
College of Electronics Engineering

Systems & Control Engineering Department

MATLAB Programming
SCE2304

Lecture 1 (About MATLAB)

Zeyad T. Shareef

Objectives

After studying this lecture, you should be able to:

• Understand what MATLAB is and why it is widely used in engineering
and science

• Understand the advantages and limitations of the student edition of
MATLAB

• Formulate problems by using a structured problem-solving approach

Section 1.1
What is MATLAB?

• MATLAB is one of a number of commercially available, sophisticated
mathematical computation tools

• Others include
• Maple

• Mathematica

• MathCad

MATLAB excels at:

• Numerical calculations
• Especially involving matrices

• Graphics

• MATLAB stands for

Matrix Laboratory

Why MATLAB

• Easy to use

• Versatile

• Built in programming language

• Not a general purpose language like C++ or Java

MATLAB was originally

written in Fortran, then later

rewritten in C

Section 1.2
Student Edition of MATLAB

• MATLAB comes in both a student and professional edition

• Student editions are available for
• Windows Operating Systems

• Mac OS

• Linux

• The student edition typically lags the professional edition by one
release

The command prompt is the biggest difference
you’ll notice

>> is the command prompt for the
professional version

EDU>> is the command prompt for the
student version

Section 1.3
How is MATLAB used in Industry?

• Widespread, especially in the signal
processing field

• Tool of choice in Academia for most
engineering fields

• Some examples….

Electrical Engineering

These images simulate the visual system used in a housefly

brain to detect collisions. The techniques developed are

being used in autonomous robot systems that depend upon

vision for navigation. The data was processed using MATLAB

Biomedical Engineering

These images were created from MRI scan data using MATLAB.

The actual data set is included with the standard MATLAB

installation, allowing you experiment with manipulating the data

yourself.

Fluid Dynamics

Results from a finite element analysis code were post processed

using MATLAB to create this image.

Section 1.4
Problem Solving in Engineering and Science

1. State the Problem

2. Describe the input and output

3. Develop an algorithm

4. Solve the problem

5. Test the solution

State the Problem

• If you don’t have a clear understanding of the problem, it’s unlikely
that you’ll be able to solve it

• Drawing a picture often helps you understand the system better

Describe the Input
and Output

• Be careful to include units

• Identify constants

• Label your sketch

• Group information into tables

Develop an Algorithm

• Identify any equations relating the knowns and unknowns

• Work through a simplified version of the problem by hand or with a
calculator

• Developing a flow chart is often useful for complicated problems

Solve the problem

• Create a MATLAB solution

• Be generous with comments, so that others can follow your work

Test the Solution

• Compare to the hand solution

• Do your answers make sense physically?

• Is your answer really what was asked for?

• Graphs are often useful ways to check your calculations for
reasonableness

Develop a MATLAB Solution to Solve the Problem

• We’ll start learning the details of how to
use MATLAB in the next chapter.

• However, you can see from the following
demonstration just how easy it is to use the
command window

Enter the value for E

at the command

prompt

Once you hit the enter

key, the program

repeats your input.

Notice the use of

scientific notation in the

result

Now enter the

equation to change

the energy rate from

kJ/day to kJ/s.

Notice that the value

of E is updated

based on your

calculation

Enter the value for c,

the speed of light

Once again, the

result is repeated

back to you in the

command window

Now enter the

equation to calculate

the mass

Summary

• MATLAB is widely used

• MATLAB is easy to use

• A systematic problem solving strategy makes it more likely you’ve
found the right answer

College of Electronics Engineering

Systems & Control Engineering Department

MATLAB Programming
SCE2304

Lecture 2 (MATLAB Environment)

Zeyad T. Shareef

Objectives

After studying this lecture, you should be able to

• Start the MATLAB program and solve simple problems in the command window

• Understand MATLAB’s use of matrices

• Identify and use the various MATLAB windows

• Define and use simple matrices

• Name and use variables

• Understand the order of operations in MATLAB

• Understand the difference between scalar, array and matrix calculations in MATLAB

Objectives - continued

After studying this lecture, you should be able to

• Express numbers in either floating-point or scientific notation

• Adjust the format used to display numbers in the command window

• Save the value of variables used in a MATLAB session

• Save a series of commands in an M-file

In this lecture we’ll…

• Get started with MATLAB

• Explore the MATLAB windows

• Solve some problems using MATLAB

• Learn how to save our work

Section 2.1
Getting Started

• In Windows or Apple operating systems click
on the desktop icon

• In Unix type
MATLAB

At the shell prompt

MATLAB opens to a default window configuration

• MATLAB uses a
standard windows
menu bar

• To exit MATLAB use
the close icon

Section 2.2
MATLAB Windows

• MATLAB uses several different windows to display data, commands
and results.

• They are not necessarily all open at once

Command Window

Enter commands at the prompt

MATLAB Windows
Command

History Window

Records all commands

issued in the command

window – including

mistakes

Current Folder

Window

Lists files stored in the

current directory

Workspace Window

Let’s look at the windows one at a time

Command Window

• Similar to a scratch pad

• Once you hit enter, you can’t edit any
commands

• You can retype them or use the arrow keys
to retrieve commands and edit them before
hitting enter again

Command Window

Command History

• Records the commands you issue in the command window

• When you exit the command window, or when you issue the clc
command, the command window is cleared

• But the command history remains
Command History

Command History

• You can transfer commands from the command history to the
command window

• Double click on a command
• It executes immediately

• Click and drag into the command window
• You can edit the command before executing

Workspace Window

Workspace Window

When you define variables in
the command window, they are
listed in the workspace window

Scalar

Vector

2-D

Matrix

Current Directory/Folder

• The current folder window is a list of files

• When you try to load information from a file or try to save
information – MATLAB uses the current folder

Document Window

• If you double click on any variable in the workspace window MATLAB
launches a document window containing the array editor

• You can edit variables in the array editor

The Document Window

displays the variable

editor

New Variable

Icon

Figure Window

• When Figures are created a new window opens

• It’s extremely easy to create graphs in MATLAB

Note: The semicolon

suppresses the output from

each command

First create a vector of x

values – then a

corresponding vector of

y values

Matlab makes it easy to modify

graphs by adding

•Titles

•Axis labels

•Legends

•Other types of annotations

Editing Window

• This window allows you to type and save a series of commands
without executing them

• There are several ways to open an editing window
• From the file menu

• With the new file icon

Open an editing window

from the file menu or with

the new file icon

New file icon

Save and Run

Write your code in the editing window,

then run it using the Save and Run icon

Section 2.3
Solving Problems with MATLAB

• We’ve already solved some simple
problems

• We need to understand how MATLAB
works to solve more complicated problems

Variables

• MATLAB allows you to assign a value to a variable

• A=3

• Should be read as A is assigned a value of 3

• Use the variables in subsequent calculations

Naming Variables

• All names must start with a letter

• They may contain letters, numbers and the underscore (_)

• Names are case sensitive

• There are certain keywords you can’t use

Use the iskeyword function for a list of keywords

iskeyword

ans =

'break'

'case'

'catch'

'classdef'

'continue'

'else'

'elseif'

'end‘

'for‘

'function'

'global'

'if'

'otherwise'

'parfor'

'persistent'

'return‘

‘spmd’

'switch'

'try'

'while'

Keywords are not acceptable variable names

You can reassign function names

• MATLAB will let you use built-in function names as variables – but it’s
a really bad idea

• sin = 3 changes sin from a function to a variable name

• clear sin resets sin back to a function

Practice Exercise 2.2
Which of these names are allowed in
MATLAB?

