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Who Coined the Terms Robot & Robotics
• The term robot was first introduced by the Czech playwright Karel Capek in his 1920 play Rossum’s Universal

Robots, the word robota (meaning “worker.”) being the Czech word for worker. Since then the term has been

applied to a great variety of mechanical devices, such as teleoperators, underwater vehicles, autonomous cars,

drones, etc. Virtually anything that operates with some degree of autonomy under computer control has at some

point been called a robot. [4]

• robot and robotics were coined by science fiction writers. Karel Capek gave us robot in his 1922 play Rossum’s

Universal Robots (RUR), and Isaac Asimov coined the word robotics in the early 1940s to describe the art and

science in which we roboticists are engaged today. [5]
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Who Coined the Terms Robot & Robotics
• There is an important distinction between these two science fiction writers. Capek decided that robots would

ultimately become malevolent and take over the world, while Asimov from the outset built circuits into his robots

to assure mankind that robots would always be benevolent. [5]

• In summary, a robot is a programmable machine that can complete a task, while the term robotics describes the

field of study focused on developing robots and automation.
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• Any automatic machine cannot be considered as a robot. Robot is to have a specific set of characteristics.

Interestingly, a 3-axis computer numerical control (CNC) milling machine may have a very similar configuration

and control system of a robot arm. [7]

• However, the CNC machine is just a machine. It cannot do jobs other than milling. But the robot must do

something more. That is why the definitions are proposed for a machine to be a robot. Different countries have

different definitions for a robot. [7]
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Definitions of Industrial Robot
• The Robot Institute of America (RIA, 1985) defines the robot as

A robot is a reprogrammable multi-function manipulator designed to move materials, parts, or specialized devices 

through variable programmable motions for the performance of a variety of tasks.

This definition restricts robots in industrial applications. The two important key words are ‘ reprogrammable’ and ‘

multi-functional’. If the machine is single functional, it cannot be reprogrammable. Reprogrammable means that

(i) the robot motion is controlled by a written program and

(ii) the program can be modified to change significantly the robot motion.

Multi-functional implies that a robot is able to perform many different tasks depending on the program in the

memory and tooling at the end of arm. This means that the robot can be programmed for welding with a welding

tool at the end of arm and can be reprogrammed if the end of arm has a totally new facility such as for gripping. [7]
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Definitions of Industrial Robot
• Another, a little broader definition is proposed by McKerrow (1986) as

A robot is a machine which can be programmed to do a variety of tasks in the same way that a computer is an 

electronic circuit which can be programmed to do a variety of tasks.

• This definition excludes numerical control machines because they can be programmed for variations within only

one task. Teleoperators are also not considered as robots because there is a human in the control system. They

provide extended capabilities, not a replacement of a human. [7]
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Definitions of Industrial Robot [7] 
• The International Standards Organization (ISO 8373) defines a robot in a similar way as follows:

A robot is an automatically controlled, reprogrammable, multi-purpose, manipulative machine with several 

reprogrammable axes, which may be either fixed in place or mobile for use in industrial automation applications.

• This definition specifically mentions ‘reprogrammable axes’ for industrial tasks. Such a definition particularly

points out that industrial robots are very suitable to modern industries. [7]

• There are several such definitions on robots – industrial robots in particular. One way or other, each definition has

to be expanded to suit the functioning of the modern industrial robots. In most cases, the definition given by RIA

is accepted to be closer to industrial robots of modern times and such a definition is considered worth designing

industrial robots. [7]
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Understanding the 
complexity of robots and 
their application requires 

knowledge of 

electrical 
engineering, 

mechanical 
engineering, 

systems and 
industrial 

engineering, 

computer 
science, 

economics, 

and 
mathematics.
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engineering, and knowledge engineering have

emerged to deal with the complexity of the field

of robotics and factory automation. More

recently, mobile robots are increasingly important

for applications like autonomous vehicles and

planetary exploration. [4]
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• An official definition of such a robot comes from the Robot Institute of America (RIA):

A robot is a reprogrammable, multifunctional manipulator designed to move material, parts, tools, or specialized 

devices through variable programmed motions for the performance of a variety of tasks. [4] 

The key element in the above definition is the reprogrammability, which gives a robot its utility and adaptability. The

so-called robotics revolution is, in fact, part of the larger computer revolution. [4]

• Even this restricted definition of a robot has several features that make it attractive in an industrial environment.

Among the advantages often cited in favor of the introduction of robots are decreased labor costs, increased

precision and productivity, increased flexibility compared with specialized machines, and more humane working

conditions as dull, repetitive, or hazardous jobs are performed by robots. [4]
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Automation & Industrial Automation
• Automation is based on foundations of automatic control and obviously on feedback theory. [7]

• Automation helps the industrial manufacturers in achieving high productivity, high level of accuracy, consistent

quality and increased labour saving. [7]

• The term ‘Industrial automation’ is defined as the technology concerned with control of systems in the process of

achieving an end product. The process of achieving the end product has to be with minimum or no human

intervention. [7]

• Intuitive inventions were contributing to the development of automatic control and hence automation till 1868

when Maxwell formulated the mathematical model (in terms of differential equations) to describe a system. He

demonstrated the effect of parameters on system performance. The concepts of accuracy and stability were

understood. [7]
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Automation & Industrial Automation
• The mathematical models in different forms such as transfer function, pulse transfer function, describing function

and state variable modelling were considered as inevitable tools for analysing and designing of control systems.[7]

• The idea of using computers in automation emerged during 1950s.

• Automation without a computer is now hard to imagine.

• Analogue computers were used as on-line controllers in continuous processes such as steel and paper industries.

• The cost of analogue controllers increased linearly with increased control loops. On the other hand, even though

initial cost of digital computer was large, the cost of adding additional loops was small.
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Automation & industrial robots 
• Automation and industrial robots are two closely related technologies. According to definition of automation, an

industrial robot can be considered itself as a form of automation.

• A robot (industrial robots) is a general purpose programmable machine which possesses the characteristics of a

human arm. The robot can be programmed by its computer to move its arm through sequences of motion in

order to perform some useful tasks. It repeats the motions over and over until it is reprogrammed to perform

some other task. Many industrial operations involve robots working together with other equipment.
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The Laws of Robotics
• In 1942, Sir Isaac Asimov developed the famous three laws (Law one, Law two and Law three) of robotics which

still remain as worthy industrial design standard. However, the laws have been extended and revised by him and

others since 1985 to accommodate his creations, his attitude to robotics and the modern requirements of

humanity. The extended set of laws is as follows:

• The Meta-Law

A robot may not act unless its actions are subject to the laws of robotics.

• Law Zero

A robot may not injure humanity, or through inaction, allow a humanity to come to harm (humanity is the family of

all human beings and other biologically living things).

• Law One

A robot may not injure a human being, or through inaction, allow a human being to come to harm, unless this would

violate a higher order (an earlier stated) law.30 September, 2024 Systems & Control Engineering Dept. 14



The Laws of Robotics
• Law Two

• A robot must obey orders given by human being, except where such orders would conflict with a higher order law.

• A robot must obey orders given by subordinate robots, except where such orders would conflict with a higher

order law.

Law Three

• A robot must protect the existence of a subordinate robot as long as such protection does not conflict with a

higher order law.

• A robot must protect its own existence as long as such protection does not conflict with a higher order law.

• Law Four

• A robot must perform the duties for which it has been programmed, except where that would conflict with a

higher order law.
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The Laws of Robotics
• The Procreation Law

• The robot may not take any part in the design or manufacture of a robot unless the new robot’s actions are

subject to the laws of robotics.

• The robots which are strictly manufactured in accordance with the above rules do behave better than human

beings.

• When the concept of robot was introduced and strengthened, the necessity of industrial automation was also

deeply felt. Moreover, the technological progress in thermionic valve (1904), hydraulic and pneumatic systems

(1906), logic circuits (1943), digital computer (1946), transistor (1947), microelectronics (1970) and

microcomputer (1977) have all made automation and robotics a reality. The first commercial robot, controlled by

limit switches and cams, was introduced in 1959. Since then, the development in robot technology has been in

constant growth. Nowadays, the service robot within industry and in other areas of applications has made a

breakthrough in robot applications.
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2.1 INTRODUCTION2.1 INTRODUCTION

• Description of a position 
• Description of an orientation
• Description of a frame 
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• Mappings involving translated frames
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2.1 INTRODUCTION 2.1 INTRODUCTION 
Robotic manipulation, by definition, implies that parts and tools 

will be moved around in space by some sort of mechanism. [1]

This naturally leads to a need for representing positions and

orientations of parts, of tools, and of the mechanism itself. [1]

To define and manipulate mathematical quantities that represent 

position and orientation, we must define coordinate systems and 

develop conventions for representation. [1]

We will describe all positions and orientations with respect to the 

universe coordinate system or with respect to other Cartesian 

coordinate systems that are (or could be) defined relative to the 

universe system. [1]
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2.2 DESCRIPTIONS: POSITIONS, ORIENTATIONS, AND FRAMES 2.2 DESCRIPTIONS: POSITIONS, ORIENTATIONS, AND FRAMES 
• A description is used to specify attributes of various objects with which a manipulation system deals. These

objects are parts, tools, and the manipulator itself. 
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Description of a position Description of a position 
• Once a coordinate system is established, we can locate any point in the

universe with a 3 × 1 position vector.

• Because we will often define many coordinate systems in addition to the

universe coordinate system, vectors must be tagged with information

identifying which coordinate system they are defined within.

• vectors are written with a leading superscript indicating the coordinate system

to which they are referenced — for example, 𝑷𝑨 .

• This means that the components of 𝑷𝑨 have numerical values that indicate

distances along the axes of {A}.

𝑷𝑨 =

𝑷𝒙

𝑷𝒚

𝑷𝒛

 −− −(2.1)
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Description of a position Description of a position 
• Figure 2.1 pictorially represents a coordinate system, {A}, with three mutually

orthogonal unit vectors with solid heads.

• A point 𝑷𝑨 is represented as a vector and can equivalently be thought of as a

position in space, or simply as an ordered set of three numbers.

𝑷𝑨 =

𝑷𝒙

𝑷𝒚

𝑷𝒛

 −− −(𝟐. 𝟏)

• For example, in a 3D space, let's consider a point P(3, 2, 1). The position vector

of this point from the origin O(0, 0, 0) would be: 𝑷𝑶 = 𝟑ଙ̂ + 𝟐 ଚ̂+ 𝒌෡
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Vectors and Geometry of SpaceVectors and Geometry of Space
For the following equations, assume that vectors 𝑎⃗, 𝑏, 𝑐 and are defined as:

𝑎⃗ = 𝑎ଵ, 𝑎ଶ, 𝑎ଷ , 𝑏 = 𝑏ଵ, 𝑏ଶ, 𝑏ଷ , 𝑐 = 𝑐ଵ, 𝑐ଶ, 𝑐ଷ ,

Length of vector 𝑎⃗:

𝑎⃗ = 𝑎ଵ
ଶ + 𝑎ଶ

ଶ + 𝑎ଷ
ଶ

The unit vector corresponding to vector 𝑎⃗ is:

௔

௔
=

௔భప⃗ା௔మఫ⃗ା௔య௞

௔భ
మା௔మ

మା௔య
మ

The dot product between vectors 𝑎⃗ and 𝑏:
𝑎⃗. 𝑏 = 𝑎⃗ 𝑏 cosθ

The angle between the two vectors θ is:

cosθ =
𝑎⃗. 𝑏

𝑎⃗ 𝑏
=

𝑎ଵ𝑏ଵ + 𝑎ଶ𝑏ଶ + 𝑎ଷ𝑏ଷ

𝑎ଵ
ଶ + 𝑎ଶ

ଶ + 𝑎ଷ
ଶ 𝑏ଵ

ଶ + 𝑏ଶ
ଶ + 𝑏ଷ

ଶ
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Description of an orientation Description of an orientation 
• Often, we will find it necessary not only to represent a point in space but also

to describe the orientation of a body in space.

• For example, if vector 𝑷𝑨 in Fig. 2.2 locates the point directly between the

fingertips of a manipulator’s hand, the complete location of the hand is still

not specified until its orientation is also given. Assuming that the manipulator

has a sufficient number of joints, the hand could be oriented arbitrarily while

keeping the point between the fingertips at the same position in space.

• In order to describe the orientation of a body, we will attach a coordinate

system to the body and then give a description of this coordinate system

relative to the reference system. In Fig. 2.2, coordinate system {B} has been

attached to the body in a known way. A description of {B} relative to {A} now

suffices to give the orientation of the body.
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• Thus, positions of points are described with vectors and orientations of bodies are described with an attached

coordinate system. One way to describe the body attached coordinate system, {B}, is to write the unit vectors of

its three principal axes in terms of the coordinate system {A}.

• We denote the unit vectors giving the principal directions of coordinate system {B} as 𝑿෡𝑩, 𝒀෡𝑩, and 𝒁෡𝑩. When

written in terms of coordinate system {A}, they are called 𝑿෡𝑨, 𝒀෡𝑨, and 𝒁෡𝑨.

• It will be convenient if we stack these three unit vectors together as the columns of a 3 × 3 matrix, in the

order 𝑿෡𝑩
𝑨 , 𝒀෡𝑩

𝑨 , 𝒁𝑩
𝑨 . We will call this matrix a rotation matrix, and, because this particular rotation matrix

describes {B} relative to {A}, we name it with the notation 𝑹𝑩
𝑨 (the choice of leading sub and superscripts in the

definition of rotation matrices will become clear in following sections):

𝑹𝑩
𝑨 = 𝑿෡𝑩

𝑨   𝒀෡𝑩
𝑨   𝒁𝑩

𝑨 =

𝒓𝟏𝟏 𝒓𝟏𝟐 𝒓𝟏𝟑

𝒓𝟐𝟏 𝒓𝟐𝟐 𝒓𝟐𝟑

𝒓𝟑𝟏 𝒓𝟑𝟐 𝒓𝟑𝟑

 −− −(𝟐. 𝟐)
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• Hence, whereas the position of a point is represented with a vector, the orientation of a body is represented with

a matrix.

𝑹𝑩
𝑨 = 𝑿෡𝑩

𝑨   𝒀෡𝑩
𝑨   𝒁𝑩

𝑨 =

𝒓𝟏𝟏 𝒓𝟏𝟐 𝒓𝟏𝟑

𝒓𝟐𝟏 𝒓𝟐𝟐 𝒓𝟐𝟑

𝒓𝟑𝟏 𝒓𝟑𝟐 𝒓𝟑𝟑

 −− −(𝟐. 𝟐)

𝑹𝑩
𝑨 = 𝑿෡𝑩

𝑨   𝒀෡𝑩
𝑨   𝒁𝑩

𝑨 =  

𝑿෡𝑩. 𝑿෡𝑨 𝒀෡𝑩. 𝑿෡𝑨 𝒁෡𝑩. 𝑿෡𝑨

𝑿෡𝑩. 𝒀෡𝑨 𝒀෡𝑩. 𝒀෡𝑨 𝒁෡𝑩. 𝒀෡𝑨

𝑿෡𝑩. 𝒁෡𝑨 𝒀෡𝑩. 𝒁෡𝑨 𝒁෡𝑩. 𝒁෡𝑨

 −− −(𝟐. 𝟑)

• For brevity, we have omitted the leading superscripts in the rightmost matrix of (2.3).

• The dot product of two unit vectors yields the cosine of the angle between them, so it is clear why the

components of rotation matrices are often referred to as direction cosines.

𝑹𝑩
𝑨 = 𝑿෡𝑩

𝑨   𝒀෡𝑩
𝑨   𝒁𝑩

𝑨 =  

𝑿෡஺
்஻

𝒀෡஺
்஻

𝒁෡஺
்஻

 −− −(𝟐. 𝟒)

𝑹𝑩
𝑨 = 𝑹்

𝑨
஻ −− −(𝟐. 𝟓)
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𝑹𝑩
𝑨 = 𝑿෡𝑩

𝑨   𝒀෡𝑩
𝑨   𝒁𝑩

𝑨 =

𝒓𝟏𝟏 𝒓𝟏𝟐 𝒓𝟏𝟑

𝒓𝟐𝟏 𝒓𝟐𝟐 𝒓𝟐𝟑

𝒓𝟑𝟏 𝒓𝟑𝟐 𝒓𝟑𝟑

 −− −(𝟐. 𝟐)

𝑹𝑩
𝑨 = 𝑿෡𝑩

𝑨   𝒀෡𝑩
𝑨   𝒁𝑩

𝑨 =  

𝑿෡𝑩. 𝑿෡𝑨 𝒀෡𝑩. 𝑿෡𝑨 𝒁෡𝑩. 𝑿෡𝑨

𝑿෡𝑩. 𝒀෡𝑨 𝒀෡𝑩. 𝒀෡𝑨 𝒁෡𝑩. 𝒀෡𝑨

𝑿෡𝑩. 𝒁෡𝑨 𝒀෡𝑩. 𝒁෡𝑨 𝒁෡𝑩. 𝒁෡𝑨

 −− −(𝟐. 𝟑)

𝑹𝑩
𝑨 = 𝑿෡𝑩

𝑨   𝒀෡𝑩
𝑨   𝒁𝑩

𝑨 =  

𝑿෡஺
்஻

𝒀෡஺
்஻

𝒁෡஺
்஻

 −− −(𝟐. 𝟒)

𝑹𝑨
𝑩 = 𝑹்

𝑩
஺ −− −(𝟐. 𝟓)

𝑹𝑩
𝑨 𝑹்

𝑩
஺ =

𝑿෡஻
்஺

𝒀෡஻
்஺

𝒁෡஻
்஺

𝑿෡𝑩
𝑨   𝒀෡𝑩

𝑨   𝒁𝑩
𝑨 = 𝑰𝟑 −− −(𝟐. 𝟔)

𝑹𝑩
𝑨 = 𝑹ିଵ

𝑨
஻ = 𝑹்

𝑨
஻  −− −(𝟐. 𝟕)
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• For convenience, the point whose position we will describe is chosen as the origin of the body-attached frame.

