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Chapter 1
Ordinary Differential Equations (ODEs)

A differential equation is an equation that involves one or more derivatives, or
differentials. المجھولةللدالةأكثرأوواحدةمشتقةتتضمنمعادلةھيالتفاضلیةالمعادلة
Differential equations are classified by:

1. Type: Ordinary or partial.  نوع
2. Order: The order of differential equation is the highest order derivative that occurs 
in the equation. المرتبة
3. Degree: The exponent of the highest power of the highest order derivative. الدرجة

A differential equation is an ordinary D.Eqs. if the unknown function depends on
only one independent variable. If the unknown function depends on two or more
independent variable, the D.Eqs. is a partial D.Eqs.
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Exercise: Find the order and degree of these differential equations.



Solution

The solution of the differential equation in the unknown function y and the independent 
variable x is a function y(x) that satisfies the differential equation.

Ordinary Differential Equations:
Ordinary Differential Equations are equations involve derivatives.

A. First Order D.Eqs.

1- Variable Separable.  قابل للفصل
2- Homogeneous. متجانسة
3- Linear. خطیة
4- Exact. تامة 



1- Variable Separable:

A first order D.Eq. can be solved by integration if it is possible to collect all y terms 
with dy and all x terms with dx, that is, if it is possible to write the D.Eq. in the form

then the general solution is:

where c is an arbitrary constant.

Ex.1:





Exercise: Separate the variables and solve.



2- Homogeneous:

Some times a D.Eq. which variables can't be separated can be transformed by a
change of variables into an equation which variables can be separated. This is the
case with any equation that can be put into form:

Such an equation is called homogenous.



Ex.1:

Sol.:



Ex.2: Solve the homogenous D.Eq

Sol.:

Exercise: Show that the following differential equations are homogenous and solve.



ENGINEERING 
ANALYSIS I

LECTURE 2
 

 
Ordinary Differential  Equations

First Order  D.Eqs.

Prepared by: Abdurahman B. AYOUB



3 - Linear

The equation of the form where P and Q are functions of only x or constant

is called linear in y and

Find integrating factor , then the general solution is

Ex.1: Solve



Ex.2: Solve

Let      𝑢𝑢 = 𝑥𝑥2

2

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 =

1
2 2𝑥𝑥 → 𝑑𝑑𝑑𝑑 = 𝑥𝑥𝑥𝑥𝑥𝑥

𝑦𝑦𝑒𝑒𝑢𝑢 = �𝑒𝑒𝑢𝑢𝑑𝑑𝑑𝑑

𝑦𝑦𝑒𝑒𝑢𝑢 = 𝑒𝑒𝑢𝑢 + 𝑐𝑐

𝑦𝑦 = 1 + 𝑐𝑐𝑒𝑒−𝑢𝑢 = 1 + 𝑐𝑐𝑒𝑒 �−𝑥𝑥2
2



Exercise:

4- Exact

The equation is said to be exact if

General Solution is



Ex.1: Show that the following D.Eq. are exact D.Eq.

The D.Eq. is exact.

the D.Eq. is exact.



Ex.2:  Is the D.Eq. exact or not?

Ex.3:  Solve the exact D.Eqs. in Ex.1 (a) above



Ex.4: Solve



Exercise:

Problems:
Solve the following differential equations:
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Second Order Differential Equations:

The second order linear differential equations with constant coefficient has the general form 
is:

where a, b and c are constants.

If

If

then (1) is called homogenous.

then (1) is called non homogenous.

Ex:

𝐹𝐹(𝑥𝑥) ≠ 0



a) Homogeneous.

b) Nonhomogeneous.
1. Undeterminant coefficients.

2. Variation of parameters.

a) The Second order linear homogenous D.Eq. with constant coefficient:

The general form is where a, b and c are constants.

The general solution

now substitute D by r and leave y then



is called characteristic equation of the differential equation and the solution of this 
equation (the roots r) give the solution of the differential equation where

There are two values of  

1- real (equal and not equal).
2- complex.







b) The Second order linear non homogenous D.Eq. with constant coefficient:

The general form is: where a, b and c are constants.

