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Chapter 1
Ordinary Differential Equations (ODEs)

A differential equation is an equation that involves one or more derivatives, or

differentials. &gpeoll Il ST ol da>ly Adivine ouass Wsleos b auloladl @sleoll
Differential equations are classified by:

1. Type: Ordinary or partial. ggJ

2. Order: The order of differential equation is the highest order derivative that occurs
in the equation. au ,oJl

3. Degree: The exponent of the highest power of the highest order derivative. a> .l

A differential equation is an ordinary D.Eqgs. if the unknown function depends on

only one independent variable. If the unknown function depends on two or more
Independent variable, the D.Egs. is a partial D.EqQs.

Is a partial D.egs.




Ex1:

dy =5x+3 Ist order-1st degree

dx
Ex2:

&y (dv)

[ ; i’ ] +[ = } 31rd order-2nd degree
x v

Ex3:

3 2
4d§;+5inxd f
d

+5xy=0 3rd order-1st degree
dx X

Exercise: Find the order and degree of these differential equations.

d
—y+cosx:{)

dx

ans:1st order-1st degree

3dx +4v*dy =0 ans:lst order-1st degree
d*y

_ .2
2 +_];—y

dx
(yrr)z + 2yr — xz
¥ +2(0") = xy



Solution

The solution of the differential equation in the unknown function y and the independent
variable x is a function y(x) that satisfies the differential equation.

Ordinary Differential Equations:

Ordinary Differential Equations are equations involve derivatives.

A. First Order D.Egs.

1- Variable Separable.  |Lasl) L8
2- Homogeneous. A =io
3- Linear. Lln>
4- Exact. Aol




1- Variable Separable:

A first order D.Eg. can be solved by integration if it is possible to collect all y terms
with dy and all x terms with dx, that is, if it is possible to write the D.Eq. in the form

f(x) dx+g(y) dy=0 then the general solution is:

J' f(x)dx + J' g(»dv=c where c is an arbitrary constant.

Ex.1:




Ex.2:

Solve (1+ x)@ =x(y* +1)
dx

Sol.:

dv ¢ «x
'[(y2+1) _-[x+ldx
tﬂn_ly:‘[dx—‘[xildx

tﬂ]l_1y=x—ln‘x+1‘+c




. [IKZ —1;’2]‘7, —Idx
-1 wu+l

5[h1(u-l)-ln(u+1)]:x+c

Exercise: Separate the variables and solve.
. XQy-3)dx+(x"+1)dy=0  ans: (x+1)(2y-3)=¢
. dy=¢" dx ans: e’=e*+¢

dy

. sin X— +cosh 2y=0 ans: sinh 2y-2cosx=c¢
X

2
dx =0 ans: €’(y-1)+ %Hn X[=¢

1

3
ans: ER vi=x?+c




2- Homogeneous:

Some times a D.Eq. which variables can't be separated can be transformed by a
change of variables into an equation which variables can be separated. This is the
case with any equation that can be put into form:

dv _ ¥
E—f(;)---(l)

Such an equation is called homogenous.

= y:ux,@:utr-@ and (1) becomes
dx dx

du
x—+u=f
X ™ u= f(u)







Ex.2: Solve the homogenous D.Eq xdv +2vdx =0

Sol.:

xdy =2ydx = d ==Y
dx .

dit

x-—+u=2u
dx

Exercise: Show that the following differential equations are homogenous and solve.

1. (x*+y)dx+xy dy=0 ans: X (x+2y°)=c
2. x*dy+(y*-xy)dx=0 ans: y = a

Inx—c
hd -y
3. (xe*+yv)dx—xdyv=0 ans:In|x|+e* =c¢
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3 - Linear

: d :
The equation of the form d—y + p-v =0 where P and Q are functions of only x or constant
X

Is called linear in y and @
dx

Find integrating factor (7.7.) = ¢ " then the general solution is v-(1./.) = I(I J.) Q.dx

d
Ex.1: Solve A Ty

X

P(x)= —é, O(x)=xe"

-1

—dx
Uf)=e " =emrzl

X
Solution 1s

y-l:jl-xex-dx
x Yx

"
—=e +c
x




a=§2x—>du=xdx

yel = je”du

yet* =e% 4+ ¢

2
y=14+ce *=1+ce ¥/




Exercise:

- -2
ans: y=e +ce

X L3
3 ans: X y=C-COsX

. xdy+ vdx = vdy ans: y=2 4+
A

4- Exact

The equation M (x,v)dx+ N(x,y)dy =0 IS said to be exact if %ﬁl’f = E;T

General Solution is

c= Ide + I(rerms in N donot contains




Ex.1: Show that the following D.Eq. are exact D.Eq.
a) Bx’y +2xy)dx+ (x +x” +2y)dy =0

oM

— =3x" 4+ 2x N

— =3x" +2x
ox

2

oM ON
oy  Ox

The D.Eq. is exact.

b) [xcos(x + y)+sin(x + v)]dx + (xcos(x + v)dy =0

% =—xsin(x + y) +cos(x + v)

Z_N = —xsin(x+ y) +cos(x + v)
X

the D.Eq. is exact.




2 2
dy __("+Y)  ovactor not?
dx 2xy

Ex.2: Isthe D.Eq.

Sol.
2xydy = —(x7 + y7)dx
oM cN
_ = 2}) . _ =
oy Ox
~OM oN
Gy

2y

, .. theD.Eq.1s exact

Ex.3: Solve the exact D.Egs. in Ex.1 (a) above (3x°y +2xy)dx + (x° + x> +2y)dy =0

Sol.
c= I(3x2y + 2xv)dx + IZydy

3 2 2

IR S S
3 2 3

thesolutionis X’y+X V4V =c




Ex.4: Solve (x+y)dx+(x+3y*)dy =0

Sol.
aM_ v
Oy Ox
.. theD.Eq.1s exact
c= _[de - _[ (terms in N donot contains x)dy

=(x+y)dx+ | yid
Y y ay

2 3

X y
= ay+ =
2 T3

2 3

the solution 1s X? + Xy + DA

3




Exercise:

ans: c=2x+e¥-y’

ans: c=y tanx-Incosy-+secx
ans: X y+y x-y/2=c

1. 2+ye™)dx+(xe™-2y)dy=0
2. (tanx-+tany)dy+(ysec x+secx tanx)dx=0
3. 2xy+y))dx+(x*+2xy-y)dy=0

Problems:
Solve the following differential equations:
I- ylnyde+(1+x)dy=0 8- 1+ y)dx+(2xy+y° +Ddy=0

9- (& +Iny)dx + (X ydy =0

2- & Vdy e Fdx =0 y

10- x(1+e&")dx+ é(x2 +v)e’dv=0

2x+y)dx+(x—-2y)dv=0
xdy = (v + xcos?(L))dx
x
x(Iny—Inx)dv=v(l+Iny—Inx)dx

xdy+Q2y—-x>—1dx=0
cos y dx + (x siny - cos’y)dy =0
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Second Order Differential Equations:

The second order linear differential equations with constant coefficient has the general form
IS:

av"+by' +cy = F(x) ...(1), where a, b and c are constants.
If F(x)=0 then (1) is called homogenous.

