10/1/2025

Ninevah Universit

College of Electronics
Engineering

Control and Systems Engineering
Third Stage / 1t semester 2025-2026
Digital Signal Processing (DSP)

Lecture1: Discrete-Time Signals in The Time Domain

Instructor:
Asst. Prof. Dr. Ahmed Jameel Abdulgader

A

i
O]+

Place and Date: Mosul / College of Electronics Engineering, /9/2025

Reference Books

¢+ Digital Signal Processing Principles, Algorithms and Applications. By John G.Proakis & Dimitris
G.Manolakis.

¢+ Digital Signal Processing. By Sen M. Kuo & Woon-Seng Gan.

¢+ Digital Signal Processing A Practical Approach. By Emmanuel C. Ifeachor & Barrie W. Jervis.

¢+ Digital Signal Processing Using MATLAB for Students and Researches. By John W. Leis.

+«»+ Digital Signal Processing Using MATLAB Third Edition. By Vinay K. Ingle John G. Proakis. 1

¢ Introduction to Digital Signal Processing and Filter Design. By B. A. Shenoi.

¢+ Understanding Digital Signal Processing with MATLAB and Solutions. By Alexander D. Poularikas




10/1/2025

Continuous-Time (CT) signal

* Continuous-Time (CT) signal x(¢) is a signal that exists at every instant of time
= A CT signal is often referred to as analog signal
= The independent variable is a continuous variable
= Continuous signal can assume any value over a continuous range of numbers

Continuous-Time
Continuous-Amplitude

N

* Most of the signals in the physical world are CT signals.
* Examples: voltage & current, pressure, temperature, velocity, etc.

x(t)

Discrete-Time (DT) Signals

* Asignal defined only for discrete values of time is called a discrete-time (DT) signal
or simply a sequence
* Discrete-time signal can be obtained by taking samples of an analog signal at

discrete instants of time : x[ n]= x[nT]

* The values of each sample x[n] is continuous

Continuous-Time
Continuous-Amplitude

/ Sampling : x[n] = x[nT]>

0 | — '
— e mm-- >
Continuous time Discrete time

Discrete-Time

x(t) :
Continuous-Amplitude

Continuous amplitude
Continuous amplitude




10/1/2025

Digital Signals

= Discrete-Time

= Discrete-Amplitude

- -

Discrete amplitude

x[n]

Discrete-Amplitude

s
[&]

Discrete time

* Digital signal is a discrete-time signal whose values are quantized and represented by digits

* The digital signal is the sampled and quantized (rounded) representation of the analog signal. A
digital signal consists of a sequence of samples, which in this case are integers: 0, 1, 2, 2, 3, 3, 4, 3,

Discrete-Time

Digital Signals

Continuous-Time Signal

Continuous-Time
Continuous-Amplitude

N\,

x[n]

x(t)

4
Digital Signal 3
2
1

Discrete-Time Signal

Discrete-Time

4
x[n] Continuous-Amplitude
o “TIT% =

Discrete-Time
Discrete-Amplitude

1] h_“--T
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Digital Signals

* Discrete-Time (DT) signals are represented by sequence of numbers
= The nt number in the sequence is represented with x[ n]

period
10

x® OW

-100
10

x[n] = x[nT] o ‘lu.".'"'l“""""“"u

T

0 10 20 3

= Often times sequences are obtained by sampling of Continuous-Time signals

®* In this case x[n] is value of the analog signal x(t) at x[nT] where T is the sampling

20 40 60 80 100 t(ms)

40 50 n(samples)

Causal Sequences

n<0.
* Here is an example of a causal sequence

——e
—e
—eo

AL

* Discrete-time signal or sequence is called causal if it has zero values for
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Causality and Duration of Sequences

* A sequence that is nonzero only over a finite interval of indices is
called a finite-duration (finite-length) sequence

* A sequence whose samples are zero-valued for negative indices is
causal

* Non-causal sequence can have nonzero samples for negative indices

This is an example of causal finite-duration sequence
* x[n]= 0 forn < 0 (causal)
* x[n] #0onlyfor0 <n <8

x[n]

Basic Discrete-Time Signals (Sequences)

The most basic discrete-time signals (sequences) are
= Unit Impulse Sequence
= Unit Step Sequence
= Unit Ramp Sequence
= Power Sequence
= Exponential Sequence 5

= Sinusoidal Sequence




10/1/2025

Unit Impulse Sequence

has the value 1.

amplitude at each sample.

Amplitude

* The unit impulse (sample) sequence is defined as the sequence with values

Unit Sample Sequence

10 3

08 5[71]

Time [samples]

* The unit impulse sequence 5[71] has an amplitude of zero at all samples exceptn =0, where it

* Every discrete-time signal can be written as a sum of unit impulse sequences, using the

Scaled and Shifted Unit Impulse Function

1. Draw the sequence of x[n] = 44[n]

i)

3. Draw the sequence of x [n]| = &[n — 2]

Shift to right

2.

x[n]

Draw the sequence of x [n] = —246[n|
5
4
3
ll?
1
o o o o o o o L
-2 2 1
-
-4
-5

-4 -3 2 o 1 2 3 4

4. Draw the sequence of x[n] = 6[n + 2]

Shift to left
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Finite-Duration Sequence in Terms of Unit Impulses

* Write a sequence x[n] in terms of §[n] to describe the sequence as
shown below:

12

X[n]
x[n]

1

0.8

0.6

P A Y
°

° i
o

— 5
.

0.4 =

—
o—

//' \ \ -4 8 2 - o 1 2 3 :
x[n] = 8[n] + 8[n — 1]+ 8[n — 2] + 8[n — 3] x[n] = 48[n] - 28[n-1] + 38[n-2] - §[n-3]

Unit Step Sequence

* The unit step sequence is defined as the sequence with values

1 n=0 f
0 n<O os

un] ={

0 & o
4 -3 2 - 0 1 2 3 4
n

e The unit step function u[n] has an amplitude of zero for n < 0 and an
amplitude of one for all other samples.

* The signal u[—n] has the value one up to and including n = 0, and the value
zero thereafter.
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Unit Step Sequence Examples

1-Draw the sequence as
sum of two step sequences:

x[n] = u[n] + 2u[n — 2]

&

L
4
|
m

“1 o 1

uln] 3
3
>
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3
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u[n]+2ufm-2] 3§
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%
=
=

2-Draw the sequence as sum of two
step sequences:

x[n] = u[n] — uln — 3]
This is a finite duration sequence

ulnl [
a s = e
—0.5
- |
—1.5
-3 -2 -1 Q 1 2 4
s
15 -
uln — 3] T,
0s -
a B e W s W
0.5
)
=15
-3 -2 -1 0 1 2 4
i
-
x[n]
- [
a o o o
“os
—1
-1.5
= = - o 1 =

By

Connection between Impulse and Step Sequences

step sequences of the figure.

Unit Impulse Sequence

Unit Step Sequence
x[n] = 2u[n] — 6u[n-2]

x[n] = 28[n] + §[n-1] - 48[n-2] - 45[n-3] -48[n-4] - ..........

* Write a sequence to describe the signal in terms of unit sample and unit

x[n]

S = N W s,
T
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Unit Ramp Sequence

* The unit-ramp sequence is defined as

n=>0

n,
Al = {0, n<o

]

-3-2-1012 34

}anw#

Power Sequences

* Power sequences take the form:

x[n] = A afm

* In the special case where a = e (Euler number), such sequences are called
exponential sequences.

* When f is positive, the values of the sequence decays.

* When f is negative the values of the sequence grows.

* When «a is negative, the values of the sequence alternate positive and negative.

* The value of 4 is determined the magnitude/amplitude/value of the sequence when
n=0
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Power Sequence Examples

Draw a signal
x[n] = 0.8(0.75)"

The magnitude of the
sequence is decaying
due to a is positive but
less than one.

Power Sequence

0.8

0.7

0.6

0.5

0.4

0.3

0.2

: 1irs,

* Draw a sequence of x[n] =(-0.6)"

The magnitude of the signal is
alternating between positive
and negative due to a is
negative.

Power Sequence

1.0
0.8
0.6

0.4

N

7oiz 1 ‘

-0.4

-0.6

Exponential Sequences

Exponential functions are special cases of Power function, which take

the form:

x[n] = A efn

Where e = 2.71828 (a is fixed and positive)
When B is positive, the function decays.

When B is negative the function grows.

The value of A is determined the magnitude/amplitude/value of the function when

n=0

The magnitude of the signal is

decaying due to B is negative

ande>1

* Draw an Exponential Sequence of

x[n] = ¢—05n

10
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Complex Exponential Sequences

* Asequence of the form

x[n] = A eifn

is called a complex exponential sequence.