The general solution

If yh is the solution of the homo. then the general solution of

eq. (3) is:



Methods of finding :

There are two methods:
1) Undetermined coefficients:
In this method depends on the roots r1, and r2 of characteristic 
equation
and on the form of F(x) in eq. (3) as follows:

Note: For repeated term (root), multiply by  X .











Substitution gives
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2- Variation of Parameters.

Let the general homogenous solution of the D.E. equation is

and the particular solution has the form where v1 and v2 are unknown

functions of x which must be determined .

1-Solve the following linear equations for v'1 and v'2

which can be solved with respect to v'1 and v'2 by Grammar rule as follows

2-Integrad  v'1 and v'2 with respect to x we can find v1 and v2.

( Wronskian equation ) 

Consider the differential equation



Solving this system by Cramer rule gives

the general solution is



Ex.2: solve

Solution:



Solve the following deferential equations using variation of parameters:

4. y″ + y = tan x.

5. 

6.

7.

Exercise: 
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Laplace Transforms
• Important analytical method for solving linear ordinary differential 
equations.

- Application to nonlinear ODEs? Must linearize first.

• Laplace transforms play a key role in important process control concepts 
and techniques.

Examples: 

• Transfer functions 

• Frequency response

• Control system design

• Stability analysis



The Laplace Transform is an integral transformation of a function f(t) from the time

Definition

domain into the complex frequency domain, giving F(s)

and s is a complex variable: s = a + bj

The Inverse Laplace Transform is defined by

∫
∞+

∞−

− ==
j

j

tsdsesF
j

tfsFL
σ

σπ
)(

2
1)()]([1

)()( sFtf ⇔

interpreted as an operator Where



1. Constant Function

Let f(t) = a (a constant). Then from the definition of the Laplace 
transform.

( )
0

0

0 (3-4)st sta a aa ae dt e
s s s

∞
∞ − −  = = − = − − = 

 ∫L

Laplace Transforms of Simple Functions

The Laplace transform operator

Ex. Find Laplace transform of 



2.Step Function



3.Unit impulse function 

δ(t)

f(t)

0
δ(t) = 1        t 0= t



4

Ex. Find

1.

2. 3.



5

In general 

Type equation here.

Ex.1  Find Ex.2 Find 



6

Ex. Find



7

Ex. Find



Using Matlab with Laplace transform:

Example Use Matlab to find the transform of tte 4−

The following is written in italic to indicate Matlab code

syms t,s
laplace(t*exp(-4*t),t,s)
ans =

1/(s+4)^2



Standard Table of Laplace Transform
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1. Linearity

Properties of Laplace Transform

Ex. 2
Find the Laplace transform of 
Solution

Ex.1 Find the Laplace Transforms of f(t)=



2.Shifting
The First Shifting Theorem: (frequency shifting property)

b) The second shifting theorem:(Delay)

Ex.2 
What is the Laplace transform of the function

Ex.1 Find    =

ملاحظة لحل المثال



Ex.3 Find 

1.

2.

3. Scaling

Ex. 
Find the Laplace transform of cos2t.

3.



4. Derivative
a)Time - differentiation property

(i) Transform of the First Derivative

(ii)Transform of the Second Derivative (iii) Higher order derivative:



b)frequency - differentiation property

In general

Ex.1 
Find the Laplace transform of 

Ex.2

If Find the Laplace transform of 

Solution: 1st Method  



Using the formula,

Second Method

which is the same

Ex.3  If   f(t)=t   ( unit ramp), find the Laplace transform of

Solution 



5. Integration
a)Time - integration property

b)frequency - integration property



Ex.1     Find 

Ex.2  If   f(t)=1   ( unit step), find the Laplace transform of ∫𝑓𝑓(𝑡𝑡)

Using the formula,

⇒ 𝐹𝐹 𝑠𝑠 =
1
𝑠𝑠
𝑠𝑠

=
1
𝑠𝑠2



6. Convolution theorem

then the convolution of f (t) and g(t) is denoted by (f * g)(t), is defined by

and the Laplace transform of the convolution of two functions is the product of the separate
Laplace transforms:

Ex. 
Find the Laplace transform of



7. 





8.





Properties of Laplace Transform
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Inverse Laplace Transform 

Definition

if

Technique: Find the way back.

