
Programming Introduction

Lecture 1

Mr. Abdulhameed N. Hameed

Computer Programming

First Year Class

Systems and Control Eng. Dept.

1

Syllabus

Computer Programming First class/Semester II

❖ Introduction to programing and types of programming languages.

❖ Study of program development steps and flowchart.

❖ Introduction to C++ programming.

❖ Structured Programming (Variables, Input, Memory).

❖ Operators: Assignment operators, Arithmetic operators, Increment and decrement

operators, Decision making operators, Conditional operator.

❖ Selection statements-1: if single-selection statement, if..else.

❖ Selection statements-2: Nested if..else, switch multiple-selection statement.

❖ Repetition Statements: while repetition statement, for repetition statement,

do..while, break and continue statements.

❖ One-dimensional Arrays: Array elements, Approaches of initialization arrays,

Array of characters, Searching arrays.

❖ Multidimensional Arrays: Array elements, Approaches of initialization arrays, Array

of characters, Searching arrays.
2

Textbook and Software:

 The C++ Programming Language (4th Edition) By:

Bjarne Stroustrup.

 Programming: Principles and Practice Using C++

(2nd Edition) By: Bjarne Stroustrup.

 The software that is used in this course is the

 Code::Blocks as a C++ compiler.

3

سؤالعن برامج نظم التشغيل و برامج التطبيقات يبقىفي الكورس الاول بعد أن تكلمنا

كتب هذه البرامج؟ يمن

وكيف كتبت؟

وبأي لغة؟

التي اتبعت لبناء هذه البرامج؟العملية وما هي الخطوات

ةلغات البرمج-صياغة البرامج–الفصل التاسع –الوحدة الثالثة

4

صياغة البرامج ولغات البرمجة

 Programming & programming languages

.عاليةبدقـةأوامـــرمنيأتيهاماتنفذآلــةهوالآلـيالحاسبجهاز•

.(برنامج)يسمىفيمـامكتوبــةالأوامـرهذهتكـونحيث•

لتحقيقيالآلالحاسبينفذهاالتياليسيرةالأوامرمنسلسلةهيئةعلىمكتوبةتكونالبرامجوجميع•

.معينةمشكلةحلاوماهدف

.الحاسبجهازالىاضافةالانسانيفهمهامعينةبلغةتكتبالأوامرهذه•

:Programming Languagesبرمجة اللغات

(مجبرمال)الانسان صياغة تعليمات لالتي توفر طريقة والاوامر هي مجموعة القواعد

.الوصل بين الانسان وجهاز الحاسبحلقةلتوصيلها الى المعالج وهي

: Programالبرنامج

ل معينالتي توجه الحاسوب لأداء عموهي مجموعة من التعليمات المتسلسلة والمترابطة

.لغات البرمجةبأحدىتنفيذ مهمة محددة و تكتب الخام وعلى البيانات

5

بعض المفاهيم والتعاريف الاساسية

:Programmerالمبرمج

هدفحقيقلتمعينةبرمجةللغةاختيارهبعدالبرامجبكتابةيقومالذيالشخصهواوالبرامجصائغهو

:هيمراحلبعدةللمبرمجبالنسبةالبرمجةعمليةتمرحيث .معينةمسالةاوحل

.المشكلةوتحليلفهممرحلة(1

.لذلكخطواتووضعمنطقيحلافتراض(2

.المشكلةلحلالأوامرمنسلسلةكتابة(3

.عملهصحةمنوالتأكدالبرنامجاختبار(4

يراهايالتالواجهةعلىيحتويالذيالنهائيالشكلتمثل،تنفيذيةصيغةإلىالبرنامجتحويل(5

.البرنامجوتوثيقالمستخدم

:Userالمستخدم

.المبرمجكتبهاالتيالأوامرلهتظهرولنالبرنامجواجهةلهتظهرحيثالبرنامج،يستخدممنهو

6

بعض المفاهيم والتعاريف الاساسية

مخطط يبين خطوات صياغة وتطوير البرامج
7

 خطوات صياغة وتطوير البرامج

Program Development Steps

ةلغات البرمج-صياغة البرامج–الفصل التاسع –الوحدة الثالثة

8

 خطوات صياغة وتطوير البرامج

Program Development Steps

Defining the Problemالمشكلةوتعريفتحديد.1

:بالترتيبليالتاتحديدالخطوةهذهوتتضمنالمشكلةوتعريفبتحديدالمبرمجيقومالخطوةهذهفي

(التراكميالطالبمعدلحسابأووالكهرباء،الماءاستهلاكفواتيرارباح،حساب)البرنامجمنالهدف1.

(....شاشةـــطابعة/...نقود–شيكات–فواتير–تقارير)الإخراجووسائلالمخرجاتوحجمنوع2.

ــالمفاتيحلوحة/..طلابدرجاتــاومفردجملة,اسعارمواد)الإدخالووسائلالمدخلةالبياناتوحجمنوع3.

.(...ــالكاميرا

.(......جامعاتــمدارســـاهليةمكاتبـمختصموظفـــالناسلكلعام).منهوالمستفيدينالبرامجمستخدمي4.

ةلغات البرمج-صياغة البرامج–الفصل التاسع –الوحدة الثالثة

9

 خطوات صياغة وتطوير البرامج

Program Development Steps

Design the Programالبرنامجتصميم.2

.الأولىلخطوةافيودراستهافهمهاتموالتيمنطقياوالمرتبةالدقيقةوالخطواتالمواصفاتتحديدهنايتم▪

 منهاطرقعدةبإستخدامذلكويتم▪

لحلالمؤديةالمنطقيةالخطواتمنسلسلةكتابةعنعبارةوهيAlgorithemsالخوارزمياتكتابة▪

.المشكلة

وهيالعملياتسيرخرائطأيضا عليهاويطلقFlowchartالانسيابيةالمخططاتاستخداماو▪

.مامشكلةلحلاللازمةالمنطقيةالخطواتلتوضيحتستخدمعليهاالمتعارفالرموزمنمجموعة

10

 خطوات صياغة وتطوير البرامج

Program Development Steps

 AlgorithmsالخوارزمياتباستخدامDesign the Program :البرنامجتصميم ❖

Example: Write an algorithm to input tow number and print witch of them greater
than other.

