ _(2.18)
A A A B
[ P ] = [ BR PBORG” P ] —— —(2.19) called a homogeneous transform
1 0 0 O 1 1
Zy
X,
4 October, 2024 Systems & Control Engi

FIGURE 2.7: General transform of a vector.



Mappings involving general frames

[AP ]zl BR APBORG”BP ]—— —(2.19)
1 0O 0 O 1 1

1. a “1”is added as the last element of the 4 x 1 vectors;

2. arow “[0001]”isadded as the last row of the 4 x 4 matrix.

FIGURE 2.7: General transform of a vector.

The 4x4 matrix in (2.19) is called a homogeneous transform. For our purposes, it can be regarded purely as a construction
used to cast the rotation and translation of the general transform into a single matrix form. In other fields of study, it can

be used to compute perspective and scaling operations (when the last row is other than “[0 0 0 1]” or the rotation matrix
is not orthonormal).

AP == AR BP + APBORG —_ _(220)

1=1

4 October, 2024 Systems & Control Engineering Dept. 19



Rotation Matrix

1 0 0

- 4R, =0 €O -50| —— —(about X)
0 SO (o
co 0 SO

. ﬂRy =10 1 0| —-———(abouty)
—S6 0 Co
coO —S6 0

-« 2R, =|S60 (€O 0| —— —(about Z)
0 0 1

4 October, 2024 Systems & Control Engineering Dept. 20



Example 2.1 / Page 26

Figure 2.6 shows a frame {B} that is rotated relative to frame {A} about Z by 30 degrees. Find the rotation matrix?

0
Then find the translation matrix of 2P = 2] relative to {A}? .
O B
Solution: d
R =ROT(z,0
- R= (,0) Ll
Xg.Xq Yg. X4 Zp. X, (B} s 1.
A~ ~ A~ A~ A~ A~ A A~ B
éRz = [AXB AYB AZB] = |Xp. Yo Yp.Yu Zp.Y, a
Xg. 2, Y5.2, Zy.7,
cé —-S6 0] C30 —S30 O 0866 —-0.5 0 Xy
4R, =|S6 Cco 0| = 530 C30 0 = 05 0866 0
0 0 1. 1 . %
) . 0.866 —05 0 !
P = ng P =105 0866 0 1732 FIGURE 2.6: { B} rotated 30 degrees about Z.
0

2R, acts as a mapping that is used to describe Bp relative to frame {A}, 4P .

As was introduced in the case of translations, it is important to remember that, viewed as a mapping, the original

vector P is not changed in space.
4 October, 2024 Systems & Control Engineering Dept. 21
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Example 2.2 / Page 29

Figure 2.8 shows a frame {B} that is rotated relative to frame {A} about Z by 30 degrees, translated 10 units in X,,
and translated 5 units in Y, .Find the *P ,where 5P =[3 7 0] .

Solution: i & @ .
R = ROT(Z, 6) A=L ) f} A- P e

2% 3
The definition of frame {B} is o Vector (origin to origin) e

Co —SO O X 0866 —-0.5 0 10
ar |58 0866 0 |5
8 0 1 .0
0 0o (1
Ap 'A - _(2-18) \‘ Scale
1 ] e
0O 0 O 1 1
0.866 —-0.5 0 10]]3 9.098 Y
Ap _ 05 0866 0 5]|7[_|12.562
0 0 1 01]]|0 0
0 0 0 1111 1
4 October, 2024 Systems & Control Engineering Dept.

FIGURE 2.8: Frame {B} rotated and translated.
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e Translational operators
e Rotational operators
e Transformation operators

e Compound transformations
e Inverting a transform

9 October, 2024 Systems & Control Engineering Dept.
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2.4 OPERATORS: TRANSLATIONS, ROTATIONS, AND TRANSFORMATIONS

* The same mathematical forms used to map points between frames can also be

interpreted as operators that translate points, rotate vectors, or do both.

* Translational operators

* Rotational operators

09/10/2024 Systems & Control Engineering Dept. 3



Example 2.3 / Page 32

Figure 2.10 shows a vector APl . Compute the vector obtained by rotating this vector about Z by 30 degrees. Call

the new vector APz .
Solution:

co —-S6 0 c30 —-S30 O 0.866 —-05 0
R, (30,0)=1|S6 6 O0|=(S30 (€30 O0|=| 0.5 0866 0
0 0 1 0 0 1 0 0 1

0
AP1 = [2]
0 :

—1 APy
4p, = R, (30,0) 4P, =[1.732]
0 {4}

o

X4

09/10/2024 Systems & Control Engineering Dept. A 4 =
FIGURE 2.10: The vector * P; rotated 30 degrees about Z.



Example 2.4 / Page 33

Figure 2.11 shows a vector APl . Compute the vector obtained by rotating this vector about Z by 30 degrees and
translate it 10 unitsin X, and 5unitsin Y, .Find *P,, where 4P, =[3 7 0]T.

Solution:
3
ap, = |7
0
cO -S6 0 X 0.866 —-0.5 0 10
7|9 €0 0 Yl_[05 0866 0 5
0 0 1 Z 0 0 1 O
0 0 01 0 0 0 1 P
0.866 —-0.5 0 10][3 9.098
A | | 05 0866 0 5|7 _112.562
P =T 7h = 0 0 1 o]lol | o
0 0 0O 1111 1

FIGURE 2.11: The vector 4 P, rotated and translated to form 4 P,.

09/10/2024 Systems & Control Engineering Dept. 5



2.5 SUMMARY OF INTERPRETATIONS

* We have introduced concepts first for the case of translation only, then for the case of rotation only, and finally for the

general case of rotation about a point and translation of that point.

* As a general tool to represent frames, we have introduced the homogeneous transform, a 4 x 4 matrix containing
orientation and position information. We have introduced three interpretations of this homogeneous transform:
1. It is a description of a frame. ﬁT describes the frame {B} relative to the frame {A}. Specifically, the columns of

ﬁR are unit vectors defining the directions of the principal axes of {B}, and APBORG locates the position of the origin

of {B}.
e 2. ltis a transform mapping. ﬁT maps Bp - 4p
* 3. Itis a transform operator. T operates on AP1 to create APZ :

* From this point on, the terms frame and transform will both be used to refer to a position vector plus an orientation.
Frame is the term favored in speaking of a description, and transform is used most frequently when function as a
mapping or operator is implied. Note that transformations are generalizations of (and subsume) translations and

rotations; we will often use the term transform when speaking of a pure rotation (or translation).
09/10/2024 Systems & Control Engineering Dept. 6



2.6 TRANSFORMATION ARITHMETIC -

In Fig. 2.12, we have Cp  and wish to find 4P .

Frame {C} is known relative to frame {B}, and frame {B} is known relative to frame {A}. We can transform °P

Bp as:

into

Bp =Br p _——_(2.37)

()
then we can transform BP  into 4P  as Z,
Ap =41 Bp _— _(2.38) .

Combining (2.37) and (2.38), we get the (not unexpected) result

A

Xa
A _ A B C
P =41 81 ‘P ———(2.39) . . |
FIGURE 2.12: Compound frames: Each is known relative to the previous one.
A _ A B
AT =41 Br ———(2.40)
09/10/2024

Systems & Control Engineering Dept.



2.6 TRANSFORMATION ARITHMETIC -

e Again, note that familiarity with the sub- and superscript notation makes these manipulations simple. In terms of

the known descriptions of {B} and {C}, we can give the expression for éT as

A B A B A
ar = |BR  cR  BR "Pcorc*+ "Ppore| __ _(2.41)
0O 0 O 1
A (B)
Zy
AP -
\ {A) ’,a’,
2 % ot
Y. /
Xy
X,
09/10/2024 Systems & Control Engineering Dept. 8

FIGURE 2.12: Compound frames: Each is known relative to the previous one.



2.6 TRANSFORMATION ARITHMETIC -

Consider a frame {B} that is known with respect to a frame {A}—that is, we know the value of éT . Sometimes we

will wish to invert this transform, in order to get a description of {A} relative to {B}—that is, ﬁT . A straightforward

way of calculating the inverse is to compute the inverse of the 4x4 homogeneous transform.

To find BT , we must compute BR and BP,ypc from 4R and “Pgypc. First, recall from our discussion of

rotation matrices that
BR = ART __ _(2.42) || Next, we change the description of APBORG into {B} by using (2.13):
B(APgorc) = BR “Pporc + BPaorc —— —(2.43) || The left-hand side of (2.43) must be zero, so we have

BPjorc = —BR APBORG = —4RT APBORG —— —(2.44) || Using (2.42) and (2.44), we can write the form of B

AT as

ApT _ApT A
al = lﬂ sR gR° “Pporg| __ —(2.45) || Note that, with our notation, 3T = 4771

0/2(94 0 1 Systems & Control Engineering Dept. 9



Example 2.5 / Page 36

Figure 2.13 shows a frame {B} that is rotated relative to frame {A} about Z by 30 degrees and translated four

unitsin X, and three unitsin Y, . Thus, we have a description of 4T . Find 5T . (B]
The frame defining {B} is Vs £,
Solution:
(A}
co -S6 0 X 0866 —-05 0 4 1.
ap _ |58 €6 0 Y|_| 05 0866 0 3 Ya
B 0o 0 1 Z 0 0 1 0
0 0 o0 1 0 0 0 1
ApT ApT A
B R —aR P B Ap—1 "
T = B B BORG| —— —_(2.45 T =A4T >
A 0 0 0 1 ] ( ) || A X4
5 AT 4 0.866 —4.964 FIGURE 2.13: { B} relative to {A)}.
PAORG= _BR PBORG=_ 05 0866 O 0598
0866 05 0 —-4.964
—0.5 0866 0 -—-0.598
aT 0 0 1 0 || Note: ®Pope = —5R “Ppore = —8R" “Pporg
9/1(@2024 O 0 1 Systems & Control Engineering Dept. 10



Example 2.5 / Page 36

Figure 2.13 shows a frame {B} that is rotated relative to frame {A} about Z by 30 degrees and translated four

unitsin X, and three unitsin Y, . Thus, we have a description of 4T . Find 5T . (B]
The frame defining {B} is Vs £,
Solution:
(A}
co -S6 0 X 0866 —-05 0 4 1.
ap _ |58 €6 0 Y|_| 05 0866 0 3 Ya
B 0o 0 1 Z 0 0 1 0
0 0 o0 1 0 0 0 1
ApT ApT A
B R —aR P B Ap—1 "
T = B B BORG| —— —_(2.45 T =A4T >
A 0 0 0 1 ] ( ) || A X4
5 AT 4 0.866 —4.964 FIGURE 2.13: { B} relative to {A)}.
PAORG= _BR PBORG=_ 05 0866 O 0598
0866 05 0 —-4.964
—0.5 0866 0 -—-0.598
aT 0 0 1 0 || Note: ®Pope = —5R “Ppore = —8R" “Pporg
9/1(@2024 O 0 1 Systems & Control Engineering Dept. 11



:
-
=
=
«
<P
=
o
<P
P
-
N
P
<P)
—
=
=
>
P
=

i cuemath
Orthogonal Matrix f A e s

A Square matrix ‘A’ is orthogonal if
AT = A-
(OR)
AAT= ATA =1, where
e AT = Transpose of A

e A= |nverse of A

e [ = |ldentity matrix of same order as ‘A’

09/10/2024 Systems & Control Engineering Dept. 12



Review on rotation Matrix

Rotation matrix represents the component of each axis of a coordinate system with respect to a
reference frame.

5%
o

0
5)
N
o)

A

=
=
=)
=
xR
(<P]
=
)
<P]
S
-
N
(D)
(<P]
-
=
=
>
(<P]
=

09/10/2024 Systems & Control Engineering Dept. 13




General Transform

General Transform between Frames means that we include (Rotation+ Translation) to map or describe

a point from one frame to another

AP=ARBP+APBORG ( General Form for mapping )

a

Z, 4 — L -

»<)

09/10/2024 Systems & Control Engineering Dept. 14

=
=
=)
=
xR
(<P]
=
)
<P]
S
-
N
(D)
(<P]
-
=
=
>
(<P]
=



Homogeneous Transform

We would like to think of a mapping from one frame to another as an operator in matrix form.