Example 1.

Example 2.

∫
∞+

∞−

− ==
j

j

tsdsesF
j

tfsFL
σ

σπ
)(

2
1)()]([1 )()( sFtf ⇔



Example 3

Example 4

Here we used partial fraction to Find out:



Determine the Inverse Laplace Transform of

Example 5

Solution
Using partial fractions,

Substituting s = −1

5 = 5A implying that A = 1

Equating coefficients of on both sides, 3 = A + B so that B = 2.

Equating constant terms on both sides, 4 = 4A + C so that C = 0



Determine the Inverse Laplace Transform of
Example 6

Using the First Shifting Theorem and the Inverse Laplace Transform of



Determine the Inverse Laplace Transform of

Example 7

Solution
Using the First Shifting Theorem and the Inverse Laplace Transform of

Example 8

Determine the Inverse Laplace Transform of

Solution
The denominator will not factories conveniently, so we complete the square.
This gives



To use the First Shifting Theorem, we must include s + 2 in the numerator.



Determine the Inverse Laplace Transform of

Example 9

Solution
Using partial fractions,

Substituting s = 0 gives 8 = 8A so that A = 1.

Equating coefficients of on both sides, 0 = A + B which gives B = −1.

Equating coefficients of s on both sides, 8 = 4A + C which gives C = 4.



Determine the Inverse Laplace Transform of

Example 10

This time, the denominator will factories, into (s +2)(s − 6).



Putting s = −2

Putting s = 6



Note:
If we did not factories the denominator,



Determine the Inverse Laplace Transform of

Example 11

Using Convolution Theorem.



Example 12  Find 

the second shifting theorem implies that

Example 13. Invert



Example 12 Use Matlab to find the inverse transform of 

19.12.
)186)(3(

)6()( 2 prob
sss

sssF
+++

+
=

syms s t

ilaplace(s*(s+6)/((s+3)*(s^2+6*s+18)))

ans = 
-exp(-3*t)+2*exp(-3*t)*cos(3*t)
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Differential Equations 
Laplace Transform Methods

The Laplace transform was developed by the French
mathematician by the same name (1749-1827) and was
widely adapted to engineering problems in the last century.
Its utility lies in the ability to convert differential equations
to algebraic forms that are more easily solved. The notation
has become very common in certain areas as a form of
engineering “language” for dealing with systems.



Differential Equation

Transform differential
equation to

algebraic equation.

Solve equation
by algebra.

Determine
inverse

transform.

Solution

Figure 1.
Steps involved in 

using the 
Laplace transform.



4

Significant Operations for Solving 
Differential Equations

[ '( )] ( ) (0)L f t sF s f= −
2[ "( )] ( ) (0) '(0)L f t s F s sf f= − −

0

( )( )
t F sL f t dt

s
  =  ∫



5

Example  1. Solve DE shown below.

2 12dy y
dt

+ = (0) 10y =

[ ] [ ]2 12dyL L y L
dt

  + =  

12( ) 10 2 ( )sY s Y s
s

− + =

( ) 122 ( ) 10s Y s
s

+ = +

10 12( )
2 ( 2)

Y s
s s s

= +
+ +

[ '( )] ( ) (0)L f t sF s f= −



6

1 212
( 2) 2

A A
s s s s

= +
+ +

1
00

12 12 6
( 2) 2 ss

A s
s s s ==

   = = =   + +  

2
22

12 12( 2) 6
( 2) ss

A s
s s s =−=−

   = + = = −   +   

10 6 6 6 4( )
2 2 2

Y s
s s s s s

= + − = +
+ + +

2( ) 6 4 ty t e−= +



7

Example 2. Solve DE shown below.

