College of Electronics Engineering Embedded Systems
4t Year
Systems and Control Engineering
Department

Course Information

Embedded Systems

Contents

* Rules & Regulations
» Reference Books
* Number of weekly hours and units

e Assessments

Rules & Regulations

| will let it on your Behavior !!

Prerequisites:

C programming, Microprocessors, Control Systems, Signals & Systems

References

1.” Introduction to Embedded Systems”, David Russel, 2010

2. “Embedded Control System” , 2t" edition

3. Embedded System Design: A Unified Hardware/Software Introduction
" Online Book

Weekly hours and module units

« Each week, you have
* Theoretical lectures: 3 hours
* Practical lectures: 2hours
 Module Units: Three

ASssessment

** Final Exam:
* Theoretical part: 35%
 Practical part: 15%
** Midterm Exam
« Theoretical part: 20%
 Practical part: 15%

** Quizzes, H.Ws and attendance: 15%

College of Electronics Engineering Embedded Systems
4th Year

Systems and Control Engineering
Department

What’s an Embedded System (E.S)

/Hanuf acturing

1 / eguipmaent \ -
Motion YW

.1. Domestic
Sensors appliances
=y Embedded -:
C d Audio-wvi L
vZﬁzc?EE SyStemS / ueqluﬂipu;'lleﬁnuta

N /
e S92 g S oo

~— g

Telecommunication

- eguipment

sam Sons

What Is an Embedded System?

 An embedded system iIs a combination of hardware and
software designed to perform a dedicated function within a
larger mechanical or electronic system. It typically consists
of a microprocessor or microcontroller, memory, and

Input/output interfaces, and iIs optimized for specific tasks
rather than general-purpose computing.

The difference between a system (general computer system) and an embedded system

Azpect General System Embedded System

Purpose Multiple, general-purpose tasks specific, dedicated tasks

Human Interaction Required Usually not required

Complexity Higher Lower

Power Consumption Higher Lower

Size Larger Smaller

Functionality Reprogrammable Fixed functionality within a system

Usage Standalone devices Fart of larger systems (e.q., appliances, cars)
User Imerface Extensive Minimal to none

Memory Requirement Larger smaller

Real-Time Operation U=ually not time-critical Often time-critical

Typical examples of embedded systems versus general computers illustrate their distinct purposes and functionalities.

Type

Embedded
oystem

General

Computer

Example Devices

Washing machines, microwaves, engine control units,

pacemakers, fitness trackers

Desktops, laptops, senvers, workstations

Purpose

Perform specific,
dedicated tasks

Handle multiple, general

purpose tasks

User Inferfaces

[][zl | [cANCEL |
[21l5]1[s]] <LEAR]
[zll=]ll=][ENTER |
[=1[ol[#]

Finger Print Sensor Keypad Switch

-

Embedded Computer

Software
INnput Variables Output Variables

L

Hardware

1

Link to Other Subsysterns

Output Interfaces

Characteristics of Embedded Systems
*Designed for specific tasks or functions within a larger system.

*May Iinclude integrated circuits with processors, memory, and peripherals.

«Can range from very simple (a single chip) to highly complex with multiple
components.

-Often have real-time computing constraints due to controlling physical
operations.

*Typically optimized for reliability, low power consumption, and minimal
size.

Interfaces can be non-existent or as complex as graphical user interfaces.

Classification Of E.S.s

E.S.s can be classified into 3 types:

1.

Small —scale E.S.s:

« these systems are designed with a single 8-bit, or 16-bit microcontroller.

« They have little h/w & s/w complexities and involve board-level design.

« They may even be battery operated.

« An editor & assembler specific to the uC are used.

« C - language (or similar languages) is used for developing these systems.

« Commonly used microcontrollers

Medium —scale E.S.s:

« These are designed with a single or few 16-bit or 32-bit microcontroller.

« They have both h/w& s/w complexities

* Programming tools: RTOS, source code eng. Tool, simulator, debugger &
Integrated Development Environment (IDE).

3. Sophisticated E.S.s:

* These systems have enormous h/w & s/w complexities and may need scalable
processors or configurable processors & PLAS.

« They are used for applications that need h/w & s/w co-design & integration in the
final system.

« Development tools may not be available at a reasonable cist or may not be
available at all. In some cases, a compiler might have to be developed for these
systems.

« Commonly used microcontrollers: Intel80960, ARM7, MPC604.

Appropriate Microcontroller Use

A microcontroller is the correct tool to use when:

 Intelligence is required in the system.

« The complexity of a system is reduced when using one.

* The cost of the microcontroller 1s “less” than using discrete components to do the
same job.

« A variety of sensors and actuators must be integrated in the system.

« Communication with other devices Is necessary.

Appropriate Microcontroller Use

A microcontroller is NOT the correct tool to use when:
« The system requires little or no intelligence.
« The system can be made easier and/or cheaper using discrete-components.

11

Controller of Embedded System parts can be put in following diagram:

Computer Platform

Bus

Central Controller

Processing
Unit (CPU)

Storage

(Memory) Controller

/O Front-End
Analog Input

Analog Output

Digital 1/O

Counter

Human Machine Interface (HMI)

12

The Embedded System “Concept Map”

System
needing
control

Controller
Hardware

13

Systems Need Control
Systems need control could be:

* Mechanical (i.e.)

* Electrical (i.e.) .
 Electro-Mechanical (Mechatronics)

The questions need to be asked are:

* What’s wrong with that system?
* What would we like to do with i1t?
* What can we do with 1t?

Biological (1.e.)
Thermodynamic (i.e.)
Chemical (ie.)

Other Systems ?

14

Examples Linked to Control Engineering

. ON/OFF control: Thermostat fan, water pump.
. Proportional control: Motor speed «
potentiometer error.

. PID control : Arduino PID library controlling
motor or balancing robot .

. Discrete logic/sequential control: Traffic light,
clevator simulation.

. Data acquisition: Serial logging of sensor values.

Systems Need Control

Robotics Applications:
Controlling joint motors for motion.
Reading sensor feedback (position, distance, vision).
Executing tasks like object pickup, navigation.

. Control Concept: Closed-loop feedback control (PID for motor

position).

16

Systems Need Control

Industrial Automation Applications:

. Managing conveyor belts (speed and direction).
' Controlling pumps and valves for fluid flow.
o Coordinating robotic arms for assembly lines.

. Control Concept: Sequential logic + real-time control.

17

Systems Need Control

Automotive Control Systems Applications:
. Engine Control Unit (ECU) — fuel injection, ignition timing.
. Anti-lock Braking System (ABS) — preventing wheel lock.
. Airbag deployment — triggered by crash sensors in milliseconds.

. Control Concept: Embedded real-time safety-critical control.

18

Systems Need Control

Home Automation Applications:
. Smart thermostats controlling HVAC systems.
. Automatic lighting systems (motion/light sensors).
. Security systems (cameras, alarms, smart locks).

. Control Concept: ON/OFF control + IoT connectivity.

19

Systems Need Control

Medical Devices Applications:
. Insulin pumps regulating drug delivery.
. Pacemakers maintaining heart rhythm.
. Patient monitoring systems (vital signs, alarms).

. Control Concept: Precision closed-loop biomedical control

20

A “short list” of embedded systems

* Anti-lock brakes

* Auto-focus cameras

* Automatic teller machines
* Automatic toll systems

* Automatic transmission
* Avionic systems

* Battery chargers

* Camcorders

* Cell phones

* Cell-phone base stations
* Cordless phones

* Cruise control

* Curbside check-in systems
* Digital cameras

* Disk drives

* Electronic card readers

* Electronic instruments

* Electronic toys/games

* Factory control

* Fax machines

* Fingerprint identifiers

* Home security systems

* Life-support systems

* Medical testing systems

Modems

MPEG decoders
Network cards
Network
switches/routers
On-board navigation
Pagers

Photocopiers
Point-of-sale systems
Portable video games
Printers

Satellite phones
Scanners

Smart
ovens/dishwashers
Speech recognizers
Stereo systems
Teleconferencing
systems

Televisions
Temperature controllers
Theft tracking systems
TV set-top boxes
VCR'’s, DVD players
Video game consoles
Video phones
Washers and dryers

21

College of Electronics Engineering Embedded Systems
4th Year

Systems and Control Engineering
Department

Major Components of an Embedded Control System

J

1. Overview

An Embedded Control System inteqrates several key elements to sense, process, and act

upon the physical world

t can be represented as

Physical Process — Sensor & Signal Conditioner - Controller (Hardware + Software)
- Power Interface - Actuator — Output/System Response

1. Sensor and Signal Conditioner

Type

Temperature
Position

Pressure
Light
Speed

Physical Quantity
Heat

Angle/displacement

Fluid/gas pressure
Illumination

Rotational speed

Example Sensor

LM35, TMP36

Potentiometer,
encoder

Piezo sensor
LDR, photodiode

Hall-effect sensor

1. Sensor and Signal Conditioner

* A sensor converts a physical quantity (temperature, pressure,

speed, position, light, etc.) into an electrical signal (voltage or
current).

e Acts as the input device for the embedded system.

Signal Conditioner

e Sensors usually produce weak or noisy analog signals.
* Asignal conditioning circuit modifies the signal to make it usable
by the microcontroller.

Signal Conditioner

Main functions:

Amplification - Op-amp increases signal amplitude.

*Filtering - Removes noise (low-pass, high-pass, band-pass).
Level shifting - Matches voltage to ADC input range (e.g., 0-5 V).
Isolation - Protects controller from high voltages (opto-isolators)

Power Sources

*Provide energy for all electronic components in the system.
*Must supply stable and regulated voltage to both the controller
and actuators.

Common Power Sources

*Battery (Li-ion, NiMH, etc.) — used in portable/robotic systems.
*DC Power Supply (5 V, 12 V) — for laboratory/industrial systems.
*Energy Harvesting (solar, vibration) — low-power remote devices

Power Sources

Power Management:

*Voltage Regulators:

*Converters:
e DC-DC converters (buck/boost) for efficiency.
* AC-DC rectifiers for mains input.

Power Interface

Power Management:

*Voltage Regulators:

*Converters:
e DC-DC converters (buck/boost) for efficiency.
* AC-DC rectifiers for mains input.

Protection: fuses, transient suppressors, reverse polarity protection.

10

Power Interface

The bridge between the low-power controller and high-power
actuators.Ensures the microcontroller can safely control larger loads.

Types of Power Interfaces
1.Transistor or MOSFET Drivers — switch higher current loads.
2.Relay Circuits — electromechanical switches for AC or DC loads.

3.0pto-isolators — provide electrical isolation between control and
power sections.

4.Motor Drivers / H-bridges — enable direction and speed control of
DC motors

Power Interface

The bridge between the low-power controller and high-power
actuators.Ensures the microcontroller can safely control larger loads.

Types of Power Interfaces
1.Transistor or MOSFET Drivers — switch higher current loads.
2.Relay Circuits — electromechanical switches for AC or DC loads.

3.0pto-isolators — provide electrical isolation between control and
power sections.

4.Motor Drivers / H-bridges — enable direction and speed control of
DC motors

Actuators

Actuators convert electrical control signals into mechanical motion or

physical action.
They represent the output stage of the embedded control loop.

13

Actuators

Type
Electromechanical

Electromagnetic
Thermal
Hydraulic/Pneumatic

Function Example
Rotational or linear DC motor, stepper,
motion servo

Switching or movement Relay, solenoid
Heat generation Heater element

Force/pressure control Valves, cylinders

14

User Interface (Ul)

Allows the operator or user to interact with the embedded system.
Types

*Input Devices: push buttons, switches, keypads, rotary knobs.
*Output Displays: LEDs, LCDs, seven-segment displays, touch
screens.

Communication Interfaces: serial monitor (UART), USB,
Bluetooth, Wi-Fi, CAN.

User Interface (Ul)

Role in Control

*Provides manual overrides or adjustments (e.g., setpoint entry).
*Displays measured variables, system status, and faults.

Control link: Enables real-time monitoring and manual tuning of
controller parameters

Controller Hardware

The physical computing unit executing control algorithmes.
Usually a microcontroller, microprocessor, or digital signal
processor (DSP).

17

Controller Hardware

Key Components
*CPU: performs calculations and logic operations.
*‘Memory:
* Flash/ROM — stores program (firmware).
* RAM - stores temporary data.
*Peripherals: timers, ADC, DAC, serial interfaces (UART(Universal
Asynchronous Receiver/Transmitter), 1°C, SPI,Serial Peripheral
Interface, CAN, Controller Area Network).
*Clock: determines speed of execution.
*Reset & Power Circuits: ensure stable startup

Controller Software

The firmware or program code running inside the controller.
Defines how the system responds to inputs and generates outputs.

