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LECTURE 1
Basic Probability and Statistics
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Basic Probability and Statistics

e Statistics is the area of science that deals
with collection, organization, analysis, and
interpretation of data. It also deals with
methods and technigues that can be used to
draw conclusions about the characteristics of
a large number of data points commonly
called a population.



Probability: which measures the
likelihood that an event will occur, is an
Important part of statistics. It Is the basis
~of inferential statistics , where decisions
are made under conditions of uncertainty



Basic Concepts

e An experiment IS the process by which
an observation (or measurement) IS
obtained.

e« Sample Space (S) Is the set of all
possible outcomes of an experiment The
outcomes are called sample points in S

e An event Is the subset of the sample
space.



Examples Ky

o

EXPERIMENT SAMPLE SPACE(S)
Toss one coin H T
Roll a die 1,2,3,4,5,6
Answer a true-false question True, False
Toss two coins HH, HT, TH, TT

Cl C2 S

SEEA B HH

o

3 HT

TH

TT

B3
ElE B E



Simple events
e The die toss:

Sample space:
S ={Ey, By Eg By, Es, Eg}




' &
Basic Concepts P

e Two events are mutually exclusive If,
when one event occurs, the other cannot,

and vice versa.

*EXxperiment: Toss a die }
—A: observe an odd number Exclusive

—B: observe a number greater than 2 ‘
—C: observea 6 _ | -
and C?

Mutually

—D: observe a 3 By B and D?




Basic Concepts

e An event iIs a collection of one or more

simple events.

The die toss: -

—A: an odd number
—B: a number > 2

A ={E;, B3 Ec}
B ={Es, E4, E&, Eg}




Classical Probability

e The probability of an event A is equal to
the sum of the probabilities of the simple
events contained in A

e If the simple events in an experiment are
equally likely, you can calculate

P(A) U number of simple eventsin A
N  total number of simple events




Empirical Probability . .

* The probability of an event A measures “how
often” A will occur. We write P(A).

o Suppose that an experiment is performed n
times. The relative frequency for an event A Is

times event A occurs
P(A) =

repetitiors of the experiment

P(A) :_:]



The Probability of an Event P L \
e P(A) must be between 0 and 1.
—If event A can never occur, P(A) = 0.

If event A always occurs when the
experiment is performed, P(A) =1.

e The sum of the probabilities for all
simple events In S equals 1.

* The probability of an event A is found
by adding the probabilities of all the
simple events contained in A.




Finding Probabilities

 Probabilities can be found using
—Estimates from empirical studies

— Common sense estimates based on

ually likely events.
. Exar%p esy Y

—Toss a fair coin. EGEEL) R

— Suppose that 10% of the U.S. population has
red hair. Then for a person selected at random,

P(Red hair) = .10



Example 2

Toss a fair coin twice. What is the probability
of observing at least one head?

1st Coin. 2nd Coin = E.

e &
=

P(E;)

L4 |P(at least 1 head)

14 | = P(E,) + P(E,) + P(E,)
U4 | =1/4+1/4 + 1/4 = 3/4
1/4




Example 3

A bowl contains three balls, one red, one blue
and one green. A child selects two balls at
random. What Is the probability that at least

one IS red?

1st ball ' 2nd ball E. P(E;)
e RB I 1/6
®\® ~e 1/6
®<g 3 BT

BG
1/6

@<® GB
1/6

(M) GR

1/6

P(at least 1 red)

= P(RB) + P(BR)+ P(RG)
+ P(GR)

= 4/6 = 2/3




Example 4

Two dice are rolled .

1-What is the probability that sum of dice greater than 3?
2- What is the probability that sum of dice equal 11?

3- What is the probability that sum of dice at least 9?

1-P(sum >3)=1- P(sum <3)=1 — A
36 36 12

2-P(sum :11):i i
36 18

3-P(sum at least 9):£ =i
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Event Relations

A Venn diagram is useful for displaying the relationships
among event in a sample space.

The beauty of using events, rather than simple events, Is that
we can combine events to make other events using logical
operations: and, or and not.

1- Union

The union of two events, A and B, Is the event that either A or B

or both occur when the experiment is performed. We write AU B




2-1ntersection

The intersection of two events, A and B, Is the
event that both A and B occur when the experiment
IS performed. We write A N B.

)

e |f two events A and B are mutually
exclusive, then P(An B) = 0.

P




3-Complement

The complement of an event A consists of all
outcomes of the experiment that do not result In
event A. We write A,




Example

Select a student from the classroom and
record his/her hair color and gender.

— A Stuc
— B: stuc

ent has brown hair
ent Is female

— C: stuc

Sl A ER I Mutually exclusive; B = CC

What is the relationship between events B and C?

YANSSEN St dent does not have brown hair

127@ @8 Student is both male and female = @

121WI@M Student is either male and female = all students = S




Calculating Probabilities for Unions
and Complements

 There are special rules that will allow you to
calculate probabilities for composite events.

 The Additive Rule for Unions:

o For any two events, A and B, the probability
of their union, P(A U B), Is

[P(AUB)=P(A)+P(B)- P(Ar B)I \




Example: Additive Rule

Example 1: Suppose that there were 120 students
In the classroom, and that they could be classified

as follows:

A: brown hair Brown | Not Brown
P(A) = 50/120 Male (20 40
B: female Female | 30 30

P(B) = 60/120
P(AUB) = P(A) + P(B) — P(A~B)

=50/120 + 60/120 - 30/120
- 80/120 = 2/3 Check: P(AUB)
= (20 + 30 + 30)/120




Example 2 :

Two dice Rolled. Find P(AuUB) when red die show 1 and green die show 1

A: red die show 1
B: green die show 1

Find P(AUB) ?

P(AuB) =P(A) + P(B) - P(AnB)
= 6/36 + 6/36 — 1/36
= 11/36




A Special Case

When two events A and B are mutually exclusive ,
P(AnB) =0 and P(AUB) = P(A) + P(B).