* For all n, samples of this sequence lie in the complex plane on a circle with radius A.
* By Euler’s Formula, a complex exponential may be expressed as a rectangular-form
complex number

elfn = cos(Bn) + jsin(Bn)

* The general form of a complex exponential sequence has the forms é ;
x[n] = |Ale(@on*d) = | A|cos(won + ¢) + jlA|sin(won + ¢) ! ol 7
Plot the first eight samples of a complex i =
exponential sequence: e ’
x[n] — e‘j”n/6 ank o ey
. , mn . . _(Tmn o ke i
Using Euler’s Formula x[n] = cos (?) +j sin (?) - 5

Sinusoidal Sequence

e The sinusoidal functions take the form

x[n] =Acos(on+¢) or x[n] =Asin(wn+ ¢p)
for all n with real A
* Where w is a discrete-time angular frequency in radians/sample and ¢ is a

phase shift.

2nf

Fs

» ( is the continuous-time frequency in radians/second

w=QT =

» f is continuous-time frequency in Hz and (. = 2rf

x[n]
» Tis the sampling period in seconds al

- F.is the sampling frequency and F, = 1 ZTT TTD DTT TTQ DTT TTD 11
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Periodicity of Sinusoidal Sequence

x[n] = A cos(wn + ¢) x[n] = Asin(wn + ¢)

or

e Compared to analog counterpart,
discrete-time sine and cosine signals
are not always periodic sequences.

* Sinusoidal sequences are periodic

only when 21t/w is a ratio of integers

N/M. .

1

x[n]

* When 21t/w = N/M, N is the
number of samples in the discrete Setl
period, and M is the number of ozl T T
analog cycles that elapse while N 0% l ° l o l

08 1
06+ 1

samples are collected. ﬁi r

0.6+ 1
08} 1
2]

* An analog frequency f in Hz is
related to it corresponding

Xa[n]

0.8+
06+
0.4
0.2+

0
23

_0_2 -

04+

-06}

=08}

discrete-time angular frequency 0 2 4 6 8 10 12 14 16 18 20

w in radians with sampling rate of F;

Periodic n
through the equation Em o
f (a) x1[nJ=sm(n7') m_er_ 7
W= 2T — oI 3
FS 7 Rational Number

(b) Xz[n] = sin (n

D 2 4 6 8 10 12 14 16 18 20

13
7

Non-Periodic
2n _ 2m _ 14m

n

13
Irrational Number

w 13
7

Periodicity of Sinusoidal Sequence Examples

A discrete-time signal is defined as x [n] =
* Is this a periodic sequence?
* Find the first eight elements in the sequence.

cos (1)
* Is this a periodic sequence?
 Find the first eight elements in the sequence.

cos(2n)

A discrete-time signal is defined as x [n] =

Draw a signal x[n] = u[n]u[3-n]
» The signal can also be expressed as a
sum of Impulse functions.

x[n] =6n]+6én—-1]+6n—-2]+6[n—3]
Draw a signal x[n] = e2"u[n]

figure.

» The u[n] has the effect of turning on the other function at n = 0.
* The u[n] is zero for n < 0, so x[n] is also for n < 0.
* The u[n] has a value of 1 for n 2 0, so x[n] is the same as e-2n forn = 0.

« First draw two basic signals (e-2n, u[n]) and then multiply as shown in the

Draw a signal x[n] = 3sin(n11/5 - 1)u[n]

Draw a signal x[n] = 0.5e-0.2nsin(nT1/9)u[n]

12
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Energy and Power Signals

The total energy of a continuous time signal x(t) is defined as:

T w©
E, = lim [x?(t)dt = [x2(t)ht
T—oo S

and its average power is

1 T /2
[ x?(t)dt
-T /2

P —

X

lim —
To>o T

In the case of a discrete time signal x[nT], the total energy of the

Egy' . =T i ‘xz[n]

n=-oo

signal is

N 2

and its average power is defined by Py, = lim ( 2N1 : J 5 |x [nT]
N-oew + n=—N

Energy and Power Signals

+ A signal is referred to as an energy signal, if and only if the total energy of the signal
satisfies the condition 0 <E <

. On the other hand, it is referred to as a power signal, if and only

if the average power of the signal satisfies the condition 0 <P <
. An energy signal has zero average power, whereas a power signal

has infinite energy.
. Periodic signals and random signals are usually viewed as power
signals, whereas signals that are both deterministic and non-periodic 1 3

are energy signals.
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Compute the signal energy and signal power for x[nT] = (-0.5)*nu(nT), T = 0.01 seconds
Solution:

Eg = lim T z|x(nT] —0.01 ZJ(—O 5)"|

N —oc0 n=—N

<o 2n oo
—0.013>(—0.5) =o0.013>0.25"

n=0 n=0
=0.0 1[1 +0.25+(0.25)° +(0.25)° +...... J
— 0.0 =1/ 75
1—0.25

Since Edx is finite, the signal power is zero.

Repeat Example3 for y[nT] = 2ej3”u[nT], T = 0.2 second.

Solution:

j3n|?

1 N 1 N
P,, = lim T =1 2
dx \%(ZN+ JD_Z_:LY(" ) lm(anllzg ‘
. N 4 N . 4N+1)
- lim 1= lim ~~ )
N— (2N+ Jg 2

N—moj_7,N+1ll —0 Nowo 2N+1

= G| — L gL =3
2N+1 2N+1 2

What is energy of this signal?

14
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Tutorial 1:

Determine the signal energy and signal power for each of the given signals and indicate whether it is an
energy signal or a power signal?

@ y[nT]=3(=0.2)"u[n-3], T=2ms

() z[nT]=4@.1)u[n+1] T=0.02s

15
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Analog to Digital Conversion

e A/D conversion can be viewed as a three-step process

Sampling: This is the conversion of a continuous time signal into a
discrete time signal obtained by taking “samples” of the continuous
time signal at discrete time instants. Thus, if x(t) is the input to the
sampler, the output is x(nT), where T is called the Sampling interval.

Quantization: This is the conversion of discrete time continuous
valued signal into a discrete-time discrete- value (digital) signal. The
value of each signal sample is represented by a value selected from 1
a finite set of possible values. The difference between unquantized
sample and the quantized output is called the Quantization error.
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Analog to Digital Conversion (cont.)

Coding: In the coding process, each discrete value is represented by a
b-bit binary sequence. A/D Converter

Sampling

Quantization

Encoding

11010110 10110100 11080101

Quantization = Encoding

Sampling of Analog Signals

Uniform Sampling:  x|n] = x|[nT]

-—

=0 0 9

sampled signal

1
=22
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Uniform sampling

Uniform sampling is the most widely used sampling scheme.

This is described by the relation
X[n] = x[nT] -co<nN<oo

where x(n) is the discrete time signal obtained by taking samples of the analogue
signal x(t) every T seconds

The time interval Ts between successive samples is called the Sampling Period or
Sampling interval and its reciprocal 1/Ts = Fs is called the Sampling Rate
(samples per second) or the Sampling Frequency (Hertz).

A relationship between the time variables t and n of continuous time and discrete

time signals respectively, can be obtained as
T=nTs=n/Fs

Shannon’s Sampling Theorem

e How frequently do we need to sample?

The solution: Shannon’s Sampling Theorem: A continuous-time signal x(t)
with frequencies no higher than fmax can be reconstructed exactly from its
samples x[n] = x(nTs), if the samples are taken a rate fs =1 / Ts that is
greater than 2 fmax.

Note that the minimum sampling rate, 2 fmax, is called the Nyquist rate.

Shannon’s theorem tell us that if we have at least 2 samples per period
of a sinusoid, we have enough information to reconstruct the sinusoid.

What happens if we sample at a rate which is less than the Nyquist Rate?

— Aliasing will occur!!!!
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Sampling Theorem

* Signal sampling at a rate less than the Nyquist rate is referred to as
undersampling.

oversampling.

Example 1:

For a continuous time signals x(t)= 8cos(200 mt t). Find
1- Minimum sampling rate.

2- If Fs=400Hz, what is the discrete time signal?

3- If Fs=150Hz, what is the discrete time signal?

4- Comment on result obtained in 2 and 3 with details.

» Signal sampling at a rate greater than the Nyquist rate is known as the

Sampling Theorem

Consider the continuous signal
X(t) = 3cos100mt

(a) Determine the minimum required sampling
aliasing.

(b) Suppose that the signalis sampled atthe rate Fs
200 Hz. What is the discrete time signal
sampling?

Solution:

sampling rate to avoid aliasing is 100Hz.

T
n=3cos—n
2

x[n] = 3c0s1007t

& 200

rate to avoid

obtained after

(a) The frequency of the continuous signal is F = 50 Hz. Hence the minimum
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Sampling Theorem

Example 3
Consider the continuous signal

X(t) = 3cos50mt + 10sin300mt - cos100mtt

What is the Nyquist rate for this signal.
Solution:

The frequencies present in the signal above are
F1=25Hz F2 =150 Hz F3 =50 Hz.