• test

• Test

• if

• my-book

• my_book

• Thisisoneverylongnamebutisitstillallowed?

• 1stgroup

• group_one

• zzaAbc

• z34wAwy?12#

• sin

• log

x

x

x

x

x x

bad

idea

2.3.2 Matrices in MATLAB
The basic data type

• Group of numbers arranged into rows and columns

• Single Value (Scalar)
• Matrix with one row and one column

• Vector (One dimensional matrix)
• One row or one column

• Matrix (Two dimensional)

Scalar Calculations

• You can use MATLAB like you’d use a calculator

>> 9 + 10

ans=19

Command
Prompt

Result

Assignment Operator

• To define a variable a we might type

a=1+2
which should be read as:
“a is assigned a value of 1+2 “

How is the assignment operator
different from an equality?

• In algebra the equation
x=3+5
means that both sides are the same

• In computers when we say
x=3+5
we are telling the machine to store the
value on the right hand side of the
equation in a memory location, and to
name that location x

Is that really different?

• Yes!!!

• In algebra this is not a true statement
x=x+1

• In computers (assignment statements) it means replace the value in
the memory location named x, with a new value equal to x+1

Order of Operation

• Same as you’ve learned in math class

• Same as your calculator
• Parentheses first

• Exponentiation

• Multiplication / division

• Addition / subtraction

Order of Operation

5*(3+6) = 45

5*3+6 = 21

White space does not matter!!!

5*3 + 6 = 21

Adding a space around + and – signs makes the

expression more readable

Parentheses

• Use only ()

• { } and [] mean something different

• MATLAB does not assume operators

5 * (3+4) not 5(3+4)

Compute from left to right

5*6/6*5 = 25

5*6/(6*5) = 1

Array Operations

• Using MATLAB as a glorified calculator is OK, but its real strength is in
matrix manipulations

To create a row vector, enclose a list of values

in brackets

You may use either a space or a

comma as a “delimiter” in a row

vector

Use a semicolon as a delimiter to create a

new row

Use a semicolon as a delimiter to create a

new row

Hint: It’s easier to keep track of how many

values you’ve entered into a matrix, if you

enter each row on a separate line. The

semicolons are optional

Shortcuts

• While a complicated matrix might have to be entered by hand, evenly
spaced matrices can be entered much more readily. The command

b= 1:5

or the command

b = [1:5]

both return a row matrix

The default increment is 1, but if you

want to use a different increment put

it between the first and final values

To calculate spacing between elements use…

• linspace

• logspace

Initial value in the

array
Final value in the

array

number of elements in

the array

Initial value in the

array expressed

as a power of 10

Final value in the

array expressed

as a power of 10

number of elements in

the array

It is a common mistake to enter the

initial and final values into the

logspace command, instead of

entering the corresponding power of

10

Hint

• You can include mathematical operations inside a matrix definition
statement.

• For example

a = [0: pi/10: pi]

Mixed calculations between scalars and arrays

• Matrices can be used in many calculations with scalars

• There is no confusion when we perform addition and subtraction

• Multiplication and division are a little different

• In matrix mathematics the multiplication operator (*) has a very
specific meaning

Addition between arrays is

performed on

corresponding elements

Multiplication between

arrays is performed on

corresponding elements if

the .* operator is used

MATLAB interprets * to mean matrix

multiplication. The arrays a and b are

not the correct size for matrix

multiplication in this example

Array Operations

• Array multiplication .*

• Array division ./

• Array exponentiation .^

In each case the size of the arrays must match

• The matrix capability of MATLAB makes it
easy to do repetitive calculations

• For example, assume you have a list of angles in degrees that you
would like to convert to radians.

• First put the values into a matrix.

• Perform the calculation

Either the * or the .* operator can be

used for this problem, because it is

composed of scalars and a single

matrix

The value of pi is built into MATLAB as

a floating point number, called pi

Transpose

• The transpose operator changes rows to columns or vice versa.

The transpose operator

makes it easy to create

tables

table =[degrees;radians]’ would have given

the same result

The transpose

operator works on

both one dimensional

and two dimensional

arrays

Number Display

• Scientific Notation
• Although you can enter any number in decimal notation, it isn’t always the

best way to represent very large or very small numbers

• In MATLAB, values in scientific notation are designated with an e between the
decimal number and exponent. (Your calculator probably uses similar
notation.)

It is important to omit blanks between

the decimal number and the exponent.

For example, MATLAB will interpret

6.022 e23

as two values (6.022 and 1023)

Display Format

• Multiple display formats are available

• No matter what display format you choose, MATLAB uses double
precision floating point numbers in its calculations

• MATLAB handles both integers and decimal numbers as floating point
numbers

Default

• The default format is called short

• If an integer is entered it is displayed without trailing zeros

• If a floating point number is entered four decimal digits are displayed

Other formats

• Changing the format affects all subsequent
displays

• format long results in 15 decimal digits after
the decimal point

• format bank results in 2 decimal digits after
the decimal point

• format short returns the display to the default
4 decimal digits after the decimal point

Really Big and Really Small

• When numbers become too large or too small for MATLAB to display
using the default format, it automatically expresses them in scientific
notation

• You can force scientific notation with
• format short e

• format long e

Two other formats

• format +

• format rat

Spacing in the command window

• The format command also allows us to control how tightly
information is spaced in the command window

• format compact

• format loose – (default)

• Most of the examples in this presentation use format compact

Notice that the value of A is still

being displayed using the rat

format, because we haven’t

changed it back to format short

Section 2.4
Saving Your Work

• If you save a MATLAB session performed in the command window, all
that is saved are the values of the variables you have named

Variables are saved,

not the commands in

the command window

Script M-files

• If you want to save your work,
(the commands you entered)
you need to create an M-file

• File->New->M-file

• Type your commands in the edit window that opens

• The file can be saved into the current folder/directory

• It runs in the command window

Save the file using

the save icon, or the

file menu

You can dock the editing

window with the

MATLAB desktop, by

using the docking arrow

This arrangement is

often easier to use

I saved this file as

example.m

Notice that it now appears

in the current directory

When I

execute the

file, the figure

appears on

top of the

MATLAB

desktop

The figure window

can also be docked

onto the MATLAB

desktop, using the

docking arrow

Notice that the command history

window is hidden underneath the

figure, but can be accessed with

the tab

Comments

• Be sure to comment your code
• Add your name

• Date

• Section #

• Assignment #

• Descriptions of what you are doing and why

The % sign identifies comments

You need one on each line

Summary

• Introduced the MATLAB Windows

• Basic matrix definition

• Save and retrieve MATLAB data

• Create and use script M-files

College of Electronics Engineering

Systems & Control Engineering
Department

MATLAB Programming
SCE2304

Lecture 3
(Built-in MATLAB Functions)

Zeyad T. Shareef

Objectives

After studying this lecture, you should be able to:
• Use a variety of common mathematical functions

• Understand and use trigonometric functions in MATLAB

• Compute and use statistical and data analysis functions

• Generate uniform and Gaussian random-number matrices

• Understand the computational limits of MATLAB

• Recognize and be able to use the special values and functions
built into MATLAB

