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Continuous-Time Signals (Analog Signals)• Continuous-Time (CT) signal x(t) is a signal that exists at every instant of time
 A CT signal is often referred to as analog signal
 The independent variable is a continuous variable
 Continuous signal can assume any value over a continuous range of numbers

• Most of the signals in the physical world are CT signals.
• Examples: voltage & current, pressure, temperature, velocity, etc.

Continuous-Time (CT) signal 

Discrete-Time (DT) Signals

• A signal defined only for discrete values of time is called a discrete-time (DT) signal
or simply a sequence

• Discrete-time signal can be obtained by taking samples of an analog signal at
discrete instants of time : 𝑥[ n]= 𝑥[nT]

• The values of each sample 𝑥[𝑛] is continuous

Sampling : 𝑥 n = 𝑥[nT]
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Digital Signals

• Digital signal is a discrete-time signal whose values are quantized and represented by digits

 Discrete-Time

 Discrete-Amplitude
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• The digital signal is the sampled and quantized (rounded) representation of the analog signal. A
digital signal consists of a sequence of samples, which in this case are integers: 0, 1, 2, 2, 3, 3, 4, 3,
...
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Discrete time
1

Digital Signal

𝒙[𝒏] Discrete-Time 
Discrete-Amplitude

1

Digital Signals
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• Discrete-Time (DT) signals are represented by sequence of numbers
 The nth number in the sequence is represented with 𝑥[ n]

 Often times sequences are obtained by sampling of Continuous-Time signals

is value of the analog signal 𝑥(t) at 𝑥[nT] where T is the sampling

0 20 40 60 80 100
-10

 In this case 𝑥 n
period

10

𝑥(t) 0

t (ms)

0 10 20 30 40 50
-10

0

10

n (samples)

𝑥 𝑛 = 𝑥[nT]

Digital Signals

Causal Sequences

• Discrete-time signal or sequence is called causal if it has zero values for
n < 0.

• Here is an example of a causal sequence

. . .
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Causality and Duration of Sequences

• A sequence that is nonzero only over a finite interval of indices is
called a finite-duration (finite-length) sequence

• A sequence whose samples are zero-valued for negative indices is
causal

• Non-causal sequence can have nonzero samples for negative indices
This is an example of causal finite-duration sequence
• 𝑥[ 𝑛]= 0 for 𝑛 < 0 (causal)
• 𝑥[𝑛] ≠ 0 only for 0 ≤ 𝑛 ≤ 8

10

Basic Discrete-Time Signals (Sequences)

The most basic discrete-time signals (sequences) are
Unit Impulse Sequence
Unit Step Sequence
Unit Ramp Sequence
Power Sequence
Exponential Sequence
Sinusoidal Sequence
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Unit Impulse Sequence

• The unit impulse (sample) sequence is defined as the sequence with values

• The unit impulse sequence 𝛿[𝑛] has an amplitude of zero at all samples except 𝑛 = 0 , where it 
has the value 1.

• Every discrete-time signal can be written as a sum of unit impulse sequences, using the
amplitude at each sample.

𝛿 𝑛 = {
0
1 𝑛 = 0

𝑛 ≠ 0
𝛿 𝑛

Scaled and Shifted Unit Impulse Function

1. Draw the sequence of 𝑥 𝑛 = 4𝛿[𝑛] 2. Draw the sequence of 𝑥 𝑛 = −2𝛿[𝑛]

4

12

-2
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Finite-Duration Sequence in Terms of Unit Impulses

• Write a sequence 𝑥 𝑛 in terms of 𝛿 𝑛 to describe the sequence as 
shown below:

𝑥 𝑛 = 𝛿 𝑛 + 𝛿 𝑛 − 1 + 𝛿 𝑛 − 2 + 𝛿 𝑛 − 3 x[n] = 4δ[n] - 2δ[n-1] + 3δ[n-2] - δ[n-3]

Unit Step Sequence

• The unit step sequence is defined as the sequence with values

• The unit step function 𝑢 𝑛 has an amplitude of zero for 𝑛 < 0 and an 
amplitude of one for all other samples.

• The signal 𝑢 −𝑛 has the value one up to and including 𝑛 = 0, and the value 
zero thereafter.

𝑢 𝑛 = {    1
𝑛 ≥ 0

0 𝑛 < 0

𝑢 𝑛
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Unit Step Sequence Examples

1-Draw the sequence as
sum of two step sequences:

𝑥 𝑛 = 𝑢 𝑛 + 2𝑢 𝑛 − 2

𝑢 𝑛

2𝑢 𝑛 − 2

𝑢 𝑛 + 2𝑢 𝑛 − 2

15

2-Draw the sequence as sum of two
step sequences:

𝑥 𝑛 = 𝑢 𝑛 − 𝑢 𝑛 − 3

This is a finite duration sequence

𝑢 𝑛 − 3

𝑥 𝑛

15

𝑢 𝑛

Connection between Impulse and Step Sequences

• Write a sequence to describe the signal in terms of unit sample and unit 
step sequences of the figure.

Unit Impulse Sequence
x[n] = 2δ[n] + δ[n-1] - 4δ[n-2] - 4δ[n-3] -4δ[n-4] - ……….