Example 3: Suppose that there were 120 students in the classroom,
and that they could be classified as follows:

A: male with brown hair
P(A) = 20/120

B: female with brown hair

P(B) = 30/120

A and B are mutually

exclusive, so that

Brown | Not Brown

Male |20 40

Female | 30 30

P(AUB) = P(A) + P(B)
= 20/120 + 30/120
= 50/120




Example 4:

Two Dice Rolled. Find P(AUB) when event A dice add to 3 and event B
dice add to 6 .

A: dice add to 3
B: dice addto 6

A and B are mutually 5(2'?‘3%?)52 g (A) +P(B)

exclusive, so that = 7/36




Calculating Probabilities AC.

for Complements
» We know that for any event A:

-P(ANAY) =0
* Since either A or A€ must occur,
P(A U A°) =1
e sothat P(A U AC) = P(A)+ P(A°) = 1

| P(A9)=1-P(A) |




Example 5

Select a student at random from the classroom.
Define:

A: male Brown |Not Brown
P(A) = 60/120 Male |20 40

B: female Female |30 30
P(B)=?

Aand B are 1P(B) = 1- P(A)
complementary, so that = 1- 60/120 = 60/120



Conditional Probabilities

The probability that A occurs, given that
event B has occurred Is called the
conditional probability of A given B and
IS defined as

P(ANB)

PALB) =115

if P(B) =0

“glven”



Defining Independence

» \We can redefine independence in terms of conditional
orobabilities: P(AN B)

P(A|B) = 56
P(An B) =P(A|B) P(B)I

 |f the events A and B are independent, then the probability that
both A and B occur is

‘P(Am B) = P(A) P(B) I

Two events A and B are independent if and
only if

P(AIB) =P(A) or P(B|A) =P(B)
Otherwise, they are dependent.




Example 1

Toss a fair coin twice. Define
— A: head on second toss

— B: head on first toss
c2el S P(AB) = %

HH|HH] 1/4 P(Alnot B) = ¥

P(A) does not i il B 2
change, whether

B happens or
not...

Independent!




Example 2: Two Dice
Toss a pair of fair dice. Define g

— A: red die show 1
— B: green die show 1

|P(AIB) = P(A and B)/P(B) | BRSSO el
=1/36 / 1/6=1/6=P(A) '

P(A) does not
change, whether

A and B are
Independent!

B happens or
not...




Example 3: Two Dice
Toss a pair of fair dice. Define g

— A:add to 3
— B: add to 6

|P(A|B) = P(A and B)/P(B) || IR o it
=0/36/5/36=0 :

P(A) does change { Aand B are dependent!

when B happens lIn faCt, when B happenS,

A can’t



Example 4

In a certain population, 10% of the people can be
classified as being high risk for a heart attack. Three
people are randomly selected from this population. What
IS the probability that exactly one of the three are high
risk?

Define H: high risk N: not high risk

P(exactly one high risk) = P(HNN) + P(NHN) + P(NNH)
= P(H)P(N)P(N) + P(N)P(H)P(N) + P(N)P(N)P(H)
=(1)(.9)(.9) + (.9)(.1)(.9) + (.9)(.9)(.1)=3(.1)(.9)> = .243




Example 5

Suppose we have additional information in the previous
example. We know that only 49% of the population are
female. Also, of the female patients, 8% are high risk. A
single person Is selected at random. What is the
probability that it is a high risk female?

Define H: high risk F: female

From the example, P(F) = .49 and P(H|F) = .08.
Use the Multiplicative Rule:

P(high risk female) = P(HNF)

= P(F)P(H|F) =.49(.08) = .0392
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Counting Rules

When outcomes are equally likely to occur (like when
tossing a coin or rolling a die), you can use counting rules
to find out how many outcomes are possible and then use
that number to find probabilities.

Sample space of throwing 3 dice has 216
entries

Sample space of throwing 4 dice has 1296
entries, ...



1-Multiplication Rule

 |f an experiment is performed In two stages, with m
ways to accomplish the first stage and n ways to
accomplish the second stage, then there are mn ways
to accomplish the experiment.

o This rule iIs easily extended to k stages, with the
number of ways equal to n, n, N, ... N,

=
0p

c2

HHH
HHT
HTH
HTT
THH
THT
TTH
TTT

Example 1: Toss three coins.

The total number of simple

events IS:
2x2%x2=8 I

4444 ITITITI

H
H
T
T
H
H
T
T

B = S e s [ I 5




Example2: Toss three dice. The total number of simple

events Is: 6x6x6=216

Example 3: How many 4 or 5 digit telephone numbers are possible,
assuming the first is not zero?

ans : 9 x 10 x 10 x 10 + =99 000

Example 4:
(a)How many different car number plates are Possible with 3
letters followed by 3 digit ? Ans: 26*26*26*10*10*10 = 26° x 10°

(b) How many of these number plates begin with ABC
Solution: 1 x1x1x10%x10 x10 =10°

(c) If a plate is chosen at random, what is the probability that it

begins with ABC?) 10° -

P(ABC)= 563 x 10 26°




2-Permutation Rule
Is an ordered arrangement of objects

 The number of ways you can arrange n

distinct objects, taking them r at a time Is
Nl
Pn

a (N —.r)!
where n'=n(n-1)(n-2)...(2)(1) and 0!'=1.

Examplel : How many 3-digit lock combinations
can we make from the numbers 1, 2, 3, and 47

The order of the choice Is p34 _ % =4(3)(2) =24

Important!




The number of permutations of n objects using all of them is n!

Example 1: In how many ways can 5 people line up in a queue?

Example2: A lock consists of five parts and
can be assembled in any order. A quality
control engineer wants to test each order for

efficiency of assembly. How many orders are
there?

The order of the choice Is

Important!

[P == =5(4)@)120 ~120




Permutations with repeated elements

o |f a bag contains some objects in which m1l are of

type 1, m2 are of type 2, ....... mk are of type k.
The number of permutation Is:

(my +m, +...4+my)!

! ! |
i, c....Jan, .

Example : How many ways can you permute the letters:
BANANA?

Of the 6 létters.. there are 3 A's, 2 N's,_and 1 B.