2 12sin 4dy y t
dt

+ = (0) 10y =

2

12(4)( ) 10 2 ( )
16

sY s Y s
s

− + =
+

2

10 48( )
2 ( 2)( 16)

Y s
s s s

= +
+ + +

1 2
2 2

48
( 2)( 16) 2 16

B s BA
s s s s

+
= +

+ + + +

[ '( )] ( ) (0)L f t sF s f= −



8

2
2

48 48 2.4
16 20s

A
s =−

= = =+ 

1 2
2 2

48 2.4
( 2)( 16) 2 16

B s B
s s s s

+
= +

+ + + +

2 4.8B =

1 2.4B = −

48 = 2.4 𝑠𝑠2 + 16 + (𝑠𝑠 + 2)(𝐵𝐵1𝑠𝑠 + 𝐵𝐵2)

𝑠𝑠0: 48 = 2.4 16 + (2)(𝐵𝐵2)

𝑠𝑠2: 0 = 2.4 + 𝐵𝐵1



9

2 2

10 2.4 2.4 4.8( )
2 2 16 16

sY s
s s s s

= + − +
+ + + +

2( ) 12.4 2.4cos 4 1.2sin 4ty t e t t−= − +
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Example 3. Solve DE shown below.
2

2 3 2 24d y dy y
dt dt

+ + = (0) 10 and '(0) 0y y= =

[ ]2 24( ) 10 0 3 ( ) 10 2 ( )s Y s s sY s Y s
s

− − + − + =

2 2

24 10 30( )
( 3 2) 3 2

24 10 30
( 1)( 2) ( 1)( 2)

sY s
s s s s s

s
s s s s s

+
= +

+ + + +
+

= +
+ + + +

2[ "( )] ( ) (0) '(0)L f t s F s sf f= − − [ '( )] ( ) (0)L f t sF s f= −,
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24 12 24 12
( 1)( 2) 1 2s s s s s s

= − +
+ + + +

10 30 20 10
( 1)( 2) 1 2

s
s s s s

+
= −

+ + + +

12 4 2( )
1 2

F s
s s s

= − +
+ +

2( ) 12 4 2t tf t e e− −= − +
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Example 4. Solve DE shown below.

2

2 2 5 20d y dy y
dt dt

+ + = (0) 0 and '(0) 10y y= =

[ ]2 20( ) 0 10 2 ( ) 0 5 ( )s Y s sY s Y s
s

− − + − + =

2 2

20 10( )
( 2 5) 2 5

Y s
s s s s s

= +
+ + + +

2[ "( )] ( ) (0) '(0)L f t s F s sf f= − − [ '( )] ( ) (0)L f t sF s f= −,
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2 2

20 4
( 2 5) ( 2 5)

As B
s s s s s s

+
= +

+ + + +

4A = −

8B = −

20 = 4 𝑠𝑠2 + 2𝑠𝑠 + 5 + 𝑠𝑠(𝐴𝐴𝐴𝐴 + 𝐵𝐵)

𝑆𝑆: 0 = 4 2 + (𝐵𝐵)

𝑠𝑠2: 0 = 4 + 𝐴𝐴



14

2 2 2

4 4 8 10 4 4 2( )
2 5 2 5 2 5
s sY s

s s s s s s s s
− − − +

= + + = +
+ + + + + +

2 2 2 22 5 2 1 5 1 ( 1) (2)s s s s s+ + = + + + − = + +

2 2 2 2

4 4( 1) 3(2)( )
( 1) (2) ( 1) (2)

sY s
s s s

− +
= + +

+ + + +

( ) 4 4 cos 2 3 sin 2t ty t e t e t− −= − +



Example 5. Solve the initial value problem (IVP) by 
Laplace transform 2[ "( )] ( ) (0) '(0)L f t s F s sf f= − −

[ '( )] ( ) (0)L f t sF s f= −
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MATRIX THEORY

Matrix algebra has at least two advantages:

•Reduces complicated systems of equations to simple expressions

•Adaptable to systematic method of mathematical treatment and well 
suited to computers

Definition:

A matrix is a set or group of numbers arranged in a square or
rectangular array enclosed by two brackets
















−

333
514
421








 −
2

3
3
3

0
1

0
1

2x4 matrix
3x3 matrixAmxn

للتكیف مع أسلوب منھجي في المعالجة الرياضیة ومناسب قابل 
تمامًا لأجھزة الكمبیوتر

يختزل أنظمة المعادلات المعقدة إلى تعبیرات بسیطة



TYPES OF MATRICES

1. Column matrix or vector:

The number of rows may be any integer but the number of columns is 
always 1

















2
4
1









−3
1



















1

21

11

ma

a
a



2. Row matrix or vector

Any number of columns but only one row

[ ]611 [ ]2530 [ ]naaaa 1131211 



3. Rectangular matrix

Contains more than one element and number of rows is not equal to 
the number of columns



