Unit Step Sequence
x[n] = 2u[n] – 6u[n-2]
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Unit Ramp Sequence

• The unit-ramp sequence is defined as

r 𝑛 = { 0,
𝑛, 𝑛 ≥ 0

𝑛 < 0

r 𝑛

Power Sequences

• Power sequences take the form:

𝑥 𝑛 = 𝐴 𝛼𝛽𝑛

• In the special case where 𝛼 = e (Euler number), such sequences are called 
exponential sequences.

• When 𝛽 is positive, the values of the sequence decays.
• When 𝛽 is negative the values of the sequence grows.
• When 𝛼 is negative, the values of the sequence alternate positive and negative.
• The value of 𝐴 is determined the magnitude/amplitude/value of the sequence when 

n = 0
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Power Sequence Examples

• Draw a signal 

x[n] = 0.8(0.75)n

The magnitude of the 
sequence is decaying 
due to α is positive but 
less than one.

n

• Draw a sequence of x[n] = (-0.6)n

The magnitude of the signal is 
alternating between positive 
and negative due to α is 
negative.

ExponentialSequences

• Exponential functions are special cases of Power function, which take 
the form:

𝑥 𝑛 = 𝐴 𝑒𝛽𝑛

• Where 𝑒 = 2.71828 (α is fixed and positive)

• When β is positive, the function decays.

• When β is negative the function grows.

• The value of A is determined the magnitude/amplitude/value of the function when 
n = 0

• Draw an Exponential Sequence of

𝑥 𝑛 = 𝑒−0.5𝑛

The magnitude of the signal is 
decaying due to β is negative 
and e > 1
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Complex Exponential Sequences

• A sequence of the form
𝑥 𝑛 = 𝐴 𝑒j𝛽𝑛

is called a complex exponential sequence.
• For all 𝑛, samples of this sequence lie in the complex plane on a circle with radius 𝐴.
• By Euler’s Formula, a complex exponential may be expressed as a rectangular-form 

complex number

𝑒j𝛽𝑛 = cos 𝛽𝑛 + 𝑗sin 𝛽𝑛

• The general form of a complex exponential sequence has the forms

𝑥 𝑛 = 𝐴 𝑒j(ω0𝑛+𝜙) = 𝐴 cos ω0𝑛 + 𝜙 + 𝑗 𝐴 sin ω0𝑛 + 𝜙

Plot the first eight samples of a complex 
exponential sequence:

𝑥 𝑛 = 𝑒−j𝜋𝑛/6

Using Euler’s Formula 𝑥 𝑛 = cos
𝜋𝑛

6
+ 𝑗 sin

𝜋𝑛

6

Sinusoidal Sequence

• The sinusoidal functions take the form

• Where ω is a discrete-time angular frequency in radians/sample and 𝜙 is a 

phase shift.

𝑥 𝑛 = 𝐴 cos ω𝑛 + 𝜙 𝑥 𝑛 = 𝐴 sin ω𝑛 + 𝜙

for all 𝑛 with real 𝐴

or

ω = Ω𝑇 =
2π𝑓

𝐹𝑠

• Ω is the continuous-time frequency in radians/second

• 𝑓 is continuous-time frequency in Hz and Ω = 2π𝑓

• T is the sampling period in seconds

• 𝐹𝑠 is the sampling frequency and 𝐹𝑠 = 1

𝑇
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Periodicity of Sinusoidal Sequence

• Compared to analog counterpart,
discrete-time sine and cosine signals
are not always periodic sequences.

• Sinusoidal sequences are periodic
only when 2π/ω is a ratio of integers
𝑁/𝑀.

• When 2π/ω = 𝑁/𝑀, 𝑁 is the
number of samples in the discrete
period, and 𝑀 is the number of
analog cycles that elapse while 𝑁
samples are collected.

• An analog frequency 𝑓 in Hz is
related to it corresponding
discrete-time angular frequency

ω in radians with sampling rate of 𝐹𝑠

through the equation
ω = 2𝜋

𝑓

𝐹𝑠

𝑥 𝑛 = 𝐴 cos ω𝑛 + 𝜙 𝑥 𝑛 = 𝐴 sin ω𝑛 + 𝜙or

ω 4𝜋
7

2π
=

2𝜋
=

7

Periodic

ω 13
7

2π
=

2𝜋
=

14𝜋

23

Non-Periodic

2

Rational Number
13

Irrational Number

Periodicity of Sinusoidal Sequence Examples HW
A discrete-time signal is defined as 𝑥 𝑛 = cos 2𝑛

• Is this a periodic sequence?

• Find the first eight elements in the sequence.

5

4𝜋 𝑛A discrete-time signal is defined as 𝑥 𝑛 = cos

• Is this a periodic sequence?

• Find the first eight elements in the sequence.

Draw a signal x[n] = u[n]u[3-n]

• The signal can also be expressed as a 
sum of Impulse functions.

𝒙 𝒏 = 𝜹 𝒏 + 𝜹 𝒏 − 𝟏 + 𝜹 𝒏 − 𝟐 + 𝜹[𝒏 − 𝟑]

Draw a signal x[n] = e-2nu[n]
• First draw two basic signals (e-2n, u[n]) and then multiply as shown in the 

figure.

• The u[n] has the effect of turning on the other function at n = 0.

• The u[n] is zero for n < 0, so x[n] is also for n < 0.