'The 2 N's could be rearranged in 2! = 2 different ways.

‘The 3 A's could be rearranged in 3! = 6 different ways.

' So we need to divide 6! by both 6 and 2.

'The number of ways to rearrange the letters in BANANA is S i: .

=060




3-Combination Rule

e The number of distinct combinations of n
distinct objects that can be formed,
taking them r at a time Is n!

C, =
r'(n—r)!

Example 1: Three members of a 5-person committee
must be chosen to form a subcommittee. How many
different subcommittees could be formed?

—— cs 5 _54A)B)@1_54) _,,

> T35-3)l 3221 (21

the choice is
not important!




>  Example2 |#¥
K

A deck of cards consists of 52 cards, 13 "kinds"
each of four suits (spades, hearts, diamonds, and
clubs). The 13 kinds are Ace (A), 2, 3,4, 5, 6, 7,
8, 9, 10, Jack (J), Queen (Q), King (K). In many
poker games, each player is dealt five cards from
a well shuffled deck.

521 52(51)(50)(49)48

Thereare C° = = = 2,598,960
5152—5)1  5(4)(3)(2)L

possible hands



http://images.google.com/imgres?imgurl=http://filebox.vt.edu/users/gslota/Pictures/WebPages/deck-of-cards.gif&imgrefurl=http://filebox.vt.edu/users/gslota/Pictures/WebPages/&h=151&w=225&sz=12&tbnid=E_F0_KEuAGzFTM:&tbnh=68&tbnw=102&hl=en&start=1&prev=/images%3Fq%3Ddeck%2Bof%2Bcards%26svnum%3D10%26hl%3Den%26lr%3D%26rls%3DRNWE,RNWE:2004-33,RNWE:en%26sa%3DG
http://images.google.com/imgres?imgurl=http://www3.sympatico.ca/terrir/images/suitsgraphic2.jpg&imgrefurl=http://www3.sympatico.ca/terrir/suits.html&h=281&w=200&sz=12&tbnid=vIiAkZrJO_CeIM:&tbnh=109&tbnw=77&hl=en&start=4&prev=/images%3Fq%3Dsuits%2Bof%2Bcards%26svnum%3D10%26hl%3Den%26lr%3D%26rls%3DRNWE,RNWE:2004-33,RNWE:en

Probability Calculations Using
Combinations / Permutations

Example 1

e A box contains six balls, four red and

£

two green. A child selects two balls at random.
What Is the probability that exactly one is red?

The order of

the choice is
not important!

|
co_ 6 _60) .

2T 211)
ways to choose 2 M & Ms.

e |

|
C, 2y
113!
ways to choose
lred M & M.

4 x 2 =8 ways to

2!
T
ways to choose
1green M & M.

o 2

» choose 1 red and 1

green M&M.

| P(exactly one

red) = 8/15




Example 2: 4 chocolates are chosen at random from a
box containing 6 with hard centers , and 8 with soft
centers.
(a) Calculate the probability that 3 of the chocolates have
soft centers.
(b) Calculate the probability that at least 3 of the
chocolates have soft centers.

[(a) Total number of ways of selecting 4 chocolates = **C4 = 1 001

Number of ways of selecting 3 soft centers (and 1 hard) = 2Cs x °C;
= 336

336

1001

P( 3 soft) = -0.3357




(b) Numbers of ways of selecting at least 3 soft =8C3 x °C; + 8C4 x ®Co
=336+ 70
=406

P( at least 3 soft) = 22 or 0.4056

1001

Example 3:A 4 digit security number is made using the digits
0, 1,........ 9. If a number Is made up at random, what is the
probability that it contains the same digit repeated 3 times in a

FoOw.

(a) Total number of security codes = 10* = 10000.

(b) Total number of ways of getting 3 of the same 1n a row

1I0%(1x1x1x9+9%x1x 1x1)= 180

(C) A3 inarow) = . I 0-018
10000




Example 4

From a group of 3 Indians, 4 Pakistanis, and 5 Americans, a sub-
committee of four people Is selected by lots. Find the probability that
the sub-committee will consist of

1) 2 Indians and 2 Pakistanis.

I1) 1 Indians, 1 Pakistanis and 2 Americans.

111) 4 Americans.

Sol: Total no. of people=3 +4 +5=12

- 4 people can be chosen from 12 people = 12C, ways

12 X11 X10 X9 s omes - i
- = 495 wayvs
1 X2 X3X4 o

1) 2 Indians can be chosen from 3 Indians = 3C, ways
2 Pakistanis can be chosen from 4 Pakistanis = 4C, ways

- No. of favourable cases = 3C, X 4C,

_ 3C%x4C; 2




11) 1 Indian can be chosen from 3 Indians = 3C; ways
1 Pakistani can be chosen from 4 Pakistanis = 4C, ways
2 Americans can be chosen from 5 Americans = 5C, ways

Favourable events = 3C; X 4C, X 5C,

3C; X 4C,x 5C 8
. Prob, =222
495 33

111) 4 Americans can be chosen from 5 Americans = 5C, ways

5C, 1
. Prob.=—=—
495 99




Example 5
A bag contains 7 white, 6 red & 5 black balls. Two balls are drawn at
random. Find the prob. that they both will be white.

Total no. of balls=7 + 6 + 5=18

From there 18 balls, 2 balls can be drawn in 18C, ways

2 white balls can be drawn from 7 white balls = 7C, ways

=21

~ Favourable cases =21

P(drawing 2 white balls) = % = i




Example 6
A bag contains 10 white, 6 red, 4 black & 7 blue balls. 5 balls are
drawn at random. What is the prob. that 2 of them are red and one is

black?