3.1 Using Built-in Functions

For example

– sqrt

– sin

– cos

– log

MATLAB uses function names consistent

with most major programming languages

Function Input can be either scalars or
matrices

Function Input can be either
scalars or matrices

Using Predefined Functions

• Functions consist of

– Name

– Input argument(s)

– Output

sqrt (x)= result

In MATLAB

sqrt(4)

ans = 2

Some functions require multiple
inputs

• Remainder function returns the remainder in
a division problem

• For example, the remainder of 10/3, is 1

Some functions return multiple
results

• size function determines the number of rows
and columns

You can assign names to the output

The variable names are

arbitrary – choose something

that makes sense in the

context of your problem

Nesting Functions

3.2 Using the Help Feature

• There are functions for almost
anything you want to do

• Use the help feature to find out
what they are and how to use them
– From the command window

– From the help selection on the menu
bar

From the Command Window

From the Help Menu

The windowed help function can also
be accessed using the doc command

3.3 Elementary Math Functions

• abs(x) absolute value

• sign(x) plus or minus

• exp(x) ex

• log(x) natural log

• log10(x) log base 10

As in most computer languages, log(x) is

the syntax for the natural log – there is no

ln function defined in MATLAB

3.3.1 Common Computations

3.3.2 Rounding Functions

• round(x)
rounds towards nearest decimal or integer

• fix(x)
rounds towards zero

• floor(x)
rounds towards minus infinity

• ceil(x)
rounds towards plus infinity

3.3.3 Discrete Mathematics

3.3.3 Discrete Mathematics

3.4 Trigonometric Functions

• sin(x) sine
• cos(x) cosine
• tan(x) tangent
• asin(x) inverse sine
• sinh(x) hyperbolic sine
• asinh(x) inverse hyperbolic sine
• sind(x) sine with degree input
• asind(x) inverse sin with degree output

3.5 Data Analysis Functions

• max(x)

• min(x)

• mean(x)

• median(x)

• sum(x)

• prod(x)

• sort(x)

• sortrows(x)

• size(x)

• length(x)
• numel(x)

• std(x)

• var(x)

When the max function is used with a

vector (either a row or a column), it

returns the maximum value in the

vector

Max and Min

When x is a matrix,

the max is found for

each column

max value

index number where

the max value

occurs

The max function can also be used to

determine where the maximum occurs

Vector of row numbers

Vector of maximums

It’s easy to sort data in MATLAB, using the

sort function

The default is to sort in ascending order

Sorting Values

To sort in descending order, just add the word

‘descend’ in the second input field

MATLAB is column dominant, so

when sort is used with a 2-D matrix,

each column is sorted in ascending

order

The sortrows function allows

you to sort entire rows, based

on the value in a specified

column.

The default sorting column is

#1

In this example the matrix is sorted

in ascending order, based on the

second column

To sort based on

descending order, place a

negative sign in front of the

column number

Notice that this is a different

strategy than that used by the

sort function!

Determining Matrix Size

• size(x) number of rows and columns

• length(x) biggest dimension

• numel(x) total number of elements

Variance and Standard Deviation

• std(x)

• var(x)

()

1

1

2

2

−

−

=

=

N

x
N

k

k 



2



Standard Deviation

3.6 Random Numbers

• rand(x)

– Returns an x by x matrix of random numbers
between 0 and 1

• rand(n,m)

– Returns an n by m matrix of random numbers

• These random numbers are evenly distributed

If you create a very large matrix of

random numbers using the rand

function, the average value will be

0.5

Notice that we created a 1 by 107

matrix, which required 2 inputs

(rand(1,10e6)). If we had entered a

single value (rand(10e6)) the result

would have been a 1x107 by 1x107

matrix.

Gaussian Random numbers

• randn(n)

• Also called a normal distribution

• Generates numbers with a mean of 0 and a
standard deviation of 1

First generate an

array of 10 million

gaussian random

numbers

Use MATLAB to

take the mean, and

notice that it is very

close to 0

Use MATLAB to

find the standard

deviation, and

notice that it is

very close to 1

The hist function creates a

histogram of the input data

To generate random numbers
between other bounds…

() arabx +−=
a and b are the upper and lower

bounds

r is the array of random numbers

More about Manipulating Matrices

• M(:)

– Converts a two dimensional matrix to a single
column

3.7 Complex Numbers

• complex(x,y)

• real(A) used if A is a complex number

• imag(A)

• conj(A) For a complex x, conj(x) = real(x) - j*imag(x)

• abs(A)

• angle(A)

real

imaginary

3.8 Computational Limits

• MATLAB’s computational range on most
computers is:

– 10-308

– 10308

• When you divide by 0, the computer returns
Inf

Check the limits on your computer with
these commands

• realmax

• realmin

• intmax

• intmin

When using very large or very small numbers
the result may depend on the order of operation

3.9 Special Values and
Miscellaneous Functions

• pi

• i,j

• Inf

• NaN

• clock

• date

• ans

Hint: The function i is the

most common of these

functions to be

unintentionally renamed

by MATLAB users.

Summary

• MATLAB contains a wide array of predefined
functions
– Elementary Math Functions

– Trigonometric Functions

– Data Analysis Functions

– Random Numbers

– Complex Numbers

Summary

• The colon operator allows you to manipulate
matrices

• Computational Limits

• Special Values and Functions

College of Electronics Engineering

Systems & Control Engineering
Department

MATLAB Programming
SCE2304

Lecture 4
(Manipulating MATLAB Matrices)

Zeyad T. Shareef

Objectives

After studying this chapter, you should be able
to:

• Manipulate matrices

• Extract data from matrices

• Solve problems with two variables

• Explore some of the special matrices built into
MATLAB

Section 4.1
Manipulating Matrices

• We’ll start with a brief review

• To define a matrix, type in a list of numbers
enclosed in square brackets

Remember that we can define a matrix using the
following syntax

• A=[3.5]

• B=[1.5, 3.1] or

• B=[1.5 3.1]

• C=[-1, 0, 0; 1, 1, 0; 0, 0, 2];

2-D Matrices can also be entered by
listing each row on a separate line

C = [-1, 0, 0

1, 1, 0

1, -1, 0

0, 0, 2]

F = [1, 52, 64, 197, 42, -42, …

55, 82, 22, 109];

Use an ellipsis to continue a definition
onto a new line

Scalar

Vector – the

commas are

optional

2-D matrix

These

semicolons

are optional

You can define a matrix using other matrices as
components

Or…

Indexing Into an Array allows you
to change a value

Adding Elements

If you add an element

outside the range of the

original array, intermediate

elements are added with a

value of zero

Colon Operator

• Used to define new matrices

• Modify existing matrices

• Extract data from existing matrices

Evenly spaced vector

The default spacing is 1

User specified spacing

The spacing is specified as 0.5

The colon can be used to represent an entire
row or column

All the rows in column 1

All the rows in column 4

All the columns in row 1

You don’t need to extract an entire
row or column

Rows 2 to 3, all the

columns

Or…

Rows 2 to 3, in

columns 4 to 5

A single colon transforms the

matrix into a column

MATLAB is column

dominant

Indexing techniques

• To identify an element in a 2-D matrix, use the
row and column number

• For example, element M(2,3)