• The u[n] has a value of 1 for n ≥ 0, so x[n] is the same as e-2n for n ≥ 0.

Draw a signal x[n] = 3sin(nπ/5 - 1)u[n]

Draw a signal x[n] = 0.5e-0.2nsin(nπ/9)u[n]
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Energy and Power Signals

The total energy of a continuous time signal x(t) is defined as:

and its average power is

In the case of a discrete time signal x[nT], the total energy of the

signal is

and its average power is defined by

Energy and Power Signals

• A signal is referred to as an energy signal, if and only if the total energy of the signal
satisfies the condition 0 < E < ꝏ

• On the other hand, it is referred to as a power signal, if and only

if the average power of the signal satisfies the condition 0 < P < ꝏ

• An energy signal has zero average power, whereas a power signal

has infinite energy.

• Periodic signals and random signals are usually viewed as power

signals, whereas signals that are both deterministic and non-periodic

are energy signals.
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Example:
Compute the signal energy and signal power for  x[nT] = (-0.5)^nu(nT), T = 0.01 seconds

Solution:

Since Edx is finite, the signal power is zero.

Repeat Example3 for y[nT] = 2ej3nu[nT], T = 0.2 second.

Solution:

What is energy of this signal?

Example:
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Tutorial 1:

Determine the signal energy and signal power for each  of the given signals and indicate whether it is an 
energy  signal or a power signal?

(a) y[nT]  3(0.2)nu[n  3], T = 2 ms

(b) z[n T ]  4 1 .1n u[n  1] T = 0.02 s
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Lecture2: ADC (Sampling, Quantization, and 
Encoding)

Analog to Digital  Conversion

• A/D conversion can be viewed as a three-step process
Sampling: This is the conversion of a continuous time signal into a
discrete time signal obtained by taking “samples” of the continuous
time signal at discrete time instants. Thus, if x(t) is the input to the
sampler, the output is x(nT), where T is called the Sampling interval.

Quantization: This is the conversion of discrete time continuous
valued signal into a discrete-time discrete- value (digital) signal. The
value of each signal sample is represented by a value selected from
a finite set of possible values. The difference between unquantized
sample and the quantized output is called the Quantization error.
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Analog to Digital Conversion (cont.)

Coding: In the coding process, each discrete value is represented by a
b-bit binary sequence. A/D Converter

QuantizerSampler Coder
x(t) 0101...

Let’s start with the first set of slides

Dr. Ahmed                                                                                                                    
3

Sampling of Analog Signals

Uniform Sampling: x[n] = x[nT]
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Uniform sampling

The time interval Ts between successive samples is called the Sampling Period or
Sampling interval and its reciprocal 1/Ts = Fs is called the Sampling Rate
(samples per second) or the Sampling Frequency (Hertz).

A relationship between the time variables t and n of continuous time and discrete
time signals respectively, can be obtained as

T = nTs = n/Fs

Uniform sampling is the most widely used sampling scheme.

This is described by the relation
x[n] = x[nT] - ∞ < n < ∞

where x(n) is the discrete time signal obtained by taking samples of the analogue
signal x(t) every T seconds

Shannon’s Sampling Theorem

• How frequently do we need to sample?
• The solution: Shannon’s Sampling Theorem: A continuous-time signal x(t) 

with frequencies no higher than fmax can be reconstructed exactly from its 
samples x[n] = x(nTs), if the samples are taken a rate fs = 1 / Ts that is 
greater than 2 fmax.

• Note that the minimum sampling rate, 2 fmax , is called the Nyquist rate.

• Shannon’s theorem tell us that if we have at least 2 samples per period 
of a sinusoid, we have enough information to reconstruct the sinusoid.

• What happens if we sample at a rate which is less than the Nyquist Rate?

– Aliasing will occur!!!!
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Sampling Theorem

• Signal sampling at a rate less than the Nyquist rate is  referred to as 
undersampling.

• Signal sampling at a rate greater than the Nyquist rate is  known as the 
oversampling.

Example 1:

For a continuous time signals x(t)= 8cos(200 π t). Find
1- Minimum sampling rate.
2- If Fs=400Hz, what is the discrete time signal?
3- If Fs=150Hz, what is the discrete time signal?
4- Comment on result obtained in 2 and 3 with details.

Consider the continuous signal 
x(t) = 3cos100πt

(a) Determine the minimum required sampling rate to  avoid 
aliasing.

(b) Suppose that the signal is sampled at the rate Fs =
200 Hz. What is the discrete time signal obtained  after 
sampling?

Solution:

(b)

(a) The frequency of the continuous signal is F = 50 Hz. Hence the minimum
sampling rate to avoid aliasing is 100Hz.

Sampling Theorem
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Example 3
Consider the continuous signal
x(t) = 3cos50πt + 10sin300πt - cos100πt
What is the Nyquist rate for this signal.
Solution:
The frequencies present in the signal above are  
F1 = 25 Hz, F2 = 150 Hz F3 = 50 Hz.
Thus Fmax = 150 Hz.
Nyquist rate = 2.Fmax = 300 Hz.