This aids in writing compact equations and is conceptually clearer than general form.

AP Ep
H [ BORG] H 4X4 Matrix ( Homogeneous Transform )
000 1 1
X

B

e
&

a

Z, 4

<)

=
=
=)
=
xR
(<P]
=
)
<P]
S
-
N
(D)
(<P]
-
=
=
>
(<P]
=

09/10/2024 Systems & Control Engineering Dept. 15




Homogeneous Transform

1.a"1" is added as the last element of the 4 x 1 vectors;
2. arow "[0001]" is added as the last row of the 4 x 4 matrix.
3. Normally we will write the Homogenous Transform as follow:

AP=ATBP

A A
Where #7=| BE PBORG]
000 1

rotation matrices used to specify an orientation, we will use transforms (usually in homogeneous
representation) to specify a frame. Observe that, although we have introduced homogeneous
transforms in the context of mappings, they also serve as descriptions of frames. The description of

frame {B} relative to (A} is 4T

=
=
=)
=
<
(<P]
=
)
<P]
S
-
N
(D)
(<P]
-
=
=
>
(<P]
=

09/10/2024 Systems & Control Engineering Dept. 16




The Figure shows a frame {B}, which is rotated relative to frame (A} about Z by 30° degrees, translated

10 units in X ,, and translated 5 units in ¥ , Find AP where #P = [3.0 7.0 0.0]".

0.866 —0.5 0 10 A
AT=| 05 0866 0 5 m |
= Shon
2 0 0 1 0 e
ﬁ 3 J'lf,f E A
= Given Bp = |7 5 § £
<P] 0 s i
=
:
1 5
=
2 9.09
&) AP=4TPP =[12.56
= 0.0
i
>
é 09/10/2024 Systems & Control Engineering Dept. 17




* Mapping: changing descriptions from frame to frame
» Operators: moving points (within the same frame)

By 7z, |z, &

Rotational Operator

Mapping 4P=4RBP P, =RP,

=
=
=)
=
xR
(<P]
=
)
<P]
S
-
N
(D)
(<P]
-
=
=
>
(<P]
=

09/10/2024 Systems & Control Engineering Dept. 18




Ry (6): P, P,
P, =R, (0) P, where k: ( X, Y, Z).

Ry (8)=|0 cos@ —sinf

[1 0 0
0O sinf cosé

P2 =Rx(30)P1

1
=[0 cos 6 —smH”] []
0O sinf cos@

=
=
=)
=
xR
(<P]
=
)
<P]
S
-
N
(D)
(<P]
-
=
=
>
(<P]
=

09/10/2024 Systems & Control Engineering Dept. 19




Translations

Mapping approach :

POB POA

Poa=Pop* Ppogg .

In this method two vectors B} [ Z, P,

/
§ For the same point P, P
—~ OB

= zZ, 14 —
= voh 7
= B
° PpORC ]
=
o — X
& Ya,
=
~
(D)
(<P]
-
z .
.; XA
é 09/10/2024 Systems & Control Engineering Dept. 20




Translations Operator

Mapping approach :
Py P,
P, =P+ Q

In this method

Two different vectors (2 point)

=
=
=)
=
xR
(<P]
=
)
<P]
S
-
N
(D)
(<P]
-
=
=
>
(<P]
=

09/10/2024

A

{B} Z, P,
T
q oveT
zZ, 144 p
YB
>
—~ X B -
YA e
X A
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Translations Operator

Operator approach :

Py P,

P, =P+ Q

In this method

Two different vectors (2 point)

09/10/2024 Systems & Control Engineering Dept. 22
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‘Translations Operator

operator approach :

Py P,

operator 4P, =4P;+4Q

B}

In this method
Two different vectors (2 point)

Homogeneous Transform:

1 0 O dx
01 0 g
D=
710 0 1 gq,
0 0 0 1
APZ =ADQ Apl
09/10/2024 Systems & Control Engineering Dept. 23
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General Operators

To represent the operator transformation in a general homogeneous form

Ry (
OOO 1] *

PZ =TXP1

only one coordinate system is involved, and so the symbol T is used without sub- or superscripts.

09/10/2024 Systems & Control Engineering Dept. 24
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The Figure shows a vector 4P;. We wish to compute the vector obtained by rotating this vector about Z by 45°.
Call the new vector 4P,.The rotation matrix that rotates vectors by 45° about Z is the same as the rotation matrix

that describes a frame rotated 45° about Z relative to the reference frame. Thus, the correct rotational operator

is , 2
2

‘cos45 —sin45 01 [0.707 —-0.707 O
o R, (45.0)=|sin45 cos45 0(=|0.707 0.707 O - (4)
= 0 0 1 0 0 1
e
- 0.0
=1 Given 4P,=[2.0
g 0.0 2
@) Ap,=R, (45.0) “P; 4,
§ _1.414
§ Ap,=| 1.414
N 0.0
=
=
>
é 09/10/2024 Systems & Control Engineering Dept. 25




The figure shows a vector P;. We wish to rotate it about Z by 60 and translate it 10 units in X , and 5 units in Y 4

Find 4P, where 4P; =[3 7 0]7 The operator T, which performs the translation and rotation, is :

05 —0.866 0 10

r_[0866 05 0 5 .
L 0 0 1 0 .
2 0 0 o0 1 Py
=] AP,=RAP,+4Q=TAP "
§ 2 1770 1 RAP,
N Ap,
= °
P 0.5  —0866 0 10][3] e ,ag vt 4
= ap _|0866 05 0 5|[|7|_|7 AQ
=] P, = =[11.09
7 0 0 1 0]]o 0
™ 0 o o0 1ll1 |
>
é 09/10/2024 Systems & Control Engineering Dept. 26




gT:[ gR AP BORG]
00O 1

Rotation Matrix is orthonormal
A R 1 R _A RT

However, 4T~1 = 4TT, Thus

ApTA
2R

09/10/2024 Systems & Control Engineering Dept. 27
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Homogenous Transformation summary

=
=
=)
=
xR
(<P]
=
)
<P]
S
-
N
(D)
(<P]
-
=
=
>
(<P]
=

. B
Description of a frame (A} }
AT- ip -
BT {B} — {;R 4P801'g} PBOR

Transform mapping
ks S == S

Transform operator
T: Py = Py

09/10/2024 Systems & Control Engineering Dept. 28



Compound Transformations

Bp=¢T°P
Ap=gT"P

Ap=AT3TCP }

AT=4T5T

09/10/2024 Systems & Control Engineering Dept. 29
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Homogenous form of Compound transformation

=
=
=)
=
xR
(<P]
=
)
<P]
S
-
N
(D)
(<P]
-
=
=
>
(<P]
=
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0 0

cT=gT¢T

ApB A
BR"Pcore + “Pporg

0
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{ 2.7 TRANSFORM EQUATIONS

o X-Y-Z fixed angles
e Z-Y-X Euler angles
e Z-Y-Z Euler angles

15 October, 2024 Systems & Control Engineering Dept.



2.7 TRANSFORM EQUATIONS

Figure 2.14 indicates a situation in which a frame {D} can be expressed as products of transformations in two different

. (D}
ways. First,
(4)
T =Yr o1 —— —(2.48)
Second;
U Up B C i
pI' =gT T pT —— —(2.49)

A

_ {ul
We can set these two descriptions of 9T equal to construct a transform equgtion:

Ur 4t =51 Br ST —— —(2.50) - (Transform Equations) 7l

Transform equations can be used to solve for transforms in the case of n u noN

transforms and n transform equations. /
B -1 A -1
Br =YUr'Yr 4r ST77!' —— —(2.51)

FIGURE 2.14: Set of transforms forming a loop.
The arrow’s direction indicates which way the frames are defined: In Fig. 2.14, frame {D} is defined relative to {A}

Y

15/10/2024 Systems & Control Engineering Dept. 3



2.7 TRANSFORM EQUATIONS

In Fig. 2.15, two possible descriptions of {C} are

Pr=12r —— —(2.52)
and
o7 =Y%r Br ———(2.53)
To find 4T

Gr =T T T 4T

{D}
T\,

8T T RTRT= |

15/10/2024

iept.

T~

FIGURE 2.15: Example of a transform equation.

(D}




EXAMPLE 2.6 / Page 39

Assume that we know the transform ?T in Fig. 2.16, which describes the frame at the manipulator’s fingertips { T }
relative to the base of the manipulator, {B}, that we know where the tabletop is located in space relative to the
manipulator’s base (because we have a description of the frame {S} that is attached to the table as shown, gT ),

and that we know the location of the frame attached to the bolt lying on the table relative to the table frame—that

is, 5T . Calculate the position and orientation of the bolt relative to the manipulator’s hand, ET

{7r]

Solution:

-1
¢T =731'%1 ¢T

(G}

(s}
(Bl

15/10/2024 Systems & Control Engineering Dept. 5
FIGURE 2.16: Manipulator reaching for a bolt.



EXAMPLE 2.7 / Page 41

Consider two rotations, one about Z" by 30 degrees and one about X" by 30 degrees:

Solution:
o0 —SO6 0]
R, (30)=1[|S6 CcO6 O
L 0 0 1.
1 0 0 T
R, (30)=|0 CcO -—-S6
0 S6 (O

R, (30) R4 (30) = [

15/10/2024

1 0 0
+ R, (30) R, (30)= [0 0.866 —0.5]

10 0
R.(8)= |0 cosf -—sin®
|0 sinfl cosé@ |
(C30 —-S30 O 0.866 —-0.5 0 rasd 0 e
S30 (€30 0]=I 0.5 0.866 0] R@=| 0o 1 o0
) 0 1 0 0 1 | —sinf 0 cosf |
[cosfl  —sinf 0]
1 0 0 1 0 0 R.(6) = |sind cosd 0
0 C6 —59‘ = [0 0.866 —0.5‘ Lo 0 1]
0 S0 (o 0 05 0.866
0.866 —0.5 0][1 0 0 0866 —0.433 0.25
0.5 0.866 O‘ [O 0.866 —0.5] = [ 0.5 0.75 —0.433‘
0 0 1110 0.5 0.866 0 0.5 0.866
0.866 —-0.5 0 0.866 —0.5 0
[ 0.5 0.866 0] = [0.433 0.75 —0.5‘
0 05 Systegﬁiééoq 0 EnngeeringDept.O 1 025 0433 0866 6



Three Angle Representations

Instead to use the three vectors to describe the orientation , we will use
angles of the rotated frame

{4}
B3

15/10/2024 Systems & Control Engineering Dept. 7



X-Y-Z fixed angles

* One method of describing the orientation of a frame {B} is as follows: Start with the frame coincident with a
known reference frame {A}. Rotate {B} first about X, by an angle y, then about ¥, by an angle 3, and, finally,

about Z, by an angle a.

* Each of the three rotations takes place about an axis in the fixed reference frame {A}. We will call this convention
for specifying an orientation X-Y-Z fixed angles. The word “fixed” refers to the fact that the rotations are
specified about the fixed (i.e., nonmoving) reference frame (Fig. 2.17). Sometimes this convention is referred to as

roll, pitch, yaw angles, but care must be used, as this name is often given to other related but different

Zs

conventions.
Yaw

A
k

FIGURE 2.17: X-Y-Z fixed angles. Rotations are performed in the order Ry (y),

Ry(ﬁ)- Rz(a).
15/10/2024 Systems & Control Engineering Dept. 8



X-Y-Z fixed angles

* The derivation of the equivalent rotation matrix,

8Ryyz (v, B, @), is straightforward, because all rotations

occur about axes of the reference frame; that is,

¢ éRXYZ (v, B,a) = Rz(a)Ry(B)Rx(¥)

Ca —Sa 01| CP SgI|I1 O 0
. = [Scx Ca o] 0 1 o0f[0 ¢y =Sy
o o 1l|l-sg o cgllo sy cy Ry(7): v—> Ry (y).v
o ) Rj(ﬁ) (RX (?/)-V) =P RY(ﬂ)'(RX (?/)-V)
Rotate the frame by : RZ(O"): (Ry(ﬂ)-RX(;V)-V) —% RZ (a)(RI(ﬂ)RY(;V)v)
y around X, FR= AR ()= Rola) B (0. R ()
p aroundY,

a around Zy

15/10/2024 Systems & Control Engineering Dept. 9



Z-Y-X Euler Angles

Another possible description of a frame {B} is as follows: Start with the frame coincident with a known frame {A}. Rotate {B} first

about Zg by an angle a, then about Y by an angle B, and, finally, about X by an angle y.