Element M(2,3) is in row

2, column 3

Or use single value

indexing

M(8) is the same

element as M(2,3)

1 4 7 10 13

2 5 8 11 14

3 6 9 12 15

Element #s

The word “end” signifies the last
element in the row or column

Row 1, last element

Last row, last element

Last element in the

single index

designation scheme

Section 4.2
Problems with Two Variables

• All of our calculations thus far have only
included one variable

• Most physical phenomena can vary with many
different factors

• We need a strategy for determining the array
of answers that results with a range of values
for multiple variables

Two scalars give a scalar result

A scalar and a vector give a vector
result

When you multiply two vectors together,
they must have the same number of

elements

Array multiplication gives a result the same size
as the input arrays

x and y must be

the same size

Results of an element by element (array)
multiplication

x

1 2 3 4 5

y 1.0 1

1.5 3

2.0 6

2.5 10

3.0 ? 15

The meshgrid function maps two vectors onto
a 2-D grid

Now the arrays are the same size, and can be
multiplied

Section 4.3
Special Matrices

• zeros
– Creates a matrix of all zeros

• ones
– Creates a matrix of all ones

• diag
– Extracts a diagonal or creates an identity matrix

• magic
– Creates a “magic” matrix

With a single input a square matrix is
created with the zeros or ones function

Two input arguments specify the number of
rows and columns

The diag function

When the input
argument to the
diag function is a
square matrix,
the diagonal is
returned

The diag function

When the input is a vector, it is used as the
diagonal of an identity matrix

Magic Matrices

Summary

• Matrices can be created by combining other
matrices

• Portions of existing matrices can be extracted
to form smaller matrices

Summary – The colon operator

• The colon operator

– can be used to create evenly spaced matrices

– can be used to extract portions of existing
matrices

– can be used to transform a 2-D matrix into a single
column

Summary - Meshgrid

• Meshgrid is an extremely useful function that
can be used to map vectors into two
dimensional matrices

– This makes it possible to perform array
calculations with vectors of unequal size

Summary – Special Matrices

• zeros – creates a matrix composed of all zeros

• ones – creates a matrix composed of all ones

• diag – extracts the diagonal from a square matrix or
can be used to create a square matrix identity matrix

• magic – creates a “magic matrix”

College of Electronics Engineering

Systems & Control Engineering
Department

MATLAB Programming
SCE2304

Lecture 5
(Plotting)

Zeyad T. Shareef

Objectives

After studying this lecture, you should be able
to:

• Create and label two dimensional plots

• Adjust the appearance of your plots

• Divide the plotting window into subplots

• Create three dimensional plots

• Use the interactive plotting tools

Section 5.1
5.1.1 Two Dimensional Plots

• The x-y plot is the most commonly used plot
by engineers

• The independent variable is usually called x

• The dependent variable is usually called y

Consider this x-y data

time, sec Distance, Ft

0 0

2 0.33

4 4.13

6 6.29

8 6.85

10 11.19

12 13.19

14 13.96

16 16.33

18 18.17

Time is the

independent

variable and

distance is the

dependent

variable

Define x and y and call the plot
function

You can use any variable name that is convenient

for the dependent and independent variables

In the default mode the figure

window is free floating, and appears

on top of the MATLAB desktop.

It is often convenient to “dock” the

figure, using the docking arrow

Engineers always add …

• Title

• X axis label, complete with units

• Y axis label, complete with units

• Often it is useful to add a grid

To add an apostrophe to a title (or other

annotation) you must enter the single quote

twice – otherwise MATLAB interprets the

single apostrophe as the end of the string.

Creating multiple plots

• MATLAB overwrites the figure window every
time you request a new plot

• To open a new figure window, use the figure
function – for example

figure(2)

Plots with multiple lines

• hold on

– Freezes the current plot, so that an additional plot
can be overlaid

• When you use this approach, the additional
line is drawn in blue – the default drawing
color

The first plot is drawn in blue

The hold on command

freezes the plot

The second

line is also

drawn in blue,

on top of the

original plot

To unfreeze the plot

use the hold off

command

• You can also create multiple lines on a single
graph with one command

• Using this approach each line defaults to a
different color

Each set of

ordered pairs will

produce a new

line

Variations

• If you use the plot command with a single
matrix, MATLAB plots the values versus the
index number

• Usually this type of data is plotted on a bar
graph

• When plotted on an x-y grid, it is often called
a line graph

If you want to create multiple plots, all with the
same x value you can…

• Use alternating sets of ordered pairs

– plot(x, y1, x, y2, x, y3, x, y4)

• Or group the y values into a matrix

– z=[y1, y2, y3, y4]

– plot(x,z)

Alternating sets

of ordered pairs

Matrix of Y

values

The peaks(100)

function creates

a 100x100 array

of values. Since

this is a plot of a

single variable,

we get 100

different line plots

Plots of Complex Arrays

• If the input to the plot command is a single
array of complex numbers, MATLAB plots the
real component on the x-axis and the
imaginary component on the y-axis

Multiple arrays of complex numbers

• If you try to use two arrays of complex
numbers in the plot function, the imaginary
components are ignored

5.1.2 Line, Color and Mark Style

• You can change the appearance of your plots by
selecting user defined

– line styles

– color

– mark styles

• Try using help plot for a list of available styles

Available choices
Table 5. 2 Line, Mark and Color Options

Line Type Indicator Point Type Indicator Color Indicator

solid - point . blue b

dotted : circle o green g

dash-dot -. x-mark x red r

dashed -- plus + cyan c

star * magenta m

square s yellow y

diamond d black k

triangle down v

triangle up ^

triangle left <

triangle right >

pentagram p

hexagram h

Specify your choices in a string

• For example

• plot(x,y,':ok')

– strings are identified with a tick mark

– if you don’t specify style, a default is used

• line style – none

• mark style – none

• color - blue

plot(x,y,':ok')

• In this command

– the : means use a dotted line

– the o means use a circle to mark each point

– the letter k indicates that the graph should be
drawn in black

• (b indicates blue)

dotted line

circles

black

specify the

drawing

parameters for

each line after

the ordered pairs

that define the

line

Axis scaling

• MATLAB automatically scales each plot to
completely fill the graph

• If you want to specify a different axis – use the
axis command

axis([xmin,xmax,ymin,ymax])

• Lets change the axes on the graph we just
looked at

Use the axis

function to

override the

automatic

scaling

Additional Annotations

• You can also add

– legends

– textbox

• Of course, you should always add

– title

– axis labels

Improving your labels

You can use Greek letters in your labels by
putting a backslash (\) before the name of the
letter. For example:

title(‘\alpha \beta \gamma’)

creates the plot title

α β γ

Superscripts and Subscripts

To create a superscript use curly brackets

title(‘x^{2}’)

gives

x2

To create a subscript use an underscore

title(‘x_2’)

gives

x2

Tex Markup Language

• These label improvements use the Tex Markup
Language

• Use the Help feature to find out more!

