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Basic Probability and Statistics

• Statistics is the area of science that deals
with collection, organization, analysis, and
interpretation of data. It also deals with
methods and techniques that can be used to
draw conclusions about the characteristics of
a large number of data points commonly
called a population.



Probability: which measures the
likelihood that an event will occur, is an
important part of statistics. It is the basis
of inferential statistics , where decisions
are made under conditions of uncertainty



Basic Concepts
• An experiment is the process by which

an observation (or measurement) is
obtained.

• Sample Space (S) is the set of all
possible outcomes of an experiment The
outcomes are called sample points in S

• An event is the subset of the sample
space.



Examples

EXPERIMENT SAMPLE SPACE(S)
Toss one coin H, T
Roll a die 1, 2, 3, 4, 5, 6
Answer a true-false question True, False
Toss two coins HH, HT, TH, TT

H
H

T

T

H

T

HH

HT

TH

TT

C1         C2            S



Simple events 
• The die toss:

Sample space:
1

2

3

4

5

6

E1

E2

E3

E4

E5

E6

S ={E1, E2, E3, E4, E5, E6}

S
•E1

•E6
•E2

•E3

•E4

•E5



Basic Concepts

• Two events are mutually exclusive if,
when one event occurs, the other cannot,
and vice versa.

•Experiment: Toss a die
–A: observe an odd number
–B: observe a number greater than 2
–C: observe a 6
–D: observe a 3

Not Mutually 
Exclusive

Mutually 
Exclusive

B and  C?
B and D?



Basic Concepts

• An event is a collection of one or more
simple events.

•The die toss:
–A: an odd number
–B: a number > 2

S

A ={E1, E3, E5}

B ={E3, E4, E5, E6}

B
A
•E1

•E6
•E2

•E3

•E4

•E5



Classical Probability
• The probability of an event A is equal to

the sum of the probabilities of the simple
events contained in A

• If the simple events in an experiment are
equally likely, you can calculate

events simple ofnumber  total
Ain  events simple ofnumber )( ==

N
nAP A



Empirical Probability 

• The probability of an event A measures “how
often” A will occur. We write P(A).

• Suppose that an experiment is performed n
times. The relative frequency for an event A is

erim enttheofsrepetition
AP

exp

occursA event  t imes
)( =

n
fAP =)(



The Probability of an Event

• P(A) must be between 0 and 1.
– If event A can never occur, P(A) = 0.

If event A always occurs when the
experiment is performed, P(A) =1.

• The sum of the probabilities for all
simple events in S equals 1.

• The probability of an event A is found
by adding the probabilities of all the
simple events contained in A.



– Suppose that 10% of the U.S. population has
red hair. Then for a person selected at random,

Finding Probabilities

• Probabilities can be found using
– Estimates from empirical studies
– Common sense estimates based on

equally likely events.

P(Head) = 1/2

P(Red hair) = .10

• Examples 1:
–Toss a fair coin.



Example 2

Toss a fair coin twice. What is the probability 
of observing at least one head?

1st Coin     2nd Coin     Ei P(Ei)
H

H

T

T

H

T

HH

HT

TH

TT

1/4

1/4

1/4

1/4

P(at least 1 head) 

= P(E1) + P(E2) + P(E3)

= 1/4 + 1/4 + 1/4 = 3/4



Example 3
A bowl contains three balls, one red, one blue
and one green. A child selects two balls at
random. What is the probability that at least
one is red?

1st ball     2nd ball             Ei P(Ei)
RB

RG

BR

BG

1/6

1/6

1/6

1/6

1/6

1/6

P(at least 1 red) 

= P(RB) + P(BR)+ P(RG) 
+ P(GR)

= 4/6 = 2/3

m

m

m

m

m

m

m

m

m GB

GR



Example 4
Two dice are rolled .

1-What is the probability that sum of dice greater than 3?

2- What is the probability that sum of dice equal 11?

3- What is the probability that sum of dice at least 9?

1-P(sum >3)=1- P(sum ≤3)= 1 − 3
36

= 33
36

= 11
12

2-P(sum =11)= 2
36

= 1
18

3-P(sum at least 9)=10
36

= 5
18
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S

Event Relations

The beauty of using events, rather than simple events, is that
we can combine events to make other events using logical
operations: and, or and not.

A B

The union of two events, A and B, is the event that either A or B
or both occur when the experiment is performed. We write A ∪ B

1- Union 

A Venn diagram is useful for displaying the relationships
among event in a sample space.



S

A B

2-Intersection
The intersection of two events, A and B, is the
event that both A and B occur when the experiment
is performed. We write A ∩ B.

• If two events A and B are mutually
exclusive, then P(A ∩ B) = 0.



S

3-Complement

The complement of an event A consists of all
outcomes of the experiment that do not result in
event A. We write AC.

A

AC



Example
Select a student from the classroom and 
record his/her hair color and gender.
– A: student has brown hair
– B: student is female
– C: student is male
What is the relationship between events B and C?
•AC:
•B∩C:
•B∪C:

Mutually exclusive; B = CC

Student does not have brown hair

Student is both male and female = ∅

Student is either male and female = all students = S



Calculating Probabilities for Unions 
and Complements

• There are special rules that will allow you to
calculate probabilities for composite events.

• The Additive Rule for Unions:
• For any two events, A and B, the probability

of their union, P(A ∪ B), is

)()()()( BAPBPAPBAP ∩−+=∪
A B



Note 5 of 5E

Example: Additive Rule
Example 1: Suppose that there were 120 students 
in the classroom, and that they could be classified 
as follows:

Brown Not Brown
Male 20 40

Female 30 30

A: brown hair
P(A) = 50/120

B: female
P(B) = 60/120

P(A∪B) = P(A) + P(B) – P(A∩B)
= 50/120 + 60/120 - 30/120 
= 80/120 = 2/3 Check: P(A∪B)

= (20 + 30 + 30)/120



Example 2 :

A: red die show 1
B: green die show 1

P(A∪B) = P(A) + P(B) – P(A∩B)
= 6/36 + 6/36 – 1/36
= 11/36

Find P(A∪B) ? 