Sol: Total no. of balls=10+6 +4 + 7 =27

5 balls can be drawn from these 27 balls = 27Cs ways

27 X 26 X25 X 24 X23
1 X2 x3xX4 X5

= 80730 ways
Total no. of exhaustive events = 80730

2 red balls can be drawn from 6 red balls = 6C, ways

_ 6x5
1X2

=15 ways
1 black balls can be drawn from 4 black balls = 4C; ways
=4

~ No. of favourable cases =15 X 4 = 60

Number of favourable cases

Probability =

Total number of exhaustive cases

60 6
80730 8073




Example 7. In how many ways can 5 boys and 4 girls be
arranged on a bench if

a) there are no restrictions? 9! or 9P9

b) boys and girls alternate?
BCBGRGBGR! =54 £.4:%.3 %3 320 Jisl=Hl*41
or 5Ps5* 4P4
c)boys and girls are in separate groups?
Boys & Girls or Girls & Boys
=5!x41+4! xB!= 51 x4l x2

or 5P5 X 4P4 X 2

d) Anne and Jim wish to stay together?
(AJ)

=2 x 8! or 2 x ®Ps



Example 8. There are 6 boys who enter a boat with 8 seats, 4
on each side. In how many ways can

a) they sit anywhere? Solution : sPs

b) two boys A and B sit on the port side and another boy W sit on
the starboard side?

Solution : A & B = 4P2
W = 4P1
Others = sPs3

Total = 4P2 * 4P1 * sP3
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Random Variables and Probability Distributions

1 Concept of a Random Variable:

In a statistical experiment, it is often very important to

allocate numerical values to the outcomes.

A random variable :is a function that assigns areal number to

each outcome in the sample space of a random experiment

Example 1.
Experiment: testing two components.
(D=defective, N=non-defective)
Sample space: S={DD,DN,ND,NN}
Let X = number of defective components when
two components are tested.
Assigned numerical values to the outcomes are:

c2 cl S
D D DD
D N DN
N D ND
N N NN




Sample point Assigned
(Outcome) Numerical Value (x)
DD 2
DN 1
ND 1
NN 0 S R

Notice that, the set of all possible values of the random
variable X is {0, 1, 2}.

Definition 1:
A random variable X Is a function that associates each element
In the sample space with a real number (i.e., X: S —> R.)

Notation: " X " denotes the random variable .
"x " denotes a value of the random variable X.



Types of Random Variables:

A random variable X is called a discrete random
variable if its set of possible values is countable, I.e.,
X € {X, X5, oony X} OF X € {X, X5, ...}

A random variable X iIs called a continuous random
variable If it can take values on a continuous scale, I.e.,
Xe{xia<x<b;a beR}

In most practical problems:
o) A discrete random variable represents count data, such

as the number of defectives in a sample of k items.
o) A continuous random variable represents measured

data, such as height.



2 Discrete Probability Distributions
A discrete random variable X assumes each of its values

with a certain probabillity.

Example 1:
Experiment: tossing a non-balance coin 2 times independently.
H= head . T=tall c2 ¢l S
Sample space: S={HH, HT, TH, TT} H H HH
Suppose P(H)=*2 P(T) < P(H)=1/3 and P(T)=2/3 H T HT
Let X= number of heads TH TH
rr I
Sample point Probability Value of X
(Outcome) (X)
HH P(HH)=P(H) P(H)=1/3x1/3 = 1/9 2
HT P(HT)=P(H) P(T)=1/3x2/3 = 2/9 1
TH P(TH)=P(T) P(H)=2/3x1/3 = 2/9 1
TT P(TT)=P(T) P(T)=2/3x2/3 = 4/9 0




The possible values of X are: 0, 1, and 2.
X Is a discrete random variable.
Define the following events:

Event (X=X) Probability = P(X=x)
(X=0)={TT} P(X=0) = P(TT)=4/9
(X=1)={HT,TH} |P(X=1) =P(HT)+P(TH)=2/9+2/9=4/9
(X=2)={HH]} P(X=2) = P(HH)= 1/9

The possible values of X with their probabilities are:

X 0 1 2 Total
P(X=x)=f(x) | 4/9 4/9 1/9 1.00

The function f(x)=P(X=x) is called the probability function
(probabllity distribution) of the discrete random variable X.



Definition 3:

The function f(x) is a probabillity function of a discrete random
variable X if, for each possible values x, we have:

1) f(x) >0

2) > f(x)=1
all x
3) f(x)= P(X=x)
Note:
PXeA)= > f(x)= D P(X=x)
Example 2: all xeA all xeA

For the previous example, we have:

X 0 1 2 Total

f(x)= P(X=x) | 4/9 | 4/9 | 1/9 | 3 f(x)=1
x=0




P(X<1) = P(X=0)=4/9

P(X<1) = P(X=0) + P(X=1) = 4/9+4/9 = 8/9
P(X>0.5) = P(X=1) + P(X=2) = 4/9+1/9 = 5/9
P(X>8) = P(¢) =0

P(X<10) = P(X=0) + P(X=1) + P(X=2) = P(S) =1
Example 3:

A shipment of 8 similar microcomputers to a @
retail outlet contains 3 that are defective and 7

5 are non-defective. If a school makes a D N
random purchase of 2 of these computers, ‘ 3 5 ‘
find the probability distribution of the number .

of defectives. 8 computers

Solution:

We need to find the probability distribution of the random
variable: X = the number of defective computers purchased.

Experiment: selecting 2 computers at random out of 8

8
n(s) = @ equally likely outcomes



The possible values of X are: x=0, 1, 2.
Consider the events:

(X=0)={0Dand 2N}= n(X=0) = @jx@]

(X =1) ={1D and IN}=> n(X =1) = (i XG]

(X=2)={2DandON}=n(X=2) = @jx(gj

o)L
f(0)=P(X=0)=”(;<(;O)= 0(8 : :22
:



(3
F(1) = P(X = !

