Computer Programming

First Year Class
Lecture 1

Programming Introduction

Mr. Abdulhameed N. Hameed

Syllabus

Computer Programming First class/Semester Il

L (4

0

Introduction to programing and types of programming languages.

L/
’0

L)

Study of program development steps and flowchart.

/
’0

D)

Introduction to C++ programming.

XS

*

Structured Programming (Variables, Input, Memory).

e

*%

Operators: Assignment operators, Arithmetic operators, Increment and decrement

operators, Decision making operators, Conditional operator.

Selection statements-1: if single-selection statement, if..else.

Selection statements-2: Nested if..else, switch multiple-selection statement.

Repetition Statements: while repetition statement, for repetition statement,

do..while, break and continue statements.

One-dimensional Arrays: Array elements, Approaches of initialization arrays,

Array of characters, Searching arrays.

Multidimensional Arrays: Array elements, Approaches of initialization arrays, Array

of characters, Searching arrays.

Textbook and Software:

The C++ Programming Language (4th Edition) By:
Bjarne Stroustrup.

Programming: Principles and Practice Using C++
(2nd Edition) By: Bjarne Stroustrup.

The software that is used in this course is the

Code::Blocks as a C++ compiler.

daa) Clad 9 zal sl ielua
Programming & programming languages

OV g Sy lipdail) el 5o g Sl oo el g e ¥ Gy sSI) 8 Ll (0 2ay
Saal_ad) oM ISy (e
TS o
043l sl

el) oda sl Candi) Al ddaad) <l glodd) A Lag

aﬁu\.u'g\ i jladl) g ﬁAM\ .Y

Aalle 38y 5 al gl e Lol Lo 5 AT s V1 sl g

_ (@l) o Lagd A 5% BOPN FXTISPENFUITENE
Giad V) Canlall a5l el V) (e Alade A o G 9Sa 0 6S5 el) aren g o
Amae S0 Ja o) Le a2

el Slea) Adleal LY Leagdy Aima daly iSS jal gY1 odae

:Programming Languages 43 il cilal
(o ysal) ¥ laglas A2 L) 4y 5l 58 L pel ¥ 5 25l e sama oo
ol Slen s sV o Jaa o il o sl) Ll 53

:Program gl
Ot Jao eaY Cgulall 4 g 5 day) i)y dladeciddl Clagdedll (e de ganae
Al Gl sasly K g 3aane dage i AN bl e

Aol iy il g Al lal) (jamy

‘Programmer gl

oo (i A Aova s A2l) o LAl ey el) IS, ol o3 Gl g8 o el il s 58
DB dal e 3arg e paell Al dae) Alee jad s Aee Allise da)

ASEQD it g agd A e (1

A Ol gt aaia g g Ahie da pal il (2

Alaall Jal el 91 (e dlidis 35S (1 3

Alee daia (e U 5 zalil) las) (4

Wy ol Gealsdl Glo ssing o Liledl JSAI ik ¢ A e Y el Jisad (5
R BN R P PPRELNON|

User asiicall

el LS 1 el 31 4l el (s gl) al 5 4l el i el 2oy (a5

Zal_gal) gl g AS Lua <l ghad

Program Development Steps

elisdl (355 - 0 g> iy 11355 -)

ool il - £ 2wl |l puouai - Y
aclo - Y
2wyl

Tl ool g Aslua & ghd s Jalada

Zal_al) gl g ASLua <l glad

Program Development Steps

Defining the Problem AlSdwl) Ciy 259 aaas 4

rad Al AU aaa8 3 gdadl) 538 eaiall o ASGLL) Cly p2t 5 s pra jaall o g8 B gladll ol

(Sl el Jane Clun sl ol jeSI1 5 elall @Sl il 58 o=l lun) gealisall (ge Cangll]

(oo BBLE Al /L 28— ClSpl = g —) £ AY) Bilags Cla il s s § 552

_ il da gl /o s o 2kes) Alea 3l se el)JEY) Jilugs ARl UL aas g 5.3
(e = el

(e ladls — alie — Ada) CiilSa L aidia (il ga — Gulill JSI ple) e (il 5 geel) oadiioue 4

Zal_al) gl g ASLua <l glad

Program Development Steps

Design the Program bl azai |2

(hsY B shaall 8 Lgi)3 g Lgag a3 3l 5 Likaie 455 yall 5 A58l ol gladl) 5 Ciliual sall apaa Ui o
leie @b sae aladinly olld B4y

Jal el dahaiall &l pladll e dludi AUS e 3 e oA 5 Algorithems Sia) sad) 4L
ASE

et clleall e kil & Lyl lgle gl s Flowchart 4Asbuady) cllabiad) aladial)

e Al Jad e 3D Ailaiall <l shadll a5 w285 Lale o jlaiall) ga)l (e e sana

Zal) gl g ASLua <l glad

Program Development Steps

Algorithms <)) sdl) aladiuly : Design the Program gl) asaa

Example: Write an algorithm to input tow number and print witch of them greater
than other.

Detailed Algorithm
Step 1: Input X, Y
Step 2. If (X>Y) then
Step 3: Print ‘X greater than Y~

else
Print “Y greater than X~

10

Zal_al) gl g ASLua <l glad

Program Development Steps

() Jaladal) aladiuly :Design the Program bl azaas

G dally3 B Laiiuall ja)l ool

gl

> pu!
/u@*w ‘ﬁ‘/ g - Ll
Start - End
g .
e > e =
[|
Input - Output

= ATy |

N\ Processing

b2
@ Decision

Zal_al) gl g ASLua <l glad

Program Development Steps

Coding the Program gl 4&lua .3

el sl A Lual dnaiall Aoyl cilad (saa) a2 el il aranal (e elgiaV) an

W e 5l Flowchart ey hhaall 2iuYL @iy s Coding gl
S) s deadiinsal) Aol dad delya 2ol @ gLl malipll delua dic Cany
sladl o) 400l elad) Glllia IS 13 zalill Jazy Vs Lgr sl ac) g8 Aoy 4ad