Two dice Rolled. Find P(A∪B) when red die show 1 and green die show 1



A Special Case
When two events A and B are mutually exclusive ,
P(A∩B) = 0 and P(A∪B) = P(A) + P(B).

Brown Not Brown
Male 20 40

Female 30 30

A: male with brown hair
P(A) = 20/120

B: female with brown hair
P(B) = 30/120

P(A∪B) = P(A) + P(B)
= 20/120 + 30/120
= 50/120

A and B are mutually 
exclusive, so that

Example 3: Suppose that there were 120 students in the classroom,
and that they could be classified as follows:



Example 4:

A: dice add to 3
B: dice add to 6

A and B are mutually 
exclusive, so that

P(A∪B) = P(A) + P(B)
= 2/36 + 5/36
= 7/36

Two Dice Rolled. Find P(A∪B) when event  A dice add to 3 and event  B
dice add to 6



Calculating Probabilities 
for Complements

• We know that for any event A:
– P(A ∩ AC) = 0

• Since either A or AC must occur,
P(A ∪ AC) =1

• so that P(A ∪ AC) = P(A)+ P(AC) = 1

P(AC) = 1 – P(A)

A
AC



Example 5

Brown Not Brown
Male 20 40

Female 30 30

A: male 
P(A) = 60/120

B: female
P(B) = ?

P(B) = 1- P(A)
= 1- 60/120 = 60/120

A and B are 
complementary, so that

Select a student at random from the classroom.
Define:



Conditional Probabilities
The probability that A occurs, given that
event B has occurred is called the
conditional probability of A given B and
is defined as

0)( if 
)(

)()|( ≠
∩

= BP
BP

BAPBAP

“given”



Defining Independence
• We can redefine independence in terms of conditional

probabilities:

Two events A and B are independent if and 
only if

P(A|B) = P(A) or P(B|A) = P(B)

Otherwise, they are dependent.

P(A ∩ B) = P(A|B) P(B)

P(A ∩ B) = P(A) P(B) 

 
)(

)()|(
BP

BAPBAP ∩
=

• If the events A and B are independent, then the probability that
both A and B occur is



Example 1
Toss a fair coin twice. Define

– A: head on second toss
– B: head on first toss

HT

TH

TT

1/4

1/4

1/4

1/4

P(A|B) = ½

P(A|not B) = ½ HH

P(A) does not 
change, whether 
B happens or 
not…

A and B are 
independent!

c2 c1     S

H  H

H  T

T  H 
T  T



Example 2: Two Dice
Toss a pair of fair dice. Define

– A: red die show 1
– B: green die show 1

P(A|B) = P(A and B)/P(B)

=1/36 / 1/6=1/6=P(A)

P(A) does not 
change, whether 
B happens or 
not…

A and B are 
independent!



Example 3: Two Dice
Toss a pair of fair dice. Define

– A: add to 3
– B: add to 6

P(A|B) = P(A and B)/P(B)

=0/36/5/36=0

P(A) does change 
when B happens 

A and B are dependent! 
In fact, when B happens, 
A can’t



Example 4
In a certain population, 10% of the people can be
classified as being high risk for a heart attack. Three
people are randomly selected from this population. What
is the probability that exactly one of the three are high
risk?

Define H: high risk N: not high risk

P(exactly one high risk) = P(HNN) + P(NHN) + P(NNH)

= P(H)P(N)P(N) + P(N)P(H)P(N) + P(N)P(N)P(H)

= (.1)(.9)(.9) + (.9)(.1)(.9) + (.9)(.9)(.1)= 3(.1)(.9)2 = .243



Example 5
Suppose we have additional information in the previous
example. We know that only 49% of the population are
female. Also, of the female patients, 8% are high risk. A
single person is selected at random. What is the
probability that it is a high risk female?

Define H: high risk F: female

From the example, P(F) = .49 and P(H|F) = .08. 
Use the Multiplicative Rule:

P(high risk female) = P(H∩F)

= P(F)P(H|F) =.49(.08) = .0392
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Counting Rules

Sample space of throwing 3 dice has 216
entries
Sample space of throwing 4 dice has 1296
entries, …

When outcomes are equally likely to occur (like when
tossing a coin or rolling a die), you can use counting rules
to find out how many outcomes are possible and then use
that number to find probabilities.



1-Multiplication Rule
• If an experiment is performed in two stages, with m

ways to accomplish the first stage and n ways to
accomplish the second stage, then there are mn ways
to accomplish the experiment.

• This rule is easily extended to k stages, with the
number of ways equal to n1 n2 n3 … nk

Example 1: Toss three coins.

The total number of simple
events is:

2 × 2 × 2 = 8

c3     c2  c1   S
H      H H HHH
H      H T     HHT
H      T   H     HTH
H      T   T HTT
T      H   H THH
T      H   T      THT
T      T H      TTH
T      T T TTT



P(ABC)= 

Example2: Toss three dice. The total number of simple
events is: 6 × 6 × 6 = 216
Example 3: How many 4 or 5 digit telephone numbers are possible, 
assuming the first is not zero?

ans : 9 × 10 × 10 × 10 + 9 × 10 × 10 × 10 × 10 = 99 000

Example 4: 
(a)How many different car number plates are Possible with 3 
letters followed by 3 digit ? Ans: 26*26*26*10*10*10

(b) How many of these number plates begin with ABC

(c) If a plate is chosen at random, what is the probability that it 
begins with ABC?)



