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Rules & Regulations 

I will let it on your Behavior !! 
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C programming, Microprocessors, Control Systems, Signals & Systems 

Prerequisites: 



 References 

1.” Introduction to Embedded  Systems” , David Russel, 2010 
2. “Embedded Control System” , 2th edition 
3. Embedded System Design: A Unified Hardware/Software Introduction 
     ''  Online Book 
 
 
 Weekly hours and module units 

• Each week, you have 

• Theoretical lectures: 3 hours  

• Practical lectures:      2hours  

• Module Units:   Three  
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Assessment 

** Final Exam:  

• Theoretical part: 35% 

• Practical part: 15% 

** Midterm Exam 

• Theoretical part: 20% 

• Practical part: 15% 

** Quizzes, H.Ws and attendance: 15%  
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 What’s an Embedded System (E.S) 

Embedded Systems
  4th Year
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Examples of everyday devices that use embedded systems!!!!!! 
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 What is an Embedded System? 

• An embedded system is a combination of hardware and 

software designed to perform a dedicated function within a 

larger mechanical or electronic system. It typically consists 

of a microprocessor or microcontroller, memory, and 

input/output interfaces, and is optimized for specific tasks 

rather than general-purpose computing.  
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The difference between a system (general computer system) and an embedded system 
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Typical examples of embedded systems versus general computers illustrate their distinct purposes and functionalities. 
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Characteristics of Embedded Systems 

•Designed for specific tasks or functions within a larger system. 

 

•May include integrated circuits with processors, memory, and peripherals. 

 

•Can range from very simple (a single chip) to highly complex with multiple 

components. 

 

•Often have real-time computing constraints due to controlling physical 

operations. 

 

•Typically optimized for reliability, low power consumption, and minimal 

size. 

 

•Interfaces can be non-existent or as complex as graphical user interfaces. 
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Classification Of E.S.s 

E.S.s can be classified into 3 types: 

1. Small – scale E.S.s: 

• these systems are designed with a single 8-bit, or 16-bit microcontroller. 

• They have little h/w & s/w complexities and involve board-level design. 

• They may even be battery operated. 

• An editor & assembler specific to the μC are used. 

• C – language (or similar languages) is used for developing these systems. 

• Commonly used microcontrollers 

2. Medium – scale E.S.s: 

• These are designed with a single or few 16-bit or 32-bit microcontroller. 

• They have both h/w& s/w complexities 

• Programming tools: RTOS, source code eng. Tool, simulator, debugger & 

Integrated Development Environment (IDE). 
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3. Sophisticated E.S.s: 

• These systems have enormous h/w & s/w complexities and may need scalable 

processors or configurable processors & PLAs. 

• They are used for applications that need h/w & s/w co-design & integration in the 

final system. 

• Development tools may not be available at a reasonable cist or may not be 

available at all. In some cases, a compiler might have to be developed for these 

systems. 

• Commonly used microcontrollers: Intel80960, ARM7, MPC604. 
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Appropriate Microcontroller Use 

A microcontroller is the correct tool to use when: 

• Intelligence is required in the system. 

• The complexity of a system is reduced when using one. 

• The cost of the microcontroller is “less” than using discrete components to do the 

same job. 

• A variety of sensors and actuators must be integrated in the system. 

• Communication with other devices is necessary. 

Appropriate Microcontroller Use 

A microcontroller is NOT the correct tool to use when: 

• The system requires little or no intelligence. 

• The system can be made easier and/or cheaper using discrete-components. 
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 Controller of Embedded System parts can be put in following diagram:  
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The Embedded System “Concept Map” 
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Systems Need Control 
Systems need control could be: 

• Mechanical (i.e. ……….) 

• Electrical (i.e. ……….) 

• Electro-Mechanical (Mechatronics) 

• Biological (i.e. ……….) 

• Thermodynamic (i.e. ……….) 

• Chemical  (i.e. ……….)  

• Other Systems ?  

The questions need to be asked are:  

• What’s wrong with that system? 

• What would we like to do with it? 

• What can we do with it? 
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 Examples Linked to Control Engineering 

 ON/OFF control: Thermostat fan, water pump. 

 Proportional control: Motor speed ∝ 

potentiometer error. 

 PID control : Arduino PID library controlling 

motor or balancing robot . 

 Discrete logic/sequential control: Traffic light, 

elevator simulation. 

 Data acquisition: Serial logging of sensor values. 
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Systems Need Control 

 Robotics Applications: 

• Controlling joint motors for motion. 

• Reading sensor feedback (position, distance, vision). 

• Executing tasks like object pickup, navigation. 

 Control Concept: Closed-loop feedback control (PID for motor 

position). 
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Systems Need Control 

 Industrial Automation  Applications: 

•  Managing conveyor belts (speed and direction). 

•  Controlling pumps and valves for fluid flow. 

•  Coordinating robotic arms for assembly lines. 

• Control Concept: Sequential logic + real-time control. 
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Systems Need Control 

 Automotive Control Systems Applications: 

o Engine Control Unit (ECU) → fuel injection, ignition timing. 

o Anti-lock Braking System (ABS) → preventing wheel lock. 

o Airbag deployment → triggered by crash sensors in milliseconds. 

 Control Concept: Embedded real-time safety-critical control. 
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Systems Need Control 

 Home Automation Applications: 

o Smart thermostats controlling HVAC systems. 

o Automatic lighting systems (motion/light sensors). 

o Security systems (cameras, alarms, smart locks). 

 Control Concept: ON/OFF control + IoT connectivity. 
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Systems Need Control 

Medical Devices Applications: 

o Insulin pumps regulating drug delivery. 

o Pacemakers maintaining heart rhythm. 

o Patient monitoring systems (vital signs, alarms). 

 Control Concept: Precision closed-loop biomedical control. 



21 

A “short list” of embedded systems 
• Anti-lock brakes 
• Auto-focus cameras 
• Automatic teller machines 
• Automatic toll systems 
• Automatic transmission 
• Avionic systems 
• Battery chargers 
• Camcorders 
• Cell phones 
• Cell-phone base stations 
• Cordless phones 
• Cruise control 
• Curbside check-in systems 
• Digital cameras 
• Disk drives 
• Electronic card readers 
• Electronic instruments 
• Electronic toys/games 
• Factory control 
• Fax machines 
• Fingerprint identifiers 
• Home security systems 
• Life-support systems 
• Medical testing systems 

• Modems 
• MPEG decoders 
• Network cards 
• Network 

switches/routers 
• On-board navigation 
• Pagers 
• Photocopiers 
• Point-of-sale systems 
• Portable video games 
• Printers 
• Satellite phones 
• Scanners 
• Smart 

ovens/dishwashers 
• Speech recognizers 
• Stereo systems 
• Teleconferencing 

systems 
• Televisions 
• Temperature controllers 
• Theft tracking systems 
• TV set-top boxes 
• VCR’s, DVD players 
• Video game consoles 
• Video phones 
• Washers and dryers 
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Major Components of an Embedded Control System 
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1. Overview 
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1. Sensor and Signal Conditioner 

Type Physical Quantity Example Sensor 

Temperature Heat LM35, TMP36 

Position Angle/displacement 
Potentiometer, 
encoder 

Pressure Fluid/gas pressure Piezo sensor 

Light Illumination LDR, photodiode 

Speed Rotational speed Hall-effect sensor 
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1. Sensor and Signal Conditioner 

• A sensor converts a physical quantity (temperature, pressure, 
speed, position, light, etc.) into an electrical signal (voltage or 
current). 

• Acts as the input device for the embedded system. 
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Signal Conditioner 

• Sensors usually produce weak or noisy analog signals. 
• A signal conditioning circuit modifies the signal to make it usable 

by the microcontroller. 
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Signal Conditioner 

Main functions: 
•Amplification → Op-amp increases signal amplitude. 
•Filtering → Removes noise (low-pass, high-pass, band-pass). 
•Level shifting → Matches voltage to ADC input range (e.g., 0–5 V). 
•Isolation → Protects controller from high voltages (opto-isolators) 
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Power Sources 

•Provide energy for all electronic components in the system. 
•Must supply stable and regulated voltage to both the controller 
and actuators. 
Common Power Sources 
•Battery (Li-ion, NiMH, etc.) – used in portable/robotic systems. 
•DC Power Supply (5 V, 12 V) – for laboratory/industrial systems. 
•Energy Harvesting (solar, vibration) – low-power remote devices 
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Power Sources 
Power Management: 
•Voltage Regulators:  
•Converters: 

• DC–DC converters (buck/boost) for efficiency. 
• AC–DC rectifiers for mains input. 
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Power Interface 
Power Management: 
•Voltage Regulators:  
•Converters: 

• DC–DC converters (buck/boost) for efficiency. 
• AC–DC rectifiers for mains input. 