• The situation of a position and an orientation pair arises so often in robotics that we define an entity called a

frame, which is a set of four vectors giving position and orientation information.

• Note that a frame is a coordinate system where, in addition to the orientation, we give a position vector which

locates its origin relative to some other embedding frame. For example, frame {𝐵} is described by 𝑹𝑩
𝑨  and

𝑷𝑩𝑶𝑹𝑮
𝑨 , where 𝑷𝑩𝑶𝑹𝑮

𝑨 is the vector that locates the origin of the frame {𝐵}:

𝐵 = { 𝑹𝑩
𝑨 , 𝑷𝑩𝑶𝑹𝑮

𝑨 } − − − (2.8)
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• In Fig. 2.3, there are three frames that are shown along with the universe coordinate system. Frames {A} and {B}

are known relative to the universe coordinate system, and frame {C} is known relative to frame {A}.

• In Fig. 2.3, we introduce a graphical representation of frames, which is convenient in visualizing frames. A frame

is depicted by three arrows representing unit vectors defining the principal axes of the frame. An arrow

representing a vector is drawn from one origin to another. This vector represents the position of the origin at the

head of the arrow in terms of the frame at the tail of the arrow. The direction of this locating arrow tells us, for

example, in Fig. 2.3, that {C} is known relative to {A} and not vice versa.
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• In summary, a frame can be used as a description of one coordinate system relative to another.

• A frame encompasses two ideas by representing both position and orientation and so may be thought of as a

generalization of those two ideas.

• Positions could be represented by a frame whose rotation-matrix part is the identity matrix and whose position-

vector part locates the point being described.

• Likewise, an orientation could be represented by a frame whose position-vector part was the zero vector.
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MAPPINGS: CHANGING DESCRIPTIONS FROM FRAME TO FRAME MAPPINGS: CHANGING DESCRIPTIONS FROM FRAME TO FRAME 
• In a great many of the problems in robotics, we are concerned with expressing the same quantity in terms of

various reference coordinate systems. The previous section introduced descriptions of positions, orientations, and

frames; we now consider the mathematics of mapping in order to change descriptions from frame to frame.
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Mappings involving translated frames Mappings involving translated frames 
• In Fig. 2.4, we have a position defined by the vector 𝑷𝑩 . We wish to express this point in space in terms of frame

{A}, when {A} has the same orientation as {B}. In this case, {B} differs from {A} only by a translation, which is

given by 𝑷𝑩𝑶𝑹𝑮
𝑨 , a vector that locates the origin of {B} relative to {A}

𝑷 = 𝑷𝑩 +𝑨 𝑷𝑩𝑶𝑹𝑮 𝑨 −− −(𝟐. 𝟗)

• Note that only in the special case of equivalent orientations may we add vectors that are defined in terms of

different frames.
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Mappings involving rotated framesMappings involving rotated frames
𝑹𝑩

𝑨 = 𝑹ି𝟏
𝑨
𝑩 = 𝑹𝑻

𝑨
𝑩  −− −(𝟐. 𝟏𝟎)

𝑹𝑩
𝑨 = 𝑿෡𝑩

𝑨   𝒀෡𝑩
𝑨   𝒁𝑩

𝑨 =

𝑿෡𝑨
𝑻𝑩

𝒀෡𝑨
𝑻𝑩

𝒁෡𝑨
𝑻𝑩

−− − 𝟐. 𝟏𝟏

𝒑𝒙 = 𝑿෡𝑨
𝑩 .𝑨 𝑷𝑩 ,

𝒑𝒚 = 𝒀෡𝑨
𝑩 .𝑨 𝑷𝑩 , - - - (2.12)

𝒑𝒛 = 𝒁෡𝑨
𝑩 .𝑨 𝑷𝑩 ,

𝑷𝑨 = 𝑹𝑩
𝑨 𝑷𝑩  −− −(𝟐. 𝟏𝟑)

4 October, 2024 Systems & Control Engineering Dept. 17



Mappings involving general framesMappings involving general frames
𝐏𝐀 = 𝐑𝐁

𝐀 𝐏𝐁 + 𝐏𝐁𝐎𝐑𝐆
𝐀 −− −(𝟐. 𝟏𝟕)

𝐏𝐀 = 𝐓𝐁
𝐀  𝐏𝐁  −− − 𝟐. 𝟏𝟖

𝐏𝐀

𝟏
= 𝐑𝐁

𝐀 𝐏𝐁𝐎𝐑𝐆
𝐀

𝟎 𝟎 𝟎 𝟏
𝐏𝐁

𝟏
 −− − 𝟐. 𝟏𝟗  𝐜𝐚𝐥𝐥𝐞𝐝 𝐚 homogeneous transform

4 October, 2024 Systems & Control Engineering Dept. 18



Mappings involving general framesMappings involving general frames

𝑷𝑨

𝟏
= 𝑹𝑩

𝑨 𝑷𝑩𝑶𝑹𝑮
𝑨

𝟎 𝟎 𝟎 𝟏
𝑷𝑩

𝟏
 −− −(𝟐. 𝟏𝟗)

1. a “1” is added as the last element of the 4 × 1 vectors;

2. a row ‘‘[0 0 0 1]’’ is added as the last row of the 4 × 4 matrix.

The 4×4 matrix in (2.19) is called a homogeneous transform. For our purposes, it can be regarded purely as a construction

used to cast the rotation and translation of the general transform into a single matrix form. In other fields of study, it can

be used to compute perspective and scaling operations (when the last row is other than ‘‘[0 0 0 1]’’ or the rotation matrix

is not orthonormal).

𝑷𝑨 = 𝑹𝑩
𝑨 𝑷𝑩 + 𝑷𝑩𝑶𝑹𝑮

𝑨 −− −(𝟐. 𝟐𝟎)

1=1

4 October, 2024 Systems & Control Engineering Dept. 19



Rotation Matrix

• 𝑹𝒙𝑩
𝑨 =

𝟏 𝟎 𝟎
𝟎 𝑪𝜽 −𝑺𝜽
𝟎 𝑺𝜽 𝑪𝜽

 −− −(𝒂𝒃𝒐𝒖𝒕 𝑿)

• 𝑹𝒚𝑩
𝑨 =

𝑪𝜽 𝟎 𝑺𝜽
𝟎 𝟏 𝟎

−𝑺𝜽 𝟎 𝑪𝜽
 −− − 𝒂𝒃𝒐𝒖𝒕 𝒀

• 𝑹𝒛𝑩
𝑨 =

𝑪𝜽 −𝑺𝜽 𝟎
𝑺𝜽 𝑪𝜽 𝟎
𝟎 𝟎 𝟏

 −− − 𝒂𝒃𝒐𝒖𝒕 𝒁

4 October, 2024 Systems & Control Engineering Dept. 20



Example 2.1 / Page 26Example 2.1 / Page 26
Figure 2.6 shows a frame {B} that is rotated relative to frame {A} about 𝒁෡ by 30 degrees. Find the rotation matrix? 

Then find the translation matrix of 𝑷𝑩 =
𝟎
𝟐
𝟎

relative to {A}?

Solution:
𝑅 = 𝑅𝑂𝑇 𝑧̂, 𝜃

𝑅௭஻
஺ = 𝑋෠஻

஺   𝑌෠஻
஺   𝑍஻

஺ =  

𝑋෠஻. 𝑋෠஺ 𝑌෠஻. 𝑋෠஺ 𝑍መ஻. 𝑋෠஺

𝑋෠஻. 𝑌෠஺ 𝑌෠஻. 𝑌෠஺ 𝑍መ஻. 𝑌෠஺
𝑋෠஻. 𝑍መ஺ 𝑌෠஻. 𝑍መ஺ 𝑍መ஻. 𝑍መ஺

𝑅௭஻
஺ =

𝐶𝜃 −𝑆𝜃 0
𝑆𝜃 𝐶𝜃 0
0 0 1

=
𝐶30 −𝑆30 0
𝑆30 𝐶30 0

0 0 1
=

0.866 −0.5 0
0.5 0.866 0
0 0 1

𝑃஺ =  𝑅௭஻
஺  𝑃஻ =

0.866 −0.5 0
0.5 0.866 0
0 0 1

0
2
0

=
−1

1.732
0

𝑅௭஻
஺  acts as a mapping that is used to describe 𝑃஻ relative to frame {A}, 𝑃஺ .

As was introduced in the case of translations, it is important to remember that, viewed as a mapping, the original 
vector P is not changed in space.  

4 October, 2024 Systems & Control Engineering Dept. 21



Example 2.2 / Page 29Example 2.2 / Page 29
Figure 2.8 shows a frame {B} that is rotated relative to frame {A} about 𝐙෠ by 30 degrees, translated 10 units in 𝐗෡𝐀, 
and translated 5 units in 𝐘෡𝐀 .Find the 𝐏𝐀 , where 𝐏𝐁 = 𝟑 𝟕 𝟎 𝐓.

Solution:
R = ROT zො, θ

The definition of frame {B} is

T୆
୅ =

Cθ −Sθ 0 X
Sθ Cθ 0 Y
0 0 1 Z
0 0 0 1

=

0.866 −0.5 0 10
0.5 0.866 0 5
0 0 1 0
0 0 0 1

𝐏𝐀 = 𝐓𝐁
𝐀  𝐏𝐁  −− − 𝟐. 𝟏𝟖

𝑷𝑨

𝟏
= 𝑹𝑩

𝑨 𝑷𝑩𝑶𝑹𝑮
𝑨

𝟎 𝟎 𝟎 𝟏
𝑷𝑩

𝟏
 −− −(𝟐. 𝟏𝟗)

P୅ =

0.866 −0.5 0 10
0.5 0.866 0 5
0 0 1 0
0 0 0 1

3
7
0
1

=

9.098
12.562

0
1
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• Translational operators
• Rotational operators
• Transformation operators

2.4 OPERATORS: TRANSLATIONS, ROTATIONS, AND TRANSFORMATIONS

2.5 SUMMARY OF INTERPRETATIONS 

• Compound transformations
• Inverting a transform

2.6 TRANSFORMATION ARITHMETIC 

2.7 TRANSFORM EQUATIONS
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2.4 OPERATORS: TRANSLATIONS, ROTATIONS, AND TRANSFORMATIONS

• The same mathematical forms used to map points between frames can also be

interpreted as operators that translate points, rotate vectors, or do both.

• Translational operators

• Rotational operators

09/10/2024 Systems & Control Engineering Dept. 3



Example 2.3 / Page 32
Figure 2.10 shows a vector 𝑷𝟏

𝑨 . Compute the vector obtained by rotating this vector about 𝒁෡ by 30 degrees. Call 
the new vector 𝑷𝟐

𝑨 .
Solution:

𝑅௭ (30,0) =
𝐶𝜃 −𝑆𝜃 0
𝑆𝜃 𝐶𝜃 0
0 0 1

=
𝐶30 −𝑆30 0
𝑆30 𝐶30 0

0 0 1
=

0.866 −0.5 0
0.5 0.866 0
0 0 1

𝑃ଵ
஺ =

0
2
0

𝑃ଶ = 𝑅௭ (30,0) ஺ 𝑃ଵ
஺ =

−1
1.732

0
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Example 2.4 / Page 33
Figure 2.11 shows a vector 𝑷𝟏

𝑨 . Compute the vector obtained by rotating this vector about 𝒁෡ by 30 degrees and
translate it 10 units in 𝑿෡𝑨 and 5 units in 𝒀෡𝑨 . F𝐢𝐧𝐝 𝑷𝟐

𝑨 , where 𝑷𝟏
𝑨 = [𝟑 𝟕 𝟎] 𝑻.

Solution:

𝑃ଵ
஺ =

3
7
0

T =

Cθ −Sθ 0 X
Sθ Cθ 0 Y
0 0 1 Z
0 0 0 1

=

0.866 −0.5 0 10
0.5 0.866 0 5
0 0 1 0
0 0 0 1

 

𝑃ଶ = 𝑇 ஺ 𝑃ଵ
஺ =

0.866 −0.5 0 10
0.5 0.866 0 5
0 0 1 0
0 0 0 1

3
7
0
1

=

9.098
12.562

0
1
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2.5 SUMMARY OF INTERPRETATIONS 

• We have introduced concepts first for the case of translation only, then for the case of rotation only, and finally for the

general case of rotation about a point and translation of that point.

• As a general tool to represent frames, we have introduced the homogeneous transform, a 4 × 4 matrix containing

orientation and position information. We have introduced three interpretations of this homogeneous transform:

1. It is a description of a frame. 𝑻𝑩
𝑨  describes the frame {B} relative to the frame {A}. Specifically, the columns of

𝑹𝑩
𝑨  are unit vectors defining the directions of the principal axes of {B}, and 𝑷𝑩𝑶𝑹𝑮

𝑨  locates the position of the origin

of {B}.

• 2. It is a transform mapping. 𝑻𝑩
𝑨  maps 𝑷𝑩 → 𝑷𝑨 .

• 3. It is a transform operator. T operates on 𝑷𝟏
𝑨 to create 𝑷𝟐

𝑨 .

• From this point on, the terms frame and transform will both be used to refer to a position vector plus an orientation.

Frame is the term favored in speaking of a description, and transform is used most frequently when function as a

mapping or operator is implied. Note that transformations are generalizations of (and subsume) translations and

rotations; we will often use the term transform when speaking of a pure rotation (or translation).
09/10/2024 Systems & Control Engineering Dept. 6



2.6 TRANSFORMATION ARITHMETIC - Compound transformations

In Fig. 2.12, we have 𝑷𝑪 and wish to find 𝑷𝑨 .

Frame {C} is known relative to frame {B}, and frame {B} is known relative to frame {A}. We can transform 𝑷𝒄 into

𝑷𝑩 as:

𝑷 = 𝑻𝑪
𝑩 𝑷𝑪𝑩  −− −(𝟐. 𝟑𝟕)

then we can transform 𝑷𝑩 into 𝑷𝑨 as

𝑷 = 𝑻𝑩
𝑨 𝑷𝑩  − −(𝟐. 𝟑𝟖)𝑨  

Combining (2.37) and (2.38), we get the (not unexpected) result

𝑷 = 𝑻𝑩
𝑨 𝑻𝑪

𝑩 𝑷𝑪 −− −(𝟐. 𝟑𝟗)𝑨

𝑻𝑪
𝑨 = 𝑻𝑩

𝑨 𝑻𝑪
𝑩  −− −(𝟐. 𝟒𝟎)

09/10/2024 Systems & Control Engineering Dept. 7



2.6 TRANSFORMATION ARITHMETIC - Compound transformations

• Again, note that familiarity with the sub- and superscript notation makes these manipulations simple. In terms of

the known descriptions of {B} and {C}, we can give the expression for 𝑻𝑪
𝑨  as

𝑻𝑪
𝑨 =  𝑹𝑩

𝑨 𝑹𝑪
𝑩 𝑹 𝑷𝑪𝑶𝑹𝑮

𝑩 + 𝑷𝑩𝑶𝑹𝑮
𝑨

𝑩
𝑨

𝟎 𝟎 𝟎 𝟏
 −− −(𝟐. 𝟒𝟏)

09/10/2024 Systems & Control Engineering Dept. 8



2.6 TRANSFORMATION ARITHMETIC - Inverting a transform

Consider a frame {B} that is known with respect to a frame {A}—that is, we know the value of 𝑻𝑩
𝑨 . Sometimes we

will wish to invert this transform, in order to get a description of {A} relative to {B}—that is, 𝑻𝑨
𝑩 . A straightforward

way of calculating the inverse is to compute the inverse of the 4×4 homogeneous transform.