Detailed Algorithm

 Step 1: Input X, Y

 Step 2: if (X>Y) then

 Step 3: Print “X greater than Y”
 else
 Print “Y greater than X”

11

 خطوات صياغة وتطوير البرامج

Program Development Steps

الانسيابيالمخططباستخدام:Design the Programالبرنامجتصميم ❖

12

 خطوات صياغة وتطوير البرامج

Program Development Steps

Coding the Programالبرنامجصياغة.3

أوامرياغةلصالمناسبةالبرمجةلغاتإحدىاختياريتمالبرنامجتصميممنالانتهاءبعد▪

.أوغيرهاFlowchartالانسيابيبالمخططبالاستعانةوذلكCodingالبرنامج

لكلانحيثالمستخدمةالبرمجةلغةةغصياقواعداتباعالبرنامجصياغةعنديجب▪

ءاخطااواملائيةاخطاءهنالككاناذاالبرنامجيعملولابهاخاصةقواعدبرمجةلغة

.Syntax Errorsاللغةقواعدفي

13

 خطوات صياغة وتطوير البرامج

Program Development Steps

Program Debugging and Testingالأخطاءوتصحيحالبرنامجاختبار.4

تنفيذهيتمولاSource Programالمصدرالبرنامجالبرمجةلغاتباحدىصياغتةبعدالبرنامجيسمى▪

ماوهوMachine Languagesالآلةبلغةمكتوببرنامجالىترجمتهيتمبلالحاسوبعلىمباشرة

.Target Programالهدفبالبرنامجيسمى

 Compilationبالترجمةالهدفبرنامجالىالمصدرالبرنامجتحويلعمليةتسمى▪

.Compilerالمترجميسمىبرنامجبهاويقوم

14

 خطوات صياغة وتطوير البرامج

Program Development Steps

المصدرالبرنامجصياغةفياخطاءتظهرقدCompilationالترجمةعمليةخلال▪

.تصحيحهاالمبرمجعلىينبغي

:الأخطاءمنانواعثلاثهناك▪

هناكبانرسالةوتظهرالأوامركتابةفيلغويةاواملائيةاخطاءSyntax Errors:اللغةقواعدفياخطاء1.

.املائيخطا

كافيةمساحةحجزعدممثلالبرنامجتنفيذعندتظهر:Run-Time Errorsالبرنامجتشغيلاثناءاخطاء2.

.الخطاءبنوعرسالةوتظهرنهاية،بلادورانفيالدخولاوللمدخلات

البرنامجتنفيذعندوتظهرالخطأعنرسالةتظهر ولاالحاسوبيكتشفهالا:Logical Errorsمنطقيةاخطاء2.

لمعرفةلبرنامجاخطواتبتتبعالمبرمجويقوممتوقعة،غيراوخاطئهنتائجعلىفنحصلالبياناتمنعينهعلى

.Tracingبالتتبععمليةوتسمىوتصحيحهالخطأمصدر

15

 خطوات صياغة وتطوير البرامج

Program Development Steps

Documenting the Programالبرنامجتوثيق.5

:وثيقالتهذاويشملالبرنامج،لصياغةتفصيليوصفكتابةتتمالمرحلةهذهفي▪

(البرنامجمنالهدفاو)المشكلةأصلكتابة1.

Flowchartوخرائط الحل وخطوات الحل2.

 Helpوتعليمات التشغيل 3.

(...الذاكرةوحجمالمعالجوسرعةالمطلوبةواللغةالتشغيلنظام)التشغيلومتطلبات4.

Inputs Outputsوالمدخلات والمخرجات 5.

:تصنف لغات البرمجة إلى ثلاثة أنواع هي

Low Level Languagesلغات برمجة ذات مستوى منخفض 1.

High Level Languagesلغات برمجة ذات مستوى عال 2.

Fourth Generation Languagesلغات الجيل الرابع 3.

16

تصنيف لغات البرمجة

 Low Level Languages لغات البرمجة ذات المستوى المنخفض1.

:تعتبر لغات البرمجة ذات المستوى المنخفض من أوائل لغات البرمجة ومنها •

Machine Languageالآلةلغة▪

 Assembly languageالتجميعلغة▪

بمستوىالبرنامجأوامريكتبونالمبرمجينلأننظرا المستوىالمنخفضةباللغاتسميت •

البرامجكتابةفي(0,1)اللغةهذهتستخدمحيث،(الحاسوب)الآلةفهممستوىمنقريب

جهازيفهمهاحتى(0,1)الثنائيةالأرقاممنسلسلةشكلعلىالآلةلغةفيالأوامرتكتب •

.الحاسبيفهمهاالتيالوحيدةاللغةوهي الآليالحاسب

.معهاالتفاهممنالآليالحاسبمعداتتتمكنحتىالآلةلغةالىاللغاتجميعتحُول•

:مميزاتها•

مباشرةالمعالجةوحدةتخاطبلأنهاالتنفيذسرعة•

:عيوبها•

.(برامجهاوتصحيحكتابةصعوبة)مرنةغير-

17.(الآلةنوععلىتعتمدبرامجها)عموميةغير-

تصنيف لغات البرمجة

18

تصنيف لغات البرمجة

 High Level Languagesلغات البرمجة ذات المستوى العالي. 2

يا وذلعك بظهور اللغات ذات المستوى العالي أصبحت عملية التخاطب والتعامل معع الحاسعب أسعهل نسعب▪

.لأن لغة التعامل مع الحاسب أصبحت قريبة من لغة البشر

يعام الحاسعب سميت بهذا الاسم لأنه اصعبح بامكعان المبعرمج كتابعة البعرامج دون معرفعة تفاصعيل كيفيعة ق▪