Sampling Theorem

Q1: Find the minimum sampling rate that can be used to obtain samples that  
completely specify the signals:
(a) x(t) = 10cos(20πt) – 5cos(100 π t) + 20cos(400 π t)  
(b) y(t) = 2cos(20 π t) + 4sin(20 π t - π /4)  + 5cos(8 π t)

Q2: Consider the continuous signal
x(t) = 3cos2000 π t + 5sin6000 π t + 10cos12000 π t
(a) What is the Nyquist rate for this signal?
(b)Assume now that we sample this signal using a sampling rate Fs =  5000 
samples/s. What is the discrete time signal obtained after sampling?

Tutorial
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Example
Suppose continuous-time signal 𝒙(𝒕) = cos(w𝟎𝒕) is sampled at a sampling frequency of 1000Hz to produce 𝒙 [𝒏]

𝒙 𝒏 = 𝐜𝐨𝐬
𝝅𝒏

𝟒
- Determine 2 possible positive values of w𝟎 , say w𝟏 and w𝟐 .
- Discuss if cos(w𝟏 𝐭) or cos(w𝟐 𝐭) will be obtained when passing 𝒙 [𝒏] through the DC  converter .

Sol: With T= 1/1000 s : cos
𝜋 n 

4
= 𝑥 𝑛 =𝑥 𝑛𝑇 = cos w𝟎 𝑛

1000
w1 is easily computed as:

=
1𝜋𝑛 w 𝑛

4 1000 1 4

1000𝜋
= w = = 250𝜋

w2 can be obtained by noting the periodicity of a sinusoid :

cos
𝜋𝑛

4

𝜋𝑛 9𝜋𝑛
= cos + 2𝑛𝜋 = cos = cos

4 4

w2 
1000

As a result , we have
9𝜋𝑛 = 𝗇 2 𝑛

4 1000 2 4
= w = 9000𝜋 =2250 𝜋

There are 2001 samples in 0.002 s and interpolating the successive based on plot yields good approximations

Tutorial

0

1

2

3

X=(t)

Quantized Signal

Original Signal

t

• It is quite apparent that the quantized signal is not exactly the same as the original 
analog signal.

• There is a fair degree of quantization error here.

Quantization
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The notations and general rules for quantization are as follows:

The symbol ∆ is the step size of the ADC resolution.
Where:

𝒙𝒎𝒂𝒙 and 𝒙𝒎𝒊𝒏 are the maximum and minimum values, respectively, of the analogue input 
signal 𝒙

The symbol L denotes the number of quantization levels, which is determined by equation

𝑳 = 𝟐𝒎

Where 𝒎 is the number of bits used in ADC

(𝒙𝒎𝒂𝒙−𝒙𝒎𝒊𝒏)
𝚫 =

𝑳

𝒊 = 𝒓𝒐𝒖𝒏𝒅
𝒙 − 𝒙𝒎𝒊𝒏

𝚫

Quantization

𝒙𝒒 = 𝒙𝒎𝒊𝒏 + 𝒊𝜟 𝒊 = 𝟎, 𝟏, ⋯ , 𝑳 − 𝟏

𝒙𝒒 indicates the quantization level ,
i is an index corresponding to the binary code .

When the DAC outputs the analog amplitude 𝒙𝒒 with finite precision , it introduces
quantization error defined as:-

𝒆𝒒 = 𝒙𝒒 − 𝒙

Note :
It is important that the quantization errors due to rounding is within the range

𝚫 𝚫
−

𝟐
≤ 𝒆𝒒 𝒏 ≤

𝟐

Quantization
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Example :

The discrete – time signal 𝑉 𝑛 = cos
2𝜋  

16
below can be quantized by mapping each

value of 𝑉 𝑛 to the 11 quantization levels { -1, -0.8 , -0.6 , …… , 0.6 , 0.8 , 1 } as
shown in the figure .

L = 11 so the minimum length of the binary vectors must be 4 bits 
( since 24 > 11 )

Quantization

Some quantization errors can clearly be seen on the digital signal below

Quantization
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Encoding

Therefore, for the quantized sample values
1, 1, 0.8, 0.4, 0,…….
The binary sequence will be
0101 0101 0100 0010 0000 …
This completes the conversion of
a continuous signal to a binary signal

01011

01000.8

00110.6

00100.4

00010.2

00000

1001-0.2

1010-0.4

1011-0.6

1100-0.8

1101-1

Example1
Assuming that a 3-bit ADC channel accepts analog input ranging from 0 to 5 volts , determine
a. The number of quantization levels
b. The step size of the quantizer or resolution
c. The quantization level when the analog voltage is 3.2 volts
d. The binary code produced by the ADC .

Solution :
since the range is from 0 to 5 volts a 3-bit ADC is used , we have

𝑥𝑚𝑖𝑛 = 0 volt , 𝑥𝑚𝑎𝑥 = 5 volts , and
𝑚=3 bits

a. Using equation of quantization level, we get the number of quantization levels as
L = 2𝑚 = 23 = 8

b. Applying Equation yields
Δ = 5−0 = 0 ⋅ 625 volt

c. When 𝑥= 3.2,
8

from equation we get

Δ

𝑥−𝑥𝑚𝑖𝑛
i = round ( ) = round (5.12) = 5

From equation, we determine the quantization level as
𝑥𝑞 = 0 + 5Δ = 5 × 0.625 = 3.125 volts

Tutorial
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Example2

Using the previous example, determine the quantization error when the analog input is 3.2 volts .