Protection: fuses, transient suppressors, reverse polarity protection. 
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Power Interface 
The bridge between the low-power controller and high-power 
actuators.Ensures the microcontroller can safely control larger loads. 

Types of Power Interfaces 
1.Transistor or MOSFET Drivers – switch higher current loads. 
2.Relay Circuits – electromechanical switches for AC or DC loads. 
3.Opto-isolators – provide electrical isolation between control and 
power sections. 
4.Motor Drivers / H-bridges – enable direction and speed control of 
DC motors 



12 

Power Interface 
The bridge between the low-power controller and high-power 
actuators.Ensures the microcontroller can safely control larger loads. 

Types of Power Interfaces 
1.Transistor or MOSFET Drivers – switch higher current loads. 
2.Relay Circuits – electromechanical switches for AC or DC loads. 
3.Opto-isolators – provide electrical isolation between control and 
power sections. 
4.Motor Drivers / H-bridges – enable direction and speed control of 
DC motors 
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Actuators 
Actuators convert electrical control signals into mechanical motion or 
physical action. 
They represent the output stage of the embedded control loop. 
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Actuators 

Type Function Example 

Electromechanical 
Rotational or linear 
motion 

DC motor, stepper, 
servo 

Electromagnetic Switching or movement Relay, solenoid 

Thermal Heat generation Heater element 

Hydraulic/Pneumatic Force/pressure control Valves, cylinders 
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User Interface (UI) 

Allows the operator or user to interact with the embedded system. 
 Types 
•Input Devices: push buttons, switches, keypads, rotary knobs. 
•Output Displays: LEDs, LCDs, seven-segment displays, touch 
screens. 
•Communication Interfaces: serial monitor (UART), USB, 
Bluetooth, Wi-Fi, CAN. 
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User Interface (UI) 

Role in Control 
•Provides manual overrides or adjustments (e.g., setpoint entry). 
•Displays measured variables, system status, and faults. 
 Control link: Enables real-time monitoring and manual tuning of 
controller parameters 
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Controller Hardware 

The physical computing unit executing control algorithms. 
Usually a microcontroller, microprocessor, or digital signal 
processor (DSP). 
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Controller Hardware 

Key Components 
•CPU: performs calculations and logic operations. 
•Memory: 

• Flash/ROM – stores program (firmware). 
• RAM – stores temporary data. 

•Peripherals: timers, ADC, DAC, serial interfaces (UART(Universal 
Asynchronous Receiver/Transmitter), I²C, SPI,Serial Peripheral 
Interface, CAN, Controller Area Network). 
•Clock: determines speed of execution. 
•Reset & Power Circuits: ensure stable startup 
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Controller Software 

The firmware or program code running inside the controller. 
Defines how the system responds to inputs and generates outputs. 
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Controller Software 

Software Layers 
1.Application Code: control algorithms (ON/OFF, PID, etc.). 
2.Drivers: interface with peripherals (ADC, PWM, UART). 
3.Real-Time Scheduler or Loop: manages timing and task execution. 
4.Interrupt Service Routines (ISRs): handle immediate events (e.g., 
sensor triggers). 
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Controller Software 

Software Development Flow 
1.Write code in C/C++ (or Arduino language). 
2.Compile → Generate machine code (hex file). 
3.Upload to microcontroller via programmer/USB. 
4.Test, debug, and tune parameters. 
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The Embedded System “Concept Map” 
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Microprocessor 

•A microprocessor is the CPU (central processing unit) on a single 
chip. 
•It requires external memory (RAM, ROM) and peripherals to build a 
complete system. 
•Used in general-purpose computing systems (like PCs, laptops). 
Example: Intel i5, AMD Ryzen, ARM Cortex-A, Pentium, etc. 
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Microcontroller 

•A microcontroller is a complete computer system on a single chip. 
•It contains: 

• CPU 
• Memory (RAM, ROM/Flash) 
• I/O ports (digital & analog) 
• Timers/Counters 
• Communication interfaces (UART, I2C, SPI) 

•Designed for specific control applications (automation, robots, 
instruments). 
Example: ATmega328 (Arduino), PIC16F877A, STM32, 8051. 
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Comparison: Microprocessor vs. Microcontroller 

Feature Microprocessor (µP) Microcontroller (µC) 

Definition CPU on a chip 
CPU + memory + peripherals on a 
chip 

Memory External (RAM/ROM) required Internal (RAM, ROM/Flash) 

I/O Ports Mostly external Built-in GPIO, ADC, timers 

Application Type General-purpose computing Dedicated / specific task 

System Cost Higher (needs more components) Lower (integrated design) 

Speed Typically higher clock rates Moderate, but optimized for control 

Power Consumption High Low (battery-friendly) 

Programming Complex OS/software Simple C or assembly 

Examples Intel i7, AMD Ryzen, ARM Cortex-A ATmega328, PIC, STM32, 8051 

Use in Control Rare (for large systems) 
Common (real-time embedded 
control) 
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Advantages of Microcontrollers 

1.Compact and integrated → CPU, memory, and I/O on one chip. 
2.Low cost → fewer external components. 
3.Low power consumption → ideal for portable and embedded 
applications. 
4.Easy to program → C/C++ using tools like Arduino IDE. 
5.Fast response → suitable for real-time control tasks. 
6.Reliable → fewer parts, lower failure rate. 
7.Flexible I/O → supports analog/digital signals, PWM, interrupts, 
communication. 
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Disadvantages of Microcontrollers 

1.Limited memory and processing power (compared to 
microprocessors). 
2.Application-specific → cannot perform general computing tasks. 
3.Difficult to upgrade hardware (chip-specific). 
4.Restricted multitasking (unless RTOS or multi-core MCU used) 
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Key Characteristics of Microcontrollers 

•Dedicated task operation: designed for one main function. 
•On-chip integration: CPU + memory + peripherals. 
•Real-time operation: must respond immediately to sensor input. 
•Embedded in larger systems: not stand-alone like PCs. 
•Programmable control logic: runs firmware written in C/C++. 
•Low power & cost-efficient: used in millions of consumer and 
industrial devices. 
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Example architecture: 

•CPU core (e.g., 8-bit, 16-bit, 32-bit) 
•Flash memory for program 
•RAM for data 
•GPIO pins for sensors/actuators 
•Timers, ADC, UART, I²C, SPI modules 
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Control Engineering Context  

•Microcontrollers are the heart of modern control systems: 
•Measure signals from sensors (temperature, pressure, position). 
•Compute control law (ON/OFF, PID, etc.). 
•Drive actuators (motors, valves, relays). 
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Summary Slide: 

•Microcontroller = compact embedded computer for control tasks. 
•Microprocessor = powerful CPU for general computing. 
•Control systems use microcontrollers for real-time embedded 
feedback control. 
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Error Equation 
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Microcontroller role: 
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Discrete-Time Control Law (as implemented in software) 
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Microcontroller role: 
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Sampling Period Relation 
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First-Order System Response (typical controlled plant) 
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Microcontroller role: 
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Summary : 
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Microcontrollers MFGRs 



Microcontroller MFGRs 
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What is the Arduino? 

• Arduino is an open-source electronics platform based on easy-to-use hardware and 

software. 

 

•  Arduino boards are able to read inputs - light on a sensor, a finger on a button, or a 

Twitter message - and turn it into an output - activating a motor, turning on an LED, 

publishing something online 

 

•  You can tell your board what to do by sending a set of instructions to the 

microcontroller on the board. 

• To do so you use the Arduino programming language (based on Wiring), and the 

Arduino Software (IDE), based on Processing. 



Why the Arduino? 

• Improvement over other micro-controllers for hobby usage. 