Syntax Errors 4alll e |8 8

12

Zal_al) gl g ASLua <l glad

Program Development Steps
Program Debugging and Testing sWba¥) zuawal g geali) L) 4

541} A Y5 Source Program _iadll @AUJ,J\ daa il Alal sl ddelua dey G‘uj.m (s
L s 5 Machine Languages 4% 4l i giSa gl pp) 4ias 5 ol dy gulal) e 5 3l

Target Program <3¢} zali by o

.Compiler a2 siall o 7l il o g

Compiler "

13

Zal_al) gl g A8 Lua <l glad

Program Development Steps

1ead ¥ e g g3l EaDlE cllia

Sl u\.ﬁ d\.u))#j JA\}S(\ 4..1\35 (_53 :uyd _9\ :\.ﬁ)m\ cha) ;Synqu Errors PR 49\‘9.5 ‘;é slad)
(k) Uad

4..\515 4alie s pc Jia @UJ,\M J.xsﬁ e M ‘Run-Time Errors @AUJQS\ M sl glad)

gebil) i vie el s Uadll e Al jelai W5 sulall L3S Y :Logical Errors dsbhia glad)

Tracing <« @il Adee ooy dagmiaig Uadll jrins

14

Zal_al) gl g A8 Lua <l glad
Program Development Steps

.0:'0'

Documenting the Program Uil (3xi g5 5,
G5l 138 Jadi g qraliall delual luali Con s UK 25 Ala el 528 3

(il m il 5) A ol A

Flowchart Jall Jail ja 5 Jall &l shad

Help dJadill Claglai

(.5 SN s g adleall Ao ju g & slhaall dalll 5 Jueiiil) alas) Josediill colallaia
Inputs Outputs Sla il 3 DA

15

16

daa) clad Ciyiias

1oh £l A) A) cilad il

Low Level Languages uaddia (5 siue il daa py Gilal
High Level Languages Jle (s siua 13 daa yy Cilal

Fourth Generation Languages &/)l Jaall cilal

daa) cilad il

Low Level Languages adiiall 5 giuall ild daa) cilad

e s daa sl Ll J3l ol pe (addiiall (5 shsall Cl3 A) Colad yiind e
Machine Language 41Y) 4al

Assembly language &l 4a]
G sins galindl el sl (95K Gpmasaal) GV Tk (s sieal) Aaiaiall Clallly Cuan e
el LS (1) 0) 4alll o2a e&d@;c(uy\i\)dy\a@ﬁgjmwmﬁ
s Lpnsis im (1, 0) R 531 e Al (S5 e A1 A il 31 5
ol Lagiy 3 saum sl A2l o V) Cadal
Lere aalifl) (pe AV sl Calara oSt ia AV A N Gl aves Jsadie

P L) Saa e
5 pilae dadlaall 3aa g adalas LY dudiil) de g o
s o

(Lol oy S 4y gra) A e

daa ul) el Ciiial

High Level Languages Aol (5 glesall &I daa pl) clad 2

Gl 5 L Jemd el ae Jalaill 5 cadalaill dlee chinpal) (5 sl cild Glalll) gelay
il AR (e Ay B Canal el ae dalacil) A3l (Y
rslall 2l L8 Jaialii 48 yra () 93 el ol AU e ysall (GLSaly rvaal 40 4] 13gn Capas
Sllasll o3¢y
L) 03) jraa (pamy
Ol 43 (e dy 8 -
(el ol sty Joawt s LUK 8 A g ya
(Adee A10 Ll Y1 aae) dge sac
el s gl 65 -

L ge

sda (saab iS4l (Source Code) yadll el) Jisatsy o g8y Jasi ol Lgaliiay 2l ooy

18

daa ul) el Ciiial

Fourth Generation Languages A Jaadl clad (3
&us Very High Level Languages 1 Al (5 gaall @ld clallly Lyl el o2 o
(Y Al (e fan Ay B g agdll g aladinl) Algw el L)
(e 3ue Cladia Coding 4elua (o 4t A sgun Cllaall o S alall e jaall adaiy
A ALl AR dga 50) O s sSI (e o g 13ey g yall g5 el)yl)

CiIRY) dga ga Aol iy cannle el Lgiaa s
(Object Oriented Programming Language)
(e sl g sl ananal) 40 jall daa jll 0 ghsl ao il

visual basic, visual c++ , java builder : Lilial (pael

19

20

ol (5 giaall Cild Aoyl cilad £ gl

Visual Basic <luw Jisad42ly BASIC Language <lull 4l
C & C++ Language b oy e sl A

Java Language lalall dal

COBOL Language JusSI 4al

PASCAL Language JSubill 4l

LOGO Language s>l 4al

Python Language Oy sild) Al

Artificial Intelligence Languages seliaa¥) £1SAl) Cilal

AN

gl gusip 1l

Systems and Control Eng. Dept.

Computer Programming

First Year Class
Lecture 2

Flowchart

Abdulhameed N. Hameed

);,\1_1,»

\\H

N vahi L

s s

Flowchart

AU Jsaall 8 Tl daDUaia¥) A eyl JIKEYT (e de sana IM

Alios Sl Soazll 30l

Jto
N (Stope)rTl:.E 9ﬁgtart) ﬁ
oo L I

(Process) auluws @los

LET 2
X+Y
INPUT } OUTPUT zlys| fJlss]
Jrae] o] | i | LS|
Z XY)

Flow line (OLyw) (8935 alsl

Decision ;1,8 s
NO < > YES 3 S <> 4

LOOpD Ghgs gl)5
I=1to 10

‘b W flowcharts —wial (Sa

(Simple Sequential Flowchart) sl asliill i) e
(Branched Flowchart) g dill kil jae

(Loop Flowchart) Laxwdl o)) 5 sall 1ol jae

(Nested) Allmial ¢ sall Lil 2

Simple Sequential Flowchart
N

(START) e g Al 1 e
I Branches <ile ydill
Event a -IOOPSCMJJJJ‘J
|
Eventb
:
Ewvent ¢