Thus Fmax = 150 Hz.

Nyquist rate = 2.Fmax = 300 Hz.

I

Q1: Find the minimum sampling rate that can be used to obtain samples that
completely specify the signals:
(a) x(t) = 10cos(20mtt) — 5cos(100 1t t) + 20cos(400 rt t)
(b) y(t) = 2cos(20 it t) + 4sin(20  t - 1t /4) + 5cos(8 m t)

Q2: Consider the continuous signal
X(t) = 3c0s2000 mt t + 5sin6000 mt t + 10c0s12000 1t t
(a) What is the Nyquist rate for this signal? S5

(b)Assume now that we sample this signal using a sampling rate Fs = 5000
samples/s. What is the discrete time signal obtained after sampling?
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I

Example
Suppose continuous-time signal x(t) = cos(wot) is sampled at a sampling frequency of 1000Hz to produce x [n]
[ ] (Tl”l’l)
X|n| =cos |—
4

- Determine 2 possible positive values of wo , say w1 and wz .
- Discuss if cos(w1 t) or cos(w2 t) will be obtained when passing x [n] through the DC converter .

o YR S ) Ty - = = Won w; is easily computed as:
Sol: With T= 1/10005.C05(4) x[n] =x(nT) COS(MOO) vise ‘Xﬁn puted as: -

= w = 7

4 1000 =230

w2 can be obtained by noting the periodicity of a sinusoid :
nmn 9nn
cos (E) = cos (_ + 2n7r) =cos(__)=cos( V2_
4 4 4 1000

9 n
mn 2n 9000m =2250 11

4 1000

As a result, we have

There are 2001 samples in 0.002 s and interpolating the successive based on plot yields good approximations

Quantization
X=(t)
3 l Original Signal |
[ \\ { Quantized Signal |
2m £
1
0
q\, >
t
* Itis quite apparent that the quantized signal is not exactly the same as the original
analog signal.
* There is a fair degree of quantization error here.
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The notations and general rules for quantization are as follows:
(Xmax—Xmin)
- L

The symbol A is the step size of the ADC resolution.

Where:

Xmax and X;pi, are the maximum and minimum values, respectively, of the analogue input
signal x

The symbol L denotes the number of quantization levels, which is determined by equation

L=2m
Where M is the number of bits used in ADC

. X — Xmin
i =round

A

X4 indicates the quantization level,
i isanindex corresponding to the binary code.

When the DAC outputs the analog amplitude x4 with finite precision , it introduces
quantization error defined as:-

i=0,1,,L—1

Note:

It is important that the quantization errors due to rounding is within the range

N B
N B
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Example:
21

shown in the figure .

vi{r) u
g
o.8
o.6
o.a

o.z

The discrete — time signal V (n) = cos (?) below can be quantized by mapping each
value of V(n) to the 11 quantization levels { -1, -0.8 , -0.6,

F=] o9 10 1

,0.6,08,1}as

4

-0.2

-0.4

-0.6

-0.8

-1

Fi
-
-

I.,-rz 13 14 15 16
.
P

(since 2% > 11)

L = 11 so the minimum length of the binary vectors must be 4 bits

vir)

os
os
oa

oz

r2 13 14 15 16
0.2 /’

I

o8 -~ >

-o.a

S

o6

Some quantization errors can clearly be seen on the digital signal below

Quantisation

Quantisation errors
Quantisation step

J11a=02
g 10 11 "(1‘ ‘ ‘

levels

llgzwauwwen
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Therefore, for the quantized sample values 1 0101

1,1,0.8,04,0,..... 0.8 0100

The binary sequence will be

0101 0101 0100 0010 0000 ... 0.6 0011

This co.mpletes.the conver_sion of 0.4 0010

a continuous signal to a binary signal
0.2 0001
0 0000
-0.2 1001
-0.4 1010
-0.6 1011
-0.8 1100
-1 1101

I

Example1
e Assuming that a 3-bit ADC channel accepts analog input ranging from 0 to 5 volts , determine

a. The number of quantization levels

b. The step size of the quantizer or resolution

c. The quantization level when the analog voltage is 3.2 volts
d. The binary code produced by the ADC.

Solution:

since the rangeis from 0 to 5 volts a 3-bit ADC is used, we have
Xmin = 0volt, X;maex = 5 volts, and
m=3 bits

a. Using equation of quantization level, we get the number of quantization levels as
L=2m=23=8
b. Applying Equation yields B
8A=5—0=0-625volt 9
c. Whenx=3.2, fromequation we get

i=round ( HTM" )=round (5.12)=5

From equation, we determine the quantization level as
xq =0+ 5A =5 Xx0.625 = 3.125 volts
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s

Example2
Using the previous example, determine the quantization error when the analog input is 3.2 volts .

Solution :
Using equation , we obtain

eq=xq—x=3125-3.2=-0.075 volt
Note that the quantization error is less than the half of the step size , that is

eq =0.075< AT2=0.3125 volt

10
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Discrete Time Systems

* A discrete time system is a device or algorithm that operates on a
discrete time signal x[n], called the input or excitation, according to
some well-defined rule, to produce another discrete time signal y[n]
called the output or response of the system.

* We express the general relationship between x[n] and y[n] as y[n] =

H{x[n]}

where the symbol H denotes the transformation (also called an

operator), or processing performed by the system on x[n] to produce 1
y[n].
X[n] , Discrete Time System y[n]
H
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Operations on Sequences
Modulation Xn] @zlnl=§lnl.vln1

y[n]

gnQ X[n] /g "\ z[n)=x[n]+y[n]
Addition @:} :

y(n)

Xl z[n)=AX(n)
2>

Scaling :
. L X[n] Zln)=X[n+1] X[n] Z[n)=X[n-1]
Time Shifting g ’
Unit advance Unit delay

Discrete Time Systems

Example: consider the following sequences of length (5) defined for ( 0sn<4).
x[n] ={3.24136-9.50}
y[n] ={1.7-05 00.8 1}

Find solution:
ab) XInl. yin] xIn] . y[nl={ 5.44 -20.50 -7.6 0}
) x[n] + y[n] x[n]+y[n]={ 4.9 40.5 36 -8.7 1}

c) 7/2 x[n]
7/2x[n]={ 11.2 143.5 126 -33.25 0}
X[n) e R ¥(n)
1 b0 > o + " >

Example: Analyze the discrete-time system shown [n1] ‘ o 2
below to determine the sequence y[n]. .
Solution: b >
y[n]= box[n] +b1x[n-1] +b2x[n-2] +y[n-1]
This formula is known as ((difference equation)) [n1]

b2 >
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Discrete -Time Systems (Digital Processors):-

The function of a discrete - time system is to process a given input sequence to
generate an output sequence.

Input output
sequence | DTS |sequence
x[n] hin] y(n]

Classification of Discrete Time Systems
The classification of DTS is based on the input - output relation of the system.

Classification of Discrete Time Systems

1- Linear System: It is the system for which the superposition principle always holds.

2- Shift -Invariant System: (Time - invariant system)

If y[n] is the response to an input x[n], then the response to x [n-n.] is y [n-n.]

3- Linear Time-Invariant System: ()

It is the system that satisfies both the linearity and the time - invariance properties. Suchsystems are
mathematically easy to analyze ,and easy to design

4- Static and Dynamic System

5- Causal System

In causal system, the output signal depends only on present and /or previous values of theinput. The
practical signal processors are always causal, because they cannot anticipate thefuture 3
6- Invertible System

If a digital system with input x[n] gives an output y[n], then its inverse would produce x [n] if fedwith
y [n]. Most practical systems are invertible.

The LTI systems are also causal and invertible.




10/11/2025

Time Domain Analysis

Introduction

In this topic we develop the basic techniques for describing digital signals in the time domain. Such
techniques are: impulse response, step response, and digital convolution.