−
67
77

73
11









03302
00111

nm ≠

4. Square matrix

The number of rows is equal to the number of columns

(a square matrix   A has an order of m)









03
11

















166
099
111



5. Diagonal matrix

A square matrix where all the elements are zero except those on 
the main diagonal

















100
020
001



















9000
0500
0030
0003

i.e. aij =0 for all i = j

aij = 0 for some or all i = j

6. Unit or Identity matrix - I

A diagonal matrix with ones on the main diagonal


















1000
0100
0010
0001









10
01

i.e. aij =0 for all i = j

aij = 1 for some or all i = j



7. Null (zero) matrix - 0

All elements in the matrix are zero

















0
0
0

















000
000
000 0=ija

For all i,j

8. Triangular matrix

A square matrix whose elements above or below the main diagonal are 
all zero

















325
012
001

















300
610
981

Upper triangular

matrix

Lower triangular
matrix



1-EQUALITY OF MATRICES

Two matrices are said to be equal only when all corresponding 
elements are equal

Therefore their size or dimensions are equal as well

















325
012
001

















325
012
001

A = B = A = B

2-ADDITION AND SUBTRACTION OF MATRICES

The sum or difference of two matrices, A and B of the same size yields 
a matrix C of the same size

ijijij bac +=

Basic Operations 



Commutative Law:
A + B = B + A

Associative Law:
A + (B + C) = (A + B) + C = A + B + C









−−

=







−−

+







−

−
972
588

324
651

652
137

A
2x3

B
2x3

C
2x3









−

=







−








122

225
801
021

723
246

C= A - B



3-SCALAR MULTIPLICATION OF MATRICES

Matrices can be multiplied by a scalar (constant or single element)

Let k be a scalar quantity; then      kA = Ak

Ex.  If k=4 and 



















−

−

=

14
32

12
13

A



















−

−

=×



















−

−

=



















−

−

×

416
128
48
412

4

14
32

12
13

14
32

12
13

4

Properties:

• k (A + B) = kA + kB

• (k + g)A = kA + gA

• k(AB) = (kA)B = A(k)B

• k(gA) = (kg)A



4-MULTIPLICATION OF MATRICES
The product of two matrices is another matrix

Two matrices A and B must be conformable for multiplication to be 
possible

i.e. the number of columns of A must equal the number of rows of B

Example.

A x     B =      C

(2x3)     (3x2)      (2x2)









×+×+××+×+×
×+×+××+×+×

=
























)37()22()84()57()62()44(
)33()22()81()53()62()41(

35
26
84

724
321









=

5763
2131



Assuming that matrices A, B and C are conformable for the 
operations indicated, the following are true:

1. AI = IA = A

2. A(BC) = (AB)C = ABC - (associative law)

3. A(B+C) = AB + AC - (first distributive law)

4. (A+B)C =  AC + BC - (second distributive law)

5-TRANSPOSE OF A MATRIX









=

135
742

A Then transpose of A, denoted AT is:If :
















=

17
34
52

TA



6-SYMMETRIC MATRICES
A Square matrix is symmetric if it is equal to its transpose: A = AT

8-INVERSE OF A MATRIX
The inverse of a square matrix, A, if it exists, is the unique matrix A-1

where:    AA-1 = A-1 A = I

A
adjAA =−1

7-Skew Symmetric Matrix
A skew symmetric matrix is a 2Tsquare 2T matrix where i.e.

i.e.