If F(x)=#0 then (1) is called non homogenous.

EX:

1) y"-x*y'+sinx y=0 is linear, 2™ order, homo.

2) v"'-(y')+ y=sinx is non linear, 2" order, non homo.

3) y"+2yy'=Inx




a) Homogeneous.

b) Nonhomogeneous.
1. Undeterminant coefficients.
2. Variation of parameters.

a) The Second order linear homogenous D.Eq. with constant coefficient:

The general form is ay"+by'+cy=0 ...(2) wherea, band c are constants.

The general solution

Put y'=Dy and y"=D"y in eq. (2) (D is an operator)

— a D*y+bDy+cy=0

— (aD’ +bD +c¢)y=0 (using D-operator)

now substitute D by r and leave y then a7 +br+c¢ =0




Is called characteristic equation of the differential equation and the solution of this
equation (the roots r) give the solution of the differential equation where

—bFADb* —4dac

2a

}""':

There are two values of r :

1- real (equal and not equal).
2- complex.

Case 1: If »° —4ac >0 then r; and 1, are distinct (1,# 1) and real roots, and the

. * _ hx X
general solution1s  y=¢e" +¢e

Case 2: If »*> —4ac=0 then r,=r, =1 , and the general solution is:

y=(c, +c,x)e”
Case 3: If b* —4ac <0 then the roots are two complex conjugate roots r=a if3,
i =+/—1, and the general solution is:

y=e"(c,cos fx+c,smnfx)




Ex.1: Solvey"—23' -3y =0
Solution:
y'=2y"=3y=0

P =2r-3=0
(r+D(r-=3)=0
r+1=0 = r=-1
r—3=0 = r=3
the general solution 1s
v=ce +c,e”
Ex.2: Solvey"—6y"+9y =0
Solution:

Vi=6y'+9y=0

P —6r+9=0

(r—3)>=0 = n=r=3

v=_(c; + sz)eh




Ex.3: Solvey"+1y'+v =0
Solution:

y"‘l‘y,"‘y:ﬂ

PP4r+1=0 a=lb=1lc=1

_—=Dbt41-411

2.1

I EN RS EVE)

r

NE]

wyv=e? (q 005?33: +c, sin?:x:)
Exercise: solve
1. 4y"-12y'+5y=0 ans: y=c,e"?*+ ¢,e®?*
2. 3y"-14y-5y=0 ans: y=c,e”+ c,e "
3. 4y"+y=0 ans: y=c¢;cos(x/2)+ c,sin(x/2)



b) The Second order linear non homogenous D.Eq. with constant coefficient:

The general formis: av"+by' +cv=F(x) ...(3) wherea, band c are constants.

The general solution

If ynis the solution of the homo. D.Eq. ay"+ 5y"+ ¢y =0 ,then the general solution of

eg. (3) is:

Yy=wty, ¥, (complementary function)

¥, (porticular integral)

i) vy, 1s y homo.
ii) 'y, (use the table)




Methods of finding v,

There are two methods:

1) Undetermined coefficients:

In this method », depends on the roots rl, and r2 of characteristic
equation

and on the form of F(x) in eq. (3) as follows:

F(x) Choice of y,

Jox” o x" +k _x" ko x" 4+ kg
nth degree polynomial

ke™ ce
ks fpx or ¢, cos fx+c,sin fx

k cos [

px

Note: For repeated term (root), multiply by X.




Ex.1: Use the table to write  y,
1) F(x)=3x . k=3 n=2
v, = k,x? +kx+k,

-1 4
F(x)=—¢™*
(x) 5

. c€—3x

F(x)=2cos3x ., k=2 ., p=3

Y, =€, €08 3X + ¢, sin 3X

F(x)=3x"-3x+5 - 2™

_ 2 3x
v, =kx" +kx+k,+ce

I . :
F(x)chosx—Esmx 6) F(x)=sinx—cos2x

¥, =€ COS X + ¢, §in X ¥V, =€ COsX +C, sin X + A cos 2X + Bsin 2x




Ex.2: Solve " -y —2y=4x> .... (1)
Solution:
y'-y-2y=0
the char. Eq. r°-r-2=0
(r+D(r-2)=0
r,=-L1,=2
y, =ce +c,e’”
f(x)=4x" is polynomial of second degree then

yp:k2x2+k1x+kﬂ .. (2)
= y,=2kx+k , y,=2k,

Substitution gives

2k, — Rk, x + k) = 2(k,x*> + kx +k, ) = 4x7
: 2

coeff of x* : 2k, =4 = k,=-2 yp=—2x"+12x-3

coeff .of x: =2k, =2k, =0 = k, =2

const : 2k, =k, =2k, =0 =k, =-3

VY, =Yy +¥, =(ce +c,e”) = 2x" +2x -3




Ex.J3: y'—y -2y=e™ 9¢-3¢c-2¢=1=4,=21 = c:%

Solution: In ()= .

}"pzze

y'—y' —2y=e™  ..(D

X —X 1 X
yn_yr_zy:ﬂ yg:yh+yP:C1€2 +CEE +Z€3

P —r—2=0

rF—=2)r+D)=0=n=2.1,=-1
Vv, = (c]ezx +c,e ), Put

Y, = ce’™ e (2)

r_ 3x "o 3x
v, =3ce .y, =9ce

Substitute In (1)

9ce¥*-3ce¥*-2ce¥*=e"




Modification rule Jiail) saclé

G ool 0= bl Addlaad) ok ) Gy F(n) =k O8I (1
X

(2

Gl ) Q¢ p= Al ddal) gk a) OISy F(x)=ke” QK1Y -a
X

G E y) G « p= bl il 53 OSy F(x)=ke” OSI3 -b

Feos X gy
ksin fx

R 3 Qo r=Fif L a=0 S F(x)z{




Ex.4:Solve y"+y= sinx

Solution:
y'+y=0
r'+1=0, r'=-1 = r=+1, a=0, p=1

Vp=C1COSX+C,SINX

Vp=X(C3C08X+C4S1NX), ¥'p=X(-C3SINX+C4COSX)+(C3C0SX+C4SINX)

¥'"p=X(=C3C08X~C4SINX)+(~C3SINX+C,C0SX) +(~C381NX+¢4COSX)

Substitution gives

-2C;SINX+2¢,COSX=SINX

-2¢:=1= ¢:=-1/2. 2¢,=0=¢,=0
V, =€ COSX + ¢, s x —gcosx
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2- Variation of Parameters.

Consider the differential equation |ay” +by'+cy = F(X)I
Let the general homogenous solution of the D.E. equation is  [Ya—€1U;7CoU;

and the particular solution has the form [V, =0,;V; + Uszl where viand vzare unknown

functions of x which must be determined .
1-Solve the following linear equations for viand v

viut+ vhu,=0 . .

(Wronskian equation)

vhiu'i+ vhu',=F(X)

which can be solved with respect to v'rand v'2by Grammar rule as follows
0 u, 0
., D

F(x) u!l F(x)

2

D= D, =

and v| =

2-Integrad Vv'iand v'2with respect to x we can find viand ve.