• Inexpensive 

• IDE on multiple platforms (Mac, PC, Linux) 

• Simple, clear programming environment: “C” 

• Open source and extensible software/hardware. 

• Arduino Shields (elements that can be plugged onto a board to give it extra features). 

• Over the years Arduino has been the brain of thousands of projects, from everyday 

objects to complex scientific instruments.  

• Arduino board started changing to adapt to new needs and challenges, 

differentiating its offer from simple 8-bit boards to products for IoT applications, 

wearable, 3D printing, and embedded environments. 

 

6 



Arduino Shields 
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Shield Name Function Example Application 

Motor Shield Controls DC motors and servos Robotics, automation 

Ethernet Shield 
Adds wired network (LAN) 
capability 

IoT data logging 

Wi-Fi Shield Connects to Wi-Fi networks Smart home, remote control 

Bluetooth Shield 
Enables Bluetooth 
communication 

Wireless sensors 

GPS Shield Receives geographic coordinates Vehicle tracking 

LCD/Touch Shield Provides display and user input Interface panels 

Relay Shield Controls high-power devices Home automation 

Sensor Shield 
Simplifies connection of multiple 
sensors 

Environmental monitoring 

GSM/GPRS Shield 
Mobile communication (SIM-
based) 

Remote alert systems 



Arduino Applications 

https://playground.arduino.cc/Projects/Ideas  
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https://playground.arduino.cc/Projects/Ideas
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Arduino UNO 

• The UNO is the best board to get started with electronics and coding.  

• Arduino Uno is a microcontroller board based on the ATmega328P. 

• It has 14 digital input/output pins (of which 6 can be used as PWM outputs). 

• 6 analog inputs. 

• 6 MHZ quartz crystal 

• USB connection. 

• Power jack 

• ICSP header  

• Reset button. 

• It contains everything needed to support the microcontroller. 

• Simply connect it to a computer with a USB cable or power it with a AC-to-DC 

adapter or battery to get started. 

• You can tinker with your UNO without worrying too much about doing something 

wrong, worst case scenario you can replace the chip for a few dollars and start over 

again. 
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Digital I\O 
PWM(3, 5, 6, 9, 10, 

11) 

SCL\SDA 
(I2C Bus) 

RESET 

PWR IN 
USB  

(to Computer) 

Analog 

INPUTS 

POWER  
5V / 3.3V / 

GND 



Arduino UNO 
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Arduino UNO 
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GPIO 

• General Purpose Input/ Output 

• Can be used as digital input or output. 

• Each pin uniquely assignable. 

• “Analog” (PWM) output on digital pins 3,5,6,9,10,11 

• Analog pins 0-5 can also be used as GPIO. 

16 

Hardware & Software 



Software Comparison 

17 

Software:  Arduino IDE 

• Free software 

• Download from 

• http://arduino.cc/en/Main/Software  

• Available for Mac, Windows, Linux 

http://arduino.cc/en/Main/Software
http://arduino.cc/en/Main/Software
http://arduino.cc/en/Main/Software


18 
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Embedded Software 
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Embedded Software 

• Embedded Software is the software that controls an embedded system.  

• All embedded systems need some software for their functioning.  

• Embedded software or program is loaded in the microcontroller which then takes 

care of all the operations that are running.  

• For developing this software, a number of different tools are needed. 

• These tools include editor, compiler, assembler, debugger, etc. 

1. Editor 

• The first tool for Embedded Systems Software Development Tools is text editor. 

• This is where the code should be written for the embedded system. 

• The code is written in some programming language. Most commonly used language 

is C, C++ or IDE. 

• The code written in editor is also referred to source code. 
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2. Compiler 

• A compiler is used after finishing the editing part and made a source code. 

• The function is to convert the source code in to object code. 

• Object code is understandable by computer as it in low level programming language. 

• It used to convert a high level language code in to low level programming language. 

3. Assembler 

• The function of an assembler is to convert a code written in assembly language into 

machine language. 

• All the mnemonics and data is converted in to opcodes and bits by an assembler. 

• Computer understands binary and it works on 0 or 1, so it is important to convert the 

code into machine language. 
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4. Debugger 

• It is important to test whether the code you have written is free from errors or not. So, 

a debugger is used for this testing. 

• Debugger goes through the whole code and tests it for errors and bugs. 

• It tests the code for different types of errors. For example a run time error or a syntax 

error and notifies you wherever it occurs 

• The line number or location of error is shown by debugger so it is easy to go ahead 

and modify it. 

• So from the function, it can show how important tool a debugger is in the list of 

Embedded Systems Software Development Tools. 
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5. Linker 

• A linker is a computer program that combines one or more object code files and 

library files together in to executable program. 

• It is very common practice to write larger programs in to small parts and modules to 

make job easy and to use libraries in your program.  

• All these parts must be combined into a single file for execution, so this function 

requires a linker. 
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6. Libraries 

• A library is a pre written program that is ready to use and provides specific 

functionality. 

• For Embedded Systems Software Development Tools, libraries are very important and 

convenient. 

• Library is a file written in C or C++ and can be used by different programs and users. 

• For example, Arduino microcontroller comes with a number of different libraries that 

you can download and use while developing your software. 

• For instance, controlling LED or reading sensor like an encoder can be done with a 

library. 

7. Simulator 

• A simulator helps to show how the code will work in real time. 

• It can show how sensors are interacting, the input from sensors can be shown, and it 

can show how the components are working and how changing certain values can 

change parameters. 
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Integrated Development Environment (IDE) 

• An Integrated Development Environment is software that contains all the necessary 

tools required for embedded software development. 

• For creating software for your embedded system, you need all the mentioned tools. 

• An IDE normally consists of a code editor, compiler and a debugger. Also it provide 

user developer.  

• Depending on what kind of microcontroller you are using, you can choose from many 

different software applications.  

Example of  Embedded Systems Software Development Tools 

MPLAB 
• MPLAB                                                       

• Arduino Software 

• Keil 

•  MATLAB 

• LabVIEW 

• Pspice 

• Proteus 

• Visual Studio 

• EasyEDA 

• Altium 
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• An important aspect to most embedded systems involves one 

or more input signals.  

• Most naturally occurring signals are analog, meaning the 

voltage level can be any value within some interval         𝑉𝑚𝑖𝑛

≤ 𝑉𝐴 ≤ 𝑉𝑚𝑎𝑥 

 

•  In many systems, different actions and decisions are made 

based on the value of  𝑉𝐴.  

 

• For example, consider the following list of  analog sensor 

devices. 

• Potentiometer - a mechanical knob is used to adjust the 

resistance between terminals; 

• Thermistor- a device that changes resistance based on 

temperature; 
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• Accelerometer- a device that measures the acceleration of  

gravity in three dimensions and out- puts an associated 

analog value for each dimension   

 

• Ambient light sensor-a device that measure the 

environmental ambient light intensity and outputs an 

associated analog value (e.g., many laptop computers will 

adjust the backlight level based on the surrounding 

environment light level); 

 

• Microphone- a device that converts vibrations (i.e., 

acoustic-waves) into analog levels. 

 

• In order for a microcontroller to operate on the sensor 

outputs, an Analog-to-Digital Conversion (ADC) circuit 

must be used,  
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Parallel ADC 

• Uses typical values for 𝑉𝑚𝑖𝑛 𝑎𝑛𝑑 𝑉𝑚𝑎𝑥 where the minimum 

voltage is simply set to ground and 𝑉𝑚𝑎𝑥  is controlled 

externally via the user-defined reference voltage 𝑉𝑟𝑒𝑓. 

 

• The resistor network on the left-hand side is designed such 

that : 

• 𝑉𝑟𝑒𝑓 − 𝑉2 = 𝑉2 − 𝑉1 = 𝑉1 − 𝑉0 = 𝑉0 

 

• which implies there is uniform spacing between the inverting 

inputs on all of  the comparators.  

 

• The analog voltage 𝑉𝐴 is first converted into a three-bit code 

word defined by (𝑐2, 𝑐1, 𝑐0), where each bit is the output of  a 

comparator 
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A two-bit parallel ADC. 
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A two-bit parallel ADC. 
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2-bit ADC Using Diodes 
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3-bit Analogue to Digital Converter Circuit 
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3-bit A/D converter Output 
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• The four possible code-words are then passed through an 

encoder that outputs the final two-bit value (𝑏1, 𝑏0). 