.بهذه العمليات

:بعض مميزات هذه اللغات

.الانسانلغةمنقريبة-

.(البرامجوتصحيحوتعديلكتابةفيسهولة)مرنة-

.(معينةبآلةالارتباطعدم)عمومية-

والجهدالوقتتوفير-

:عيوبها

هذهباحدىالمكتوب(Source Code)المصدرالبرنامجبتحويليقوملوسيطلاحتياجهاالتنفيذبطء-

.الآلةبلغةالمكتوب(Target Code)الهدفالبرنامجالىاللغات

19

تصنيف لغات البرمجة

 Fourth Generation Languagesلغات الجيل الرابع. 3

حيثVery High Level Languagesدا جعاليالالمستوىذاتباللغاتأيضا اللغاتهذهتسمى▪

.الإنسانلغةمنجدا وقريبةوالفهمالاستخدامسهلةلغاتإنها

منعديدةصفحات Coding صياغةعنتغنيهبسهولةالعملياتمنبكثيرالقيامالمبرمجيستطيع▪

.بذلكالقيامبكيفيةيوجههاندونالكومبيوترمنيريدهبماذاالمبرمجويهتم.البرنامجأوامر

الاهدافموجهةالبرمجةغاتبلمايسمىظهرضمنهاومن

(Object Oriented Programming Language)

(الرسوميةالواجهاتتصميم)المرئيةالبرمجةاسلوبتدعم❖

 visual basic , visual c++ , java builder:امثلتهامن❖

 Visual Basicولغة فيجوال بيسك BASIC Language لغة البـيسك1.

C & C++ Language بلس بلسلغة سي ولغة سي 2.

Java Language لغة الجافا3.

COBOL Language لغة الكوبل4.

PASCAL Language لغة الباسكال5.

LOGO Language لغة اللوجو6.

Python Languageلغة البايثون 7.

 Artificial Intelligence Languages لغات الذكاء الاصطناعي8.

20

ذات المستوى العاليأنواع لغات البرمجة

Flowchart

Lecture 2

Abdulhameed N. Hameed

Computer Programming

First Year Class

Systems and Control Eng. Dept.

1

Flowchart

:ينستخدم مجموعة من الأشكال الرمزية الاصطلاحية المبينة في الجدول التال

1

2

3

4

5

6

:بما يلي flowchartsيمكن تصنيف

) (Simple Sequential Flowchartخرائط التتابع البسيط•

(Branched Flowchart)خرائط التفرع •

) Loop Flowchart)خرائط الدوران البسيط •

) Nested)خرائط الدورانات المتداخلة •

Simple Sequential Flowchart

 يخلو هذا النوع من

Branchesالتفرعات

. loopsو الدورانات

Example: Draw a flowchart to find the area and

circumference of a circle with a known radius R :

Input: R

Output: R,A,C

:الخطوات

. ابدأ1.

. Rاقرأ قيمة 2.

 PIE=3.14ضع قيمة 3.

A =(PIE)*R*R من المعادلة Aاحسب المساحة 4.

C =2*(PIE)*Rمن المعادلة Cاحسب المحيط 5.

.C, A, Rاطبع قيم كل من 6.

.توقف7.

Area= ΠR2

Circumference=2ΠR

Π≈ 3.14

Branched Flowchart

 ويحدث التفرع في

البرامج بسبب

 الحاجة لاتخاذ قرار

أو مفاضلة بين

، اختيارين أو أكثر

 وهناك أسلوبان في

. تنفيذ القرار

Example: compare between tow numbers and print

the max :

Input : number1 ,number2

max Output:

: الخطوات

ابدا1.

number2والعدد الثاني number1ادخل العدد الاول 2.

واذا max=number1اجعل number1>number2اذا كان 3.
max=number2لا اجعل

maxاطبع 4.

توقف5.

start

stop

Read number1

,number2

number1>

number2

Max=number1Max=number2

Print max

yesno

Nested Flowchart

 نحتاج إليها لإعادة عملية أو مجموعة من العمليات في البرنامج عددًا محدودًا أو غير محدود من المرات،

:ويكون الشكل العام لمثل هذه الخرائط كما يلي

Example: Draw a flowchart to find the area to group of

circles with known semi-diameter:

Input: R

Output: R, A

 خطوات الحل :

.ابدأ1.

Rاقرأ نصف قطر الدائرة 2.

Aأوجد مساحة الدائرة 3.

A, Rاطبع قيم كل من 4.

هل هناك مزيد من الدوائر؟5.

(2)فإن كان نعم فعد إلى الخطوة

(.6)وإن كان لا فعد إلى الخطوة

.توقف6.

Structured Programming in

C++

Lecture 3

Abdulhameed N. Hameed

Computer Programming

First Year Class

Systems and Control Eng. Dept.

1

The Problem Cycle

Analysis–Coding–Execution
2

Problem Analysis

Algorithm Design

Coding

Complier

Execution

Get Results

Errors

Errors

Using Any

Programming

Language

Translate Code To

Machine

Language

The famous

Hello world program

When learning a new language, the first program people
usually write is one that salutes the world :

 Here is the Hello world program in C++.

#include <iostream.h>

int main()

{

cout << “Hello world!”;

return 0;

}

3

A C++ program

1. #include <iostream.h>

2. int main()

3. {

4. //variable declaration

5. //read values input from user

6. //computation

7. //and print output to user

8. return 0;

9. }

ي الت(من المكتبة)تعريف البرامج الثانوية 1.

.يحتاجها البرنامج لكي يعمل

(.ئيسيةالدالة الر)تعريف اسم البرنامج الرئيسي 2.

. الكتابة اوامر البرمجة بعده, علامة الابتداء 3.

تعريف المتغيرات4.

او قراءة قيم من المستخدم5.

اواجراء حسابات معينة6.

.او طباعة المخرجات7.

. فردليل على انتهاء البرنامج باعادة القيمة ص8.

اي حصر اوامر)علامة انتهاء اوامر البرمجة 9.

(البرمجة بداخل علامة البراكيت

4

Complete Program
5

 1 // Fig. 2.1: fig02_01.cpp

 2 // Text-printing program.