To find 𝑻𝑨
𝑩 , we must compute 𝑹𝑨

𝑩  and 𝑷𝑨𝑶𝑹𝑮
𝑩  from 𝑹𝑩

𝑨  and 𝑷𝑩𝑶𝑹𝑮
𝑨 . First, recall from our discussion of

rotation matrices that

𝑹 = 𝑹𝑻
𝑩
𝑨

𝑨
𝑩  −− − 𝟐. 𝟒𝟐 || Next, we change the description of 𝑷𝑩𝑶𝑹𝑮

𝑨 into {B} by using (2.13):

( 𝑷𝑩𝑶𝑹𝑮)𝑨஻ = 𝑹𝑨
𝑩 𝑷𝑩𝑶𝑹𝑮

𝑨 + 𝑷𝑨𝑶𝑹𝑮
𝑩  −− −(𝟐. 𝟒𝟑) || The left-hand side of (2.43) must be zero, so we have

𝑷𝑨𝑶𝑹𝑮
𝑩 = − 𝑹𝑨

𝑩 𝑷𝑩𝑶𝑹𝑮
𝑨 = − 𝑹𝑻

𝑩
𝑨 𝑷𝑩𝑶𝑹𝑮

𝑨  −− −(𝟐. 𝟒𝟒) || Using (2.42) and (2.44), we can write the form of B

AT as

𝑻𝑨
𝑩 =  𝑹𝑻

𝑩
𝑨 − 𝑹𝑻  𝑷𝑩𝑶𝑹𝑮

𝑨
𝑩
𝑨

𝟎 𝟎 𝟎 𝟏
 −− −(𝟐. 𝟒𝟓) || Note that, with our notation, 𝑻𝑨

𝑩 = 𝑻ି𝟏
𝑩
𝑨
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Example 2.5 / Page 36

Figure 2.13 shows a frame {B} that is rotated relative to frame {A} about 𝒁෡ by 30 degrees and translated four
units in 𝑿෡𝑨  and three units in 𝒀෡𝑨 . Thus, we have a description of 𝑻𝑩

𝑨 . Find 𝑻𝑨
𝑩 .

The frame defining {B} is

Solution:

𝑻𝑩
𝑨 =

Cθ −Sθ 0 X
Sθ Cθ 0 Y
0 0 1 Z
0 0 0 1

=

0.866 −0.5 0 4
0.5 0.866 0 3
0 0 1 0
0 0 0 1

 

𝑻𝑨
𝑩 =  𝑹𝑻

𝑩
𝑨 − 𝑹𝑻  𝑷𝑩𝑶𝑹𝑮

𝑨
𝑩
𝑨

𝟎 𝟎 𝟎 𝟏
 −− −(𝟐. 𝟒𝟓) || 𝑻𝑨

𝑩 = 𝑻ି𝟏
𝑩
𝑨

𝑷𝑨𝑶𝑹𝑮 = 𝑩 − 𝑹𝑻
𝑩
𝑨 𝑷𝑩𝑶𝑹𝑮

𝑨 = −
0.866 0.5 0
−0.5 0.866 0

0 0 1

4
3
0

=
−4.964
−0.598

0

𝑻𝑨
𝑩 =

0.866 0.5 0 −4.964
−0.5 0.866 0 −0.598

0 0 1 0
0 0 0 1

|| Note: 𝑷𝑨𝑶𝑹𝑮
𝑩 = − 𝑹𝑨

𝑩 𝑷𝑩𝑶𝑹𝑮
𝑨 = − 𝑹𝑻

𝑩
𝑨 𝑷𝑩𝑶𝑹𝑮

𝑨
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Example 2.5 / Page 36

Figure 2.13 shows a frame {B} that is rotated relative to frame {A} about 𝒁෡ by 30 degrees and translated four
units in 𝑿෡𝑨  and three units in 𝒀෡𝑨 . Thus, we have a description of 𝑻𝑩

𝑨 . Find 𝑻𝑨
𝑩 .

The frame defining {B} is

Solution:

𝑻𝑩
𝑨 =

Cθ −Sθ 0 X
Sθ Cθ 0 Y
0 0 1 Z
0 0 0 1

=

0.866 −0.5 0 4
0.5 0.866 0 3
0 0 1 0
0 0 0 1

 

𝑻𝑨
𝑩 =  𝑹𝑻

𝑩
𝑨 − 𝑹𝑻  𝑷𝑩𝑶𝑹𝑮

𝑨
𝑩
𝑨

𝟎 𝟎 𝟎 𝟏
 −− −(𝟐. 𝟒𝟓) || 𝑻𝑨

𝑩 = 𝑻ି𝟏
𝑩
𝑨

𝑷𝑨𝑶𝑹𝑮 = 𝑩 − 𝑹𝑻
𝑩
𝑨 𝑷𝑩𝑶𝑹𝑮

𝑨 = −
0.866 0.5 0
−0.5 0.866 0

0 0 1

4
3
0

=
−4.964
−0.598

0

𝑻𝑨
𝑩 =

0.866 0.5 0 −4.964
−0.5 0.866 0 −0.598

0 0 1 0
0 0 0 1

|| Note: 𝑷𝑨𝑶𝑹𝑮
𝑩 = − 𝑹𝑨

𝑩 𝑷𝑩𝑶𝑹𝑮
𝑨 = − 𝑹𝑻

𝑩
𝑨 𝑷𝑩𝑶𝑹𝑮

𝑨
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Review on rotation Matrix 

𝑋 
෡

஻

𝑌 
෡

஻

𝑍 
෡

஻
{𝐵}

𝑿 
෡

𝑨

𝒀 
෡

𝑨

𝒁 
෡

𝑨
{𝐴}

஻
஺ =

Rotation matrix represents the component of each axis of a coordinate system  with respect to a 
reference frame.

𝑋෠஺
்

  
஻

𝑋෠஻ 
஺ 𝑌෠஻ 

஺ 𝑍መ஻ 
஺

𝑌෠஺
்

  
஻

𝑍መ஺
்

  
஻
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General Transform

𝑿 
෡

𝑨

𝒀 
෡

𝑨

𝒁 
෡

𝑨
{𝐴}

𝑃 
஺

 

General Transform between Frames means that we include (Rotation+ Translation) to map or describe

a point from one frame to another

 
஺

 =஻
஺

 
஻ + ஻ைோீ 

஺ ( General Form for mapping ) 

09/10/2024 Systems & Control Engineering Dept. 14
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Homogeneous Transform

𝑿 
෡

𝑨

𝒀 
෡

𝑨

𝒁 
෡

𝑨
{𝐴}

𝑃 
஺

 

We would like to think of a mapping from one frame to another as an operator in matrix form. 

This aids in writing compact equations and is conceptually clearer than general form.

 
஺

 
= ஻

஺
஻ைோீ 

஺
 

஻
4X4  Matrix ( Homogeneous Transform )

09/10/2024 Systems & Control Engineering Dept. 15
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Homogeneous Transform

1. a "1" is added as the last element of the 4 x 1 vectors;

2. a row "[0001]" is added as the last row of the 4 x 4 matrix.

3. Normally we will write the Homogenous Transform as follow:

𝑃 
஺

 = 𝑇஻
஺ 𝑃 

஻

Where 𝑇஻
஺ = 𝑅஻

஺ 𝑃஻ைோீ 
஺

0 0 0 1

rotation matrices used to specify an orientation, we will use transforms (usually in homogeneous

representation) to specify a frame. Observe that, although we have introduced homogeneous

transforms in the context of mappings, they also serve as descriptions of frames. The description of

frame {B} relative to (A} is 𝑇஻
஺

09/10/2024 Systems & Control Engineering Dept. 16
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Example 

The Figure shows a frame {B}, which is rotated relative to frame (A} about 𝑍መ by 30° degrees, translated 

10 units in 𝑿 
෡

𝑨
, and translated 5 units in 𝒀 

෡
𝑨

Find 𝑃 
஺

 where 𝑃 = 3.0  7.0  0.0 ்
 

஻ .

𝑇஻
஺ =

0.866 −0.5 0 10
0.5 0.866 0 5
0 0 1 0

Given 𝑃 =
3
7
0

 

 
஻

𝑃 
஺

 = 𝑇஻
஺ 𝑃 

஻ =
9.09

12.56
0.0
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Operators
• Mapping: changing descriptions from frame to frame

• Operators: moving points (within the same frame)

=

𝑿 
෡

𝑨

𝒀 
෡

𝑨

𝒁 
෡

𝑨
{𝐴}

𝑋 
෡

஻

𝑌 
෡

஻

𝑍 
෡

஻
{𝐵}

ଶ  = ଵ

𝑹

09/10/2024 Systems & Control Engineering Dept. 18
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Rotational Operators

௞ (θ): ଵ

ଶ = ௞ (θ) ଵ where k: ( X, Y, Z) .

௑ (θ)=

ଶ ௑ (30) ଵ

= =

ଶ

09/10/2024 Systems & Control Engineering Dept. 19
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Translations

Mapping approach :

𝑃ை஻ 𝑃ை஺ 

𝑃ை஺ 
=𝑃ை஻+ 𝑃஻ைோீ 

 

In this method two vectors

For the same point 𝑃ଶ

𝑌 
෡

஻

𝑋 
෡

஻

𝑍 
෡

஺

𝑿 
෡

𝑨

𝒀 
෡

𝑨

𝑃ଶ

{𝐴}

𝑍 
෡

஻
{𝐵}

𝑃ை஻

09/10/2024 Systems & Control Engineering Dept. 20
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Translations Operator 

Mapping approach :

𝑃ଵ 𝑃ଶ 

𝑃ଶ =𝑃ଵ+ 𝑄 
 

In this method

Two different vectors (2 point)

𝑃ଶ

𝑋 
෡

஻

𝑌 
෡

஻

𝑍 
෡

஻
{𝐵}

𝑿 
෡

𝑨

𝒀 
෡

𝑨

{𝐴}𝑍 
෡

஺ 𝑃ଵ

09/10/2024 Systems & Control Engineering Dept. 21
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Translations Operator 

Operator approach :

𝑃ଵ 𝑃ଶ 

𝑃ଶ =𝑃ଵ+ 𝑄 
 

In this method

Two different vectors (2 point)

𝑍 
෡

஺

𝑿 
෡

𝑨

𝒀 
෡

𝑨

𝑃ଶ

{𝐴} 𝑃ଵ

{𝐵}

09/10/2024 Systems & Control Engineering Dept. 22
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Translations Operator 

operator approach :

𝑃ଵ 𝑃ଶ 

operator 𝑃ଶ 
஺

  
= 𝑃ଵ 

஺ + 𝑄 
஺

 

 

In this method

Two different vectors (2 point)

Homogeneous Transform:

𝐷ொ=

1 0 0 𝑞௑

0 1 0 𝑞௒

0 0 1 𝑞௓

0 0 0 1

 𝑃ଶ 
஺

  
= 𝐷ொ 

஺
 

𝑃ଵ 
஺

𝑿 
෡

𝑨

𝒀 
෡

𝑨

{𝐴} 𝑃ଵ

{𝐵}

𝑍 
෡

஺

09/10/2024 Systems & Control Engineering Dept. 23
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General Operators

To represent the operator transformation in a general homogeneous form

𝑃ଶ =
𝑅௞ (θ) 𝑄
0  0  0 1

× 𝑃ଵ

𝑃ଶ =T× 𝑃ଵ

only one coordinate system is involved, and so the symbol T is used without sub- or superscripts.

09/10/2024 Systems & Control Engineering Dept. 24
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Example on Rotational Operator 

The Figure shows a vector 𝑃ଵ 
஺ . We wish to compute the vector obtained by rotating this vector about Z by 45°.

Call the new vector 𝑃ଶ 
஺ .The rotation matrix that rotates vectors by 45° about Z is the same as the rotation matrix

that describes a frame rotated 45° about Z relative to the reference frame. Thus, the correct rotational operator

is

𝑅௭ (45.0)=
cos 45 −sin 45 0
sin 45 cos 45 0

0 0 1
=

0.707 −0.707 0
0.707 0.707 0

0 0 1

Given 𝑃ଵ 
஺ =

0.0
2.0
0.0

𝑃ଶ 
஺ =𝑅௭ (45.0) 𝑃ଵ 

஺

𝑃ଶ 
஺ =

−1.414
1.414

0.0

𝑿 
෡

𝑨

𝒀 
෡

𝑨
{𝐴}

𝑃ଵ
𝑃ଶ

09/10/2024 Systems & Control Engineering Dept. 25
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Example on Transformation Operator 

The figure shows a vector 𝑃ଵ 
஺ . We wish to rotate it about Z by 60 and translate it 10 units in 𝑋 

෡
஺

and 5 units in 𝑌 
෡

஺

Find 𝑃ଶ 
஺

 
where 𝑃ଵ 

஺ = 3  7 0 ் The operator T, which performs the translation and rotation, is :

𝑇=

0.5 −0.866 0 10
0.866 0.5 0 5

0 0 1 0
0 0 0 1

𝑃ଶ 
஺ =𝑅 𝑃ଵ 

஺ + 𝑄 
஺ = 𝑇 𝑃ଵ 

஺

𝑃ଶ 
஺ =

0.5 −0.866 0 10
0.866 0.5 0 5

0 0 1 0
0 0 0 1

3
7
0
1

=
5.438
11.09

0

𝑋 
෡

஺

𝑌 
෡

஺
{𝐴}

𝑃ଵ 
஺

 

𝑃ଶ 
஺

 

𝑅 𝑃ଵ 
஺
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Inverse Transform

஻
஺ = ஻

஺
 

஺  ஻ைோீ

Rotation Matrix is orthonormal
ିଵ

஻
஺  

஺
஻ = ்

஻
஺

However, ିଵ
஻
஺ ்

஻
஺ , Thus 

ିଵ
஻
஺ = 𝑇 =஺

஻
்

஻
஺ ்

஻
஺

 
஺  ஻ைோீ

𝑿 
෡

𝑨

𝒀 
෡

𝑨

{𝐴}
𝒁 
෡

𝑨𝑃 
஻  ஺ைோீ
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R
ev

ie
w

 L
ec

tu
re

 O
ne

 a
n

d 
T

w
o



Homogenous Transformation summary 
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Compound Transformations

=

=

=
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Homogenous form of Compound transformation 

=

=
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Spatial Descriptions and transformations

15 October, 2024 Systems & Control Engineering Dept. 1

Lecture Four

Lecturer : Abdurahman B. Ayoub

Prepared by : Yazen Hudhaifa
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2.7 TRANSFORM EQUATIONS

• X–Y–Z fixed angles
• Z–Y–X Euler angles
• Z–Y–Z Euler angles

2.8 MORE ON REPRESENTATION OF ORIENTATION

15 October, 2024 Systems & Control Engineering Dept. 2



2.7 TRANSFORM EQUATIONS
Figure 2.14 indicates a situation in which a frame {D} can be expressed as products of transformations in two different

ways. First,

𝑻𝑫
𝑼 = 𝑻𝑨

𝑼  𝑻𝑫
𝑨  −− −(2.48)

Second;

𝑻𝑫
𝑼 = 𝑻𝑩

𝑼  𝑻𝑪
𝑩  𝑻𝑫

𝑪 −− −(2.49)

We can set these two descriptions of 𝑻𝑫
𝑼 equal to construct a transform equation:

𝑻𝑨
𝑼  𝑻𝑫

𝑨 = 𝑻𝑩
𝑼  𝑻𝑪

𝑩  𝑻𝑫
𝑪  −− − 𝟐. 𝟓𝟎 --- (Transform Equations)

Transform equations can be used to solve for transforms in the case of n unknown

transforms and n transform equations.

𝑻𝑪
𝑩 = 𝑻𝑩

𝑼 ି𝟏 𝑻𝑨
𝑼  𝑻𝑫

𝑨  𝑻𝑫
𝑪 ି𝟏 −− −(𝟐. 𝟓𝟏)

The arrow’s direction indicates which way the frames are defined: In Fig. 2.14, frame {D} is defined relative to {A}

15/10/2024 Systems & Control Engineering Dept. 3



2.7 TRANSFORM EQUATIONS

In Fig. 2.15, two possible descriptions of {C} are

𝑻𝑪
𝑼 = 𝑻𝑨

𝑼  𝑻𝑨
𝑫 ି𝟏 𝑻𝑪

𝑫  −− −(𝟐. 𝟓𝟐)

and

𝑻𝑪
𝑼 = 𝑻𝑩

𝑼  𝑻𝑪
𝑩  −− −(𝟐. 𝟓𝟑)

To find 𝑻𝑨
𝑼

𝑻𝑨
𝑼 = 𝑻𝑩

𝑼  𝑻𝑪
𝑩  𝑻𝑪

𝑫  𝑻𝑨
𝑫

15/10/2024 Systems & Control Engineering Dept. 4



EXAMPLE 2.6 / Page 39
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Assume that we know the transform 𝑻𝑻
𝑩  in Fig. 2.16, which describes the frame at the manipulator’s fingertips { T }

relative to the base of the manipulator, {B}, that we know where the tabletop is located in space relative to the

manipulator’s base (because we have a description of the frame {S} that is attached to the table as shown, 𝑻𝑺
𝑩 ),

and that we know the location of the frame attached to the bolt lying on the table relative to the table frame—that

is, 𝑻𝑮
𝑺 . Calculate the position and orientation of the bolt relative to the manipulator’s hand, 𝑻𝑮

𝑻 .