Ex.1:
Solve y'—y —2y=e™™

- 2
v, =ce  +c,e”, hence

[
—X

4 = U

—-X

i N 4

1 1

'
2x

_ . 2x
U, = e = u, =2e

Yp— Vil TV,

f r
vy +vyu, =0
' r ' '

viu, +vyu, =F(x)

v, (e7)+v, (™) =0

' !
v, () +v, (2eF)=e™

Solving this system by Cramer rule gives

[
>

the general solution is

_ 1
y=c,e ™ +c,e’" +1E:3"




Ex.2: solve y'+y=secx COS X 0

i , = _ =cosx secx =1
Solution: —sinX secx

, —tanx

yﬂ+ycq] Vlz*—————*Z—THHX

r'+1=0 =>1r'=-1=>r=+1i a=0, B=1 x=In|cosx|

j-SHlX

COSX

y,=C;COSX + C,SINX, U;=CO0SX, U,=sinX, f(X)=secx
‘U'2:12>V2 :jdx =X
Yp— Vil TV,

= v,COSX +V,sinx then Yp = In |cosx| cosx + X sinx

Ve = €1C08X + C,81nX + In [cosx| cosX + X sinx

' 4
v, (cosx)+ Vv, (sinx)=0

) L
v, (-smx)+v, (cosx) =secx

COSX SINX ) s
D= _ =Ccos  X+sm x =1,
—sInX COSX

0 Sin X _ _ 1
D, = = —sSINX SecX = —sinx =—tanx, —
secX COSX COSX




Exercise:

Solve the following deferential equations using variation of parameters:

1. y'-2y+y =¢" Inx

2. y"2yHY = 5

X
3. y'+4y=sin"2x
4.y" +y=tanX.

5. 4y" — 4y — 8y =8
(A

6. y' =2y +y = 1—?—t2+3€t

7. 4y +y=cosx
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Laplace Transforms

 Important analytical method for solving linear ordinary differential
equations.

- Application to nonlinear ODEs? Must linearize first.

o Laplace transforms play a key role in important process control concepts
and techniques.

Examples:
 Transfer functions
e Frequency response
« Control system design

o Stability analysis




Definition
The Laplace Transform is an integral transformation of a function f(t) from the time
domain into the complex frequency domain, giving F(s)

LIFO)] = F(s) = f (et dt

Where L interpreted as an operator and s is a complex variable: s = a + bj

L™ [F(s)]=f (t) :ij _[F(s)etsds

Joo

f(t) & F(s)




Lif(t)}=F(s). Li{g(t)}=G(s). and L{y(t)}=Y(s).

S Ny
OO

t domain s domain

The Laplace transform operator

Laplace Transforms of Simple Functions
1. Constant Function

Let f(t) = a (a constant). Then from the definition of the Laplace
transform.

© a _
L(a) :j ae gt =——¢ ™
0 S
Ex. Find Laplace transform of f(t) =1
1

F(s)= "




2.Step Function

Laplace Transform of the unit step function u(t)

f(t) o

0

=4

-1 _st -::ﬂ:__1

L] = [1e™dt = —e (6~

S 0 S
0

The Laplace Transform of a unit step function is:

Liu(t)] = —
S




3.Unit impulse function f(t)

8(t
o()=1 t=0 o

> 1

The Laplace transform of a unit impulse function:

In particular, if we let f(t) = 8(t) and take the Laplace

L[5(t)] = j S(t)e Stdt = e = 1
0

The Laplace Transform of a unit impulse function is:

L[6(t)] < 1




4 ‘ The Exponential Function e \

a0 0

Lle™u(t)] = j e e Slgt = je““a)“dt
0 0

— =St
e _ ] [_E—Sm . E—SU}

—at _
He uthl = (s+a)‘0  s+a

The Transform of Exponential Function e¢:
Ex. Find

1 f(e™") =

e ?ut) <

s+ 1

1
2. [(e") = ] 3. [(e*") = p—




5| The Ramp Function tu(t) \

L[tu(t)] = J're—sfdt
0

u=t

Remember dv = estdt

Type equ

The transform of a
Ramp Function tu(t)

; 1 . 6
flt)y=t" (n>1) = — Ex.1 Find (t) ==  Ex.2Find () ==




6| The cosine function cos(wt): \

L[cos(wt)] =

The transform of a cosine
function cos(wt):

cos(wt)u(t) <

82+(ﬂ

2

Ex. Find

3t) =
leos38) =775




7‘ The Sine function sin(et): \

e~lat = -

]’”(ef"”* -e)

L[sin(et)]

2]

A transform pair sin(et)ut) & ———;
S +wm

' in 3t) =
Ex. Find [(sin 3t) 715




Using Matlab with Laplace transform:

Example

Use Matlab to find the transform of

te

—4t

The following is written in italic to indicate Matlab code

syms t,S
laplace(t*exp(-4*t),t,9)
ans =

1/(s+4)"2




Standard Table of Laplace Transform

f(6)=LT{F(s)]

F(s)=L{f()}

i

sin af

cosar

sinh at

cosh ar
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Properties of Laplace Transform

1. Linearity

L [af(r)+ be®] = [ [af (1) + bg(n)]e™dr

= aj: f(H)e™dt + bj: a(t)e™dt = aF (s) + bG(s)

EX.1 Find the Laplace Transforms of f(t)=3 e?t — 2 sin 3t
r 3 6
Lnl=5 -5

EX. 2
Find the Laplace transform of cos’t

Solution

L [eoss]=L [1 +c;sZt]




2.Shifting
The First Shifting Theorem: (frequency shifting property)
a) If £ (f(t)) = F(s). Jll J=J ab> Mo

my _nl _ L
at _ L(t") = - wheren =0,1,2,3,
Then £ " f(t); = F (s-a) s
n!

L(e”fr”) = —.s>a
Ex.1 Find L(ezrr3): { 6 ] (s —a)

(s—2)

b) The second shifting theorem:(Delay) 4 f(t) /_¥/

If £ (f(t)) = F(s).

Then = {f(f -a)u(r - H)} = e ™ F(s) [
oL

Ex.2 | 0. <4
What is the Laplace transform of the function f(7) = p g 0= 28u(t—4)

L[A(N]=L {2[(r—4)° +12(+—4)" +48(t — 4) + 64] u(r — 4)}

3! 2! 1 o4 |
:29_45[44‘].2)(3"‘48){24—) :4{;‘_45( 3; +1§'+2?+32}

s s s s s s s s




Ex.3 Find

1. L[e* cos 2t] = 3. L{(t* +4)e* —e ' cost}
2 4 s+ 1

(5—2)3+S—2 (s+1)2+1

2. L{e(tP+5t—2)}

3! 1 1
et 5 _2 -
(5—2)4+ (s—2)2 s—2

3. Scaling

If £ (f(t)) = F(s).

Then £ (f(at)) =~ F()

EX.
Find the Laplace transform of cos2t.

1
5 _
L [cost]= L [cos2t]=—

[ ] s?+1 2




4. Derivative
a)Time - differentiation property

(i) Transform of the First Derivative

It £ (ft) = F(s).