In this representation, each rotation is performed about an axis of the moving system {B} rather than one of the fixed reference {A}.

Such sets of three rotations are called Euler angles.

Note that each rotation takes place about an axis whose location depends upon the preceding rotations. Because the three rotations

occur about the axes Z, ¥, and X , we will call this representation Z-Y-X Euler angles.

8Ryryrxr (@, B,y) = Rz(a)Ry (B)Rx(¥)

Note that we have added “primes” to the subscripts to indicate that this rotation is described by Euler angles.

Z,

Ca —Sa 0 1 0 0 A

BRzyx’ (a,B,7) = a 0 Cy =Sy N
—S,B 0 Cﬁ 0 Sy Cy

CocCﬁ CocSBCB — Soccy CocSﬁCy + SOCS],
BRyyix (@, B,Y) = [SxCp  SucSpSy +CuCy  SxSpCy + CauSy

—SB CpSy CpCy £,

£
15/10/2024 Systems & Control Engineering Dept. 10

FIGURE 2.18: Z-Y-X Euler angles.



7-Y-Z Euler Angles

* Another possible description of a frame {B} is Start with the frame coincident with a known frame {A}. Rotate {B}

first about Zg by an angle a, then about Yz by an angle B, and, finally, about Zg by an angle y.

CxCRCy — SxSy  —CoCRSSy — SxSy  CuSp
© AR,y (@, B,y) = [SxCpCy T CxCy  —SuCpSy +CxCy  SuSp
—S'BC)/ SﬁSy Cﬁ

ﬁR - RZ'(a)°RY' (ﬁ)-Rz' (7)

15/10/2024 Systems & Control Engineering Dept. 11



15/10/2024

Fixed & Euler Angles

X-Y-Z Fixed Angles

R};}fz (J/vﬁaa) . Rz(a)R}f(ﬁ)Rx(y)

Z-Y-X Euler Angles

Ry (@, ,y) = Ry (). Ry (f). Ry (7)

Ryww (&, 0,7)=Ryy, (7, B, )

Systems & Control Engineering Dept.
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Fixed & Euler Angles

X-Y-Z Fixed Angles
RXYZ (}/;ﬁ,ﬂl’) — RZ(&)RY(,B)RX(;V)

Z-Y-X Euler Angles

B e (a,p,7) = Rz(fx)-R}*(ﬁ)-Rx(;’/)

RZ’FLY’((’I’MBFE/) — R;fyz (;/-.: ﬁ,a)

19/10/2024 Systems & Control Engineering Dept.




Exercises

2.1) A vector 4P is rotated about 7Aby 0 degrees and is subsequently rotated about XA by ¢ degrees. Give the

rotation matrix that accomplishes these rotations in the given order.

(1 0 0
Sol: R.(0)= |0 cosf# —sin#
|0 sinfl  cosf |
R=rot(X,, @) rot(Z,, 6) [ cosf 0 sind]
R®=| 0o 1 o0
| —sind 0 cos@
[cos @ sinf 0
1 0 0 cosf®@ —sinf O R.(0) = | sin® cos® 0
=0 cos¢ —sin@||sin@ cosO® O Lo 0o 1]
0 sing coso 0 0 1
cos 6 —sin6 0
=|cospsinf cospcosf —sing

sinpsinf singcosf cos@

10/19/2024 Systems & Control Engineering Dept. 3



Exercises

2.2) A vector 4P is rotated about ?A by 30 degrees and is subsequently rotated about )?A by 45 degrees. Give

the rotation matrix that accomplishes these rotations in the given order.

Sol:

R=rot(X,, 45) rot(¥,, 30)

1 0 0
1 0 0 [ cos @ 0O sin@ R.(0)= |0 cosf —sinf
=10 Cos @ —sin Q O 1 O ] |0 sinfl  cosé |
0 sin Q cos @ |—sin @ 0 cos@ [ cos@ 0 sinf]
R,(8) = 0 1 0
1 0 0 11 cos 30 0 sin30 | —sinfl 0 cosf |
=10 cos45 —sin45 [ 0 1 0 “ [ cosf sinfl 0]
0 sin45 cos45 1l—sin30 0 cos30 R.(0) = | sin® cosé 0

=1 0.353 0.707 —-0.612
—0.353 0.707 0.612

" 0.866 0 0.5] TR

10/19/2024 Systems & Control Engineering Dept. 4



Exercises

2.3) A frame {B} is located initially coincident with a frame {A}. We rotate {B} about Z; by 6 degrees, and then
we rotate the resulting frame about X’B by @ degrees. Give the rotation matrix that will change the description

of vectors from BP to 4P.
Sol:

since the rotations are about the frame being rotated , then Euler angles will be applied.

R=rot(Zz, 8°) rot(X5,0")

cosf@ —sinf 0 0
=|sin @ cosH cos(b —sin@

0 sin® cos0®

=|S6 COCP —COSO

[CH —S56 CO SGS(Z)‘
0 SQ Co

10/19/2024 Systems & Control Engineering Dept. 5



Exercises

2.4) A frame {B} is located initially coincident with a frame {A}. We rotate {B} about Z; by 30 degrees, and

then we rotate the resulting frame about )?B by 45 degrees. Give the rotation matrix that will change the

description of vectors from 2P to AP.
Sol:
since the rotations are about the frame being rotated , then Euler angles will be applied.

R=rot(Z,, 30") rot(X,45")

»
g

cos30 —sin30 O 0 .
=|sin 30 cos 30 cosS 45 —sin 45
0 sin45 cos45
0.866 —-0.5 0

0 5 0. 866 0 0. 707 —0.707

0 0.707 0.707

0.5 0.612 -0.612

[0.866 —0.353 0.353]
0 0.707 0.707

10/19/2024 Systems & Control Engineering Dept. 6



Exercises

2.13) The following frame definitions are given as known:

0.866 —0.5 0.0 11.0
ur _| 0.5 0.866 0.0 -1
4 0.0 0.0 1.0 8.0

. 0.0 0.0 0.0 1.0

1.00 —-0.5 0.0 0
Bp_|00 0866 -05 10
4 0.0 0.5 0.866 —20

0.0 0.0 0.0 1.0

0.866 —0.500 0.000
cr — |0.433  0.750 —0.500
u 0.250 0.433 0.866

[ 0.00 0.00 0.000

Draw a frame diagram to show their arrangement qualitatively, and solve for ET

-3
-3
3
1.0

’

{C)

Sol: by just following the arrows and inverting when needed , for rapid calculation for inverse (U)

matrices:

r=4r Y7 7

10/19/2024

Systems & Control Engineering Dept.



Exercises

2.27 - 2.31) Referring to Fig. Below, give the value of éT , ’éT, %T, AND ﬁT. R.(0)= |0 cosf —sind

Sol:

cos(180) —sin(180)
sin(180)  cos(180)

A
T=
B 0 0
0 0
cos90 O sin90
AR = 0 1 0
—sin90 0 cos90
0 —0.5 0.866
AT 0 0.866 0.5
S ] 0 0
0 0 0
10/19/2024

I

1
0
0

3 —1
O
ol |0
1 0
0
cos —30
sin —30

I

—_
O = O O
-0 O W

0
—sin —30
cos —30

Systems & Control Engineering Dept.

(1 0 0

|0 sinf!  cosé |
[ cosf 0 sind |
R,(8) = 0 1 0
| —sinf 0 cosf |
[ cos @ sinf 0]
R.(6) sinfl  cosf 0

L0 0 1]
30° Fe 2.
~ O~ -
b
k 3
A I e 2
Y, “
x
S P [
B NG
| i Yy
| |
| I
B 3 >

FIGURE 2.25: Frames at the corners of a wedge.



Exercises

1 0 0
2.27 - 2.31) Referring to Fig. Below, give the value of éT , ’éT, %T, AND ﬁT. R.(0)= |0 cosf —sind

|0 sinf!  cosé |

[ cosf 0 sind ]|

R,(8) = 0 1 0
cos90 0 sin90][1 0 0 |~ sinfl 0 cosé ]
BR = 0 1 0 0 cos150 —sin150 Ccosf —sinf 0]
—sin90 0 c¢0s90110 sin150 cos 150 R.(0) = | sinf cosf® 0
0 05  —0.866 0 -0 0L
BT = 0 —-0.866 —0.5 0 A
-1 0 0 2 30° Ye 2.
0 0 0 1 = Es ' B
X
2
. +2, 23
Y %
XB Y
| | Yy
| |
| |
]
10/19/2024 Systems & Control Engineering Dept.

9
FIGURE 2.25: Frames at the corners of a wedge.



Exercises

1 0 0
2.27 - 2.31) Referring to Fig. Below, give the value of éT , ’éT, %T, AND gT. R.(0)= |0 cosf —sind

|0 sinf!  cosé |
[ cosf 0 sind ]
R,(8) = 0 1 0

0 —0.5 0.866 3 | —sinf 0 cosf |
AT_ 0 0.866 0.5 0 [cosd sinf 0]
c*— —1 0 0 2 R.(0) sinfl cosé 0
0 0 0 1 L0 0 1]
ApT _ApT A
¢t = cR cR™ “Poorg| —— —Inverting a transform P .
0 0 O 1 30 Zc
ﬂ _____ —=
0 0 -13% 2 i
cr|—05 0866 0 i 3x05 3
A 9:‘ =8=6=6= - = :?:Q.=5= - == 9: - :Ei:=_=3= =*= 9:‘§=6=6: I ZA"‘ 23 2
0 o o i ) 2 |
BEEY
| ! Yy
| |
| !
]
10/19/2024 Systems & Control Engineering Dept.

10
FIGURE 2.25: Frames at the corners of a wedge.



Exercises

2.32 - 2.34) Referring to Fig. Below, give the value of éT , 'éT, %T, AND ﬁT. R.(0) =

Sol:

AR = R(Y,—180)R(X,90) —» 8T=

BR = R(X, —90)R(Z, 150) — BT=

10/19/2024

RH{HJZ
-1 0 0 0
0 0 -1 4 R.(6)
0 -1 0 2
0o 0 0 1
—0.866 —05 0 3 X367 P
0 0 1 0 Zap BN R S
—0.5 0866 0 0 2, " o
0 0o 0 1 19, s
RN

Systems & Control Engineering Dept.

(1 0 0
0 cos# sin #

|0 sinf!  cosé |
[ cosf 0 sind ]
0 1 0

| —sinf 0 cosf |
[ cos @ sinf 0]

sinf!  cosfd 0

L0 0 1,

11

FIGURE 2.26: Frames at the corners of a wedge.



2.37) Given
0.25 0.43 0.86 5

AT 0.87 —-0.50 0 —4
B~ 10.43 0.75 -0.50 3
0 0 0 1
Sol:
Br = 8RY —8R" “Peorg
O 0 O 1
0.25 0.87 0.43 2.11
BT — 0.43 —-0.50 0.75 1—6.35
A 9=.§=6======()======_==0=.=5=()==Ei=_=2=.=3=§
0 0 0 |
n
<P
4
>
P
>
m 10/19/2024

, what is the £T ?