9-DETERMINANT OF A MATRIX

Each square matrix A has a unit scalar value called the determinant 
of A, denoted by det A or |A|









=

21
13

A 5)1)(1()2)(3( =−=A

















−
=

101
320
101

A

4)20)(1()30)(0()02)(1( =+++−−=A

Example 1:

Example 2:



10-ADJOINT MATRICES
The adjoint matrix of A, denoted by adj A, is the transpose of its 
cofactor matrix

TCadjA =








 −
==

=−−=









−

=

13
24

10)3)(2()4)(1(

43
21

TCadjA

A

A

Example 1:

C= 4 3
−2 1



Example 2








 −
=







 −
=−

1.03.0
2.04.0

13
24

10
11A









− 43

21
A = 

To check AA-1 = A-1 A = I

IAA

IAA

=







=








−







 −
=

=







=







 −








−

=

−

−

10
01

43
21

1.03.0
2.04.0

10
01

1.03.0
2.04.0

43
21

1

1

FindIf 

C= 4 3
−2 1

TCadjA =



Example 3

















−

−
=

121
012
113

A

|A| = (3)(-1-0)-(-1)(-2-0)+(1)(4-1) = -2

),1(
),1(
),1(

31

21

11

−+=
−−=
−+=

c
c
c

The determinant of A is

The elements of the cofactor matrix are

),2(
),4(
),2(

32

22

12

−−=
−+=
−−=

c
c
c

),5(
),7(
),3(

33

23

13

+=
−=
+=

c
c
c

A
adjAA =−1

If Find

ij
ji

ij MC +−= )1(
















=

333231

232221

131211

ccc
ccc
ccc

C

Minor Mij



















−
−−

−
=

521
741

321
C

The cofactor matrix is therefore

so

















−
−

−−
==

573
242
111

TCadjA

and

















−−
−−

−
=

















−
−

−−

−
==−

5.25.35.1
0.10.20.1

5.05.05.0

573
242
111

2
11

A
adjAA



Example 4 









−

−
=








−

−
−=









=

−

2.04.0
3.01.0

24
31

10
1

14
32

1A

A

Check inverse

A-1 A=I I=







=
















−

−
−

10
01

14
32

24
31

10
1

A matrix possessing an inverse is called Nonsingular  or Invertible

TCadjA =C= 1 −4
−3 2
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Eigenvalues and Eigenvectors
Definition   المتجھات الذاتیة والقیم الذاتیة
Let A be an n × n matrix. A scalar λ is called an eigenvalue of A
if there exists a nonzero vector X in Rn such that

AX = λX.
The vector X is called an eigenvector corresponding to λ.

Figure 1

2 4
0 4

2
1 = 8

4 = 4 2
1

القیم الذاتیة ھي القیم المسؤولة عن التكبیر او التصغیر للمتجھات الذاتیة  

2 4
0 4

0
−1 = −4

−4 = 4 −1
−1



Computation of Eigenvalues and Eigenvectors
Let A be an n × n matrix with eigenvalue λ and corresponding
eigenvector X. Thus AX = λX. This equation may be written

AX – λX = 0
given

(A – λIn)X = 0 ------(1)

Solving the equation |A – λIn| = 0 -------(2) for λ leads to all the
eigenvalues of A.

On expending the determinant |A – λIn|, we get a polynomial in λ. This
polynomial is called the characteristic polynomial of A.

The equation |A – λIn| = 0 is called the characteristic equation of A.



Example 1: 

Find the eigenvalues and eigenvectors of the matrix

Let us first derive the characteristic polynomial of A.

A has a repeated Eigen value: 1 21 −== λλ

Now we have to solve the system Here 1 1 −=λ , so that,

A vector is therefore an eigenvector associated with the Eigen value 1 1 −=λ

αα =∴= 21 xxLet



where is a real number. Normalized

IF

Example 2: 

Find the Eigen values and the Eigen vector of the matrix  A .

|A – λIn| = 0  -------(2) 



=1X
3

1
1
1

)()()(

1
1
1

*

ˆ
2221

















=
++

















=
kkk

k

X

(A – λIn)X = 0 ------(1)

1



=2X

=3X

2
1
0
1

0)(

1
0
1

*

ˆ
2222















−

=
++−















−

=
kk

k

X

6
1
2
1

)2()(

1
2
1

*

ˆ
2223
















−
−

=
+−+−
















−
−

=
kkk

k

X

- -



Example 3: 