Then L [f(1)]=sF(s)—A0)

LIF0]=[ f @0 dt=f@0)e™| ()] f)e™dt
where w=e™ v'= f'(¢)

L [f'()]=sF(s)-A0) w=—se™ v=[7()= 1)

L [f'(n]=sF(s)-A0)

(i) Transform of the Second Derivative (ii1) Higher order derivative:

LLf"(0)] = s*F(s) s/ (0)~ f'(0) L [0 =5"F(s) = 35" £ 0)




b)frequency - differentiation property
If £ (f(t)) = F(s).

Then £ (tf(t)) = —%F(s)

In general £("f (1)) = —j:n F(s)

Ex.1
Find the Laplace transform of 7¢"

1
. (Er)zail =L (mr):_%[&*l—l}:(ﬁ‘—l)z

Ex.2
If f(t) =e'! Find the Laplace transform of f'(%)

ft) =€t so f/(t) = et and  L(f) = L(f)) = ﬁ




Second Method

Using the formula,

L [f'(n]=sF(s)-A0)

1

L(f) = s(—)—1

which is the same

Ex.3 If f(t)=t (unit ramp), find the Laplace transform of f'(t)

Solution

L(f)=s (é) —0=1/s




5. Integration
a)Time - integration property

If £ (f(t) = F(s).

F(s)

5

Then £ jf(r)dr =

SN L[j;j;j; F()dtdt---di] = LﬂF(s)

b)frequency - integration property

It £ (f(t) = F(s).

Then ~ {f()} jF(s)ds

= Lm Lm---LmF(S)dsds-- -ds =L [Iinf(f)]




Ex.l FindL [1‘:’_

L [l—e_’]:l— !
s s+1

l—e = 1 1
L = —— d.
[ t ] IS(S 3—%1) >

ax

5
s+1

=lns—In(s+1)| =In

5

—0-1n s :l]lSJrl
s+1 s

Ex.2 If f(t)=1 (unit step), find the Laplace transform of [ f(t)

Using the formula,

F(s)

Then L jf(r)a’r =

5




6. Convolution theorem

It L@} = Fs)
and  L{g()} = G(s)

then the convolution of f (t) and g(t) is denoted by (f * g)(t), is defined by
(f*g)(t) = | f(r)g(t-1)dr

and the Laplace transform of the convolution of two functions is the product of the separate
Laplace transforms:

Li(f*2)(1)} = F(s)G(s)

EX.

to .
Find the Laplace transform of J.ﬂ-é‘r sin2tdr.
1
L [e]= ; ' _
[e'] 1 L [sin27] .
2 2

s—1 'Sz+4_(s—1)(s‘2+4)

AL jﬂg sin2rdt]=L [e' *sin2¢]=L [¢']-L [sin2¢] =




[ Initial Value

If the function f(t) and its first derivative are Laplace transformable and
f(t) has the Laplace transform F(s), and the Iim sF(s) exists, then

S=

Initial Value Theorem || lim sF(s) = lim f(f) = f(0)
S t—0

This theorem tell us that we don't need to take the inverse of F(s)
in order to find out the initial condition in the time domain.
This is particularly useful in circuits and systems.




Initial Value

Find f(0)

(s+1) s?+s

f(0) = lim sF(s)= lim s
S—peo S2% (5+1)? + 42 5% +25+1+16

SE[1+1)
S

ST 2 [1+—+—)

s 32




8. Final Value

If the function f(t) and its first derivative are Laplace transformable and f(t)

has the Laplace transform F(s), and the Iimﬁ SF(s) exists, then
S—

im sF(s) = lim f(t) = f(x)

s—0 [—w

Final Value Theorem

This theorem tell us that we don't need to take the inverse of F(s) in
order to find out the final value of f(t) in the time domain.
This is particularly useful in circuits and systems.




Final Value

(s +2)% -32
[(s +2)? +32]

F(s) = note F‘1(s) = te™ cos3t

Jf ()

2 2
flo) = lim sF(s) = lim s 272 =3° _

s—0 s—0 [(S+2)2+32}




Properties of Laplace Transform

Onginal Function Transformed Function
afin) + beli) aF(s) + bGis)
it —a) u(t—a) € F(5)
" flf) F(s—a)

flab) lF{i}
) s"Fls)—s" J'ﬂ:l:H"2 (0)—""f"(0)-
G b
d"F(s)
o
[ find e
" 5

(=1 f5)

Integration 1 —
p fn) |, Fis)ds

Convolution [ f)glt-nd FUs)G(s)

Periodic Function fity=flt+T) ﬁj; fedt

Imitial Value Theorem ]j.m fit)= lim sF(s)

tim &8 _ i £
= E(1) = G(s)
lim (1) = lim sF (s)
Final Value Theorem . ) .. F(s)
== ﬁ = G{;}
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Inverse Laplace Transform

o +jo

Definition  |LIF@EI=f0) — ~ [FEes f(t) < F(s)

o —jo

LTHF(s)} = f(t) it F(s)=£L{f()}

Technique: Find the way back.

Example 1.

3 3 2
L1 — 1)z
{32+4} L {2 §2 4 92

Example 2.

‘C_l{(sfw}: ‘C_l{zla'

1
= e 03,




Example 3

_ s+1 -1 1
E 1 :ﬁ p— I 1
{32 _|_4} { L n CcOS 2t+2 sin 2t

Example 4

s+ s+1 3/4 1/4 3 1 _
L1 _ -1 _ -1 _ 22t 1 -9
{32—4} £ {(3—2)(5+2)} {S—2+3—|—2 1° +4E

Here we used partial fraction to Find out:

s+ 1 — A N B
(s —2)(s+2) s—2 s+2

A=3/4,




Example 5

352 + 25 + 4
(s +1)(s>+4)

Determine the Inverse Laplace Transform of F (3) —

Solution
Using partial fractions,

35% + 25 + 4 A  Bs+C

G2+ 511 244

352 +2s+4 = A(s*+4) +(Bs+C)(s+1)

Substituting s = —1
5=5AiImplying that A=1

Equating coefficients of 82 on both sides, 3=A+ B sothatB =2.

Equating constant terms on both sides, 4 =4A+ CsothatC=0




N 25
s+l s?2+4+4
— et +2cos2t

Example 6 1
(s +2)°
!

Using the First Shifting Theorem and the Inverse Laplace Transform of —ISE'JF

Determine the Inverse Laplace Transform of F (8 )

Ly o
t) = —t




Example 7

3
(s —7)>+9

Solution a
Using the First Shifting Theorem and the Inverse Laplace Transform of 24a2

Determine the Inverse Laplace Transform of F (8 ) —

f(t) = e sin 3t

Example 8
S

- s2+4+4s+ 13

Determine the Inverse Laplace Transform of F (8)

Solution
The denominator will not factories conveniently, so we complete the square.

This gives

S
(5+22+9




To use the First Shifting Theorem, we must include s + 2 in the numerator.

F(S)_(S_l_Q)_Q S+ 2 g 3
(54+22+9 (s+2)2+3% 3 (s+2)?+3?