(STOP)

Example: Draw a flowchart to find the area and

circumference of a circle with a known radius R :
I S

C START) Area= MR2

& Circumference=2INR
/ R;ad / Input: R M~ 3.14
+ Output: R,A,C

[PIELf3t 14] D G gkl
S
[A= (PIE}*(R‘*)] CRAEIH
[P PIE=3.14 e
C—2*(PIE.)*R A =(PIE)*R*R 4dlzal) 0 A dablecal) Guual
pnm =2*(PIE)*R Aaall (o € lsal))

RA&C C,A R . (ndSadpdl

C STOP) b

Branched Flowchart

_
& g oAl Sasg s
/ A\\\ YCS i G‘“‘ Sl
4—<\ \")—’ 5 343 ol
‘Jf‘g Ji Crobaal

/////«\\\\\ gg(gbjLﬁcﬂU&j
Less‘than 0 7 Grater tl'\an 0 _ J\ Jﬂ\ m.ﬁ

Equal O

Example: compare between tow numbers and print

the max :

Input : number1 ,number2
Output: max
T) ghadll
EUN
number2 SUll 2axll s number1 Js¥) aaall Jaal 2

13 smax=numberl Jdz==humberl1>number2 O\ 13 .3
max=number2 J=a! ¥

max &kl .4
85 .5

start
Read numberl
,number2

>
no numberl yes

number?2

Max=number2 Max=number]

O
/ vamman [/

Nested Flowchart

1
(&l gal) Cpa dgdna S gl 13 9aaa 12e alipll B Cililaad) (he de gana gl dalas Bl Y Lgnl) zliad
r b LaS Jail AN o3a Jial alad) JSA&N 6% g
ik
ik
Exent a
0 .
o Cotidition
es o
Errent a
Y es

Example: Draw a flowchart to find the area to group of
circles with known semi-diameter:

o
(' sTART) Input: R
§ '1 Output: R, A
/ Reod / - Jall il ghaa o
- t _ide\ 1
A= 314R“ R &l Hlad caaif @l

/ Pnnt / A5l dabis aa gl 5

. el e mde i Ja 5
: (205 skl] 32 pai (IS o
(6) 55Ba0 1) 248 Y S ¢

CSTOP) R0

S =in) ; Systems and Control Eng. Dept. |[Jall
LX—;Q\%@,‘@‘A Ni\.L\'Al'l Uﬁ“’t“”y
il i Sugiti dal

Computer Programming

First Year Class
Lecture 3

Structured Programming In
C++

Abdulhameed N. Hameed

The Problem Cycle

Analysis—Coding—Execution

Problem Analysis &3
Using An'y Algorithm Design <
Programming)
\

<€

_
, ﬁ
/ Errors

Translate Code To

Machine ,
>
Errors

Get Results

The famous

Hello world proaram
né

When learning a new language, the first program people
usually write is one that salutes the world :

Here is the Hello world program in C++.
#include <iostream.h>
int main ()

{

cout << “Hello world!”;

return 0;

J

A C++ program

1. #include <iostream.h>) (RSl 0) A 50 el al) e LT
| | Jery (S iyl Lgaliag

2. int main() (1)) (s) ali sl sl iy 3 2

3. { Ladzs daa il el ol QUK clan¥ ASle | 3
.~\ . “ . -

4. //variable declaration u," wﬂ -4

fm‘wﬁﬂbc\)gj‘ .5

5. //read values input from user e Gllea ¢ al gl L 6

6. //computation o o il Aelik 5 LT

| i Al alels galinal) sl Jle Jds 8

7. //and print output to user Sals) s (s1) Aaaall el o) olemil Ade | 9
5. return 0; (Sl dadle Jalay da)

9. }

Complete Program
N

1 // Fig. 2.1: fig02_01.cpp
. comments
2 // Text-printing program.
3 #include <iostream.h>]// allows program to output data to the screen
4 preprocessor directive
5 // function main begins program execution
6 int main(Q) string literal
; 1t v
| 1
8 cout << "welcome to C++!\n";7// display message
9 statement : :
<— Mmain function
10 ‘isfgiz\?; // indicate that program ended successfully
1 braces
12 }J// end function main

HWellCOlEREORCRE!](—OUtput on screen e ————
#include <iostream>

int main()
{ Cout << “welcome to c++'\n”

return O; }

C++ Program Structure

Comments: remarks that are ignored by the compiler

Compiler directives: commands for compiler, which are needed

to compile and run program effectively

Main function: where every program begins

Braces: mark the beginning and ending code blocks

Statement: a line of C++ code

o Single-line comment

o Multi-line comment

1. Comments

o Explain programs, their purpose, authors names and future

modification notes to other programmers

Improve program readability

- Ignored by compiler

// Fig. 2.1: £ig02 0l.cpp
// Text-printing program

Begin with (//) /* Fig. 2.1: £ig02 01.cpp

Text-printing program */

Start with /*

End with */

2. Preprocessor Directives

O

O

O

O

Instructions to the compiler rather than part of C++ language

Tells preprocessor stage to include the iInput/output stream header

file <iostream.h> ' #include <iostream.h>
Begin with # i .

name of header file

Forgetting to include the file will result in a compilation error.

3. main Function

Part of every C++ program

ONLY one function in a program must be main

Can or can’t be “return” a value

int main()

Returns an integer; once return {
Body is delimited by braces { } return 0;
return statement }

The value 0 indicates the program terminated successfully

Rules of building a program in C++

Must include <iostream.h> for cout to work properly

C++ Is case sensitive.

Make sure you don’t capitalize any of the letters in C++ keywords.

(Main is different that main)

Every statement ends with a statement terminator: semicolon(;).
Except for function header, function braces and preprocessor directives.
String literals must be enclosed in “ ”.

Main function must return a value to the OS.