Solution :
Using equation , we obtain

𝑒q = 𝑥𝑞 − 𝑥 = 3.125 − 3.2 = −0.075 𝑣𝑜𝑙𝑡

Note that the quantization error is less than the half of the step size , that is

𝑒𝑞 = 0.075 < ΔΤ2 = 0.3125 volt

Tutorial
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Lecture3: Discrete Time Systems

Discrete Time Systems

• A discrete time system is a device or algorithm that operates on a
discrete time signal x[n], called the input or excitation, according to
some well-defined rule, to produce another discrete time signal y[n]
called the output or response of the system.

• We express the general relationship between x[n] and y[n] as y[n] =
H{x[n]}
where the symbol H denotes the transformation (also called an
operator), or processing performed by the system on x[n] to produce
y[n].

Discrete Time System  
H

x[n] y[n]
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Operations on Sequences

Modulation

Addition

Scaling

Time Shifting

Example: consider the following sequences of length (5) defined for ( 0≤n≤4).
x[n] ={ 3.2 41 36 -9.5 0 }

y[n] ={ 1.7 -0.5   0 0.8  1 }

Find
a) x[n] . y[n]
b) x[n] + y[n]
c) 7/2 x[n] 

solution:
x[n] . y[n]={ 5.44 -20.5 0 -7.6 0 }
x[n]+y[n]={ 4.9 40.5 36 -8.7 1}
7/2x[n]={ 11.2 143.5 126 -33.25 0}

Example: Analyze the discrete-time system shown 
below to determine the sequence y[n].

Solution:
y[n]= b0 x[n] +b1 x[n-1] +b2 x[n-2] +y[n-1]
This formula is known as ((difference equation))

Discrete Time Systems
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Discrete -Time Systems (Digital Processors):-

The function of a discrete - time system is to process a given input sequence to 
generate an output sequence.

The classification of DTS is based on the input - output relation of the system.

Classification of Discrete Time Systems

1- Linear System: It is the system for which the superposition principle always holds.

Classification of Discrete Time Systems

2- Shift -Invariant System: (Time - invariant system)

If y[n] is the response to an input x[n], then the response to x [n-n0 ] is y [n-n0]
3- Linear Time-Invariant System: (LTI)

It is the system that satisfies both the linearity and the time - invariance properties. Suchsystems are 
mathematically easy to analyze ,and easy to design

4- Static and Dynamic System

5- Causal System
In causal system, the output signal depends only on present and /or previous values of theinput. The 
practical signal processors are always causal, because they cannot anticipate thefuture

6- Invertible System
If a digital system with input x[n] gives an output y[n], then its inverse would produce x [n] if fedwith
y [n]. Most practical systems are invertible.

The LTI systems are also causal and invertible.
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Time Domain Analysis

In this topic we develop the basic techniques for describing digital signals in the time domain. Such 
techniques are: impulse response, step response, and digital convolution.

Introduction

1.The Impulse Response:

The response of digital system to sequence (x [n]=δ[n]) is called the unit sample response 

or simply “the impulse response”, and is denoted as (h[n]).

Example: Find the impulse response of the system :

The Impulse Response
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Example : Find the impulse 
response for the system 
shown below. Given b=-0.9

The Impulse Response

2. The Step Response:

The response of a discrete-time system to a unit step sequence(x[n]=u[n]) is called the unit step response 

or simply the “step response”, and is denoted as S[n].

Example:

Find and sketch the step response for the system shown below. Given b=0.8. 
•Find the response to the rectangular pulse input bandlimited by (0≤n≤3).
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The Step Response:

 Note that increasing the value of b will increase the durationof

the transient (the rise time).

 Transient response: it is the part of a response that vanishesas

sample number approaches infinity.

 Steady state response: it is the part of the response that does

not vanish as sample number approaches infinity.

The Step Response:
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1- Find the first three sample values of the impulse response h[n]for the system defined by the following 
difference equation Assuming the system is a causal. 

2- Find the first four sample values of the impulse response h[n] for the system defined by the following equation 

Tutorial

Discrete Time Convolution

We have seen how to characterize LTI processors by their impulse or 

step responses. In practical cases, we need a general computer-based 

method to estimate a system’s response to any form of input signal. 

The method which will do this is known as “digital convolution”

=x[n]*h[n]
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Sol:

Discrete Time Convolution

There are 
three 

solution 
methods

Discrete Time Convolution
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Digital Convolution Properties

Discrete Time Convolution

H.W: Find the convolution

1- x[n]=[0 1 -2 3 -4], h[n]=[0.5 1 2 1 0.5]

2- x[n]= 0.5n[u[n]-u[n-6]], h[n]=2sin(nπ/2)[u[n+3]-u[n-4]]

Discrete Time Convolution
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Lecture3: Frequency Analysis of Discrete-Time Signals

The Fourier Series and Fourier Transform for Discrete-Time Signals

• The Fourier series is used to represent a periodic function by a

discrete sum of complex exponentials.