—— —Inverting a transform

Systems & Control Engineering Dept.

12



l 15t Quiz

(1 0 0

Q) Referring to Fig. Below, give the value of 4T and T Ru@y= |0 otsl —dloip
|0 sinf  cos@ |
[ cosf® 0 sind]
R=| 0 1 o0
0.866 0.5 0 -3 | ~sinf 0 cosf]
AT 05 -0866 0 4 Fssil dind O
0 0 —1 2 R.(6) sinff cosf@ 0
0 0 0 1 | 0 0 1]
M&36.9° 14
2/1\ ZB _\ )?H < S
* 1%s Xc Ze 2

let’'s have some

Fun

R

10/19/2024 Systems & Control Engineering Dept. 13
/ ¢ rep FIGURE 2.26: Frames at the corners of a wedge.



Lecture 6 Robofics_
Forward '
Kinematics

Classical and Modified DH-
Convention

LECTURE 6
NINEVEH UNIVERSITY — SYSTEMS & CONTROL DEP.

PREPARED BY : YAZEN H SHAKIR
DATE : 27/11/2022 HTTP://RUTHERFORD-ROBOTICS.COM/PUMA/

26/11/2022

Recap from previous Lecture

Forward Kinematics
Axis (i-1)

Forward Kinematics

Linki

Link i=1 Link i-1

;
A% I X
/
% i h i«
() -s6

o o oF L fp | sen,  ctea,
1 1 L. . SOL.
i iT(ﬂ‘,‘,ﬂ‘,‘-de.) = RX(O‘H) DX(aM) Rz(ei) Dz(dj) sﬁios i1 ch, s, ,

**¥** Note: This derivation in Introduction to Robotics: Mechanics and Control
Book by John J Craig which is called ( Modified DH parameters )

0 a,
2y g di
Cy B4 0,
0 1




Another representation of Forward kinematics by Denavit-
Hartenberg representation of a general purpose joint-link
combination. (Drawn by S. Niku.) ( Classical DH- Matrix)

Joint n Joint n+1 Joint n+2

“n+1

/Parallel to 2,

| Parallel to z,_,

(a)

26/11/2022

Classical DH-representation according S. Niku. Textbook

5
z i

> Zntl -

Xn+1 C 2 Bt

Xnt1
—
641
(b) (c) (d)
Zu+12 Zy
Zutt Tn
Gt Xn+
L1 Ko
® (2)




The transformation n+711T (called 4,,,1) between two successive frames representing the preceding
four movements is the product of the four matrices representing them. Since all transformations are
relative to the current frame (they are measured and performed relative to the axes of the current
local frame), all matrices are post-multiplied. The result is:
"Tys1 = Appr = Rot(z,0up1) X Trans(0,0, dyp1) x Trans(a,s1,0,0) X Rot(x, otyp1)
Clpq =S, 00 I 0 0 0 L0 0 a,y 1 0 () 0
SO,1  Clyr 00 01 0 0 01 0 0 0 g —Spm 0
= X x X
0 0 10 0 0 1 duy 00 1 0 0 Seypr Coypy 0
0 0o 01 00 0 1 00 0 1 o o 1
Clyr1 —80,11Cayyg 86,01 Sty 11 a1 CO,1q
SG,,JF] (;9”+1 CO{”+1 — (:6',,+1 Sa’n+1 dy+1 89”+1
= g Sty Cttyr dyiq
0 0 0 1

Difference between Classical and Modified DH-Convention

Joint i+1 Axis i+l
W i
v
1 Joint i
i
Jointi-1 ‘j\" """"
\
NN
: S
\ di:
| |
\
\

Link i-1

and the order of the performed transformations.

Some books such as Introduction to Robotics: Mechanics and Control (3rd Edition) use modified DH parameters. The difference
between the classic DH parameters and the modified DH parameters are the locations of the coordinates system attachment to the links

26/11/2022



Recap from previous Lect.

a; = the Distance from Z; to Z;,, measured along X;,
a; = the angle from Z; to Z,,, measured about X,
d; = the distance from X;_, to X; measured along Z;;

6; = the angle from X;_, to X; measured about Z;;

26/11/2022

Ex7.1) Figure below shows a robot having three degrees of freedom and
one prismatic joint. This manipulator can be called an "RPR mechanism,"
in a notation that specifies the type and order of the joints. It is a
"cylindrical" robot whose first two joints are analogous to polar
coordinates when viewed from above. The last joint (joint 3) provides
"roll" for the hand.

Solution : Joint 2 Joint 3
1- draw first the Joint axes
2- If we have two intersect axes , the intersection point

(‘ .
Represents the origin of the frame. dgint.]

&>

Manipulator with 3 DOF, one
4- Prismatic Joint has variable offset (d) and 6=0. Joint is Prismatic

3- Revolute Joint has variable 8 , d=0.




Link Assignment

1- frame {0} and frame {1} are shown as exactly coincident in this figure,

because the robot is drawn for the position 8= 0.

2- it is sufficient that frame {0} be attached anywhere to the non-moving link 0

26/11/2022

DH- Parameter

1- Note that rotational joints rotate about the Z

axis of the associated frame, but prismatic joints
slide along Z. ai-q a;_q
1 0 0 0 04

2- Frame 2 should be attached to the point
where the minimum d, is zero .

3- 6, is zero for this robot and that d, is a
variable.

4- Axes 1 and 2 intersect, so a, is zero.

5- Angle a; must be 90 degrees in order to
rotate Z; so as to align with Z,, (about X1).

90 °




Forward Kinematics for Ex7.1

Co; —S6;

1_1.T=
L SHl-Sai_l CBl-Sal-_l
0 0
co, —S6; 0 0 10 0 0
r-|56 co 0 ofy_fo 0 -1 —d
0 0 1 0 01 0 0
0 0 0 1 0 0 O 1

SGiCai_l CBiCai_l

0 Ai—1
=Sy —Sa;_1d;
Caj-1  Caj1d;

0 1
Co; —S6; 0 0
20 _ [S65 €63 0 0
3 0 0 1 I
0 0 0 1

26/11/2022

Ex7.2: Figure below shows a three-link, 3R manipulator for which joint axes 1 and 2
intersect and axes 2 and 3 are parallel. Demonstrate the non-uniqueness of frame
assignments and of the Denavit— Hartenberg parameters by showing several possible

correct assignments of frames (1} and {2}.

I- Two possible frame assignments and
corresponding parameters for the two possible
choices of direction of Z,.

2- In general, when Z;, and Z;, ¢ intersect, there
are two choices for X;. In this example, joint
axes 1 and 2 intersect, so there are two choices
for the direction of X1.

3- In fact, If we take the rotation Axis Z;
downwards , so two more possible assignments

Three-link, non-planar manipulator




26/11/2022

Frame assignments for the Example 7.2 (Z,)

-

Frame assignments for the Example 7.2 (X;)




Case Studies on Industrial Robots (PUMA 560)

26/11/2022

Frame assignment for (PUMA 560)

Assumptions:
» 1-All joint angles equal to zero.
» 2-The frame {0} (not shown) is coincident with

frame [1} when 6 is zero.

» The joint axes of joints 4, 5, and 6 all intersect at a
common point, and this point of intersection
coincides with the origin of frames {4}, {5}, and

(6}.

» We will consider only the kinematics from joint
space to Cartesian space. However, that gearing
arrangement in the wrist of the manipulator
couples together the motions of joints 4, 5, and 6.




26/11/2022

Forearm frame assignment for (PUMA 560)

= d4

Multiple views for PUMA H

WAIST 320°
(JOINT 1)

SHOULDER 250°
(JOINT 2) END VIEW OF

MOUNTING FLANGE

ELBOW 270°
+ _ (JOINT 3)

WRIST BEND 200°
+ _(JOINT 5)

= FLANGE 532°
+ (JOINT &)

WRIST ROTATION 300° =
(JOINT 4) s 4
+




Link Parameters or DH- Parameters for PUMA 560

BT
1 0 0 0 0,

2 -90° 0 0 0,
3 0 a, ds 03
4 -90° as d, 0,
5 90 ° 0 0 05
) -90° 0 0 06

26/11/2022

Forward Kinematics Transformation

_C91 _591 0 0 CHZ —592 0 0 C93 _593 0 az
op_|S61 €6 0 Of 1p_| O 0 1 0|z _|S65 CO; 0 0O
1 0 0 1 of? -S6, —C6; 0 0|3 0 0 1 dg

[ 0 0 0 1 0 0 0 1 0 0 0 1

[ CO, —S6, 0 as Cos —S6s 0 0 C6y —-S8; 0 0O
(R0 0 1 dyfap_|0 0 -1 0|sp_| © 0 -1 0
5 -s6, —c6, 0 O0f° s6s cos 0 of° -S6s —COs 0 O

[ 0 R0 1 0 0 0 1 0 0 0 1

We now form by matrix multiplication of the individual link matrices. While

forming this product, we will derive some sub results that will be useful when

solving the inverse kinematic problem in Chapter 4.

10
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3.1 INTRODUCTION

3.2 LINK DESCRIPTION

3.3 LINK-CONNECTION DESCRIPTION

3.4 CONVENTION FOR AFFIXING FRAMES TO LINKS
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‘3.1 INTRODUCTION >

* A manipulator is a mechanical structure consisting of rigid bodies, or

links, connected together through joints. The manipulator part that : . .
& eh | P P Kinematics vs. Dynamics

most interacts with the surrounding environment, the last body in °

kinematics dynamics
the manipulator’s structure, is called the end-effector. The first part  The effect of a robot’s The effect of all forces (internal and
geometry on its motion. external) on a robot’s motion.
of the manipulator, the base, is typically fixed in the environment. [8]
* Kinematics is the science of motion that treats the subject without
rega rd to the forces that cause it. Assumes that we control Assumes that we control
encoder readings. .. motor current...

* Dynamics is the study of how forces affect the motion of objects.

 The model describing the relationships between the manipulator
configuration and the end-effector configuration is called the

forward kinematics of the manipulator.

31/10/2024 Systems & Control Engineering Dept. 3



3.1 INTRODUCTION
* Forward Kinematics: determine where the end-effector or the robot hand is located ( All the Joint Variables are known)
»You know already : length of each link , angle of each Joint.

»You are going to compute : position of any point in 3D- space .

Forward Kinematics End-effector

Joint osition
Variable : : P
Inverse Kinematics (X,y,2)

* Inverse Kinematics: the inverse process of forward kinematics in which calculate what each joint variable is (If we desire

that the hand be located at a particular point)
»you are given: length of each link, position of some point on the robot

»you find: The angles of each joint needed to obtain that position

10/31/2024 Systems and Control Dept. 4



3.1 INTRODUCTION

Forward Vs Inverse Kinematics for the manipulator

_E_rjd Effector

\\. A “.___.‘
4

Forward Kinematics (FK)
Joint Angles T End Effector Pose
q1, 92, 93,94 == x,y,6

Inverse Kinematics (IK)

=X

https://www.mathworks.com/discovery/inverse-kinematics.html
10/31/2024 Systems and Control Dept.




] 3.2 LINK DESCRIPTION >

A manipulator may be thought of as a set of bodies connected in a chain by

joints. These bodies are called links.

The term lower pair is used to describe the connection between a pair of
bodies when the relative motion is characterized by two surfaces sliding over

one another.

Most manipulators have revolute joints or have sliding joints called

prismatic joints.

In the rare case that a mechanism is built with a joint having n degrees of
freedom, it can be modeled as n joints of one degree of freedom connected

with n - 1 links of zero length.

31/10/2024 Systems & Control Engineering Dept.

In general, a manipulator has n joints
and n+1 links (including the base and

the end-effector).

Q
s(G!

Revolute Prismatic

\

Cylindrical Planar

0

Screw Spherical

6
FIGURE 3.1: The six possible lower-pair joints.




] 3.2 LINK DESCRIPTION >

A lower pair is an ideal joint that constrains contact between a surface in the moving body to a corresponding in the

fixed body. A lower pair is one in which there occurs a surface or area contact between two members, e.g. nut and

screw, universal joint used to connect two propeller shafts.