)
g

5
F(2)=P(x=2)="X=2) _ 2% 0

n(S)

N OO
N~ |/~

In general, for x=0,1, 2, we have:

rortxny ez o

2—X
nis) 8
2




The probability distribution of X is:

X 0 1 2 | Total
f(x)= P(X=x) 011513 1.00
Vo8| 28| 28 | T

Egj ES j
* 2 —X
X . x=0.12 e :

f(x)=P(X =x) =1 8 Hypergeometric i
2 Distribution |

0;otherwise ~TTTTTTTTTTTOS

Definition.4:
The cumulative distribution function (CDF), F(x), of a discrete
random variable X with the probability function f(x) is given by:

F(X)=P(X<x)=) f(t) =D P(X=t); for —oo<x<o

t<x t<x



Example 1:

Find the CDF of the random variable X with the probability
function:

X | o| 1]2
k]

F(X) E E
28 | 28 | 28
Solution:
F(X)=P(X<x) for —oo<x<oo 10/28 — 15/28 3/28
For x<O0: F(x)=0 /7 ,«"’3”} 7 '1' ;
1 _
For 0<x<1: F(X)=P(X=0)= 2—2 X
For 1<x<2: F P(X=0)+P(X=1 10 15 _2
or 1=X . (X) ( ) ( )_ 28 28 28

10 15 3

For x=2: F(X)=P(X=0)+P(X=1)+P(X=2)=
()=P(XZ0)+P(X=1)+P(X=2)= b=




The CDF of the random variable X Is:

(0 ; x<0 F(x)

10 1 _

2—8; 0<x<l 25/28 - —3
F(X)=P(X <X) =+

é; 1<x<?2 10/28 -—>0

(1, x=2 0 | 2

Note:
F(-0.5) = P(X<-0.5)=0

F(1.5)=P(X<1.5)=F(1) = g

F(3.8) =P(X<3.8)=F(2)= 1

Result:

Pl@a<X<b)=P(X<h)-P(X<a)=F(bb)-F)

P@a< X<b)=P(@a<X<b)+P(X=a) =Fbb)-F) + f(a)
Pla< X<b)=P(a<X<b)-P(X=b)=Fb)-F(a) - f(b)



Result:
Suppose that the probability function of X is:

X X, | X | X " X,

FO) | fx) | fx) | fox) | .o | f(x)

Where X;,< X,< ... <X.. Then:

F(x;) = f(x,) +f(x,) + ... +f(x) ; 1=1, 2, ..., n
F(x)=F(_;) +f(x) ; 1=2, ..., n

f(x) = F(x) - F(x _;)

Example 2:

In the previous example, 25 10 15
< = - =~ oq oq

P(0.5 < X < 1.5) = F(1.5) |:(o.5)25 28 28 28

P(1<X<2)=F2)-FQ1)= 1_2_8:2_8



Probability
Histogram for x

TTH 1/8

Example 3:Toss a fair coin three times and define
X = number of heads.
P(x =0)= 1/8 || X P(X)
« P(x=1)= 3/8 §|0 1/8
HHH e ; P(x=2)= 3/8 ||1 3/8
HHT P(x=3)= 1/8 §|2 3/8
1/8 2 _
HTH 05 P 3 1/8
1/8 2
THH
1/8 2
UV 1/8 1
THT I 1/8 1
1
0

TTT | 1/8



Density

Example 4 Toss two dice and define x = sum of two dice.

015

010

0.05

0.00

probability histogram

X

p(X)

1/36

2136

3/36

4/36

5/36

6/36

5/36

Ol NJOoOJOoI|P>JTWIDND

4/36

[N
o

3/36

-

2/36

=
N

1/36




3 -The Mean and Standard Deviation

The mean or expected value of a random variable x Is the average
value that we should expect for x over many trials of the experiment.

Often, we are also interested in how much the values of a random
variable differ from trial to trial. To measure this, we can define the
variance and standard deviation for a random variable

Let x be a discrete random variable with probability distribution
p(x).Then the mean, variance and standard deviation of x are given
as

Mean : 1z = 2. Xp(X)
Variance:o® = 2 (X — u)* p(X)

Standard deviation : o =/ c*




Example 5:Toss a fair coin 3 times and record x the number

of heads.
X p(x) [ xp(x) [(X-p)*p(x) 12
0 (s o |cispwe] [#=2XP(X)="=15
1 358|358 |(-05)%3/8)
> 358|658 |(05)2(3/8)
3 |u8 |38 |(5)X18) ‘02 =>(X—u)° p(X)I

o

o’ =.28125+.09375+.09375+.28125 =.75

o =4/./5=.688




Example 6:The probability distribution for x the number
of heads in tossing 3 fair coins.

Symmetric;

Shape? mound-shaped

Outlers? [
Center’

Spread?
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e The Binomial Distribution applies ONLY to cases
where there are only 2 possible outcomes: heads or
tails, success or failure, defective or good item, etc.

Requirements justifying use of
the Binomial Distribution:

1. The experiment must consist of n identical trials.

2. Each trial must result in only one of 2 possible
outcomes.

3. The outcomes of the trials must be statistically
Independent.

4. All trials must have the same probability for a
particular outcome.




Binomial Distribution
The Probability of x Successes out of n Attempts is:

P(X =X)=

n!

X!I(n—x)!

p*A-p)"

P = Probability of a Success

g = Probability of a Fallure,g=1-p
(P+q)"=1

n
p(X =x) = b(x,n,p) = (x) ¥ (1 — p)n=*



Mean [u, E(x)]| and Standard Deviation o of the
Binomial Distribution

u=Ex)=np

var(x) = o =npq

S.d=0‘=\/’l’lqu




Example 1. Suppose we have 10 balls in a bowl, 3 of the balls are red
and 7 of them are blue. Define success S as drawing a red ball. If we
sample with replacement, Let's say , what iIs the probability that

exactly S trial.  p(X=5) ?
P(S)=0.3 for every trial.
n
p(X =2) = bCenp) = () P*A—p)"*

20
p(X =5) = ( . ) 0.3°(1 — 0.3)20->
= 15504 (0.3°)(0.7*>) = 0.1789
The mean and variance are
Uu=Ex)=np=20%x03=6
var(x) =0 =npq=20%0.3%0.7 = 4.2



Example 2. The probability that a patient recovers from a rare blood
disease Is 0.4. If 15 people are known to have contracted this disease,
what is the probability that

(a) at least 10 survive?

(b) from 3 to 7 survive?