 3 #include <iostream.h> // allows program to output data to the screen

 4

 5 // function main begins program execution

 6 int main()

 7 {

 8 cout << "Welcome to C++!\n"; // display message

 9

10 return 0; // indicate that program ended successfully

11

12 } // end function main

Welcome to C++!

comments

statement
main function

preprocessor directive

braces

string literal

output on screen
#include <iostream>

int main()

{ Cout << “welcome to c++!\n”

 return 0; }

C++ Program Structure

1. Comments: remarks that are ignored by the compiler

2. Compiler directives: commands for compiler, which are needed

to compile and run program effectively

3. Main function: where every program begins

4. Braces: mark the beginning and ending code blocks

5. Statement: a line of C++ code

6

1. Comments

 Explain programs, their purpose, authors names and future

modification notes to other programmers

 Improve program readability

 Ignored by compiler

 Single-line comment

 Begin with (//)

 Multi-line comment

 Start with /*

 End with */

7

// Fig. 2.1: fig02_01.cpp

// Text-printing program

/* Fig. 2.1: fig02_01.cpp

Text-printing program */

2. Preprocessor Directives

 Instructions to the compiler rather than part of C++ language

 Tells preprocessor stage to include the input/output stream header

file <iostream.h>

 Begin with #

 Forgetting to include the file will result in a compilation error.

8

#include <iostream.h>

name of header file

3. main Function

 Part of every C++ program

 ONLY one function in a program must be main

 Can or can’t be “return” a value

 Returns an integer; once return

 Body is delimited by braces { }

 return statement

 The value 0 indicates the program terminated successfully

9

int main()

{

 return 0;

}

Rules of building a program in C++
10

1. Must include <iostream.h> for cout to work properly

2. C++ is case sensitive.

1. Make sure you don’t capitalize any of the letters in C++ keywords.

 (Main is different that main)

3. Every statement ends with a statement terminator: semicolon(;).

1. Except for function header, function braces and preprocessor directives.

4. String literals must be enclosed in “ ”.

5. Main function must return a value to the OS.

6. Every opening brace { must have an enclosing brace }.

Variable declaration

Type-name variable-name

Meaning: variable <variable-name> will be a variable of type <type>

Where type can be:

 int //integer number

 float //decimal number

 double //real number

 char //character

Example:

 int a, b, c;

 double x;

 float sum;

 char my-name;

Declaration Stage

11

Input statements

 Standard Input stream object

 cin >> variable-name;

▪ Connected to the Keyboard

▪ Defined in input/output stream header file <iostream.h>

▪ Meaning: read the value of the variable called <variable-name>

from the user,

Example:

 cin >> a;

 cin >> b >> c;

 cin >> x;

 cin >> my-name;

Input Stage

12

Output statements

 Standard output stream object

 cout <<

◼ “Connected” to screen

◼ Defined in input/output stream header file <iostream.h>

 Example

◼ cout << "Hello";

◼ Inserts the string "Hello" into the standard output then

displays to the screen

13

Output statements

cout << variable-name;

 Meaning: print the value of variable <variable-name> to the user.

cout << “any message “;

 Meaning: print the message within quotes to the user.

cout << endl;

 Meaning: print a new line.

Example:

 cout << a;

 cout << b << c;

 cout << “This is my name: “ << my-name ;

 cout << endl;

Output Stage

14

Escape Sequences
15

Escape
sequence

Description

\n Newline. Position the screen cursor to the beginning of the next line.

\t Horizontal tab. Move the screen cursor to the next tab stop.

\r
Carriage return. Position the screen cursor to the beginning of the current

line; do not advance to the next line.

 Escape characters

 A character preceded by a backslash "\" Indicates “special” character output.

 Example: "\n” → Cursor moves to beginning of next line on the screen.

Modifying First Program - 1
16

 1 // Fig. 2.3: fig02_03.cpp

 2 // Printing a line of text with multiple statements.

 3 #include <iostream.h> // allows program to output data to the screen

 4

 5 // function main begins program execution

 6 int main()

 7 {

 8 cout << "Welcome ";

 9 cout << "to C++!\n";

10

11 return 0; // indicate that program ended successfully

12

13 } // end function main

Welcome to C++!

Multiple stream insertion

statements produce one line

of output

Modifying First Program - 2
17

 1 // Fig. 2.4: fig02_04.cpp

 2 // Printing multiple lines of text with a single statement.

 3 #include <iostream.h> // allows program to output data to the screen

 4

 5 // function main begins program execution

 6 int main()

 7 {

 8 cout << "Welcome\nto\n\nC++!\n";

 9

10 return 0; // indicate that program ended successfully

11

12 } // end function main

Welcome
to

C++!

Use newline characters to

print on multiple lines

Exercise - 1
18

Write a program that input and display your name, class,

section, computer science degree, and your age.

Example (screen output):

Ahmad Ali

First year/Group A

Systems & Control Department

My computer science degree= 70

My age= 20

Operators in C++

Lecture 4

Abdulhameed N. Hameed

Computer Programming

First Year Class

Systems and Control Eng. Dept.

1

Contents
2

 Arithmetic operators

 Precedence and associativity of operators

 Increment and decrement operators

 Decision making operators (Equality, relational and logical)

 Conditional operators

 Common errors

Arithmetic Operations

 Operators: Data connectors within expression or equation

 Operators types based on their mission:

1. Arithmetic : addition + , subtraction -, modulo division / , ...etc (x+y)

2. Equality and Relational: equal to == , less than <, grater than >, …etc

(x<y)

3. Logical : AND, OR, NOT (x && y)

3

Operators

 Operators divided to types based on the number of operands

 Unary operators

◼ Have only one operand

◼ May be prefix or postfix

◼ e.g. ++ !-- (x++ , y--)

 Binary operators

◼ Have two operands

◼ Infix

◼ e.g. + &&== - (x && y , x+y)

 Ternary operators

◼ Have three operands

◼ e.g. ? : (i > j ? max=i : max=j)

4

Assignment statement

 Assignment statement takes the form below

 Expression is evaluated and its value is assigned to the variable on

the left side

 Shorthand notation

 varName = varName operator expression;

 varName operator = expression;

5

varName = expression;

c = c + 3;

c += 3;

Arithmetic Operators

 Arithmetic Operators: All of them are binary operators

6

C++ operation C++ arithmetic

operator

Algebraic

expression

C++ expression

Addition + f + 7 f + 7

Subtraction - p - c p - c

MUltiplication * bm or b . m b * m

Division / x / y or x ÷ y x / y

Modulus % r mod s r % s

Assignment between objects

 Assignment between objects of the same type is always supported

7

Assignment
operator

Sample
expression

Explnation Assigns

Assume: int c = 3, d = 5, e = 4, f = 6, g = 12;

+= c += 7 c = c + 7 10 to c

-= d -= 4 d = d – 4 1 to d

*= e *= 5 e = e * 5 20 to e

/= f /= 3 f = f / 3 2 to f

%= g %= 9 g = g % 9 3 to g

Arithmetic Operators Precedence

 Operators in parentheses evaluated first

 Nested/embedded parentheses (Operators in innermost pair first)

 Multiplication, division, modulus applied next

 Addition, subtraction applied last

8

(Operators applied from left to

right)

Operator(s) Operation(s) Order of evaluation (precedence)

() Parentheses Evaluated first. If the parentheses are nested, the

expression in the innermost pair is evaluated first. If

there are several pairs of parentheses “on the same level”

(i.e., not nested), they are evaluated left to right.