19

Controller Software

Software Layers

1.Application Code: control algorithms (ON/OFF, PID, etc.).
2.Drivers: interface with peripherals (ADC, PWM, UART).
3.Real-Time Scheduler or Loop: manages timing and task execution.
4.Interrupt Service Routines (ISRs): handle immediate events (e.g.,
sensor triggers).

Controller Software

Software Development Flow

1.Write code in C/C++ (or Arduino language).
2.Compile - Generate machine code (hex file).
3.Upload to microcontroller via programmer/USB.
4.Test, debug, and tune parameters.

College of Electronics Engineering Embedded Systems
4th Year

Systems and Control Engineering
Department

Embedded System (E.S)
4

The Embedded System “Concept Map”

System
needing
control

Controller

Hardware
*

Microprocessor

*A microprocessor is the CPU (central processing unit) on a single
chip.

It requires external memory (RAM, ROM) and peripherals to build a
complete system.

*Used in general-purpose computing systems (like PCs, laptops).
Example: Intel i5, AMD Ryzen, ARM Cortex-A, Pentium, etc.

Microcontroller

*A microcontroller is a complete computer system on a single chip.
|t contains:

 CPU

* Memory (RAM, ROM/Flash)

* |/O ports (digital & analog)

* Timers/Counters

 Communication interfaces (UART, 12C, SPI)
*Designed for specific control applications (automation, robots,
instruments).
Example: ATmega328 (Arduino), PIC16F877A, STM32, 8051.

Comparison: Microprocessor vs. Microcontroller

Feature
Definition

Memory

1/0 Ports
Application Type
System Cost

Speed

Power Consumption
Programming

Examples

Use in Control

Microprocessor (1P)
CPU on a chip

External (RAM/ROM) required
Mostly external

General-purpose computing
Higher (needs more components)
Typically higher clock rates

High

Complex OS/software

Intel i7, AMD Ryzen, ARM Cortex-A

Rare (for large systems)

Microcontroller (nC)

CPU + memory + peripherals on a
chip

Internal (RAM, ROM/Flash)

Built-in GPIO, ADC, timers
Dedicated / specific task

Lower (integrated design)
Moderate, but optimized for control
Low (battery-friendly)

Simple C or assembly

ATmega328, PIC, STM32, 8051

Common (real-time embedded
control)

Advantages of Microcontrollers

1.Compact and integrated - CPU, memory, and I/O on one chip.
2.Low cost - fewer external components.

3.Low power consumption - ideal for portable and embedded
applications.

4.Easy to program — C/C++ using tools like Arduino IDE.

5.Fast response — suitable for real-time control tasks.

6.Reliable - fewer parts, lower failure rate.

7.Flexible 1/0 - supports analog/digital signals, PWM, interrupts,
communication.

Disadvantages of Microcontrollers

1.Limited memory and processing power (compared to

microprocessors).

2.Application-specific - cannot perform general computing tasks.
3.Difficult to upgrade hardware (chip-specific).

4.Restricted multitasking (unless RTOS or multi-core MCU used)

Key Characteristics of Microcontrollers

*Dedicated task operation: designed for one main function.
*On-chip integration: CPU + memory + peripherals.

*Real-time operation: must respond immediately to sensor input.
‘Embedded in larger systems: not stand-alone like PCs.
*Programmable control logic: runs firmware written in C/C++.
*Low power & cost-efficient: used in millions of consumer and
industrial devices.

Example architecture:

*CPU core (e.g., 8-bit, 16-bit, 32-bit)
*Flash memory for program
*RAM for data

*GPI0 pins for sensors/actuators
*Timers, ADC, UART, I°C, SPI modules

Control Engineering Context

*Microcontrollers are the heart of modern control systems:
*Measure signals from sensors (temperature, pressure, position).
*Compute control law (ON/OFF, PID, etc.).

*Drive actuators (motors, valves, relays).

Summary Slide:

*Microcontroller = compact embedded computer for control tasks.
*Microprocessor = powerful CPU for general computing.

*Control systems use microcontrollers for real-time embedded
feedback control.

Error Equation

This is the fundamental signal every embedded controller computes:

Where:

o 7(t): Reference or desired value (setpoint).
o y(t): Actual measured value from a sensor.

» ¢(t): Error signal — tells the microcontroller how far the system output is from the

target.

12

Microcontroller role:

* Continuously reads sensor data.
o Calculates e(t).

 Uses it to adjust actuators (motor, heater, etc.).

13

Discrete-Time Control Law (as implemented in software)

Since microcontrollers use digital sampling, the control law is expressed in discrete time:

k

i=0 s

Where:

» ulkl: Control signal at sample k (output to actuator).
o ¢|k|: Error at sample k.

o T,:Sampling period (time between controller updates).

» K,, K;, K Proportional, Integral, and Derivative gains.

14

Microcontroller role:

v Executes this PID equation in a timed loop (every 1)

» Sends PWM or analog signal to the actuator.,

Sampling Period Relation

For stable and responsive control:

T, =
- 10f-

Where:

- fe: bandwidth or cutoff frequency of the control loop.

= Jo:sampling period (microcontroller loop delay).

» The controller (microcontroller) must sample at least 10x faster than the system's

dominant dynamic frequency for accurate control,

16

First-Order System Response (typical controlled plant)

Used to model many physical systems (temperature, DC motor, etc.):

ng’;—iﬂ +y(t) = Ku(t)

Where:

* T:time constant (how quickly system reacts).
« K:system gain.
o u(t): control input (from microcontroller).

o y(t): system output (sensor reading).

17

Microcontroller role:

o Applies u(t) (e.g., PWM duty cycle).
o Measures y(t).

* Updates control action according to error.

Summary :

Equation

et) = r(t) — y(t)

ulk] = Kyelk] + K; Y eli] Ty + Ky

1
T’? < 107,

T%Itf-l-y—ffu

Purpose

Compute system

error

Control algorithm

S5ampling condition

System model

Implemented by

Sensor + MCU

MCU firmware

MCU timer interrupt

Physical process

19

College of Electronics Engineering Embedded Systems
4th Year

Systems and Control Engineering
Department

Microcontrollers MFGRs

Microcontroller MFGRS

s AMCC

* Atmel

* Comfile Technology
Inc.

e Coridium

*Cypress
MicroSystems

*Dallas
Semiconductor

eElba Corp.

*Freescale
Semiconductor

* Fujitsu

e Holtek

¢ [nfineon

¢ [ntel

* Microchip
Technology

e National
Semiconductor

o NEC

¢ Parallax, Inc.

* Philips
Semiconductors

e PICAXE

*Renesas Technology

eSilabs

¢Silicon Motion

e STMicroelectronics

¢ Texas Instruments

eToshiba

* Western Design
Center

¢ Ubicom

* Xemics

* Xilinx

¢ ZiLOG

TERMINOLOGIES

A. Open-Source Software (OSS): Type of computer software in which
source code is released under a license in which the copyright holder grants
users the rights to use, study, change, and distribute the software to anyone
and for any purpose. Examples: Linux, Android, Firefox etc.

B. Open-Source hardware (OSH): Physical artifacts of technology
designed and offered by the open-design movement. Information about the
hardware 1s easily discerned so that others can make 1t — coupling it closely
to the maker movement. Hardware design (i.e., mechanical drawings,
schematics, bills of material, PCB layout data, HDL source code and
integrated circuit layout data), in addition to the software that drives the
hardware, are all released under free/libre terms. Examples: RepRap (3D

printing), Arduino etc.

®
open source

initiative

open source
ardware

TERMINOLOGIES

C. Microcontroller: An integrated circuit (IC) device used for controlling other portions of an
electronic system, usually via a microprocessor unit (MPU), memory, and some peripherals. These
devices are optimized for embedded applications that require both processing functionality and agile,
responsive interaction with digital, analog, or electromechanical components. A typical
microcontroller includes a processor (CPU), memory and input/output (I/O) peripherals on a single
chip. MCUs are found in wvehicles, robots, office machines, medical devices, mobile radio
transceivers, vending machines and home appliances, among other devices. They are essentially
simple miniature personal computers (PCs) designed to control small features of a larger component,

without a complex front-end operating system (OS).

What iIs the Arduino?

« Arduino Is an open-source electronics platform based on easy-to-use hardware and
software.

« Arduino boards are able to read inputs - light on a sensor, a finger on a button, or a
Twitter message - and turn it into an output - activating a motor, turning on an LED,
publishing something online

 You can tell your board what to do by sending a set of instructions to the
microcontroller on the board.

« To do so you use the Arduino programming language (based on Wiring), and the
Arduino Software (IDE), based on Processing.

Why the Arduino?

« Improvement over other micro-controllers for hobby usage.

* Inexpensive

« IDE on multiple platforms (Mac, PC, Linux)

« Simple, clear programming environment: “C”

« Open source and extensible software/hardware.

« Arduino Shields (elements that can be plugged onto a board to give it extra features).

« QOver the years Arduino has been the brain of thousands of projects, from everyday
objects to complex scientific instruments.

 Arduino board started changing to adapt to new needs and challenges,
differentiating its offer from simple 8-bit boards to products for IoT applications,
wearable, 3D printing, and embedded environments.

Arduino Shields

Shield Name
Motor Shield

Ethernet Shield
Wi-Fi Shield
Bluetooth Shield

GPS Shield
LCD/Touch Shield
Relay Shield

Sensor Shield

GSM/GPRS Shield

Function

Controls DC motors and servos

Adds wired network (LAN)
capability

Connects to Wi-Fi networks

Enables Bluetooth
communication

Receives geographic coordinates
Provides display and user input

Controls high-power devices

Simplifies connection of multiple
sensors

Mobile communication (SIM-
based)

Example Application

Robotics, automation

loT data logging

Smart home, remote control
Wireless sensors

Vehicle tracking
Interface panels

Home automation

Environmental monitoring

Remote alert systems

Arduino Applications

https://playground.arduino.cc/Projects/ldeas

https://playground.arduino.cc/Projects/Ideas

Arduino UNO

« The UNO is the best board to get started with electronics and coding.

« Arduino Uno is a microcontroller board based on the ATmega328P.

[t has 14 digital input/output pins (of which 6 can be used as PWM outputs).

* 6 analog Inputs.

* 6 MHZ quartz crystal

« USB connection.

« Power jack

* |CSP header

* Reset button.

* |t contains everything needed to support the microcontroller.

« Simply connect it to a computer with a USB cable or power it with a AC-to-DC
adapter or battery to get started.

 You can tinker with your UNO without worrying too much about doing something
wrong, worst case scenario you can replace the chip for a few dollars and start over
again.

ATmega328P

ATmega328P is 8-bit microcontroller from Atmel (now owned by Microchip Technology). It’s one of
the most popular microcontrollers, especially known for powering the Arduino Uno and other
Arduino-compatible boards.

O 28 pins DIP (dual in-line package)
W CPU: 8-bit AVR RISC-based CPU
W Clock Speed: Up to 20 MHz

J Flash Memory: 32 KB (used to store program code)

J SRAM: 2 KB (for variables and temporary data during execution)

J EEPROM: 1 KB (for persistent data storage, even after power-off)

W Operating Voltage: 1.8V - 5.5V

W 1/0 Pins: 23 1/0 pins, with 14 digital and 6 analog input pins (ADC-enabled)

W Communication Interfaces: UART, SPI, and I12C for connecting to sensors and other peripherals.

10

ATmega328P

ATmega328P is 8-bit microcontroller from Atmel (now owned by Microchip Technology). It’s one of
the most popular microcontrollers, especially known for powering the Arduino Uno and other
Arduino-compatible boards.

28 pins DIP (dual in-line package)

d CPU: 8-bit AVR RISC-based CPU

. Clock Speed: Up to 20 MHz

 Flash Memory: 32 KB (used to store program code)

. SRAM: 2 KB (for variables and temporary data during execution)

d EEPROM: 1 KB (for persistent data storage, even after power-off)

 Operating Voltage: 1.8V - 5.5V

 1/0 Pins: 23 /O pins, with 14 digital and 6 analog input pins (ADC-enabled).

11

ATmega328P

O Timers: Three timers (two 8-bit and onc 16-bit) for timing and cvent management.

U PWM: Six PWM channels for tasks like dimming LEDs and controlling motor speeds.