2-Permutation  Rule

• The number of ways you can arrange n
distinct objects, taking them r at a time is

Example1 : How many 3-digit lock combinations
can we make from the numbers 1, 2, 3, and 4?

.1!0 and )1)(2)...(2)(1(! where
)!(

!

≡−−=
−

=

nnnn
rn

nPn
r

24)2)(3(4
!1
!44

3 ===PThe order of the choice is 
important!

Is an ordered arrangement of objects



Example2: A lock consists of five parts and
can be assembled in any order. A quality
control engineer wants to test each order for
efficiency of assembly. How many orders are
there?

120)1)(2)(3)(4(5
!0
!55

5 ===P

The order of the choice is 
important!

The number of permutations of n objects using all of them is n!

Example 1: In how many ways can 5 people line up in a queue? 
ans 5! = 120



Permutations with repeated elements

• If a bag contains some objects in which m1 are of
type 1, m2 are of type 2, ....... mk are of type k.
The number of permutation is:

Example : How many ways can you permute the letters:
B A N A N A ?



3-Combination Rule
• The number of distinct combinations of n

distinct objects that can be formed,
taking them r at a time is

Example 1: Three members of a 5-person committee
must be chosen to form a subcommittee. How many
different subcommittees could be formed?

)!(!
!

rnr
nC n

r −
=

10
1)2(
)4(5

1)2)(1)(2(3
1)2)(3)(4(5

)!35(!3
!55

3 ===
−

=CThe order of 
the choice is 
not important!



Example 2

A deck of cards consists of 52 cards, 13 "kinds" 
each of four suits (spades, hearts, diamonds, and 
clubs). The 13 kinds are Ace (A), 2, 3, 4, 5, 6, 7, 
8, 9, 10, Jack (J), Queen (Q), King (K). In many 
poker games, each player is dealt five cards from 
a well shuffled deck.  

 hands possible

 960,598,2
1)2)(3)(4(5

48)49)(50)(51(52
)!552(!5

!52  are There 52
5 ==

−
=C

http://images.google.com/imgres?imgurl=http://filebox.vt.edu/users/gslota/Pictures/WebPages/deck-of-cards.gif&imgrefurl=http://filebox.vt.edu/users/gslota/Pictures/WebPages/&h=151&w=225&sz=12&tbnid=E_F0_KEuAGzFTM:&tbnh=68&tbnw=102&hl=en&start=1&prev=/images%3Fq%3Ddeck%2Bof%2Bcards%26svnum%3D10%26hl%3Den%26lr%3D%26rls%3DRNWE,RNWE:2004-33,RNWE:en%26sa%3DG
http://images.google.com/imgres?imgurl=http://www3.sympatico.ca/terrir/images/suitsgraphic2.jpg&imgrefurl=http://www3.sympatico.ca/terrir/suits.html&h=281&w=200&sz=12&tbnid=vIiAkZrJO_CeIM:&tbnh=109&tbnw=77&hl=en&start=4&prev=/images%3Fq%3Dsuits%2Bof%2Bcards%26svnum%3D10%26hl%3Den%26lr%3D%26rls%3DRNWE,RNWE:2004-33,RNWE:en


Probability Calculations Using 
Combinations / Permutations

• A box contains six balls, four red and
two green. A child selects two balls at random. 
What is the probability that exactly one is red?

The order of 
the choice is 
not important!

m

m

mm
m m

Ms.&M 2 choose  toways

15
)1(2
)5(6

!4!2
!66

2 ===C

M.&Mgreen  1
 choose  toways

2
!1!1
!22

1 ==C

M.&M red 1
 choose  toways

4
!3!1
!44

1 ==C 4 × 2 =8 ways to 
choose 1 red and 1 
green M&M.

P(exactly one 
red) = 8/15

Example 1



Example 2: 4 chocolates are chosen at random from a
box containing 6 with hard centers , and 8 with soft
centers.

(a) Calculate the probability that 3 of the chocolates have
soft centers.

(b) Calculate the probability that at least 3 of the
chocolates have soft centers.



Example 3:A 4 digit security number is made using the digits
0, 1,……..9. If a number is made up at random, what is the
probability that it contains the same digit repeated 3 times in a
row.



Example 4
From a group of 3 Indians, 4 Pakistanis, and 5 Americans, a sub-
committee of four people is selected by lots. Find the probability that
the sub-committee will consist of
i) 2 Indians and 2 Pakistanis.
ii) 1 Indians, 1 Pakistanis and 2 Americans.
iii) 4 Americans.





Example 5
A bag contains 7 white, 6 red & 5 black balls. Two balls are drawn at
random. Find the prob. that they both will be white.

Total no. of balls = 7 + 6 + 5=18 



Example 6
A bag contains 10 white, 6 red, 4 black & 7 blue balls. 5 balls are
drawn at random. What is the prob. that 2 of them are red and one is
black?

Sol: Total no. of balls = 10 + 6 + 4 + 7 =27 



Example 7. In how many ways can 5 boys and 4 girls be
arranged on a bench if

a) there are  no restrictions?

b) boys and girls alternate?

9! or 9P9

BGBGBGBGB = 5 * 4 * 4 * 3 * 3 *2 * 2 * 1 *1= 5! * 4!  
or 5P5 * 4P4

c)boys and girls are in separate groups?

d) Anne and Jim wish to stay together?



Example 8. There are 6 boys who enter a boat with 8 seats, 4
on each side. In how many ways can

a) they sit anywhere? Solution : 8P6

b) two boys A and B sit on the port side and another boy W sit on
the starboard side?
Solution : A & B = 4P2

W = 4P1

Others = 5P3

Total = 4P2 * 4P1 * 5P3
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Random Variables and Probability Distributions

1 Concept of a Random Variable:
· In a statistical experiment, it is often very important to
allocate numerical values to the outcomes.