Every opening brace { must have an enclosing brace }.

Variable declaration
N

Type-name variable-name
Meaning: variable <variable-name> will be a variable of type <type>
Where type can be:

0 int //integer number

0 float //decimal number

0 double //real number

o char //character

Example:

int a, b, c;
double x;

float sum; Declaration Stage

char my-name;

Input statements
2

o Standard Input stream object

cin >> variable-name;

Connected to the Keyboard

Defined in input /output stream header file <iostream.h>

Meaning: read the value of the variable called <variable-name>
from the user,

Example:

cin >> a;

cin >> b >> c; Input Stage

cin >> Xx;

cin >> my-name;
@

Output statements
s

o Standard output stream object

cout <<
m “Connected” to screen

= Defined in input/output stream header file <iostream.h>
Example
m cout << "Hello";

Inserts the string "Hello" into the standard output then

displays to the screen

Output statements
N

cout << variable-name;

Meaning: print the value of variable <variable-name> to the user.

cout << “any message “;

Meaning: print the message within quotes to the user.

cout << endl;

Meaning: print a new line.

Example:

cout << a;

cout << b << ¢;
Output Stage

\

cout << “"This 1s my name: << my-name ;

cout << endl;

Escape Sequences
B

o Escape characters

o A character preceded by a backslash "\" Indicates “special” character output.

o Example: "\n” - Cursor moves to beginning of next line on the screen.

Escape Description

sequence

\n Newline. Position the screen cursor to the beginning of the next line.

\t Horizontal tab. Move the screen cursor to the next tab stop.

\r Carriage return. Position the screen cursor to the beginning of the current

line; do not advance to the next line.

Modifying First Program - 1
B

1 // Fig. 2.3: fig02_03.cpp

2 // Printing a line of text with multiple statements.

3 #include <iostream.h> // allows program to output data to the screen

4

5 {/ fun?tion main begins program execution Multiple stream insertion
6 1int main(Q))
74 statements produce one line
8 cout << "Welcome "; of output

9 cout << "to C++!\n";

10

11 return 0; // indicate that program ended successfully

12

13 } // end function main

 welcome to C++!

Modifying First Program - 2
B

1 // Fig. 2.4: fig02_04.cpp

2 // Printing multiple Tines of text with a single statement.

3 #include <iostream.h> // allows program to output data to the screen
4 -

5 // function main begins program exec Use newline characters to
6 int mainO print on multiple lines

7 {

8 cout << "welcome\nto\n\nC++!\n";

9

10 return 0; // indicate that program ended successfully

11

12 } // end function main

welcome
to

C++!

Exercise - 1

Write a program that input and display your name, class,
section, computer science degree, and your age.

Example (screen output):

Ahmad Ali

First year/Group A

Systems & Control Department
My computer science degree= 70
My age= 20

s 2)
Sgidaaly

Ninevah University
2 X 1
0 1
0o == 2

‘ w}“f‘.‘.‘.ﬁw‘l *“wﬁ.‘.‘,\w\ 7
2 o o\l 3
/ o @® \
College of Electronic Engineering

ahiMUI fusié dﬂé

Systems and Control Eng. Dept.

Computer Programming

First Year Class
Lecture 4

Operators in C++

Abdulhameed N. Hameed

Ninevahi University
-

Contents

Arithmetic operators

Precedence and associativity of operators

Increment and decrement operators

Decision making operators (Equality, relational and logical)
Conditional operators

Common errors

Arithmetic Operations

o Operators: Data connectors within expression or equation

o Operators types based on their mission:

1. Arithmetic : addition + , subtraction -, modulo division/, ...etc (Xx+y)

2. Equality and Relational: equal to ==, less than <, grater than >, ...etc

(X<y)

3. Logical : AND, OR, NOT (X &&Y)

Operators
N

o Operators divided to types based on the number of operands

o Unary operators

= Have only one operand
= May be prefix or postfix
= eg. - ++ ! (x++,y--)

o Binary operators

= Have two operands
m Infix
meg == && +- (x&&Y, xty)

o Ternary operators

= Have three operands
= eg. ?: (i >3 ? max=i : max=]j)

Assighment statement
N

o Assignment statement takes the form below

varName = expression;

o Expression is evaluated and its value is assigned to the variable on

the left side

7 Shorthand notation

o varName = varName operator expression;

o varName operator = expression;

Arithmetic Operators

Arithmetic Operators: All of them are binary operators

C++ operation C++ arithmetic Algebraic C++ expression
operator expression

Addition + f+7 f+7

Subtraction - p-C p-c

MUltiplication * bmorb.m b*m

Division / x/yorx=y |xIly

Modulus % rmod s r % s

Assignment between objects

Assignment between objects of the same type is always supported

,g\sgﬁgtnorpent g)%r)r}gégion Explnation Assigns
Assume:int c=3, d=5, e=4, f=6, g=12;
4= c += 7 c=c+7 10toc
-= d-= d=d-4 1tod
= e=5 e=e*o 20to e
/= £ /=3 f=f1/3 2t0f
§= g %= 9 g=g%9 |3tog

Arithmetic Operators Precedence

Operators in parentheses evaluated first
Nested/embedded parentheses (Operators in innermost pair first)

Multiplication, division, modulus applied next
(Operators applied from left to

Addition, subtraction applied last right)

Operator(s) Operation(s) Order of evaluation (precedence)

() Parentheses Evaluated first. If the parentheses are nested, the
expression in the innermost pair is evaluated first. If
there are several pairs of parentheses “on the same level”
(i.e., not nested), they are evaluated left to right.

* /,0r% Multiplication Division |Evaluated second. If there are several, they re
Modulus evaluated left to right.
+or - Addition Evaluated last. If there are several, they are

Subtraction evaluated left to right.