 

• Most microcontrollers provide at least one ADC, which will 

often output 10-bit resolutions for a very reasonable digital 

representation of  the analog voltage. 

 

• For example, with a reference voltage of  5 V, a 10-bit ADC 

provides an accuracy of  
5

210 = 4.9𝑚𝑉 
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• While the parallel ADC is very fast, it suffers from the 

problem of  requiring :  

• 2𝑁 − 1 comparators 

•  2𝑁 resistors  

to convert an analog signal into an N-bit digital 

representation.  

 

• This circuit will require a lot of  space and power in order to 

function, which are both drawbacks in an embedded 

processing environment 
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The counting ADC  

• It functions by comparing the analog voltage 𝑉𝐴 to a voltage 

level that is output from a Digital-to-Analog Converter 

(DAC) circuit.  

• The level output from the DAC is controlled by the N -bit 

digital input vector (𝑏𝑁−1 … … . 𝑏0). 

• When the ADC process begins, the initial N-bit vector is 

cleared to (0...0) which will generate the lowest analog level 

from the DAC 

 

• As long as 𝑉𝐴  is above the DAC output voltage, the 

comparator output (c) will be 5 V. 

• This signal is used to enable the counter to increase the N -

bit vector by one when the next clock edge occurs.  
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• Eventually, the N -bit vector will increase to the point that the 

DAC output voltage is greater than 𝑉𝐴, at which time, c will 

go to 0, which will stop the counter.  

 

• In this way, the N -bit value used to control the DAC output 

voltage is also the same value that represents 𝑉𝐴.  

 

• The drawback of  the counting ADC is the time necessary 

for the counter to lock onto the proper binary output vector.  

 

• It is often the case that ADCs found in embedded 

processors do require some significant delay before the 

digital value can be trusted 
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An N -bit counting ADC. 
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ADC PERIPHERAL 

• In the case of  the ATmega328P, there are six 10-bit ADCs 

(note: there are eight 10-bit ADCs on some packages all of  

which are found on Port C.  

 

• For generic usage of  the ADC port functionality, the 

following steps should be addressed. 
1. Register ADCSRA needs to be enabled, started, auto trigger enabled, 

and an appropriate prescalar selected; 

2. register ADCSRB needs to have the auto trigger source set to free 

running, so the program can read the converted value of  a low-

frequency sensor (which is often our application); 

3. source selected, right or left justification selected, and the desired 

ADC channel selected; register ADMUX needs to have a VREF 

4. register DIDR0 should have the input pin associated with the ADC 

channel selected in ADMUX disabled. 
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• Once the ADC is initialized, the program can poll the ADC 

output by reading the 16-bit ADC register which contains 

the 10-bit result.  

 

• As the math implies, eight bits sit in one 8-bit register and 

the remaining two bits are provided in the other register, 

with six bits being unused 

 

• It turns out that the ADC hardware will not update the 

ADC register until the ADCH portion is read out by itself, 

or the entire 16-bit register is read out as a single unit. 

 

• So, if  only eight bits of  resolution are needed, the ADC 

value can be left-justified in ADMUX and the high-order 

byte may be read, as in the following code snip.  



Advantages and Disadvantage of storing, processing and transmitting signals 
digitally:

• Digital technology is more and more than analogue
technology.

• Digital signals are than analogue signals.
It is to and digital signals so that digital
transmission can be made very .

• Digital signals of different types can be treated in a unified way and, provided
adequate arrangements exist, can be on the same channel.

• One of digital communication is that it
This can be several times the bandwidth of an equivalent

analogue channel.

3

• Sampling is carried out at discrete intervals of time Ts, where is known as the
. The number of samples per second or the sampling frequency fs in

Hz is equal to the reciprocal of the sample period, that is .

• states that if the highest frequency component present
in the signal is �� , then the

, that is �� ≥ 2��in order that the signal may be properly re-constructed from
the digital samples.

• The sampling rate ��� ��� is called the .
4



• The μ-law companding equations are different from those of the A -law,
though the resulting characteristic is very similar.

�′ � � ����
��� 1 � � � � /����

log 1 � �
sgn � � ,

• where μ is a parameter which determines the level of compression and all of
the other symbols have the same meaning as before. A value of μ = 255 is
often used.

• In a practical system, the companding equations are not used directly on each
input sample.

• Instead, the quantisation intervals are defined using a piecewise linear
approximation to the companding equations.

19

• As illustrated in figure for the A-law for the case of positive sample values,
The complete characteristic exhibits odd symmetry about the vertical axis.
The positive portion of the characteristic consists of 8 linear segments.
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Sampling
• Data conversion from analog to digital form or digital to 

analog form is generally done continuously and 
periodically.

• Sampling—process of picking one value of a signal to 
represent the signal for some interval of time.

• Because ADC data conversion is generally a periodic 
process, we will first analyze what happens when an 
analog signal, x(t), is periodically and ideally sampled. 

• The ideal sampling process generates a data sequence 
from x(t) defined only at the sampling instants, 
when            , where n is an integer and . snTt = +∞<<∞− n
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Sampling

• Impulse modulation equivalent to ideal sampling

•Ideal sampling process ADC. Ts—period between successive samples.
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Aliased Signal

• If the sampling rate is not high enough, aliased 
signal comes out.
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Nyquist’s Theorem

• To avoid aliasing, the sampling rate must 
be greater than twice the maximum 
frequency component in the signal to be 
acquired.
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Quantization

• Once the analog signal sample has been 
converted to digital form, it is represented by a 
digital (binary) number of a finite number of bits 
(e.g. 12), which limits the resolution of the 
sample (one part in 4096 for 12 bits). This 
rounding-off of the digital sample is called 
quantization.
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Quantization

• E.g. an analog signal whose values range from 
0 to +10V. We wish to convert this signal to 
digital form and the required output is a  4-bit 
signal.

• We know that a 4-bit binary number can 
represent 16 different values, 0 to 15. Then, the 
resolution of this conversion = 10 V/15 = 2/3 V. 
So, an analog signal of 0 V will be represented 
by 0000, 2/3 V will be represented by 0001.
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Quantization

• From the above assumption, all the 
sample numbers were multiples of the 
basic increment—2/3 V. 

• There is a question raised—what is the 
treatment when the conversion of numbers 
that fall between these successive 
incremental levels.
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Quantization
• While sampling is done in the time domain, 

quantization is performed in the amplitude 
domain. 

• The process of digitization is not complete until 
the sampled signal is reduced to digital 
information.

• The sampled signal is still in analog form. 
Therefore, an ADC quantizes it by picking one 
integer value from a predetermined, finite list of 
integer values to represent each analog sample.
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Quantization

• Normally, an ADC chooses the value 
closest to the actual sample from a list of 
uniformly spaced values. This rule gives 
the transfer function of analog input-to-
digital output a uniform “staircase”
characteristic.
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• The ideal 3-bit quantizer has 8 possible digital outputs. The bottom 
graph shows the ideal transfer function (a st. line) subtracted from 
the staircase transfer function.
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Analog-to-digital converter (ADC)

• An analog-to-digital converter (ADC)
converts real-world signals (usually 
voltages) into digital numbers so that a 
computer can:
– acquire signals automatically,
– store and retrieve information about the 

signals,
– process and analyze the information,
– display measurement results.
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Types of ADCs
• There are 5 major types of ADCs:

– Flash (parallel) converters, 
– Dual-slope, integrating converters,
– Successive-approximation converters,
– Tracking (servo) types,
– Dynamic range, floating point converters.

• The fastest ADCs are the flash converters. They 
can convert 8 bits with a sampling period of less 
than 1 ns. Such fast speed is useful for 
measuring transient phenomena. E.g. Transient 
events in particle physics and lasers.
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Flash (parallel) converter
• Since Flash ADCs (FADCs) is simple-structured, they 

are fast. 
• A string of resistors between two voltage references 

supplies a set of uniformly spaced voltages that span the 
input range, one for each comparator. The input voltage 
is compared with all of these voltages simultaneously.

• Comparator outputs = 1 for all voltages below the input 
voltage 

• Comparator outputs = 0 for all the voltages above the 
input voltage.