(c) exactly 5 survive?

p(X =x) = b(x,n,p) = (’;) pX(1 — p)n-

Solution. Probability of success= p = 0.4, and the probability of failure=¢ = 0.6 .
n =15 and X :no. of surviving patients
(a) P(X=210)=1-P(X <9)=1-B(9:15,0.4) =1-0.9662=0.0338

(b) P(3< X <7)=P(4<X <6)=hb(415,04)+b(515,0.4)+5(6;15,0.4) = 0.509

(c) P(X =5)=0b(5,15,0.4) = [ a ](0.4)5 (0.6)°" =0.186



Example 3. Assuming that 6 in 10 automobile accidents are due mainly

to speed violation,
(a) find the probability that among 8 automobile accidents 6 will be due

mainly to a speed violation.
(b) Find the mean and variance of the number of automobile accidents

for 8 automobile accidents.

p(X =x) = b(x,n,p) = (’;) pX(1 — p)n-

Solution. Probability of success=p = 6/10, and the probability of failure

qg=1-0.6=04
n==8 and X :no. of automobile accidents
73 6 \6 / \ 86
(a) P(X — 6) = 5(6;8,6;’10) = J(— J [ 1—£ J =0.2090
\6)\10) \ 10,



(b) The mean of the number of automobile accidents 1s

)
=E(X)=np=8*—=438.
# ( ) " 10

The variance of the no. of auto. accidents 1s
6 4
o =Var(X)=npg=8*—*_—=192
( ) pa 10 10




Example 4. A traffic control engineer reports that 75% of the vehicles
passing through a checkpoint are from within the state. What is the
probability that fewer than 2 of the next 9 vehicles are from out of the

State?

p(X =x) = b(x,n,p) = (’;) pX(1 — p)n-

Solution. Probability of success= p = 0.25, and the probability of
failure=g =1-0.25=0.75.
n=9 and X :no. of vehicles passing through the checkpoint
P(X <2)=P(X <1)=0(0;9,0.25)+5(1:9,0.25)

_ [3](0.25}“ (0.75) +[f](0.25)1 (0.75) =0.3
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Continuous Random Variable

A variable with many possible values at all intervals

Examples

Weigh 100 People Weight 45.1, 78, ...
Measure Part Life Hours 900, 875.9, ...
Ask Food Spending Spending | 54.12,42, ...
Measure Time Inter-Arrival |0, 1.3, 2.78, ...
Between Arrivals Time



Continuous Probability Distributions

For any continuous random variable, X, there exists a non-
negative function f(x), called the probability density function
(p.d.f) through which we can find probabilities of events
expressed in term of X.

b
f(x) P(a < X < b) = [f(X)dx

a
= area under the curve

of f(x) and over the
/ interval (a,b)
P(XeA) = [f(X)dx
A

= area under the curve
f: R — [0, «) of f(x) and over the
region A




Definition 1:
The function f(x) is a probability density function (pdf) for a
continuous random variable X, defined on the set of real

numbers, Iif:

1. f(x)>0 VxeR

2. j f(x)dx =1

3. Pa<X<h) jf(X)dX va,beR a<b
Note:

For a continuous random variable X, we have:

1. f(x) # P(X=x) (in general)

2. P(X=a)=0 foranyaeR

3. Pl@asX<bh=P@a<X<b=P@as<X<b)=P@a<X<hbhb)
4.

P(XeA) = [ f(x)dx
A



f(x)

yZ N

X

Total area = [ . f(x) dx=1

f(x)

f(x) f(x)

X b a X
area= P(X >b) area= P(X < a)
= [ f(x) dx =7 f(x)dx




Example 1:

Suppose that the error in the reaction temperature, in °C, for a
controlled laboratory experiment is a continuous random
variable X having the following probability density function:

1 X - —1l<x<?2
f(X)—<3
0; elsewhere

1. Verify that (a)f(x) >0 and (bjf(x) dx =1
2. Find P(0<X<1)

Solution: f(x)
X = the error in the reaction
temperature in °C.

X IS continuous r. V.

1 X% —1<x<2 |
f()=1{3" T 4 o6 1 5 3
0; elsewhere >



1. (a) f(x) >0 because f(x) IS a quadratic function.

jf(x)dx j0dx+j X dx+j0dx

21 =2
j X dx{x3 X }
° 3 X=-1
1

=56 (-1)=1 ¥

1 11 5
2. P(0O<X<1) = jf(x)dx:jgx dx
0

0
_ Exg Xx=1
9 Xx=0

1
= 5(1— (0))

1
9



Definition 2:
The cumulative distribution function (CDF), F(x), of a continuous
random variable X with probability density function f(x) is given

by: x
F(x) = P(X<x)= [f(Odt;  for —co<x<on

Result:
Pl@a<X<b)=P(X<b)-P(X<a)=Fb)-F@)

Example 2:

In Example 1,

1.Find the CDF

2.Using the CDF, find P(0<X<1).



Solution:
1 5.

—X“ 1 =1<Xx<?2
f(x)=<3

0; elsewhere

For x< —-1:

F(x) = )j(f(t)dt = )j(Odt =0

For —1<x<2:

X -1 x12
F(x) = [f(t)dt = [Odt + jgt dt
-0 - 00 -1

e,
.jl3t t

:th
9

=X 1, 3 _E 3
t:_l}g(x (1) =5 (¢ +1)



For x>2:

F(X) = jf(t)dt—jomj tdt+j0dt:i%t2dt:1

Therefore the CDF IS:
(0 :x<-1

F(x) = P(X SX):%%(X3+1) —1<x<2

L].;x22

F(x)

1 —
|
|
|
|
_— :
20 @ -0 oo | 10 2.0

2. Using the CDF, 5> 1 1

POX<1) =F(1) -FO) = £-—=¢




Normal




Normal Distribution

1. “Bell-Shaped’ &
Symmetrical 1(X)

2. Mean, Median,
Mode Are Equal

3.  ‘Middle Spread’

Is1.33 ¢
4. Random Variable Has Mean
Infinite Range Median

Mode



Probability
Density Function

1 G

P00 = oA 27T

X = Value of Random Variable (-0 < X < o0)
Population Standard Deviation

14159

.7/1828

Mean of Random Variable x

@)

1l
N o

]
T
€
]

o=
[

Don’t memorize this!