Example
C

o The statement is written in algebra as
z=pr%qt+tw/(x-y)

How can we write and evaluate the previous statement in C++ ?

z = p * r % g + w / (x - V)

o
14

gtBtctd+e

Algebra: m = :
Ct+; m={(a+b+c+d+e)/5;
Algebra: ¥ = mx+ b

e+ v =m * x + b;

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

y

P e W W R e AR T -
2 * 5 is/a0}

wore,
-

10 % 5 £ 3 * § 5 7=

10 * 5 is 50
.QJI'-'_A

\J

50-+ 3 * 5 4 7:
3 * 5 s

‘»-']'—‘:-

Y

50 + 15 + 7;

50 + 15 s 651;

Y

65 + 7;

65 + 7 1is Z_rgﬂ

\J

72

(Leftmost multiplication)

(Leftmost multiplication)

(Multiplication before addition)

(Leftmost addition)

(Last addition)

(Last operation—place 72 iny)

Exercise 1

State the order of evaluation of the operators in each of the

following C++ statements and show the value of X after
each statement is performed.

x=7+3%6/2-1;
X=2%2+2%2-2/2;
x=(3*9*(3+(9*3/(3))));

Increment and Decrement Operators

Unary operators

Adding 1 to or (subtracting 1 from) variable’s value
Increment operator gives the same result of (c=c+1) or (c+=1)

Decrement operator gives the same result of (c=c-1) or (c-=1)

Operator |Called Sample Explanation
expression
44 Preincrement ++a Increment a by 1, then use the new value of

a in the expression in which a resides.

++ Postincrement a++ Use the current value of a in the expression
in which a resides, then increment a by 1.

— Pridecrement --b Decrement b by 1, then use the new value of
b in the expression in which b resides.

S Postdecrement b-- Use the current value of b in the expression
in which b resides, decrement b by 1.

Examples

Example # 1
int X

10;

cout << “'x “ <KL ++x << endl;
cout < "'x = " <K<K x << endl;

Example # 2
int x = 10

cout << “'x “ <L x++ << endl;
cout < "'x = " << x << endl;

Examples

Example # 1

int x =10 , y;
y = ++x;
cout << “"x = " << x << endl;
cout << V'y = " << y << endl;
Example # 2
int x =10 , y;
vy = xt++; output # 2
cout << Y"x = " << x << endl;

cout << %'y = Y << y << endl;

Relational and Equality Operators

Binary operators

Used in decision -making statements

Standard algebraic C++ equality [Example Meaning of
equality operator or or relational of C++ C++ condition
relational operator operator condition

Relational operators

> > X >y x 1s greater than y

< < x <y x is less than y

> >= X >=y x 1s greater than or equal to y
< <= x <=y x 1s less than or equal to y

Equality operators

— == X ==y xisequal toy

+ 1= x =y x 1s not equal to y

Relational and Equality Operators (cont.)

e
o Have the same level of precedence

o Applied from left to right
71 Used with conditions
7 Return the value true or false

o Used only with a single condition

Logical Operators
N

o Used to combine between multiple conditions

o && (logical AND)

o true if both conditions are true
1st condition rommo- 2 condition

__

o || (logical OR)
o true if either of condition is true

semester Average >= 90 || final Exam >= 90

Logical Operators (cont.)
L [

o ! (logical NOT, logical negation)
o Returns true when its condition is false, and vice versa

! (grade == sentinelValue)

Also can be written as

grade != sentinelValue

Conditional operator (2 :)
N

o Ternary operator requires three operands
o Condition
o Value when condition is true

= Value when condition is false

o Syntax

Condition condition’s true wvalue condition’s false wvalue

e

Example # 1

grade >= 60 ? cout<<“Passed” : cout<<“Failed”;

cout << (grade >= 60 ? “Passed” : “Failed”);

-- Example # 2 --

Can be written as .. ?

Additional Operators:

C++ does not define operators for finding square
roots, absolute values, or for raising numbers to a
power.

It provides predefined program units called
functions that do these and other necessary
calculations.

Examples
N

0 oNx = sqrt (x)
o Ya—b = sqrt (a-b)
0| x | = abs (x)

0 XY= pow (X, y)

Common Compilation Errors

O

O

O

O

Attempt to use % with non-integer operands

Spaces between pair of symbols e.g. (==, ! =, ...etc)

Reversing order of pair of symbols e.g. =!

Confusing between equality (==) and assignment operator (=)

Exercise - 2
T

What is the output of the following program?

1 #include <iostream>

2

» 3

4

.5

.6 int main()

7

. 8 int x; int y; int z;

9

. 10 x =30; y=2; z=20;

C11

12 cout << (++++x && z) << endl;
.13 cout << x * y + 9 / 3 << endl;
14 cout << x << y << z++ << endl;
15

16 return 0;

17

518 } // end main

Exercise - 3
T

What is wrong with the following program?

1 int main()

2

'3 int a,b,c,sum;
4 sum = a + b + ¢c ;
55 return O;

. 6 }

0 = 2
2 ‘w;éi.‘.‘.iwl ;“wﬁ.‘.‘t\\\‘ 3
/ ia ®® \
College of Electronic Engineering

gl e 12

Systems and Control Eng. Dept.

Computer Programming

First Year Class

Lecture 5

Selection Statements

2024-2025
Abdulhameed N. Hameed

Content

Control structures

Types of selection statements

if single-selection statement
if..else double-selection statement

Nested i f. .else statements

switch multiple-selection statement

Common errors

Control Structure (Logic Structure)

Used to design data flow in modules and program as a whole

Basic structures

Sequential structure
Processes one instruction after another

Selection structures
Decision structure
Make choices by using relational or logical operators(Ex. If or if..else)

Case structure
Enable to pick up one of a set of tasks (Ex. switch)

Loop structure
Enable to repeat tasks (Ex. for)

1 Single-Selection Statement
N

o Begin with 1 £ followed by condition; then action or group of actions

are listed
o Syntax
)) condition
action;

(condition)

o Multiple actions _
actionl;

action?2;

actionN;

o If condition is true, action is performed if (qrade >= 60)

F———===-=-

o Otherwise, action is ignored Cout << “Passed”;