Section 5.2
Subplots

• The subplot command allows you to subdivide
the graphing window into a grid of m rows
and n columns

subplot(m,n,p)

rows columns location

subplot(2,2,1)

2 rows

2 columns

1 2

3 4

-2
0

2

-2
0

2

-5

0

5

x

Peaks

y

2 rows and 1

column

Section 5.3
Other Types of 2-D Plots

• Polar Plots

• Logarithmic Plots

• Bar Graphs

• Pie Charts

• Histograms

• X-Y graphs with 2 y axes

• Function Plots

Polar Plots

• Some functions are easier to specify using
polar coordinates than by using rectangular
coordinates

• For example, the equation of a circle is
– y=sin(x)

in polar coordinates

Practice Exercise 5.3

• Try these exercises to create some
interesting shapes

 1

 2

 3

 4

 5

30

210

60

240

90

270

120

300

150

330

180 0

 1

 2

 3

 4

 5

30

210

60

240

90

270

120

300

150

330

180 0

 2

 4

 6

 8

 10

30

210

60

240

90

270

120

300

150

330

180 0

 1

 2

 3

 4

 5

30

210

60

240

90

270

120

300

150

330

180 0

 0.2

 0.4

 0.6

 0.8

 1

30

210

60

240

90

270

120

300

150

330

180 0

Bar Graphs and Pie Charts

• MATLAB includes a whole family of bar graphs and
pie charts

– bar(x) – vertical bar graph

– barh(x) – horizontal bar graph

– bar3(x) – 3-D vertical bar graph

– bar3h(x) – 3-D horizontal bar graph

– pie(x) – pie chart

– pie3(x) – 3-D pie chart

X-Y Graphs with Two Y Axes

• Sometimes it is useful to overlay two x-y plots
onto the same figure. However, if the order of
magnitude of the y values are quite different,
it may be difficult to see how the data behave.

For example

Scaling Depends on the largest value
plotted

• Its difficult to see how the blue line behaves, because the
scale isn’t appropriate

The plotyy

function allows

you to use two

scales on a

single graph

Adding Labels

But how do you add the

right axis label?

Give the plot a name – also called a
‘handle’

5.3 Function Plots

• Function plots allow you to use a function as
input to a plot command, instead of a set of
ordered pairs of x-y values

fplot('sin(x)',[-2*pi,2*pi])

function input as a

string

range of the independent

variable – in this case x

Section 5.4
Three Dimensional Plotting

• Line plots

• Surface plots

• Contour plots

5.4.1 Three Dimensional Line Plots

• These plots require a set of order triples (x-y-z
values) as input

The z-axis is labeled

the same way the x

and y axes are labeled

MATLAB uses

a coordinate

system

consistent

with the right

hand rule

5.4.2 Surface Plots

• Represent x-y-z data as a surface

– mesh - meshplot

– surf – surface plot

Both Mesh and Surf

• Can be used to good effect with a single two
dimensional matrix

The x and y

coordinates are the

matrix index

numbers

Using mesh with 3 variables

• If we know the values of x and y that
correspond to our z values, we can plot
against those values instead of the index
numbers

Surf plots

• surf plots are similar to mesh plots

– they create a 3-D colored surface instead of an
open mesh

– syntax is the same

Shading

• There are several shading options

– shading interp

– shading flat

– faceted flat is the default

• You can also adjust the color scheme with the
color map function

Default shading

Shading Interp

Shading flat

Colormaps

autumn bone hot

spring colorcube hsv

summer cool pink

winter copper prism

jet (default) flag white

Colormap hot

Colormap cool

Section 5.5
Editing Plots from the Menu Bar

• In addition to controlling the way your plots
look by using MATLAB commands, you can
also edit a plot once you’ve created it using
the menu bar

• Another demonstration function built into
MATLAB is sphere

Once you’ve created a plot you can
adjust it using the menu bar

• In this picture the
insert menu has
been selected

• Notice you can use
it to add labels,
legends, a title and
other annotations

Select

Edit-> Axis

Properties from the

menu tool bar

Select Inspector

from the

Property Editor

Change the

Aspect Ratio

Explore the

property editor to

see some of the

other ways you

can adjust your

plot interactively

• If you adjust a figure interactively, you’ll lose
your improvements when you rerun your
program

Saving your plots

• Rerun your M-file to recreate a plot

• Save the figure from the file menu using the save as…
option
– You’ll be presented with several choices of file format such

as
• jpeg

• emg (enhanced metafile) etc

• Right-click on the figure and select copy – then paste
it into another document

College of Electronics Engineering

Systems & Control Engineering
Department

MATLAB Programming
SCE2304

Lecture 6
(User Defined Functions)

Zeyad T. Shareef

Objectives

• Create and use MATLAB functions with both single
and multiple inputs and outputs

• Learn how to store and access functions in a user
defined toolbox

• Create and use anonymous functions

• Create and use function handles

Section 6.1
Creating Function M-files

• User defined functions are stored as separate
M-files

• To use them, they must be in the current
directory

Syntax

• All functions have a similar syntax, whether
they are built-in functions or user-defined
functions

– Name

– Input

– Result
A=cos(x)

User-defined functions must start with a
function definition line

• The line contains…

– The word ‘function’

– A variable that defines the function output

– A function name

– A variable used for the input argument

function output = poly(x)

A simple function

The function name must be the same as the

file name

The function is available from

the command window or from

other M-file programs

Comments

• You should comment functions liberally, just
as you would any computer code

• The comment lines immediately after the first
line are returned when you query the help
function

Functions can accept…

• numeric values

• variables

• scalars

• arrays

Functions with Multiple Inputs and
Outputs

• Recall the remainder function

This function

has two

inputs

A user defined function with

multiple inputs

Functions with Multiple Outputs

• Recall the
max function

• It returns two
results

This function return 3

output values

If you don’t ask for

all three results, the

program just

returns the first

value

Recall the size function

At first this

function looks

like it returns

two values –

but it really

only returns a

single array

with two

elements

Functions with no input or no output

• It isn’t always necessary to define an output

No output is defined

Just because a function does not

return an output value doesn’t mean

it doesn’t do anything. This function

draws a star

When you try to set

the star function

equal to a variable,

an error statement

is returned

Determining the number of input and
output arguments

• nargin

– determines the number of input arguments

• nargout

– determines the number of output arguments

The input to these functions is represented
using a string

You can use these functions in your
programming to make your functions

more versatile

• For example the surf function accepts a
variable number of arguments

• surf(z) plots the 2-D matrix z against the index
numbers

• surf(x,y,z) plots the 2-D matrix z against the x
and y coordinates

When a variable number of arguments
is allowed…

• nargin returns -1

Local Variables

• Variables defined in an M-file function, only have
meaning inside that program

• if I set x=1 in the command window, it is not equal to
1 in the function

• If I set y=2 in a function, it is not equal to 2 in the
workspace window

• The only way to communicate between functions
and the workspace, is through the function input and
output arguments

x, y, a, and output are

local variables to the g

function

When the g function is executed, the

only variable created is determined in

the command window (or script M-file

used to execute a program)

in this case ans

is the only

variable created

g must be defined in the function file

If you don’t define g in this function, it won’t

work!!

Even though g is

defined in the

workspace, the

function can’t

access it

Global Variables

• Although it is possible to define global
variables

It is a bad idea!!

Global Variables

Accessing M-file Code

• functions provided with MATLAB consist of
two types
– The first is built in, and the code is not accessible

to us

– The second type consists of groups of function M-
files – just like the ones we’ve been writing

• Use the type function to see the code in
function M-files

The sphere function is stored as a

function M-file, but is provided by

MATLAB. Studying these functions

may help you understand how to

program better functions yourself

We just wrote this function, and saved it into

the current directory.