• The resulting collection of digital outputs is called a 
“thermometer code”.



17• A flash converter has 2n-1 comparators operating in parallel.
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Flash converter (More Complicated example )

•3-bit flash ADC 
with binary output.



19

Integrating converter

• Integrating converters are used for low-
speed, high-resolution applications such 
as voltmeters. They are conceptually 
simple, consisting of an integrating 
amplifier, a comparator, a digital counter, 
and a very stable capacitor for 
accumulating charge.
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Integrating converter

• The most common integrating ADC in use 
is the dual-slope ADC. Its action is 
illustrated in the next slide.
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Integrating converter

• A dual-slope integrating converter uses a comparator to 
determine when the capacitor has fully discharged.
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Digital-to-analog converter (DAC)

• A digital-to-analog converter (DAC) is an 
integrated circuit (IC) device which converts an 
N bit digital word to an equivalent analog voltage 
or current. It allows digital information which has 
been processed and/or stored by a digital 
computer to be realized in analog form.

• After digitalization, a staircase waveform can be 
smoothed by a low-pass filter. In this way, an 
analog output signal is reconstructed.
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Digital-to-analog converter (DAC)

• At sampling instants, the difference between 
DAC output and the analog input signal is called 
a quantization error.

• The quantization error of an ADC is equivalent 
to    ½ least significant bit (LSB).±



Digital to Analog Conversion

A D/A Converter produces an analog voltage proportional 
to the digital input.

Example:
D/A designed to output 0 to 10 volts.

• Input to D/A is an 8 bit digital value.
• Digital value 0 produces a 0 volt output.
• Digital value 1 produces a 1 x 10/256 volt ouput.
• Digital value 2 produces a 2 x 10/256 volt output.
• Digital value 255 produces a 255 x 10/256 volt output.



Typical 4-bit D/A Converter



Parameters Affecting D/A
Converter Performance 

Output Range
• The voltage difference between the max and 

min output voltages of the D/A.
Accuracy

• Expressed as a percentage of the maximum 
output voltage

• Or as an error of the least significant bit 
(e.g.,+1/2 LSB).

• Expected amount of accuracy in actual output 
based on digital input.
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How Do Servo Motors Work?  

• Servo motors have been around for a long time and are 

utilized in many applications.  

• They are small in size but pack a big punch and are very 

energy-efficient. 

• These features allow them to be used to operate remote-

controlled or radio-controlled toy cars, robots and 

airplanes. 

• Servo motors are also used in industrial applications, 

robotics, in-line manufacturing, pharmaceutics and food 

services. 

 

• Now, let see how they work 
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• The servo circuitry is built right inside the motor unit and 

has a positionable shaft, which usually is fitted with a gear 

•  The motor is controlled with an electric signal which 

determines the amount of  movement of  the shaft.  

 

• To fully understand how the servo works, we need to take a 

look inside the servo motor.  

• Inside there is a pretty simple set-up:  

• Small DC motor 

• Potentiometer  

• control circuit. 

 

 

 

 

• The motor is attached by gears to the control wheel.  
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• As the motor rotates, the potentiometer's resistance changes, so the 

control circuit can precisely regulate how much movement there is and in 

which direction. 

 

• When the shaft of  the motor is at the desired position, power supplied to 

the motor is stopped. If  not, the motor is turned in the appropriate 

direction. 

 

• The desired position is sent via electrical pulses through the signal wire. 

 

• The motor's speed is proportional to the difference between its actual 

position and desired position. 

• So if  the motor is near the desired position, it will turn slowly, 

otherwise it will turn fast. 

• This is called ……………. control. 



5 

How is the servo controlled? 

• Servos are controlled by sending an electrical pulse of  variable width, 

or pulse width modulation (PWM), through the control wire. 

 

• There is a minimum pulse, a maximum pulse, and a repetition rate. 

 

• A servo motor can usually only turn 90° in either direction for a total 

of  180° movement.   

 

• The motor's neutral position is defined as the position where the servo 

has the same amount of  potential rotation in the both the clockwise or 

counter-clockwise direction. 

 

• The PWM sent to the motor determines position of  the shaft, and 

based on the duration of  the pulse sent via the control wire; the rotor 

will turn to the desired position.  
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• The servo motor expects to see a pulse every 20 milliseconds (ms) and the 

length of  the pulse will determine how far the motor turns. 

 

• For example: 

• 1.5ms pulse will make the motor turn to the 90° position.  

• Shorter than 1.5ms moves it in the counter clockwise direction toward the 

0° position 

• Any longer than 1.5ms will turn the servo in a clockwise direction toward 

the 180° position.  
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• When these servos are commanded to move, they will move to the 

position and hold that position.  

•  If  an external force pushes against the servo while the servo is holding a 

position, the servo will resist from moving out of  that position. [This 

consider as one of  the most important features of  the servo motor] 

• The maximum amount of  force the servo can exert is called the torque 

rating of  the servo. 

• Servos will not hold their position forever though; the position pulse must 

be repeated to instruct the servo to stay in position.  
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Types of  Servo Motors 

• There are two types of  servo motors - AC and DC. 

 

• AC servo can handle higher current surges and tend to be used in 

industrial machinery. 

•  DC servos are not designed for high current surges and are 

usually better suited for smaller applications. 

(Generally speaking, DC motors are less expensive than their AC 

counterparts.) 

 

• These are also servo motors that have been built specifically for 

continuous rotation, making it an easy way to get your robot 

moving 

• They feature two ball bearings on the output shaft for reduced 

friction and easy access to the rest-point adjustment 

potentiometer.  
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Servo Motor Applications 

• Servos are used in radio-controlled airplanes to position control surfaces 

like elevators, rudders, walking a robot, or operating grippers.  

• Servo motors are small, have built-in control circuitry and have good 

power for their size.  
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The learning objectives of this lecture are as follows: 

 

• To learn the basic characteristics of dc motors and their 

control parameters  

• To understand the types and operating modes of dc 

drives  

• To learn about the control requirements of four-

quadrant drives  

• To understand single phase DC drives  

• Solved example on Single Phase Drives  
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1- Introduction 

Direct current (DC) motors have variable characteristics and are used extensively in variable-

speed drives. Dc motors can provide a high starting torque and it is also possible to obtain speed 

control over a wide range. The methods of speed control are normally simpler and less 

expensive than those of ac drives. Dc motors play a  significant role in modern industrial drives. 

Both series and separately excited dc motors are normally used in variable-speed drives, but 

series motors are traditionally employed for traction applications. Due to commutators, dc 

motors are not suitable for very high speed applications and require more maintenance than do 

ac motors. With the recent advancements in power conversions, control techniques, and 

microcomputers, the ac motor drives are becoming increasingly competitive with dc motor 

drives. Although the future trend is toward ac drives, dc drives are currently used in many 

industries. It might be a few decades before the dc drives are completely replaced by ac 

drives. Controlled rectifiers provide a variable dc output voltage from a fixed ac voltage, 

whereas a DC-DC converter can provide a variable dc voltage from a fixed dc voltage. Due to 

their ability to supply a continuously variable de voltage, controlled rectifiers and dc-dc 

converters made a revolution in modern industrial control equipment and variable-speed drives, 

with power levels ranging from fractional horsepower to several megawatts. Controlled 

rectifiers are generally used for the speed control of dc motors, as shown in Figure 1a. The 

alternative form would be a diode rectifier followed by DC-DC converter, as shown in Figure 

1b. Dc drives can be classified, in general, into three types:  

1. Single-phase drives 2. Three-phase drives 3. Dc-dc converter 

 

 

 

 

 

 

 

 

FIGURE.1 Controller rectifier- and dc-dc converter-fed drives. 
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Single-phase drives are used in low-power applications in the range up to 100 kW.Three-phase 

drives are used for applications in the range 100 kW to 500 kW. The converters are also 

connected in series and parallel to produce 12-pulses output. The power range can go as high as 

1 MW for high-power drives. These drives generally require harmonic filters and their size 

could be quite bulky. 

2- BASIC CHARACTERISTICS OF DC MOTORS 

1- Separately Excited Dc Motor 

The equivalent circuit for a separately excited dc motor is shown in Figure .2 

 

 

 

 

 

 

Figure .2 Equivalent circuit of separately excited dc motors. 