1f..else Double-Selection Statement
s

O

Begin with i £ followed by condition; then action or group of actions
are listed
End with el se then action or group of actions are listed
(condition) S
1f (grade >= 60)
EEIENEHL - cout << “Passed”;
else
action2; cout << “failed ”;
If condition is true, action that followed by if is performed

Otherwise, action that followed by else is performed

Nested 1 f..else Statements
T

7 Nested If : means to write an /fstatement within another /7statement.
o One inside another, test for multiple cases

o Once condition met, other statements skipped

(conditionl) (conditionl)

actionl;
(condition?2)

(condition?2) actionl;
action?2;

(condition3) (condition3)

action3; action?2;

action3;

actionN;

actiond;

Example

* For example, the following code will print:

e e e e = e = = = = = e = e = = = e e e = = = e = = = = = e = = = = =

if (grade >= 90)

Excellent
//for grades greater than or equal to 90.

cout << “Excellent";
else 1if (grade >= 80)

very good
//for grades greater than or equal to 80.

cout << “wery good";

else 1if (grade >= 70)

good

cout << “good"; /Ifor grades greater than or equal to 70 .

else 1if (grade >= 60)
median
//for grades greater than or equal to 60.

cout << “median";

else :
Fail

cout << “Fail"; // for all other grades.

__

Home work: Try to add “Pass” for grades greater than 50

Dangling-else Problem
B

n Each else associated with immediately preceding if

o There Is exception when placing braces { }

-l - -

if(y > 5)
cout << "x and y are > 5"<< endl;

else Correctness

cout<«<"x is <=5%“;

|

if(y > 5)
cout << "x and y are > 5"<< endl;
}

]
—:j- L

1

1

:cout<<"x is >=5%;

Combining more than one condition

1 To combine more than one condition we use the logical operators.

I N

&& And The Expression Value Is true If and Only IF both Conditions
are true
I I OR The Expression Value Is true If one Condition Is True

Example : check whether num1 is between O and 100

If ((numl >=0) && (numl1 <=100))
cout <<“The Number Is between 0 and 100" ;
else
cout << The Number Is Larger Than 1007

swiltch Multiple-selection Statement
I e

-1 The switch statement: that allows us to make a decision from

(expression)

a number of choices (Enable to pick up one of a set of

valuel:
tasks) :
actionl;

o Perform actions based on possible values of variable :

or expression action2;

.
14

o Value of expression compared to case labels then

execute action for that case
valueN:

= No matching, the execution go to the optional actionN;

.
14

default statement

1 break causes immediate exit from switch

statement

switch Multiple-selection Statement

Expression It could be an integer constant like

Switch (Expression)

{
case constant 1 :

1, 2 or 3, or an expression that evaluates to an

integer .
Constant : is a specific value.

Action statement
break :

case constant 2 :

Action statements;
break :

case constant 3 :

Action s
break
default :
Action statements;
} 11

switch Multiple-selection Statement

case

false

true

default action(s)

case a action(s)

break

case b action(s)

break

case z action(s)

break

r

O

switch (grade)

{

case 90 :
cout <<"You Got A \n"; break;

case 80 :
cout <<"You Got B \n"; break;

case 70 :
cout <<"You Got C \n"; break;

case 60 :
cout <<"You Got D \n"; break;

default :
cout <<" Sorry , You Got F \n";

}

Common Compilation Errors

Placing semicolon (;) after i1 £ condition or el se keyword
Omitting spaces between case keyword and value(case 0:)

Specifying expression including variables (a + b) in case label of
switch statement

Providing identical case labels

Forgetting a break statement when one is needed in a switch

Class work: Determine the output for each of the following when
x=9andy =11, and when x and y = 11.

a)if (x<10) b)if (x<10)
if (y>10) {
cout << "wEERET << andl; if (y>10)
else cout << "R << endl;
cout << "HH#HHH" << end|; }
cout << "$$$%%$" << endl; else
{
ANS: cout << "HH#HHH" << endl;
cout << "$$$%%$" << endl;
}

ANS:

Exercise — Home work

1) Write a program that asks for an integer and reports
whether the number is odd or even. Use if .. else

Sstatement.

2) Write another version of program using switch

Statement.

ol Bos Ly

S daaly
Ninevah University

2 %‘g{% 1

0 4

2 RIS
£ 2 | & :

College of Electronic Engineering

ligidl) i 45

Systems and Control Eng. Dept.

Computer Programming

First Year Class
Lecture 6

Repetition Statements
(while & do-while)

2024-2025
Abdulhameed N. Hameed

Content
B

o Types of repetition statements
o while repetition statement
o Counter-controlled repetition

o do..while repetition statement

Loop : Repetition Statements

Some times we need to repeat a specific course of actions either a specified
number of times or until a particular condition is being satisfied.

For example :
To calculate the Average grade for 10 students.
To calculate the bonus for 10 employees.

To sum the input numbers from the user as long as he /she enters positive
numbers.

A loop statement:- allows us to execute a statement or group of statements
multiple times.

There are three methods of which we can repeat a part of a program. They are:

1) while
2) do while

3) for 3

while Repetition Statements
B

o Actions repeated while condition remains true

o Syntax (condition)

actionl;
action?2;

actionN;

71 One of the actions should causes condition to becomes false

|_l.
3
pt
gl
s
©)
(o}
c
Q
or
Il
w

o Example
while (product <= 30)

while Repetition Statements (cont.)

while (condition)

{
S1;

;

False

condition

S2;

Counter-Controlled Repetition
S

o Uses a variable to control number of loops’ iterations

o Also known as definite repetition

o Number of repetitions known beforehand
control var Name,

O RGQUiI‘eS Initialize control var ;
1. Name of loop control variable (condition)
2. Initial value of loop control variable _
. _ _ actionl;
3. Condition to test of reaching final value action2:;
4. Update |loop control variable

actionN;
update control var;

Counter-Controlled Repetition(cont.)