Oz

Revolute Prismatic Screw
1 Degree of Freedom 1 Degree of Freedom 1 Degree of Freedom

L X%

Cylindrical Spherical Planar

2 Degrees oY Frédom 3 Degrees of Freedom 3 Degrees of Frocddn and control Dept.

Kl ER
|




/3.2 LINK DESCRIPTION >

The links are numbered starting from the immobile base
of the arm, which might be called link 0. The first moving Axisi— 1 Axis i
body is link 1, and so on, out to the free end of the arm,

which is link n.

In order to position an end-effector generally in 3-space,

a minimum of six joints is required.

a link is considered only as a rigid body that defines the
relationship between two neighboring joint axes of a

manipulator.

Joint axes are defined by lines in space. Joint axis i is

FIGURE 3.2: The kinematic function of a link is to maintain a fixed relationship
between the two joint axes it supports. This relationship can be described with two
parameters: the link length, a, and the link twist, «.

defined by a line in space, or a vector direction, about

which link i rotates relative to link i - 1.

31/10/2024 Systems & Control Engineering Dept. 8



3.2 LINK DESCRIPTION

 For any two axes in 3-space, there exists a well-
defined measure of distance between them. This Ay =1 Axis f
distance is measured along a line that is mutually

perpendicular to both axes.

* This mutual perpendicular always exists; it is unique
except when both axes are parallel, in which case
there are many mutual perpendiculars of equal

length.

* Figure 3.2 shows link i—1 and the mutually

FIGURE 3.2: The kinematic function of a link is to maintain a fixed relationship
between the two joint axes it supports. This relationship can be described with two
parameters: the link length, a, and the link twist, «.

perpendicular line along which the link length, a;_4,

is measured.

31/10/2024 Systems & Control Engineering Dept. 9



3.2 LINK DESCRIPTION >

* The second parameter needed to define the relative

location of the two axes is called the link twist.

* If we imagine a plane whose normal is the mutually

perpendicular line just constructed, we can project

Axisi— 1 Axis i

the axes i — 1 and i onto this plane and measure the
angle between them. This angle is measured from axis

[ — 1toaxisiintheright-hand sense about a;_;.

* Fig. 3.2, a;_ is indicated as the angle between axis

i — 1andaxisi.

* In the case of intersecting axes, twist is measured in

the plane containing both axes, but the sense of a;_1

is lost. In this special case, one is free to assign the

sign of a;_q 3 rbitrari |y FIGURE 3.2: The kinematic function of a link is to maintain a fixed relationship
31/10/2024 Systems & Control Ebetween the two joint axes it supports. This relationship can be described with two
parameters: the link length, a, and the link twist, «.



3.2 LINK DESCRIPTION — Summary >

* Most manipulators have revolute joints or have sliding joints called prismatic or linear joints.

We will consider the Joint is one degree of freedom.

Base frame has link numbered “0”.

The first moving body is link 1.

4
* Link n denoted to the free end arm. O T
Qi
* Joint axes are defined by lines in space.
D) I + 1
\
AN
(J_F; oo
e fixed base )
#0 End-effector

10/31/2024 Systems and Control Dept. Fig. 5.27 Ser]al man]pdl}ator



3.2 LINK DESCRIPTION — Summary >
Axisi—1

* linki rotates relative to link i -1.

* Two parameter or two numbers can give the position and

orientation of the two joint axes relative each other:

1. a;_q refers to the link length or mutual perpendicular
from axis i — 1 to axis i. It is unique except for parallel
axis.

2. a;_q states the twist between two neighbouring Joints
which is called link twist . measured in the right-hand

sense about a;_4

10/31/2024 Systems and Control Dept.

Axis i

12



\ 3.3 LINK-CONNECTION DESCRIPTION >

* Neighboring links have a common joint axis between
them. One parameter of interconnection has to do
with the distance along this common axis from one
link to the next. This parameter is called the link

Axisi— 1 Axis i
offset.

Linki—1

e The offset at joint axis i is called d;. The second
parameter describes the amount of rotation about
this common axis between one link and its neighbor.

This is called the joint angle, 8;.

* The link offset d; is variable if joint i is prismatic.

* The joint angle 0; is variable if joint i is a revolute joint.

FIGURE 3.4: The link offset, d, and the joint angle, 8, are two parameters that may be
used to describe the nature of the connection between neighboring linlkgs.

31/10/2024 Systems & Control Engineering Dept.



‘ 3.3 LINK-CONNECTION DESCRIPTION >

First and last links in the chain

* Link length, a;, and link twist, a;, depend on joint axes i and i + 1. Hence, a4 through a,,_1 and a4 through «a,,_; are defined

as was discussed in this section.
* At the ends of the chain, it will be our convention to assign zero to these quantities. Thatis, ag = a,, = 0and ¢y = a,, = 0.

* Link offset, d;, and joint angle, 8;, are well defined for joints 2 through n — 1 according to the conventions discussed in this

Axisi—1 Axis i

section. Linki — 1

4

~

o)/

i+ 1
¢ 2,
#0 End-effector

Fig. 5.27 Serial manipulator

FIGURE 3.4: The link offset, d, and the joint angle, #, are two parameters that may be
used to describe the nature of the connection between neighboring links.
31/10/2024 Systems & Control Engineering Dept. 14



‘ 3.3 LINK-CONNECTION DESCRIPTION >

First and last links in the chain

* If joint 1 is revolute, the zero position for 81 may be chosen arbitrarily; d1 = 0.0 will be our convention. Similarly, if joint 1 is

prismatic, the zero position of d1 may be chosen arbitrarily; 81 = 0.0 will be our convention. Exactly the same statements

apply to joint n.

* These conventions have been chosen so that, in a case where a quantity could be assigned arbitrarily, a zero value is assigned
Axis i

Axisi—=1

so that later calculations will be as simple as possible.

Qi
."+l
”

¢ Q)
#0 End-effector

Fig. 5.27 Serial manipulator

4
0=~

FIGURE 3.4: The link offset, ¢, and the joint angle, 8, are two parameters that may be
used to describe the nature of the connection between neighboring links.
31/10/2024 Systems & Control Engineering Dept. 15



3.3 LINK-CONNECTION DESCRIPTION - First and last links in the chain — Summary

a ; and a ;depend on joint axes 1 and 1+1.
a ; and a ;depend on joint axes i and i+1
aA1,dy...0p_1anda{, a5 ... ,,_1

For simplicity :
ag=a, =0

0 " Axis : AXIS 41
Ao =0y, = 0 Xis ;

10/31/2024 Systems and Control Dept.
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3.3 LINK-CONNECTION DESCRIPTION - First and last links in the chain — Summary >

Axis 0 is connected to the base, it can be put it anywhere ,however, for simplicity we will put is coincident with
Axis 1. thus :

aop= 0

aog= 0

Axis 2

10/31/2024 Systems and Control Dept. 17



\ 3.3 LINK-CONNECTION DESCRIPTION - Link parameters - Denavit—Hartenberg notation >

Any robot can be described kinematically by giving the values of

four quantities for each link.

Two describe the link itself, and two describe the link’s

Axisi—1 Axis i

connection to a neighboring link.

In the usual case of a revolute joint, 8; is called the joint
variable, and the other three quantities would be fixed link

parameters.

For prismatic joints, d; is the joint variable, and the other three

guantities are fixed link parameters.

FIGURE 3.4: The link offset, d, and the joint angle, &, are two parameters that may be
The definition of mechanisms by means of these qua ntities is g used to describe the nature of the connection between neighboring links.

convention usually called the Denavit—Hartenberg notation.

31/10/2024 Systems & Control Engineering Dept. 18



3.4 CONVENTION FOR AFFIXING FRAMES TO LINKS

In order to describe the location of each link relative to its neighbors, we define a frame attached to each link. The

link frames are named by number according to the link to which they are attached. That is, frame {i} is attached

rigidly to link i.
Axisi— 1 Axis |
Linki—1
DY
Link i
a;
31/10/2024 Systems & Control Engineering Dept. 19

FIGURE 3.5: Link frames are attached so that frame {i} is attached rigidly to link i.



3.4 CONVENTION FOR AFFIXING FRAMES TO LINKS - Intermediate links in the chain

e The convention we will use to locate frames on the links is as
follows: The Z — axis of frame {i}, called Z;, is coincident with

the joint axis i.

* The origin of frame {i} is located where the a; perpendicular Axis i~ 1 Asis
intersects the joint i axis. X; points along a; in the direction from
jointi to jointi+ 1.

* In the case of a; = 0, X; is normal to the plane of Z; and Z;, ;. We

define a; as being measured in the right-hand sense about Xj,

and so we see that the freedom of choosing the sign of «; in this

case corresponds to two choices for the direction of X;, Y; is

FIGURE 3.5: Link frames are attached so that frame {i} is attached rigidly to link /.

formed by the right-hand rule to complete the ith frame. Figure

3.5 shows the location of frames {i — 1} and {i} for a general

. 31/10/2024 Systems & Control Engineering Dept. 20
manipulator.



Intersecting Joint Axes >

Axisi+1

The direction of angle « ; is slected based on X
— axis choice

10/31/2024 Systems and Control Dept.

Axisi+ 1
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3.4 CONVENTION FOR AFFIXING FRAMES TO LINKS - First and last links in the chain

* We attach a frame to the base of the robot, or link 0, called frame {0}. This frame does not move; for the problem
of arm kinematics, it can be considered the reference frame. We may describe the position of all other link frames

in terms of this frame.

* Frame {0} is arbitrary, so it always simplifies matters to choose Z, along axis 1 and to locate frame {0} so that it

coincides with frame {1} when joint variable 1 is zero.

* Using this convention, we will always have ag = 0, ag = 0. Additionally, this ensures that dq = 0 if joint 1 is

Axisi— 1 Axis i

revolute, or 8; = 0 if joint 1 is prismatic.

31/10/2024 Systems & Control Engineering Dept.

FIGURE 3.5: Link frames are attached so that frame {7} is attached rigidly to link 7.



3.4 CONVENTION FOR AFFIXING FRAMES TO LINKS - First and last links in the chain

* For joint n revolute, the direction of Xy is chosen so that it aligns with Xy_; when 6,, = 0, and the origin of

frame {N} is chosen so that d,, = 0.

* For joint n prismatic, the direction of )?N is chosen so that 8,, = 0, and the origin of frame {N} is chosen at the

intersection of Xy_; and joint axis n whend,, = 0.

31/10/2024

Axisi— 1 AXIS §

Linki —1

~

R

/
/
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FIGURE 3.5: Link frames are attached so that frame {i} is attached rigidly to link i.



Summary of the link parameters in terms of the link frames

If the link frames have been attached to the links according to our convention, the following definitions of the link parameters are

Axisi— 1 Axis i

valid:

a; = the distance from Z; to Z;., measured along X;;

a; = the angle from Z; to Z;., measured about X;;

d; = the distance from X;_, to X; measured along Z;; and

0; = the angle from X;_; to X; measured about Z;.

We usually choose a; > 0, because it corresponds to a distance; however, «;, d;, and 8; are'signed quantities

FIGURE 3.5: Link frames are attached so that frame {i} is attached rigidly to link 7.

A final note on uniqueness is warranted. The convention outlined above does not result in a unique attachment of frames to links. First

of all, when we first align the Z- axis with joint axis i, there are two choices of direction in which to point ?i.

Furthermore, in the case of intersecting joint axes (i.e., a; = 0), there are two choices for the direction of 5\(1-, corresponding to the

choice of signs for the normal to the plane containing Z; and Z;. 4.