U Communication Interfaces: UART, SPI, and 12C for connecting to sensors and other peripherals.

U ADC: 10-bit ADC with 6 channels for reading analog inputs.

U Power Efficiency: The "P" in ATmega328&P stands for "PicoPower", which means it has ultra-low
power consumption modes, ideal for battery-powered applications.

U RISC Architecture: It uses a Reduced Instruction Set Computing (RISC) architecture, which
means that the instructions are simple and fast.

U Limitations: Limited processing power and memory and hence not suitable for high-performance

applications, low clock speed.

12

USB

} SCL\SDA
(I2C Bus)
_ 1
I
POWER :
5V/3.3V/ =
GND _ : - | Digital I\O
- i Q.6 PWM(3, 5, 6, 9, 10,
| 3 -5 11)
Analog : 3-s
INPUTS : : .2
_ ¥ RX €D -

Arduino UNO

Digital In/Out

PWM {3 5 6 9 10, 11)

Ground — &

—-Analog In

.1

')
! '
i ’
' ’
')
')
') 3
')
')
' 3
1)
')
»

.

e —

>Ground
i “Lpower Out
{ (3.3Vand5V)
Power In
Prog ram Barrel Jack
USB (Solar goes here)

(Also Power In)

14

Arduino UNO

Analog Reference Pin

USB Plug —

External Power Supply

Digital Ground
Digital 1/0 Pins (2-13)
|

Reset Pin

3.3 Volt Power Pin
5 Volt Power Pin Voltage In
Ground Pins

Serial Out (TX)
Serial In (RX)

Reset Button
In-Circuit
Serial Programmer

ATmega328
Microcontroller

Analog In
Pins (0-5)

15

GPIO

« General Purpose Input/ Output

« Can be used as digital input or output.

 Each pin uniquely assignable.

« “Analog” (PWM) output on digital pins 3,5,6,9,10,11
« Analog pins 0-5 can also be used as GPIO.

Hardware & Software
HARDWARE & SOFTWARE

Software

* Arduino IDE
* C/C++
* ASM

16

Software Comparison

Software: Arduino IDE

* Free software

 Download from

o http://arduino.cc/en/Main/Software

* Available for Mac, Windows, Linux

Ease of
Development

Libraries

Speed

Accessibility of
processor
features

Arduino IDE

Easy Moderate Challenging
Many Many None
SLOW Fast FAST as Possible

Very Limited Most ALL

17

http://arduino.cc/en/Main/Software
http://arduino.cc/en/Main/Software
http://arduino.cc/en/Main/Software

References:

1. https://'www.arduino.cc/en/Tutorial/ HomePage

2. Arduino Cookbook, Michael Margolis, O’Reilly Media (2011)

3. Getting Started with Arduino, Massimo Banzi, O’Reilly Media (2009)
4. Programming Arduino: Getting Started with Sketches by Simon Monk
Software:

Arduino IDE (Integrated Development Environment)

Hardware:
1. Arduino UNO

2. Basic electronic components, sensors

18

College of Electronics Engineering Embedded Systems
4% Year
Systems and Control Engineering
Department

Embedded Software

Embedded Software

« Embedded Software Is the software that controls an embedded system.

« All embedded systems need some software for their functioning.

« Embedded software or program is loaded in the microcontroller which then takes
care of all the operations that are running.

 For developing this software, a number of different tools are needed.

» These tools include editor, compiler, assembler, debugger, etc.

1. Editor

« The first tool for Embedded Systems Software Development Tools is text editor.

« This is where the code should be written for the embedded system.

« The code is written in some programming language. Most commonly used language
Is C, C++ or IDE.

« The code written in editor is also referred to source code.

2. Compiler

A compiler is used after finishing the editing part and made a source code.

The function is to convert the source code in to object code.

Object code Is understandable by computer as it in low level programming language.
It used to convert a high level language code in to low level programming language.

3. Assembler

The function of an assembler is to convert a code written in assembly language into
machine language.

All the mnemonics and data is converted in to opcodes and bits by an assembler.
Computer understands binary and it works on 0 or 1, so it is important to convert the
code into machine language.

. Debugger

It Is Important to test whether the code you have written is free from errors or not. So,

a debugger is used for this testing.
Debugger goes through the whole code and tests it for errors and bugs.
It tests the code for different types of errors. For example a run time error or a syntax

error and notifies you wherever it occurs

The line number or location of error is shown by debugger so it Is easy to go ahead

and modify it.
So from the function, it can show how important tool a debugger is in the list of

Embedded Systems Software Development Tools.

5. Linker

« A linker Is a computer program that combines one or more object code files and

library files together in to executable program.
[t is very common practice to write larger programs in to small parts and modules to

make job easy and to use libraries in your program.
« All these parts must be combined into a single file for execution, so this function

requires a linker.) ._ ,

Ohbject Dbject Ohject Object
File File File File

Runtime (\ — = Executable
Libmry Frogrm

6. Libraries

A library Is a pre written program that iIs ready to use and provides specific
functionality.

For Embedded Systems Software Development Tools, libraries are very important and
convenient.

Library is a file written in C or C++ and can be used by different programs and users.
For example, Arduino microcontroller comes with a number of different libraries that
you can download and use while developing your software.

For instance, controlling LED or reading sensor like an encoder can be done with a
library.

. Simulator

A simulator helps to show how the code will work in real time.

It can show how sensors are interacting, the input from sensors can be shown, and it
can show how the components are working and how changing certain values can
change parameters.

Integrated Development Environment (IDE)

* An Integrated Development Environment is software that contains all the necessary
tools required for embedded software development.

 For creating software for your embedded system, you need all the mentioned tools.

« An IDE normally consists of a code editor, compiler and a debugger. Also it provide
user developer.

* Depending on what kind of microcontroller you are using, you can choose from many
different software applications.

Example of Embedded Systems Software Development Tools

 MPLAB * Proteus

« Arduino Software * Visual Studio
« Kell EasyEDA

« MATLAB o Altium
 LabVIEW

* Pspice

College of Electronics Engineering Embedded Systems
4th Year

Systems and Control Engineering
Department

Analog Inputs

An important aspect to most embedded systems involves one
or more input signals.
Most naturally occurring signals are analog, meaning the

voltage level can be any value within some interval Vinin
= VA S Vmax

In many systems, different actions and decisions are made
based on the value of Vj.

For example, consider the following list of analog sensor

devices.

* Potentiometer - a mechanical knob is used to adjust the
resistance between terminals;

* Thermistor- a device that changes resistance based on
temperature;

Accelerometer- a device that measures the acceleration of
gravity in three dimensions and out- puts an associated
analog value for each dimension

Ambient light sensor-a device that measure the
environmental ambient light intensity and outputs an
assoclated analog value (e.g., many laptop computers will
adjust the backlight level based on the surrounding
environment light level);

Microphone- a device that converts vibrations (ie.,
acoustic-waves) into analog levels.

In order for a microcontroller to operate on the sensor
outputs, an Analog-to-Digital Conversion (ADC) circuit
must be used,

Parallel ADC

* Uses typical values for Vi, and Vi, 4, where the minimum
voltage is simply set to ground and Vj,qx 1s controlled
externally via the user-defined reference voltage Ve r.

* The resistor network on the left-hand side 1s designed such
that :
Vref_VZ =V, =V=Vn-V="

* which implies there 1s uniform spacing between the inverting
inputs on all of the comparators.

* 'The analog voltage Vj is first converted into a three-bit code
word defined by (cy, €1, Cg), where each bit is the output of a
comparator

A two-bit paralle]l ADC.

2-bit Analogue to Digital Converter Circuit

Veer Vin _ Analogue Input
e

v Signal

2\ (MSE)

$ Tu 22 Q

2 _ | Q
R , 2-bit 2-bit
Priority Output

1V Encoder —# U
(LSB)

+
-

A two-bit paralle]l ADC.

- Digital
Comparator CQutputs
nE i Outputs
L]
D3 Dz D1 Do 1 Qo
OtolV 0 0 0 0 0 0
1to2V 0 0 1 X 0 1
2t03V 0 1 X X 1 0
JtodV 1 X X X 1 1

Where: “X" Is a "don’t care”, that is either a logic “0" or a logic 1" condition.

2-bit ADC Using Diodes

+4V

Vrer

Analogue Input
Ui. S?gnal P Diodes

(MSB)

— L

e (-
2-hit

Output
(LSB) h

Comparators

Pull-down
Resistors

3-bit Analogue to Digital Converter Circuit

Wi Analogue Input

R Signal

2
L
g

U7 D7
FE
N0 %
Bl= Ds
o _
2 5y
s Ds
o _
2.0 o (MSB)
T ug — 3-bit — = Q=
R - Priority | g . S3-bit
1.85vW D Encoder Output
L3 = - (D
= ; - (LSB)
1.00
W= Dz
o _
0. 5
(R D+
-

]
<

3-bit A/D converter Output

Digital
Outputs

Comparator Cutputs

Oto 0.5V O 0 O O O O 0 0O O 0 O
0.5t0 1.0V O O O O O O 1 X O O 1
1.0to 1.5V O O O O O 1 X X O 1 O
1.5t0 2.0V O 0 O O 1 X X X O 1 1
20t0 25V O 0 O 1 X X X X 1 0 O
25t0 3.0V O O 1 X X X X X 1 O 1
3.0to 3.5V O 1 X X bt X X X 1 1 O
3.5t04.0V 1 X X X bt X X X 1 1 1

* The four possible code-words are then passed through an
encoder that outputs the final two-bit value (by, bg).

* Most microcontrollers provide at least one ADC, which will
often output 10-bit resolutions for a very reasonable digital
representation of the analog voltage.

* For example, with a reference voltage of 5V, a 10-bit ADC

provides an accuracy of — = 4.9mlV

* While the parallel ADC 1s very fast, it suffers from the
problem of requiring :
« 2N 1 comparators
e 2N tesistors
to convert an analog signal into an N-bit digital
representation.

* This circuit will require a lot of space and power in order to
function, which are both drawbacks in an embedded
processing environment

The counting ADC

It functions by comparing the analog voltage V, to a voltage
level that 1s output from a Digital-to-Analog Converter
(DAC) circuit.

The level output from the DAC is controlled by the N -bit
digital input vector (by_1 bg).

When the ADC process begins, the initial N-bit vector 1s
cleared to (0...0) which will generate the lowest analog level

from the DAC

As long as V, is above the DAC output voltage, the
comparator output (c) will be 5 V.

This signal 1s used to enable the counter to increase the N -
bit vector by one when the next clock edge occurs.

Eventually, the N -bit vector will increase to the point that the
DAC output voltage 1s greater than Vy, at which time, ¢ will
go to 0, which will stop the counter.

In this way, the N -bit value used to control the DAC output
voltage is also the same value that represents V.

The drawback of the counting ADC is the time necessary
for the counter to lock onto the proper binary output vector.

It is often the case that ADCs found in embedded
processors do require some significant delay before the
digital value can be trusted

An N -bit counting ADC.

VRer O

Counter
b,
by
‘2‘ EI."lu"-:l
D/A
Converter

14

ADC PERIPHERAL

* In the case of the ATmega328P, there are six 10-bit ADCs
(note: there are eight 10-bit ADCs on some packages all of
which are found on Port C.

* For generic usage of the ADC port functionality, the

following steps should be addressed.

1. Register ADCSRA needs to be enabled, started, auto trigger enabled,
and an appropriate prescalar selected;

2. register ADCSRB needs to have the auto trigger source set to free
running, so the program can read the converted value of a low-
frequency sensor (which 1s often our application);

3. source selected, right or left justification selected, and the desired
ADC channel selected; register ADMUX needs to have a VREF

4. register DIDRO should have the input pin associated with the ADC
channel selected in ADMUX disabled.

15

Once the ADC is 1nitialized, the program can poll the ADC
output by reading the 16-bit ADC register which contains
the 10-bit result.

As the math implies, eight bits sit in one 8-bit register and
the remaining two bits are provided in the other register,
with six bits being unused

It turns out that the ADC hardware will not update the
ADC register until the ADCH portion is read out by itself,
or the entire 16-bit register is read out as a single unit.

So, if only eight bits of resolution are needed, the ADC
value can be left-justified in ADMUX and the high-order
byte may be read, as in the following code snip.

Advantages and Disadvantage of storing, processing and transmitting signals
digitally:

* Digital technology is more advanced and more powerful than analogue
technology.