*, /, or % Multiplication Division

Modulus

Evaluated second. If there are several, they re

evaluated left to right.

+ or - Addition

Subtraction

Evaluated last. If there are several, they are

evaluated left to right.

Example

 The statement is written in algebra as

 z = pr % q + w / (x – y)

 How can we write and evaluate the previous statement in C++ ?

 z = p * r % q + w / (x - y);

9

53 42 16

Example:

Exercise 1

 State the order of evaluation of the operators in each of the

following C++ statements and show the value of x after

each statement is performed.

 x = 7 + 3 * 6 / 2 - 1;

 x = 2 % 2 + 2 * 2 - 2 / 2;

 x = (3 * 9 * (3 + (9 * 3 / (3))));

Increment and Decrement Operators

 Unary operators

 Adding 1 to or (subtracting 1 from) variable’s value

 Increment operator gives the same result of(c=c+1) or (c+=1)

 Decrement operator gives the same result of (c=c-1) or (c-=1)

12

Operator Called Sample

expression

Explanation

++ Preincrement ++a Increment a by 1, then use the new value of

a in the expression in which a resides.

++ Postincrement a++ Use the current value of a in the expression

in which a resides, then increment a by 1.

−− Pridecrement --b Decrement b by 1, then use the new value of

b in the expression in which b resides.

−− Postdecrement b-- Use the current value of b in the expression

in which b resides, decrement b by 1.

Examples
13

int x = 10;

cout << “x = “ << ++x << endl;

cout << “x = “ << x << endl;

Example # 1

x = 11

x = 11

output # 1

int x = 10;

cout << “x = “ << x++ << endl;

cout << “x = “ << x << endl;

Example # 2

x = 10

x = 11

output # 2

Examples
14

int x = 10 , y;

y = ++x;

cout << “x = “ << x << endl;

cout << “y = “ << y << endl;

Example # 1

x = 11

y = 11

output # 1

int x = 10 , y;

y = x++;

cout << “x = “ << x << endl;

cout << “y = “ << y << endl;

Example # 2

x = 11

y = 10

output # 2

Relational and Equality Operators

 Binary operators

 Used in decision -making statements

15

Standard algebraic

equality operator or

relational operator

C++ equality

or relational

operator

Example

of C++

condition

Meaning of

C++ condition

Relational operators

> > x > y x is greater than y

< < x < y x is less than y

 >= x >= y x is greater than or equal to y

 <= x <= y x is less than or equal to y

Equality operators

= == x == y x is equal to y

 != x != y x is not equal to y

Relational and Equality Operators (cont.)

 Have the same level of precedence

 Applied from left to right

 Used with conditions

 Return the value true or false

 Used only with a single condition

16

Logical Operators

 Used to combine between multiple conditions

 && (logical AND)

 true if both conditions are true

 gender == 1 && age >= 65

 || (logical OR)

 true if either of condition is true

 semester_Average >= 90 || final_Exam >= 90

17

1st condition 2nd condition

Logical Operators (cont.)

 ! (logical NOT, logical negation)

 Returns true when its condition is false, and vice versa

!(grade == sentinelValue)

 Also can be written as

 grade != sentinelValue

18

Conditional operator (?:)

 Ternary operator requires three operands

 Condition

 Value when condition is true

 Value when condition is false

 Syntax

19

Condition ? condition’s true value : condition’s false value

Examples

Can be written as

Can be written as .. ?

20

grade >= 60 ? cout<<“Passed” : cout<<“Failed”;

Example # 1

cout << (grade >= 60 ? “Passed” : “Failed”);

int i = 1, j = 2, Max;

Max = (i > j ? i : j);

Example # 2

Additional Operators:

 C++ does not define operators for finding square

roots, absolute values, or for raising numbers to a

power.

 It provides predefined program units called

functions that do these and other necessary

calculations.

21

Examples

 √𝑥 = sqrt (x)

 √𝑎−𝑏 = sqrt (a-b)

 | x | = abs (x)

 xy = pow (x, y)

22

Common Compilation Errors

 Attempt to use % with non-integer operands

 Spaces between pair of symbols e.g. (= =, ! =, …etc)

 Reversing order of pair of symbols e.g. =!

 Confusing between equality (==) and assignment operator (=)

23

Exercise - 2
24

What is the output of the following program?

 1 #include <iostream>

 2

 3

 4

 5

 6 int main()

 7 {

 8 int x; int y; int z;

 9

10 x = 30; y = 2; z = 0;

11

12 cout << (++++x && z) << endl;

13 cout << x * y + 9 / 3 << endl;

14 cout << x << y << z++ << endl;

15

16 return 0;

17

18 } // end main

25

Exercise - 3

What is wrong with the following program?

1 int main()

2 {

3 int a,b,c,sum;

4 sum = a + b + c ;

5 return 0;

6 }

Selection Statements

Lecture 5

Abdulhameed N. Hameed

Computer Programming

First Year Class

Systems and Control Eng. Dept.