Solution:

𝑻𝑮
𝑻 = 𝑻𝑻

𝑩 ି𝟏 𝑻𝑺
𝑩 𝑻𝑮

𝑺



EXAMPLE 2.7 / Page 41
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Consider two rotations, one about Zˆ by 30 degrees and one about Xˆ by 30 degrees:

Solution:

𝑅௭ (30) =
𝐶𝜃 −𝑆𝜃 0
𝑆𝜃 𝐶𝜃 0
0 0 1

=
𝐶30 −𝑆30 0
𝑆30 𝐶30 0

0 0 1
=

0.866 −0.5 0
0.5 0.866 0
0 0 1

𝑅௫ (30) =
1 0 0
0 𝐶𝜃 −𝑆𝜃
0 𝑆𝜃 𝐶𝜃

=
1 0 0
0 𝐶𝜃 −𝑆𝜃
0 𝑆𝜃 𝐶𝜃

=
1 0 0
0 0.866 −0.5
0 0.5 0.866

𝑅௭ 30  𝑅௫ (30) =
0.866 −0.5 0

0.5 0.866 0
0 0 1

1 0 0
0 0.866 −0.5
0 0.5 0.866

=
0866 −0.433 0.25

0.5 0.75 −0.433
0 0.5 0.866

≠ 𝑅௫ 30  𝑅௭ 30 =
1 0 0
0 0.866 −0.5
0 0.5 0.866

0.866 −0.5 0
0.5 0.866 0
0 0 1

=
0.866 −0.5 0
0.433 0.75 −0.5
0.25 0.433 0.866



Three Angle Representations

Instead to use the three vectors to describe the orientation , we will use 
angles of the rotated frame 

{𝐴}

15/10/2024 Systems & Control Engineering Dept. 7



X–Y–Z fixed angles 

• One method of describing the orientation of a frame {B} is as follows: Start with the frame coincident with a

known reference frame {A}. Rotate {B} first about 𝑋෠஺ by an angle 𝛾, then about 𝑌෠஺ by an angle 𝛽, and, finally,

about 𝑍መ஺ by an angle 𝛼.

• Each of the three rotations takes place about an axis in the fixed reference frame {A}. We will call this convention

for specifying an orientation X–Y–Z fixed angles. The word ‘‘fixed’’ refers to the fact that the rotations are

specified about the fixed (i.e., nonmoving) reference frame (Fig. 2.17). Sometimes this convention is referred to as

roll, pitch, yaw angles, but care must be used, as this name is often given to other related but different

conventions.

15/10/2024 Systems & Control Engineering Dept. 8



• The derivation of the equivalent rotation matrix,

𝐑𝐗𝐘𝐙 𝐁
𝐀 (𝛄, 𝛃, 𝛂), is straightforward, because all rotations

occur about axes of the reference frame; that is,

• 𝑅௑௒௓ ஻
஺ 𝛾, 𝛽, 𝛼 = 𝑅௓(𝛼)𝑅௒(𝛽)𝑅௑(𝛾)

• =
𝐶𝛼 −𝑆𝛼 0
𝑆𝛼 𝐶𝛼 0
0 0 1

𝐶𝛽 𝑆𝛽
0 1 0

−𝑆𝛽 0 𝐶𝛽

1 0 0
0 𝐶𝛾 −𝑆𝛾
0 𝑆𝛾 𝐶𝛾

Rotate the frame by :

𝛾 𝑎𝑟𝑜𝑢𝑛𝑑 𝑋஺

𝛽 𝑎𝑟𝑜𝑢𝑛𝑑𝑌஺

𝛼 𝑎𝑟𝑜𝑢𝑛𝑑 𝑍஺

15/10/2024 Systems & Control Engineering Dept. 9

X–Y–Z fixed angles 



Z-Y-X Euler Angles

15/10/2024 Systems & Control Engineering Dept. 10

• Another possible description of a frame {B} is as follows: Start with the frame coincident with a known frame {A}. Rotate {B} first

about 𝒁෡𝑩 by an angle α, then about 𝒀෡𝑩 by an angle β, and, finally, about 𝑿෡𝑩 by an angle γ.

• In this representation, each rotation is performed about an axis of the moving system {B} rather than one of the fixed reference {A}.

Such sets of three rotations are called Euler angles.

• Note that each rotation takes place about an axis whose location depends upon the preceding rotations. Because the three rotations

occur about the axes 𝒁෡, 𝒀෡, and 𝑿෡ , we will call this representation Z–Y–X Euler angles.

𝑅௓ᇲ௒ᇲ௑ᇲ ஻
஺ 𝛼, 𝛽, 𝛾 = 𝑅௓(𝛼)𝑅௒(𝛽)𝑅௑(𝛾)

• Note that we have added ‘‘primes’’ to the subscripts to indicate that this rotation is described by Euler angles.

• 𝑅௓ᇲ௒ᇲ௑ᇲ ஻
஺ 𝛼, 𝛽, 𝛾 =

𝐶𝛼 −𝑆𝛼 0
𝑆𝛼 𝐶𝛼 0
0 0 1

𝐶𝛽 𝑆𝛽
0 1 0

−𝑆𝛽 0 𝐶𝛽

1 0 0
0 𝐶𝛾 −𝑆𝛾
0 𝑆𝛾 𝐶𝛾

• 𝑅௓ᇲ௒ᇲ௑ᇲ ஻
஺ 𝛼, 𝛽, 𝛾 =  

𝑐∝𝑐ఉ 𝑐∝𝑠ఉ𝑐ఉ − 𝑠∝𝑐ఊ 𝑐∝𝑠ఉ𝑐ఊ + 𝑠∝𝑠ఊ

𝑠∝𝑐ఉ 𝑠∝𝑠ఉ𝑠ఊ + 𝑐∝𝑐ఊ 𝑠∝𝑠ఉ𝑐ఊ + 𝑐∝𝑠ఊ

−𝑠ఉ 𝑐ఉ𝑠ఊ 𝑐ఉ𝑐ఊ



Z-Y-Z Euler Angles
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• Another possible description of a frame {B} is Start with the frame coincident with a known frame {A}. Rotate {B}

first about 𝒁෡𝑩 by an angle α, then about 𝒀෡𝑩 by an angle β, and, finally, about 𝒁෡𝑩 by an angle γ.

• 𝑅௓ᇲ௒ᇲ௓ᇲ ஻
஺ 𝛼, 𝛽, 𝛾 =  

𝑐∝𝑐ఉ𝑐ఊ − 𝑠∝𝑠ఊ −𝑐∝𝑐ఉ𝑠𝑠ఊ − 𝑠∝𝑠ఊ 𝑐∝𝑠ఉ

𝑠∝𝑐ఉ𝑐ఊ + 𝑐∝𝑐ఊ −𝑠∝𝑐ఉ𝑠ఊ + 𝑐∝𝑐ఊ 𝑠∝𝑠ఉ

−𝑠ఉ𝑐𝛾 𝑠ఉ𝑠ఊ 𝑐ఉ
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2.1) A vector ࡭ ࡼ  is rotated about ࡭෡ࢆ
 by θ degrees and is subsequently rotated about ࡭෡ࢄ

 by ࣐ degrees. Give the

rotation matrix that accomplishes these rotations in the given order.

Sol:

R= rot( ෠ܺ஺
 , ߮) rot( መܼ஺

 , (ߠ

=
1 0 0
0 cos ߮ − sin ߮
0 sin ߮ cos ߮

cos ߠ − sin ߠ 0
sin ߠ cos ߠ 0

0 0 1

=
cos ߠ − sin ߠ 0

cos ߮ sin ߠ cos ߮ cos ߠ − sin ߮
sin ߮ sin ߠ sin ߮ cos ߠ cos ߮

10/19/2024 Systems & Control Engineering Dept. 3E
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ܲ ஺

ߠ

෠ܺ஺
 

෠ܻ஺ 

߮

መܼ஺
 



2.2) A vector ࡭ ࡼ  is rotated about ࡭෡ࢅ
 by 30 degrees and is subsequently rotated about ࡭෡ࢄ

 by ૝૞ degrees. Give

the rotation matrix that accomplishes these rotations in the given order.

Sol:

R= rot( ෠ܺ஺
 , 45) rot( ෠ܻ஺ , 30)

=
1 0 0
0 cos ߮ − sin ߮
0 sin ߮ cos ߮

cos ߠ 0 sin ߠ
0 1 0

− sin ߠ 0 cos ߠ

=
1 0 0
0 cos 45 − sin 45
0 sin 45 cos 45

cos 30 0 sin 30
0 1 0

− sin 30 0 cos 30

=
0.866 0 0.5
0.353 0.707 −0.612

−0.353 0.707 0.612
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2.3) A frame {B} is located initially coincident with a frame {A}. We rotate {B} about ࡮෡ࢆ
 by ࣂ degrees, and then

we rotate the resulting frame about ࡮෡ࢄ
 by ∅ degrees. Give the rotation matrix that will change the description

of vectors from ࡮ ࡼ to ࡭ ࡼ .
Sol: 
since the rotations are about the frame being rotated , then Euler angles will be applied.
R= rot( መܼ஻

 , )rot (°ߠ ෠ܺ஻
 ,∅°)

= 
cos ߠ − sin ߠ 0
sin ߠ cos ߠ 0

0 0 1

1 0 0
0 cos ∅ − sin ∅
0 sin ∅ cos ∅

= 
ߠܥ ∅ܥ ߠܵ− ∅ܵ ߠܵ
ߠܵ ∅ܥ ߠܥ ∅ܵ ߠܥ−
0 ܵ∅ ∅ܥ
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2.4) A frame {B} is located initially coincident with a frame {A}. We rotate {B} about መܼ஻
 by 30 degrees, and

then we rotate the resulting frame about ෠ܺ஻
 by 45 degrees. Give the rotation matrix that will change the

description of vectors from ܲ ஻ to ܲ ୅ .
Sol: 
since the rotations are about the frame being rotated , then Euler angles will be applied.
R= rot( መܼ஺

 , 30°) rot( ෠ܺ஻
 ,45°)

= 
cos 30 − sin 30 0
sin 30 cos 30 0

0 0 1

1 0 0
0 cos 45 − sin 45
0 sin 45 cos 45

=
0.866 −0.5 0

0.5 0.866 0
0 0 1

1 0 0
0 0.707 −0.707
0 0.707 0.707

= 
0.866 −0.353 0.353

0.5 0.612 −0.612
0 0.707 0.707
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2.13) The following frame definitions are given as known:

࡭ࢀ
ࢁ

 
 =

૙. ૡ૟૟ −૙. ૞ ૙. ૙ ૚૚. ૙
૙. ૞ ૙. ૡ૟૟ ૙. ૙ −૚
૙. ૙ ૙. ૙ ૚. ૙ ૡ. ૙
૙. ૙ ૙. ૙ ૙. ૙ ૚. ૙

࡭ࢀ
࡮

 
 =

૚. ૙૙ −૙. ૞ ૙. ૙ ૙
૙. ૙ ૙. ૡ૟૟ −૙. ૞ ૚૙
૙. ૙ ૙. ૞ ૙. ૡ૟૟ −૛૙
૙. ૙ ૙. ૙ ૙. ૙ ૚. ૙

ࢁࢀ
࡯

 
 =

૙. ૡ૟૟ −૙. ૞૙૙ ૙. ૙૙૙ −૜
૙. ૝૜૜ ૙. ૠ૞૙ −૙. ૞૙૙ −૜
૙. ૛૞૙ ૙. ૝૜૜ ૙. ૡ૟૟ ૜
૙. ૙૙ ૙. ૙૙ ૙. ૙૙૙ ૚. ૙

, 

Draw a frame diagram to show their arrangement qualitatively, and solve for ۱ࢀ
࡮

Sol: by just following the arrows and inverting when needed , for rapid calculation for inverse 
matrices:

ܶ஼
஻

 
 = ܶ஺

஻ ܶିଵ
஺
௎ ܶିଵ

௎
஼
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2.27 – 2.31) Referring to Fig. Below , give the value of ࡮ࢀ
࡭ , ۱ࢀ

࡭ , ۱ࢀ
࡮ , AND ࡭ࢀ

࡯ .

Sol:

ܶ஻
஺ = 

cos (180) −sin (180) 0 3
sin (180) cos (180) 0 0

0 0 1 0
0 0 0 1

= 

−1 0 0 3
0 −1 0 0
0 0 1 0
0 0 0 1

ܴ஼
஺ =

cos 90 0 sin 90
0 1 0

− sin 90 0 cos 90

1 0 0
0 cos −30 − sin −30
0 sin −30 cos −30

ܶ஼
஺ = 

0 −0.5 0.866 3
0 0.866 0.5 0

−1 0 0 2
0 0 0 1
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2.27 – 2.31) Referring to Fig. Below , give the value of ࡮ࢀ
࡭ , ۱ࢀ

࡭ , ۱ࢀ
࡮ , AND ࡭ࢀ

࡯ .

ܴ஼
஻ =

ݏ݋ܿ 90 0 ݊݅ݏ 90
0 1 0

− ݊݅ݏ 90 0 ݏ݋ܿ 90

1 0 0
0 ݏ݋ܿ 150 − ݊݅ݏ 150
0 ݊݅ݏ 150 ݏ݋ܿ 150

ܶ஼
஻ = 

0 0.5 −0.866 0
0 −0.866 −0.5 0

−1 0 0 2
0 0 0 1
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2.27 – 2.31) Referring to Fig. Below , give the value of ࡮ࢀ
࡭ , ۱ࢀ

࡭ , ۱ࢀ
࡮ , AND ࡭ࢀ

࡯ .

Tେ
୅ = 

0 −0.5 0.866 3
0 0.866 0.5 0

−1 0 0 2
0 0 0 1

T୅
େ =  R୘

େ
୅ − R୘  Pେ୓ୖୋ

୅
େ
୅

0 0 0 1
 −− −Inverting a transform

T୅
େ = 

0 0 −1 2
−0.5 0.866 0 3 ∗ 0.5
0.866 −0.5 0 −3 ∗ 0.866

0 0 0 1
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2.32 – 2.34) Referring to Fig. Below , give the value of ࡮ࢀ
࡭ , ۱ࢀ

࡭ , ۱ࢀ
࡮ , AND ࡭ࢀ

࡯ .

Sol:

R୆
୅ = R Y, −180 R(X, 90) → T୆

୅ =

−1 0 0 0
0 0 −1 4
0 −1 0 2
0 0 0 1

Rେ
୆ = R X, −90 R(Z, 150) → Tେ

୆ =

−0.866 −0.5 0 3
0 0 1 0

−0.5 0.866 0 0
0 0 0 1
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2.37) Given

࡮ࢀ
࡭ = 

૙. ૛૞ ૙. ૝૜ ૙. ૡ૟ ૞
૙. ૡૠ −૙. ૞૙ ૙ −૝
૙. ૝૜ ૙. ૠ૞ −૙. ૞૙ ૜

૙ ૙ ૙ ૚

, what is the ࡭ࢀ
࡮ ?

Sol:

T୅
୆ =  R୘

୆
୅ − R୘  Pେ୓ୖୋ

୅
୆
୅

0 0 0 1
 −− −Inverting a transform

T୅
୆ =

0.25 0.87 0.43 2.11
0.43 −0.50 0.75 −6.35
0.86 0 −0.50 −2.35

0 0 0 1
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1st Quiz
Q) Referring to Fig. Below, give the value of ܶ஼

஺ and ܶ஺
஼

10/19/2024 Systems & Control Engineering Dept. 13

Tେ
୅ = 

0.866 0.5 0 −3
0.5 −0.866 0 4
0 0 −1 2
0 0 0 1
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Lecture 6 Robotics 
Forward 
Kinematics
Classical and Modified DH-
Convention 

LECTURE 6

NINEVEH UNIVERSITY – SYSTEMS & CONTROL DEP.