* Digital signals are /ess sensitive to transmission noise than analogue signals.
It is easy to error-protect and encrypt digital signals so that digital
transmission can be made very secure.

* Digital signals of different types can be treated in a unified way and, provided
adequate decoding arrangements exist, can be mixed on the same channel.

* One disadvantage of digital communication is that it requires greater channel
bandwidth. This can be several times the bandwidth of an equivalent
analogue channel.

Sampling

* Sampling is carried out at discrete intervals of time Ts, where 7s is known as the
sample period. The number of samples per second or the sampling frequency fs in
Hz is equal to the reciprocal of the sample period, that is fs = 1/7s.

Signal “
amplitude Analogue signal

x(t)

T = Sample period
N =
. Tim:r
\B

* Nyquist's sampling theorem states that if the highest frequency component present
in the signal is f,, Hz then the sampling frequency must be at least twice this

value, that is f¢ = 2f,,in order that the signal may be properly re-constructed from
the digital samples.

u-Law Companding

* The p-law companding equations are different from those of the A -law,
though the resulting characteristic is very similar.

log (1 + x| /yes) oy
log(1 + 1) 5 '

* where U is a parameter which determines the level of compression and all of
the other symbols have the same meaning as before. A value of u = 255 is
often used.

x'[n] = x,,,,

* In a practical system, the companding equations are not used directly on each
input sample.

* Instead, the quantisation intervals are defined using a piecewise linear
approximation to the companding equations.

* As illustrated in figure for the A-law for the case of positive sample values,
The complete characteristic exhibits odd symmetry about the vertical axis.
The positive portion of the characteristic consists of 8 linear segments.

||

St——————————

[

I

I

1

l

[

1

|

|

|

|

|

|

f
Vier
2

-] \\\\-

<

=ih
|5
b

128 64 32 Input signal level

Sampling

Data conversion from analog to digital form or digital to
analog form is generally done continuously and
periodically.

Sampling—process of picking one value of a signal to
represent the signal for some interval of time.

Because ADC data conversion is generally a periodic
process, we will first analyze what happens when an
analog signal, x(t), is periodically and ideally sampled.

The ideal sampling process generates a data sequence
from x(t) defined only at the sampling instants,
whent =nT,_, where nis an integer and - ¥ <n<+¥ .

Sampling

X(t) Ye X*(t)
> © & =

T

5

ldeal sampling process ADC. T.—period between successive samples.

X(jw) X*(jo)=X({jo)® Py (jo)

7 =

Pr(t) =2 8(t —nT,)

* Impulse modulation equivalent to ideal sampling

Allased Signal

* If the sampling rate is not high enough, aliased
signal comes out.

Adequately
Sampled
Signal

Nyquist's Theorem

* To avoid aliasing, the sampling rate must
be greater than twice the maximum
frequency component in the signal to be
acquired.

Quantization

* Once the analog signal sample has been
converted to digital form, it is represented by a
digital (binary) number of a finite number of bits
(e.g. 12), which limits the resolution of the
sample (one part in 4096 for 12 bits). This
rounding-off of the digital sample is called
guantization.

Quantization

« E.g. an analog signal whose values range from
0 to +10V. We wish to convert this signal to
digital form and the required output is a 4-bit
signal.

* We know that a 4-bit binary number can
represent 16 different values, 0 to 15. Then, the
resolution of this conversion = 10 V/15 = 2/3 V.
So, an analog signal of O V will be represented
by 0000, 2/3 V will be represented by 0001.

Quantization

* From the above assumption, all the
sample numbers were multiples of the
basic increment—2/3 V.

* There is a question raised—what Is the
treatment when the conversion of numbers
that fall between these successive
Incremental levels.

Quantization

* While sampling is done in the time domain,
guantization is performed in the amplitude
domain.

* The process of digitization is not complete until
the sampled signal is reduced to digital
information.

* The sampled signal is still in analog form.
Therefore, an ADC quantizes it by picking one
iInteger value from a predetermined, finite list of
Integer values to represent each analog sample.

10

Quantization

* Normally, an ADC chooses the value
closest to the actual sample from a list of
uniformly spaced values. This rule gives
the transfer function of analog input-to-
digital output a uniform “staircase”
characteristic.

11

|deal linear transfer

H —
011 4+ 74
%
/ Ideal ADC transfer
010 + 7
3 001+ Z
8 /
g 000
5
-g Code transition / |‘_’
B 111 T~ Code width
o /! (1 LSB)
110+ L
/
101+ /i

/

100 + 74

1 L L L I L L 1 l
4 '3 -2 -1 0 1 2 3 4

Analog input voltage

e

Ideal ADC transfer

+1LSB + . Ideal linear transfer
% Oﬂ— \ K E\ ?\ \ \ f'\ J I!nherant quantization
§ | NN N N i N N\ error (+1/2 LSB)
-1LSB +

X 2 2 4 o 1 2 3 4
Analog input voltage
 The ideal 3-bit quantizer has 8 possible digital outputs. The bottom
graph shows the ideal transfer function (a st. line) subtracted from
the staircase transfer function. 12

Analog-to-digital converter (ADC)

 An analog-to-digital converter (ADC)
converts real-world signals (usually
voltages) into digital numbers so that a
computer can:
— acquire signals automatically,

— store and retrieve information about the
signals,

— process and analyze the information,
— display measurement results.

13

Types of ADCs

* There are 5 major types of ADCs:
— Flash (parallel) converters,
— Dual-slope, integrating converters,
— Successive-approximation converters,
— Tracking (servo) types,
— Dynamic range, floating point converters.

* The fastest ADCs are the flash converters. They
can convert 8 bits with a sampling period of less
than 1 ns. Such fast speed is useful for
measuring transient phenomena. E.g. Transient
events in particle physics and lasers.

15

Flash (parallel) converter

Since Flash ADCs (FADCs) is simple-structured, they
are fast.

A string of resistors between two voltage references
supplies a set of uniformly spaced voltages that span the
Input range, one for each comparator. The input voltage
IS compared with all of these voltages simultaneously.

Comparator outputs = 1 for all voltages below the input
voltage

Comparator outputs = O for all the voltages above the
Input voltage.

The resulting collection of digital outputs is called a
“‘thermometer code”.

16

Analog input

+Vr

e 1)
A .l'l

2" 1
comparators

=
o —AM—1—AA——1—AM

-\r

Thermometer-code to binary
code conversion logic

n-bit binary
output

A flash converter has 2"-1 comparators operating in parallel.

17

Flash converter (More Complicated example)

EP

V. *
Sét errange
output
+
7.5V, /8 C1 {>C
R/2 L
éR
N
Cc2
f) S, N -
/

3.5V, /

8

l
|

9]

|
(@}

A
i

\| T

i
:
]
¥

s D |||
e e -
et

o e 3-bit flash ADC

with binary output.

18

Integrating converter

* Integrating converters are used for low-
speed, high-resolution applications such
as voltmeters. They are conceptually
simple, consisting of an integrating
amplifier, a comparator, a digital counter,
and a very stable capacitor for
accumulating charge.

19

Integrating converter

* The most common integrating ADC In use
IS the dual-slope ADC. Its action Is
llustrated in the next slide.

20

Integrating converter

Analog input —\—-W

Control |=

Clock

Voltage reference ——e

L_»! Clock

Gate

Digital
counter

:> digita|
OUtput

* A dual-slope integrating converter uses a comparator to
determine when the capacitor has fully discharged.

21

Digital-to-analog converter (DAC)

« Adigital-to-analog converter (DAC) is an
iIntegrated circuit (IC) device which converts an
N bit digital word to an equivalent analog voltage
or current. It allows digital information which has
been processed and/or stored by a digital
computer to be realized in analog form.

 After digitalization, a staircase waveform can be
smoothed by a low-pass filter. In this way, an
analog output signal is reconstructed.

24

Digital-to-analog converter (DAC)

« At sampling instants, the difference between
DAC output and the analog input signal is called
a gquantization error.

* The quantization error of an ADC is equivalent
to % least significant bit (LSB).

25

Digital to Analog Conversion

A D/A Converter produces an analog voltage proportional
to the digital input.

Example:
D/A designed to output 0 to 10 volts.
. Input to D/A is an 8 bit digital value.
. Digital value 0 produces a 0 volt output.
« Digital value 1 produces a 1 x 10/256 volt ouput.
. Digital value 2 produces a 2 x 10/256 volt output.
. Digital value 255 produces a 255 x 10/256 volt output.

Typical 4-bit D/A Converter

|

Inputs in volts are —
welghted in the summing
amplifier to produce the
correaponding analog

voltage.

1x8 + Oxd + 1x2 + 1x1 = 11

+15 v

v R/8
] WS A —
vz R/4 Ti
0 %W i
—
V1 R/2 —
vo R 1+=0
1 | 0"V —

-15 v

Voue = =11 V

1 = - Vout/R

1 = vo/R + 2Vv1/R + 4v2/R + 8v3/R
= (8v3 + 4vz + 2v1 + vo) /R

- Vout/R = (8v: + 4vz + 2v1 4 vo) /R

Vout = = (Bv3y 4+ 4v2 4+ 2vl 4 wvo)

Parameters Affecting D/A
Converter Performance

Output Range

The voltage difference between the max and
min output voltages of the D/A.

Accuracy

Expressed as a percentage of the maximum
output voltage

Or as an error of the least significant bit
(e.g.,+1/2 LSB).

Expected amount of accuracy in actual output
based on digital input.

College of Electronics Engineering Embedded Systems
4th Year

Systems and Control Engineering
Department

Scervo Motors

How Do Servo Motors Work?

Servo motors have been around for a long time and are
utilized in many applications.

They are small in size but pack a big punch and are very
energy-efficient.

These features allow them to be used to operate remote-
controlled or radio-controlled toy cars, robots and
airplanes.

Servo motors are also used in industrial applications,
robotics, in-line manufacturing, pharmaceutics and food
services.

Now, let see how they work

* The servo circuitry is built right inside the motor unit and
has a positionable shaft, which usually 1s fitted with a gear

* 'The motor 1s controlled with an electric signal which
determines the amount of movement of the shaft.

* 'To fully understand how the servo works, we need to take a
look inside the servo motor.
* Inside there is a pretty simple set-up:
* Small DC motor Output Spline. Drive Gears
* Potentiometer -

Servo Case
Control Circut

e control circuit.

Potentiometer” Motor

* The motor 1s attached by gears to the control wheel.

As the motor rotates, the potentiometer's resistance changes, so the
control circuit can precisely regulate how much movement there 1s and in
which direction.

When the shaft of the motor is at the desired position, power supplied to
the motor 1s stopped. If not, the motor is turned in the appropriate
direction.

The desired position is sent via electrical pulses through the signal wire.

The motot's speed is proportional to the difference between its actual
position and desired position.
* So if the motor is near the desired position, it will turn slowly,
otherwise it will turn fast.
* Thisiscalled control.

How is the servo controlled?

* Servos are controlled by sending an electrical pulse of variable width,
or pulse width modulation (PWM), through the control wire.

* 'There is a minimum pulse, a maximum pulse, and a repetition rate.

* A servo motor can usually only turn 90° in either direction for a total
of 180° movement.

* The motot's neutral position is defined as the position where the servo
has the same amount of potential rotation in the both the clockwise or
counter-clockwise direction.

* The PWM sent to the motor determines position of the shaft, and
based on the duration of the pulse sent via the control wire; the rotor
will turn to the desired position.

* The servo motor expects to see a pulse every 20 milliseconds (ms) and the
length of the pulse will determine how far the motor turns.

* For example:
* 1.5ms pulse will make the motor turn to the 90° position.
* Shorter than 1.5ms moves it in the counter clockwise direction toward the
0° position
* Any longer than 1.5ms will turn the servo in a clockwise direction toward
the 180° position.

1N M)

Mrmum Pulse
= "Buse Width1 ms o
€0
el T
(| }
Neutral Postion ! /
~ “PuseWidth1.5ms -
(——.} 180
Maximum Pulse \ /

—-

“PuseWidth 2 ms

Variable Pulse width control servo position

When these servos are commanded to move, they will move to the
position and hold that position.

If an external force pushes against the servo while the servo is holding a
position, the servo will resist from moving out of that position. [This
consider as one of the most important features of the servo motor]
The maximum amount of force the servo can exert is called the torque
rating of the servo.

Servos will not hold their position forever though; the position pulse must
be repeated to instruct the servo to stay in position.