When axes i and i + 1 are parallel, the choice of origin location for {i} is arbitrary (though generally chosen in order to cause d; to be

zero). AfS&VMRen prismatic joints are present, there is'géite’d bit Of fregdotei frame assignment. (See also Example 3.5.) 24




Summary of link-frame attachment procedure

The following is a summary of the procedure to follow when faced with a new mechanism, in order to properly attach the link

frames:

1. Identify the joint axes and imagine (or draw) infinite lines along them. For steps 2 through 5 below, consider two of these

neighboring lines (at axesiandi + 1).

2. ldentify the common perpendicular between them, or point of intersection. At the point of intersection, or at the point

where the common perpendicular meets the i th axis, assign the link-frame origin.
3. Assign the Z; axis pointing along the i th joint axis.

4. Assign the X; axis pointing along the common perpendicular, or, if the axes intersect, assign X; to be normal to the plane

containing the two axes.
5. Assign the ?i axis to complete a right-hand coordinate system.

6. Assign {0} to match {1} when the first joint variable is zero. For {N}, choose an origin location and X direction freely, but

generally so as to cause as many linkage parameters as possible to become zero.

31/10/2024 Systems & Control Engineering Dept. 25




Denavit-Hartenberg Notation (D-H convention)

Kinematically can describe the robot by four parameters:-a;, o, ,d ;,, 0 ;

1T = R(X, ag_y) T(Xag_1)) R(Z 0;) T(Z dgp)

0r =97 It i1

Three of those parameters are constant, ( 3 Fixed parameters)

One Joint Variable (0 ; for revolute joint while d ; for prismatic Joint).

a i, o i gives the description for the link i

d;,, 0 ; describe the connection between links.

i—liT

Co,

SGi Ca(i—l)

SBi Sa(i—l)
0

10/31/2024

S0, 0

CBi Ca(i—l) —S0(j-1)

CBi Sa(i—l) Ca(i—l)
0 0

.. N-1

N

Axisi—1 Axisi
Linki—1
M D
A Link ¢
Zi—
A
< :
Azi-1)
y > i
_Sa(i_l) di l, a1 d‘// P 4/7L““
. . ! )?i*l ' ‘
Cag-) d; / ===II7TT Z i
1 - rk T~ fLH
R

Systems and Control Dept. 26



Summary of DH

Axis i-1 gnacd

a.: distance (z, z..) along x
a:: angle (z, z..) about x.
d: distance (xi-1, xi ) along zi

Axis i+1

i+1

6:: angle (x.., x;) about z

10/31/2024 Systems and Control Dept.
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EXAMPLE 3.3/ Page 69

Figure 3.6(a) shows a three-link planar arm. Because all three joints are revolute, this manipulator is sometimes called an RRR (or

3R) mechanism. Fig. 3.6(b) is a schematic representation of the same manipulator. Note the double hash marks indicated on
each of the three axes, which indicate that these axes are parallel. Assign link frames to the mechanism and give the Denavit-

Hartenberg parameters. a; = the distance from Z; to Z;,; measured along X;

. a; = the angle from Z; to Z;, 1 measured about X;;

Solution: ! g torm v
d; = the distance from X;_; to X; measured along Z;; and

0; = the angle from )7,-51 to X; measured about Z;.
S 3 1

X
! - -y dl 0,
1 0 0 0 0, @_/
X,
2 0 L, 0 0,
7, “
3 0 L 0 0,

FIGURE 3.8: Link parameters of the three-link planar manipulator. (b)

FIGURE 3.6: A three-link planar arm. On the right, we show the same manipulator
31/10/2024 Systems & Control Enginebyrmeans of a simple schematic notation. Hash marks on the axes indicate that they

FIGURE 3.7: Link-frame assignments. are mutually parallel.



EXAMPLE 3.4/ Page 71

Figure 3.9(a) shows a robot having three degrees of freedom and one prismatic joint. This manipulator can be called an “RPR

mechanism,” in a notation that specifies the type and order of the joints. It is a “cylindrical”’ robot whose first two joints are

analogous to polar coordinates when viewed from above. The last joint (joint 3) provides “roll” for the hand. Figure 3.9(b)

shows the same manipulator in schematic form. Note the symbol used to represent prismatic joints, and note that a “dot” is

used to indicate the point at which two adjacent axes intersect. Also, the fact that axes 1 and 2 are orthogonal has been

indicated. Axisi—1 Axisi

a; = the distance from Z; to Z;,, measured along X;;
a; = the angle from Z; to Z;,, measured about X;;
d; = the distance from X;_; to X; measured along Z;; and

8; = the angle from X;_; to X; measured about Z;.

H _______ @i— aj— d; 0;
3 o
axqyfixed base &) ;
#0 End-effector / 0 0 0 0,
Fig. 5.27 Seriaimaniplilator Joint 2 Joint 3
1 ! -
Nan; Tl - LB
! Joint 1
L,
_L 0 0 L, 5
(a) (b) o ®
31/10/2024 FIGURE 3.11- LK parAmeEters 161 e PR thanipulator of Example 3.4. 23

FIGURE 3.10: Link-frame assignments.

FIGURE 3.9: Manipulator having three degrees of freedom and one prismatic joint.



1) [2] Page (34) The frame F shown in Figure 2.7 is located at 3, 5, 7 units, with its n-axis parallel to
X, its 0-axis at 45° relative to the y-axis, and its a-axis at 45° relative to the z-axis. The frame can

be described by:

Solution:

1 1] ]
R.(0)= |0 cosf —sinf

|0 sinf!  cosé |
[ cosf® 0 sinf]
R,(#) = 0 1 0

sinfl (0 cos#

[ cos @ sin@ 0]

R.(&) sinfl  cosf 0

Figure 2.7 An example of repres:

X tion of a frame in space. L 0 0 1]
1 0 0 3
_ 10 0.707 -0.707 5
0 0.707 0.707 7
0 0 0 1

2) |2] Page (40) A frame F has been moved nine units along the x-axis and five units along the z-axis

of the reference frame. Find the new location of the frame:

0.527 0.574 0.628 5
0.369 0.819 0.439 3
—0.766 0 0.643 8

0 0 0 1

F =

Solution:
Fhew = Trans(dy, dy, d,) X Foiq = Trans(9,0,5) X Foiq
0/ 0.369 0.819 0.439

5
3
5|1-0.766 0 0.643 8
1 0 0 0 1

Frew =

SR OO

9\[0.527 0.574 0.628

S OO
S O = O

0.527 0.574 0.628 14

F _ 10369 0819 0439 3
new  1-0.766 0 0.643 13
0 0 0 1



3) |2] Page (43) A point P (2, 3, 4-)T is attached to a rotating frame. The frame rotates 90° about the
x-axis of the reference frame. Find the coordinates of the point relative to the reference frame

after the rotation, and verify the result graphically.

Solution:
Py 1 0 0 Py 1 0 0 2 2
Py =[o Co —So[X|P, =[0 0 —1(X]3 =[—4]
P, 0 Se Co P, 01 O 4 3
: z (10 0
R.(0)= |0 cosf —sind
L0 sinfl  cosé |
[ cosd 0 sind]
R(&)=| 0 1 0
L —sinf 0 cosf |
[cos® —sinf 0]
R.(0) = | sin@ cosd 0
| o 0o 1]

Figure 2.12 Rotation of a frame relative o the reference frame.



4) [2] Page (44) A point P(7,3,2)7 is attached to a frame (1, ©,2) and is subjected to the
transformations described next. Find the coordinates of the point relative to the reference
frame at the conclusion of transformations.

a) Rotation of 90° about the z-axis,
b) Followed by a rotation of 90° about the y-axis,
¢) Followed by a translation of [4, —3, 7].

Solution:

Fd I

i
ay
o
/ 0, | T
ny 32 \h‘
¥ ¥
X X
After the first transformation After the second transformation

After the third transformation

Figure 2.13 Effects of three successive transformations.
Pyy, = Trans(4,—3,7) Rot(y, 90)Rot(z,90)P,,, =

4 0 0 —1 01 [7 6
-3 0 1 of.[3] |4
7X—1 X0 0X2_10
1 0 0 1] 11 1

nyz

S OO
S O - O
SR OO
[l =]
S O O
= o OO
oS O O
SR OO



5) [2] Page (45) In this case, assume that the same point P(7,3,2)T, attached to a frame (1, 0, a), is
subjected to the same transformations, but that the transformations are performed in a different
order, as shown. Find the coordinates of the point relative to the reference frame at the
conclusion of transformations:

a) A rotation of 90° about the z-axis,
b) Followed by a translation of [4, -3, 7],
¢) Followed by a rotation of 90° about the y-axis.

Solution:

Py, = Rot(y, 90) Trans(4, —3,7) Rot(z, 90)P,,, =

0O 0 1 0 1 0 0 4 0O -1 0 O 7 9
10 1 0 O 01 0 -3 1 0 0 O 31 _| 4
PXyZ_—1000)(()01 7XO 0 10X2_—1
0O 0 0 1 0 0 0 1 0O 0 0 1 1 1
FJ ﬂ‘: z
'y '} - I}
a r "
L ) 0 14
+ 3 .
Hl ) T I'. - 4
¥ ) ¥
X x
Adfter the first transformation After the second transformation

After the third transformation

Figure 2.14 Changing the order of transformations will change the final result.



6) [2] Page (47) Assume that the same point as in (5) is now subjected to the same transformations,
but all relative to the current moving frame, as listed next. Find the coordinates of the point
relative to the reference frame after transformations are completed:

a) A rotation of 90° about the a-axis,
b) Then a translation of [4, -3,7] along n, 0,a

¢) Followed by a rotation of 90° about the 0-axis.

Solution:

P.y; = Rot(a,90) Trans(4,—-3,7) Rot(0,90)P,,, =

0 -1 0 O 1 0 0 4 0 01 0 7 0

_fr 0 0 O 01 0 -3 0 1 .0 O 31_16
PXyZ_OO 10X001 7X—1000X2_0
0 0 01 0 00 1 0 0 0 1 1 1

L]
L]

l‘!; 2
o

X X

After the first transformation After the second transformation

) ¥
X lﬂlr’if:]‘F:'l.'l:‘-I )
After the third transformation

Figure 2.15 Transformations relative to the current frames.



7) |2] Page (47) A frame B was rotated about the x-axis 90°; it was then translated about the current
a-axis 3 inches before being rotated about the z-axis 90°. Finally, it was translated about current
o-axis 5 inches.

(a) Write an equation describing the motions.

(b) Find the final location of a point P(1,5,4) attached to the frame relative to the reference frame.

Solution:
In this case, motions alternate relative to the reference frame and current frame.

UPg = Rot(z,90) Rot(x,90)Trans(0, 0,3) Trans(0,5,0) =

Up = UT, X Bp
0 -1 00 [L O 0 O [L OO O TL 0O O 1] [7
e 11 0 0 o|l,J0o 0 =1 o]l {0 1 0 of,]0 1 0 5|, (5] _|1
P=1o o 1 o/%lo 1 o ol*fo o 1 3[%|o o 1 o|%|4|T |10
0o 0 o1l loo o 11 lo o o 1l lo o o 1l I1 1

8) [2] Page (51) Calculate the matrix representing Rot(x,40°)!
Solution:

The matrix representing a 40° rotation about the x-axis is

1 0 0 0
o |0 0766 —0643 0
R®40°) =10 0643 0766 0
0 0 0 1
The inverse of this matrix is
1 0 0 0
w1 |0 0766 0643 0
ROt 409" =10 0643 0766 0
0 0 0 1



9) |2] Page (52) Calculate the inverse of the following transformation matrix:

0.5 0 0.866 3
T = 0.866 0 -5 2
0 1 0 5
0 0 0 1
Solution:
RT = [ QRT _QRT APBORG]
0 0O 1
05 0866 0 —(3*05+2+0.866+5%*0)
T-1 = 0 0 1 —B3*x0+2x0+5%1)
0866 —05 0 —(3%0.866+2%—-05+5=*0)
0 0 0 1
05 0866 0 -—3.23
T-1 = 0 0 1 -5
0.866 —-0.5 0 -—1.598
0 0 0 1

Note: You may want to verify that T * T~ will be an identity matrix.