• While the Fourier transform is then used to represent a general,

nonperiodic function by a continuous superposition or integral of

complex exponentials.
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Discrete Fourier Series (DFS)

Suppose that we are given a periodic sequence with period N. The
Fourier series representation for x[n] consists of N harmonically
related exponential functions
ej2kn/N, k = 0, 1,2,…….,N-1

and is expressed as
N  1

k  0
 k

j 2  kn / Nx [ n ]  c e

where the coefficients ck can be computed as:

n  0

x[n ]e  j 2  kn / N



 1 k N
c

Ck is spectra or DFS coefficient

Example: Determine the spectra of the following signals:
(a) x[n] = [1, 1, 0, 0], x[n] is periodic with period of 4 (b) x[n] = cosπn/3

Discrete Fourier Series (DFS)
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Discrete Fourier Series (DFS)

Discrete Fourier Series (DFS)
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Example:
Discrete Fourier Series (DFS)

Discrete Fourier Series (DFS)
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As we know, the spectrum in the range of -2 to 2 Hz presents the information of the sinusoid 
with a frequency of 1 Hz and a peak value of 2|c₁|=1, which is converted from two sides to 
one side by doubling the spectral value. Note that we do not double the direct-current (DC) 
component, that is, cₒ.

Discrete Fourier Series (DFS)

Discrete Fourier Transform (DFT)

Where X(k) constitutes the DFT coefficients. Notice that the factor of N is a constant and
does not affect the relative magnitudes of the DFT coefficients X(K). As shown in the last
plot, applying DFT with N data samples of x(n) sampled at a rate of fs (sampling period is

T=1/ fs ) produces N complex DFT Coefficients X(k).

We determine the Fourier series coefficients using one-period N data samples and previous equation Then we
multiply the Fourier series coefficients by a factor of N to obtain.
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Discrete Fourier Transform (DFT)

Example:

Discrete Fourier Transform (DFT)
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Discrete Fourier Transform (DFT)

The Fourier Transform of a finite energy discrete time signal x[n] is defined as

Discrete Fourier Transform (DFT)
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1- Linearity:

DFT (Ax1[n] + Bx2[n]) = AX1[k] + BX2[k]

2- Convolution:

DFT (x[n] ⊗ y[n]) = X[k] . Y[k]

3- Modulation:

DFT (x[n] . y[n]) = X[k]⊗ Y[k]

4- Periodicity:

X[k] = X[k+N]

Properties of Discrete Fourier Transform 

To transfer the frequency response into the corresponding discrete time sequence, 
we use the following formula:

The inverse DFT (IDFT):
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The inverse DFT (IDFT):

The inverse DFT (IDFT):
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Sol.

The inverse DFT (IDFT):

The inverse DFT (IDFT):
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The inverse DFT (IDFT):
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Lecture5: Fast Fourier Transform

Fast Fourier Transform (FFT)

FFT is a very efficient algorithm in computing DFT coefficients and can reduce a 
very large amount of computational complexity (multiplications). Without loss of
generality.

Cooley and Tukey found that the DFT operation could be decomposed into a
number of other DFTs of shorter lengths.

we consider the digital sequence x(n) consisting of 2ᵐ samples, where m is a
positive integer—the number of samples of the digital sequence x(n) is a power
of 2, N = 2, 4, 8,16, etc. If x(n) does not contain 2ᵐ samples, then we simply 
append it with zeros until the number of the appended sequence is equal to an
integer of a power of 2 data points.
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The decomposition of the DFT is achieved by breaking a
signal x[n] down into shorter
sequences i.e. even numbered points x[2m], and the odd
numbered points x[2m+1].

Keep on doing this until a pair of even-odd numbers is reached.

Derivation of the FFT

-DFT operation is decomposed into DFTs of shorter lengths called
‘butterfly’.

-Originally known as the Radix-2 butterfly:

The basic strategy that is used in the FFT algorithm is one of “divide and conquer”. Which
involves decomposing an N-point DFT into successively smaller DFTs. To see how this works,
suppose that the length of x(n) is even(i.e., N is divisible by 2). If x(n) is decimated into two 
sequences of length N/2, computing the N/2-point DFT of each these sequences requires
approximately (N/2)² multiplications and the same number of additions .

Radix-2 Butterfly
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Radix-2 Butterfly

. Thus, the two DFTs require 2(N/2)²=1/2 N² multiplies and 
adds. Therefore, if it is possible to find the N-point DFT of x(n)
from these two N/2-point DFTs in fewer than N²/2 operations.
A saving has been realized.

- A single butterfly requires 1 multiplication and 2 additions.
- N-point DFT can be computed using (N/2) log2N butterfly.

Radix-2 Butterfly

There are two format of FFT:-
1- Decimation in frequency 
2- Decimation in Time
Decimation-in-Frequency FFT

This algorithm may be derived by decimating the output sequence X(k) into 
smaller and smaller subsequences. These algorithms are called decimation-in-
frequency FFTs and may be derived as follows. Let N be a power of 2, N = 2m. and
consider separately evaluating the even-index and odd-index samples of X(k).
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Radix-2 Butterfly

Radix-2 Butterfly
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Bit-reversal

Examination of the final chart shows that it is necessary to
shuffle the order of the input data. This data shuffle is usually
termed but-reversal for reasons that are clear if the indicates
of the shuffled data are written in binary.

Example
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The decimation-in-time FFT algorithm is based on splitting 
(decimating) x(n) into smaller sequences and finding X ( k )
from the DFTs of these decimated sequences. This section 
describes how this decimation leads to an efficient algorithm 
when the sequence length is a power of 2.
Let x(n) be a sequence of length N = 2m, and suppose that x(n) 
is split (decimated) into two subsequences, each of length
N/2.