PREPARED BY : YAZEN H SHAKIR 

DATE : 27/11/2022             HTTP://RUTHERFORD-ROBOTICS.COM/PUMA/

1

Recap from previous Lecture 2

****  Note: This derivation in Introduction to Robotics: Mechanics and Control
Book by John J Craig which is called (S Modified DH parameters )
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Another representation of Forward kinematics by Denavit-
Hartenberg representation of a general purpose joint-link
combination. (Drawn by S. Niku.)  ( Classical DH- Matrix)

3

Classical DH-representation according S. Niku. Textbook 4
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The transformation 𝑇
௡ ାଵ

௡ (called 𝐴௡ାଵ
 ) between two successive frames representing the preceding 

four movements is the product of the four matrices representing them. Since all transformations are 

relative to the current frame (they are measured and performed relative to the axes of the current 

local frame), all matrices are post-multiplied. The result is:

5

Difference between Classical and Modified DH-Convention 6

Some books such as Introduction to Robotics: Mechanics and Control (3rd Edition) use modified DH parameters. The difference 
between the classic DH parameters and the modified DH parameters are the locations of the coordinates system attachment to the links 
and the order of the performed transformations.
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Recap from previous Lect.

𝑎௜ = 𝑡ℎ𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑍መ௜
  𝑡𝑜 𝑍መ௜ାଵ

 measured along 𝑋෠௜
 ; 

𝛼௜ = the angle from 𝑍መ௜
  𝑡𝑜 𝑍መ௜ାଵ

 measured about  𝑋෠௜
 ; 

𝑑௜ = the distance from 𝑋෠௜ିଵ
  𝑡𝑜 𝑋෠௜

 measured along  𝑍መ௜
 ; 

𝜃௜ = the angle from 𝑋෠௜ିଵ
  𝑡𝑜 𝑋෠௜

 measured about  𝑍መ௜
 ; 

7

Ex7.1) Figure below shows a robot having three degrees of freedom and 
one prismatic joint. This manipulator can be called an "RPR mechanism," 
in a notation that specifies the type and order of the joints. It is a 
"cylindrical" robot whose first two joints are analogous to polar 
coordinates when viewed from above. The last joint (joint 3) provides 
"roll" for the hand. 

8

Manipulator with 3 DOF , one 
Joint is Prismatic 

Solution :

1- draw first the Joint axes 

2- If we have two intersect axes , the intersection point 

Represents the origin of the frame. 

3- Revolute Joint has variable 𝜃 , d=0.

4- Prismatic Joint has variable offset (d) and 𝜃=0.
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Link Assignment 9

1- frame {0} and frame {1} are shown as exactly coincident in this figure,

because the robot is drawn for the position 𝜃= 0.

2- it is sufficient that frame {0} be attached anywhere to the non-moving link 0

DH- Parameter 

i 𝜶𝒊ି𝟏 𝒂𝒊ି𝟏 𝒅𝒊 𝜽𝒊

1 0 0 0 𝜽𝟏

2 90 ° 0 𝒅𝟐 𝜽𝟐

3 0 0 𝑳𝟐 𝜽𝟑

10

1- Note that rotational joints rotate about the Z 
axis of the associated frame, but prismatic joints 
slide along Z.

2- Frame 2 should be attached to the point 
where the minimum 𝑑ଶ is zero .

3- 𝜃ଶ is zero for this robot and that 𝑑ଶ is a 
variable. 

4- Axes 1 and 2 intersect, so 𝑎ଵ is zero.

5- Angle 𝛼ଵ must be 90 degrees in order to 
rotate 𝑍ଵ so as to align with 𝑍ଶ, (about X1).
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Forward Kinematics for Ex7.1

𝑇௜
௜ିଵ =

𝐶𝜃௜ −𝑆𝜃௜ 0 𝛼௜ିଵ

𝑆𝜃௜𝐶𝛼௜ିଵ 𝐶𝜃௜𝐶𝛼௜ିଵ −𝑆𝛼௜ିଵ −𝑆𝛼௜ିଵ𝑑௜

𝑆𝜃௜𝑆𝛼௜ିଵ 𝐶𝜃௜𝑆𝛼௜ିଵ 𝐶𝛼௜ିଵ 𝐶𝛼௜ିଵ𝑑௜

0 0 0 1

𝑇ଵ
଴ =

𝐶𝜃ଵ −𝑆𝜃ଵ 0 0
𝑆𝜃ଵ 𝐶𝜃ଵ 0 0

0 0 1 0
0 0 0 1

𝑇ଶ
ଵ =

1 0 0 0
0 0 −1 −𝑑ଶ

0 1 0 0
0 0 0 1

𝑇ଷ
ଶ =

𝐶𝜃ଷ −𝑆𝜃ଷ 0 0
𝑆𝜃ଷ 𝐶𝜃ଷ 0 0

0 0 1 𝑙ଶ

0 0 0 1

11

Ex7.2: Figure below shows a three-link, 3R manipulator for which joint axes 1 and 2
intersect and axes 2 and 3 are parallel. Demonstrate the non-uniqueness of frame 
assignments and of the Denavit— Hartenberg parameters by showing several possible 
correct assignments of frames (1} and {2}.

12

Three-link, non-planar manipulator

1- Two possible frame assignments and 
corresponding parameters for the two possible 
choices of direction of 𝑍ଶ.

2- In general, when 𝑍௜, and 𝑍௜ାଵ intersect, there 
are two choices for 𝑋௜. In this example, joint 
axes 1 and 2 intersect, so there are two choices 
for the direction of X1. 

3- In fact, If we take the rotation Axis 𝑍ଵ

downwards , so two more possible assignments  
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Frame assignments for the Example 7.2 (𝑍ଶ) 13

𝑎ଵ = 0 ---------  𝑎ଶ = 𝑳𝟐

𝛼ଵ = −90 -------- 𝛼ଶ = 0
𝑑ଵ = 0 ---------- 𝑑ଶ = 𝑳𝟏

𝜃ଶ = −90

𝑎ଵ = 0 ---------  𝑎ଶ = 𝑳𝟐

𝛼ଵ = 90 ---------- 𝛼ଶ = 0
𝑑ଵ = 0 ---------- 𝑑ଶ = −𝑳𝟏

𝜃ଶ = 90

Frame assignments for the Example 7.2 (𝑋ଶ) 14

𝑎ଵ = 0 ---------  𝑎ଶ = 𝑳𝟐

𝛼ଵ = 90 -------- 𝛼ଶ = 0
𝑑ଵ = 0 ---------- 𝑑ଶ = 𝑳𝟏

𝜃ଶ = 90

𝑎ଵ = 0 ---------  𝑎ଶ = 𝑳𝟐

𝛼ଵ = −90 ---------- 𝛼ଶ = 0
𝑑ଵ = 0 ---------- 𝑑ଶ = −𝑳𝟏

𝜃ଶ = 90
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Case Studies on Industrial Robots (PUMA 560) 15

Frame assignment for (PUMA 560) 16

Assumptions:

 1-All joint angles equal to zero. 

 2- The frame {0} (not shown) is coincident with 

frame [1} when 𝜃ଵ is zero. 

 The joint axes of joints 4, 5, and 6 all intersect at a 
common point, and this point of intersection
coincides with the origin of frames {4}, {5}, and 
{6}.

 We will consider only the kinematics from joint 
space to Cartesian space. However, that gearing 
arrangement in the wrist of the manipulator 
couples together the motions of joints 4, 5, and 6.
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Forearm frame assignment for (PUMA 560) 17

Multiple views for PUMA 18
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Link Parameters or DH- Parameters for PUMA 560 

i 𝜶𝒊ି𝟏 𝒂𝒊ି𝟏 𝒅𝒊 𝜽𝒊

1 0 0 0 𝜽𝟏

2 -𝟗𝟎 ° 0 0 𝜽𝟐

3 0 𝒂𝟐 𝒅𝟑 𝜽𝟑

4 -𝟗𝟎 ° 𝒂𝟑 𝒅𝟒 𝜽𝟒

5 𝟗𝟎 ° 0 0 𝜽𝟓

6 -𝟗𝟎 ° 0 0 𝜽𝟔

19

Forward Kinematics Transformation 

𝑇ଵ
଴ =

𝐶𝜃ଵ −𝑆𝜃ଵ 0 0
𝑆𝜃ଵ 𝐶𝜃ଵ 0 0

0 0 1 0
0 0 0 1

𝑇ଶ
ଵ =

𝐶𝜃ଶ −𝑆𝜃ଶ 0 0
0 0 1 0

−𝑆𝜃ଵ −𝐶𝜃ଵ 0 0
0 0 0 1

𝑇ଷ
ଶ =

𝐶𝜃ଷ −𝑆𝜃ଷ 0 𝑎ଶ

𝑆𝜃ଷ 𝐶𝜃ଷ 0 0
0 0 1 𝑑ଷ

0 0 0 1

𝑇ସ
ଷ =

𝐶𝜃ସ −𝑆𝜃ସ 0 𝑎ଷ

0 0 1 𝑑ସ

−𝑆𝜃ସ −𝐶𝜃ସ 0 0
0 0 0 1

𝑇ହ
ସ =

𝐶𝜃ହ −𝑆𝜃ହ 0 0
0 0 −1 0

𝑆𝜃ହ 𝐶𝜃ହ 0 0
0 0 0 1

𝑇଺
ହ =

𝐶𝜃଺ −𝑆𝜃଺ 0 0
0 0 −1 0

−𝑆𝜃ହ −𝐶𝜃ହ 0 0
0 0 0 1

We now form by matrix multiplication of the individual link matrices. While 

forming this product, we will derive some sub results that will be useful when 

solving the inverse kinematic problem in Chapter 4.

20
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3.1 INTRODUCTION

• A manipulator is a mechanical structure consisting of rigid bodies, or

links, connected together through joints. The manipulator part that

most interacts with the surrounding environment, the last body in

the manipulator’s structure, is called the end-effector. The first part

of the manipulator, the base, is typically fixed in the environment. [8]

• Kinematics is the science of motion that treats the subject without

regard to the forces that cause it.

• Dynamics is the study of how forces affect the motion of objects.

• The model describing the relationships between the manipulator

configuration and the end-effector configuration is called the

forward kinematics of the manipulator.

31/10/2024 Systems & Control Engineering Dept. 3



• Forward Kinematics: determine where the end-effector or the robot hand is located ( All the Joint Variables are known)

You know already : length of each link , angle of each Joint.

You are going to compute : position of any point in 3D- space .

• Inverse Kinematics: the inverse process of forward kinematics in which calculate what each joint variable is (If we desire

that the hand be located at a particular point)

you are given: length of each link, position of some point on the robot

you find: The angles of each joint needed to obtain that position

End-effector 
position 
(x,y,z)

Joint 
Variable 

Forward Kinematics 

Inverse Kinematics 

4Systems and Control Dept.10/31/2024

3.1 INTRODUCTION



Forward Vs Inverse Kinematics for the manipulator

10/31/2024 Systems and Control Dept. 5
https://www.mathworks.com/discovery/inverse-kinematics.html

3.1 INTRODUCTION



3.2 LINK DESCRIPTION

• A manipulator may be thought of as a set of bodies connected in a chain by

joints. These bodies are called links.

• The term lower pair is used to describe the connection between a pair of

bodies when the relative motion is characterized by two surfaces sliding over

one another.

• Most manipulators have revolute joints or have sliding joints called

prismatic joints.

• In the rare case that a mechanism is built with a joint having n degrees of

freedom, it can be modeled as n joints of one degree of freedom connected

with n - 1 links of zero length.

31/10/2024 Systems & Control Engineering Dept. 6

In general, a manipulator has n joints

and n+1 links (including the base and

the end-effector).



A lower pair is an ideal joint that constrains contact between a surface in the moving body to a corresponding in the

fixed body. A lower pair is one in which there occurs a surface or area contact between two members, e.g. nut and

screw, universal joint used to connect two propeller shafts.

Systems and Control Dept. 710/31/2024

3.2 LINK DESCRIPTION



• The links are numbered starting from the immobile base

of the arm, which might be called link 0. The first moving

body is link 1, and so on, out to the free end of the arm,

which is link n.

• In order to position an end-effector generally in 3-space,

a minimum of six joints is required.

• a link is considered only as a rigid body that defines the

relationship between two neighboring joint axes of a

manipulator.

• Joint axes are defined by lines in space. Joint axis i is

defined by a line in space, or a vector direction, about

which link i rotates relative to link i − 1.

31/10/2024 Systems & Control Engineering Dept. 8

3.2 LINK DESCRIPTION



• For any two axes in 3-space, there exists a well-

defined measure of distance between them. This

distance is measured along a line that is mutually

perpendicular to both axes.

• This mutual perpendicular always exists; it is unique

except when both axes are parallel, in which case

there are many mutual perpendiculars of equal

length.

• Figure 3.2 shows link ࢏ − ૚ and the mutually

perpendicular line along which the link length, ,૚ି࢏ࢇ

is measured.

31/10/2024 Systems & Control Engineering Dept. 9

3.2 LINK DESCRIPTION



• The second parameter needed to define the relative

location of the two axes is called the link twist.

• If we imagine a plane whose normal is the mutually

perpendicular line just constructed, we can project

the axes − ࢏  ૚ and ࢏ onto this plane and measure the

angle between them. This angle is measured from axis

− ࢏  ૚ to axis ࢏ in the right-hand sense about .૚ି࢏ࢇ

• Fig. 3.2, ૚ି࢏ࢻ is indicated as the angle between axis

− ࢏  ૚ and axis .࢏

• In the case of intersecting axes, twist is measured in

the plane containing both axes, but the sense of ૚ି࢏ࢻ

is lost. In this special case, one is free to assign the

sign of ૚ି࢏ࢻ arbitrarily.
31/10/2024 Systems & Control Engineering Dept. 10

3.2 LINK DESCRIPTION



• Most manipulators have revolute joints or have sliding joints called prismatic or linear joints.

• We will consider the Joint is one degree of freedom.

• Base frame has link numbered ‘’0’’.

• The first moving body is link 1.

• Link n denoted to the free end arm.

• Joint axes are defined by lines in space.

11Systems and Control Dept.10/31/2024

3.2 LINK DESCRIPTION – Summary 



• link i rotates relative to link i -1.

• Two parameter or two numbers can give the position and

orientation of the two joint axes relative each other:

1. ૚ି࢏ࢇ refers to the link length or mutual perpendicular

from axis ࢏ − ૚ to axis .࢏ It is unique except for parallel

axis.

2. ૚ି࢏ࢻ states the twist between two neighbouring Joints

which is called link twist . measured in the right-hand

sense about ૚ିܑࢇ

12Systems and Control Dept.10/31/2024

3.2 LINK DESCRIPTION – Summary 



• Neighboring links have a common joint axis between

them. One parameter of interconnection has to do

with the distance along this common axis from one

link to the next. This parameter is called the link

offset.

• The offset at joint axis ࢏ is called .࢏ࢊ The second

parameter describes the amount of rotation about

this common axis between one link and its neighbor.

This is called the joint angle, .࢏ࣂ

• The link offset ࢏ࢊ is variable if joint ࢏ is prismatic.

• The joint angle ࢏ࣂ is variable if joint ࢏ is a revolute joint.

31/10/2024 Systems & Control Engineering Dept. 13

3.3 LINK-CONNECTION DESCRIPTION



First and last links in the chain

• Link length, ,࢏ࢇ and link twist, ,࢏ࢻ depend on joint axes ࢏ and + ࢏ ૚. Hence, ૚ࢇ through ૚ି࢔ࢇ and ૚ࢻ through ૚ି࢔ࢻ are defined

as was discussed in this section.

• At the ends of the chain, it will be our convention to assign zero to these quantities. That is, ૙ࢇ = ࢔ࢇ  = ૙ and ૙ࢻ = ࢔ࢻ = ૙.

• Link offset, ,࢏ࢊ and joint angle, θ࢏, are well defined for joints 2 through − ࢔  ૚ according to the conventions discussed in this

section.

31/10/2024 Systems & Control Engineering Dept. 14

3.3 LINK-CONNECTION DESCRIPTION



First and last links in the chain

• If joint 1 is revolute, the zero position for θ1 may be chosen arbitrarily; d1 = 0.0 will be our convention. Similarly, if joint 1 is

prismatic, the zero position of d1 may be chosen arbitrarily; θ1 = 0.0 will be our convention. Exactly the same statements

apply to joint n.

• These conventions have been chosen so that, in a case where a quantity could be assigned arbitrarily, a zero value is assigned

so that later calculations will be as simple as possible.

31/10/2024 Systems & Control Engineering Dept. 15

3.3 LINK-CONNECTION DESCRIPTION



ܽ ௜ and ߙ ௜depend on joint axes i and i+1.
ܽ ௜ and ߙ ௜depend on joint axes i and i+1
ܽ ଵ, ܽ ଶ ... ܽ ௡ିଵ and ߙ ଵ, ߙ ଶ ௡ିଵ ߙ ...