Example 1:
· Experiment: testing two components.
(D=defective, N=non-defective)
· Sample space: S={DD,DN,ND,NN}
· Let X = number of defective components when
two components are tested.
· Assigned numerical values to the outcomes are:

A random variable :is a function that assigns areal number to 
each outcome in the sample space of a random experiment

c2  c1       S
D   D DD
D   N      DN
N   D      ND
N   N NN



Sample point
(Outcome)

Assigned
Numerical Value (x)

DD 2
DN 1
ND 1
NN 0

Notice that, the set of all possible values of the random
variable X is {0, 1, 2}.
Definition 1:
A random variable X is a function that associates each element
in the sample space with a real number (i.e., X : S → R.)

Notation: " X " denotes the random variable .
" x " denotes a value of the random variable X.



Types of Random Variables:

· A random variable X is called a discrete random
variable if its set of possible values is countable, i.e.,
.x ∈ {x1, x2, …, xn} or x ∈ {x1, x2, …}

· A random variable X is called a continuous random
variable if it can take values on a continuous scale, i.e.,

.x ∈ {x: a < x < b; a, b ∈R}

· In most practical problems:
o A discrete random variable represents count data, such
as the number of defectives in a sample of k items.
o A continuous random variable represents measured
data, such as height.



2 Discrete Probability Distributions
· A discrete random variable X assumes each of its values
with a certain probability.

Example 1:
· Experiment: tossing a non-balance coin 2 times independently.
· H= head , T=tail
· Sample space: S={HH, HT, TH, TT}
· Suppose P(H)=½ P(T) ⇔ P(H)=1/3 and P(T)=2/3
· Let X= number of heads

Sample point
(Outcome)

Probability Value of X
(x)

HH P(HH)=P(H) P(H)=1/3×1/3 = 1/9 2

HT P(HT)=P(H) P(T)=1/3×2/3 = 2/9 1

TH P(TH)=P(T) P(H)=2/3×1/3 = 2/9 1
TT P(TT)=P(T) P(T)=2/3×2/3 = 4/9 0

c2  c1       S
H   H HH
H   T      HT
T   H      TH
T   T TT



· The possible values of X are: 0, 1, and 2.
· X is a discrete random variable.
· Define the following events:

Event (X=x) Probability = P(X=x)

(X=0)={TT} P(X=0) = P(TT)=4/9

(X=1)={HT,TH} P(X=1) =P(HT)+P(TH)=2/9+2/9=4/9
(X=2)={HH} P(X=2) = P(HH)= 1/9

· The possible values of X with their probabilities are:

X 0 1 2 Total
P(X=x)=f(x) 4/9 4/9 1/9 1.00

The function f(x)=P(X=x) is called the probability function
(probability distribution) of the discrete random variable X.



Definition 3:
The function f(x) is a probability function of a discrete random 

variable X if, for each possible values x, we have:
1) f(x) ≥ 0
2)

3) f(x)= P(X=x)

1)( =∑
xall

xf

Note:
∑∑

∈∈

===∈
AxallAxall

)xX(P)x(f) A P(X

Example 2:
For the previous example, we have:

1/94/94/9f(x)= P(X=x)
Total210X

1)(
2

0
=∑

=x
xf



P(X<1) = P(X=0)=4/9
P(X≤1) = P(X=0) + P(X=1) = 4/9+4/9 = 8/9
P(X≥0.5) = P(X=1) + P(X=2) = 4/9+1/9 = 5/9
P(X>8) = P(φ) = 0
P(X<10) = P(X=0) + P(X=1) + P(X=2) = P(S) = 1
Example 3:
A shipment of 8 similar microcomputers to a
retail outlet contains 3 that are defective and
5 are non-defective. If a school makes a
random purchase of 2 of these computers,
find the probability distribution of the number
of defectives.

Solution:
We need to find the probability distribution of the random

variable: X = the number of defective computers purchased.
Experiment: selecting 2 computers at random out of 8

n(S) = equally likely outcomes







2
8



The possible values of X are: x=0, 1, 2.
Consider the events:









×








==⇒==

2
5

0
3

 0)n(X 2N} and {0D0)(X









×








==⇒==

1
5

1
3

1)n(X 1N} and {1D1)(X









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






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0
5

2
3
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28
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2
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2
5
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
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







=
=

===



28
15

2
8

1
5

1
3

)S(n
)1X(n)1X(P)1(f =


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
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


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
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In general, for x=0,1, 2, we have:



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The probability distribution of X is:

x 0 1 2 Total

f(x)= P(X=x)
28
10

28
15

28
3
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)()( Hypergeometric 
Distribution

Definition.4:
The cumulative distribution function (CDF), F(x), of a discrete
random variable X with the probability function f(x) is given by:

;)tX(P)t(f)xP(X  F(x)
xtxt

∑∑
≤≤

== =≤= for −∞<x<∞

1.00



Example 1:
Find the CDF of the random variable X with the probability
function:

X 0 1 2

F(x)
28
10

28
15

28
3

Solution:
F(x)=P(X≤x) for −∞<x<∞
For x<0: F(x)=0

For 0≤x<1: F(x)=P(X=0)=
28
10

28
25

28
15

28
10

=+For 1≤x<2: F(x)=P(X=0)+P(X=1)= 

For x≥2: F(x)=P(X=0)+P(X=1)+P(X=2)= 1
28
3

28
15

28
10

=++



The CDF of the random variable X is: 















≥

<≤

<≤

<

=≤=

2;1

21;
28
25

10;
28
10

0;0

)()(

x

x

x

x

xXPxF

Note:
F(−0.5) = P(X≤−0.5)=0
F(1.5)=P(X≤1.5)=F(1) =
F(3.8) =P(X≤3.8)=F(2)= 1

28
25

Result:
P(a < X ≤ b) = P(X ≤ b) − P(X ≤ a) = F(b) − F(a)
P(a ≤ X ≤ b) = P(a < X ≤ b) + P(X=a) = F(b) − F(a) + f(a)
P(a < X < b) = P(a < X ≤ b) − P(X=b) = F(b) − F(a) − f(b)