2 o .
f(t) — e_gt COS 3t—§e 21 sin 3t

1
_ _e—gt[

3 cos 3t — 2sin 3t




Example 9

8(s+ 1)
Determine the Inverse Laplace Transform of F (8 ) — 5
s(s? + 4s + 8)
Solution
Using partial fractions,

8(s+1) _ A  Bs+C

s(s?+4s+8) s 5245+ 8

8(s+1) = A(s* + 45 +8) + (Bs + C)s

Substituting s =0 gives ——> 8=8AsothatA=1.

2

Equating coefficients of §~ on both sides, 0= A+ B which gives B = -1.

Equating coefficients of s on both sides, 8 = 4A + C which gives C = 4.
—s+4
s2+4s + 8




—s+4
(s+2)24+4

s+ 2
(s+2)2+22

f(t)=1—e " cos2t+ 3¢ * sin 2t

Example 10 s+ 10
T 24— 12

Determine the Inverse Laplace Transform of F (8 ) —

This time, the denominator will factories, into (s +2)(s — 6).

s + 10 A | B
(s+2)(s—6)  s+2 s—06




s+10=A(s —6) + B(s + 2).

Putting s = -2

8 = —8A giving A = —1.
Putting s = 6

16 =8B giving B = 2.
2




Note:
If we did not factories the denominator,

s+ 10
Fls) — |
()= -1 -

(s —2) + 12 s — 2

Fs) = (s —2)2 —42 (s —2)2—42 3

f(t) = e*'[coshdt + 3sinh4t]




Example 11 |

(s —1)(s+2)

Determine the Inverse Laplace Transform of F (S) =

Using Convolution Theorem.

1 1

Fe) = =D vy

f(t) _ /Ut GT.G_Q(t_T) A7 = /[}t €(3T—21’;) AT

C 32t

e
3




—3s
. 1| €
Example 12 Find £ L?+1]

} —=sint  the second shifting theorem implies that

+1

L1 [m] = sin(t — 3)us(t)

s—1
s?(s +

Example 13. Invert




Example 12 | Use Matlab to find the inverse transform of

(s +6)
(s+3)(s° + 65 +18)

F(s)=

syms s t
ilaplace(s*(s+6)/((s+3)*(s"2+6*5+18)))

ans =
-exp(-3*t)+2*exp(-3*t)*cos(3*t)
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Differential Equations
Laplace Transform Methods

The Laplace transform was developed by the French
mathematician by the same name (1749-1827) and was
widely adapted to engineering problems in the last century.
Its utility lies In the ability to convert differential equations
to algebraic forms that are more easily solved. The notation
has become very common In certain areas as a form of
engineering “language” for dealing with systems.




Figure 1.
Steps involved In

using the
Laplace transform.

Differential Equation

|

Transform differential
equation to
algebraic equation.

|

Solve equation
by algebra.

|

Determine
iNnverse
transform.

l

Solution




Significant Operations for Solving
Differential Equations

L[ T(t)]=sF(s)-1(0)

L[ f "(t)] = s2F (s) — sf (0) — f '(0)

L[yt | = ~(5)
0 _ S




Example 1. Solve DE shown below.

y(0) =10
f(t)]=sF(s)- f(0)

& |eatly)-Lz]

sY(s)—-10+2Y(s) = 12
S

(S+2)Y(S)=10+%

10 12

Y(8)= s+2+s(s+2)




12
A = (SJFZ)L,(SJFZ)l_2 B

10 6 6 6 4
YS§)=——+———"—=—+——
S+2 S S+2 S S+2

y(t) =6+ 4e ™




Example 2. Solve DE shown below.

C—3t’+2y:1zsin4t y(0) =10
C
L[ (0] = SF(5) - 1 (0)

sY(s)—10+2Y(s) = slzﬁ)G

0 48

Y(s)=—
_S+2 (s+2)(s” +16)

48 A Bs+B,

(s+2)(s>+16) s+2 s2+16




__ 148 _ 48 _
s°+16 |, 20

A 2.4

48 24 N B,s+B,
(s+2)(s*+16) s+2 s°+16

48 = 2.4(s* +16) + (s + 2)(Bys + B,)
s%: 48 =2.4(16) + (2)(By) m=) B, =438

s% 0=24+B, mm) B =-24




10 2.4 2.4s 4.8
Y(s) = | . F—
S+2 S+2 s °+16 s +16

y(t) =12.4e7°" —2.4cos 4t +1.25sin 4t




Example 3. Solve DE shown below.

2
4’y :de -2y=24 Y(0)=10andy'(0)=0
dt®  dt
L[f"(®)]=s"F(s)—sf(0)~ f'(0) . LLT'(®)]=sF(s)-f(0)

24

s°Y (s) —10s —0+3[sY (s) —10]+2Y (s) = -

24 10s+30
Y(S)=— +=
S(S°+3s+2) S°+3s+2

24 10s+ 30

TS(51D)(5+2)  (5+1)(s+2)




12
_|_
S+1 s+2

10s+30 20 10
(s+1)(s+2) s+1 s+2

12

f(t)=12—4e " + 22




Example 4. Solve DE shown below.

d’y _.dy .
+2—24+5y=20 VY(0)=0andy'(0)=10
dt*  dt y

L[ f "(t)]=s*F(s)—sf(0)— f'(0) . L[f'(t)]=sF(s)-f(0)

20

s°Y (s) —0—-10+2[sY (s) —0]+5Y (s) =

20 10
Y(S)=— +—
S(S“+2s+5) s°+2s+5




20 4, As+B
s(s°+25+5) s (s°+2s+5)

20 =4(s*+ 25+ 5) +s(4s + B)

S:  0=4(2)+ (B)
B=-8




4  —4s-8 10 4  —4s+42
Y(S)=—+—; +— =—+—
S S°+28+5 s °+28+5 s s°+25+5

25+5=5°+25 5-1=(s+1)*+(2)°

_4(s+1) 3(2)

Y(s)—£+ +
s (s+D2+ (22 (s+1D)%+(2)

y(t)=4—-4e" cos2t+3e sin 2t




Example 5. Solve the initial value problem (I\VVP) by

Laplace transform

V' —y —2y=¢€",  y(0)=0,4(0)=1

C{y"} — L4y} — £{2y} = L{e"}

1

s°Y (s) — 1 — sY(s5) — 2Y (s) = —

s—1

1
1 = Y(s)=
1= ()

s —1 s—1

(s —2)(s2—s5—2) (s—2)*(s+1)

s—1 A B C

(s —2)%(s+1) 3—|—1+5—2+(3—2)2'

s—1=A(s—2*+B(s+1)(s—2)+C(s+1)

L[ f "(t)] = S2F (s) — sf (0) — f '(0)
L[ '(t)] =sF(s) - f(0)

Set s = —1, we get A = —=,

Set s = 2, we get C' =

Set s =0 we get B = =.