For simplicity :
ܽ ଴ = ܽ ௡ = 0
଴ ߙ = ௡ ߙ = 0

௜ ߙ

ܽ ௜

௜ ݏ݅ݔܣ
௜ାଵ ݏ݅ݔܣ

16Systems and Control Dept.10/31/2024

3.3 LINK-CONNECTION DESCRIPTION - First and last links in the chain – Summary 



Axis 0 is connected to the base, it can be put it anywhere ,however, for simplicity we will put is coincident with 
Axis 1. thus :
૙ ࢇ = ૙
૙ ࢻ = ૙

ଵ ߙ

 , 1 ݏ݅ݔܣ
 0 ݏ݅ݔܣ

2 ݏ݅ݔܣ

17Systems and Control Dept.10/31/2024

3.3 LINK-CONNECTION DESCRIPTION - First and last links in the chain – Summary 



• Any robot can be described kinematically by giving the values of

four quantities for each link.

• Two describe the link itself, and two describe the link’s

connection to a neighboring link.

• In the usual case of a revolute joint, ࢏ࣂ is called the joint

variable, and the other three quantities would be fixed link

parameters.

• For prismatic joints, ࢏ࢊ is the joint variable, and the other three

quantities are fixed link parameters.

• The definition of mechanisms by means of these quantities is a

convention usually called the Denavit–Hartenberg notation.

31/10/2024 Systems & Control Engineering Dept. 18

3.3 LINK-CONNECTION DESCRIPTION - Link parameters - Denavit–Hartenberg notation



In order to describe the location of each link relative to its neighbors, we define a frame attached to each link. The

link frames are named by number according to the link to which they are attached. That is, frame {i} is attached

rigidly to link i.

31/10/2024 Systems & Control Engineering Dept. 19

3.4 CONVENTION FOR AFFIXING FRAMES TO LINKS



• The convention we will use to locate frames on the links is as

follows: The ෠܈ − ܛܑܠ܉ of frame {ܑ}, called ,෠ܑ܈ is coincident with

the .ܑ ܛܑܠ܉ ܜܖܑܗܒ

• The origin of frame {i} is located where the ܑ܉ perpendicular

intersects the .ܛܑܠ܉ ܑ ܜܖܑܗܒ ෡ܑ points܆ along ܑ܉ in the direction from

ܑ ܜܖܑܗܒ to joint i + 1.

• In the case of ܑ܉ = ૙, ෡ܑ܆ is normal to the plane of ෠ܑ܈ and .෠ܑା૚܈ We

define હܑ as being measured in the right-hand sense about ,෡ܑ܆

and so we see that the freedom of choosing the sign of હܑ in this

case corresponds to two choices for the direction of ,෡ܑ܆ ෡ܑ܇ is

formed by the right-hand rule to complete the ܐܜܑ frame. Figure

3.5 shows the location of − ܑ} ܛ܍ܕ܉ܚ܎  ૚} and {ܑ} for a general

manipulator.
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3.4 CONVENTION FOR AFFIXING FRAMES TO LINKS - Intermediate links in the chain



Axis ݅
Axis ݅ + 1

X݅
ܼ ௜ ܼ ௜ାଵ

௜ ߙ

Axis ݅ + 1

Axis ݅

ܼ ௜ାଵܼ ௜

X݅

௜ ߙ−

ܶℎ݁ ݀݅ߙ ݈݁݃݊ܽ ݂݋ ݊݋݅ݐܿ݁ݎ ௜ ݅݊݋ ݀݁ݏܾܽ ݀݁ݐ݈ܿ݁ݏ ݏ ܺ
−  ݁ܿ݅݋ℎܿ ݏ݅ݔܽ
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Intersecting Joint Axes 



• We attach a frame to the base of the robot, or link 0, called frame {0}. This frame does not move; for the problem

of arm kinematics, it can be considered the reference frame. We may describe the position of all other link frames

in terms of this frame.

• Frame {0} is arbitrary, so it always simplifies matters to choose ෠૙܈ along axis 1 and to locate frame {0} so that it

coincides with frame {1} when joint variable 1 is zero.

• Using this convention, we will always have ૙܉ = ૙, ૙ࢻ = ૙. Additionally, this ensures that ૚ࢊ = ૙ if joint 1 is

revolute, or ૚ࣂ = ૙ if joint 1 is prismatic.
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3.4 CONVENTION FOR AFFIXING FRAMES TO LINKS - First and last links in the chain



• For joint n revolute, the direction of ࡺ෡ࢄ is chosen so that it aligns with ૚ whenିࡺ෡ࢄ ࢔ࣂ = ૙, and the origin of

frame {N} is chosen so that ࢔ࢊ = ૙.

• For joint n prismatic, the direction of ࡺ෡ࢄ is chosen so that ࢔ࣂ = ૙, and the origin of frame {N} is chosen at the

intersection of ૚ିࡺ෡ࢄ and joint ࢔ ࢙࢏࢞ࢇ when ࢔ࢊ = ૙.
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3.4 CONVENTION FOR AFFIXING FRAMES TO LINKS - First and last links in the chain



• If the link frames have been attached to the links according to our convention, the following definitions of the link parameters are

valid:

• = ࢏ࢇ the distance from ࢏෡ࢆ to ା૚࢏෡ࢆ measured along ;࢏෡ࢄ

• = ࢏ࢻ the angle from ࢏෡ࢆ to ା૚ measured࢏෡ࢆ about ;࢏෡ࢄ

• ࢏ࢊ = the distance from ૚ି࢏෡ࢄ to measured ࢏෡ࢄ along ;࢏෡ࢆ and

• ࢏ࣂ = the angle from ૚ି࢏෡ࢄ to measured ࢏෡ࢄ about .࢏෡ࢆ

• We usually choose ࢏ࢇ > ૙, because it corresponds to a distance; however, ,࢏ࢻ and ,࢏ࢊ ࢏ࣂ are signed quantities.

• A final note on uniqueness is warranted. The convention outlined above does not result in a unique attachment of frames to links. First

of all, when we first align the axis ࢏෡ࢆ with joint axis i, there are two choices of direction in which to point .࢏෡ࢆ

• Furthermore, in the case of intersecting joint axes (i.e., ࢏ࢇ = ૙), there are two choices for the direction of ,࢏෡ࢄ corresponding to the

choice of signs for the normal to the plane containing ࢏෡ࢆ and .ା૚࢏෡ࢆ

• When axes i and i + 1 are parallel, the choice of origin location for {i} is arbitrary (though generally chosen in order to cause ࢏ࢊ to be

zero). Also, when prismatic joints are present, there is quite a bit of freedom in frame assignment. (See also Example 3.5.)31/10/2024 Systems & Control Engineering Dept. 24

Summary of the link parameters in terms of the link frames



• The following is a summary of the procedure to follow when faced with a new mechanism, in order to properly attach the link

frames:

• 1. Identify the joint axes and imagine (or draw) infinite lines along them. For steps 2 through 5 below, consider two of these

neighboring lines (at ࢏ ࢙ࢋ࢞ࢇ and + ࢏  ૚).

• 2. Identify the common perpendicular between them, or point of intersection. At the point of intersection, or at the point

where the common perpendicular meets the ࢎ࢚ ࢏ axis, assign the link-frame origin.

• 3. Assign the ࢏෡ࢆ axis pointing along the ࢎ࢚ ࢏ joint axis.

• 4. Assign the ࢏෡ࢄ axis pointing along the common perpendicular, or, if the axes intersect, assign ࢏෡ࢄ to be normal to the plane

containing the two axes.

• 5. Assign the ࢏෡ࢅ axis to complete a right-hand coordinate system.

• 6. Assign {0} to match {1} when the first joint variable is zero. For {N}, choose an origin location and ࡺ෡ࢄ direction freely, but

generally so as to cause as many linkage parameters as possible to become zero.
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Summary of link-frame attachment procedure



Denavit-Hartenberg Notation (D-H convention)
Kinematically can describe the robot by four parameters:-a ୧, α ୧, , d ୧, , θ ୧

- Three of those parameters are constant , ( 3 Fixed parameters)

- One Joint Variable (θ ୧ for revolute joint while d ୧ for prismatic Joint).

- a ୧, α ୧ gives the description for the link i

- d ୧, , θ ୧ describe the connection between links.

૚ିܑܑ܂ = ܀ ,܆ હ ܑି૚ ܂  ,܆ (૚ିܑ)܉ ܀  ,܈ ીܑ ܂  ,܈ (ܑ)܌

૚ିܑܑ܂ =

۱ીܑ ીܑ܁− ૙ (૚ିܑ)܉
ીܑ ۱હ(ܑି૚)܁ ۱ીܑ ۱હ(ܑି૚) હ(ܑି૚)ܛ− ܑ܌ હ(ܑି૚)ܛ−
હ(ܑି૚)܁ ીܑ܁ ۱ીܑ ܁હ(ܑି૚) ۱હ(ܑି૚) ۱હ(ܑି૚) ܑ܌

૙ ૙ ૙ ૚

ۼ܂
૙ = ૚܂

૙ ૛܂
૚ ૜܂

૛ … ۼ܂
૚ିۼ
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Summary of DH 

ai : distance (zi , zi+1) along xi

αi : angle (zi , zi+1) about xi

di : distance (xi-1 , xi ) along zi

θi : angle (xi-1 , xi ) about zi
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EXAMPLE 3.3 / Page 69
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Figure 3.6(a) shows a three-link planar arm. Because all three joints are revolute, this manipulator is sometimes called an RRR (or

3R) mechanism. Fig. 3.6(b) is a schematic representation of the same manipulator. Note the double hash marks indicated on

each of the three axes, which indicate that these axes are parallel. Assign link frames to the mechanism and give the Denavit-

Hartenberg parameters.

Solution:

= ࢏ࢇ the distance from ࢏෡ࢆ to ା૚࢏෡ࢆ measured along ;࢏෡ࢄ

= ࢏ࢻ the angle from ࢏෡ࢆ to ା૚ measured࢏෡ࢆ about ;࢏෡ࢄ

࢏ࢊ = the distance from ૚ି࢏෡ࢄ to measured ࢏෡ࢄ along ;࢏෡ࢆ and

࢏ࣂ = the angle from ૚ି࢏෡ࢄ to measured ࢏෡ࢄ about .࢏෡ࢆ



EXAMPLE 3.4 / Page 71
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Figure 3.9(a) shows a robot having three degrees of freedom and one prismatic joint. This manipulator can be called an ‘‘RPR

mechanism,’’ in a notation that specifies the type and order of the joints. It is a ‘‘cylindrical’’ robot whose first two joints are

analogous to polar coordinates when viewed from above. The last joint (joint 3) provides ‘‘roll’’ for the hand. Figure 3.9(b)

shows the same manipulator in schematic form. Note the symbol used to represent prismatic joints, and note that a ‘‘dot’’ is

used to indicate the point at which two adjacent axes intersect. Also, the fact that axes 1 and 2 are orthogonal has been

indicated.

Solution:

= ࢏ࢇ the distance from ࢏෡ࢆ to ା૚࢏෡ࢆ measured along ;࢏෡ࢄ

= ࢏ࢻ the angle from ࢏෡ࢆ to ା૚ measured࢏෡ࢆ about ;࢏෡ࢄ

࢏ࢊ = the distance from ૚ି࢏෡ࢄ to measured ࢏෡ࢄ along ;࢏෡ࢆ and

࢏ࣂ = the angle from ૚ି࢏෡ࢄ to measured ࢏෡ࢄ about .࢏෡ࢆ



 

1) [2] Page (34) The frame F shown in Figure 2.7 is located at 3, 5, 7 units, with its n-axis parallel to 

x, its o-axis at 45° relative to the y-axis, and its a-axis at 45° relative to the z-axis. The frame can 

be described by: 

Solution:  

 

F = ൦

1 0 0 3
0 0.707 −0.707 5
0 0.707 0.707 7
0 0 0 1

൪ 

2) [2] Page (40) A frame F has been moved nine units along the x-axis and five units along the z-axis 

of the reference frame. Find the new location of the frame: 

۴ = ൦

૙. ૞૛ૠ ૙. ૞ૠ૝ ૙. ૟૛ૡ ૞
૙. ૜૟ૢ ૙. ૡ૚ૢ ૙. ૝૜ૢ ૜

−૙. ૠ૟૟ ૙ ૙. ૟૝૜ ૡ
૙ ૙ ૙ ૚

൪ 

Solution: 

F୬ୣ୵ = Trans൫d୶, d୷, d୸൯ X F୭୪ୢ = Trans(9, 0, 5) X F୭୪ୢ 

F୬ୣ୵ = ൦

1 0 0 9
0 1 0 0
0 0 1 5
0 0 0 1

൪ ൦

0.527 0.574 0.628 5
0.369 0.819 0.439 3

−0.766 0 0.643 8
0 0 0 1

൪ 

F୬ୣ୵ = ൦

0.527 0.574 0.628 14
0.369 0.819 0.439 3

−0.766 0 0.643 13
0 0 0 1

൪ 



 

3) [2] Page (43) A point ۾ (૛, ૜, ૝)܂ is attached to a rotating frame. The frame rotates 90° about the 

x-axis of the reference frame. Find the coordinates of the point relative to the reference frame 

after the rotation, and verify the result graphically. 

Solution: 

቎
P୶
P୷
P୞

቏ = ൥
1 0 0
0 Cθ −Sθ
0 Sθ Cθ

൩ X ൥
P୬
P୭
Pୟ

൩ = ൥
1 0 0
0 0 −1
0 1 0

൩ X ൥
2
3
4

൩ = ൥
2

−4
3

൩ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

4) [2] Page (44) A point ۾(ૠ, ૜, ૛)܂ is attached to a frame (ܖഥ, ഥܗ  ,  ത) and is subjected to the܉

transformations described next. Find the coordinates of the point relative to the reference 

frame at the conclusion of transformations. 

a) Rotation of 90° about the z-axis, 

b) Followed by a rotation of 90° about the y-axis, 

c) Followed by a translation of [4, —3, 7]. 

Solution:  

 

P୶୷୸ = Trans(4, −3, 7) Rot(y, 90)Rot(z, 90)P୬୭ୟ = 

P୶୷୸ = ൦

1 0 0 4
0 1 0 −3
0 0 1 7
0 0 0 1

൪ X ൦

0 0 1 0
0 1 0 0

−1 0 0 0
0 0 0 1

൪ X ൦

0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

൪ X ආ

7
3
2
1

ඊ = ආ

6
4

10
1

ඊ 

 



 

5) [2] Page (45) In this case, assume that the same point ۾(ૠ, ૜, ૛)܂, attached to a frame (ܖഥ, ,ഥܗ   ത), is܉

subjected to the same transformations, but that the transformations are performed in a different 

order, as shown. Find the coordinates of the point relative to the reference frame at the 

conclusion of transformations: 

a) A rotation of 90° about the z-axis, 

b) Followed by a translation of [4, - 3 , 7], 

c) Followed by a rotation of 90° about the y-axis. 

Solution: 

P୶୷୸ = Rot(y, 90) Trans(4, −3, 7) Rot(z, 90)P୬୭ୟ = 

P୶୷୸ = ൦

0 0 1 0
0 1 0 0

−1 0 0 0
0 0 0 1

൪ X ൦

1 0 0 4
0 1 0 −3
0 0 1 7
0 0 0 1

൪ X ൦

0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

൪ X ආ

7
3
2
1

ඊ = ආ

9
4

−1
1

ඊ 



 

6) [2] Page (47) Assume that the same point as in (5) is now subjected to the same transformations, 

but all relative to the current moving frame, as listed next. Find the coordinates of the point 

relative to the reference frame after transformations are completed: 

a) A rotation of 90° about the ܉ത-axis, 

b) Then a translation of [4, -3,7] along ܖഥ, ,ഥܗ  ത܉

c) Followed by a rotation of 90° about the ܗഥ-axis. 

Solution: 

P୶୷୸ = Rot(aത, 90) Trans(4, −3, 7) Rot(Oഥ, 90)P୬୭ୟ = 

P୶୷୸ = ൦

0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

൪ X ൦

1 0 0 4
0 1 0 −3
0 0 1 7
0 0 0 1

൪ X ൦

0 0 1 0
0 1 0 0

−1 0 0 0
0 0 0 1

൪ X ආ

7
3
2
1

ඊ = ආ

0
6
0
1

ඊ 

 

 



 

7) [2] Page (47) A frame B was rotated about the x-axis 90°; it was then translated about the current 

a-axis 3 inches before being rotated about the z-axis 90°. Finally, it was translated about current 

o-axis 5 inches. 

(a) Write an equation describing the motions. 

(b) Find the final location of a point P(1,5,4) attached to the frame relative to the reference frame. 

Solution:  

In this case, motions alternate relative to the reference frame and current frame. 