Exrror
Amplifier
Comparator . Motor Load
Varaible
Pulse Width to Output
[Voltage Converter
Control Signal Position Sensor

Types of Servo Motors

* There are two types of servo motors - AC and DC.

* AC servo can handle higher current surges and tend to be used in
industrial machinery.

* DC servos are not designed for high current surges and are
usually better suited for smaller applications.

(Generally speaking, DC motors are less expensive than their AC

counterparts.)

* These are also servo motors that have been built specifically for
continuous rotation, making it an easy way to get your robot
moving

* They feature two ball bearings on the output shaft for reduced
friction and easy access to the rest-point adjustment
potentiometer.

Servo Motor Applications

* Servos are used in radio-controlled airplanes to position control surfaces
like elevators, rudders, walking a robot, or operating grippets.

* Servo motors are small; have built-in control circuitry and have good
power for their size.

The learning objectives of this lecture are as follows:

To learn the basic characteristics of dc motors and their
control parameters

To understand the types and operating modes of dc
drives

To learn about the control requirements of four-
quadrant drives

To understand single phase DC drives

Solved example on Single Phase Drives

1- Introduction

Direct current (DC) motors have variable characteristics and are used extensively in variable-
speed drives. Dc motors can provide a high starting torque and it is also possible to obtain speed
control over a wide range. The methods of speed control are normally simpler and less
expensive than those of ac drives. Dc motors play a significant role in modern industrial drives.
Both series and separately excited dc motors are normally used in variable-speed drives, but
series motors are traditionally employed for traction applications. Due to commutators, dc
motors are not suitable for very high speed applications and require more maintenance than do
ac motors. With the recent advancements in power conversions, control techniques. and
microcomputers, the ac motor drives are becoming increasingly competitive with dc motor
drives. Although the future trend is toward ac drives, dc drives are currently used in many
industries. It might be a few decades before the dc drives are completely replaced by ac
drives. Controlled rectifiers provide a variable dc output voltage from a fixed ac voltage,
whereas a DC-DC converter can provide a variable dc voltage from a fixed dc voltage. Due to
their ability to supply a continuously variable de voltage controlled rectifiers and dc-dc
converters made a revolution in modern industrial control equipment and variable-speed drives,
with power levels ranging from fractional horsepower to several megawatts. Controlled
rectifiers are generally used for the speed control of dc motors, as shown in Figure la. The
alternative form would be a diode rectifier followed by DC-DC converter, as shown in Figure
1b. Dc drives can be classified, in general, into three types:

1. Single-phase drives 2. Three-phase drives 3. Dc-dc converter

I I * General arrangement for variable speed

o— ~ ¥ ¥ - —o e
‘ ‘ drive.
Ac -) g dé Ac
supply a/de Va Vi /ac supply
o B = — - —o

Controlled rectifier Diode bridge or
controlled rectifier

1 Power Source

Controller Power Motor [I] Process
Electronics Load
Converter

(a) Controlled rectifier-fed drive

. —o
Ac
ac supply Process

—o Control |«

Oo— ~ i~

Ac | e
supply 4/4c “/dce

o—

. 3 ; . Computer
Diode rectifier ~Dc-dc converter Diode bridge or !
controlled rectifier

(b) Dc—dc converter-fed drives

FIGURE.1 Controller rectifier- and dc-dc converter-fed drives.

Single-phase drives are used in low-power applications in the range up to 100 kW.Three-phase
drives are used for applications in the range 100 kW to 500 kW. The converters are also
connected in series and parallel to produce 12-pulses output. The power range can go as high as
1 MW for high-power drives. These drives generally require harmonic filters and their size
could be quite bulky.

2- BASIC CHARACTERISTICS OF DC MOTORS
1- Separately Excited Dc Motor

The equivalent circuit for a separately excited dc motor is shown in Figure .2

10

0l

Figure .2 Equivalent circuit of separately excited dc motors.
The equations describing the characteristics of a separately excited motor can be determined

The motor back emf, which is also known as speed voltage, is expressed as
eg = ka"f

The torque developed by the motor is
Td = ktifia
The developed torque must be equal to the load torque:

dw
Td:BW-I_]E-I_TL

Where

w = motor angular speed, or rotor angular frequency, rad/s.
B = viscous friction constant, N .m/rad/s.

Kv = voltage constant, VV/A-rad/s.

Kt = torque constant, which equals voltage constant, Kv.
La = armature circuit inductance, H.

Lf = field circuit inductance, H.

Ra = armature circuit resistance €.

Rf = field circuit resistance, €.

TL = load torque, N . m.

Under steady-state conditions, the time derivatives in these equations are zero and the steady-
state average quantities are

E,=K,Ifw 2
Va=R,I,+E,

Vo=Ryl,+K,I;w 3
Td - ktifia 4
Td = Bw + TL 5
The developed power is :
Pd = TdW 6

From Eq. (3), the speed of a separately excited motor can be found from:

Va_RaIa
w=—— 7
K, +

We can notice from Eq. (7) that the motor speed can be varied by (1) controlling the armature
voltage Va, known as voltage control; (2) controlling the field current If, known as field control;
or (3) torque demand, which corresponds to an armature current la, for a fixed field current If.
The speed, which corresponds to the rated armature voltage, rated field current, and rated
armature current, is known as the rated (or base) speed.

In practice, for a speed less than the base speed, the armature current and field currents

are maintained constant to meet the torque demand, and the armature voltage Va is varied

4

to control the speed. For speed higher than the base speed, the armature voltage is
maintained at the rated value and the field current is varied to control the speed.
However, the power developed by the motor 1 = torque * speed2 remains constant.
Figure.3 shows the characteristics of torque, power, armature current, and field current
against the speed.

b Tu- Pu

Torque, T,

Speed. @

Armature
current, i,

= Field current. i

Speed. w

Constant —,.|

Figure .3 Characteristics of separately excited motors.
2- Series-Excited Dc Motor
The field of a dc motor may be connected in series with the armature circuit, as shown in

Figure 4, and this type of motor is called a series motor. The field circuit is designed to
carry the armature current. The steady-state average quantities are

L=1;
o—>
T If
v[{‘vﬁ
FIGURE 4.,
Equivalent circuit of de series motors. 0

E,=K,,w 8

Vo= (RasR)I, +E, 9
Vo= (RasR)I, + Ky dp w 10
Ty = keifi,
T,=Bw+T, 11

The speed of a series motor can be determined from Eq.10

Vo— (Rg+ Ry,
K,I;

The speed can be varied by controlling the (1) armature voltage Va; or (2) armature
current, which is a measure of the torque demand. Equation (11) indicates that a series
motor can provide a high torque, especially at starting; for this reason, series motors are
commonly used in traction applications.
3- Operating Modes
In variable-speed applications, a dc motor may be operating in one or more modes: motoring,
regenerative braking, dynamic braking, plugging, and four quadrants. The operation of the
motor in any one of these modes requires connecting the field and armature circuits in different
arrangements, as shown in Figure 5. This is done by switching power semiconductor devices
and contactors.

12

Ay 3 Ay 1
1
R R, Rq
+ L + + Ly
— f 1 — Ry 4
-V, + R -V, =\ + - R,
— — — el M
f - g
Ey E, -
Ay F
Ay Py Separately excited motor Series motor
Separately excited motor Series motor (c) Dynamic braking
(a) Motoring o
Lo AR i Lty R r\’rry'li\ h A
I 1 F Iy
! ! Ry R,
R, M Ly R
N T Va - T Vi v -
. + . R - —
i Ly | i E, f E(™M
T Ve + T Vi a i b
- r Ry — - + +
& -
A, F Ay
Separately exeited motor Series motor
A 125 ‘ (d) Plugging

Ay
Separately excited motor

Series motor

(b) Regenerative braking

Figure 5 Operating modes.

Motoring. The arrangements for motoring are shown in Figure 5 a. Back emf Eg is less than
supply voltage Va. Both armature and field currents are positive. The motor develops torque to
meet the load demand.

Regenerative braking. The arrangements for regenerative braking are shown in Figure 5 b.
The motor acts as a generator and develops an induced voltage Eg. Eg must be greater than
supply voltage Va. The armature current is negative, but the field current is positive. The kinetic
energy of the motor is returned to the supply. A series motor is usually connected as a self-
excited generator. For self-excitation, it is necessary that the field current aids the residual flux.
This is normally accomplished by reversing the armature terminals or the field terminals.
Dynamic braking. The arrangements shown in Figure 5 c are similar to those of
regenerative braking, except the supply voltage Va is replaced by a braking resistance Rb. The
Kinetic energy of the motor is dissipated in Rb.

Plugging. Plugging is a type of braking. The connections for plugging are shown in Figure 5 d
. The armature terminals are reversed while running. The supply voltage Va and the induced
voltage Eg act in the same direction. The armature current is reversed, thereby producing
braking torque. The field current is positive. For a series motor, either the armature terminals or
field terminals should be reversed, but not both.

Four quadrants. Figure 6 shows the polarities of the supply voltage Va, back emf Eg, and
armature current la for a separately excited motor.

Speed 4

- +
=V, =7
+ _ +

E, E,
Vo< Eg | _® V, > E, | _#

Forward braking Forward motoring

Reverse motoring Rewverse braking Torque

"'u "’u
R, - Ry,

Vv 1
4

<}=

[Val = | E,] L F [v

-d'| = |","-¢-_3| =+ £

Figure 6 Conditions for four quadrants.

Single-Phase Drives

If the armature circuit of a dc motor is connected to the output of a single-phase Controlled
rectifier, the armature voltage can be varied by varying the delay angle of the converter =a. The
forced-commutated ac—dc converters can also be used to improve the power factor (PF) and to
reduce the harmonics. The basic circuit agreement for a single-phase converter-fed separately
excited motor is shown in Figure 7.

.l_
' C_ — :|
Single-phase I
ac Iy, X Single-phase
supply R ac supply
R —0

Figure 7.Basic circuit arrangement of a single-phase dc drive.

Depending on the type of single-phase converters, single-phase drives may be subdivided into:
1. Single-phase half-wave converter drives

2. Single-phase semiconverter drives

3. Single-phase full-converter drives

4. Single-phase dual-converter drives

The armature current of half-wave converter drives is normally discontinuous. This type of
drive is not commonly used . A semiconverter drive operates in one quadrant in applications up

to 1.5 kW. The full converter and dual drives are more commonly used.

1- Single-Phase Half-Wave Converter Drives

Figure 8 shows a single-phase half-wave converter drive used to control the speed of
separately-excited motor. This d.c. drive is very simple, needs only one power switch and one
freewheeling diode connected across the motor terminals for the purpose of dissipation of
energy stored in the inductance of the motor and to provide an alternative path for the motor
current to allow the power switch to commutate easily.

!

V,

V
= f(l%—cosaf)

OSCZJ‘-SIZ'

Figure 8 a single-phase half-wave converter drive

2- Single-Phase Semiconverter Drives

A single-phase semiconverter feeds the armature circuit, as shown in Figure 9a. It is a one-
quadrant drive, as shown in Figure 9b, and is limited to applications up to 15 kW. The converter
in the field circuit can be a semiconverter . The current waveforms for a highly inductive load

are shown in Figure 9c.

Y .|"”
Iq
1'_‘.
- >
!
}r.li_-_g_
m+ oy, 2
0 =
o,y ™
fd .
A la
a
Iq
s I, 0 = !
o i T+ o 2

(b) Quadrant (c) Waveforms

Figure 9. Single-phase semiconverter drive.

With a single-phase semiconverter in the armature circuit, the average armature voltage is can
given by

Vo=-""(l+cosa,) for0=a,=m 13
With a semiconverter in the field circuit, gives the average field voltage as
V!'H .
Vi=— (1 +cosey) for0=aoy=m 14

10

3- Single-Phase Full-Converter Drives.
The armature voltage is varied by a single-phase full-wave converter, as shown in Figure 10a. It

Is a two-quadrant drive, as shown in Figure 10b, and is limited to applications up to 15 kW. The
armature converter gives +Va or -Va, and allows operation in the first and fourth quadrants.
During regeneration for reversing the direction of power flow, the back emf of the motor can be
reversed by reversing the field excitation. The converter in the field circuit could be a semi-, a
full, or even a dual converter. The reversal of the armature or field allows operation in the
second and third quadrants. The current waveforms for a highly inductive load are shown in

Figure 10c for powering action.

wl

(a) Circut §

- wf

o
a I

T a
1 a

i

(h) Quadrant (¢) Waveforms

Figure 10 Single-phase full-converter drive.