Section 6.2
Creating Your Own Toolbox of Functions

• When you call a function MATLAB searches for
it along a predetermined path

– First it looks in the current directory

– Then it follows a search path determined by your
installation of the program

To find the search path, select File->setpath

or type pathtool in the command window

Create your own toolbox

• Once you’ve created a set of functions, you’d
like to be able to access regularly, group them
into a directory (folder) and add them to the
search path using the pathtool

Browse for your folder and

add it to the search path

Section 6.3
Anonymous Functions

• Normally if you go to the trouble of creating a
function, you want to store it for future use.

• Anonymous functions are defined inside a script M-
file or in the command window, and are only
available while they are stored in the workspace
window – much like variables

Define anonymous functions in
a script M-file

• Suppose you’d like to define a function for
natural log called ln

• ln=@(x) log(x)
– The @ symbol alerts MATLAB that ln is a function

– The function input is next, inside parentheses

– Finally the function is defined

function definition

The name of the function is called a

function handle – in this case it is ln

Notice that function handles are

represented with the box symbol in

the workspace window

Saving Anonymous Functions

• Anonymous functions can be saved as a .mat
file – just like anything else listed in the
workspace window

• Retrieve anonymous functions using the load
command

Section 6.4
Function Functions

• Some functions accept other functions as
input

• An example is the fplot function described in
chapter 5 or the nargin and nargout functions
described in this chapter

fplot requires a function in the

first input field

Either syntax gives

the same result

Function functions can also accept a

function handle in place of the

function itself – in this case ln

Here’s another example where a function

handle is assigned to a more complicated

expression.

It’s easier to use poly5 in the fplot command,

than to type in the whole polynomial

We can use the function handle again in

the fzero function function, which finds

the value of x when the function equals

zero

Summary – Function M-Files

• Function M-files must start with a definition
line containing

– the word function

– a variable that defines the function output

– a function name

– a variable used for the input argument

Summary – Function M-files

• Function M-files must be stored in the current
directory or in a user defined toolbox

• The function name must also be the file name

Summary - IO

• Multiple Inputs are allowed

• Multiple Outputs are allowed

• Some functions require no input

• Some functions produce no outputs

Summary - Comments

• Functions should contain ample comments to
document the code

• The comments directly after the function
definition are used by the help feature to
describe the function

Summary - Toolboxes

• Numerous toolboxes are provided by MATLAB

• Others are available from the user community

• Individual users can define their own toolboxes

• The pathtool is used to define the search path so
that MATLAB can find the toolboxes

Summary – Anonymous Functions

• Anonymous functions are defined in a
MATLAB session or M-file

• They only exist during the current session

• They are useful as input to function functions

College of Electronics Engineering

Systems & Control Engineering
Department

MATLAB Programming
SCE2304

Lecture 7
(Logical Functions & Repetition Structures)

Zeyad T. Shareef

Objectives

After studying this lecture, you should be able
to:

• Understand how MATLAB interprets relational and logical
operators

• Use the find function

• Understand the appropriate uses of the if/else family of
commands

• Understand the switch/case structure

Objectives (cont.)

After studying this lecture, you should be able
to:

• Write and use for loops

• Write and use while loops

• Create midpoint break structures

• Measure the time required to execute program components

• Understand how to improve program execution times

Structures

• Sequence

• Selection

• Repetition
Sequence Selection Repetition (Loop)

7.1 Relational and Logical Operators

• Sequence and Repetition structures require
comparisons to work

• Relational operators make those comparisons

• Logical operators allow us to combine the
comparisons

Relational Operators

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Equal to

~= Not equal to

Comparisons are either true or false

• Most computer programs use the number 1
for true and 0 for false

The results of a comparison are used in

selection structures and repetition

structures to make choices

MATLAB compares corresponding
elements and determines if the result

is true or false for each

In order for MATLAB to decide a
comparison is true for an entire matrix,
it must be true for every element in
the matrix

Logical Operators

& and

~ not

| or

xor exclusive or

7.2 Flow Charts and Pseudo-Code

• As you write more complicated programs it
becomes more and more important to plan
your code before you write it

• Flow charts – graphical approach

• Pseudo-code – verbal description

Pseudo-code

• Outline a set of statements describing the
steps you will take to solve a problem

• Convert these steps into comments in an M-
file

• Insert the appropriate MATLAB code into the
file between the comment lines

Pseudo-code Example

• You’ve been asked to create a program to
convert miles/hr to ft/s. The output should be
a table, complete with title and column
headings

Outline the steps

• Define a vector of mph values

• Convert mph to ft/s

• Combine the mph and ft/s vectors into a
matrix

• Create a table title

• Create column headings

• Display the table

Convert the steps to M-file comments

Insert the MATLAB code between the
comments

Flow Charting

• Especially appropriate for more complicated
programs

• Create a big picture graphically

• Convert to pseudo-code

Simple Flow Chart Symbols

• An oval indicates the
beginning of a section of
code

• A parallelogram indicates
an input or output

• A diamond indicates a
decision point

• Calculations are placed in
rectangles

Start

Define a vector

of miles/hour

Calculate the

ft/sec vector

Combine into a

table

Create an output

table using disp

and fprintf

End

This flowchart
represents the
mph to ft/s
problem

7.3 Logical Functions

• MATLAB offers traditional programming
selection structures
– if

– if/else

– switch/case

• And… a series of logical functions that
perform many of the same tasks

find

• The find command searches a matrix and
identifies which elements in that matrix meet
a given criteria.

For example…

• An academy requires applicants to be at least
66” tall

• Consider this list of applicant heights

• 63”, 67”, 65”, 72”, 69”, 78”, 75”

• Which applicants meet the criteria?

The find function returns the index number for
elements that meet a criteria

index numbers

element values

index numbers

You could use the disp and fprintf
functions in this program to create a

more readable report

You could also make a table of those who

do not meet the height requirement

By combining relational and logical
operators you can create fairly

complicated search criteria

• Assume applicants must be at least 18 years
old and less than 35 years old

• They must also meet the height requirement

Applicant pool

Height Age

Inches years

63 18

67 19

65 18

72 20

69 36

78 34

75 12

Let’s use Pseudo-code to plan this
program

• Create a 7x2 matrix of applicant height and
age information

• Use the find command to determine which
applicants are eligible

• Use fprintf to create a table of results

This is the M-file program to determine who is eligible

Because we didn’t suppress all the

output, the intermediate calculations

were sent to the command window

The find command can return either…

• A single index number identifying an element in a
matrix

• A matrix of the row numbers and the column
numbers identifying an element in a matrix

– You need to specify two results if you want the row and
column designation

– [row, col] = find(criteria)

Imagine you have a matrix of patient
temperature values measured in a

clinic

Station 1 Station 2 Station 3

95.3 100.2 98.6

97.4 99.2 98.9

100.1 99.3 97

Use the find command to determine
which patients have elevated

temperatures

These elements refer to the single

index number identification scheme

1 4 7

2 5 8

3 6 9

If we want the row and column…

1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

Using fprintf we can create a
more readable report

7.4 Selection Structures

• Most of the time the find function should be
used instead of an if

• However, there are certain situations where if
is the appropriate process to use

Simple if

if comparison

statements

end

For example….

if G<50

disp(‘G is a small value equal to:’)

disp(G);

end

If statements

• Easy to interpret for scalars

• What does an if statement mean if the
comparison includes a matrix?