The equations describing the characteristics of a separately excited motor can be determined 

from Figure 2. The instantaneous field current if is described as 

          

   

  
 

The instantaneous armature current can be found from 

          

   
  

    

The motor back emf, which is also known as speed voltage, is expressed as 

         

The torque developed by the motor is 

          

The developed torque must be equal to the load torque: 
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Where 

w = motor angular speed, or rotor angular frequency, rad/s. 

B = viscous friction constant, N .m/rad/s. 

Kv = voltage constant, V/A-rad/s. 

Kt = torque constant, which equals voltage constant, Kv. 

La = armature circuit inductance, H. 

Lf = field circuit inductance, H. 

Ra = armature circuit resistance Ω. 

Rf = field circuit resistance,  Ω. 

TL = load torque, N . m. 

Under steady-state conditions, the time derivatives in these equations are zero and the steady-

state average quantities are 

                                                        

                                                     

                                              

                                           

                                                      

                                                

 

The developed power is : 

                                                   
 

From Eq. (3), the speed of a separately excited motor can be found from: 
 

  
       

   
                                   

We can notice from Eq. (7) that the motor speed can be varied by (1) controlling the armature 

voltage Va, known as voltage control; (2) controlling the field current If, known as field control; 

or (3) torque demand, which corresponds to an armature current Ia, for a fixed field current If. 

The speed, which corresponds to the rated armature voltage, rated field current, and rated 

armature current, is known as the rated (or base) speed. 

In practice, for a speed less than the base speed, the armature current and field currents 

are maintained constant to meet the torque demand, and the armature voltage Va is varied 
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to control the speed. For speed higher than the base speed, the armature voltage is 

maintained at the rated value and the field current is varied to control the speed. 

However, the power developed by the motor 1 = torque * speed2 remains constant. 

Figure.3 shows the characteristics of torque, power, armature current, and field current 

against the speed. 

 

 

 

 

 

 

Figure .3 Characteristics of separately excited motors. 

 

2- Series-Excited Dc Motor 

 

The field of a dc motor may be connected in series with the armature circuit, as shown in 

Figure 4, and this type of motor is called a series motor. The field circuit is designed to 

carry the armature current. The steady-state average quantities are 
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The speed of a series motor can be determined from Eq.10 

  
            

    
                                    

The speed can be varied by controlling the (1) armature voltage Va; or (2) armature 

current, which is a measure of the torque demand. Equation (11) indicates that a series 

motor can provide a high torque, especially at starting; for this reason, series motors are 

commonly used in traction applications. 

3-  Operating Modes 
In variable-speed applications, a dc motor may be operating in one or more modes: motoring, 

regenerative braking, dynamic braking, plugging, and four quadrants. The operation of the 

motor in any one of these modes requires connecting the field and armature circuits in different 

arrangements, as shown in Figure 5. This is done by switching power semiconductor devices 

and contactors. 

 

 

 

 

 

 

 

 

 

Figure 5 Operating modes. 
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Motoring. The arrangements for motoring are shown in Figure 5 a. Back emf Eg is less than 

supply voltage Va. Both armature and field currents are positive. The motor develops torque to 

meet the load demand. 

Regenerative braking. The arrangements for regenerative braking are shown in Figure 5 b. 

The motor acts as a generator and develops an induced voltage Eg. Eg must be greater than 

supply voltage Va. The armature current is negative, but the field current is positive. The kinetic 

energy of the motor is returned to the supply. A series motor is usually connected as a self-

excited generator. For self-excitation, it is necessary that the field current aids the residual flux. 

This is normally accomplished by reversing the armature terminals or the field terminals. 

Dynamic braking. The arrangements shown in Figure 5 c are similar to those of 

regenerative braking, except the supply voltage Va is replaced by a braking resistance Rb. The 

kinetic energy of the motor is dissipated in Rb. 

Plugging. Plugging is a type of braking. The connections for plugging are shown in Figure 5 d 

.  The armature terminals are reversed while running. The supply voltage Va and the induced 

voltage Eg act in the same direction. The armature current is reversed, thereby producing 

braking torque. The field current is positive. For a series motor, either the armature terminals or 

field terminals should be reversed, but not both. 

 

Four quadrants. Figure 6  shows the polarities of the supply voltage Va, back emf Eg, and 

armature current Ia for a separately excited motor. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Conditions for four quadrants. 
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Single-Phase Drives 
 

 

If the armature circuit of a dc motor is connected to the output of a single-phase Controlled 

rectifier, the armature voltage can be varied by varying the delay angle of the converter ꟹa. The 

forced-commutated ac–dc converters can also be used to improve the power factor (PF) and to 

reduce the harmonics. The basic circuit agreement for a single-phase converter-fed separately 

excited motor is shown in Figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.Basic circuit arrangement of a single-phase dc drive. 

 

Depending on the type of single-phase converters, single-phase drives may be subdivided into: 

1. Single-phase half-wave converter drives 

2. Single-phase semiconverter drives 

3. Single-phase full-converter drives 

4. Single-phase dual-converter drives 

The armature current of half-wave converter drives is normally discontinuous. This type of 

drive is not commonly used . A semiconverter drive operates in one quadrant in applications up 

to 1.5 kW. The full converter and dual drives are more commonly used. 
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1-  Single-Phase Half-Wave Converter Drives 
 Figure 8  shows a single-phase half-wave converter drive used to control the speed of 

separately-excited motor. This d.c. drive is very simple, needs only one power switch and one 

freewheeling diode connected across the motor terminals for the purpose of dissipation of 

energy stored in the inductance of the motor and to provide an alternative path for the motor 

current to allow the power switch to commutate easily. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8  a single-phase half-wave converter drive 

 

 

 

2- Single-Phase Semiconverter Drives 
 

A single-phase semiconverter feeds the armature circuit, as shown in Figure 9a. It is a one-

quadrant drive, as shown in Figure 9b, and is limited to applications up to 15 kW. The converter 

in the field circuit can be a semiconverter . The current waveforms for a highly inductive load 

are shown in Figure 9c.  



10 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Single-phase semiconverter drive. 

 

 

 

With a single-phase semiconverter in the armature circuit, the average armature voltage is can 

given by 

 

 

 

 

 

 

With a semiconverter in the field circuit, gives the average field voltage as 
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3-  Single-Phase Full-Converter Drives. 
The armature voltage is varied by a single-phase full-wave converter, as shown in Figure 10a. It 

is a two-quadrant drive, as shown in Figure 10b, and is limited to applications up to 15 kW. The 

armature converter gives +Va or -Va, and allows operation in the first and fourth quadrants. 

During regeneration for reversing the direction of power flow, the back emf of the motor can be 

reversed by reversing the field excitation. The converter in the field circuit could be a semi-, a 

full, or even a dual converter. The reversal of the armature or field allows operation in the 

second and third quadrants. The current waveforms for a highly inductive load are shown in 

Figure 10c for powering action. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 Single-phase full-converter drive. 

 

With a single-phase full-wave converter in the armature circuit the average armature voltage  is 

given by: 
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With a single-phase full-converter in the field circuit,  

 

 

 

 

 

 

 

4-  Single-Phase Dual-Converter Drives 
Two single-phase full-wave converters are connected, as shown in Figure 11. Either converter 1 

operates to supply a positive armature voltage, Va, or converter 2 operates to supply a negative 

armature voltage, -Va. Converter 1 provides operation in the first and fourth quadrants, and 

converter 2, in the second and third quadrants. It is a four-quadrant drive and permits four 

modes of operation: forward powering, forward braking (regeneration), reverse powering, and 

reverse braking (regeneration). It is limited to applications up to 15 kW. The field converter 

could be a full-wave, a semi-, or a dual converter. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure11  Single-phase dual-converter drive. 
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If converter 1 operates with a delay angle of αa1: 
 

 

 

If converter 2 operates with a delay angle of αa2, 

 

 

 
With a full converter in the field circuit 
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1- Example 14.3 Finding the Performance Parameters of a Single-

Phase Semiconverter Drive[2] p 714. 
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Microcomputer Control of Dc Drives 

 

The analog control scheme for a converter-fed dc motor drive can be implemented 

by hardwired electronics. An analog control scheme has several disadvantages: nonlinearity of 

speed sensor, temperature dependency, drift, and offset. Once a control 

circuit is built to meet certain performance criteria, it may require major changes in the 

hardwired logic circuits to meet other performance requirements. 
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A microcomputer control reduces the size and costs of hardwired electronics, 

improving reliability and control performance. This control scheme is implemented 

in the software and is flexible to change the control strategy to meet different performance 

characteristics or to add extra control features. A micro-computer control 

system can also perform various desirable functions: on and off of the main power supply, start 

and stop of the drive, speed control, current control, monitoring the control 

variables, initiating protection and trip circuit, diagnostics for built-in fault finding, and 

communication with a supervisory central computer. Figure 14.38 shows a schematic 

diagram for a mThe speed signal is fed into the microcomputer using an analog-to-digital (A/D) 

converter. To limit the armature current of the motor, an inner current-control loop is 

used. The armature current signal can be fed into the microcomputer through an A/D 

converter or by sampling the armature current. The line synchronizing circuit is required 

to synchronize the generation of the firing pulses with the supply line frequency. 