With a single-phase full-wave converter in the armature circuit the average armature voltage is
given by:

2V, 15

V, COS « for0 =oq, =
T

11

With a single-phase full-converter in the field circuit,

_ 2V

i

Vi

cosay for0 =oar=m 16

4- Single-Phase Dual-Converter Drives
Two single-phase full-wave converters are connected, as shown in Figure 11. Either converter 1

operates to supply a positive armature voltage, Va, or converter 2 operates to supply a negative
armature voltage, -Va. Converter 1 provides operation in the first and fourth quadrants, and
converter 2, in the second and third quadrants. It is a four-quadrant drive and permits four
modes of operation: forward powering, forward braking (regeneration), reverse powering, and
reverse braking (regeneration). It is limited to applications up to 15 kW. The field converter

could be a full-wave, a semi-, or a dual converter.

Converter I A; Converter 2 F,
4

Y

L b
R a L
Ve) 4
o] Vo " R;
A Tx
o A; .5 Fj

Figurell Single-phase dual-converter drive.

12

If converter 1 operates with a delay angle of aal:

2V,) . 17
Vv, = COS ™, forO = o, = 77
T

If converter 2 operates with a delay angle of 0a2,

2V,
Vv, = —. COs o for0 = o, = 77 18
With a full converter in the field circuit
2V, .)
Vi = T COs o for O = oy = ar 19 -

13

1- Example 14.3 Finding the Performance Parameters of a Single-
Phase Semiconverter Drive[2] p 714.

The speed of a separately excited motor is controlled by a single-phase semiconverter in
Figure 14.12a. The field current, which is also controlled by a semiconverter, is set to the
maximum possible value. The ac supply voltage to the armature and field converters is one phase,
208 V.60 Hz. The armature resistance is R, = 0.25 (). the field resistance is Ry = 147 {), and the
motor voltage constant is K, = 0.7032 V/A rad/s. The load torque is 7; = 45 N +m at 1000 rpm.
The viscous friction and no-load losses are negligible. The inductances of the armature and field
circuits are sufficient enough to make the armature and field currents continuous and ripple free.
Determine (a) the field current [7 (b) the delay angle of the converter in the armature circuit

and (c) the input power factor of the armature circuit converter.

Solution
V. =208V,V, = V2 x28=20416V,R, = 0250, Re=1470,T;=T, = 45N'm, K=
0.7032 V/A rad/s, and @ = 1000 7/30 = 104.72 rad/s.

a. From Eq. (14.19), the maximum field voltage (and current) is obtained for a delay
angle of ay = 0 and

Vi = V; (1 + cosay) V= 2:’” 2 194'16 = 18727V
The field current is
f%‘ % = 1274 A
b. From Eq. (14.4), I, = K/,
li b 5023 A

]: = p—
‘ Kyly 07032 X 1274

14

From Eq. (14.2),

E, = Kywlp = 0.7032 X 104.72 X 1.274 = 93.82V

From Eq. (14.3), the armature voltage1s V., = R, + E,

V. =09382 + ILR, = 93.82 + 50.23 X 0.25 = 93.82 + 12.56 = 106.38 V
From Eq. (14.18).V, = = (294.16/m) X (1 + cos a,) and this gives the delay
angle as o, = 82.2°. V? (1 + cos a,)

If the armature current 1s constant and ripple free, the output power 1is
P, = V. I,=106.38 X 50.23 = 5343.5 W. If the losses in the armature converter are
neglected, the power from the supply 1s P, = P, = 5343.5 W. The rms input current
of the armature converter, as shown in Figure 14.12, 1s

; (’ '1'r[2 dﬂ)'lfz _ (’H _ aa)l;‘?
sa) a T

02’;(—180 — 82'2)”2 = 37.03 A
- 180 T

h

and the input volt-ampere (VA) rating 1s VI = V[, = 208 X 37.03 = 7702.24. As-
suming negligible harmonics, the input PF 1s approximately

P, 5343.5 :
— pr— — . g <
PE VI 770224 0.694 (lagging)

V2 (1 + cos 82.2°) | ,
PF = [(52.2)]'" = 0.694 (lagging)
w(m — 82. <

The input power factor is given by [12]

15

V2(1 + cosa)

PF =
\/q-r(frr + cosa)

The speed of a separately excited dec motor 1s controlled by a single-phase full-wave converter
in Figure 14.13a. The field circuit is also controlled by a full converter and the field current is
set to the maximum possible value. The ac supply voltage to the armature and field converters
is one phase, 440 V, 60 Hz. The armature resistance is R, = 0.25 {1, the field circuit resistance is
Ry = 175 (), and the motor voltage constant is K, = 1.4 V/A rad/s. The armature current corre-
sponding to the load demand is [, = 45 A. The viscous friction and no-load losses are negligible.
The inductances of the armature and field circuits are sufficient to make the armature and field
currents continuous and ripple free. If the delay angle of the armature converter is o, = 60° and
the armature current is [, = 45 A, determine (a) the torque developed by the motor T, (b) the
speed w, and (c) the input PF of the drive.

Solution

Vo=440V, V, = V2 X 440 = 622.25 V., R, = 0251, Rf =175Q, a, = 60°, and K, = 14
V/A radls.

a. From Eq. (14.21), the maximum field voltage (and current) would be obtained for a
delay angle of af = 0 and

2V, Vi 2 X622.25 _
Vy=="cosqy V= m_ =1396.14V
m m

The field current is

V3014
PR 17

=226A

1, = K,

16

17

From Eq. (14.4), the developed torque is
T, =T, = KI{l, =14 X226 X45 = 1424 N-m

From Eq. (14.20), the armature voltage 1s

2V, % 622.25
cos 60° = 2202225 L 60° = 198.07 V
T 'n

V, =
The back emf 1s
EF, =V, — I,R;, = 198.07 — 45 X< 0.25 = 18682V

From Eq. (14.2). the speed is

_Eg 186.82
K,y 1.4 %226

L))

= 59.05 rad/s or 564 rpm

Assuming lossless converters, the total input power from the supply is

P = VI, + Vil = 198.07 X 45 + 396.14 X 226 = 98084 W

The input current of the armature converter for a highly inductive load is shown in
Figure 14.13b and its rms value is [, = I, = 45 A. The rms value of the input cur-
rent of field converter is [y = Iy = 2.26 A. The effective rms supply current can be
found from

L= (B+)"

= (45% + 2.26%)12 = 45.06 A

and the input VA rating, VI = V[, = 440 X 45.06 = 19,826.4. Neglecting the ripples,
the input power factor is approximately

P 9808.4 .
PF = —L — — (.495 (lage
VI 198264 (lagging)

From Eq. (10.7),

PF = (&) Cos a, = (2\@) cos 60° = 0.45 (lagging)

i m

[f the polarity of the motor back emf in Example 14.4 1s reversed by reversing the polarity of
the field current, determine (a) the delay angle of the armature circuit converter, ,, to maintain
the armature current constant at the same value of [, = 45 A; and (b) the power fed back to the
supply due to regenerative braking of the moto}r.

Solution

a. From part (a) of Example 144, the back emf at the time of polarity reversal is
E, = 186.82V and after polarity reversal , = ~180.82 V. From Eg. (14.3),

V,= E, + [,R, = - 18682 + 45 X 025 = ~17557V

From Eq. (14.20),

w,) X 62205
Vo= M eosa, = o s, = ~17557V
) m

and this yields the delay angle of the armature converter as a, = 116.31°.

b. The power fed back to the supply is P, = VI, = 175.57 X 45 = 7900.7 W.

Microcomputer Control of Dc Drives

The analog control scheme for a converter-fed dc motor drive can be implemented
by hardwired electronics. An analog control scheme has several disadvantages: nonlinearity of
speed sensor, temperature dependency, drift, and offset. Once a control
circuit is built to meet certain performance criteria, it may require major changes in the
hardwired logic circuits to meet other performance requirements.

18

A microcomputer control reduces the size and costs of hardwired electronics,
improving reliability and control performance. This control scheme is implemented
in the software and is flexible to change the control strategy to meet different performance
characteristics or to add extra control features. A micro-computer control
system can also perform various desirable functions: on and off of the main power supply, start
and stop of the drive, speed control, current control, monitoring the control
variables, initiating protection and trip circuit, diagnostics for built-in fault finding, and
communication with a supervisory central computer. Figure 14.38 shows a schematic
diagram for a mThe speed signal is fed into the microcomputer using an analog-to-digital (A/D)
converter. To limit the armature current of the motor, an inner current-control loop is
used. The armature current signal can be fed into the microcomputer through an A/D
converter or by sampling the armature current. The line synchronizing circuit is required
to synchronize the generation of the firing pulses with the supply line frequency.
Although the microcomputer can perform the functions of gate pulse generator and
logic circuit, these are shown outside the microcomputer. The pulse amplifier provides
the necessary isolation and produces gate pulses of required magnitude and duration.
A microprocessor-controlled drive has become a norm. Analog control has become
almost obsolete. icrocomputer control of a converter-fed four-quadrant dc drive.

19

The speed signal is fed into the microcomputer using an analog-to-digital (A/D) converter. To
limit the armature current of the motor, an inner current-control loop is used. The armature
current signal can be fed into the microcomputer through an A/D converter or by sampling the
armature current. The line synchronizing circuit is required to synchronize the generation of the
firing pulses with the supply line frequency. Although the microcomputer can perform the
functions of gate pulse generator and logic circuit, these are shown outside the microcomputer.
The pulse amplifier provides the necessary isolation and produces gate pulses of required
magnitude and duration. A microprocessor-controlled drive has become a norm. Analog control
has become

almost obsolete.

Microcomputer

————— B synchronizing } acsupply
1 circuit

Line }_ Single-phase

I npyap s S T T == =1 R
L feneration | Timing
| L ut:rrc.ITt : R S Iﬂ‘_'gﬂf
1 controller [1 —
b e) : Four- Pulsc
_ :::.,---"'I quadrant : l amplificrs
: Current 1 1 logic
| _comparator ;L. !]
S S, SSp A]
1 1 e e e -] [} Mobtor

'

| Speed | A

! controller ! current

Spocd L ___ - [“— Speed [!
: signal

—

Speed

reference, wr

Start'stop

command

Schematic diagram of computer-controlled four-quadrant dc drive.

20

College of Electronics Engineering Embedded Systems
4th Year

Systems and Control Engineering
Department

Interrupt Processing

Introduction

* Any time a program needed to retrieve(call back) an input
signal, it did so by repeatedly checking the desired

information source, a process called polling. For Example:

,.-’;/\ = ameanaaa Main Loop
II."f / _h__* -- Function A
|'I N
|| s N

< -- Function B

* Fach block in the figure 1s meant to indicate a single
instruction, and the solid directional lines show the path
that the Program Counter (PC) follows.

As can be seen in the example, the program executes Main Loop
which makes two different function calls, one to Function A and
one to Function B.

While polling works fine, there are a couple of reasons to avoid
them.
* First, performance can suffer in more complicated embedded
systems which require input from many sources.

* (For example, a high-tier cell-phone has to monitor an
entire key-pad, menu buttons, ambient light sensor,etc.)

* When software 1s written such that the processor is
constantly polling all inputs for activity, it will never have a
chance to perform other operations that generally control
the behavior of the device.

Second, an important feature for many embedded systems is
to periodically power down hardware, a process called
sleeping
* When a processor sleeps, it is able to conserve power,
which leads to longer portable battery lives.

* Many environments that involve polling don’t allow the
microprocessor to sleep at all, resulting in batteries
draining much faster.

* An alternative version to the polling example 1s that
Function A has been moved from the deterministic
pathway of the polling software to an isolated function
that gets called in response to an interrupt condition.

/ - Main Loop

+ - - Function B

_/ ' | l«-- ISR Begin

ISR

" Function A

| [« -- ISR End

(a) Program with ISR

* Interrupts are signals used to notity the CPU that some new
event has just occurred.

* Because most interrupt sources occur outside the CPU
boundary, interrupts may be thought of as random signals that
can occur at any point during the otherwise predictable low of
the primary algorithm.

* When an interrupt occurs, the CPU stops whatever it 1s doing
and jumps to an associated Interrupt Service Routine (ISR).

Interrupt Service Routine (ISR)

* Is a special function written to handle the fact that the
interrupt signal occurred.

/‘5—_ Main Loop

I."
E o, |
l — Bk 4 - Function B
?s\ | I
Rt ISR Begin
—7—_. ISR
Function A

— Je.- ISR End

(b) ISR called from anywhere

Interrupt Service Routine (ISR)

* In the polling example, Function A always occurred at the
same time within the loop of processing.