– The comparison is only true if it is true for every
member of the array

Consider this bit of code

G=[30,55,10]

if G<50

disp(‘G is a small value equal to:’)

disp(G);

end

The code inside the if statement is

not executed, because the

comparison is not true!!

This statement is

false because at

least one of the

elements in G has

a value >= 50

Therefore the code

inside the if statement

does not execute.

This statement is

true because all of

the elements in G

are < 70

The output would have

been cleaner if we had

suppressed line 1 by

adding a semicolon to

the code.

;

The if/else structure

• The simple if triggers the execution of a block of code
if a condition is true

• If it is false that block of code is skipped, and the
program continues without doing anything

• What if instead you want to execute an alternate set
of code if the condition is false?

Block of code to

excute if the

comparison is true

Comparison
True False

Block of code to

excute if the

comparison is false

Flow chart of an if/else
structure

Use an if structure to calculate a
natural log

• Check to see if the input is positive

– If it is, calculate the natural log

– If it isn’t, send an error message to the screen

M-file Program

Interactions in the Command Window

The if/else/elseif structure

• Use the elseif for multiple selection criteria

• For example

– Write a program to determine if an applicant is
eligible to drive

Start

if age<16 True
Sorry –

You’ll have

to wait

age<18
You may

have a youth

license

age<70

True

You may have a

standard license
True

Drivers over 70

require a

special license

End

elseif

elseif

else

Always test your

programs – making

sure that you’ve

covered all the

possible calculational

paths

As a general rule…

• If structures work well for scalars

• For vectors or arrays use a find function or..

• Combine if structures with a repetition
structure

• Repetition structures are introduced in the
next chapter

switch/case

• This structure is an alternative to the if/else/elseif
structure

• The code is generally easier to read

• This structure allows you to choose between
multiple outcomes, based on some criterion, which
must be exactly true

When to use switch/case

• The criterion can be either a scalar (a number)
or a string.

• In practice, it is used more with strings than
with numbers.

switch variable

case option1

code to be executed if variable is exactly

equal to option 1

case option2

code to be executed if variable is exactly

equal to option 2

…

case option_n

code to be executed if variable is exactly

equal to option n

otherwise

code to be executed if variable is not

equal to any of the options

end

The structure of switch/case

Suppose you want to determine what
the airfare is to one of three cities

Remember…You tell the input
command to expect a string by
adding ‘s’ in the second field.

Menu

• The menu function is often used in
conjunction with a switch/case structure.

• This function causes a menu box to appear on
the screen with a series of buttons defined by
the programmer.

input = menu(‘Message to the user’,’text for button 1’,’text for button 2’, etc)

• Because the input is controlled by a menu
box, the user can’t accidentally enter a bad
choice

• This means you don’t need the otherwise
portion of the switch/case structure

Note that the otherwise portion of the

switch/case structure wasn’t used

When you run this code a menu box
appears

Instead of entering

your choice from

the command

window, you select

one of the buttons

from the menu

If I select Honolulu…

Summary

• Sections of computer code can be categorized
as

– sequences

– selection structures

– repetition structures

Summary – Sequence

• Sequences are lists of instructions that are
executed in order

Summary – Selection Structure

• Selection structures allow the programmer to
define criteria (conditional statements) which
the program uses to choose execution paths

Summary – Repetition Structures

• Repetition structures define loops where a
sequence of instructions is repeated until
some criterion is met (also defined by
conditional statements).

Summary – Relational Operators

• MATLAB uses the standard mathematical
relational operators
– <

– <=

– >

– >=

– ==

– ~=

Recall that = is the assignment operator, and

can not be used for comparisons

Summary – Logical Operators

• MATLAB uses the standard logical operators

– && and

– || or

– ~ not

– xor exclusive or

Summary – Logical Functions

• The find command is unique to MATLAB, and should
be the primary logical function used in your
programming

• It allows the user to specify a condition using both
logical and relational operators, which is then used
to identify elements of a matrix that meet the
condition.

Summary – if family

• The family of if structures allows the
programmer to identify alternate computing
paths dependent upon the results of
conditional statements.
– if

– else

– elseif

Summary switch/case

• Similar to the if/elseif/else structure

• Commonly used with menu

Structures

• Sequence

• Selection

• Repetition
Sequence Selection Repetition (Loop)

Types of Loops

• Loops are used when you need to repeat a set
of instructions multiple times

• MATLAB supports two types of loops

– for

– while

When to use loops

• In general loops are best used with scalars, or with
the values stored in a matrix used one at a time

• Many of the problems you may want to attempt with
loops can be better solved by vectorizing your code
or with MATLAB’s logical functions such as

find

7.5 For Loops

for index = [matrix]

commands to be executed

end

The loop is executed once for each element of the index

matrix identified in the first line

Check to see if the index

has been exceeded

Calculations

True; You’ve run out of

values in the index matrix

Flow

chart for

a for loop

Here’s a simple example
In this case k is the

index – the loop is

repeated once for

each value of k

the index can be

defined using any

of the techniques

we’ve learned

Here’s a simple example
In this case k is the

index – the loop is

repeated once for

each value of k

the index can be

defined using any

of the techniques

we’ve learned

One of the most common ways to use a loop is
to define a matrix

Hint

Most computer programs do not have MATLAB’s ability to

handle matrices so easily, and therefore rely on loops similar to

the one on the previous slide to define arrays. It would be

easier to create the vector a in MATLAB with the following code

k=1:5

a = k.^2

which returns

k =

1 2 3 4 5

a =

1 4 9 16 25

This is an example of vectorizing the code.

Another use is in combination with an if
statement to determine how many times

something is true

Each time through

the loop we evaluate

a single element of

the scores matrix

Summary of the for loop structure

• The loop starts with a for statement, and ends with the word
end.

• The first line in the loop defines the number of times the
loops will repeat, using an index number.

• The index of a for loop must be a variable. (The index is the
number that changes each time through the loop.) Although k
is often used as the symbol for the index, any variable name
can be used. The use of k is a matter of style.

7.6 While Loops

• While loops are very similar to for loops.

• The big difference is the way MATLAB decides
how many times to repeat the loop.

• While loops continue until some criterion is
met.

while criterion

commands to be executed

end

Check to see if the

criterion is still true

Calculations

The criterion

is no longer

true and the

program exits

the loop

Flow Chart

for a while

loop

We have to increment

the counter (in this

case k) every time

through the loop – or

the loop will never

stop!!

This loop creates the

matrix a, one element

at a time

Hint

If you accidentally create a loop that just
keeps running you should

1. Confirm that the computer is actually still
calculating something by checking the lower
left hand corner of the MATLAB window for
the “busy indicator”

2. Make sure the active window is the
command window and exit the calculation
manually with ctrl c

Summary

• Sections of computer code can be categorized
as

– sequences

– selection structures

– repetition structures

Summary – Sequence

• Sequences are lists of instructions that are
executed in order

Summary – Selection Structure

• Selection structures allow the programmer to
define criteria (conditional statements) which
the program uses to choose execution paths

Summary – Repetition Structures

• Repetition structures define loops where a
sequence of instructions is repeated until
some criterion is met (also defined by
conditional statements).