Result:
Suppose that the probability function of X is:

x x1 x2 x3 … xn

F(x) f(x1) f(x2) f(x3) … f(xn)

Where x1< x2< … < xn. Then:
F(xi) = f(x1) + f(x2) + … + f(xi) ; i=1, 2, …, n
F(xi) = F(xi −1 ) + f(xi) ; i=2, …, n
f(xi) = F(xi) − F(xi −1 )

Example 2:
In the previous example,
P(0.5 < X ≤ 1.5) = F(1.5) − F(0.5) =

P(1 < X ≤ 2) = F(2) − F(1) = 
28
15

28
10

28
25

=−

28
3

28
251 =−



Example 3:Toss a fair coin three times and define
x = number of heads.

1/8

1/8

1/8

1/8

1/8

1/8

1/8

1/8

P(x = 0) =  1/8
P(x = 1) =  3/8
P(x = 2) =  3/8
P(x = 3) =  1/8

HHH

HHT

HTH

THH

HTT

THT

TTH

TTT

x

3

2

2

2

1

1

1

0

x p(x)
0 1/8
1 3/8
2 3/8
3 1/8

Probability 
Histogram for x

c3     c2  c1   S
H      H H HHH
H      H T     HHT
H      T   H     HTH
H      T   T HTT
T      H   H THH
T      H   T      THT
T      T H      TTH
T      T T TTT



Example 4 Toss two dice and define x = sum of two dice.

x p(x)

2 1/36
3 2/36
4 3/36
5 4/36
6 5/36
7 6/36

8 5/36
9 4/36
10 3/36
11 2/36
12 1/36



3 -The Mean and Standard Deviation

Let x be a discrete random variable with probability distribution
p(x).Then the mean, variance and standard deviation of x are given
as

2

22

 :deviation Standard

)()( :Variance
)( :Mean

σσ

µσ

µ

=

−∑=

∑=

xpx
xxp

The mean or expected value of a random variable x is the average
value that we should expect for x over many trials of the experiment.

Often, we are also interested in how much the values of a random
variable differ from trial to trial. To measure this, we can define the
variance and standard deviation for a random variable



Example 5:Toss a fair coin 3 times and record x the number
of heads.

x p(x) xp(x) (x-µ)2p(x)
0 1/8 0 (-1.5)2(1/8)
1 3/8 3/8 (-0.5)2(3/8)
2 3/8 6/8 (0.5)2(3/8)
3 1/8 3/8 (1.5)2(1/8)

5.1
8

12)( ==∑= xxpµ

)()( 22 xpx µσ −∑=

688.75.

75.28125.09375.09375.28125.2

==

=+++=

σ

σ



Example 6:The probability distribution for x the number
of heads in tossing 3 fair coins.

• Shape?
• Outliers?
• Center?
• Spread?

Symmetric; 
mound-shaped

None

µ = 1.5

σ = .688

µ
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• The Binomial Distribution applies ONLY to  cases
where there are only 2 possible outcomes: heads or
tails, success or failure, defective or good item, etc.

Requirements justifying use of 
the Binomial Distribution:

1. The experiment must consist of n identical trials.
2. Each trial must result in only one of 2 possible

outcomes.
3. The outcomes of  the trials must be statistically

independent.
4. All trials must have the same probability for a

particular outcome.



Binomial Distribution
The Probability of x Successes out of n Attempts is:

p = Probability of a Success

q = Probability of a Failure , q = 1 – p

(p + q)n = 1

xnx pp
xnx

nxXP −−
−

== )1(
)!(!

!)(

𝑝𝑝 𝑋𝑋 = 𝑥𝑥 = 𝑏𝑏(𝑥𝑥,𝑛𝑛, 𝑝𝑝) =
𝑛𝑛
𝑥𝑥

𝑝𝑝𝑥𝑥(1 − 𝑝𝑝)𝑛𝑛−𝑥𝑥



𝜇𝜇 = Ε 𝑥𝑥 = 𝑛𝑛 𝑝𝑝

𝑣𝑣𝑣𝑣𝑣𝑣 𝑥𝑥 = 𝜎𝜎2 = 𝑛𝑛 𝑝𝑝 𝑞𝑞

𝑠𝑠.𝑑𝑑 = 𝜎𝜎 = 𝑛𝑛 𝑝𝑝 𝑞𝑞



5

The mean and variance are

P(X=5) ?

Example 1. Suppose we have 10 balls in a bowl, 3 of the balls are red
and 7 of them are blue. Define success S as drawing a red ball. If we
sample 11Twith replacement11T, Let's say n=20 , what is the probability that
exactly 5 trial.
P(S)=0.3 for every trial. 

𝑝𝑝 𝑋𝑋 = 5 =
20
5

0.35(1 − 0.3)20−5

𝑝𝑝 𝑋𝑋 = 𝑥𝑥 = 𝑏𝑏(𝑥𝑥,𝑛𝑛,𝑝𝑝) =
𝑛𝑛
𝑥𝑥

𝑝𝑝𝑥𝑥(1 − 𝑝𝑝)𝑛𝑛−𝑥𝑥

= 15504 0.35 0.715 = 0.1789

𝜇𝜇 = Ε 𝑥𝑥 = 𝑛𝑛 𝑝𝑝 = 20 ∗ 0.3 = 6

𝑣𝑣𝑣𝑣𝑣𝑣 𝑥𝑥 = 𝜎𝜎2 = 𝑛𝑛 𝑝𝑝 𝑞𝑞 = 20 ∗ 0.3 ∗ 0.7 = 4.2



6

Example 2. The probability that a patient recovers from a rare blood 
disease is 0.4. If 15 people are known to have contracted this disease, 
what is the probability that
(a) at least 10 survive?
(b) from 3 to 7 survive?
(c) exactly 5 survive?