Example: Write a program that calculates and prints out
the Average grade for 6 students.

1-Name 2-Initial for counter

int counter = 1; <

int grade=0, sum% 3- Condition to test the counter
while (counter <=6)

{

cout <<"Enter grade for student no. "* << counter <<"\n"";
cin >>grade;
sum += grade;

counter ++'«————— | 4- Update control variable

}

cout <<"Average Grade is "' << sum/counter <<'\n""; 7

© 00 N o o b WDN P

e L T o =
N~ O N W N PR O

18
19

1

Example:

Write C++ program to type numbers from 1 to 10 using while

statement.

// Fig. 5.1: fig05_01.cpp

// Counter-controlled repetition.
#include <iostream>

using std::cout:

Control-variable name Is counter
with variable initial value 1

int main(Q

{

int counter = 1; // declare and initialize control variable

while (counter <= 10) // loop-continuation condition

{

cout << counter << ;
counter++; // increment control variable by 1

Condition tests for
counter’s final value

} // end whi1e\

Increment the value in counter

cout << endl; // output a newline
return 0; // successful termination
} // end main

2345678910

do..while Repetition Statement

o Unlike for and while loops (which test the loop condition at the top of the
loop) the do...while loop checks its condition at the bottom of the loop.

o Ado...while loop is similar to a while loop, except that a do...while loop
IS guaranteed to execute at least one time.

Syntax
do while (this condition is true)
ionl ; { {
actionl; .
action2; thﬁ : thIS ; .
and this ; andth!s;
. and this ; and th!s :
actionN; and this and this ;
e }while (this condiion is frue) ; }

do..while Repetition Statement (cont.)

Consider the following two loops:

al 1=11; b/ 1=11;
While (i<=10) do
{ {
cout<<i: cout<<i;
I=i+5; I=i+5;
} } While(i<=10);
cout<< | <<endl; cout << i << endl;

Output: Output:

do..while Repetition Statement (cont.)

« Example: Write a program that calculates and prints out the Average grade for

6 students.
Using do...while

Using while

int counter=1;
float grade=0 , sum=0;
do

{

cout <<"Enter grade for student no "'
<< counter <<'"\n'";

cin >>grade;

sum += grade;

counter ++;

} while (counter <=6) ;

counter --;

cout <<""Average Grade is "' <<
sum/counter <<'\n"";

int counter = 1;
float grade=0 , sum=0;

while (counter <=6)

{

cout <<"Enter grade for student no "
<< counter <<"\n"";

cin >>grade;

sum += grade;

counter ++;

}

counter --;

cout <<"Average Grade is ' <<
sum/counter <<"\n"";

Example:

Write C++ program to type numbers from 1 to 10 using (do...while) statement.

© 0 N O 0o A W DN P

N T e T e o e
N~ o o0 W DN R O

18
19

// Fig. 5.7: fig05_07.cpp
// do...while repetition statement.
#include <iostream>

int main(Q

Declare and initialize
control variable counter

{

int counter = 1; // initialize counter

do..while loop displays counter’s value

do
{

before testing for countexr’s final value

cout << counter << " "; // d¥Splay counter

counter++; // increment ebunter
} while (counter <= 10); // end do..

cout << endl; // output a newline

.while

return 0; // indicate successful termination

} // end main

12345678910

12

Hom work:

1. Write C++ program to type numbers from 20 to 30 using
while statement.

2. Write C++ program to find the summation of odd numbers
from 100 to 200 using do-while statement.

Systems and Control Eng. Dept.

0 = 2
2 ‘w;éi.‘.‘.iwl ;“wﬁ.‘.‘t\\\‘ 3
/ ia ®® \
College of Electronic Engineering

gl e 12

Computer Programming
First Year Class

Lecture 7/

Repetition Statements

(for)

2024-2025
Abdulhameed N. Hameed

for Repetition Statement
N

o Provide counter-controlled repetition details in a single statement

o Syntax

initialization condition increment

action(s)

initialization loop Continuation Condition wupdate
actionl

initialization loop Continuation Condition wupdate

actionl action2 .. actionN

0 for loop repeats actions until condition becomes false

for Repetition Statement

For Loop is probably the most popular looping instruction.

for (initialise counter : test counter ; increment counter)

{
do this ;
and this ;
and this ;
!

for allows us to specify three things about a loop in a single line:

(a) Setting a loop counter to an initial value.
(b) testing the loop counter to detect whether its value reached the number of repetitions desired.

(c) increasing the value of loop counter each time the program segment within the loop has been

executed.

for Repetition Statement

for (init; condition; increment)

{

action(s) ;

}
1/ The init. step is executed first, and does not repeat.

2/ Next, the condition is evaluated, and the body of the loop is executed if the
condition is true.
3/In the next step, the increment statement updates the loop control variable.

4/Then, the loop's body repeats itself, only stopping when the condition

becomes false. Ex.: for (int x = 1; X < 10; x++)

{

semicolons are mandatory. 1

remember that the /| some code

for Repetition Statement

Example : Write a program that calculates and prints out the

Average grade for 6 students using for statement .

int grade=0, sum=0;

for (int counter =1 ; counter <=6 ; counter ++)
{

cout <<"Enter Grade \n"";

cin>>grade;

sum += grade;

}

cout <<"'The Average grades is “ << sum/6 <<""\n"";

int counter = 1;

int grade=0, sum=0;
while (counter <=6)
{
cout <<"Enter grade for student \n* ;
cin >>grade;

sum += grade;

counter ++;

}

cout <<"Average Grade is "'<< sum/6
<<Il\nll;

Example:
Write a C++ program to print numbers from 1 to 10 using for statement.

// Fig. 5.2: fig05_02.cpp

// Counter-controlled repetition with the for statement.
#include <iostream>

using std::cout;

using std::endl;

(i i) by) Sl ,S0) B hased) piial Eyaatl) Aia

int main()

{

// for statement header includes initialization,

© 00 N o o1 A W N B

[N
o

// loop-continuation condition and increment.