P ୙
୆ = Rot(z , 90) Rot(x, 90)Trans(0, 0, 3) Trans(0, 5, 0) = 

P ୙
 = T ୙

୆ X P ୆
  

P ୙
 = ൦

0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

൪ X ൦

1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1

൪ X ൦

1 0 0 0
0 1 0 0
0 0 1 3
0 0 0 1

൪ X ൦

1 0 0 0
0 1 0 5
0 0 1 0
0 0 0 1

൪ X ආ

1
5
4
1

ඊ = ආ

7
1

10
1

ඊ 

 

8) [2] Page (51) Calculate the matrix representing ܠ)ܜܗ܀, ૝૙°)ି૚ 

Solution: 

The matrix representing a 40° rotation about the x-axis is 

R(x, 40୭) = ൦

1 0 0 0
0 0.766 −0.643 0
0 0.643 0.766 0
0 0 0 1

൪ 

The inverse of this matrix is 

Rot(x, 40°)ିଵ = ൦

1 0 0 0
0 0.766 0.643 0
0 −0.643 0.766 0
0 0 0 1

൪ 



 

9) [2] Page (52) Calculate the inverse of the following transformation matrix: 

܂ = ൦

૙. ૞ ૙ ૙. ૡ૟૟ ૜
૙. ૡ૟૟ ૙ −૞ ૛

૙ ૚ ૙ ૞
૙ ૙ ૙ ૚

൪ 

Solution: 

T 
 

୅
୆ =  ൤ R 

୘
୆
୅ − R 

୘ P୆୓ୖୋ
 

 
୅

୆
୅

0 0 0 1
൨   

Tିଵ = ൦

0.5 0.866 0 −(3 ∗ 0.5 + 2 ∗ 0.866 + 5 ∗ 0)
0 0 1 −(3 ∗ 0 + 2 ∗ 0 + 5 ∗ 1)

0.866 −0.5 0 −(3 ∗ 0.866 + 2 ∗ −0.5 + 5 ∗ 0)
0 0 0 1

൪ 

Tିଵ = ൦

0.5 0.866 0 −3.23
0 0 1 −5

0.866 −0.5 0 −1.598
0 0 0 1

൪ 

Note: You may want to verify that T ∗ Tିଵwill be an identity matrix. 



 

10) [2] Page (52) In a robotic setup, a camera is attached to the fifth link of a robot with six degrees 

of freedom. The camera observes an object and determines its frame relative to the camera's 

frame. Using the following information, determine the necessary motion the end effector has to 

make to get to the object: 

Tୡୟ୫
 

 
ହ = ൦

૙ ૙ −૚ ૜
૙ −૚ ૙ ૙

−૚ ૙ ૙ ૞
૙ ૙ ૙ ૚

൪  Tୌ
 

 
ହ = ൦

૙ −૚ ૙ ૙
૚ ૙ ૙ ૙
૙ ૙ ૚ ૝
૙ ૙ ૙ ૚

൪       

T୭ୠ୨
 

 
ୡୟ୫ = ൦

૙ ૙ ૚ ૛
૚ ૙ ૙ ૛
૙ ૚ ૙ ૝
૙ ૙ ૙ ૚

൪     T୉
 

 
ୌ = ൦

૚ ૙ ૙ ૙
૙ ૚ ૙ ૙
૙ ૙ ૚ ૜
૙ ૙ ૙ ૚

൪ 

Solution: 

T୭ୠ୨
 

 
୉ = Tୌ

 
 

୉  Tହ
 

 
ୌ  Tୡୟ୫

 
 

ହ  T୭ୠ୨
 

 
ୡୟ୫ = T୉

ିଵ
 
 

 
ୌ  Tୌ

ିଵ
 
 

 
ହ  Tୡୟ୫

 
 

ହ  T୭ୠ୨
 

 
ୡୟ୫  

T୉
ିଵ

 
 

 
ୌ = ൦

1 0 0 0
0 1 0 0
0 0 1 −3
0 0 0 1

൪       Tୌ
ିଵ

 
 

 
ହ = ൦

0 1 0 0
−1 0 0 0
0 0 1 −4
0 0 0 1

൪ 

T୭ୠ୨
 

 
୉ = ൦

1 0 0 0
0 1 0 0
0 0 1 −3
0 0 0 1

൪ X ൦

0 1 0 0
−1 0 0 0
0 0 1 −4
0 0 0 1

൪ X ൦

0 0 −1 3
0 −1 0 0

−1 0 0 5
0 0 0 1

൪ X ൦

0 0 1 2
1 0 0 2
0 1 0 4
0 0 0 1

൪ 

T୭ୠ୨
 

 
୉ = ൦

−1 0 0 −2
0 1 0 1
0 0 −1 −4
0 0 0 1

൪ 

 



 

11) [9] (Page 38) From the figure 2.4 the frame ܠ૚ܡ૚ܢ૚ is rotated through an angle ી about the ܢ૙ −

૚܀ and it is desired to find the resulting transformation matrix ,ܛܑܠ܉
૙.  

Note that by convention the positive sense for the angle θ is given by the right-hand rule; that is, 

a positive rotation of θ degrees about the z-axis would advance a right-hand threaded screw 

along the positive z-axis.  

 

Solution:  

Rଵ
଴ =  ൥

xଵ. x଴ yଵ. x଴ zଵ. ଴ݔ
xଵ. y଴ yଵ. y଴ zଵ. ଴ݕ
xଵ. z଴ yଵ. z଴ zଵ. ଴ݖ

൩ 

xଵ. x଴ = cosθ            yଵ. x଴ = −sinθ 

xଵ. y଴ = sinθ            yଵ. y଴ = cosθ              zଵ. ଴ݖ = 1 

From Figure 2.4 we see that and all other dot products are zero. Thus the transformation Rଵ
଴ has a particularly 

simple form in this case, namely 

R (z଴, θ) = Rଵ
଴ =  ൥

cosθ −sinθ 0
sinθ cosθ 0

0 0 1
൩ 

 



 

12) [9] (Page 44) The vector ሬ࢜ሬ⃗  with coordinates ࢜૙  =  (૙, ૚, ૚)ࢀ is rotated about y଴ by ࣊
૛
 as shown in 

Figure 2.8. Find the resulting vector. 

 

Solution: 

ଵݒ
଴ = ܴ ቀݕ,

ߨ
2ቁ ଴ݒ = ൥

cosθ 0 sinθ
0 1 0

−sinθ 0 cosθ
൩ ൥

0
1
1

൩ = ൥
0 0 1
0 1 0

−1 0 0
൩ ൥

0
1
1

൩ = ൥
1
1
0

൩ 

 

13) [9] (Page 45) Suppose a rotation matrix R represents a rotation of ࣐ degrees about the current 

࢟ − ࢠ degrees about the current ࣂ followed by a rotation of ࢙࢏࢞ࢇ −  .Find the matrix R .࢙࢏࢞ࢇ

Solution:  

R = R (y, ߮) R (z, θ) 

 

 



 

14) [9] (Page 45) Suppose that the above rotations are performed in the reverse order, that is, first 

a rotation about the current z-axis followed by a rotation about the current y-axis. Find the 

resulting rotation matrix. 

Solution:  

R = R (z, ߮) R (y, θ) 

 

 

15) [9] (page 47) Suppose that a rotation matrix R represents a rotation of ࣐ degrees about ࢟૙ 

followed by a rotation of ࣂ about the fixed ࢠ૙. Find R. 

Solution: 

R = R (z଴, ߮) R (y଴, θ) 

 



 

Summary [9] (Page 48) 

We can summarize the rule of composition of rotational transformations by the following recipe. Given 

a fixed frame ܠ૙ܡ૙ܢ૙ a current frame ܠ૚ܡ૚ܢ૚, together with rotation matrix ࡾ૚
૙ relating them, if a third 

frame ܠ૛ܡ૛ܢ૛ is obtained by a rotation R performed relative to the current frame then postmultiply 

૚ࡾ
૙ ࡾ ࢟࢈ = ૛ࡾ 

૚ to obtain 

૛ࡾ
૙  = ૚ࡾ 

૙ ࡾ૛
૚ − − − − − −  (2.47) 

If the second rotation is to be performed relative to the fixed frame then it is both confusing and 

inappropriate to use the notation ࡾ૛
૚ to represent this rotation. Therefore, if we represent the rotation 

by R, we premultiply ࡾ૚
૙ ࡾ ࢟࢈ to obtain 

૛ࡾ 
૙  = ૚ࡾࡾ 

૙  − − − − − − (2.48) 

In each case ࡾ૛
૙ represents the transformation between the frames ܠ૙ܡ૙ܢ૙ and ܠ૛ܡ૛ܢ૛. The frame ܠ૛ܡ૛ܢ૛ 

that results in (2.47) will be different from that resulting from (2.48). 

 

16) [9] (Page 53) Suppose R is generated by a rotation of 90◦ about ܢ૙ followed by a rotation 

of 30◦ about ܡ૙ followed by a rotation of 60◦ about ܠ૙. Find the rotation equation. 

Solution: 

ܴ = ܴ(x଴, 60)ܴ(y଴, 30)ܴ(z଴, 90) 

 

 

 

 

 



 

 

 

17) [9] (Page 58) Find the homogeneous transformation matrix H that represents a rotation of α 

degrees about the current x-axis followed by a translation of b units along the current x-axis, 

followed by a translation of d units along the current z-axis, followed by a rotation of θ degrees 

about the current z-axis. 

Solution: 

H = Rot(x, α) Trans(b, 0, 0) Trans(0, 0, d) Rot(z, θ) 

H = ൦

1 0 0 0
0 Cα −Sα 0
0 Sα Cα 0
0 0 0 1

൪ X ൦

1 0 0 b
0 1 0 0
0 0 1 0
0 0 0 1

൪ X ൦

1 0 0 0
0 1 0 0
0 0 1 d
0 0 0 1

൪ X ൦

Cθ −Sθ 0 0
Sθ Cθ 0 0
0 0 1 0
0 0 0 1

൪ 

 

 

 

 

 



Denavit-Hartenberg Representation of Forward Kinematic Equations 

 ;࢏෡ࢄ ା૚ measured along࢏෡ࢆ to ࢏෡ࢆ the distance from = ࢏ࢇ

 ;࢏෡ࢄ ା૚ measured about࢏෡ࢆ to ࢏෡ࢆ the angle from = ࢏ࢻ

 and ;࢏෡ࢆ measured along ࢏෡ࢄ ૚ toି࢏෡ࢄ the distance from = ࢏ࢊ

 .࢏෡ࢆ measured about ࢏෡ࢄ ૚ toି࢏෡ࢄ the angle from = ࢏ࣂ

 

 [1] (page 69) 

 

T୧୧ିଵ = R൫X, α(୧ିଵ)൯ T൫X,  a(୧ିଵ)൯ R(Z, θ୧) T൫Z,  d(୧)൯ 

 

T୧୧ିଵ =

⎣
⎢
⎢
⎡

Cθ୧ −Sθ୧ 0 a(୧ିଵ)
Sθ୧ Cα(୧ିଵ) Cθ୧ Cα(୧ିଵ) −sα(୧ିଵ) −sα(୧ିଵ) d୧
Sθ୧ Sα(୧ିଵ) Cθ୧ Sα(୧ିଵ) Cα(୧ିଵ) Cα(୧ିଵ) d୧

0 0 0 1 ⎦
⎥
⎥
⎤
 

 

 [1] (page 75) 

 

T୒
଴ = Tଵ

଴  Tଶ
ଵ  Tଷ

ଶ  … T୒
୒ିଵ  

 

 [1] (page 76) 

                
 



1) [1] (Page 69) Figure 3.6(a) shows a three-link planar arm. Because all three joints are revolute, 

this manipulator is sometimes called an RRR (or 3R) mechanism. Fig. 3.6(b) is a schematic 

representation of the same manipulator.  

Note the double hash marks indicated on each of the three axes, which indicate that these axes are 

parallel. Assign link frames to the mechanism and give the Denavit-Hartenberg parameters. 

 

Solution: 

 ܽ௜ିଵ ߙ௜ିଵ ݀௜ ߠ௜ 

 ଵߠ 0 0 0 1

2 L1 0 0 ߠଶ 

3 L2 0 0 ߠଷ 

 

 

 



2) [1] (Page 71) Figure 3.9(a) shows a robot having three degrees of freedom and one prismatic 

joint. This manipulator can be called an ‘‘RPR mechanism,’’ in a notation that specifies the type 

and order of the joints. It is a ‘‘cylindrical’’ robot whose first two joints are analogous to polar 

coordinates when viewed from above. The last joint (joint 3) provides ‘‘roll’’ for the hand. Figure 

3.9(b) shows the same manipulator in schematic form.  

Note the symbol used to represent prismatic joints, and note that a ‘‘dot’’ is used to indicate the point 

at which two adjacent axes intersect. Also, the fact that axes 1 and 2 are orthogonal has been 

indicated. 

 

Solution: 

 

 ܽ௜ିଵ ߙ௜ିଵ ݀௜ ߠ௜ 

 ଵߠ 0 0 0 1

2 0 90 ݀ଶ 0 

 ଷߠ ଶܮ 0 0 3

 

 



3) [1] (Page 72) Figure 3.12(a) shows a three-link, 3R manipulator for which joint axes 1 and 2 

intersect and axes 2 and 3 are parallel. Figure 3.12(b) shows the kinematic schematic of the 

manipulator.  

Note that the schematic includes annotations indicating that the first two axes are orthogonal and that 

the last two are parallel. Demonstrate the nonuniqueness of frame assignments and of the Denavit– 

Hartenberg parameters by showing several possible correct assignments of frames {1} and {2}. 

 

Solution: 

Figure 3.13 shows two possible frame assignments and corresponding parameters for the two possible choices 

of direction of መܼଶ. In general, when መܼ௜ and መܼ௜ାଵ intersect, there are two choices for ෠ܺ௜. In this example, joint 

axes 1 and 2 intersect, so there are two choices for the direction of ෠ܺ௜. 

 
 

 ܽ௜ିଵ ߙ௜ିଵ ݀௜ ߠ௜ 

1 0 -90 0  

 ଵ -90ܮ ଶ 0ܮ 2

3     

 

 ܽ௜ିଵ ߙ௜ିଵ ݀௜ ߠ௜ 

1 0 90 0  

 ଵ 90ܮ− ଶ 0ܮ 2

3     

 



Figure 3.14 shows two more possible frame assignments, corresponding to the second choice of ෠ܺ௜. 

 
 

 ܽ௜ିଵ ߙ௜ିଵ ݀௜ ߠ௜ 

1 0 90 0  

 ଵ 90ܮ ଶ 0ܮ 2

3     

 

 ܽ௜ିଵ ߙ௜ିଵ ݀௜ ߠ௜  

1 0 -90 0  

 ଵ -90ܮ− ଶ 0ܮ 2

3     

 

In fact, there are four more possibilities, corresponding to the preceding four choices, but with መܼଵpointing 

downward. 

 



4) [1] (Page 92) (3.3) The arm with three degrees of freedom shown in Fig. 3.29. Joint l's axis is not 

parallel to the other two. Instead, there is a twist of 90 degrees in magnitude between axes 1 and 

2. Derive link parameters and the kinematic equations for ࢃࢀ
࡮  ( ૜܂

૙ ). Note that no ࡵ૜ need be 

defined. 

 

Solution: 

  ܽ௜ିଵ ߙ௜ିଵ ݀௜ ߠ௜ 

 ଵߠ 0 0 0 1

 ଶߠ ଵ 90 0ܮ 2

 ଷߠ ଶ 0 0ܮ 3

 

T୧୧ିଵ =

⎣
⎢
⎢
⎡

Cθ୧ −Sθ୧ 0 a(୧ିଵ)
Sθ୧ Cα(୧ିଵ) Cθ୧ Cα(୧ିଵ) −sα(୧ିଵ) −sα(୧ିଵ) d୧
Sθ୧ Sα(୧ିଵ) Cθ୧ Sα(୧ିଵ) Cα(୧ିଵ) Cα(୧ିଵ) d୧

0 0 0 1 ⎦
⎥
⎥
⎤
 

Tଵ
଴ = ൦

Cθଵ −Sθଵ 0 0
Sθଵ Cθଵ 0 0

0 0 1 0
0 0 0 1

൪     Tଶ
ଵ = ൦

Cθଶ −Sθଶ 0 ଵܮ
0 0 −1 0

Sθଶ Cθଶ 0 0
0 0 0 1

൪     Tଷ
ଶ = ൦

Cθଷ −Sθଷ 0 ଶܮ
Sθଷ Cθଷ 0 0

0 0 1 0
0 0 0 1

൪ 

ܶௐ
஻ = Tଷ

଴ = Tଵ
଴ Tଶ

ଵ Tଷ
ଶ  



5) [1] (Page 95) (3.16) Assign link frames to the RPR planar robot shown in Fig. 3.36, and give the 

linkage parameters. 