−
=







−
=

1
2

 and 
1
1

21 XX

|A – λIn| = 0 

1or  20)1)(2(022 −=⇒=+−⇒=−− λλλλλ

For  λ = 2 0=












 −−

2

1

33
66

x
x

(A – 2I2)X = 0
033
066

21

21

=+
=−−

xx
xx

x1 = –x2 Let x2=1 x1=-1

For λ = –1 0=














 −−

2

1

63
63

x
x

063
063

21

21

=+
=−−

xx
xx x1 = –2x2

Let x1=-2
x2=1

Find the eigenvalues and eigenvectors of the matrix






 −−
=

53
64

A 







−
−−−

=







−







 −−
=−

λ
λ

λλ
53

64
10
01

53
64

2IA

2
1
1

1)1(

1
1

221








−

=
+−








−

=X
5

1
2

1)2(

1
2

222








−

=
+−








−

=X



Find the eigenvalues of matrix A =

Example 4: 

First the eigenvalues: 

)6)(3)(2()183)(2( 2 +−−=−+− λλλλλλ

6,3,2 321 −=== λλλ



H.W.
1-Find the eigenvalues and eigenvectors of the matrix

2-Given that 2 is an eigenvalue , Find the eigenvalues of matrix 

Property 1: Sum of eigenvalues
For any square matrix A:
sum of eigenvalues = sum of diagonal terms of A (called the trace of A)
Formally, for an n × n matrix A:  trace (A)=∑𝑖𝑖=1𝑛𝑛 𝜆𝜆𝑖𝑖
Property 2: Product of eigenvalues
For any square matrix A:
product of eigenvalues = determinant of A   , det 𝐴𝐴 = 𝜆𝜆1𝜆𝜆2𝜆𝜆3 … … … 𝜆𝜆𝑛𝑛

trace (A) = 7-1+2= 8
trace (A) = 5+1+2= 8

det 𝐴𝐴 = 5 ∗ 1 ∗ 2 = 10
det 𝐴𝐴 = 10

𝐴𝐴 =
7 4 6
−3 −1 2
0 0 2

𝜆𝜆1 = 5 , 𝜆𝜆2 = 1 , 𝜆𝜆3= 2



Example 5. Given that 2 is an eigenvalue for Find a basis of its

where we select x1 and x3 as free variables only to avoid fractions. Solution set in 
parametric form is

A basis for the Eigen space:

Eigen space.
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The Cayley Hamilton Theorem
The Cayley Hamilton theorem is one of the most powerful results in linear algebra.
This theorem basically gives a relation between a square matrix and its
characteristic polynomial. One important application of this theorem is to find
inverse and higher powers of matrices.

One can check that 

Theorem: Every square matrix satisfies its characteristic equation.

Char. Equation: 0)( 01
1

1 =++++= −
− aaaf n

n
n λλλλ 

By Caley-Hamilton Theorem 0)( 01
1

1 =++++= −
− IaAaAaAAf n

n
n 

0

|A – λIn| = 0 , 



Find inverse of the matrix applying Cayley- Hamilton theorem. 

Example 1 

By the Cayley-Hamilton theorem 

−𝐴𝐴3 + 𝐴𝐴2 + 𝐴𝐴 − 𝐼𝐼 = 0
Or           −𝐴𝐴3 + 𝐴𝐴2 + 𝐴𝐴 = I

𝐴𝐴−1 = −𝐴𝐴2 + 𝐴𝐴 + I



Example 2

det(M - λI)=0 

Computation of powers of A 



Example 2:

........
!4!3!2

1
432

+++++=
xxxxe x

........
!4!3!2

432

+++++=
AAAAIe A

Scalar polynomial 

Matrix  polynomial 

0=− IA λ 0
21

42
=

−
−−−
λ

λ
04)2)(2( =+−−− λλ

04224 2 =++−+− λλλ 02 =λ 02 =A

2A



Diagonalization of Matrices

Definition
A square matrix A is said to be diagonalizable if there exists a matrix
P such that D = P–1AP is a diagonal matrix.

Let A be an n × n matrix.
(a) If A has n linearly independent eigenvectors, it is diagonalizable. 

The matrix P whose columns consist of n linearly independent 
eigenvectors can be used in a similarity transformation P–1AP to 
give a diagonal matrix D. The diagonal elements of D will be the 
eigenvalues of A.

(b) If A is diagonalizable, then it has n linearly independent eigenvectors

Theorem



Show that the matrix                       is diagonalizable.