*The random variable X has a normal distribution (N) with
mean p and standard deviation 6.: X is N(u,0) :

X 1s N(40,1)
X 1S N(10,5)

X 1S N(50,3)




Normal Distribution
Probability

Probability is
area under

curve!




Standardize the
Normal Distribution

> _X-H Z is N(0,1)

Normal Standardized
Distiibution Noimhal Distribution




Standardizing Example

Normal Standardized
Distribution Noimnal Distribution




Obtaining
the Probability

Standardized Norimal
Probability Table (Portion)

.2 ¥ ¥ ¥ v v v ¥ ¥ —



Example
P(3 8<X< 5)




Example
P(29<X<7.1)

-21 0 .21 Z







Neorial
Distribution




Finding Z Values
for Known Probabilities

What is Z given Standardized Normal
P(2) = 1217 Probability Table (Portion)




Finding X Values
for Known Probabilities

Neorimal Distribution
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Why Numerical Analysis

Numerical methods are capable of handling large systems
of equations, different degrees of nonlinearities which are

common In engineering practice.

Numerical methods can handle any complicated physical
geometries which are often impossible to solve analytically.



1-FIXED POINT ITERATION
METHOD

Fixed point : A point, say, s Is called a fixed point if it satisfies
the equation x = g(x).

Fixed point Iteration : The transcendental equation f(x) = 0 can
be converted algebraically into the form x = g(x) and then using
the iterative scheme with the recursive relation

Xi+1: g(xi), | = O, 11 21 """"""

with some initial guess X, Is called the fixed point iterative scheme.



Algorithm - Fixed Point Iteration Scheme
Given an equation f(x) =0
Convert f(x) = 0 into the form x = g(x)
Let the initial guess be x,
Do
Xi 1= 9(X;)
while (none of the convergence criterion C1 or C2 is met)

e C1. Fixing a priori the total number of iterations N .
» C2. By testing the condition | x;,, - g(X;) | (where I Is the iteration
number)less than some tolerance limit, say epsilon, fixed a priori.




Numerical Example :

Findaroot of x*-x-10=0 " | x(x*-1) = 10 || Xy =10/ (2 -1)

1- Consider g1(x) = 10/ (x3-1) and the fixed point iterative scheme

Xi.,=10/(x2-1), i=0,1,2,.. letthe initial guess x, be 2.0
i [0]1 2 3 4 5 6 |7 8
X, |2 |1.429 |5.214 | 0.071 |-10.004 |-9.978E-3 |-10 |-9.99E-3 |-10

So the Iiterative process with g1 gone into an infinite loop without
converging.



2-Consider another function g2(x) = (x + 10)¥* and the fixed point
Iterative scheme

Xisq= (X + 10)H4,

1=0,1,2,...

let the initial guess x, be 1.0, 2.0 and 4.0

| 0 1 2 3 4 5 6

Xi 1.0 1.82116 |1.85424 | 1.85553 |1.85558 | 1.85558

Xi 2.0 1.861 1.8558 | 1.85559 | 1.85558 |1.85558

Xi 4.0 1.93434 | 1.85866 |1.8557 |1.85559 |1.85558 | 1.85558

That Is for g2 the iterative process Is converging to 1.85558 with any

Initial guess.




3-Consider g3(x) =(x+10)2/x and the fixed point iterative scheme

Xis1=( X;+10)12 /x;,

1=0,1,2,...

let the initial guess X, be 1.8,

x*-x-10=0

X2 = ( x;+10)12

%

Xirp = (X +10)Y2 /x;

I |0 1 2

3

4

5

6

98

1.8 |1.9084 | 1.80825

1.90035

1.81529

1,89355

1.82129

1.8555

That Is for g3 with any initial guess the iterative process Is converging

but very slowly to




Geometric interpretation of
convergence with g1, g2 and g3

i G il
5 5 =03
=01 (%) //_x y=g30)
315 T y=x 375 T g T 375 + Y=

= 2%
125 T 125 1 # Y=g 125 1

#
o : | o S : : | : : : |
] 1.2a 2.5 375 5 1] 1.25 2.5 375 b 1] 1.5 3.5 3.75 5
1] X 5 1] x 5

Fig g1 Fig g2 Fig g3

Fig gl, the iterative process does not converge for any initial
approximation.

Fig g2, the iterative process converges very quickly to the root
which is the intersection point of y = x and y = g2(x) as shown in the
figure.

Fig g3, the iterative process converges but very slowly.




2-Newton-Raphson Method

The method is based on the first order Taylor expansion, i.e.:

1" (o)

Pa(w) = £ (w0) + f'(a0) (@ — w0) + 1

(x—20)2 + ...+

F™ (z0)

- (x — zo)"

S (x) = )+ () (X520 — ;)

When we hit the root, | /(x,,)=0,

()

>

(<)

()

then:

[Xi, f(x, )]

XI +1 [ f (XI ) fxa)

—_—

Figure 1 Geometrical illustration
of the Newton-Raphson method.



Derivation

i)
F(Xg) e tan(ax)
f'(xi)=
> X .
i+1

Figure 2 Derivation of the Newton-Raphson method.

AB

F(x)

X — X

I 1+1

T (%)
(%)

10



Procedure:

1-Assume an initial guess for the root = X0, and calculate the first estimate

of the root x1 from :|x; =x, —

2-Repeat step 1 several times until convergence is achieved, I.e.