* By contrast, the new example algorithm has moved
Function A, processing outside the main algorithm’s path,
reducing the work constantly performed by the main
program.

* The drawback is the added complexity of the fact that now
Function A can be called at any time, and so software needs
to be written with this behavior in mind.

CONTEXT

Typically, the software context may be specified by the set
of CPU registers, including the PC (Program Counter)
which points to the current assembly instruction.

For the example interrupt-based algorithm to work propertly,
it is certainly necessary that Main Loop function as it did in
the polling case.
* This requires the current context to appear as though
each assembly instruction is executed in the intended
sequence.

Interrupt processing i1s made possible by saving the context
on ISR entry and restoring the context when the ISR
completes.

* For example, suppose an interrupt occurs at the third (machine)
instruction of Main Loop, as shown in figure

/>~+ Main Loop
W =
, < -- Function B
Ar—\.-ﬁ"/-‘{-
b
[J«-- ISR Begin
* ISR
IS‘].?{ Function A
Context
Storage
L |

[J=-- ISR End
(a) ISR 1s called

* As aresult, the address of the fourth (machine) instruction is
stored as part of the current context.

10

Then, any CPU registers used within Function A are also saved
in memory before they are overwritten by Function A’s
instructions.

After Function A finishes, the entire context is restored and the
PC 1s reset to the fourth instruction of the Main program, as
shown in Fig:

e Main Loop
q.- -‘."I
W
|IIH : < - - Function B
\ E\F
\J/ ' [l=-- ISR Begin
: y . ISR
ISR . Function A
Context
Storage

s Je-- ISR End

(b) ISR finishes 11

* The CPU begins executing the fourth instruction of Main
Loop with CPU registers appearing as though the third
instruction just finished because the context was saved prior to
entering the ISR and then restored after the ISR completed.

ISR and main task communication

* 'The final general topic that needs attention is the method for
an ISR to communicate with the main program.

* That is, the ISR 1s not a direct function call, so there are no
parameters that can be passed in, nor is there a return
statement that 1s able to pass back any values.

* Therefore, the only way for an ISR to communicate with the
rest of the program is to use shared memory, such as

global variables.

12

* However, because an interrupt can occur at any time, care must

be taken when reading or writing variables that are accessed
within ISRs.

As seen in the figure, the reason 1s because individual C
instructions are often composed of several machine
instructions, especially when dealing with 16- and 32-bit

variables.
< - ... Atomic Machine
il Instructions
T~
C Instruction Executing Instruction

when Interrupt occurs

13

* So, it is likely the main program will be interrupted part-
way through variable access.

* The associated ISR could change the contents of
the variable before it returns to the previous
location.

* At that time, the main program would continue
accessing the variable, which 1s now different.

* The result is that the main program operates on a variable
value that 1s half correct and half incorrect.

* In order to mitigate these problems, any memory that is
shared between ISRs and the main program need to be
protected.

* The protection necessary is usually in the form of
turning off global interrupts before accessing the shared
variable.

* When finished, the global interrupts need to be restored to
their previous state.

College of Electronics Engineering Embedded Systems
4th Year

Systems and Control Engineering
Department

Interrupt Processing

Example of interrupts

const byte LED = 13;
const byte BUTTON = 2;

// Interrupt Service Routine (ISR)
vold switchPressed ()
1
if (digitalRead (BUTTON) == HIGH)
digitalWrite (LED, HIGH);
else
digitalWrite (LED, LOW);
+ // end of switchPressed

volid setup ()
1
pinMode (LED, OUTPUT); // so we can update the LED
digitalWrite (BUTTON, HIGH); // internal pull-up resistor
attachInterrupt (digitalPinToInterrupt (BUTTON), switchPressed, CHANGE);
+ // end of setup

void loop ()

1
// loop doing nothing

¥

This example shows how, even though the main loop is
doing nothing, you can turn the LED on pin 13 on or off, if
the switch on pin D2 is pressed.

To test this, just connect a wire (or switch) between D2 and
Ground. The internal pull-up (enabled in setup) forces the
pin HIGH normally.

When grounded, it becomes LOW. The change in the pin 1s
detected by a CHANGE interrupt, which causes the
Interrupt Service Routine (ISR) to be called.

In a more complicated example, the main loop might be
doing something useful, like taking temperature readings,
and allow the interrupt handler to detect a button being
pushed.

DigitalPinToInterrupt function

* To simplify converting interrupt vector numbers to pin
numbers you can call the function digitalPinTolnterrupt,
passing a pin number.

* It returns the appropriate interrupt number.

* For example, on the Uno, pin D2 on the board is interrupt 0
(INTO_vect from the table below).

* Thus these two lines have the same effect:

attachInterrupt (@, switchPressed, CHAMNGE); /f that is, for pin DZ
attachInterrupt (digitalPinToInterrupt (2), switchPressed, CHANGE};

* However the second one is easter to read and more portable
to different Arduino types.

Available interrupts

Below is a list of interrupts, in priority order, for the Atmega328:

Reset

External Interrupt Request 8
External Interrupt Request 1
Pin Change Interrupt Request
Pin Change Interrupt Request
Pin Change Interrupt Request
Watchdog Time-out Interrupt
Timer/Counter2 Compare Match
Timer/Counter2 Compare Match
Timer/Counter2 Owverflow
Timer/Counterl Capture Event
Timer/Counterl Compare Match
Timer/Counterl Compare Match
Timer/Counterl Overflow
Timer/Counter@ Compare Match
Timer/Counter@ Compare Match
Timer/Counter® Overflow

SPI Serizl Transfer Complete
USART Rx Complete

USART, Data Register Empty
USART, Tx Complete

ADC Conversion Complete
EEPROM Ready

Analog Comparator
2-wire Serial Interface
Store Program Memory Ready

(pin D2)

(pin D3)
@ (pins D8 to D13)
1 (pins A® to AS5)
2 (pins D@ to D7)

A
B

(12C)

(INT® wect)
(INT1_wect)

(PCINT® wect)
(PCINT1 wect)
(PCINT2 wvect)
(WDT_wvect)
(TIMER2_COMPA_wect)
(TIMER2_COMPB_wect)
(TIMER2_OVF_vect)
(TIMER1_CAPT vect)
(TIMER1_COMPA_wect)
(TIMER1_COMPB_wect)
(TIMER1_OWF _wect)
(TIMER® COMPA_wvect)
(TIMER® COMPE_wvect)
(TIMER® OWF_wvect)
(5PI_STC _wect)
(USART_RX_vect)
(USART_UDRE_wvect)
(USART_TX_wvect)
(ADC_wvect)
(EE_READY wect)
(ANALOG_COMP vect)
(TWI_wvect)
(SPM_READY wect)

Summary of interrupts

The main reasons you might use interrupts are:

* To detect pin changes (eg. rotary encoders, button presses)

* Watchdog timer (eg. if nothing happens after 8 seconds,
interrupt me)

* Timer interrupts - used for comparing/overflowing timers

* SPI data transfers

* I2C data transfers

* USART data transfers

* ADC conversions (analog to digital)

* EEPROM ready for use
* Flash memory ready.

The "data transfers" can be used to let a program do something
else while data 1s being sent or received on the serial port, SPI
port, or I12C port.

Wake the processor

External interrupts, pin-change interrupts, and the
watchdog timer interrupt, can also be used to wake the
processor up.

This can be very handy, as in sleep mode the processor can
be configured to use a lot less power (eg. around 10 micro-
amps).

A rising, falling, or low-level interrupt can be used to wake
up a gadget (eg. if you press a button on it), or a "watchdog
timer" interrupt might wake it up periodically (eg. to check
the time or temperature).

Pin-change interrupts could be used to wake the processor if
a key is pressed on a keypad, or similar.

The processor can also be awoken by a timer interrupt (eg. a
timer reaching a certain value, or overflowing) and certain
other events, such as an incoming 12C message.

Enabling / disabling interrupts

* The "reset" interrupt cannot be disabled. However the other
interrupts can be temporarily disabled by clearing the
interrupt flag.

Enable interrupts
* You can enable interrupts with the function call "interrupts”

n_:nq: .
or "sei" like this: interrupts (); // or ...

sei (); // set interrupts flag

Disable interrupts
* If you need to disable interrupts you can "clear" the interrupt
flag like this:

noInterrupts ()}; J/ or ...
cli {); /i clear interrupts flag

College of Electronics Engineering Embedded Systems
4th Year

Systems and Control Engineering
Department

Counters & Timers

Existing Counter Use

« The millis() and micros() functions. [functions use timer 0)
« The analogWrite() function [Used with PWM].

e The Tone library.

* The Servo library [timerl].

TIMERS/COUNTERS

timer | bits | channel | 2009/ Uno pin t Mega pin
timero 8 A 6 13
timero 8 B 5 4
timerl | 16 A 9 11
timerl 16 B 10 12
timer2 | 8 A 11 | 10
timer2 8 B 3 9
timer3 16 A 5
timer3 16 B 2

16 A/B XX

Initial Timer State

e Timers 1,2 set ready for analogWrite() PWM use.

« Set to 8-bit PWM phase-correct®, with the clock pre-scaled
to the system clock divided by 64.

« Timer0 set to fast PWM for use with the millis()/ micros()

Control Registers

« Timer/Counter Control Register A: TCCRnA
Timer/Counter Control Register B: TCCRnB
Timer CouNT: TCNTn

Output Compare Register A: OCRnA

Output Compare Register B: OCRnB

Timer 0

« The timer most used in applications.

» Can be used as:
« simple counter [Used internally]
 frequency generator (including PWM)
 External source clock counter

« Able to generate “tree” Interrupts. *

What do the Registers do?

Set up the Mode of the timer/counter.

Set up the various parameters of the timers/counters.
Provide output waveforms.

Provide options for comparing the waveform values with
other values.

Note: a timer is a counter with a clock input.

PWM Modes *

PWM MODES
Fast PWM Phase Correct PWM

= — — -

falling edge periodic pulse center periodic

Timer/Counter Modes *

Mode Description

|
Normal ‘counter counts up to Max (0xFF), then resets to 0.

Phase Correct = PWM that is sychronized so that it is symmetric

PWM with respect to the timing clock
the output of the counter is continuously
Clear Timer on , :
compared with an Output Compare Register. A
Compare (CTC) ;
match can be used to generate an interrupt
Fast PWM PWM that goes as fast as the clock will allow. Not

synchronized with the timing clock.

Timer/Counter 0 Control Register A*

TCCROA

e The COMOXx bits:

compare pins OCOA,B.
* The WGMOn bits.

compare pins OCOA,B

2y ¢S COMOA1 COMeA© COMeBl1 COMeBo - - WGMO1 = WGMO®

R/W | R/W R/W R/W R R R/W R/W

0 (%) 0 (%) 0 (% 0 (%)
PC6 L]1 28 |1 PC5
] PDO [2 27 [pca
control the behavior of the output po1 O 3 26 [1pc3
PD2 [} 4 25 1 PC2
PD3 []5 24 |1 PC1
PD4 16 23 L] PCo
vcc L7 22 |1 GND
control the function of the output Gio [8 21 FEARES
PB6 L}9 20 L] AVCC
PB7 L} 10 19 L1 PB5
(PCINT21/0CeB/T1) PD5 [}11 18 |1 PB4
(PCINT22/0COA/AING) PD6 []12 17 L1 PB3
PD7 L]13 16 |1 PB2
PBO []14 15 L1 PB1

T/C0O Waveform Generation Mode Bits (WGMO02:0)*

TOP | OCRO
000 Normal OxFF immediate OxFF
001 Phase Correct PWM = OXFF on TOP 0x00
01 Clear Timer on Compare | . .