1.The Impulse Response:

The response of digital system to sequence (x [n]=8[n]) is called the unit sample response

or simply “the impulse response”, and is denoted as (h[n]).

x[n] y[n]

R h[n] —

The Impulse Response

Example: Find the impulse response of the system :

y[n]z% x[n+1]+ %x[n] + %x [n-1]

Sol : we set x [n] = 3[n]

_. S0+ s [1] + L5 2
yIn= hin] =25 [n+11+ 25 [n] + 15 [n-1) LS yil=; 8101 3 8111+ 3 B2 =1/3
forn=2 ynl=ts[-1+25[2+25031=0 for n=0 yInl=3 8 [11+ 38 (0] + 38 [-11 =1/3
for n=1 y[n]:§6[2]+§6[1] +§5[0] =1/3
B i 1 1 B
for n=2 yln]=58 3]+ 38 [2] + 58 [1] =0 4

forn<-2  and n>2 wmp y[n]=0
h{n]
hin] 1/3

n o

x[n]
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The Impulse Response

Example : Find the impulse
response for the system
shown below. Given b=-0.9

x(nl () V‘[”],

Sol:
y[n]=-0.9 y[n-1] +x[n]

the impulse response =h[n]= -0.9 h[n-1] +3[n]

h[-1]= -0.9 h[-2] +3[-1]=0+0=0

h[0]= -0.9 h[-1] +8[0]=0+1=1=(-0.9)°
h[1]= -0.9 h[0] +3[1]=-0.9  =(-0.9)"
h[2]= -0.9 h[1] +8[2]=0.81  =(-0.9)*
h[3]= -0.9 h[2] +3[3]=-0.729 =(-0.9)?
h[lll]= -09 h[.3] +3[4]1=0.656 =(-0.9)*

we can also find that h[n]=(-0.9)" u[n] or in general: h[n]= b" u[n]

2. The Step Response:

Example:

The response of a discrete-time system to a unit step sequence(x[n]=u[n]) is called the unit step response

or simply the “step response”, and is denoted as S[n].

XN

Find and sketch the step response for the system shown below. Given b=0.8.
*Find the response to the rectangular pulse input bandlimited by (0=n<3).

v[n]=

+

n-1
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The Step Response:

Sol: a) y[n]=0.8 y[n-1] + x[n]

Forn<0  y[n]=0

Forn=0  y[0]=0.8 y[-1] + x[0]=0+1=1

Forn=1  y[1]=0.8 y[0] + x[1]=0.8(1)+1=1.8
Forn=2  y[2]=0.8 y[1] + x[2]=0.8(1.8)+1=2.44
Forn=3  y[3]=0.8 y[2] + x[3]=0.8(2.44)+1=2.952

o = ~ w IS (7.

Forn=oco  y[o0]=1+0.8"+0.8+0.8%+.......+0.8% §
=0.8°+0.8'+0.82+0.8*+.......+ 0.8
1234567 891011121314151617181920212223
1 e=@==Seriesl |12 233444445555555555555
=% pl0B)" T 8:5 =steady state value
The Step Response:
35
b) y[n]=0.8 y[n-1] +x[n] ,
25
for n<0 y[n]=0 _
“ 15
n=0 y[n]=1 1
0.5
n=1 y[n]=1 .8 o 1234567 891011121314151617181920212223
e=@==Series1 1223222 11110000000000/00
fi=2 y[n]=2.44 '
® Note that increasing the value of b will increase the durationof
n= 3 y[n] = 2952 the transient (the rise time). 6
® Transient response: it is the part of a response that vanishesas
n=4 y[n] :2362 sample number approaches infinity.
® Steady state response: it is the part of the response that does
n= 5 y[n] = 1 89 not vanish as sample number approaches infinity.
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1- Find the first three sample values of the impulse response h[n]for the system defined by the following

difference equation  y[n]= 1.5 y[n-1] - 0.85 y[n-2] + x[n] ~ Assuming the system is a causal.

2- Find the first four sample values of the impulse response h[n] for the system defined by the following equation

yn]l =x[n] +xn—-1] +x[n—2] + -

Discrete Time Convolution

We have seen how to characterize LTI processors by their impulse or
step responses. In practical cases, we need a general computer-based
method to estimate a system’s response to any form of input signal.

The method which will do this is known as “digital convolution”

x[n] hn] y[nl =x[n]*h[n]
y[n] = > x[k] h[n — k] 7
k=—o0

Which can be alternately as y[n] = Y} _, x[n — k] h[k]
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Discrete Time Convolution

Example 1: convolution of two finite-duration sequence:
Ciefl ST AEREL () S AEn

ylnl=x[n]  h[n] =Xk _o x[k] h[n — k]

for n=-3 y[-31=x[—1] h[-2] + x[0] h[-3] + x[1] h[-4]=0
for n=-2 y[-2]=x[—1] h[—1] + x[0] h[—2] + x[1] h[-3]=1
for n=-1 y[-11=x[-1] h[0] + x[0] h[-1] + x[1] h[-2]=2
for n=0 yl0l=x[-1] R[1]+ x[0] h[0]+ x[1]h[-1]=3"
for n=1 y[1]1=x[-1] h[2]+ =x[0] R[1]+ x[1] hR[0]=2
for n=2 y[21=x[-1] h[3]+ x[0] R[2]+ =x[1] R[1]=1
for n=3 y[3]1=x[—1] h[4]+ =x[0] h[3]+ =x[1] h[2]=0

Discrete Time Convolution

Example 2: Find x[n] * h[n] where:
X[n]=[123-1]
f

hn]=[1 -1 2]

There are
three
solution
methods

Sol 2: Also this problem can be solved using the multiplication
method as shown below:

12 3-1
8 1-12
2462

x[n]

h[n]

-1 -2-31
1.2 3~

yinl= 11307 -2

**and it can also be solved by using the 4" method tabulation
method

yln]

h[0] h[1] h[2]
x[-1] 1 1 2
x[0] 2 -9 4
x[1] 3 -3 6
x[2] e 1 2
Yinl | YE1l | Yol | vil | vi2l | Yl | Vi) :

= 1 1 3 0 7 -2
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Discrete Time Convolution

Digital Convolution Properties

The convolution operation satisfies several useful properties:
1. Commutative: x1[n] ® xz2[n] = Xx2[n] ® x1[n]
2. Associative: ( x1[n] ® xz2[n] ) ® x3[n] = x1[n] ® (x2[n] ® X3[n])

3. Distributive: x1[n]® (x2[n] +x3[n]) = x1[n] @®xz2[n]+ x1[n] ® X3[Nn]

Discrete Time Convolution

H.W: Find the convolution

1- X[n]:[(% 1-23-4], h[n]=[0.5 1 % 1 0.5]

2- X[n]= 0.5n[u[n]-u[n-6]], h[n]=2sin(nTt/2)[u[n+3]-u[n-4]] 9
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The Fourier Series and Fourier Transform for Discrete-Time Signals

* The Fourier series is used to represent a periodic function by a
discrete sum of complex exponentials.

* While the Fourier transform is then used to represent a general,
nonperiodic function by a continuous superposition or integral of 1

complex exponentials.
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Discrete Fourier Series (DFS)

Suppose that we are given a periodic sequence with period N. The
Fourier series representation for x[n] consists of N harmonically
related exponential functions

eiztkoN k=0, 1,2,........N-1

and is expressed as

N-1

X[Il]z Z ckej2nkn/N
k=0

where the coefficients ck can be computed as:

©

1 —j2nkn/N
¢, =— x[n]e™! ) ..
N Zo Ckis spectra or DFS coefficient

Discrete Fourier Series (DFS)

Example: Determine the spectra of the following signals:
(a) x[n] =[1, 1, 0, 0], x[n] is periodic with period of 4 (b) x[n] = cosmn/3
Solution: (a) x[a] = [%, 1,0, 0]

1 & . 1< .
o= LS <1 S
N n=0 4 n=0
€y =7 2] = [{0]+ {1+ 320+ 303]) =5 1+ 1+0+0] =
Now —*= 4 ’ :
2

3 3
=13 ez 2 1S g g1 stte 7 0.40]
n=0 n=0

:%[1+1(cos§—jsin%ﬂ =%[1+(0—J)] =l(1—f')
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Discrete Fourier Series (DFS)

3= %uz; x[n]e!?™" ' = Z:: ™ = %Ii+ l.ej"]

1

4
=— 1+c0s1t—jsin1l:]= 0

= 123: xinfe ™ =11+ cos(3n/2)jsinGn/2))= 1140+ )= 1[1+]]

! o 4 4 4

The magnitude spectra are:

1 V2 . |- V2

=3 k=2 Joy/=0 =2

and the phase spectra are:

0,=0 o-—+ D, =undefined ®.-

Discrete Fourier Series (DFS)

(b) x[n] = cosmtn/3

Solution: In this case, f, = 1/6 and hence x[n] is periodic with
fundamental period N = 6.

Now
1.E T A Sasagie Mo TN o
c, =— nle™ ™ ==Y cos—e ™% ==Y cos—e ™’
F 6Z {7 6= 3 GZ; 3
5
_Z [ejzm 3 e —jmn/ a]e jm /3 =LZ[eJ%(l—k)+e—f%(l+k)
n= 0 1211:0
- m
:—Z cos—:— cos— 3

110 n=0 2

[cosO+cos +C0S3E + oS3 + cos*E + cosE ] 0

Similarly, c,=c¢c;=¢,=0, ¢, =c5=".
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Discrete Fourier Series (DFS)

Exa m ple: The periodic signal

x(1) = sinl2wt)

is sampled using the samplirg rate f. = 4 Hz.

a Compute the spectrum cx using the samplzs in one period.
b. Plot the bwo-sided amplitude spactrum |z, | over the range from —2 to 2 Hz.