X =y (x;) ] ]
Xip1 =X £1(x) until €, <€
A

11



Examplel: Use Newton-Raphson method to estimate the root of

Choose x0 =0




Example2:Use the Newton- Raphson method ,with 1.5 as starting
point ,to find solution of f(x)= x-2sinx

f(x)=x-2sinx , X,=1.5 ., f'(x)=1-2cosx
J(x,) e X —28mx

7 o ’ . _ i - R
f(x,) 1-2cosx,

_ 2(smx, —x,cosx,)

1-2cosx,

x1 | 2.0765582

o4 1.9105066

&8l 1.8956220

<1 1.89549427

v <8 1.895494267033
(7 1.895494267033

13
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Euler Method

We will use Euler’s method to solve an ODE under the form:

dy

E — f(-"'aJ")a}’(O]: Yo

At x=0, we are given the value of y=y0 Let us call x=0as xo

Now since we know the slope of y with respect to x, that is, |/(x,v),
then at x=x0 , the slope is |(x,. ,)| Both x0 and y0 are known from
the initial condition |»(x, )= »,-

2021-06-26 2



Euler’'s Method

\ True value

S — VW Predicted

RI B
Slope = ﬁ Xo1Yo % @ vele
Run
_ 44
_ Y1~ Yo _ Step size, h >
X1 — Xp K ]
= f (Xo1 YO) g

=V, + F(Xp, X; — X . L . :
1= Yo+ f (X0, Yo o = %o) Figure 1 Graphical interpretation of the first step of Euler’s method
=Yoot f(xo’ YO)h



VY a

True Value

V.1, Predicted value

Via =Y + £06, v B
h

—X.

i | Step size

Figure 2. General graphical interpretation of Euler's method



. . . dy ,
Example 1:Solve the differential equation d—i =2x"+2y ,y(0)=1

by Euler Method ,also find yon|o<x<03| Using h=0.1

Via =¥ (v, x,)
$(0.1) = y(0) + (0.1)(2(0)* +2(1)) 3 yis1 = yi + h(QxE + 2y)

=12




Example 2 :Use Euler's method with h=0.14 to obtain a numerical
solution of " = 1 4+ (y — x)? subjectto y(1) = 1.59
giving approximate values of y for 1 < x < 2.4

Yia=Y;+h f(Xi’yi)

Yn+1 =Yn + h[1 + (yn — xn)z]

1<x<24 y(1) = 1.59

y1 = Yo + 0.14[1 + (yo — x0)”]

. = 1.59 4+ 0.14[1 + (1.59 — 1)2]=1.7787

vy, =y1 + h[1+ (y; — x1)?]

hz&ﬂ_K

X,y =% +h

, =1.7787 + 0.14[1 + (1.7787 — 1.14)#] =1.9758




Yn41 = Yn T h[l + (yn — xn)z]

ys = 1.9758 4 0.14[1 + (1.9758 — 1.24)%] = 2.1836

y, = 2.1836 + 0.14[1 + (2.1836 — 1.42)?] = 2.4052

1<x<24

X, =X +h

10

H
-~

[a—

1.14
1.28
1.42
1.56
k7
1.84
1.98
2.12
2.26

N
=

1.59 |
1.7787
1.9758
2.1836
2.4052
2.6453
29104
3.2108
3.5629
3.9944
4.5554




clear

clc

%%%%%%% dy/dx=1+(y-x)"2 , 1<x<2.4 ,y(1)=1.59 ,h=0.14
a=1; % Initial time a<x<b

b=2.4; % Final time

h=0.14; % Time step

N=((b-a)/h)+1; % Number of steps
y0=1.59; % Initial value y(a)
for I=1:N
y(1)=y0;
X(1)=a;
y(1+1)=y(1)+(1+((y(1)-x(1))"2))*h;
X(1+1)=x(1)+h;
end



V=[x\y]
plot(x,y)
title('Euler method')

ylabel('y")
xlabel('x")

grid
legend('Euler’)

Euler method

V

:[)(

1.0000
1.1400
1.2800
1.4200
1.5600
1.7000
1.8400
1.9800
2.1200
2.2600
2.4000

y ]
1.5900

1.7787
1.9759
2.1836
2.4053
2.6453
2.9104
3.2108
3.5629
3.9944
4.5555
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Trapezoidal Rule of Integration

What is Integration

Integration:

The process of measuring
the area under a function

plotted on a graph.

I:jb'f(x)dx

Where:
f(x) is the integrand

a= lower limit of integration

b= upper limit of integration




Basis of Trapezoidal Rule

+ .1?n ) 3

-1

1 1 | 1
Total area = Eh(}-*ﬂ +y,)+ EM'FI +y,)+ 5 Wy, +vy)+ .+ Eh(}r

i

1
- ;h[}-’c. F20 420, e A 20, )

-1

Remember the area under the curve is represented by » = f(x)

and so we have the formula known as the trapezium rule:



Remember that yi represents the height of the given function at
the point , x/ thus yi is called the ordinate. Hence the trapezium

rule can also be written as

width of block [
7

-

Area ~ (first ordinate) + (last ordinate) + 2(other ol‘dinates)],

1

Examplel: Evaluate |[*dx | using the trapezium rule with 4 intervals.

0

h:f; b—a 'i:!'$';:§:0,:5

n




Calculate function value 7(x) (use width /#=025for 4 mtervals 1i.e.

n=01.2.3.4 so going from a to 5 (0 to 1) we have x=0, 0.25, 0.5, 0.75 and 1):

width of block [

Area x (first ordinate) + (last ordinate) + 2(other Dl‘diuates)].

2(Y1+YotYs) 1.75
Yo+r2(Y1+YatYs)+y, 2.75

1/8[yo*+2(y 1+yotys)tysl | 0.344

0.225 0175+ 1] %[2.?5]% 0.344

1

0.25
Irzdr X 5 [_1-‘0 +2(y, + v, +yy)+ _1-‘4] X
’ 2




1
Example2: Evaluate fe_'“'_ dx ysing the trapezium rule with 4 intervals.
0]

3)
0.5698 JYot2(y tyatys)tyy 5.944

0.3679 |1/8[yo*+2(y tyotya)tys] | 0.743

25

i‘e_x:n’r = 0.

0

25
5 [1‘0 +2(yv; + ¥V, +13)+ .1'4] =

[1+4.576+0.368] = 5[5.944] ~ 0.743



Home work

]

o e

“in L vy UsSINg the trapezium rule with 4 intervals

Evaluate sin— xd

| =

2 L] * * *
Evaluate [+/cosxdx using the trapezium rule with 8 intervals
0
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