𝑝𝑝 𝑋𝑋 = 𝑥𝑥 = 𝑏𝑏(𝑥𝑥,𝑛𝑛, 𝑝𝑝) =
𝑛𝑛
𝑥𝑥

𝑝𝑝𝑥𝑥(1 − 𝑝𝑝)𝑛𝑛−𝑥𝑥



7

Example 3. Assuming that 6 in 10 automobile accidents are due mainly
to speed violation,
(a) find the probability that among 8 automobile accidents 6 will be due 
mainly to a speed violation.
(b) Find the mean and variance of the number of automobile accidents 
for 8 automobile accidents.

𝑝𝑝 𝑋𝑋 = 𝑥𝑥 = 𝑏𝑏(𝑥𝑥,𝑛𝑛, 𝑝𝑝) =
𝑛𝑛
𝑥𝑥

𝑝𝑝𝑥𝑥(1 − 𝑝𝑝)𝑛𝑛−𝑥𝑥



8



9

Example 4. A traffic control engineer reports that 75% of the vehicles
passing through a checkpoint are from within the state. What is the
probability that fewer than 2 of the next 9 vehicles are from out of the
state?

𝑝𝑝 𝑋𝑋 = 𝑥𝑥 = 𝑏𝑏(𝑥𝑥,𝑛𝑛, 𝑝𝑝) =
𝑛𝑛
𝑥𝑥

𝑝𝑝𝑥𝑥(1 − 𝑝𝑝)𝑛𝑛−𝑥𝑥
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Continuous Random Variable

A variable with many possible values at all intervals 

Experiment Random
Variable

Possible
Values

Weigh 100 People Weight 45.1, 78, ...

Measure Part Life Hours 900, 875.9, ...

Ask Food Spending Spending 54.12, 42, ...

Measure Time
Between Arrivals

Inter-Arrival
Time

0, 1.3, 2.78, ...

Examples



Continuous Probability Distributions

For any continuous random variable, X, there exists a non-
negative function f(x), called the probability density function
(p.d.f) through which we can find probabilities of events
expressed in term of X.

f: R → [0, ∞)

P(a < X < b) =

= area under the curve
of f(x) and over the
interval (a,b)

P(X∈A) =

= area under the curve
of f(x) and over the
region A

∫
b

a
dxf(x)

∫
A

dxf(x)



Definition 1:
The function f(x) is a probability density function (pdf) for a
continuous random variable X, defined on the set of real
numbers, if:
1. f(x) ≥ 0 ∀ x ∈R
2.

3. P(a ≤ X ≤ b) = ∀ a, b ∈R; a ≤ b

1dxf(x)
-

=∫
∞

∞

∫
b

a

dxf(x)

Note:
For a continuous random variable X, we have:
1. f(x) ≠ P(X=x) (in general)
2. P(X=a) = 0 for any a∈R
3. P(a ≤ X ≤ b)= P(a < X ≤ b)= P(a ≤ X < b)= P(a < X < b)

4. P(X∈A) =∫
A

dxf(x)



( )
( )∫=

≤≤=
b

a
dxxf

bXaParea

( )
( )∫

∞
=

≥=

b
dxxf

bXParea ( )
( )∫ ∞−

=

≤=
a dxxf

aXParea



Example 1:
Suppose that the error in the reaction temperature, in oC, for a
controlled laboratory experiment is a continuous random
variable X having the following probability density function:





 <<−

=
elsewhere

xx
xf

;0

21;
3
1

)(
2

1. Verify that   (a) f(x) ≥ 0 and   (b) 
2. Find P(0<X≤1)

1dxf(x)
-

=∫
∞

∞

Solution:
X = the error in the reaction

temperature in oC.
X is continuous r. v.





 <<−

=
elsewhere

xx
xf

;0

21;
3
1
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2



1. (a) f(x) ≥ 0 because f(x) is a quadratic function.

(b) ∫∫∫∫
∞−

∞

∞

∞

++=
2

2

1-

2
1

--

dx0dxx
3
1dx0dxf(x)









−=

=
== ∫ 1x

2x
x

9
1dxx

3
1 3

2

1-

2

1))1(8(
9
1

=−−=

2. P(0<X≤1) = ∫=∫
1

0

2
1

0
dx

3
1dxf(x) x









=
=

=
0x
1x

x
9
1 3

))0(1(
9
1

−=

9
1

=



Definition 2:
The cumulative distribution function (CDF), F(x), of a continuous
random variable X with probability density function f(x) is given
by:

F(x) = P(X≤x)= for −∞<x<∞;dtf(t)
x

-
∫
∞

Result:
P(a < X ≤ b) = P(X ≤ b) − P(X ≤ a) = F(b) − F(a)

Example 2:
in Example 1,
1.Find the CDF
2.Using the CDF, find  P(0<X≤1).



Solution:





 <<−

=
elsewhere

xx
xf

;0

21;
3
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For x< −1:

F(x) = 0dt0dtf(t)
--

=∫=∫
∞∞

xx

For −1≤x<2:

F(x) = ∫+∫=∫
−

∞∞

xx
t

1-

2
1

--
dt

3
1dt0dtf(t)

∫=
x

1-

2 dtt
3
1

)1x(
9
1))1(x(

9
1

1t
xt

t
9
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
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=
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For x≥2:

F(x) = =dt0dtt
3
1dt0dtf(t)

x

2

2

1-

2
1

-

x

-
∫∫∫∫ ++=

−

∞∞
1dtt

3
12

1-

2 =∫
Therefore, the CDF is:
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2. Using the CDF,
P(0<X≤1) = F(1) − F(0) =

9
1

9
1

9
2

=−



Uniform Normal Exponential

Continuous
Probability
Distribution



Normal Distribution

1. ‘Bell-Shaped’ &
Symmetrical

2. Mean, Median,
Mode Are Equal

3. ‘Middle Spread’
Is 1.33 σ

4. Random Variable Has
Infinite Range

Mean 
Median 
Mode

X

f(X)



Probability 
Density Function

2

2
1

e
2

1)(






 −







−

= σ
µ

πσ

x

xf

• x = Value of Random Variable (-∞ < x < ∞)
� σ = Population Standard Deviation
π = 3.14159
e   = 2.71828
� µ = Mean of Random Variable x

Don’t memorize this!