Although the microcomputer can perform the functions of gate pulse generator and 

logic circuit, these are shown outside the microcomputer. The pulse amplifier provides 

the necessary isolation and produces gate pulses of required magnitude and duration. 

A microprocessor-controlled drive has become a norm. Analog control has become 

almost obsolete. icrocomputer control of a converter-fed four-quadrant dc drive. 
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The speed signal is fed into the microcomputer using an analog-to-digital (A/D) converter. To 

limit the armature current of the motor, an inner current-control loop is used. The armature 

current signal can be fed into the microcomputer through an A/D converter or by sampling the 

armature current. The line synchronizing circuit is required to synchronize the generation of the 

firing pulses with the supply line frequency. Although the microcomputer can perform the 

functions of gate pulse generator and logic circuit, these are shown outside the microcomputer. 

The pulse amplifier provides the necessary isolation and produces gate pulses of required 

magnitude and duration. A microprocessor-controlled drive has become a norm. Analog control 

has become 

almost obsolete. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Schematic diagram of computer-controlled four-quadrant dc drive. 
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Introduction 

•  Any time a program needed to retrieve(call back) an input 

signal, it did so by repeatedly checking the desired 

information source, a process called polling.  For Example: 

 
 
 
 
 
 
 
 

• Each block in the figure is meant to indicate a single 

instruction, and the solid directional lines show the path 

that the Program Counter (PC) follows.  
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•  As can be seen in the example, the program executes Main Loop 

which makes two different function calls, one to Function A and 

one to Function B. 

 

• While polling works fine, there are a couple of  reasons to avoid 

them.  

• First, performance can suffer in more complicated embedded 

systems which require input from many sources. 

 

• (For example, a high-tier cell-phone has to monitor an 

entire key-pad, menu buttons, ambient light sensor,etc. ) 

 

• When software is written such that the processor is 

constantly polling all inputs for activity, it will never have a 

chance to perform other operations that generally control 

the behavior of  the device.   
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• Second, an important feature for many embedded systems is 

to periodically power down hardware, a process called 

sleeping 

• When a processor sleeps, it is able to conserve power, 

which leads to longer portable battery lives.  

 

• Many environments that involve polling don’t allow the 

microprocessor to sleep at all, resulting in batteries 

draining much faster. 
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• An alternative version to the polling example is that 

Function A has been moved from the deterministic  

pathway of  the polling software to an isolated function 

that gets called in response to an interrupt condition.  
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• Interrupts are signals used to notify the CPU that some new 

event has just occurred.  

• Because most interrupt sources occur outside the CPU 

boundary, interrupts may be thought of  as random signals that 

can occur at any point during the otherwise predictable flow of  

the primary algorithm.  

 

• When an interrupt occurs, the CPU stops whatever it is doing 

and jumps to an associated Interrupt Service Routine (ISR).  
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Interrupt Service Routine (ISR) 

• Is a special function written to handle the fact that the 

interrupt signal occurred.  
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Interrupt Service Routine (ISR) 

• In the polling example, Function A always occurred at the 

same time within the loop of  processing.  

 

• By contrast, the new example algorithm has moved 

Function A, processing outside the main algorithm’s path, 

reducing the work constantly performed by the main 

program.  

 

• The drawback is the added complexity of  the fact that now 

Function A can be called at any time, and so software needs 

to be written with this behavior in mind. 
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 CONTEXT 

• Typically, the  software context may be specified by the set 

of  CPU registers, including the PC (Program Counter) 

which points to the current assembly instruction.  

 

• For the example interrupt-based algorithm to work properly, 

it is certainly necessary that Main Loop function as it did in 

the polling case.   

• This requires the current context to appear as though 

each assembly instruction is executed in the intended 

sequence. 

 

• Interrupt processing is made possible by saving the context 

on ISR entry and restoring the context when the ISR 

completes.  
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•  For example, suppose an interrupt occurs at the third (machine) 

instruction of  Main Loop, as shown in figure 

 

 

 

 

 

 

 

 

 

 

 

• As a result, the address of  the fourth (machine) instruction is 

stored as part of  the current context.  
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• Then, any CPU registers used within Function A are also saved 

in memory before they are overwritten by Function A’s 

instructions.  

 

• After Function A finishes, the entire context is restored and the 

PC is reset to the fourth instruction of  the Main program, as 

• shown in Fig:  
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• The CPU begins executing the fourth instruction of  Main 

Loop with CPU registers appearing as though the third 

instruction just finished because the context was saved prior to 

entering the ISR and then restored after the ISR completed. 

 ISR and main task communication 

• The final general topic that needs attention is the method for 

an ISR to communicate with the main program.  

 

• That is, the ISR is not a direct function call, so there are no 

parameters that can be passed in, nor is there a return 

statement that is able to pass back any values.  

 

• Therefore, the only way for an ISR to communicate with the 

rest of  the program is to use shared memory, such as 

global variables.  



13 

• However, because an interrupt can occur at any time, care must 

be taken when reading or writing variables that are accessed 

within ISRs.  

 

• As seen in the figure, the reason is because individual C 

instructions are often composed of  several machine 

instructions, especially when dealing with 16- and 32-bit 

variables.  
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• So, it is likely the main program will be interrupted part-

way through variable access.  

• The associated ISR could change the contents of  

the variable before it returns to the previous 

location.  

• At that time, the main program would continue 

accessing the variable, which is now different. 

 

•  The result is that the main program operates on a variable 

value that is half  correct and half  incorrect.  

 

• In order to mitigate these problems, any memory that is 

shared between ISRs and the main program need to be 

protected.  
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• The protection necessary is usually in the form of  

turning  off  global interrupts before accessing the shared 

variable.  

 

• When finished, the global interrupts need to be restored to 

their previous state. 
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Example of  interrupts 
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• This example shows how, even though the main loop is 

doing nothing, you can turn the LED on pin 13 on or off, if  

the switch on pin D2 is pressed. 

• To test this, just connect a wire (or switch) between D2 and 

Ground. The internal pull-up (enabled in setup) forces the 

pin HIGH normally. 

• When grounded, it becomes LOW. The change in the pin is 

detected by a CHANGE interrupt, which causes the 

Interrupt Service Routine (ISR) to be called. 

• In a more complicated example, the main loop might be 

doing something useful, like taking temperature readings, 

and allow the interrupt handler to detect a button being 

pushed. 
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DigitalPinToInterrupt function 

• To simplify converting interrupt vector numbers to pin 

numbers you can call the function digitalPinToInterrupt, 

passing a pin number. 

• It returns the appropriate interrupt number. 

• For example, on the Uno, pin D2 on the board is interrupt 0 

(INT0_vect from the table below). 

• Thus these two lines have the same effect:  

 

 

 

• However the second one is easier to read and more portable 

to different Arduino types. 
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Available interrupts 

Below is a list of  interrupts, in priority order, for the Atmega328: 

 



6 

Summary of  interrupts 

The main reasons you might use interrupts are: 

• To detect pin changes (eg. rotary encoders, button presses) 

• Watchdog timer (eg. if  nothing happens after 8 seconds, 

interrupt me) 

• Timer interrupts - used for comparing/overflowing timers 

• SPI data transfers 

• I2C data transfers 

• USART data transfers 

• ADC conversions (analog to digital) 

• EEPROM ready for use 

• Flash memory ready.  