Solution:
a. Frcm the analog signal, we car determine the fundamental frequency wg = 2w radians per seconc anc
fo = w0 i = 1 Hz, and the fundamental period T = 1 second

27 2

Since using the sampling intenval T = 1/f; = 0.25 second, ws get the sampled signal as
x{(n) = x(nT) = sin(2anT) = sin{0.5wn)

and plot the first eight samples as shown in Figure 4.4.

x(n)
I x( 1)
X(0) '-.._\:{21 -----
- . % n
x(3)
F N=4

Discrete Fourier Series (DFS)

- . . . : e 27N = ¢os Ay j sin 2
Choosing the duration of one period, N = 4, we have the sample values as B 77 O e A
follows

x(M=0; x(1)=1; x(2) = 0; and x(3) = —1.

[ 1 1
co :ng(m :5(;.-(0) +x(1) + x(2) + x(3)) :1(u+ 14+0-1)=0

1 & — : :
a=, ”Z:{:) el ARl — p (.\'(UJ +x(1)e 7 4+ x(2)e T+ x(3]e”3“-f2)
| _
= 2 (x(0) —jx(1) = x(2) +/x(3) = 0 (1) = 0 +j( — 1)) = —j0.5.
Similarly, we get

a
3

3
I . 1 . ;
= E gzo x(i”eﬂEﬂXZrIH =0, and 3 = I HEZO ‘\'(/'\'](Jiﬁwx__%n,frl = 0.

N
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Discrete Fourier Series (DFS)

b. The amplitude spectrum for the digital signal is sketched in Figure 4.5.

|2

05 05 17 035 05 05
F Hz
- - —3-—2 —1 (01 3 3 ’
Foiz=2
£,=4

As we know, the spectrum in the range of -2 to 2 Hz presents the information of the sinusoid
with a frequency of 1 Hz and a peak value of 2|c¢i| =1, which is converted from two sides to
one side by doubling the spectral value. Note that we do not double the direct-current (DC)
component, that is, co.

Discrete Fourier Transform (DFT)

We determine the Fourier series coefficients using one-period N data samples and previous equation Then we
multiply the Fourier series coefficients by a factor of N to obtain.

.2mwkn
X(K) = NCy, = x(n)e N ,K=0,1,...N—-1

n=0

Where X(k) constitutes the DFT coefficients. Notice that the factor of N is a constant and

does not affect the relative magnitudes of the DFT coefficients X(K). As shown in the last 5

plot, applying DFT with N data samples of x(n) sampled at a rate of fs (sampling period is
T=1/fs ) produces N complex DFT Coefficients X(k).
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Discrete Fourier Transform (DFT)

N-1 N-1
X(k) = ZX(n)e"'Z"—Jm = Z x(n)Win fork=0,1,....N—1
n=0 n=0
This equation can be expanded as:-
X (k) = x(0) WK +x(1) WKL +x(2) W2 4. 4x(N-1) W ™™D for k=0,1,.....,N-1

Where the factor wy(called the twiddle factor in some textbooks) is defined as:-

.2mkn
_pE 2 s 2w
W=7 o = cos(—)—]sm(—)
N N

Discrete Fourier Transform (DFT)

Given a sequence x(n) for 0 =n= 3, where x(0) =1, x(1) =2, x(2) = 3, and

Example: =) =4,
a, Evaluate its DFT X{(k).

Solution:

a. Since N =4 and W, = ¢ /%, using Equation (4.7) we have a simplified
formula,

Xik) = Z_\'[n) IV_,'i‘" = Z_\'[}r)e il

=0} n=0
Thus, for £ =0
X(0) = Z_\-m}e 0 — (e + x(1)e™ + x(2)e7° + x(3)e/?
=)
= x(0) + x(1) + x(2) + x(3) 6
=1+2+3+4=10
for ke =1

3
X(1) = Z_\;{n}e FTi— e ™ + x(1)e iz 4 x(2)e iT 4+ x(3)e iz
=0
= x(0) — jx(1) — x(2) + jx(3)
=1—j2—-34j4=—24;2
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Discrete Fourier Transform (DFT)

fork=2

i

X@2)= Z_\'{H)e i = x(0)e ™ + x(1)e 7™ + x(2)e ™ + x(3)e "

m={)
= x(0) — x(1) + x(2) — x(3)
=1-2+4+3-4=-2
and fork = 3

X3 = Z.\‘{n]e i . x(0)e ™ + x(De ;18 x2)e P74 x(3)e -’EF
=l

= x(0) + jx(1) — x(2) — jx(3)
=1+2-3-j4=-2-j2

Discrete Fourier Transform (DFT)

The Fourier Transform of a finite energy discrete time signal x[n] is defined as
The following table shows some useful DFT pairs:
X[n] X[k]
d[n] 1
i —j2mk
d[n-a) e~ N 4
a"u[n] 1
—j2mk
l1—age N
u[n] 1
—j2nk
l1—e N
e®"u[n] 1
—j2mk
1—e% N
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Properties of Discrete Fourier Transform

1- Linearity:

5- Time Shifting:
DFT (Ax1[n] + Bx2[n]) = AX1[Kk] + BX2[K]

j2mk a

DFT (x[n-a]) = X[kle ~ N

2- Convolution:
6- Frequency Shifting:

_Jemk a — -
DFT (x[n] ® yIn]) = X[K] . Y[K] DFT @l & )= H(k-ajt] ﬁi - Z]ﬁvf e 2

7- Parseval's Theorem
3- Modulation: The power in discrete time domain is the same one in the discrete

frequency domain or

DFT (x[n] . yIn]) = X[k] &® Y[K] N-1
4- Periodicity:

X[k] = X[k+N]

The inverse DFT (IDFT):

To transfer the frequency response into the corresponding discrete time sequence,
we use the following formula:

1 N—-1
xln] = = > X[k] es2mkn/N
n=0
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The inverse DFT (IDFT):

k
1+2 COSZL

Ex: compute the IDFT for H[k] = ——-

Sol: we have h[n] = ~¥N=4 H[k] e/2mn/N

Or we can directly find the IDFT from the table

j2mk  _ j2mk
. 1 2[e N +e N
Since x[k]—g L (T)

il

The inverse DFT (IDFT):

Ex: Perform the linear convolution with DFT.

—k

|
i1 |

[ 0.5 05’.[
IILTI s N _.l_aJ -

1 forn=20 05 forn=10
x[n] =405 forn=1 hn] ={1 forn=1
0 otherwise 0 otherwise

xl.n] hl:‘] o
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The inverse DFT (IDFT):

1

SOlo X[k] = z x[n] e_%

n=0

j2mk
= x[0]+x[11e” N

j2mk

_ J2mk _ J2mk
X[k]=1+0.5¢” "~ Also H[k]=0.5+e™ "~

_ jemk(2)

Y[k] = X[k] . H[k] = O.5+1.25€_joﬂk +05e  n
y[n] = IDFT (Y[k]) = 0.56[n] + 1.25 §[n — 1] + 0.58[n — 2]

y [n]
-

1.25
4

054 | ¢
i ] ol

The inverse DFT (IDFT):

Example : Find the DFT of the following sequence
m o o 1]

N-1 3 3
X[k] = Z x[n]e k2m/N — Z x[n]e k24 — Z x[n]e ikm/2
n=0 n=0 n=0

X[0]=i x[n] = x[0]+ x[1]+ x[2] + x[3] =1+ 0+0+1=2
=03

X[l] — Z X[n]e—jknn/z — X[0]+ 0+ 0+ X[3]e—j3n/2
=1+1.e P"* =1+cos(32)—jsin(Z) =1+

3

X[2]= D x[n]le~’™ = x[0]+ x[3]e””*" =1+1.[cos(3m )~ jsin(3m)]=0

n=0

10
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The inverse DFT (IDFT):

Example : Find the IDFT of the sequence
[2 1+ 0 1]

Sol.: x[n] = 1_11 NZ_I X[K]elk2zm/N

N-1
Now 0= izxu«] = X0 X[11+ XP21+ X(3]]

3 3
x[l] — 1 ZXIk]ejkz"“ — 1 ZX[k]ej'mz
4.5 4.5

=X[0]+ X{1je™? +X[2)e" +X3fe"? =0

Similarly,

X[2]=0  and X[3]1=1

11
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Fast Fourier Transform (FFT)

FFT is a very efficient algorithm in computing DFT coefficients and can reduce a

very large amount of computational complexity (multiplications). Without loss of
generality.