 

Solution: 
 

 ܽ௜ିଵ ߙ௜ିଵ ݀௜ ߠ௜ 

1 0 0 ݀ଵ 0 

2 ܽଵ 90 0 ߠଶ 

3 0 -90 ݀ଷ 0 

 
6) [15] (Page 7) The robotic device has three active DOFs arranged in a revolute–revolute-prismatic 

(R–R–P) configuration as shown in Figure below. 
 

 ܽ௜ିଵ ߙ௜ିଵ ݀௜ ߠ௜ 

 ଵߠ 0 90- 0 1

 ଶߠ 0 90 1 2

3 0 0 ݀ଷ 0 

 
 

 



7) [12] (page 40) Let us assign the link frames to the PUMA-type manipulator shown in figure 

2.23 and obtain ࢀ૟
૙ . 

 

Solution: 

Following the scheme of the previous subsection, we obtain the link frames shown in figure 2.24 and the 

link parameters in table below.  

 

T୧୧ିଵ =

⎣
⎢
⎢
⎡

Cθ୧ −Sθ୧ 0 a(୧ିଵ)
Sθ୧ Cα(୧ିଵ) Cθ୧ Cα(୧ିଵ) −sα(୧ିଵ) −sα(୧ିଵ) d୧
Sθ୧ Sα(୧ିଵ) Cθ୧ Sα(୧ିଵ) Cα(୧ିଵ) Cα(୧ିଵ) d୧

0 0 0 1 ⎦
⎥
⎥
⎤
 

 ࢏ࣂ ࢏ࢊ ૚ି࢏ࢻ ૚ି࢏ࢇ 

 ଵߠ 0 0 0 1

2 0 -90 ݈௕ − ݈ௗ ߠଶ 

3 ݈௖ 0 0 ߠଷ 

4 ݈௘ -90 ݈௙ ߠସ 

 ହߠ 0 90 0 5

 ଺ߠ 0 90- 0 6

 
 



8) [12] (Page 36) The Stanford manipulator, developed mainly for research purposes, has the 

mechanism shown in figure 2.20. 

 

Solution: 

The link frames determined by the above procedure for this manipulator are shown in figure 2.2 1; the link 

parameters are given in table 2.1. 

Note that figure 2.21 shows a reference configuration for which ߠ௜  =  0 (݅ =  1,2,4,5,6) and all the ௜ܺ axes 

are in the same direction. Also note that ݀ଷ is not taken to be zero in the figure, because a configuration with 

݀ଷ = 0 is unattainable. 

 

T୧୧ିଵ =

⎣
⎢
⎢
⎡

Cθ୧ −Sθ୧ 0 a(୧ିଵ)
Sθ୧ Cα(୧ିଵ) Cθ୧ Cα(୧ିଵ) −sα(୧ିଵ) −sα(୧ିଵ) d୧
Sθ୧ Sα(୧ିଵ) Cθ୧ Sα(୧ିଵ) Cα(୧ିଵ) Cα(୧ିଵ) d୧

0 0 0 1 ⎦
⎥
⎥
⎤
 

 ܽ௜ିଵ ߙ௜ିଵ ݀௜ ߠ௜ 

 ଵߠ 0 0 0 1

2 0 -90 ݀ଶ ߠଶ 

3 0 90 ݀ଷ 0 

 ସߠ 0 0 0 4

 ହߠ 0 90- 0 5

 ଺ߠ 0 90 0 6

 



 

 



9) [13] (Page 121) As an example, consider a 6-DOF manipulator (Stanford Manipulator) whose 

rigid body and coordinate frame assignment are illustrated in Figure 3. Note that the 

manipulator has an Euler wrist whose three axes intersect at a common point. The first (RRP) 

and last three (RRR) joints are spherical in shape. P and R denote prismatic and revolute joints, 

respectively. Find the DH parameters corresponding to this manipulator. 

 

Solution: 

 

 ܽ௜ିଵ ߙ௜ିଵ ݀௜ ߠ௜ 

1 0 0 ℎଵ ߠଵ 

2 0 90 ݀ଶ ߠଶ 

3 0 -90 ݀ଷ 0 

 ସߠ 0 0 0 4

 ହߠ 0 90 0 5

 ଺ߠ 0 90- 0 6
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Introduction 
to Inverse 

Kinematics 
Lectur-8- 1

Introduction 
Forward Kinematics: 
Joint variables are given ( 𝜃 𝑜𝑟 𝑑) depending whether ( R or P Joints) 

Calculate the location of the end-effectors location and Orientation 

Inverse  Kinematics: 
Given end-effector position (X,Y and Z)

Find Joint variables ( 𝜃ଵ, 𝜃ଶ 𝑜𝑟 𝑑ଵ, 𝑑ଶ)

Forward Kinematics 

Inverse Kinematics 

𝜃ଵ

𝜃ଶ

.

.
𝜃௡

𝑇ே
଴

𝑥, 𝑦

2
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REACHABLE And dextrous workspaces

• Reachable workspace: Set of 
end frames reachable in at 
least one orientation
• Always includes the edge of the 

workspace

• Dextrous workspace: Set of 
end frames reachable in any 
orientation
• Never includes the edge of the 

workspace

3

Existence and Uniqueness

• In linear algebra: linear equations 
always have one and only one 
solution (y=mx+c;y=0)

• Nonlinear equations can have 
none or many (Y=ax2+bx+c;Y=0)

• Same in higher dimensions, e.g. 
kinematics of robotics

• Solutions may not exist – lie 
outside of workspace

• Solutions may not be unique –
more than one set of joint angles 
achieves the goal

4
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5

6
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Inverse Kinematics RP Example : 

Find the inverse Kinematics for the RP 
Robot ?

tan 𝜃 =
𝑦

𝑥
 𝜃 = tanିଵ

𝑦

𝑥
Find L ?

𝐿 = 𝑥ଶ + 𝑦ଶ 

𝜃 

𝑋, 𝑌

𝑌

𝑌 ଴

𝑋 ଴

𝑋

7

The Laws of Cosines and Sines

sin 𝐴

𝐿3
=

sin 𝐵

𝐿2
=

sin 𝐶

𝐿1

Sin Law

Cos Law

𝐿ଵ
ଶ=𝐿ଶ

ଶ + 𝐿ଷ
ଶ − 2𝐿ଶ𝐿ଷcos(𝐶)  

8

CB

A
L1 L2

L3
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Inverse kinematics for RR
• RR robot planar robot find its Inverse 

Kinematics 
• Find 
Applying Cosine Law 

𝑐ଶ=𝑎ଶ + 𝑏ଶ − 2𝑎𝑏cos(𝑎𝑛𝑔𝑙𝑒 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 (𝑐))  

𝑥ଶ + 𝑦ଶ=𝐿 ଵ
ଶ + 𝐿 ଶ

ଶ − 2𝐿 ଵ𝐿 ଶ cos(180 − 𝜃 ଶ)

cos(180 − 𝜃 ଶ)= - cos(𝜃 ଶ)

𝜃 ଶ=cosିଵ ௫మା௬మି௅ భ
మି௅ మ

మ

ଶ௅ భ௅ మ

𝜃 ଶ

𝜃 ଵ
α

𝜃 ଷ

𝜃 ଶ

𝑥, 𝑦

9

Inverse kinematics for RR
• Find 

From geometry 

𝜃 ଵ=α − 𝜃 ଷ---------- α=tanିଵ ௬

௫

Using Sine Law 

𝑎, 𝑏 𝑎𝑛𝑑 𝑐: 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑎𝑛𝑔𝑙𝑒 

ୱ୧୬ ఏ య

௅ మ
=

ୱ୧୬(ଵ଼଴ିఏ మ)

௫మା௬మ  =ୱ୧୬(ఏ మ)

௫మା௬మ  , 

𝜃 ଷ 
=sinିଵ ௅ మ ୱ୧୬(ఏ మ)

௫మା௬మ 

𝜃 ଵ

𝜃 ଵ
α

𝜃 ଷ

𝜃 ଶ

𝑥, 𝑦

sin 𝐴

𝑎
=

sin 𝐵

𝑏
=

sin 𝐶

𝑐

10
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Inverse kinematics for RR for this example

𝜃 ଵ
α

𝜃 ଷ

𝜃 ଶ

𝑥, 𝑦

𝜃ଵ = tanିଵ
𝑦

𝑥
− sinିଵ

𝐿 ଶ sin(𝜃 ଶ)

𝑥ଶ + 𝑦ଶ 

𝜃ଶ = cosିଵ
𝑥ଶ + 𝑦ଶ − 𝐿 ଵ

ଶ − 𝐿 ଶ
ଶ

2𝐿 ଵ𝐿 ଶ

11

Three Link Cartesian Robot (3P)

𝒅𝟏

𝒅𝟐

𝒅𝟑

Given the coordinate of the 
end –effector ( x, y and z )

Required : find the Joint 
variables d1,d2,d3 as a 
function of (x , y and z)

 To simplify the problem 
we will Look from Side 
and Top views 

𝐓𝐡𝐫𝐞𝐞 𝐋𝐢𝐧𝐤 − 𝐂𝐚𝐫𝐭𝐞𝐬𝐢𝐚𝐧 𝐫𝐨𝐛𝐨𝐭 

𝒁𝟎 𝒀𝟎

𝑿𝟎

(𝒙, 𝒚, 𝒛)

𝐒𝐢𝐝𝐞 𝐕𝐢𝐞𝐰
12
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Inverse Kinematics for Three Link 
Cartesian Robot (3P)

𝒅𝟏

𝒅𝟐

𝒅𝟑

𝐓𝐡𝐫𝐞𝐞 𝐋𝐢𝐧𝐤 − 𝐂𝐚𝐫𝐭𝐞𝐬𝐢𝐚𝐧 𝐫𝐨𝐛𝐨𝐭 

𝒁𝟎 𝒀𝟎

𝑿𝟎

(𝒙, 𝒚, 𝒛)

𝐒𝐢𝐝𝐞 𝐕𝐢𝐞𝐰

𝐒𝐢𝐝𝐞 𝐕𝐢𝐞𝐰

𝒁𝟎

𝑿𝟎

𝒅𝟐

𝒅𝟑𝑳𝟏

z

x

𝒅𝟐=X
𝒅𝟑=L1-z

13

Inverse Kinematics for Three Link 
Cartesian Robot (3P)

𝒅𝟏

𝒅𝟐

𝒅𝟑

𝐓𝐡𝐫𝐞𝐞 𝐋𝐢𝐧𝐤 − 𝐂𝐚𝐫𝐭𝐞𝐬𝐢𝐚𝐧 𝐫𝐨𝐛𝐨𝐭 

𝒁𝟎 𝒀𝟎

𝑿𝟎

(𝒙, 𝒚, 𝒛)

𝐒𝐢𝐝𝐞 𝐕𝐢𝐞𝐰

𝒀𝟎

𝑿𝟎

𝒅𝟏

x

𝒅𝟐=X
𝒅𝟏=y

𝒅𝟐

y

14
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Two-link manipulator with link lengths 𝐿ଵand 𝐿ଶ.

 If 𝐿ଵ= 𝐿ଶ reachable workspace consists 
of a disc of radius 2𝐿ଵ.

The dextrous workspace has single 
point which is the origin.

 If 𝐿ଵ ≠ 𝐿ଶ , there is no dextrous 
workspace  and the reachable 
workspace is realised in two cases a 
ring of outer radius 𝐿ଵ+ 𝐿ଶ and ring 
with inner radius 𝐿ଵ− 𝐿ଶ .

 Inside the reachable workspace there 
are two possible orientations of the 
end-effector while in on the boundaries 
only one possible solution can be 
existed. 

Multiple solutions

Fig10.2: Three-link manipulator. 
Dashed lines indicate a second 

solution.

Fig10.3: One of the two possible 
solutions to reach point B causes 

a collision.

 In the absence of 
the obstacle, the 
upper dashed 
configuration in 
Fig. 10.3 would be 
chosen.

 Weights might be 
applied in the 
calculation of 
which solution is 
"closer“.  That 
means the 
movement of the 
smaller Joints are 
easier than the 
larger ones that 
carry links 
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Multiple solutions

Number of solution depends on:

1- Number of joints as a function of Link 
parameters (a ,d , alpha and theta). 

2- Allowable ranges of motion of the joints.

e.g. PUMA 560 can reach certain goals with eight 
different solutions. Fig 10.4 shows four possible 
solution for the same XYZ coordinate. In addition 
each one of these four position can be reached by 
oriented the Joints 4,5 and 6 as follow:

Fig10.4: Four solutions of the 
PUMA 560

Number of solutions vs. nonzero ଵ

𝒂𝒊 Number of Solution 

𝑎ଶ = 𝑎ଷ = 𝑎ହ = 0 ≤ 4

𝑎ଷ = 𝑎ହ = 0 ≤ 8

𝑎ଷ =0 ≤ 16

All 𝑎௜ ≠ 0 ≤ 16
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Ex: Give a description of the subspace of  𝑇୛
୆ for the three-link 

manipulator

The subspace of 𝑇୛
୆  is given by:

𝑇୛
୆ =

𝐶∅ 𝑆∅ 0 𝑥

−𝑆∅ 𝐶∅ 0 𝑦

0 0 1 0
0 0 0 1

Link lengths and joint limits restrict the workspace 
of the manipulator to be a subset of this subspace.

Workspace ⊂ subspace ⊂ space 

Algebraic solution for RRR

𝑇ௐ
஻ = 𝑇ଷ

଴ =

𝑐ଵଶଷ −𝑠ଵଶଷ 0.0 𝑙ଵ𝑐ଵ + 𝑙ଶ𝑐ଵଶ

𝑠ଵଶଷ 𝑐ଵଶଷ 0.0 𝑙ଵ𝑠ଵ + 𝑙ଶ𝑠ଵଶ

0.0 0.0 1.0 0.0
0 0 0 1

The subspace can therefore be given as

𝑇ௐ
஻ =

𝑐∅ −𝑠∅ 0.0 𝑥

𝑠∅ 𝑐∅ 0.0 𝑦

0.0 0.0 1.0 0.0
0 0 0 1

𝑐∅=𝑐ଵଶଷ,……. (1)
𝑠∅=𝑠ଵଶଷ,….... (2)
𝑥=𝑙ଵ𝑐ଵ + 𝑙ଶ𝑐ଵଶ,……..(3)
y=𝑙ଵ𝑠ଵ + 𝑙ଶ𝑠ଵଶ, ……...(4)
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Algebraic solution

We use the trigonometric formula 

𝑐ଵଶ=𝑐ଵ𝑐ଶ − 𝑠ଵ𝑠ଶ,
𝑠ଵଶ=𝑐ଵ𝑠ଶ + 𝑠ଵ𝑐ଶ,
Then 
𝑥ଶ + 𝑦ଶ= 𝑙ଵ

ଶ
 
+ 𝑙ଶ

ଶ + 2𝑙ଵ𝑙ଶ𝑐ଶ,

𝑐ଶ=
௫మା௬మି௟భ

మ
 ି௟మ

మ

ଶ௟భ௟మ

𝑠ଶ = 1 − 𝑐ଶ
ଶ

 

 

𝜃ଶ = tanିଵ ௦మ

௖మ

Algebraic solution

We attempt to find 𝜃ଵ

𝑥 = 𝑘ଵ𝑐ଵ − 𝑘ଶ𝑠ଵ,………(5)
𝑦 = 𝑘ଵ𝑠ଵ − 𝑘ଶ𝑐ଵ,……..(6)
From eqn. (3) and (4)
𝑘ଵ=𝑙ଵ + 𝑙ଶ𝑐ଶ,
𝑘ଶ=𝑙ଶ𝑠ଶ,
Find the radius 

𝑟=+ 𝑘ଵ
ଶ + 𝑘ଶ

ଶ 
 

𝛾 = tanିଵ
𝑘ଶ

𝑘ଵ
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Algebraic solution

𝑘ଵ = 𝑟 cos 𝛾
𝑘ଶ = 𝑟 sin 𝛾

Eqn. (4) and (5) can be written now:
𝑥

𝑟
= cos 𝛾 cos 𝜃ଵ − sin 𝛾 sin 𝜃ଵ

𝑦

𝑟
= cos 𝛾 sin 𝜃ଵ − sin 𝛾 cos 𝜃ଵ

cos(𝛾 + 𝜃ଵ) =
𝑥

𝑟

sin(𝛾 + 𝜃ଵ)  =
𝑥

𝑟
Using the two-argument arctangent, we get
𝜃ଵ = 𝐴𝑡𝑎𝑛2(𝑦, 𝑥)) − 𝐴𝑡𝑎𝑛2(𝑘ଶ, 𝑘ଵ)