10) [2] Page (52) In a robotic setup, a camera is attached to the fifth link of a robot with six degrees
of freedom. The camera observes an object and determines its frame relative to the camera's
frame. Using the following information, determine the necessary motion the end effector has to

make to get to the object:

0 0 -1 3 0 -1 0 0

sp [0 -1 0 0| s. _|1 0 0 0
cam—™1 491 0 o0 5/ "H7lo o 1 4
0O 0 o0 1l 0 0 0 1

0 0 1 2] 1 0 0 0

camp (1 0 0 2] y, |01 0 0
i " 1o 1 0 4 E710 0 1 3

0 0 0 1] 0 0 0 1

Solution:

E — E H 5 cam — Hp—-1 5p-1 5 cam
Tobj - TH TS Tcam obj — TE TH Tcam Tobj

1 0 0 O 0 1 0 0]
Hp-1 |01 0 0 sp-1 _|~1 0 0 0
E 0 01 -3 H 0 0 1 —4
0 0 0 1 0 0 0 1]

10 0 0 0 1.0 0 0 0 -1 3110 0 1 2
en |01 0 0],|-1 0 0 0 0 -1 0 O0|,]1t 0 0 2
Tobi 001—3X001—4X—1o 05X01o4

0 00 1 0 0 0 1 o0 o0 o0 1/ lo o 0o 1

-1 0 0 =2
g |0 1 0 1
obj "o 0 —1 —4
0 0 0 1



11) [9] (Page 38) From the figure 2.4 the frame x,y,Zq is rotated through an angle 0 about the z, —
axis, and it is desired to find the resulting transformation matrix RY.
Note that by convention the positive sense for the angle 0 is given by the right-hand rule; that is,
a positive rotation of 0 degrees about the z-axis would advance a right-hand threaded screw

along the positive z-axis.

0. =1

T cosl

IR 1
sin

Iy Yo

Figure 2.4: Rotation about zg.

Solution:
X1.-Xg9 V1-Xo Z1-Xp
RY = [X1:Yo ¥Y1:-Yo Z1-Yo
X1.Zg Vi-Zo Z1-Zo
X1.Xg = cosO V1-Xo = —sin0
X1.Yo = SinB V1-Yo = cosO Z1-Zg =1

From Figure 2.4 we see that and all other dot products are zero. Thus the transformation R? has a particularly

simple form in this case, namely

R (z9,0) =RY = |sin® cosB 0

cos® —sin0 0]
0 0 1




12) [9] (Page 44) The vector ¥ with coordinates v° = (0,1,1)7 is rotated about y, by;—r as shown in

Figure 2.8. Find the resulting vector.

(e

Figure 2.8: Rotating a vector about axis ;.

b RERE (R

13) |9] (Page 45) Suppose a rotation matrix R represents a rotation of ¢ degrees about the current

Solution:

y — axis followed by a rotation of 0 degrees about the current z — axis. Find the matrix R.

Solution:

R =Ry ¢)R(z6)

21, 22
h
v
\ —
\
Ae—m
YRS T
- - /l‘ > ~ N y2
L, &7 0 RN
‘ Y1
,5’32

Figure 2.9: Composition of rotations about current axes.



14) [9] (Page 45) Suppose that the above rotations are performed in the reverse order, that is, first
a rotation about the current z-axis followed by a rotation about the current y-axis. Find the

resulting rotation matrix.

Solution:

R =R(z¢)R(y,0)

15) [9] (page 47) Suppose that a rotation matrix R represents a rotation of ¢ degrees about y,

followed by a rotation of 8 about the fixed z,. Find R.
Solution:
R =R (ZOI (p) R (Yo' 9)

20

Figure 2.9: Composition of rotations about current axes.



Summary [9] (Page 48)

We can summarize the rule of composition of rotational transformations by the following recipe. Given
a fixed frame x,y,Z, a current frame x,y,Z, together with rotation matrix R{ relating them, if a third
frame x,vy,7, is obtained by a rotation R performed relative to the current frame then postmultiply

R} by R = R} to obtain
RY = RYR} —— ———— (2.47)

If the second rotation is to be performed relative to the fixed frame then it is both confusing and
inappropriate to use the notation R} to represent this rotation. Therefore, if we represent the rotation

by R, we premultiply R by R to obtain
RS = RRY —— —— —— (2.48)

In each case Rg represents the transformation between the frames x,y,z, and x,v,%,. The frame x,v,7,

that results in (2.47) will be different from that resulting from (2.48).

20

Figure 2.10: Composition of rotations about fixed axes.

16) [9] (Page 53) Suppose R is generated by a rotation of 90 about z, followed by a rotation

of 30 about y, followed by a rotation of 60° about xX,. Find the rotation equation.

Solution:

R = R(Xo, 60)R(yO, 30)R(Z0, 90)



17) [9] (Page 58) Find the homogeneous transformation matrix H that represents a rotation of a
degrees about the current x-axis followed by a translation of b units along the current x-axis,
followed by a translation of d units along the current z-axis, followed by a rotation of 0 degrees

about the current z-axis.
Solution:

H = Rot(x, a) Trans(b, 0,0) Trans(0, 0, d) Rot(z, 6)

1 0 0 0 1 0 0 b 1 0 0 O ce =S 0 O

_ |0 Ca —=Sa 0 01 0 0 01 00 S8 C6 0 O
= 0 Sa Ca O X 0 01 O0 X 0 0 1 d X 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1



Denavit-Hartenberg Representation of Forward Kinematic Equations

a; = the distance from Z; to Z;,, measured along X;;
a; = the angle from Z; to Z;,, measured about X;;
d; = the distance from X;_; fo X; measured along Z;; and

0; = the angle from X;_ to X; measured about Z;.

a, = the distance from Z,. to ZI+1 measured along )"(f;
a; =theangle from Zi to Zi—&-l measured about )21-;

d; = the distance from }A(,-fl to }A('t- measured along Zi; and

=)

. =the angle from }?171 to )”(,- measured about 2!-. [1] (page 69)

TIT =R(X o) T(X, ag-1)) R(Z,8) T(Z, dg))

Co; ~56; 0 ai-y
. _1IS8i Cagi—qy C€O; Caimgy —SQi—1) —SOg-1) di]
T T lse; Sy, €8 Sagopy  Cagopy  Cogo 1)d |
0 0 0 J

ch; —s6; 0 a;_q
sbica;_q cOico;_ —sa;_y —so;_qd;
s;so;_q cOisa;_q coy_y coy_qd;

0 0 0 1

CIT = (3.6)

[1] (page 75)
oT =917 it 21 O NAT

Sr={ririr. VT (3.8)
[1] (page 76)

Axisi—1 Axis i

1+l
Q
AN\

#0 End-effector
Fig. 5.27 Serial manipulator

(&),

Fixed base




1) [1] (Page 69) Figure 3.6(a) shows a three-link planar arm. Because all three joints are revolute,
this manipulator is sometimes called an RRR (or 3R) mechanism. Fig. 3.6(b) is a schematic

representation of the same manipulator.

Note the double hash marks indicated on each of the three axes, which indicate that these axes are

parallel. Assign link frames to the mechanism and give the Denavit-Hartenberg parameters.

(a) (b)

FIGURE 3.6: A three-link planar arm. On the right, we show the same manipulator
by means of a simple schematic notation. Hash marks on the axes indicate that they
are mutually parallel.

Solution:
ai—q | j—1 dl 01
1 0 0 016,
2| L1 0 016,
3| L2 0 0| 6s

a; =the distance from Z; to Z;, | measured along X;;
a; =theangle from 2,» to Zi—s—l measured about ).([;

d; = the distance from )2',-_1 to }A(l- measured along Zr-; and

>

. = the angle from 5([_1 to )A{{- measured about Z,-.

FIGURE 3.7: Link-frame assignments.



2) [1] (Page 71) Figure 3.9(a) shows a robot having three degrees of freedom and one prismatic
joint. This manipulator can be called an “RPR mechanism,” in a notation that specifies the type
and order of the joints. It is a “cylindrical” robot whose first two joints are analogous to polar
coordinates when viewed from above. The last joint (joint 3) provides “roll” for the hand. Figure

3.9(b) shows the same manipulator in schematic form.

Note the symbol used to represent prismatic joints, and note that a “dot” is used to indicate the point
at which two adjacent axes intersect. Also, the fact that axes 1 and 2 are orthogonal has been

indicated.

Joint 2 Joint 3

(_Oft ¥ Ot

Joint 1
=0

———9

(a) (b)

FIGURE 3.9: Manipulator having three degrees of freedom and one prismatic joint.

Solution:

N

>

>
>
?<>

a1 | a1 | di | 6
1] 0 0 016,
21 0 9 |d, | 0O
31 0 0 |L,| 65

a; = the distance from Z; to Z;, | measured along X;
a; =the angle from Z; to Z; | measured about X;;

d; = the distance from X; | to X; measured along Z;; and

D

. =the angle from X; | to X; measured about Z;.



3) [1] (Page 72) Figure 3.12(a) shows a three-link, 3R manipulator for which joint axes 1 and 2

intersect and axes 2 and 3 are parallel. Figure 3.12(b) shows the kinematic schematic of the

manipulator.

Note that the schematic includes annotations indicating that the first two axes are orthogonal and that
the last two are parallel. Demonstrate the nonuniqueness of frame assignments and of the Denavit—

Hartenberg parameters by showing several possible correct assignments of frames {1} and {2}.

(a) (b)

FIGURE 3.12: Three-link, nonplanar manipulator.

Solution:

Figure 3.13 shows two possible frame assignments and corresponding parameters for the two possible choices
of direction of Z,. In general, when Z; and Z;,, intersect, there are two choices for X;. In this example, joint

axes 1 and 2 intersect, so there are two choices for the direction of X;.

ai_1 | ai—q | d; | 6; a1 | a1 | d;i | 6;
1| 0 90 | 0 1| 0 90 0
2| L, 0 |Ly| -9 2| L, 0 |—Ly|90
3 3




Figure 3.14 shows two more possible frame assignments, corresponding to the second choice of X;.

a, = 0 Q= Lz

a, = 0 a, = Lz
a; = 90° a, =0 0, = 90° a; = —90° a, =0 0, = —90°
dl=0 dzle d1=0 dzz_Ll

ai_q | @i—q | di | 6; ai_q | ai_q1 | d; 0;
1 0 9 | 0 1| 0 90 | O
2| L, 0 | Ly| 90 2| L, 0 |—Ly| -90
3 3

In fact, there are four more possibilities, corresponding to the preceding four choices, but with Z;pointing
downward.

a; = the distance from 2[ to ZA'I.Jrl measured along }2'[;

a; = the angle from 21 to 2{-4_1 measured about )A(,-;

d; = the distance from X;_; to X; measured along Z;; and
6;

= the angle from )A{Fl to )2'!- measured about Z,-.



4) [1] (Page 92) (3.3) The arm with three degrees of freedom shown in Fig. 3.29. Joint I's axis is not

parallel to the other two. Instead, there is a twist of 90 degrees in magnitude between axes 1 and

2. Derive link parameters and the kinematic equations for ST (gT ). Note that no I3 need be

defined.
b
|
1
| i
FIGURE 3.29: The 3R nonplanar arm (Exercise 3.3).
Solution:
Y
a1 | Xi—1 dl 91 ’
1/ 0 0 | 0| 6, Zy,1 Y,
Y, X
2 Ll 90 0 92 X2
3/ L, | 0 | 0] 65 §1
COi —591 0 a(i_l) 'l
i-tp = |S8iCoggy  CO; Caigy  —S1)  —S-1) i
1
| SGI Sa(i—l) CGI Sa(i—l) Ca(i_l) Ca(i_l) di
0 0 0 1
Cel —591 0 0 Cez _sez 0 Ll C93 _893 O Lz
- S6; CB; 0 O T = 0 0 -1 0 2T = S6; CB; O O
1 0 0 1 o] 2 se, €6, O o 3 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1

BT =9T =9T i1 3T



5) [1] (Page 95) (3.16) Assign link frames to the RPR planar robot shown in Fig. 3.36, and give the
linkage parameters.

b5

d- /\‘
/

2/

Y

FIGURE 3.36: RP R planar robot (Exercise 3.16).