Cooley and Tukey found that the DFT operation could be decomposed into a
number of other DFTs of shorter lengths.

we consider the digital sequence x(n) consisting of 2™ samples, where m is a
positive integer—the number of samples of the digital sequence x(n) is a power
of 2, N =2, 4, 8,16, etc. If x(n) does not contain 2™ samples, then we simply 1
append it with zeros until the number of the appended sequence is equal to an
integer of a power of 2 data points.
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Derivation of the FFT

The decomposition of the DFT is achieved by breaking a
signal x[n] down into shorter

seguences i.e. even numbered points x[2m], and the odd
numbered points x[2m+1].

Keep on doing this until a pair of even-odd numbers is reached.

N4 Ny

2 2
X[k1= D x[2m]-W3™ + > x[2m + 1]- W, 2m+0*

m=0 m=0

Radix-2 Butterfly

-DFT operation is decomposed into DFTs of shorter lengths called
‘butterfly’.

-Originally known as the Radix-2 butterfly:

X[1] = x[1]+ Wy x[2]

X121 = x[1] - Wy x[2]

The basic strategy that is used in the FFT algorithm is one of “divide and conquer”. Which 2
involves decomposing an N-point DFT into successively smaller DFTs. To see how this works,
suppose that the length of x(n) is even(i.e., N is divisible by 2). If x(n) is decimated into two
sequences of length N/2, computing the N/2-point DFT of each these sequences requires
approximately (N/2)? multiplications and the same number of additions .
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Radix-2 Butterfly

. Thus, the two DFTs require 2(N/2)?=1/2 N multiplies and
adds. Therefore, if it is possible to find the N-point DFT of x(n)
from these two N/2-point DFTs in fewer than N%/2 operations.
A saving has been realized.

- A single butterfly requires 1 multiplication and 2 additions.
- N-point DFT can be computed using (N/2) log,N butterfly.

| No.ofmultiplication No. of addition
M)

Radix-2 FFT (N2) log,N Nlog,N

Radix-2 Butterfly

There are two format of FFT:-

1- Decimation in frequency

2- Decimationin Time

Decimation-in-Frequency FFT

This algorithm may be derived by decimating the output sequence X(k) into
smaller and smaller subsequences. These algorithms are called decimation-in-
frequency FFTs and may be derived as follows. Let N be a power of 2, N = 2™, and
consider separately evaluating the even-index and odd-index samples of X(k).

DFT{a(n) with (N /2) points}

DET ) with N posmts = {)‘I)Jn"ﬁi’”{b(n]W}:r with (N /2) points}
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Radix-2 Butterfly

FIGURE 4.24

FIGURE 4.25

a(0)

x(0) > X(0)

DFT

N .
?—pomt —» X{Q}

———=X(1)

b(1) N .
»> —-point |__» o
;‘2 b2 Wyl 2 f{g
- *—3 DFT W
a0 L e X(7)

The first iteration of the eight-point FFT.

Z=X+Y

—1 Z=X—

Definitions of the graphical operations.

—/'2fmk

nk

W=

0

W=l

W, =0.707 - j0.707

2

WN = _‘/
W' =-0.707~ j0.707

FIGURE 4.26

Radix-2 Butterfly
/

1]

x(0) » N
x(1) - gy
KON A e S W ——
A OSERE, - S
A RRET~ ] T

r_1 55) L i) DFT
X8y m&% L —
X(7) &7 e

DFT

The second iteration of the eight-point FFT.

1]

o
=

XX XX X XXX

X0) T - v X(O)
x(2) g -_, WE wo" X 4
x(3) Xi8)
X(4) /X><\‘\.1 WNV W} i{ﬂ'
@ S S Lo
x7) S S W == W )

FIGURE 4.27 Block diagram for the eight-point FFT (total twelve multiplications).
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Bit-reversal

Examination of the final chart shows that it is necessary to
shuffle the order of the input data. This data shuffle is usually
termed but-reversal for reasons that are clear if the indicates
of the shuffled data are written in binary.

Binary Bit Decimal
Reverse
000 000 0
001 100 4
010 010 2
011 110 6
100 001 1
101 101 5]
110 011 3
111 111 7

Given a sequence x(n) for 0 <n < 3, where x(0) =1, x(1) =2, x(2) = 3. and
x(3) =4,
a. Evaluate its DFT X(k) using the decimation-in-frequency FFT method.
b. Determine the number of complex multiplications.
Solution:
a. Using the FFT block diagram in Figure 4.27. the result is shown in
Figure 4.30.

Bit index 4 10 Bit reversal

00 x(0)=1 T X(0) oo
o1 X(1 ):2 / 6 Mti =1 =2

- sir S X(2) 10
10 x(2)=3><><:_2 W= 242 1) 01

SENEE wl=1-2—j2
11 x(3)=4 = o = & J X3 1
FIGURE 4.30 Four-point FFT block diagram in Example 4.12. 5

b. From Figure 4.30, the number of complex multiplications is four, which
can also be determined by

log, (4) = 4.

=

AT
5 log, (N) =

[SS YR =N
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Decimation-in-Time FFT

The decimation-in-time FFT algorithm is based on splitting
(decimating) x(n) into smaller sequences and finding X ( k)
from the DFTs of these decimated sequences. This section
describes how this decimation leads to an efficient algorithm
when the sequence length is a power of 2.

Let x(n) be a sequence of length N =2m, and suppose that x(n)

is split (decimated) into two subsequences, each of length
N/2.

(N/2)-1 (N/2)-1
Xy = > xCmWt+ Y x@m+ HWEWI™,
m=( m=0

for k=10, L. N=1.

The index for each input sequence element can be achieved by bit reversal of the frequency
index in a sequential order.
G(0)
0) — X(0) x(0) 2—point X(0)
iizg | 4 - point g?: ;C XEW) x(4) oFr | Q "'; X(1)
— 2 x(2) ool X2)
4 DFT X2 2—point o >
o 17 Jew T SXXT e o B ] -
x(1) —] H - X(4) x(1) 2_point = o & X(4)
X(3) ~—| 4 - point ng; mv X X(5) x(5) DFT i ey X(5)
S N N x(3) —poi ce i X(6)
w1 [T iy N m o P o - =
H@) Wi i W2 -4 Wi A
FIGURE 4.32 The first iteration. FIGURE 4.33 The second iteration.

x(0) - X0)

1) e oS PNy

xit) — ><1: .

X(ﬁ) 0:><: VVS2 \._ // X(S) 6
1) L R 1 XXKE e xa
W —1

s 0><;: o W/ XXX

) e —— E X6)

X(7) = = - X(7)

Wy -1 W -1 W 4
FIGURE 4.34  The eight-point FFT algorithm using decimation-in-time (twelve comp
multiplications).
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Given a sequence x(n) for 0 <n < 3, where x(0) =1, x(1) = 2. x(2) = 3. and
x(3)=4,

a. Evaluate its DFT X{(k) using the decimation-in-time FFT method.
Solution:

a. Using the block diagram in Figure 4.34 leads to

4 10
x(0)=1——— e > > —  X{(0)
el -2 —2+j2
WG X . _“ X(1)
s e S e X2
el L I N e
W}‘):‘l -1 Vl/‘l:_j —

FIGURE 4.36 The four-point FFT using decimation in time.

The Inverse FFT (IFFT)

* It uses positive power of Wy = Wy!instead of negative ones.
* There is an additional division of each output value by N.

Any FFT algorithm can be modified to perform the IDFT by

* Using positive powers instead of negatives
* Multiplying each component of the output by 1/N

* Hence the algorithm is the same but computational load increases
due to N extra multiplications.
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The Inverse FFT (IFFT)

after we change Wn  to y,~yin Figure 4.34 and multiply the output sequence by a

factor of 1/N, we derive the inverse FFT block diagram for the eight-point inverse
FFT in Figure

X(0) x(0)
X(4) ng><: Pl Z x(1)
X(6) > Fbe Sh S x(3)

0 "1 w2 = i i
X(1) » WB. LL WB. .1. E.UXXXX_ > ? s X(4)
X(5) :0_>'<: i / WS{/><><R1 > f x(5)
X(S) WB -1 > :><_><: VVE/ \\_.1 ] X(ﬁ)
X0 g M SR X iq
*0 S i

FIGURE 4.35  The eight-point IFFT using decimation-in-time.

Given the DFT sequence X(k) for 0=k =3 computed in Example 4.12,

a. Evaluate its inverse DFT x(n) using the decimation-in-frequency
FFT method.