0 match (CTC) | OCROA | immediate 7
011 Fast PWM OxFF Ox00 OxFF
100 Reserved | - . -

101 Phase Correct PWM = OCROA on TOP 080
110 Reserved : - =
j 111 i Fast PWM ' OCROA Ox00 TOP

10

Compare Output Mode T/C 0 Bits (COMOXx)
Normal Mode

COMeA comeB
bits i Normal, non PWM bits | Normal, non PWM

oo Normal port operation, oo Normal port operation,
‘0COA disconnected 0CeB disconnected

o1 Toggle 0COA on Compare o1 Toggle 0COB on Compare
Match | Match

10 Clear 0COA on Compare 10 Clear 0COB on Compare
Match Match

11 Set 0OCOA on Compare Match 11 Set0COB on Compare Match

Normal Mode: WGMO = 000

11

Compare Output Mode T/C 0
Bits (COMOx) Fast PWM

COMe

bits

WGMO

Under Fast PWM

00

01

01

10

11

X11

011

111

X11

X11

Normal operation, 0COx disconnected

Normal operation, 0COA disconnected,

0COB reserved

0COA toggles on Compare match,

0COB reserved

Clear 0COx on Compare Match,

Set 0COx at ©x00, (non-inverting mode)

Set 0COx on Compare Match,
Clear 0COx at 0x00, (inverting mode)

12

Compare Output Mode T/C 0 Bits Phase-Correct
PWM

COoMo WGMe bits Under Phase-Correct PWM

00 X01 Normal operation, 0COx disconnected

01 001 Normal operation, OCOA disconnected,
0COB reserved

01 101 0COA toggles on Compare match,
0COB reserved

10 X01 Clear 0C@x on Compare Match upcounting,
Set 0COx on Compare Match downcounting

11 X01 Set 0COx on Compare Match upcounting,

Clear 0CoOx on Compare Match downcounting

13

Timer/Counter 0 Control
Register B

¢ FOCOA FOCOB - - WGMe2 Cse2 CSe1 CSee

(2]
(S
[« T & , , A . , 4 .
8 R/W? W W R R R/W R/W R/W R/W
Ll ocrault R) @ | e | o) e o
. . N/
« The FOCOX bits: pce 01 28 [pes
PDO L] 2 27 L1 PC4
Force output compare for Aor B L o
for non-PWM modes. P02 L4 25 [1PC2
. PD3 5 24] PC1
 The CSOn bits. PD4 6 23 [J Pco
. vcc [} 7 22 |1 GND
Clock Select bits for the clock a0 O s 21 ARER
PB6 L}]9 20 |] AVCC
Source PB7 10 19 L1 PB5
(PCINT21/0C0B/T1) PDS5 L]11 18 | 1 PB4
(PCINT22/0COA/AING) PD6 []12 17] PB3
PD7 []13 16 [] PB2
PBO 14 151 PB1

14

Timer 0 Clock Select

CS Description frequency | period ipulses/]ms

000 No source (stopped) 0 — —
| 001 'Clk | 16MHz '0.0625}18- 16,000
1010 clk . 2MHz | 05us | 2,000
o011 'clk | 250kHz 4.0us | 250
1100 cIk 625kHz 160ps = 625
i 101 lclk | 15.625kHz 64.0us 15.625

110 External source on TO pin.

111 External source on T0 pin.

15

Program Example

» Create a 500ppr quadrature encoder simulator that outputs
quadrature signals out on pins from timer O.
« Assume the rotation is a constant speed of 10rev/sec.

emmitters detectors
De— . | cnees——

o211 TTTT s A

16

Program Example

« A500ppr quadrature encoder at a constant speed of
10rev/sec gives (500ppr)(10rev/sec) = 5000 pps (5.0 kHz).

« This corresponds to a period of 0.2ms, that toggles every
0.1ms.

A A
I q =
0.2ms
B A " 0.lms| 0.Ims|
. > [
0.2ms

17

Program Example

« The clock select determines how many clock pulses every
0.1ms.

« Clock 0 has outputs on Arduino pins 5 & 6. (PORTD
pins 5 & 6)

CS Description frequency period | clks/0.1ms
001 clk 16MHz 0.0625us 1,600
010 .clk | 2MHz | 0.5us | 200
011 dlk 250kHz 4.0pus 25
100 4clk 62.5kHz 16.0us | 6.25

101 clk 15.625kHz 64.0us 1.5625

18

Timing Diagram

255
200 OCROA
150 |
(timer O resets when
count hits OCR0OA) 100 OCROB
50 |

A
|

© ©.05 0.1 0.15 0.2 0,25 0.3 0,35 0.4 0.35 0.5ms

(toggles whentimer © AOC@GA

0 hits OCROA) |

A0C@B

| | |
toggles when timer %)
(togg | |—

0 hits OCROB)

19

College of Electronics Engineering Embedded Systems
4th Year

Systems and Control Engineering
Department

Counters & Timers

Program Example

» Create a 500ppr quadrature encoder simulator that outputs
quadrature signals out on pins from timer O.
« Assume the rotation is a constant speed of 10rev/sec.

emmitters detectors
De— . | cnees——

o211 TTTT s A

Program Example

« A500ppr quadrature encoder at a constant speed of
10rev/sec gives (500ppr)(10rev/sec) = 5000 pps (5.0 kHz).

« This corresponds to a period of 0.2ms, that toggles every
0.1ms.

A A
I q =
0.2ms
B A " 0.lms| 0.Ims|
. > [
0.2ms

Program Example

« The clock select determines how many clock pulses every
0.1ms.

« Clock 0 has outputs on Arduino pins 5 & 6. (PORTD
pins 5 & 6)

CS Description frequency period | clks/0.1ms
001 clk 16MHz 0.0625us 1,600
010 .clk | 2MHz | 0.5us | 200
011 dlk 250kHz 4.0pus 25
100 4clk 62.5kHz 16.0us | 6.25

101 clk 15.625kHz 64.0us 1.5625

Timing Diagram

255
200 OCROA
150 |
(timer O resets when
count hits OCR0OA) 100 OCROB
50 |

A
|

© ©.05 0.1 0.15 0.2 0,25 0.3 0,35 0.4 0.35 0.5ms

(toggles whentimer © AOC@GA

0 hits OCROA) |

A0C@B

| | |
toggles when timer %)
(togg | |—

0 hits OCROB)

Registers & Parameters

OCROA: 200
. OCROB: 100

. COMOA: 01 (TCCROA)

. COMOB: 01 (TCCROA)

- WGMO0: 010 (TCCROA and TCCROB)
. CS: 010 (TCCROB)

Program Example

//Quadrature encoder simulator

void setup()

{
PORTD &= 0b10011111; //set pins 5,6 to zero
DDRD |=(1<<6)|(1<<5); //set pins 5,6 as outputs.

//Initialize and setup the timer in CTC mode
//and set pins PD5 and PD6 (OCOA, 0COB) to toggle

TCNTO=0; //initialize the timer O value
OCROA = 200; //Set TOP value to OCROA.
OCROB = 100; //This TOP value determines phase of B

TCCROA |= (1<<COMPAQ) | (1<<COMOBO) | (1<<WGMO1);//WGMO: ©10
TCCROB|=(1<<CS0@1);//CS: 010

}

void loop()

{

}

PWM Pins

(PCINT14/RESET) PC6
(PCINT16/RXD) PDO
(PCINT17/TXD) PD1
(PCINT18/INTO) PD2

(PCINT19/0C2B/INT1) PD3
(PCINT20/XCK/TO0) PD4
vce

GND
(PCINT6/XTAL1/TOSC1) PB6
(PCINT7/XTAL2/TOSC2) PB7
(PCINT21/OCOB/T1) PD5
(PCINT22/0OCOA/AINO) PD6
(PCINT23/AIN1) PD7
(PCINTO/CLKO/ICP1) PBO

O 0 N OV UL b W N —=

- et) ed w-d
S W N - O

28
27
26
25
24
23
22
21
20
19
18
17
16
15

PC5 (ADC5/SCL/PCIN13
PC4 (ADC4/SDA/PCIN12
PC3 (ADC3/PCINT11)
PC2 (ADC2/PCINT10)
PC1 (ADC1/PCINT9)

PCO (ADCO/PCINTS)
GND

AREF

AVCC

PB5 (SCK/PCINTS5)

PB4 (MISO/PCINT4)

PB3 (MOSI/OC2A/PCINT3
PB2 (SS/OC1B/PCINT2)
PB1 (OC1A/PCINT1)

PWM
ouT

SOURCE | SIZE

TIMERO

TIMER1

TIMER2

Fast PWM Mode

* Produces the fastest PWM waveforms (compared to phase
or phase/frequency correct)

« The timer count TCNTn simply goes from the BOTTOM
(0x00) to the TOP (OxFF or OXFFFF) then resets.

 When TCNTn reaches the output compare (OCRNA or
OCRNB), the output compare bit (OCnA or OCnB) is
cleared. These are then set when TCNTn rolls over.

Fast PWM lllustrated

TCNTn = TOP
OCRn Updated TCNTn=OCRn TCNTn=BOTTOM

f/ /

T [Period)
-

SET CLR SET CLR SET CLR SET CLR | SET

Non Inverting Mode
T (Period)

CLR SET. CLR SET CLR SET CLR SET. CLR

Inverting Mode
-

10

* Frequency

f _ fclk
pwm — 256 N

* Where N = pre-scalar

« Duty Cycle:

OCROA+1
= X 100%
256

255—0CR0A
256

X 100%

Fast PWM Example

« Use Fast 8 bit PWM.
« UsebothA&BonTimer0
« Clear the output compare bits on Compare Match, set on
TOP
« Choose a PWM frequency approximately
twice the default PWM frequency (approx. 1kHz)

CS [Description ‘ frequency [f

001 clk 16MHz 62.5 kHz
010 (lk 2MHz 7,812.5 Hz
011 (lk 250kHz 976.5625 Hz

100 clk 62.5kHz 244.14 Hz
101 clk 15.625kHz 61.035 Hz

Fast PWM Example

* Registers & Parameters

« TCNTO: O

« COMOA: 10 (TCCROA)

« COMOB: 10 (TCCROA)

« WGMO: X11 (TCCROA and TCCROB)
« CS: 011 (TCCROB)

13

Fast PWM Example

void setup()

{
PORTD = 0x00;

DDRD = (1<<5)|(1<<6);
TCCROA = 0b10100011;
TCCROB = 0b00000011;
TCNTO = O;
}
void loop()
{
OCROA = 128;//duty cycle for A
OCROB = 64;//duty cycle for B

}

14

Phase Correct PWM

* Produces “symmetric” waveforms, which provide
smoother motions when used with motors.

« The center of each pulse occurs at the period, as opposed
to the falling edge on the period.

« Up/Down counter required.

* Frequencies are half of that used for Fast PWM.

TCNTn 4

PHASE CORRECT PWM

TCNTn = TOP

TCNTn=OCRA OCRy Updated TCNTN = BOTTOM

OCRnA or
507 \Wﬂ OCRnB
Counter
Y
BOTTOM
% Sk
Oeana T (Period)
ocn8 a o
SET CLR SET CLR SET CLR
Non Iinverting Mode
- t
s S T(Poriod)
OCnA -
or
OCn8 CLR SET CLR SET CLR SET
Inverting Mode

Frequency

feik
510N

N = prescalar

fpwmMm =

Duty Cycle:
OCROA
= —— x 100
255
255 — OCROA
i 255

(inverted)

X 100

16

001
010
| 011
| 100
| 101

clk
clk
.clk
.clk

clk

PHASE CORRECT PWM

Description

frequency
16MHz
2MHz
250kHz

62.5kHz
15.625kHz

31.3725 kHz
3,921.5 Hz
490.2 Hz
122.5 Hz
30.6 Hz

17

	College of Electronics Engineering Embedded Systems 4th Year Systems and Control Engineering By: Dr.Muhammed Department
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	lec2.pdf
	College of Electronics Engineering Embedded Systems 4th Year Systems and Control Engineering By: Dr.Muhammed Department
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

	lec3.pdf
	College of Electronics Engineering Embedded Systems 4th Year Systems and Control Engineering Department
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

	lec4.pdf
	College of Electronics Engineering Embedded Systems 4th Year Systems and Control Engineering Department
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

	lec5.pdf
	College of Electronics Engineering Embedded Systems 4th Year Systems and Control Engineering Department
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

	lec6.pdf
	College of Electronics Engineering Embedded Systems 4th Year Systems and Control Engineering Department
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

	lec7.pdf
	College of Electronics Engineering Embedded Systems 4th Year Systems and Control Engineering Department
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

	lec8.pdf
	College of Electronics Engineering Embedded Systems 4th Year Systems and Control Engineering Department
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

	lec11.pdf
	College of Electronics Engineering Embedded Systems 4th Year Systems and Control Engineering Department
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

	lec12.pdf
	College of Electronics Engineering Embedded Systems 4th Year Systems and Control Engineering Department
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

	lec13.pdf
	College of Electronics Engineering Embedded Systems 4th Year Systems and Control Engineering Department
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

	lec14.pdf
	College of Electronics Engineering Embedded Systems 4th Year Systems and Control Engineering Department
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