Solution:
X, X
Qg | @i—q | d; | 6 N
10 [ 0 |d]| 0 “
/Z\goutofpage

0‘5"\ 7, Jﬂl

{0} = {1) when 8,=0

6) [15] (Page 7) The robotic device has three active DOFs arranged in a revolute-revolute-prismatic

(R—R-P) configuration as shown in Figure below.

< d¥
ai_q aiq d; 0;
~ > 3
1 0 -90 0 0, U z, >z,
2 1 90 0 6, 2 4
3 0 0 ds 0 ¢
8,
v
‘ Zl
*i W
> 9,
ZG@
A - Yo



7) [12] (page 40) Let us assign the link frames to the PUMA-type manipulator shown in figure

2.23 and obtain 0T6 .
1

B,

lg

(a) (b)
Figure 2.23

PUMA-type manipulator. (a) PUMA robot (courtesy of Westinghouse Automation
Division/Unimation Inc.). (b) Link structure.

Solution:

Following the scheme of the previous subsection, we obtain the link frames shown in figure 2.24 and the

link parameters in table below.

a1 di1q d; 0;
1 0 0 0 04
2 0 -90 I, — 1y 0,
3 I, 0 0 04
4 l, -90 ly 0,
5 0 90 0 s
6 0 -90 0 O¢

Cﬂi —SSI 0 a(i_l) 'l

17— [SO; Cai—yy  CO; Coiogy —sago1y —sa—qy dil

1
|SGI Sa(i—l) COI Sa(i—l) Ca(i—l) Ca(i—l) di Figure 2.24
0 0 0 1 Link frames for PUMA robot.




8) [12] (Page 36) The Stanford manipulator, developed mainly for research purposes, has the

mechanism shown in figure 2.20.

. Joint 4
Link 6L Joint 3/4/
Link 5 —= :
: Joint 5
Link 4—= Joint 1
Link 3
Link 2 Joint 2%_ Joint 6
Link 1 |
Link 0
(a) (b)
Figure 2.20

Stanford manipulator. (a) Link structure. (b) Appearance.
Solution:

The link frames determined by the above procedure for this manipulator are shown in figure 2.2 1; the link

parameters are given in table 2.1.

Note that figure 2.21 shows a reference configuration for which §; = 0 (i = 1,2,4,5,6) and all the X; axes
are in the same direction. Also note that d5 is not taken to be zero in the figure, because a configuration with

d; = 0 is unattainable.

|
ai_q ai—q dl 91
Zy, Zuy, 22
1 0 0 0 0,
r
2 0 290 d, 0, X, = Xo ]
3 0 90 ds 0
4 0 0 0 0,
5 0 -90 0 05 Zo 2y =
¥ 4
6 0 90 0 B¢ Vag g Z3
Xﬂ. XI. ' Xz .
[ CGI —SGI 0 a(i_l) 'l l E
i-1p — |S6; Cai—1y CO; Coiogy —sag-1y —sa-1y dil
! | SGI Sa(i—l) C61 Sa(i—l) Ca(i—l) Ca(i—l) di
l 0 0 0 1 Figure 2.21 )
Link frames for Stanford manipulator.




Joint §
I Joint ¢ + 1

[l

Joint i =1

Linki—-1

Joint 1

Link 0

Figure 2.22

Another assignment of link frames.



9) [13] (Page 121) As an example, consider a 6-DOF manipulator (Stanford Manipulator) whose
rigid body and coordinate frame assignment are illustrated in Figure 3. Note that the
manipulator has an Euler wrist whose three axes intersect at a common point. The first (RRP)
and last three (RRR) joints are spherical in shape. P and R denote prismatic and revolute joints,

respectively. Find the DH parameters corresponding to this manipulator.

X5

X3

Figure 3. Rigid body and coordinate frame assignment for the Stanford Manipulator.

Solution:

a;_q Ai_q d; 0;
1 0 0 hy 0,
2 0 90 d, 0,
3 0 -90 ds 0
4 0 0 0 0,
5 0 90 0 05
6 0 -90 0 O¢

Figure 4. Zero position for the Stanford Manipulator.
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Introduction
to Inverse

Kinematics
Lectur-8-

Introduction

Forward Kinematics:
» Joint variables are given ( 8 or d) depending whether ( R or P Joints)
» Calculate the location of the end-effectors location and Orientation
Inverse Kinematics:

» Given end-effector position (X,Y and Z)
»Find Joint variables ( 84,60, or d4,d,)

b ——
—

62
—

I Inverse Kinematics
—

On
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REACHABLE And dextrous workspaces

Reachable workspace: Set of
end frames reachable in at
least one orientation

* Always includes the edge of the
workspace

* Dextrous workspace: Set of

end frames reachable in any
orientation

* Never includes the edge of the
workspace

Dextrous
Workspace

Reachable Workspace

Existence and Uniqueness

In linear algebra: linear equations
always have one and only one
solution (y=mx-+c;y=0)
Nonlinear equations can have
none or many (Y=ax’+bx+c;Y=0)
Same in higher dimensions, e.g.
kinematics of robotics

Solutions may not exist — lie
outside of workspace

Solutions may not be unique —
more than one set of joint angles
achieves the goal

Dextrous
Workspace

Reachable Workspace
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2 LINK

PLANAR RR: RECAP

I R I T T
Bl o 0 0 0,

« What is the position of the end
point of Link 2 in the GCS?

0 _ 0 2
PEndZ - 2T PEndZ

Lycg 10,1 L1iCo,
L;sg, +6,%L15g,
0
1

» Worked example two
weeks ago — see also .
Craig, Ch. 3.

2 LINK
PLANAR RR INVERSE
KINEMATICS

» Given a specified Xand Y
position in the GCS for the
end of the second link, what
are the joint angles which 3
achieve it? 7)(

Lycg, +o,tL1cg, x

L;sg,+6,*L15g, _Y 't} g ‘ \ %
0 0 : .

1 1

\d
91 — ? Z” ’2137% X 1
6 2 = 7 2
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Inverse Kinematics RP Example :

> Find the inverse Kinematics for the RP
Robot ?

R I

tanf =

6 =tan~!

R I

»Find L ?

L=/x?%+y?

The Laws of Cosines and Sines

Sin Law

sin4 sinB sinC

L3 L2 L1

L3
Cos Law

L12=L22 + L32 - 2L2L3COS(C)
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Inverse kinematics for RR

* RR robot planar robot find its Inverse
Kinematics

* Find o,

Applying Cosine Law
c?=a? + b? — 2abcos(angle opposite (c))
x% 4+ y2=L? +L,* — 2L L 5 cos(180 — 0 ;)

cos(180 — 8 ,)=-cos(6 )

—1 (x*+y?-L,*-L ;7
6 ,=cos 1( M

2L 1L 5

Inverse kinematics for RR
* Find 4,
From geometry
I Gl P — aztan_li
Using Sine Law sin4  sinB  sinC
a b ¢ v

a,b and c: opposite members for each angle

sin6 3 _ sin(180-6 ;) sin(6 ;)
L Vatty? o Jx24y?’

-1 L 2 Sin(Q 2)

0 ; =sin
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Inverse kinematics for RR for this example

0, = cos_1<

x2+y2 —L,%—L,*
2L.L,

L, sin(@
0 = tan_1¥ —sin™?! (—2 ( 2))

NzEse

Xy L1

Three Link Cartesian Robot (3P)

Given the coordinate of the —

end —eftfector ( x, y and

z)

d2 i 7 Top View

a LW

Required : find the Joint

variables d1,d2,d3 as a
function of (x , y and z)

» To simplify the problem
we will Look from Side

and Top views

Side View 9

A

Z0 YO

A\ :

X0 ThreeLink —

|

(x,y,2)

Cartesian robot

12

d3
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Inverse Kinematics for Three Link

Cartesian Robot (3P) | ]
d2 Top View
dZ=X C— >
d3=L1-z ( [
Z0 1
I d2 d1l ' /
:/ d3
L1 Side View d3 |
[ J
(x' y! Z)
YO
XO‘ Three Link — Cartesian robot
Inverse Kinematics for Three Link |
Cartesian Robot (3P) | ]
d2 Top View
dz=x M > A
vo d1=y ( [
) P y
d1l
— d2
T [+
A d3
d1 o .
Top View y (x.y,2)
\ YO
X
XO‘ Three Link — Cartesian robot
7
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Two-link manipulator with link lengths L;and L.

» If L= L, reachable workspace consists
of a disc of radius 2L;.

» The dextrous workspace has single
point which is the origin.

» 1If L # L, , there is no dextrous
workspace and the reachable
workspace is realised in two cases a
ring of outer radius L+ L, and ring
with inner radius |L;— L,]|.

» Inside the reachable workspace there
are two possible orientations of the
end-effector while in on the boundaries
only one possible solution can be
existed.

Multiple solutions

» In the absence of
the obstacle, the
upper dashed
configuration in
Fig. 10.3 would be
chosen.

» Weights might be

applied in the

calculation of -

which solution is T wé ""--._(;)

"closer”. That ~

means the Fig10.3: One of the two possible Fig10.2: Three-link manipulator.
movement of the solutions to reach point B causes Dashed lines indicate a second
smaller Joints are a collision. solution.

easier than the
larger ones that
carry links
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Multiple solutions

Number of solution depends on:

1- Number of joints as a function of Link
parameters (a ,d , alpha and theta).

2- Allowable ranges of motion of the joints.

e.g. PUMA 560 can reach certain goals with eight
different solutions. Fig 10.4 shows four possible
solution for the same XYZ coordinate. In addition
each one of these four position can be reached by
oriented the Joints 4,5 and 6 as follow:

9‘1 - 94 + 1800,
9; - —95,
9'; == Bﬁ + 18‘00.

Fig10.4: Four solutions of the
PUMA 560

Number of solutions vs. nonzero a4

_ Number of Solution

a, =a3 =as =0 <4
a =as =0 <8
a3= <16
A]]ai;tO <16
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Ex: Give a description of the subspace of 5T for the three-link
manipulator

The subspace of 5T is given by:

C@ S@ 0 x
BT: _S(D C@ 0 y
w 0 0 1 0
0 0 0 1

Link lengths and joint limits restrict the workspace
of the manipulator to be a subset of this subspace.

Workspace C subspace C space

Algebraic solution for RRR

Ci123 —S123 0.0 licq + Lheqp

BT =0T = S123  Ciz3 0.0 lys1+ 13812
0.0 0.0 1.0 0.0
0 0 0 1

The subspace can therefore be given as
cg —Sg 00 «x

BT — S@ C@ 0.0 y
" oo 00 1.0 00 ¥
o 0 0 1

CQ) =C123)wennres (])

SQ) =5123cruener (2)
x=l1C1 + lzclz,........(3)
y=l151 + lzslz, ......... (4)

10
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Algebraic solution

We use the trigonometric formula
C12=C1C2 — S152,

S12 =C1Sy + S1C3,

Then

x2+y?2=1% + 15+ 2l 1,0y,

x2+y?-1%2 —13

Cor=
2 2141,
Sy = /1—c22
1S
6, =tan 12
C2

Algebraic solution

We attempt to find 6,

From eqn. (3) and (4)
ki=l; + l,c,,
ko=13s,,

Find the radius
r=+kZ + k3

1 ks

= tan - —
Y dan kl

11
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Algebraic solution

ki =rcosy

k, =rsiny
Eqgn. (4) and (5) can be written now:
X

= cosy cosB; —sinysinf;

g
sin(ly +6,) = -
Using the two-argument arctangent, we get
0, = Atan2(y, x)) — Atan2(k,, k;)

12