Solution:

a. Using the inverse FFT block diagram in Figure 4.28, we have

Bit index 1 Bit reversal
8 4 El
00 X(0)=10 e i — x(0)=1 qp
01 X(1)=—2+j2 Pl < ~g><;ﬁ’4f”2 1, x2)=3 10
10 X(2)=—2 S>> 2 W= L8 3 y)=2 oOf 8
11 X@)=—2-j2 = S -1‘5’4:“5 3. x(@)=4 11

FIGURE 4.31 Four-point inverse FFT block diagram in Example 4.13.
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Given the DFT sequence X(k) for 0 =k = 3 computed in Example 4.14,

a. Evaluate its inverse DFT x(n) using the decimation-in-time FFT method.

Solution:;

a. Using the block diagram in Figure 4.35 yields

8 4 =
X(0)=10 , e x(0)=1
12 8 <
X(2)=—2 o }:::: \/;’ r .11 e
g =
X[1:I=—2+j2 }-Ci _[4 = 1 -'_1 16 1 )ﬂ:2}=3
X(3)=-2-j2 *—» e > —i—e x(3)=4
W4':'=‘| -1 H’g=} -1

FIGURE 4.37  The four-point IFFT using decimation in time.

Assume that a complex multiply takes | us and that the amount of time to compute a DFT is determined
by the amount of time it takes to perform all of the multiplications.

(@) How much time does it take to compute a 1024-point DFT directly?
(by How much time is required if an FFT 1s used?
(¢) Repeat parts (@) and (b) for a 4096-point DFT.

(@) Including possible multiplications by 1, computing an N -point DFT directly requires N? complex multipli-
cations. If it takes | us per complex multiply, the direct evaluation of a 1024-point DFT requires

torr = (1024)* - 1074522 1,05 ¢

(b) Witharadix-2 FFT, the number of complex multiplications is approximately (¥ /2) log, N which, for N = 1024, 9
is equal to 5120. Therefore, the amount of time to compute a 1024-point DFT using an FFT is

trrr = 5120 107%ms = 5.12 ms
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(¢) If the length of the DFT is increased by a factor of 4 to N = 4096, the number of multiplications necessary
to compute the DFT directly increases by a factor of 16. Therefore, the time required to evaluate the DFT
directly is

Iper = 16.78 s

If, on the other hand, an FFT is used, the number of multiplications is
2,048 - log, 4,096 = 24,576
and the amount of time to evaluate the DFT is

terr = 24.576 ms

10
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Applications of circular convolution

1.Designing digital filters

2.Processing signals in communication systems
3.Audio signal processing

4.Processing images

5.Convolutional neural networks

6.Periodic data analysis

7.Error detection and correction in coding theory 1
8.Cryptographic algorithms
9.Radar signal processing

10.Biomedical signal processing
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Circular convolution (Cyclic Convolution)

* It is aspecial case of periodic convolution, which is the convolution of two
periodic functions that have the same period.

e Circular convolution is essentially the same process as linear convolution. Just
like linear convolution, it involves the operation of folding a sequence, shifting it,
multiplying it with another sequence, and summing the resulting products.
However, in circular convolution, the signals are all periodic. Thus, the shifting
can be thought of as actually being a rotation. Since the values keep repeating
because of the periodicity. Hence, it is known as circular convolution.

» Circular convolution is also applicable for both continuous and discrete-time
signals. We can represent Circular Convolution as

y(n) = x(n) @ h(n)

Circular convolution (Cyclic Convolution)

Here y(n) is a periodic output, x(n) is a periodic input, and h(n) is the periodic impulse
response of the LTI system.

In circular convolution, both the sequences (input and impulse response) must be of equal
sizes. They must have the same number of samples. Thus, the output of a circular convolution
has the same number of samples as the two inputs.

Method-1 Circular convolution of x,={1,2 0} and x,={3,5 4}
clock- w:se anticlock-wise
4
folded sequence
Y(0)=1%3+2x4+0x5 1 y(1)=1%x5+2x3+0x4 y(2)=1x4+2x5+0x 2
®

2 9

X (1)x2(0-1) mous X, (] rr)lmm” X (1) ous 46
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Circular convolution (Cyclic Convolution)

Method-2
Circular convolution Ofcl;fclkfvégl&}i and 2 = {;‘?{}a;\ticlock-wise

k -2|-1|10|1]2)]3

zy (k) 1|2](0

z2 (—K)|s 4 |5 |3]|4|5]|3|y0=11
z2 (1 — k)| 3 |4 |5|3|4]|5|y@)=11
z2 (2 — k)| 5 [3 |4a|5|3|4]|y@=14
z22(3—k)|3=22(—k)|5 | 4 5 314|5|3|y(3)=11

Circular convolution (Cyclic Convolution)

* For the given example, circular convolution is possible only after modifying
the signals via a method known as zero padding. In zero padding, zeroes
are appended to the sequence that has a lesser size to make the sizes of
the two sequences equal. Thus, for the given sequence, after zero-padding:

x(n) =1[1,2,3,0,0]

* Now both x(n) and h(n) have the same lengths. So circular convolution
can take place. And the output of the circular convolution will have the
same number of samples. i.e., 5.

* Graphically, when we perform circular convolution, there is a circular shift 3
taking place. Alternatively, we can call it rotation.

* The output of a circular convolution is always periodic, and its period is
specified by the periods of one of its inputs.
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Circular convolution (Cyclic Convolution)

Convolution of z; = {1,2} (M = 2) and z2 = {3,5,4} (L =3),
Evarmol N=L+M-1=4, 2, ={1,2,0,0} & z; = {3,5,4,0}
xample clock-wise /;\ anticlock-wise

N

folded sequence

Y(0)=1x342x0+0x4+0x5 1 YO =1 x542x340x04+0x4 YOy 1 x4+2x540%340x0 1

Xy (m)x2(0-n)|oas X ()5 (21| oan

0 0

Xy (), (1 =n)| poas

Circular convolution (Cyclic Convolution)

Convolution of z; = {1,2} (M = 2) and z; = {3,5,4} (L = 3),
Example N=L+M-1=4,2 ={1,2,0,0} & z; = {3,5.4,0}
7 N gy
k -2|-1]10]11]12]|3
zy (k) 1|2]0]|0
za (—FK)|, 310|14|5]|y(0)=3
z2 (1 - k)|, 5/3|lo|l4a]|y@)=11 4
22 (2 - k)|, a|5|3|0]|y@ =14
z2 (3 — k)|, 0|]4|5|3|y@3)=8
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Circular convolution (Cyclic Convolution)

Method-3 Matrix Multiplication Method

Matrix method represents the two-given sequence x,(n) and
X, (n) in matrix form.

»One of the given sequences is repeated via circular shift of
one sample at a time to form a
N X N matrix.

»The other sequence is represented as column matrix.

» The multiplication of two matrices given the result of
circular convolution.

Circular convolution (Cyclic Convolution)

Matrix Method
x2(0) x2(2) x2(1)] [x1(0) x3(0)
x2(1) x2(0) x2(2) [ [x1(1)| =]x3(1)
x2(2) x2(1) x200)f [x1(2)] |x3(2)

Example

Input: x[n]=[1,2,4,2], h[n]={1,1,1}
Output: 7578 5

Input: x[n]=[5,7,3,2],h[n]={1,5}
Output: 15323817
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Circular convolution (Cyclic Convolution)

Example

Find the circular convolution of x1[n]={2,1,2,1}
X2 [Tl] ={1/ 2/ 3/ 4}

2+4+6+2] [14]
4+1+8+3 16
6+2+2+4 14
8+3+4+1] L16.

W N R
N = bW

:r—\l\.)r—\[\.):
|
|

W N R
=AW N
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Introduction to digital filter

- Afilter is essentially a system or network that selectively changes the wave shape, amplitude and
or phase-frequency characteristics of a signal in a desired manner.

- Common filtering objectives are to improve the quality of a signal .... (to remove or reduce noise),
to extract information from signals or to separate two or more signals previously combined to
make, for example, efficient use of an available communication channel.

- A digital filter is a mathematical algorithm implemented in hardware and /or software that
operate on a digital input signal to produce a digital output signal of achieving a filter objective.

- A simplified block diagram of a real time digital filter with analogue input and output signals is
shown in figure.

input x[np————1y[n] y () 1
—| Input |5} Apc || Digital DAC p Output‘ 5
) | fiter prass ftter ||

Analogue input nalogue o/p
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BASIC ELEMENTS OF DIGITAL FILTER STRUCTURES

e Adder has two inputs and one output.
e Multiplier (gain) has single-input, single-output.
e Delay element delays the signal passing through it by

one sample. It is implemented by using a shift
register.

a 71

BASIC ELEMENTS OF DIGITAL FILTER STRUCTURES

) by y()

y(n) = box(n) + ary(n — 1) + azy(n — 2)
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Type of digital filter: FIR and IIR

Digital filters are broadly divided into two classes:-

l)lnfinite impulse response (IIR)
2)Finite impulse response (FIR)
- Either type of filter can be represented by its impulse response sequence, h(k) (k=0, 1, 2,
...) as shown in figure.
- The input and output signals to the filter are related by the convolution sum.