•The random variable X has a normal distribution (N) with
mean μ and standard deviation σ.: X is N(μ,σ) :

•X is N(40,1)
•X is N(10,5)
•X is N(50,3)

X

f(X)

CA

B



Normal Distribution 
Probability

dxxfdxcP
d

c∫=≤≤ )()(

c d x

f(x)

Probability is 
area under 
curve!



Standardize the
Normal Distribution

Xµ

σ

One table!

Normal 
Distribution

µ = 0

σ = 1

Z

Z X
=

− µ
σ Standardized 

Normal Distribution

Z is N(0,1)



Standardizing Example

Xµ= 5

σ = 10

6.2

Normal 
Distribution

Z X
=

−
=

−
=

µ
σ

6 2 5
10

12. .

Zµ= 0

σ = 1

.12

Standardized 
Normal Distribution



Zµ= 0

σ = 1

.12

Z .00 .01

0.0 .0000 .0040 .0080

.0398 .0438

0.2 .0793 .0832 .0871

0.3 .1179 .1217 .1255

Obtaining  
the Probability

.0478

.02

0.1 .0478

Standardized Normal 
Probability Table (Portion)

Probabilities
Shaded area 
exaggerated



Example
P(3.8 ≤ X ≤ 5)

Xµ = 5

σ = 10

3.8

Normal 
Distribution

Z X
=

−
=

−
= −

µ
σ

3 8 5
10

12. .

Zµ = 0

σ = 1

-.12

.0478

Standardized Normal 
Distribution

Shaded area exaggerated



Example
P(2.9 ≤ X ≤ 7.1) 

5

σ = 10

2.9 7.1 X

Normal 
Distribution

Z X

Z X

=
−

=
−

= −

=
−

=
−

=

µ
σ

µ
σ

2 9 5
10

21

71 5
10

21

. .

. .

 

0

σ = 1

-.21 Z.21

.1664

.0832.0832

Standardized Normal 
Distribution

Shaded area exaggerated



Example
P(X ≥ 8)

Xµ = 5

σ = 10

8

Normal 
Distribution

Standardized Normal 
Distribution

Z X
=

−
=

−
=

µ
σ

8 5
10

30.

Zµ = 0

σ = 1

.30
.1179

.5000 .3821

Shaded area exaggerated



Example
P(7.1 ≤ X ≤ 8)

µ = 5

σ = 10

87.1 X

Normal 
Distribution

Z X

Z X

=
−

=
−

=

=
−

=
−

=

µ
σ

µ
σ

71 5
10

21

8 5
10

30

. .

.

 

µ = 0

σ = 1

.30 Z.21

.0832

.1179 .0347

Standardized Normal 
Distribution

Shaded area exaggerated



Z .00 0.2

0.0 .0000 .0040 .0080

0.1 .0398 .0438 .0478

0.2 .0793 .0832 .0871

.1179 .1255
Zµ = 0

σ = 1

.31

Finding Z Values 
for Known Probabilities

.1217 .01

0.3 .1217

Standardized Normal 
Probability Table (Portion)

What is Z given 
P(Z) = .1217?

Shaded area 
exaggerated



Finding X Values 
for Known Probabilities

Xµ = 5

σ = 10

?

Normal Distribution

( )( )   1.81031.5 =+=⋅+= σµ ZX

Zµ = 0

σ = 1

.31

Standardized Normal Distribution

.1217 .1217

Shaded areas exaggerated
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Numerical methods are capable of handling large systems
of equations, different degrees of nonlinearities which are
common in engineering practice.

Numerical methods can handle any complicated physical
geometries which are often impossible to solve analytically.

Why Numerical Analysis



3

1-FIXED POINT ITERATION 
METHOD

Fixed point : A point, say, s is called a fixed point if it satisfies
the equation x = g(x).

Fixed point Iteration : The transcendental equation f(x) = 0 can
be converted algebraically into the form x = g(x) and then using
the iterative scheme with the recursive relation

xi+1= g(xi), i = 0, 1, 2, ...........

with some initial guess x0 is called the fixed point iterative scheme.



4

Algorithm - Fixed Point Iteration Scheme
Given an equation f(x) = 0

Convert f(x) = 0 into the form x = g(x)
Let the initial guess be x0

Do
xi+1= g(xi)

while (none of the convergence criterion C1 or C2 is met)

• C1. Fixing a priori the total number of iterations N .
• C2. By testing the condition | xi+1 - g(xi) | (where i is the iteration

number)less than some tolerance limit, say epsilon, fixed a priori.