 

The "data transfers" can be used to let a program do something 

else while data is being sent or received on the serial port, SPI 

port, or I2C port. 
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Wake the processor 

• External interrupts, pin-change interrupts, and the 

watchdog timer interrupt, can also be used to wake the 

processor up. 

• This can be very handy, as in sleep mode the processor can 

be configured to use a lot less power (eg. around 10 micro-

amps).  

• A rising, falling, or low-level interrupt can be used to wake 

up a gadget (eg. if  you press a button on it), or a "watchdog 

timer" interrupt might wake it up periodically (eg. to check 

the time or temperature). 

• Pin-change interrupts could be used to wake the processor if  

a key is pressed on a keypad, or similar. 

• The processor can also be awoken by a timer interrupt (eg. a 

timer reaching a certain value, or overflowing) and certain 

other events, such as an incoming I2C message. 
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Enabling / disabling interrupts 

• The "reset" interrupt cannot be disabled. However the other 

interrupts can be temporarily disabled by clearing the 

interrupt flag. 

 

Enable interrupts 
• You can enable interrupts with the function call "interrupts" 

or "sei" like this: 

 

 

Disable interrupts 
• If  you need to disable interrupts you can "clear" the interrupt 

flag like this: 
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Existing Counter Use 

• The millis() and micros() functions. [functions use timer 0) 

• The analogWrite() function [Used with PWM]. 

• The Tone library. 

• The Servo library [timer1].   
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Initial Timer State 

• Timers 1,2 set ready for analogWrite() PWM use. 

• Set to 8-bit PWM phase-correct*, with the clock pre-scaled 

to the system clock divided by 64. 

• Timer0 set to fast PWM for use with the millis()/ micros()  

Control Registers 

• Timer/Counter Control Register A:  TCCRnA 

•  Timer/Counter Control Register B:  TCCRnB 

• Timer CouNT:  TCNTn 

• Output Compare Register A:  OCRnA 

• Output Compare Register B:  OCRnB 
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Timer 0 

• The timer most used in applications. 

• Can be used as: 

• simple counter [Used internally] 

• frequency generator (including PWM) 

• External source clock counter 

• Able to generate “tree” interrupts. * 
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What do the Registers do? 

• Set up the Mode of the timer/counter. 

• Set up the various parameters of the timers/counters. 

• Provide output waveforms. 

• Provide options for comparing the waveform values with 

other values. 

• Note: a timer is a counter with a clock input. 
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PWM Modes * 
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Timer/Counter Modes * 
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Timer/Counter 0 Control Register A* 

• The COM0x bits: 

control the behavior of the output 

compare pins OC0A,B. 

• The WGM0n bits. 

control the function of the output 

compare pins  OC0A,B 
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T/C0 Waveform Generation Mode Bits (WGM02:0)* 
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Compare Output Mode T/C 0 Bits (COM0x) 

Normal Mode 
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Compare Output Mode T/C 0 

Bits (COM0x) Fast PWM 
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Compare Output Mode T/C 0 Bits Phase-Correct 

PWM  
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Timer/Counter 0 Control  

Register B  

• The FOC0x bits: 

Force output compare for A or B 

for non-PWM modes. 

• The CS0n bits. 

Clock Select bits for the clock 

source. 
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Timer 0 Clock Select 
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Program Example 

• Create a 500ppr quadrature encoder simulator that outputs 

quadrature signals out on pins from timer 0.  

• Assume the rotation is a constant speed of 10rev/sec. 
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Program Example 

• A 500ppr quadrature encoder at a constant speed of  

10rev/sec gives (500ppr)(10rev/sec) = 5000 pps (5.0 kHz). 

 

• This corresponds to  a period of 0.2ms, that toggles every 

0.1ms. 
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Program Example 

• The clock select determines how many clock pulses every 

0.1ms. 

•  Clock 0 has outputs on Arduino pins 5 & 6. (PORTD 

pins 5 & 6) 
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Timing Diagram 

(timer 0 resets when 

count hits OCR0A) 

(toggles when timer 

0  hits OCR0A) 

(toggles when timer 

0  hits OCR0B) 
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Program Example 

• Create a 500ppr quadrature encoder simulator that outputs 

quadrature signals out on pins from timer 0.  

• Assume the rotation is a constant speed of 10rev/sec. 
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Program Example 

• A 500ppr quadrature encoder at a constant speed of  

10rev/sec gives (500ppr)(10rev/sec) = 5000 pps (5.0 kHz). 

 

• This corresponds to  a period of 0.2ms, that toggles every 

0.1ms. 
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Program Example 

• The clock select determines how many clock pulses every 

0.1ms. 

•  Clock 0 has outputs on Arduino pins 5 & 6. (PORTD 

pins 5 & 6) 
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Timing Diagram 

(timer 0 resets when 

count hits OCR0A) 

(toggles when timer 

0  hits OCR0A) 

(toggles when timer 

0  hits OCR0B) 
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Registers & Parameters 

• OCR0A:   200  

• OCR0B:   100  

• COM0A:  01   (TCCR0A)  

• COM0B:  01   (TCCR0A)  

• WGM0:    010  (TCCR0A and TCCR0B)  

• CS:           010  (TCCR0B) 
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Program Example 

//Quadrature encoder simulator  
void setup()  
{  
  PORTD &= 0b10011111;          //set pins 5,6 to zero  
  DDRD |=(1<<6)|(1<<5);         //set pins 5,6 as outputs.  
 
  //Initialize and setup the timer in CTC mode  
  //and set pins PD5 and PD6 (OC0A, OC0B) to toggle 
 
  TCNT0=0;           //initialize the timer 0 value  
  OCR0A = 200;       //Set TOP value to OCR0A.  
  OCR0B = 100;       //This TOP value determines phase of B  
 
  TCCR0A |= (1<<COM0A0)|(1<<COM0B0)|(1<<WGM01);//WGM0: 010  
  TCCR0B|=(1<<CS01);//CS: 010  
}  
void loop()  
{  
} 
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PWM Pins 
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Fast PWM Mode 

• Produces the fastest PWM waveforms (compared to phase 

or phase/frequency correct) 

• The timer count TCNTn simply goes from the BOTTOM 

(0x00) to the TOP (0xFF or 0xFFFF) then resets. 

• When TCNTn reaches the output compare (OCRnA or 

OCRnB), the output compare bit (OCnA or OCnB) is 

cleared.   These are then set when TCNTn rolls over. 
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Fast PWM Illustrated 
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• Frequency 

𝑓𝑝𝑤𝑚 =  
𝑓𝑐𝑙𝑘

256 𝑁
 

 

• Where N = pre-scalar 

• Duty Cycle: 

=  
𝑂𝐶𝑅0𝐴+1

256
× 100% 

 

=  
255−𝑂𝐶𝑅0𝐴

256
× 100% 

 

 

 



12 

Fast PWM Example 

• Use Fast 8 bit PWM. 

•  Use both A & B on Timer 0 

•  Clear the output compare bits on Compare Match, set on 

TOP 

•  Choose a PWM frequency approximately 

       twice the default PWM frequency (approx. 1kHz) 
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Fast PWM Example 

• Registers & Parameters 

• TCNT0:    0  

• COM0A:  10   (TCCR0A)  

• COM0B:  10   (TCCR0A)  

• WGM0:   X11  (TCCR0A and TCCR0B)  

• CS:           011  (TCCR0B) 
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Fast PWM Example 

void setup()  
{  
  PORTD = 0x00;  
  DDRD = (1<<5)|(1<<6);  
  TCCR0A = 0b10100011;  
  TCCR0B = 0b00000011;  
  TCNT0 = 0;  
}  
void loop()  
{  
  OCR0A = 128;//duty cycle for A  
  OCR0B = 64;//duty cycle for B  
} 
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Phase Correct PWM  

• Produces “symmetric” waveforms, which provide 

smoother motions when used with motors. 

• The center of each pulse occurs at the period, as opposed 

to the falling edge on the period. 

•  Up/Down counter required. 

•  Frequencies are half of that used for Fast PWM. 
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