- For IIR filters, the impulse response is finite duration whereas for FIR it is of finite
yinl =X oh(k)x(m—k) ....forIIR

yin] = Xbh(k)x (n — k) ....for FIR

duration.

H(k) = SN=2 h(k) 27

N -k h(k), k=0,1,2
H(z) = Zh=owz™ x[n] ——> (k)
Impulse response

>
1438 brzk yln]

Representation of a filter by a suitable structure (Realization)

Realization involves converting a given transfer function H(z) into a suitable
filter structure.

1- For FIR filter three structure are used:-
(a) Direct form (or transversal)
(b) Frequency sampling
(c) Fast convolution.

2- For lIR filters, three structures are used:-
(a) Direct form
(b) Cascade form
(c) Parallel form 3
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FIR (FINITE IMPULSE RESPONSE) FILTER STRUCTURES

B The characteristics of the FIR filter
e FIR filters have Finite-duration Impulse Responses; thus, they can be realized by means of DFT

e The system function H(z) has the ROC of system |z| > 0 , thus, itis a causal system
e An FIR filteris a non recursive system

e FIR filters can be designed to have a linear-phase response

It has N-1 order polesat z=10

N-1
H(z)'= h(n)z™™

and N-1 zerosin |z| >0

The order of such an FIR filter is N-1

Block Diagrams for First-Order System

second delay to get x[n-1].

Then we add the various terms together to create y[n]

prmEEEEEEEEEmEmm———— \\ '/ """"""""" \\
I x(n) by wm i O y(n) 1
[ + [
1 1 1 1
1 1 1 1
H 1 : 1
I 7 b 7! ;
: 1 : 1
L xdn-1) Pl - yin-11 | 4
\\ ________________ '/I \N ---------------- ”’

This form... that has separate delays for the input and for the
output....is called Direct-Form I

It is possible to reduce the number of delays with a “trick”.
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Trick to Get Direct-Form Il — which has reduced number of delays

For LTI systems we can interchange their order without changing their

overall mathematical result. So...

x(n) by m v(n) C\ y(n)
N \/

Direct-Form I

Change
@ order

x(n) w(n) by y(n)
—( +
| l O

Same value... so only
one delay is needed!

x(n) R (D) y(n)
by ;

Note that nowhere in this do we
have the delays of input or output!

Direct-Form II

FIR FILTER STRUCTURES

Direct form

In this form the difference equation is implemented directly as given:

N—-1
It requires N multiplications
yo) = ) hGmx(n—m) " :
m=0
x(n) Sz x(n-1) JZ x(n-2) 7 x(n-3) N x(n-4)




11/25/2025

FIR FILTER STRUCTURES

Cascade form

coefficients

N—-1

Hz) = Z e e
n=0

2]

n(bok bzt +bypztt)

It requires (3N/2) multiplications

In this form the system function H(z) is converted into products of second- order sections with real

le=1i
b b b
e (n) 01 02 '0x
z! by z! by, z! by
z! z1 z1
b21 b22 bzx

y(m)

EXAMPLE

Sol:

y[n]= x[n]-2x[n-1]-2x[n-2]+3x[n-3]

Draw the direct form structure for the FIR filter represented by the
following difference equation
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EXAMPLE

Sol:

Draw the direct form structure for the FIR filter represented by the following
transfer function

H[z]=4+2z71-2 27243 z73

H(z )__Y((zz)) =4+27" =277 4377 Time shifting

x(n-K) & 2*X(2)

Y(2)=4X(2)+2z7"'X(2)-2z7X(2)+327° X (2)

Taking Inverse z-Transform

y(n)=4x(n)+2x(n—-1)-2x(n—-2)+3x(n—-3)

EXAMPLE

Using cascade structure realize the FIR filter represented by the following
transfer function

Sol:

Hlz]= (145271 272) (145 271+ 272)

H(z)=H,(2).H,(2)
1 5 5 l 5. =
HI(Z):(1+52|+Z-) Hz(z)=(1+zz'+z )
—_Y'(Z) = l =l g, =2 H, _M_ 1 l Sy 2
H,(Z)—Xl(z)—(]+2z +2z7%) 2AZ) X, (+4z +2z7%)

| 2 lr)
Y.(z)=X,(z)+%:"X.(z)+z’3X,(z) Y,()=X,(z )+— X+ 27X, (2 >°‘{')TD%'F‘ = J’ "——[—‘* fz— 7

' |
| | P
}'|(Vl):x‘(n)+§xl(n—l)+x,(n—2) ¥, (1) =x,(n)+— x(n D+x,(n-2) ,' '1/?- ’1 Yl 7 1/+ 1%
I
; L —- '@"‘—k) O
|\)-.1'x () 1)
st !
1 ;;indc_ ard S{ﬁf
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IIR(INFINITE IMPULSE RESPONSE) FILTER STRUCTURES

The characteristics of the IIR filter
e IR filters have Infinite-duration Impulse Responses

e The system function H(z) has polesin  o<|z1<
e An lIR filter is a recursive system

Y(2)  Xkobkz™®  bo+ bzt 4+ byz™

H2i= X(z) 1Yoz % I—(az Tt bagz?)
N M 1
y) = Y aym-K)+ Y bx(n k)
k=1 k=0

The order of such an IIR filter is called N if an # 0
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IR FILTER STRUCTURES

Direct form

In this form the difference equation is implemented directly as given. There are two parts to this
filter, namely the moving average part and the recursive part (or the numerator and denominator

parts). Therefore, this implementation leads to two versions: direct form | and direct form Il

structures
M N
y() = ) bex(n—k) + ) ay(n - k)
k=0 k=1

Z?cl:o bkz_k

i) =
& 1-Fl gz

IR FILTER STRUCTURES

e Direct form |

M N
y) = ) bex(n—k)+ ) ay(n—k)
k=0 k=1
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IIR FILTER STRUCTURES

e Direct form Il

For an LTI cascade system, we can change the order of the systems without changing the overall
system response

vin) = z(n)—avin—1)—aw(n—2)

yn) = byv(n) + be(n — 1) + bav(n — 2)

y(n)

IR FILTER STRUCTURES

Cascade form

For an IIR filter each second order cascade section has the form

Realization of an |IR cascade structure from second order sections.
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IR FILTER STRUCTURES

Cascade form

wn)

x(n) =x,(m) xy(m) xx(n)
H(2) Hy(2) Hy(2)
¥ (n) ¥a(n)
(a)
1 b, =
RN 0O\ = x )
L L
-8 b
C:\ 1l ki f+>
o %
—ay by

(b)

EXAMPLE

Draw the direct form Il realization of the following transfer function

0.44z7140.362272+0.02z3

H(z)=

Sol:

140.4z7140.18272-0.2273
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lIR FILTER STRUCTURES

Parallel form

Thobkz™® I, (-Brz™Y)

In this structure, the input signal is processed separately by a different subsystems.
An IIR Transfer function can be realized in a parallel form by making use of the partial fraction of

expansion of the Transfer function.

H(z) =

1+Eﬁ=1 akz_k n¥=1(]"akzdl)

x(m) o

Hyl(z)

A parallel-form filter structure.

yim)

EXAMPLE

Sol:

Obtain Cascade and parallel structures for the following system:

3 1 1
y(n) = Zy(n -1) —gy(n -2)+x(n) +§x(n ~1)

Taking Z-Transform on both sides results in
3 1 1
Y(z) - Zz‘lY(z) + §Z_2Y(Z) =X(2) +§z“1X(z)

The corresponding Transfer Function is
1+ %z‘l
Hiz)= 3 1
T L
1 5 & g7




12/2/2025

EXAMPLE

Cascade Form:

141z 1402 1
H(z) = 2 =—2
3 a.3 . ; S
1—-Fz" 4+ 5274 (1-5z 1 (1-3z 1)

4 8
= H,(2).H,(2)

+ y(n)

14

EXAMPLE

Parallel Form:

By using partial fraction expansion

1+ %z‘l A B

H{g)=—my I, W
lfzz“lJrgz"z (1*22_1) (1*12-1)
Solving for A and B,
10 1 7 1
H(z) = 3 (1-2271) 31—z .
2 4 ] w3
12
0 Py 6

14
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Discrete-Time System Relationships

Time Domain

Difference

7./ Freq Domain

Equation

i=1 =0

Impulse
Response

h[n]

yinl== a,yln—il+ Y bx{n—i]

Pole/Zero
Block Diagram
Diagram
Roots
2
ZT (Theory) Transfer | &, (2)= I+bgz ™ +bgz .
Inspect (Practice) Function L+ayz" +ag,:
Unit Circle
z=¢°
Frequency
DTFT
Response
f _ z
H (0)=H(2)|_,,