5

Numerical Example :

Find a root of x4-x-10 = 0

1- Consider g1(x) = 10 / (x3-1) and the fixed point iterative scheme

xi+1=10 / (xi
3 -1), i = 0, 1, 2, . . .let the initial guess x0 be 2.0

i 0 1 2 3 4 5 6 7 8
xi 2 1.429 5.214 0.071 -10.004 -9.978E-3 -10 -9.99E-3 -10

So the iterative process with g1 gone into an infinite loop without 
converging.

x(x3-1) = 10 xi+1=10 / (xi
3 -1)
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2-Consider another function g2(x) = (x + 10)1/4 and the fixed point 
iterative scheme

xi+1= (xi + 10)1/4, i = 0, 1, 2, . . .

let the initial guess x0 be 1.0, 2.0 and 4.0

i 0 1 2 3 4 5 6

xi 1.0 1.82116 1.85424 1.85553 1.85558 1.85558

xi 2.0 1.861 1.8558 1.85559 1.85558 1.85558
xi 4.0 1.93434 1.85866 1.8557 1.85559 1.85558 1.85558

That is for g2 the iterative process is converging to 1.85558 with any 
initial guess.
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3-Consider g3(x) =(x+10)1/2/x and the fixed point iterative scheme

xi+1=( xi+10)1/2 /xi, i = 0, 1, 2, . . .

let the initial guess x0 be 1.8,

i 0 1 2 3 4 5 6 . . . 98
xi 1.8 1.9084 1.80825 1.90035 1.81529 1,89355 1.82129 . . . 1.8555

That is for g3 with any initial guess the iterative process is converging 
but very slowly to

x4-x-10 = 0

x2 = ( xi+10)1/2 

xi+1 = ( xi+10)1/2  /xi
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Geometric interpretation of 
convergence with g1, g2 and g3

Fig g1 Fig g2 Fig g3

 Fig g1, the iterative process does not converge for any initial
approximation.

 Fig g2, the iterative process converges very quickly to the root
which is the intersection point of y = x and y = g2(x) as shown in the
figure.

 Fig g3, the iterative process converges but very slowly.



2-Newton-Raphson Method

)(xf
)f(x -  = xx

i

i
ii ′+1

 

 f(x) 

 f(xi) 

 f(xi-1) 

xi+2 xi+1 xi  X 
  θ 

  
( )[ ]ii xfx ,  

  

Figure 1 Geometrical illustration 
of   the Newton-Raphson method.

9

The method is based on the first order Taylor expansion, i.e.:

When we hit the root, then:



Derivation
 

 f(x) 

 f(xi) 

xi+1 xi 
 X 

 B 

 C  A α 
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1
i

i
ii xf

xfxx
′

−=+
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=
ii

ii
xx
xfxf
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=)αtan(

Figure 2 Derivation of the Newton-Raphson method.
10
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Procedure:

1-Assume an initial guess for the root = x0, and calculate the first estimate

of the root x1 from :

2-Repeat step 1 several times until convergence is achieved, i.e.

until
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Repeat with x0 = 5

Example1: Use Newton-Raphson method to estimate the root of

Choose x0 = 0
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Example2:Use the Newton- Raphson method ,with 1.5 as starting 
point ,to find solution of
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Euler Method
We will use Euler’s method to solve an ODE under the form:

At x=0 , we are given the value of y=y0  Let us call x=0 as  xo

Now since we know the slope of y with respect to x, that is,
then at x=x0 , the slope is Both x0 and y0 are known from
the initial condition
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Euler’s Method

Φ

Step size, h

x

y

x0,y0

True value

y1, Predicted
value

( ) ( ) 00,, yyyxf
dx
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==

Slope
Run
Rise

=

01

01
xx
yy

−
−

=

( )00 , yxf=

( )( )010001 , xxyxfyy −+=

( )hyxfy 000 ,+=
Figure 1 Graphical interpretation of the first step of Euler’s method
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Φ

Step size

h

True Value

yi+1, Predicted value

yi

x

y

xi xi+1

Figure 2. General graphical interpretation of Euler’s method 

( )hyxfyy iiii ,1 +=+

ii xxh −= +1
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Example 1:Solve the differential equation

by Euler Method ,also find y on Using h=0.1
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Example 2 :Use Euler's method with h=0.14 to obtain a numerical
solution of                                 subject to

giving approximate values of y for

( )iiii yxfhyy ,1 +=+ ii xxh −= +1

hxx ii +=+1
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hxx ii +=+1
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clear
clc
%%%%%%%    dy/dx=1+(y-x)^2  ,  1<x<2.4    ,y(1)=1.59 ,h=0.14
a=1;             % Initial time   a<x<b
b=2.4;           % Final time
h=0.14;          % Time step  
N=((b-a)/h)+1;   % Number of steps
y0=1.59;     % Initial value y(a)
for i=1:N

y(1)=y0;
x(1)=a;
y(i+1)=y(i)+(1+((y(i)-x(i))^2))*h;
x(i+1)=x(i)+h;

end
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V=[x',y']
plot(x,y)
title('Euler method')
ylabel('y')
xlabel('x')
grid
legend('Euler')

V =[x             y  ]
1.0000    1.5900
1.1400    1.7787
1.2800    1.9759
1.4200    2.1836
1.5600    2.4053
1.7000    2.6453
1.8400    2.9104
1.9800    3.2108
2.1200    3.5629
2.2600    3.9944
2.4000    4.55551 1.5 2 2.5

x

1.5

2

2.5

3

3.5

4

4.5

5

y

Euler method

Euler
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What is Integration
Integration:

∫=
b

a
dx)x(fI

The process of measuring 
the area under a function 
plotted on a graph.

Where: 
f(x) is the integrand
a= lower limit of integration
b= upper limit of integration

Trapezoidal Rule of Integration

𝑦𝑦𝑜𝑜 𝑦𝑦𝑛𝑛
𝑦𝑦1 𝑦𝑦𝑛𝑛−1

ℎ =
𝑏𝑏 − 𝑎𝑎
𝑛𝑛

ℎ ℎ ℎ
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Basis of Trapezoidal Rule

Remember the area under the curve is represented by

and so we have the formula known as the trapezium rule:
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Remember that  yi represents the height of the given function at 
the point , xi thus yi is called the ordinate. Hence the trapezium
rule can also be written as

Example1: Evaluate using the trapezium rule with 4 intervals.
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Example2: Evaluate using the trapezium rule with 4 intervals.
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Home work
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