Decimation-in-Time FFT

The index for each input sequence element can be achieved by bit reversal of the  frequency 
index in a sequential order.
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Example

The Inverse FFT (IFFT)

instead of negative ones.• It uses positive power of
• There is an additional division of each output value by N.

Any FFT algorithm can be modified to perform the IDFT by

• Using positive powers instead of negatives
• Multiplying each component of the output by 1/N

• Hence the algorithm is the same but computational load increases 
due to N extra multiplications.

𝑁 𝑁𝑊∼ = 𝑊−1
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The Inverse FFT (IFFT)

after we change 𝑤𝑁 in Figure 4.34 and multiply the output sequence by a𝑡𝑜 𝑊∼𝑁

factor of 1/N, we derive the inverse FFT block diagram for the eight-point inverse
FFT in Figure

Example
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Example

Example
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Example
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Lecture6: Circular Convolution

Applications of circular convolution

1.Designing digital filters

2.Processing signals in communication systems

3.Audio signal processing

4.Processing images

5.Convolutional neural networks

6.Periodic data analysis

7.Error detection and correction in coding theory

8.Cryptographic algorithms

9.Radar signal processing

10.Biomedical signal processing
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Circular convolution (Cyclic Convolution)

• It is a special case of periodic convolution, which is the convolution of two
periodic  functions that have the same period.

• Circular convolution is essentially the same process as linear convolution. Just
like linear convolution, it involves the operation of folding a sequence, shifting it,
multiplying it with another sequence, and summing the resulting products.
However, in circular convolution, the signals are all periodic. Thus, the shifting
can be thought of as actually being a rotation. Since the values keep repeating
because of the periodicity. Hence, it is known as circular convolution.

• Circular convolution is also applicable for both continuous and discrete-time 
signals. We can represent Circular Convolution as

Circular convolution (Cyclic Convolution)

Here y(n) is a periodic output, x(n) is a periodic input, and h(n) is the periodic impulse
response of the LTI system.
In circular convolution, both the sequences (input and impulse response) must be of equal
sizes. They must have the same number of samples. Thus, the output of a circular convolution
has the same number of samples as the two inputs.

Method-1
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Circular convolution (Cyclic Convolution)

Method-2

Circular convolution (Cyclic Convolution)

• For the given example, circular convolution is possible only after modifying
the signals via a method known as zero padding. In zero padding, zeroes
are appended to the sequence that has a lesser size to make the sizes of
the two sequences equal. Thus, for the given sequence, after zero-padding:

x(n) = [1,2,3,0,0]

• Now both x(n) and h(n) have the same lengths. So circular convolution
can take place. And the output of the circular convolution will have the
same number of samples. i.e., 5.

• Graphically, when we perform circular convolution, there is a circular shift
taking place. Alternatively, we can call it rotation.

• The output of a circular convolution is always periodic, and its period is
specified by the periods of one of its inputs.
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Example

Circular convolution (Cyclic Convolution)

Example

Circular convolution (Cyclic Convolution)
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Matrix method represents the two-given sequence 𝒙𝟏(𝒏) and
𝒙𝟐 (𝒏) in matrix form.

One of the given sequences is repeated via circular shift of 
one sample at a time to form a
N X N matrix.

The other sequence is represented as column matrix.

The multiplication of two matrices given the result of 
circular convolution.

Matrix Multiplication Method

Circular convolution (Cyclic Convolution)

Method-3

Example

Input: x[n]=[1,2,4,2], h[n]={1,1,1}
Output: 7 5 7 8

Input: x[n]=[5,7,3,2],h[n]={1,5}
Output: 15 32 38 17

Matrix Method

Circular convolution (Cyclic Convolution)
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Example
Find the circular convolution of 𝑥1[𝑛]={2,1,2,1}

𝑥2[𝑛]={1,2,3,4}

Circular convolution (Cyclic Convolution)
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Lecture7: A framework for digital filter design

Introduction to digital filter

- A filter is essentially a system or network that selectively changes the wave shape, amplitude and
or phase-frequency characteristics of a signal in a desired manner.

- Common filtering objectives are to improve the quality of a signal …. (to remove or reduce noise),
to extract information from signals or to separate two or more signals previously combined to
make, for example, efficient use of an available communication channel.

- A digital filter is a mathematical algorithm implemented in hardware and /or software that
operate on a digital input signal to produce a digital output signal of achieving a filter objective.

- A simplified block diagram of a real time digital filter with analogue input and output signals is
shown in figure.
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BASIC ELEMENTS OF DIGITAL FILTER STRUCTURES

z-1

a z-1

 Adder has two inputs and one output.
 Multiplier (gain) has single-input, single-output.
 Delay element delays the signal passing through it by 

one sample. It is implemented by using a shift 
register.

a

BASIC ELEMENTS OF DIGITAL FILTER STRUCTURES

a1

z-1

z-1a2

b0
𝑥(𝑛) 𝑦(𝑛)

𝑦(𝑛) = 𝑏0𝑥(𝑛) + 𝑎1𝑦(𝑛 − 1) + 𝑎2𝑦(𝑛 − 2)
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- Digital filters are broadly divided into two classes:-

1)Infinite impulse response (IIR)

2)Finite impulse response (FIR)

- Either type of filter can be represented by its impulse response sequence, h(k) (k=0, 1, 2,

…) as shown in figure.