2 1 2 1 1 1

_§S—I—I+§S—2 3(s—2)2
2 2 1

_ -1 _ St 2 Sy 0t
y(t) =L7{Y} ¢ Tge +3te.
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MATRIX THEORY
Definition:
A matrix is a set or group of numbers arranged Iin a square or
rectangular array enclosed by two brackets

m-by-n matrix

a, n columns — B ) _1 2 4_

m_ —

rows
a1 a1z dis ... 1 1 3 —_— 3
a1 a2 a3 ... 4 — 1 5

w000 32

2X4 matrix

1 13 3 3

3x3 matrix

Matrix algebra has at least two advantages:

*Reduces complicated systems of equatlons to simple expressions
alapun Wlhas (] 8ad20dl WVsleoll dodail Jjizy

«Adaptable to systematic method of mathematlcal treatment and weII

suited t0 COMPULErS  wawlios xol,Jl dxdlzall (xd csxpio woluwl go wasSall Juls
igaroS)l 835>V Glos




TYPES OF MATRICES

1. Column matrix or vector:

The number of rows may be any integer but the number of columns is
always 1

o
1 2

-3

2. Row matrix or vector

Any number of columns but only one row

1 16] [03835 2] [a, a, ag a,




3. Rectangular matrix

Contains more than one element and number of rows Is not equal to
the number of columns iBEE

1 11 0 0 3 7

20330 7 -
_7 6_

4. Square matrix

The number of rows is equal to the number of columns

(a square matrix A has an order of m) 1 1 1

L 9 9 0

3 0 6 6 1




5. Diagonal matrix

A square matrix where all the elements are zero except those on
the main dlagonal 30 0 0O

0 2 0 0 0
0 0 1 0 O
e a; -Oforalll,fj

a; # 0 for some or all i = | 1 O

0 O
5 0
0 9

6. Unit or Identity matrix - | 0 1

A diagonal matrix with ones on the main diagonal
i.e.a;=0forallizj

a; =1 for some orall 1 =



7. Null (zero) matrix - 0

All elements in the matrix are zero
0.0 0 5 _p
O O O Foralli,
00 0

8. Triangular matrix

A sguare matrix whose elements above or below the main diagonal are

all zero

1 8 O 100
Lower triangular O 1 6 Uppe:;':::(gmal’ 2 1 O

matrix
0 0 3 5 2 3




Basic Operations
1-EQUALITY OF MATRICES

Two matrices are said to be equal only when all corresponding
elements are equal

Therefore their size or dimensions are equal as well

1 0 0 1 0 0

2 1 0 2 1 0
5 2 3 5 2 3

2-ADDITION AND SUBTRACTION OF MATRICES

The sum or difference of two matrices, A and B of the same size yields
a matrix C of the same size —




Commutative Law:
A+B=B+A

Associative Law:
A+(B+C)=(A+B)+C=A+B+C

1 5 ©

—4 -2 3
_ . _
2X3

1 2 0]
10 8




3-SCALAR MULTIPLICATION OF MATRICES
Matrices can be multiplied by a scalar (constant or single element)
Let k be a scalar quantiEy; then_ KA = AK

3 -1
Ex. If k=4 and A 2 1
2 -3

4 1 Properties:

12 -4 ek (A +B)=KkA +kB

e (k+g)A=kA +gA

« k(AB) = (kA)B = A(K)B
* k(gA) = (kg)A




4-MULTIPLICATION OF MATRICES
The product of two matrices is another matrix

Two matrices A and B must be conformable for multiplication to be
possible

I.e. the number of columns of A must equal the number of rows of B

Example.
A x B = ~C
(2x3) (3x2) (2x2)
_{(1><4)+(2><6)+(3><5) (1><8)+(2><2)+(3><3)}
(Ax4)+(2x6)+(7x5) (4x8)+(2x2)+(7x3)
31 21
63 57




Assuming that matrices A, B and C are conformable for the
operations indicated, the following are true:

. Al=1A=A

. A(BC) =(AB)C = ABC - (associative law)

. A(B+C)=AB + AC - (first distributive law)

. (A+B)C = AC + BC - (second distributive law)

5-TRANSPOSE OF A MATRIX

2 4 7]
If: A= Then transpose of A, denoted AT is:
5 3 1

2 5| 4By BT

T _ A=AN'=A
A=l4 3 (A+B)' =A"+B'
71 (kA)" =k(A)'




6-SYMMETRIC MATRICES

A Square matrix is symmetric if it is equal to its transpose: A = AT

1 2 3
le. a,;=a,; 2 45
3 560

7-Skew Symmetric Matrix

A skew symmetric matrix is a squarematrix where  @; ; =—d;;

0 2 3
-2 0 5
-3 -5 0

8-INVERSE OF A MATRIX
The inverse of a square matrix, A, If it exists, iIs the unique matrix A




9-DETERMINANT OF A MATRIX

Each square matrix A has a unit scalar value called the determinant

of A, denoted by det A or |A|

Example 1:
31

A=l D1 [A=eE-0O=5

Example 2:

A=

Al=(1)(2-0)— (0)(0+3)+ ()(0+2) = 4




10-ADJOINT MATRICES

The adjoint matrix of A, denoted by adj A, is the transpose of its
cofactor matrix

adjA=C'

Example 1.

1 2
4 3
‘szm*f@“Qfm c::[__2 X

A —

adjA=C' =




Example 2




Example 3

The determinant of A Is

Al = (3)(-1-0)-(-1)(-2-0)+(1)(4-1) = -2

The elements of the cofactor matrix are
C1 = "‘(_1)’ Cpr = _(_2), Ci3 = "‘(3)’
Co = -(-1), C,, = +(—4), Cp = —(7),
Cy = +(_1)’ Csy = _(_2)’ Cy3 = +(5)1

C

Minor M;

!

(-D"'M ij




The cofactor matrix is therefore

1 2 3]
C= —4 -7

(05 -05 05
-10 20 -10
-15 35 -25




Example 4

Y o

1 -3

Check Inverse _

1
ALA=l ——=

10/-4 2

0
= |
1

‘A‘ # () == A matrix possessing an inverse is called Nonsingular or Invertible
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Eigenvalues and Eigenvectors
Definition A5 agsll 5 4511 Cileaiall
Let A be an n x n matrix. A scalar A is called an eigenvalue of A
If there exists a nonzero vector X in R" such that
AX = AX.
The vector X is called an eigenvector corresponding to A.

AX

o allil= [l =+L]

O
2 A12]=12 =40

Figure 1 Al clgaiall jiaaill 5 il e Al g saall adll 4 45100 2.6)




Computation of Eigenvalues and Eigenvectors

Let A be an n x n matrix with eigenvalue A and corresponding
eigenvector X. Thus AX = AX. This equation may be written

AX - AX=0
given
(A-A1)X=0

Solving the equation |A—-Al | =0 (2) for A leads to all the
eigenvalues of A.

On expending the determinant |A — Al |, we get a polynomial in A. This
polynomial is called the characteristic polynomial of A.

The equation |[A - Al | = 0 is called the characteristic equation of A.