 −−
=

53
64

A

Example 1: 








−
=







−
=

1
2

 and 
1
1

21 XX

[ ] 






 −−
==

11
21

21 XXP

|A – λIn| = 0 

1or  20)1)(2(022 −=⇒=+−⇒=−− λλλλλ

For  λ = 2 0=












 −−

2

1

33
66

x
x

(A – 2I2)X = 0
033
066

21

21

=+
=−−

xx
xx

x1 = –x2 Let x2=1 x1=-1

For λ = –1 0=














 −−

2

1

63
63

x
x

063
063

21

21

=+
=−−

xx
xx x1 = –2x2

Let x1=-2
x2=1



D

APP

=







−

=






 −−







 −−








−−

=








 −−







 −−







 −−
=

−
−

10
02

11
21

53
64

11
21

11
21

53
64

21
21 1

1









−−

=








−−

==−

11
21

1
11

21

)det(
)(1

p
PadjP



Example 2

Diagonalize if possible





[ ]















−

−−
==

101
110

111

321 XXXP

)det(
)(1

p
PadjP =−

PAPD 1−=



Homework

a-Use the Eigen values method to compute where P is the Eigen
vectors of A.

b-Compute and cos A

........
!4!3!2

432

+++++=
AAAAIe A ........

!4!2
cos

42

+−+−=
AAIA

........
!5
5

!3
sin

3

+−+−=
AAAA

ملاحظة 
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DOUBLE INTEGRAL

Let f(x,y) be a function of two variables defined on a closed region R . Then the double 

integral of f over R is given by

when z = f(x,y) represents a surface the then the volume V of the solid above the 

region R and below the surface z = f(x,y) is given by:

R

DEFINITION

When f(x, y) = 1 on R then

gives the area A



First case: The integration limits are constants

Example 1

I

Double Integrals (Cartesian Coordinates)



Example 2:

Evaluate
sketch: since dydx ⇒ vertical y =1 , y = 2



Second case: The integration limits are variables

1.If R is region of type one
Taking a vertical lamina means that we will integrate first with respect to y and in this case
the integration limits will be a function of x , then integrate the result with respect to y
which will be defined through a constant limits

2. If R is region of type Two

Taking a horizontal lamina means that we will integrate first with respect to x and in this
case the integration limits will be a function of y , then integrate the result with respect to x
which will be defined through a constant limits



Example1

Evaluate where R is the region bounded by y = x ; y = 1 and x=0

First Solution(figure.1)

Second solution (figure2)

figure.1

figure2



Example2

Evaluate where R is the region bounded by x+2y = 3 and

y= 0 in the first quadrant



Example3

Evaluate  2 where R is the region bounded by x=0 and y= 4



Reversing the order of Integration
A problem may become easier when the order of integration is reversed or changed.
Which means some integrals may be impossible to be evaluated with respect to one
of the variables but can be done with respect to the other one

Evaluate

Example1



Example2

Evaluate
x

y

reverse the order
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Double Integrals in Polar Coordinates

Suppose that we want to evaluate a double integral ∫ ∫R f (x, y) dA, where R is one

of the regions shown in Figure 1. In either case the description of R in terms of

rectangular coordinates is rather complicated, but R is easily described using

polar coordinates.

Figure 1



Recall from Figure 2 that the polar coordinates (r, θ ) of a point are related to the 
rectangular coordinates (x, y) by the equations

Figure 2

The regions in Figure 1 are special cases of a polar rectangle

R = {  (r, θ ) | a ≤ r ≤ b, α ≤ θ ≤ β } which is shown in Figure 3.

Figure 1

Figure 3

Polar rectangle



So changing to polar coordinates will transfer the segment area dA
(dx dy) to another area in polar plane given by J dr dθ where J in the
Jacobian and it is equal to r in the case of changing from Cartesian to
Polar, so

In general, in plane polar coordinates,

Figure 5

Figure 4



Example1

Evaluate



Evaluate ∫ ∫R (3x + 4y2) dA, where R is the region in the upper half-
plane bounded by the circles x2 + y2 = 1 and x2 + y2 = 4.

Example 2



Evaluate where R is the region in the first quadrant bounded by

the circle

Example 3
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