1

2024-2025

Content
2

 Control structures

 Types of selection statements

 if single-selection statement

 if..else double-selection statement

 Nested if..else statements

 switch multiple-selection statement

 Common errors

Control Structure (Logic Structure)

 Used to design data flow in modules and program as a whole

 Basic structures

1. Sequential structure

◼ Processes one instruction after another

2. Selection structures

◼ Decision structure

◼ Make choices by using relational or logical operators(Ex. If or if..else)

◼ Case structure

◼ Enable to pick up one of a set of tasks (Ex. switch)

3. Loop structure

◼ Enable to repeat tasks (Ex. for)

3

if Single-Selection Statement

 Begin with if followed by condition; then action or group of actions

are listed

 Syntax

 Single action

 Multiple actions

 If condition is true, action is performed

 Otherwise, action is ignored

4

if (condition)

{

 action1;

 action2;

 ..

 actionN;

}

if(grade >= 60)

 Cout << “Passed”;

if (condition)

 action;

if..else Double-Selection Statement

 Begin with if followed by condition; then action or group of actions

are listed

 End with else then action or group of actions are listed

 If condition is true, action that followed by if is performed

Otherwise, action that followed by else is performed

5

if (condition)

 action1;

else

 action2;

if(grade >= 60)

 cout << “Passed”;

else

 cout << “failed ”;

Nested if..else Statements

 Nested If : means to write an if statement within another if statement.

 One inside another, test for multiple cases

 Once condition met, other statements skipped

6

if (condition1)

 action1;

else

 if (condition2)

 action2;

 else

 if (condition3)

 action3;

 ...

 else

 actionN;

if (condition1)

{

 if (condition2)

 action1;

 else

 {

 if (condition3)

 action2;

 else

 action3;

 }

}

else

 action4;

Example

• For example, the following code will print:

7

if (grade >= 90)

 cout << “Excellent";

else if (grade >= 80)

 cout << “very good";

 else if (grade >= 70)

 cout << “good";

 else if (grade >= 60)

 cout << “median";

 else

 cout << “Fail";

• Excellent
 //for grades greater than or equal to 90.

• very good
 //for grades greater than or equal to 80.

• good
 //for grades greater than or equal to 70.

• median
 //for grades greater than or equal to 60.

• Fail
 // for all other grades.

Home work: Try to add “Pass” for grades greater than 50

Dangling-else Problem

 Each else associated with immediately preceding if

 There is exception when placing braces { }

8

int x = 10, y = 2;

if (x > 5)

 if(y > 5)

 cout << "x and y are > 5"<< endl;

 else

 cout<<"x is <=5“;

Have logic error

int x = 10, y = 2;

if (x > 5)

 {

 if(y > 5)

 cout << "x and y are > 5"<< endl;

 }

else

cout<<"x is <=5";

cout<<"x is >=5“;

Correctness

If the condition is not true

If the condition is true

Combining more than one condition

9

Operator Means Description

&& And The Expression Value Is true If and Only IF both Conditions

are true

|| OR The Expression Value Is true If one Condition Is True

 To combine more than one condition we use the logical operators.

Example : check whether num1 is between 0 and 100

 If ((num1 >= 0) && (num1 <=100))

 cout <<“The Number Is between 0 and 100” ;

 else

 cout <<“ The Number Is Larger Than 100”;

switch Multiple-selection Statement

 The switch statement: that allows us to make a decision from

a number of choices (Enable to pick up one of a set of

tasks)

 Perform actions based on possible values of variable

or expression

 Value of expression compared to case labels then

execute action for that case

 No matching, the execution go to the optional

default statement

 break causes immediate exit from switch

statement

10

switch (expression)

{

case value1:

 action1;

 break;

case value2:

 action2;

 break;

...

case valueN:

 actionN;

 break;

default:

 action;

}

switch Multiple-selection Statement

11

Switch (Expression)

{

case constant 1 :

 Action statements;

 break ;

case constant 2 :

 Action statements;

 break ;

case constant 3 :

 Action statements;

 break ;

default :

 Action statements;

}

Expression It could be an integer constant like

1, 2 or 3, or an expression that evaluates to an

integer .

Constant : is a specific value.

Switch (10);

Int i ;

Switch (i);

switch (i + j * k)

switch (23 + 45 % 4 * k)

Switch (10.0);

float i ;

Switch (i);

switch (i + j * k)

switch (23 + 45 % 4 * i)

Case 50:

Case 40 +10;
Case >= 50;

Case a+ b;

12

switch Multiple-selection Statement

switch (grade)

{

case 90 :

cout <<"You Got A \n"; break;

case 80 :

cout <<"You Got B \n"; break;

case 70 :

cout <<"You Got C \n"; break;

case 60 :

cout <<"You Got D \n"; break;

default :

cout <<" Sorry , You Got F \n";

}

Common Compilation Errors

 Placing semicolon (;) after if condition or else keyword

 Omitting spaces between case keyword and value(case 0:)

 Specifying expression including variables (a + b) in case label of

switch statement

 Providing identical case labels

 Forgetting a break statement when one is needed in a switch

13

Class work: Determine the output for each of the following when

x = 9 and y = 11, and when x and y = 11.

a) if (x < 10)

 if (y > 10)

 cout << "*****" << endl;

 else

 cout << "#####" << endl;

 cout << "$$$$$" << endl;

ANS:

b) if (x < 10)

 {

 if (y > 10)

 cout << "*****" << endl;

 }

 else

 {

 cout << "#####" << endl;

 cout << "$$$$$" << endl;

 }

 ANS:

14

Exercise – Home work
15

1) Write a program that asks for an integer and reports

whether the number is odd or even. Use if .. else

statement.

2) Write another version of program using switch

statement.

Repetition Statements

(while & do-while)

Lecture 6

2024-2025

Abdulhameed N. Hameed

Computer Programming

First Year Class

Systems and Control Eng. Dept.

1

Content
2

 Types of repetition statements

 while repetition statement

 Counter-controlled repetition

 do..while repetition statement

Loop : Repetition Statements

 Some times we need to repeat a specific course of actions either a specified

number of times or until a particular condition is being satisfied.

 For example :

 To calculate the Average grade for 10 students.

 To calculate the bonus for 10 employees.

 To sum the input numbers from the user as long as he/she enters positive

numbers.

 A loop statement:- allows us to execute a statement or group of statements

multiple times.

 There are three methods of which we can repeat a part of a program. They are:

3

1) while statement

2) do..while statement

3) for statement

while Repetition Statements

 Actions repeated while condition remains true

 Syntax

 One of the actions should causes condition to becomes false

 Example

4

while (condition)

{

 action1;

 action2;

 .