Example 1:

Find the eigenvalues and eigenvectors of the matrix

Let us first derive the characteristic polynomial of A. |4 —A7,|=0

(—3 2] (1 0] [—3—/1 2)
A-Al, = .y = .
-2 1 0 1 -2 1-Z
4-21,|=(-3-A)1-2)-2)(-2)=A+21+1

2 +2.+1=(1+1)?> Ahasarepeated Eigen value: A1=42=-1

Now we have to solve the system [4—-A] |X =0 Here Al=-1 S0 that,

-2 2\ x B 0 -2x, +2x,=0 ‘ X, =X,
. q 2
-2 2)\x, 0 -2x, +2x,=0

Xl == a o.. X2 - a

X,

Avector y = (xl ) is therefore an eigenvector associated with the Eigen value A1=-1



Example 2:

1
IF 4=|-1 Find the Eigen values and the Eigen vector of the matrix A.

[4-21|=

=(1-A)1-2)2-2)-1}-(1-2)
=2 -4 +34
= A(A-1)(1-3)




(A-AL)X =0

When 21=0 » [4-AL,]X =0 »

-1

1 -1
0 0

- - K 1
| 1 k*[1 1
=k|1k=0 » % ! 1

|
0
0

| PPk B

0O -1 0

When 21 =1 » [A-AI X =0 » -1 1

1 -1 1
0 -1 0
0 0 0




1 1
xl' -1 k* 0 0
X,=|x, |=k 0 k=0 mm) X, - L I
. CJCREr0P ek A2

.?C?:_.

I _ _
o S
When 2 =3 - [4-21,]1X =0 » 1 -1 -1
0 -1 -2

-1 -1 -1 -1 -1 -1 -1
-2 -1 0 1 2|~ 1 2
0 -1 - 0

1
kx| -2

— L 1 _
PR+ (—2K)2 + K




Example 3: Find the eigenvalues and eigenvectors of the matrix

-4 -6 ~4 —6] [1 0] [-4-1 -6
A: — = — — - —
{3 5}“ A, [3 5] }{o J [ 3 5—1}" A=l =0

A -1-2=0=(1-2)(A+)=0=>1=20r-1
-6 -6 X — 6%, —6X%, =0
For A=2 =) (A-21,)X=0 m) =0 =

3 3| X 3%, +3%, =0
X; = X » Let x,=1 =) X;,=-1

3 6

-1 —2
X = 1 and X, =

CHE

JED2+2 V2

3 — — 3%, —6x, =0 | = =2,
For . = 1 » |: 3 6:| O » 1 2 # X X

Let x,=-2
3%, +6X, =0 1_
Xo=1




Example 4:

Find the eigenvalues of matrix A =
First the eigenvalues: |[A— /=0

1 3
1—A -3 =0
-3 -3-2A

(1= =M(-83-=X)=9]-[(-3=A)+9]+3[-3-3(1 =A)] =0

= (1= A)(-3+2V+A2— 9] —[6— A+ [-9 —9+9)]
(=12 + 22X+ A2) + (12X — 2A2 — X%) + (—24 + 10))
—XA—X2424)—-36= A +)2_-2401+36=0

A=2 24 (A—2)(4> +34-18) = (A — 2)(1 - 3)(/ +6)

2 6

:
|
v i A=2 ,A,=3 ,1,=-6




Property 1: Sum of eigenvalues
For any square matrix A:

sum of eigenvalues = sum of diagonal terms of A (called the trace of A)

Formally, for an n x n matrix A: {race (A):Z?zl A

Property 2: Product of eigenvalues
For any square matrix A:

product of eigenvalues = determinantof A , det(4) = A,4,15

A=|-3 -1 2 =5 ,4=1,43=2

0 0 2
trace (A) = 7-1+2=8 det(A) =5%1x2 =10
trace (A) =5+1+2=8 det(4) = 10
H.W. - 46 ]

7 46]

1-Find the eigenvalues and eigenvectors of the matrix B = |-3 —1 -8
0O 0 1

2 —1
2-Given that 2 is an eigenvalue , Find the eigenvalues of matrix 4 _
0 —1




4 -1 6
Example 5. Given that 2 is an eigenvaluefor A= (2 1 6| . Find a basis of its

Eigen space.

2rx) — 19+ 6x3 =0, or x5 = 22, + 63,

where we select x1 and x3 as free variables only to avoid fractions. Solution set in
parametric form is

A basis for the Eigen space:

—

1 0
i = |2| and i, = |6
0 1
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The Cayley Hamilton Theorem

The Cayley Hamilton theorem is one of the most powerful results in linear algebra.
This theorem basically gives a relation between a square matrix and its
characteristic polynomial. One important application of this theorem is to find
inverse and higher powers of matrices.

Theorem: Every square matrix satisfies its characteristic equation.

Char. Equation:  f (1) = A" + an_l,ln‘l +o+ad+a, =0

By Caley-Hamilton Theorem f (A)=A"+a_ A" +.--+a,A+a,l =0
|

A 3} |A— 11| =0, Characteristic equation is 1~ — 44 — 5 = 0.

A’ —4A -5I= 0

LetA(

9 8 4 8
One can check that AZ = ( ] 4A = ( ) So
16 17)° 16 12

A24A51—98 tE >
7 e 17) e 12) Lo o5)




Example 1 5 11

Find inverse of the matrix A = | 3 —2 1| applying Cayley- Hamilton theorem.
0 0 1
det (A—AD)=—-1"+1+1—-1=0.
By the Cayley-Hamilton theorem
—A3+A*+A-1=0

Or —A3+ A2+ A=1
Al =—-A2+A+1

1 0 2Y (2 -1 1) (1

0 0
or A '=—A’+A+I= -0 1 2|+[3 =2 1|+/0 1 0
00 1)lo o 1)10o 01




Computation of powers of A
1
Example 2 Use the Cayley-Hamilton theorem to find M if M = {

MMF"L 1 } m=)  det(M - Al)=0

-2 4-2

Characteristic equation is A~ — 5L+ 6 =0
M’ — 5M + 61 =0

= M =5M-6I
= M'=(5M-6I)°

= 25M-* — 60M + 361

= 25(5M — 6I) — 60M + 361

= 65M — 1141

M’ =M"* x M”

= (65M — 114I)(5M - 6I)

= 325M° — 960M + 6841
=325(5M — 61) — 960M + 6841

— 665M — 12661
601 665
11330 1394




Example 2:

-2 —4

A -
Compute &1 for A = [ 1 5

] using the exponential series

e’ =1+ X+ Scalar polynomial

e _ 4 A A? N A’ N At Matrix polynomial
l

4

2_—/1‘=0 » (-2-A)(2-4)+4=0

23 4
2.4
A= 21| =0 »‘ 1

—4+24-22+ R +4=0 E) [f=0 EE) A’=0

Az:[g g‘ AT =0ifm > 1

—1




Diagonalization of Matrices

Definition
A square matrix A is said to be diagonalizable if there exists a matrix
P such that D = P-1AP is a diagonal matrix.

Theorem

Let A be an n x n matrix.