- The input and output signals to the filter are related by the convolution sum.

- For IIR filters, the impulse response is finite duration whereas for FIR it is of finite

duration.

Type of digital filter: FIR and IIR

Representation of a filter by a suitable structure (Realization) 

Realization involves converting a given transfer function H(z) into a suitable 
filter structure. 

1- For FIR filter three structure are used:-
(a) Direct form (or transversal) 
(b) Frequency sampling 
(c) Fast convolution. 

2- For IIR filters, three structures are used:-
(a) Direct form
(b) Cascade form 
(c) Parallel form 
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FIR (FINITE IMPULSE RESPONSE) FILTER STRUCTURES

 The characteristics of the FIR filter
 FIR filters have Finite-duration Impulse Responses; thus, they can be realized by means of DFT

, thus, it is a causal system The system function H(z) has the ROC of system
 An FIR filter is a non recursive system

 FIR filters can be designed to have a linear-phase response

|𝑧| > 0

It has N-1 order poles at

and N-1 zeros in |𝑧| > 0

𝑧 = 0

The order of such an FIR filter is N-1

Block Diagrams for First-Order System

y[n]  a1y[n 1] b0x[n] b1x[n 1]

From this we see that we can use one delay to get y[n-1] and a 
second delay to get x[n-1].

Then we add the various terms together to create y[n]

x[n 1] y[n 1]

This form… that has separate delays for the input and for the 
output…. is called Direct-Form I

It is possible to reduce the number of delays with a “trick”.
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Trick to Get Direct-Form II – which has reduced number of delays

Same value… so only 
one delay is needed!

Note that nowhere in this do we 
have the delays of input or output!

For LTI systems we can interchange their order without changing their 
overall mathematical result. So…

Direct-Form I
Change
order

Direct-Form II

FIR FILTER STRUCTURES

 Direct form

In this form the difference equation is implemented directly as given:

It requires N multiplications
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 Cascade form

In this form the system function H(z) is converted into products of second- order sections with real 
coefficients

It requires (3N/2) multiplications

z-1

z-1

z-1

z-1

z-1

z-1

b11

b21

b01

b12

b22

b02

b1x

b2x

b0x
𝑥(𝑛) 𝑦(𝑛)

FIR FILTER STRUCTURES

EXAMPLE

Draw the direct form structure for the FIR filter represented by the 
following difference equation

y[n]= x[n]-2x[n-1]-2x[n-2]+3x[n-3]

Sol:
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Draw the direct form structure for the FIR filter represented by the following 
transfer function

H[z]= 4+2𝑧−1-2 𝑧−2+3 𝑧−3

Sol:

EXAMPLE

Using cascade structure realize the FIR filter represented by the following 
transfer function

Sol:

EXAMPLE



12 /2 /20 25

1

Ninevah University 
College of Electronics 
Engineering  
Control and Systems Engineering 
Third Stage / 1st semester 2025-2026    
Digital Signal Processing (DSP) 

Instructor:
Asst. Prof. Dr. Ahmed Jameel Abdulqader

Place and Date: Mosul / College of Electronics Engineering, /12/2025

Lecture 8: A framework for digital filter design-IIR

IIR(INFINITE IMPULSE RESPONSE) FILTER STRUCTURES

 The characteristics of the IIR filter
 IIR filters have Infinite-duration Impulse Responses

 The system function H(z) has poles in
 An IIR filter is a recursive system

0 < |𝑧| < ∞

The order of such an IIR filter is called N if aN ≠ 0
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IIR FILTER STRUCTURES

 Direct form

In this form the difference equation is implemented directly as given. There are two parts to this

filter, namely the moving average part and the recursive part (or the numerator and denominator

parts). Therefore, this implementation leads to two versions: direct form I and direct form II

structures

IIR FILTER STRUCTURES

 Direct form I
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IIR FILTER STRUCTURES

 Direct form II

For an LTI cascade system, we can change the order of the systems without changing the overall 
system response

IIR FILTER STRUCTURES

 Cascade form
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IIR FILTER STRUCTURES

 Cascade form

EXAMPLE

Draw the direct form II realization of the following transfer function

Sol:
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IIR FILTER STRUCTURES

 Parallel form
 In this structure, the input signal is processed separately by a different subsystems.
 An IIR Transfer function can be realized in a parallel form by making use of the partial fraction of 

expansion of the Transfer function.

EXAMPLE

Obtain Cascade and parallel structures for the following system:

Sol:
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EXAMPLE

Cascade Form:

EXAMPLE

Parallel Form:
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Difference 
Equation

Transfer 
Function

Frequency 
ResponseImpulse 

Response

Block 
Diagram

Pole/Zero 
Diagram

DTFT

ZT

ZT (Theory) 
Inspect (Practice)

Inspect Inspect Roots

Unit Circle
z = ejω

Time Domain Z / Freq Domain

Discrete-Time System Relationships

h[n] ze jH f ()  H z (z)| 

p q

y[n]  ai y[n  i] bi x[n  i]
i1 i0