 .

 actionN;

}

int product = 3;

while (product <= 30)

{

 product *= 3;

}

while Repetition Statements (cont.)

while (condition)

 {

 S1;

 }

 S2;

condition

S1

S2

True False

Counter-Controlled Repetition

 Uses a variable to control number of loops’ iterations

 Also known as definite repetition

 Number of repetitions known beforehand

 Requires

1. Name of loop control variable

2. Initial value of loop control variable

3. Condition to test of reaching final value

4. Update loop control variable

6

control var Name;

Initialize control var ;

while (condition)

{

 action1;

 action2;

 .

 .

 actionN;

 update control var;

}

• Example: Write a program that calculates and prints out

the Average grade for 6 students.

int counter = 1;

int grade=0 , sum=0;

while (counter <=6)

{

cout <<"Enter grade for student no. " << counter <<"\n";

cin >>grade;

sum += grade;

counter ++;

}

cout <<"Average Grade is " << sum/counter <<"\n"; 7

1-Name 2-Initial for counter

3- Condition to test the counter

4- Update control variable

Counter-Controlled Repetition(cont.)

8

Example:

Write C++ program to type numbers from 1 to 10 using while

statement.

8

 1 // Fig. 5.1: fig05_01.cpp

 2 // Counter-controlled repetition.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6

 7 int main()

 8 {

 9 int counter = 1; // declare and initialize control variable

10

11 while (counter <= 10) // loop-continuation condition

12 {

13 cout << counter << " ";

14 counter++; // increment control variable by 1

15 } // end while

16

17 cout << endl; // output a newline

18 return 0; // successful termination

19 } // end main

1 2 3 4 5 6 7 8 9 10

Control-variable name is counter

with variable initial value 1

Condition tests for

counter’s final value

Increment the value in counter

do..while Repetition Statement

 Unlike for and while loops (which test the loop condition at the top of the

loop) the do...while loop checks its condition at the bottom of the loop.

 A do...while loop is similar to a while loop, except that a do...while loop

is guaranteed to execute at least one time.

9

do

{

 action1;

 action2;

 .

 .

 actionN;

} while (condition)

Syntax

Consider the following two loops:

a/ i=11;

 While (i<=10)

 {

 cout << i ;

 i=i+5;

 }

 cout<< i <<endl;

Output:

b/ i=11;

 do

 {

 cout<< i ;

 i=i+5;

 } While(i<=10);

 cout << i << endl;

Output:

do..while Repetition Statement (cont.)

int counter=1;

float grade=0 , sum=0;

do

{

cout <<"Enter grade for student no "

<< counter <<"\n";

cin >>grade;

sum += grade;

counter ++;

} while (counter <=6) ;

counter --;

cout <<"Average Grade is " <<

sum/counter <<"\n";

do..while Repetition Statement (cont.)

• Example: Write a program that calculates and prints out the Average grade for

6 students.

int counter = 1;

float grade=0 , sum=0;

while (counter <=6)

{

cout <<"Enter grade for student no "

<< counter <<"\n";

cin >>grade;

sum += grade;

counter ++;

}

counter --;

cout <<"Average Grade is " <<

sum/counter <<"\n";

Using do…while Using while

12

 1 // Fig. 5.7: fig05_07.cpp

 2 // do...while repetition statement.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6

 7 int main()

 8 {

 9 int counter = 1; // initialize counter

10

11 do

12 {

13 cout << counter << " "; // display counter

14 counter++; // increment counter

15 } while (counter <= 10); // end do...while

16

17 cout << endl; // output a newline

18 return 0; // indicate successful termination

19 } // end main

1 2 3 4 5 6 7 8 9 10

Declare and initialize
control variable counter

do…while loop displays counter’s value

before testing for counter’s final value

Example:

Write C++ program to type numbers from 1 to 10 using (do…while) statement.

Hom work:
13

1. Write C++ program to type numbers from 20 to 30 using

while statement.

2. Write C++ program to find the summation of odd numbers

from 100 to 200 using do-while statement.

Repetition Statements

(for)

Lecture 7

2024-2025

Abdulhameed N. Hameed

Computer Programming

First Year Class

Systems and Control Eng. Dept.

1

for Repetition Statement

 Provide counter-controlled repetition details in a single statement

 Syntax

 for loop repeats actions until condition becomes false

2

for (initialization; condition; increment)

 {

 action(s);

 }

--

for (initialization; loop Continuation Condition; update)

 action1;

for (initialization; loop Continuation Condition; update)

{

 action1; action2; … actionN;

}

for Repetition Statement

 For Loop is probably the most popular looping instruction.

• for allows us to specify three things about a loop in a single line:

(a) Setting a loop counter to an initial value.

(b) testing the loop counter to detect whether its value reached the number of repetitions desired.

(c) increasing the value of loop counter each time the program segment within the loop has been

executed.

for (init; condition; increment)

 {

 action(s);

 }

1/ The init. step is executed first, and does not repeat.

2/ Next, the condition is evaluated, and the body of the loop is executed if the

condition is true.

3/In the next step, the increment statement updates the loop control variable.

4/Then, the loop's body repeats itself, only stopping when the condition

becomes false.

remember that the

semicolons are mandatory.

for Repetition Statement

Ex.: for (int x = 1; x < 10; x++)

 {

 // some code

 }

•Example : Write a program that calculates and prints out the

Average grade for 6 students using for statement .

5

int grade=0, sum=0;

for (int counter =1 ; counter <=6 ; counter ++)

{

cout <<"Enter Grade \n";

cin>>grade;

sum += grade;

}

cout <<"The Average grades is “ << sum/6 <<"\n";

for Repetition Statement

int counter = 1;

int grade=0 , sum=0;

while (counter <=6)

{

cout <<"Enter grade for student \n“ ;

cin >>grade;

sum += grade;

counter ++;

}

cout <<"Average Grade is "<< sum/6

<<"\n";

6

 1 // Fig. 5.2: fig05_02.cpp

 2 // Counter-controlled repetition with the for statement.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6

 7 int main()

 8 {

 9 // for statement header includes initialization,

10 // loop-continuation condition and increment.