(a) If A has n linearly independent eigenvectors, it is diagonalizable.
The matrix P whose columns consist of n linearly independent
eigenvectors can be used in a similarity transformation P~tAP to
give a diagonal matrix D. The diagonal elements of D will be the

eigenvalues of A.
(b) If A'is diagonalizable, then it has n linearly independent eigenvector




Example 1:

: -4 -6] . . :
Show that the matrix A{ } IS diagonalizable.
A2l |=0

A -1-2=0=(1-2)(A+)=0=>1=20r-1
-6 -6 X — 6%, —6X%, =0
For A=2 mm=) (A-21,)X=0 m) =0 =
X2

X, = =X, » Let x,=1 » X,=-1

3 9

3 3 3%, +3%, =0

—:?»X1—6X2 =0 # X, = —2X,

Let x,=-2
3%, +6X, =0 1_
Xo=1







Example 2

Diagonalize 4= . if possible

(A=D)(=A —441—4) =—(A-D)(X +41+4)
= —(A=1)(A+2)




When A=1 =) [4-2],]X =0

—1
=1 0 |+s| 1 [7+57 %0
1 0







Homework

I. Let A =

4
a-Use the Eigen values method to compute 4* = p{"[’l 0

vectors of A.

B

o

0

b-Compute e* and cos A
.

1
6

0
-1

2 -2

3

-2
0

, Compute sin A and A~

P—l

FE
Show that B~ :E[B2 -8B +191]

where P is the Eigen
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DOUBLE INTEGRAL
DEFINITION

Let f(x,y) be a function of two variables defined on a closed region R . Then the double

integral of f over R is given by

d=y

n

[[£Gey)dd=lim £x,.y)A4,

i=l

i

When f(x,y) =1onR then ¥,

C:yo

lim > A4, gives the area A
n—so0 Y

A= [[ d4

R

when z = f(x,y) represents a surface the then the volume V of the solid above the

region R and below the surface z = f(x,y) is given by:
V= jj f(x,v) d4




Double Integrals (Cartesian Coordinates)
First case: The integration limits are constants

Example 1

13
Evaluate _[_[(xz + J’z) dy dx

-10

1 3

I= j (x> +yv*) dvdc= I(Iszryz dv ) dx

-1 0

1
dx = Isz +9 dx
-1




Example 2:

Evaluate |]@+8xy)dydx

sketch: since dydx = verticaly =1,y =2

_3[_2[(1 +8xy )dydx = j(y + 8x };) zdx
= | {2 + 4x(D)] —[1 + 4x(D]} dx

= [{2+16x]-[1+4x]}dx

0

3
_-{1 +12x}dx

0

2 |3

x
=(x+12—
( 2)0

=(3+6(9)-(0)=(3+54)=57




Second case: The integration limits are variables

1.1f R is region of type one

Taking a vertical lamina means that we will integrate first with respect to y and in this case
the integration limits will be a function of x , then integrate the result with respect to y
which will be defined through a constant limits 3= hix)

x=b y=h(x)

| £Gey)dy ax

x=a y=g(x)

I

y=g(x) Ao

2. If R is region of type Two x=a Fig. 1

Taking a horizontal lamina means that we will integrate first with respect to x and in this
case the integration limits will be a function of y , then integrate the result with respect to x
which will be defined through a constant limits y=d

£=5

y=d x=q(y)
[ /G, dx av

y=c x=p(y)




Examplel

Evaluate _[_[:»cay"E d4 where R is the region bounded by y = x ; y =1 and x=0
R

L
First Solution(figure.1) (1,1)

_”fy2 dA Z‘I[T'ix?’yzdxdy
s

0 x=0

Second solution (figure2)

11 1
L_[xEyz d4= !!xSygdydx:Ix3y?3 dx

0

I 3 3 1 x* X7
=—|x(1-x)dx=—(——-——
3£ (1=x")dv = (=)




Example2

Evaluate [[x+y dvdy where R is the region bounded by y* =x; x+2y =3 and
R

y= 0 in the first quadrant

“x + v dxdy =
R

-2y

-2y 1 rz
[+ )dvdy =[ =+ dy
! 0

},2

3

'
di-
I

y

‘1[{(3—2}*‘)2_(}* ) +y[(3—2y)—y2]}dy

1
J.(E—?r.,v—y?’ —v*)dy = 2.55
7 2




Example3

Evaluate ||~ e’ dA where R is the region bounded by y=x7; x=0andy=4




Reversing the order of Integration

A problem may become easier when the order of integration is reversed or changed.

Which means some integrals may be impossible to be evaluated with respect to one
of the variables but can be done with respect to the other one

Examplel y

2 4
Evaluate ”x
0

1_2

Iy

E}’

2

4 2
X
_J;Q

0

_lj.eyzdfz—ley
4 g 4

0




Example2

sImx o dy

Evaluate ﬁ
0y

X

reverse the order

dxdy:E Sin

+r osinx X
ﬂ ; dy dx

X

sy |*
-V

0

dx

X

T
0

T

Isinx dy = -cosx
0

Fr

0

=-(-1-1) = 2
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Double Integrals in Polar Coordinates

Suppose that we want to evaluate a double integral | IR f (X, y) dA, where R is one
of the regions shown in Figure 1. In either case the description of R in terms of
rectangular coordinates is rather complicated, but R is easily described using

polar coordinates.

3

\xz_'_yzl

@R={r.0)|0<r<1,0<6<27} OR={r0|1<r

Figure 1




Recall from Figure 2 that the polar coordinates (r, © ) of a point are related to the
rectangular coordinates (X, y) by the equations

re = x>+ y? X = rcos 6 y = rsin 6

yi

0 = tan” (y/X)

Figure 2

(0]
The regions in Figure 1 are special cases of a polar rectangle
R={ (rr0)|asr<b,a<6<p3 }whichisshown in Figure 3.

\ s Polar rectangle

)(2+y2:1 ,\'3+y3=4
\ ~ Figure 1 m

-

@R=1{r0) |0<r<1,0<6<27}  OR={r0|l<r<2,0<g<n}

"I':igure 3




So changing to polar coordinates will transfer the segment area dA
(dx dy) to another area in polar plane given by J dr d6 where J in the

Jacobian and it is equal to r in the case of changing from Cartesian to
Polar. so

[[ £ Gevyda= [[ £ Cx,y)exay

D D

= ” f(rcos@.rsin @) r drd®
D

O

In general, in plane polar coordinates,

pho)
Hf(x}y)dA = J J f(FCDSQrSinH)r dr de

D o g{g]

Figure 5




Examplel

1
2 (27 + y )/

Evaluate II

pH)
y)d4 = j I f(rcos,rsind)rdrdo
afg[g

cosé’—lcos )d O — g
2 4




Example 2

Evaluate | | (3x + 4y2) dA, where R is the region in the upper half-
plane bounded by the circles x? + y? =1 and x° +y?=4.

H (3x + 4y?)dA = L’T f (3rcos 6 + 4r>sin®6) r dr do
R
= f: f (3r*cos O + 4r’sin’6) dr d6
= f; 3 cos 0 + r*sin%0]'—; d6

- f:(7 cos § + 15sin°0) db

- f: [7 cos 0 + =(1 — cos 26)] do

o

— 7sin0 + =2 — L nao
S1n 5 4-Sll’l

0




Example 3

Evaluate ﬂ (

1
d4 where R is the region in the first quadrant bounded by
Rx?+y%+ 1)2

X~ +y

A y-axis
the circle 2 +y2 =9 x=0,and y=x

1 )
d4 = drd @
'[E[(xz—l-yz—kl)z l)zr r

_ 97 03534291735
30
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