[EEN
[EEN

for (int counter = 1; counter <= 10; counter++.)

cout << counten\<< " "; ‘\\\\\\\\\\\\\

cout << endl; // output a newline
15 return 0; // indicate \successful termination
16 } // end main

[EEN
N

[N
w

Increment for counter

[HEN
SN

Condition tests for counter’s final value

/|

123456789 10 Control-variable name is counter with initial value 1

-

1=40000) dad aa dlae (e 3ke 9 93 k) yiade aul

s)\ﬂ(dﬂ\kﬁj)iﬁj\fﬁu‘ﬂky

for Repetition Statement (cont.)
o When loop counter is declared in /nitialization expression, it can

ONLY be used inside for statement (local variable)

o Initialization and update expressions can be comma-separated lists

of expressions

ifor (init.; Condition; update)
' actionl; :

ifor(int 1=0, J=0; i<4 && J<8; i++,]++) E

COU.t << */I; |

Examples Using for Statement
N

1 Write a program that prints out numbers from O to 10 in descending order

33,22,11,0

—h
O
H
-
]
+
-
I
N©)
N©)
i
V
I
(@]
-
|
I
l_\
l_\

cout << 1 << "\n%“;

/I If we need the increments more than 1 we should use counter

Example : Write a program that calculates the Factorial for
any given positive number.

Ex : Factorial (5) =5*4 *3 *2 *1

Int number, factorial=1;
cout <<"'Enter a positive number\n"';
cin >> number;
If (number<0)
cout <<" Enter Positive Numbers only\n"";
else
for (inti=1 ; i<=snumber ; i++)
factorial = factorial * i;
cout <<" Factorila = “ << factorial <<'"\n"";

Common Errors

Compilation errors

Using commas instead of the two required semicolons in a for header

Logic errors
Not initializing counters and totals

Placing semicolon immediately after for header

for (init; condition; increment)

{

action(s) ;

	Lect 1 مقدمة عن البرمجة
	Slide 1
	Slide 2: Syllabus
	Slide 3: Textbook and Software:
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

	Lect 2 Flowchart
	Slide 1
	Slide 2: Flowchart نستخدم مجموعة من الأشكال الرمزية الاصطلاحية المبينة في الجدول التالي:
	Slide 3: يمكن تصنيف flowcharts بما يلي:
	Slide 4: Simple Sequential Flowchart
	Slide 5: Example: Draw a flowchart to find the area and circumference of a circle with a known radius R :
	Slide 6: Branched Flowchart
	Slide 7: Example: compare between tow numbers and print the max :
	Slide 8
	Slide 9: Nested Flowchart
	Slide 10: Example: Draw a flowchart to find the area to group of circles with known semi-diameter:

	Lect 3 (Intro C++)
	Slide 1
	Slide 2: The Problem Cycle Analysis–Coding–Execution
	Slide 3: The famous Hello world program
	Slide 4: A C++ program
	Slide 5: Complete Program
	Slide 6: C++ Program Structure
	Slide 7: Comments
	Slide 8: 2. Preprocessor Directives
	Slide 9: 3. main Function
	Slide 10: Rules of building a program in C++
	Slide 11: Variable declaration
	Slide 12: Input statements
	Slide 13: Output statements
	Slide 14: Output statements
	Slide 15: Escape Sequences
	Slide 16: Modifying First Program - 1
	Slide 17: Modifying First Program - 2
	Slide 18: Exercise - 1

	lect 4 operators in C++
	Slide 1
	Slide 2: Contents
	Slide 3: Arithmetic Operations
	Slide 4: Operators
	Slide 5: Assignment statement
	Slide 6: Arithmetic Operators
	Slide 7: Assignment between objects
	Slide 8: Arithmetic Operators Precedence
	Slide 9: Example
	Slide 10: Example:
	Slide 11: Exercise 1
	Slide 12: Increment and Decrement Operators
	Slide 13: Examples
	Slide 14: Examples
	Slide 15: Relational and Equality Operators
	Slide 16: Relational and Equality Operators (cont.)
	Slide 17: Logical Operators
	Slide 18: Logical Operators (cont.)
	Slide 19: Conditional operator (?:)
	Slide 20: Examples
	Slide 21: Additional Operators:
	Slide 22: Examples
	Slide 23: Common Compilation Errors
	Slide 24: Exercise - 2
	Slide 25: Exercise - 3

	lect 5 (Selection Statements)
	Slide 1
	Slide 2: Content
	Slide 3: Control Structure (Logic Structure)
	Slide 4: if Single-Selection Statement
	Slide 5: if..else Double-Selection Statement
	Slide 6: Nested if..else Statements
	Slide 7: Example
	Slide 8: Dangling-else Problem
	Slide 9: Combining more than one condition
	Slide 10: switch Multiple-selection Statement
	Slide 11: switch Multiple-selection Statement
	Slide 12
	Slide 13: Common Compilation Errors
	Slide 14: Class work: Determine the output for each of the following when x = 9 and y = 11, and when x and y = 11.
	Slide 15: Exercise – Home work

	lect 6 (Repetition Statesments I)
	Slide 1
	Slide 2: Content
	Slide 3: Loop : Repetition Statements
	Slide 4: while Repetition Statements
	Slide 5: while Repetition Statements (cont.)
	Slide 6: Counter-Controlled Repetition
	Slide 7: Counter-Controlled Repetition(cont.)
	Slide 8
	Slide 9: do..while Repetition Statement
	Slide 10
	Slide 11: do..while Repetition Statement (cont.)
	Slide 12
	Slide 13: Hom work:

	lect 7 (for Repetition Statesment)
	Slide 1
	Slide 2: for Repetition Statement
	Slide 3: for Repetition Statement
	Slide 4
	Slide 5: for Repetition Statement
	Slide 6
	Slide 7: for Repetition Statement (cont.)
	Slide 8: Examples Using for Statement
	Slide 9
	Slide 10: Common Errors