11 for (int counter = 1; counter <= 10; counter++)

12 cout << counter << " ";

13

14 cout << endl; // output a newline

15 return 0; // indicate successful termination

16 } // end main

1 2 3 4 5 6 7 8 9 10

Control-variable name is counter with initial value 1

Condition tests for counter’s final value

Increment for counter

1=اسم متغير السيطرة وهو عبارة عن عداد مع قيمة ابتدائية للدارة(أو شرط التوقف)شرط الاستمرارية

(لكي نصل إلى شرط التوقف)صيغة التحديث لمتغير السيطرة

Example:

Write a C++ program to print numbers from 1 to 10 using for statement.

for Repetition Statement (cont.)

 When loop counter is declared in initialization expression, it can

ONLY be used inside for statement (local variable)

 initialization and update expressions can be comma-separated lists

of expressions

7

for (init.; Condition; update)

 action1;

for(int i=0, j=0; i<4 && j<8; i++,j++)

 cout << “*”;

Examples Using for Statement

 Write a program that prints out numbers from 0 to 10 in descending order

 Write a program that prints out numbers from 7 to 77 in steps of 7

 Write a program that prints out the sequence: 99, 88, 77, 66, 55, 44,

33, 22, 11, 0

// If we need the increments more than 1 we should use counter

8

for(int i = 10; i >= 0; i--)

 cout << i << "\n“;

for(int i = 7; i <= 77; i += 7)

 cout << i << "\n“;

for(int i = 99; i >= 0; i -= 11)

 cout << i << "\n“;

• Example : Write a program that calculates the Factorial for

any given positive number.

 Ex : Factorial (5) = 5 * 4 * 3 * 2 * 1

9

int number, factorial=1;

cout <<"Enter a positive number\n";

cin >> number;

if (number < 0)

cout <<" Enter Positive Numbers only\n";

else

for (int i= 1 ; i<=number ; i++)

 factorial = factorial * i;

cout <<" Factorila = “ << factorial <<"\n";

Common Errors

 Compilation errors

 Using commas instead of the two required semicolons in a for header

 Logic errors

 Not initializing counters and totals

 Placing semicolon immediately after for header

 for (init; condition; increment)

 {

 action(s);

 }

10

	Lect 1 مقدمة عن البرمجة
	Slide 1
	Slide 2: Syllabus
	Slide 3: Textbook and Software:
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

	Lect 2 Flowchart
	Slide 1
	Slide 2: Flowchart نستخدم مجموعة من الأشكال الرمزية الاصطلاحية المبينة في الجدول التالي:
	Slide 3: يمكن تصنيف flowcharts بما يلي:
	Slide 4: Simple Sequential Flowchart
	Slide 5: Example: Draw a flowchart to find the area and circumference of a circle with a known radius R :
	Slide 6: Branched Flowchart
	Slide 7: Example: compare between tow numbers and print the max :
	Slide 8
	Slide 9: Nested Flowchart
	Slide 10: Example: Draw a flowchart to find the area to group of circles with known semi-diameter:

	Lect 3 (Intro C++)
	Slide 1
	Slide 2: The Problem Cycle Analysis–Coding–Execution
	Slide 3: The famous Hello world program
	Slide 4: A C++ program
	Slide 5: Complete Program
	Slide 6: C++ Program Structure
	Slide 7: Comments
	Slide 8: 2. Preprocessor Directives
	Slide 9: 3. main Function
	Slide 10: Rules of building a program in C++
	Slide 11: Variable declaration
	Slide 12: Input statements
	Slide 13: Output statements
	Slide 14: Output statements
	Slide 15: Escape Sequences
	Slide 16: Modifying First Program - 1
	Slide 17: Modifying First Program - 2
	Slide 18: Exercise - 1

	lect 4 operators in C++
	Slide 1
	Slide 2: Contents
	Slide 3: Arithmetic Operations
	Slide 4: Operators
	Slide 5: Assignment statement
	Slide 6: Arithmetic Operators
	Slide 7: Assignment between objects
	Slide 8: Arithmetic Operators Precedence
	Slide 9: Example
	Slide 10: Example:
	Slide 11: Exercise 1
	Slide 12: Increment and Decrement Operators
	Slide 13: Examples
	Slide 14: Examples
	Slide 15: Relational and Equality Operators
	Slide 16: Relational and Equality Operators (cont.)
	Slide 17: Logical Operators
	Slide 18: Logical Operators (cont.)
	Slide 19: Conditional operator (?:)
	Slide 20: Examples
	Slide 21: Additional Operators:
	Slide 22: Examples
	Slide 23: Common Compilation Errors
	Slide 24: Exercise - 2
	Slide 25: Exercise - 3

	lect 5 (Selection Statements)
	Slide 1
	Slide 2: Content
	Slide 3: Control Structure (Logic Structure)
	Slide 4: if Single-Selection Statement
	Slide 5: if..else Double-Selection Statement
	Slide 6: Nested if..else Statements
	Slide 7: Example
	Slide 8: Dangling-else Problem
	Slide 9: Combining more than one condition
	Slide 10: switch Multiple-selection Statement
	Slide 11: switch Multiple-selection Statement
	Slide 12
	Slide 13: Common Compilation Errors
	Slide 14: Class work: Determine the output for each of the following when x = 9 and y = 11, and when x and y = 11.
	Slide 15: Exercise – Home work

	lect 6 (Repetition Statesments I)
	Slide 1
	Slide 2: Content
	Slide 3: Loop : Repetition Statements
	Slide 4: while Repetition Statements
	Slide 5: while Repetition Statements (cont.)
	Slide 6: Counter-Controlled Repetition
	Slide 7: Counter-Controlled Repetition(cont.)
	Slide 8
	Slide 9: do..while Repetition Statement
	Slide 10
	Slide 11: do..while Repetition Statement (cont.)
	Slide 12
	Slide 13: Hom work:

	lect 7 (for Repetition Statesment)
	Slide 1
	Slide 2: for Repetition Statement
	Slide 3: for Repetition Statement
	Slide 4
	Slide 5: for Repetition Statement
	Slide 6
	Slide 7: for Repetition Statement (cont.)
	Slide 8: Examples Using for Statement
	Slide 9
	Slide 10: Common Errors