Summary – Relational Operators

• MATLAB uses the standard mathematical
relational operators
– <

– <=

– >

– >=

– ==

– ~=

Recall that = is the assignment operator, and

can not be used for comparisons

Summary – Logical Operators

• MATLAB uses the standard logical operators

– && and

– || or

– ~ not

– xor exclusive or

Summary - Loops

• MATLAB supports both
– for loops

– while loops

• For loops are primarily used when the programmer knows
how many times a sequence of commands should be
executed.

• While loops are used when the commands should be
executed until a condition is met.

• Most problems can be structured so that either for or while
loops are appropriate.

College of Electronics Engineering

Systems & Control Engineering
Department

MATLAB Programming
SCE2304

Lecture 8
(Simulink – A Brief Introduction)

Zeyad T. Shareef

Objectives

After reading this lecture, you should be able to:

• Understand how Simulink uses blocks to represent
common mathematical processes

• Create and run a simple Simulink model

• Import Simulink results into MATLAB

2

Simulink

• An interactive, graphics-based
program that allows you to solve
problems by creating models using
built-in blocks

• Requires MATLAB to run

• Included with the Student Version –
but is an add-on to the Professional
version of MATLAB

3

9.1 Applications

• Convenient for analyzing dynamic systems

• Commonly used in signal processing

• Similar to the approach used with analog
computers

• Terminology is related to electrical
components

4

Open from the command line – or
use the icon

5

Simulink Models are

created with blocks, found

in the Simulink Library

6

The model window is where Simulink models
are created and executed

Drag blocks into

the model

window to solve

problems

7

8

Create a simple model to add two
numbers together

Drag constant

blocks into the

model window

9

Sum Block

10

The constants are connected to a sum block.
Change the values in the constant blocks by
double clicking and modifying the constant
value field

11

Completed Model

Run the
simulation

12

13

The sum block can be used to perform

subtraction operations, as well as for

adding more than two values

14

Example 9.1

This graph was created

using MATLAB and the

rand function – Use

Simulink to recreate the

calculations

15

Example 9.1 - Simulink Model

16

17

18

Results

19

Instead of sending the results to a ‘Scope’ – we could
send them to the MATLAB workspace

20

9.2 Solving Differential Equations

t t2 t2 +y

y

2dy
t y

dt
= +

21

The blocks include the following:
• A clock, to generate times (Source library)
• A math function block, modified in the parameter

window to square the block input (Math Operations
library)

• A sum block (Commonly Used Blocks library)
• An integrator block (Continuous library)
• A scope block (Sink library)

22

Results from Simulink and from MATLAB’s Symbolic
Algebra approach

23

Example 9.3
Behavior of a Falling Object

Predicted behavior when drag is considered

2dv c
g v

dt m
= −

24

25

Results from Simulink and from MATLAB’s
Symbolic Algebra approach

26

Example 9.4
Position of a Falling Object

Estimate of Position,

assuming drag
2

22

2

dv c
g v

dt m

dx
v

dt

d x c dx
g

dt m dt

= −

=

 
= −  

 

27

Simulink Model

2

2

d x

dt

dx

dt

x

22

2

d x c dx
g

dt m dt

 
= −  

 

28

Results from Simulink and from MATLAB’s
Symbolic Algebra approach

29

Summary

• Simulink uses a graphical interface to create
models

• It is especially useful with dynamic systems

30

	Slide 1
	Slide 2: Objectives
	Slide 4: Section 1.1 What is MATLAB?
	Slide 5: MATLAB excels at:
	Slide 6: Why MATLAB
	Slide 7
	Slide 8: Section 1.2 Student Edition of MATLAB
	Slide 9: The command prompt is the biggest difference you’ll notice
	Slide 10: Section 1.3 How is MATLAB used in Industry?
	Slide 11: Electrical Engineering
	Slide 12: Biomedical Engineering
	Slide 13: Fluid Dynamics
	Slide 14: Section 1.4 Problem Solving in Engineering and Science
	Slide 15: State the Problem
	Slide 16: Describe the Input and Output
	Slide 17: Develop an Algorithm
	Slide 18: Solve the problem
	Slide 19: Test the Solution
	Slide 20: Develop a MATLAB Solution to Solve the Problem
	Slide 21
	Slide 22: Summary
	Slide 1
	Slide 2: Objectives
	Slide 3: Objectives - continued
	Slide 4: In this lecture we’ll…
	Slide 5: Section 2.1 Getting Started
	Slide 6: MATLAB opens to a default window configuration
	Slide 7
	Slide 8: Section 2.2 MATLAB Windows
	Slide 9
	Slide 10: Let’s look at the windows one at a time
	Slide 11: Command Window
	Slide 12: Command History
	Slide 13: Command History
	Slide 14: Workspace Window
	Slide 15: When you define variables in the command window, they are listed in the workspace window
	Slide 16
	Slide 17: Current Directory/Folder
	Slide 18: Document Window
	Slide 19
	Slide 20: Figure Window
	Slide 21
	Slide 22
	Slide 23: Editing Window
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Section 2.3 Solving Problems with MATLAB
	Slide 28: Variables
	Slide 29: Naming Variables
	Slide 30: Use the iskeyword function for a list of keywords
	Slide 31: You can reassign function names
	Slide 32: Practice Exercise 2.2 Which of these names are allowed in MATLAB?
	Slide 33: 2.3.2 Matrices in MATLAB The basic data type
	Slide 34: Scalar Calculations
	Slide 35: Assignment Operator
	Slide 36: How is the assignment operator different from an equality?
	Slide 37: Is that really different?
	Slide 38: Order of Operation
	Slide 39: Order of Operation
	Slide 40: Parentheses
	Slide 41: Compute from left to right
	Slide 42: Array Operations
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48: Shortcuts
	Slide 49
	Slide 50: To calculate spacing between elements use…
	Slide 51
	Slide 52
	Slide 53
	Slide 54: Hint
	Slide 55: Mixed calculations between scalars and arrays
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60: Array Operations
	Slide 61: The matrix capability of MATLAB makes it easy to do repetitive calculations
	Slide 62
	Slide 63
	Slide 64: Transpose
	Slide 65
	Slide 66
	Slide 67
	Slide 68: Number Display
	Slide 69
	Slide 70: Display Format
	Slide 71: Default
	Slide 72: Other formats
	Slide 73: Really Big and Really Small
	Slide 74: Two other formats
	Slide 75: Spacing in the command window
	Slide 76: Section 2.4 Saving Your Work
	Slide 77
	Slide 78: Script M-files
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87: Comments
	Slide 88
	Slide 89: Summary
	Slide 1
	Slide 2: Objectives
	Slide 3: 3.1 Using Built-in Functions
	Slide 4: Function Input can be either scalars or matrices
	Slide 5: Function Input can be either scalars or matrices
	Slide 6: Using Predefined Functions
	Slide 7: Some functions require multiple inputs
	Slide 8: Some functions return multiple results
	Slide 9: You can assign names to the output
	Slide 10: Nesting Functions
	Slide 11: 3.2 Using the Help Feature
	Slide 12: From the Command Window
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: The windowed help function can also be accessed using the doc command
	Slide 18: 3.3 Elementary Math Functions
	Slide 19: 3.3.2 Rounding Functions
	Slide 20
	Slide 21
	Slide 22: 3.3.3 Discrete Mathematics
	Slide 23: 3.3.3 Discrete Mathematics
	Slide 24: 3.4 Trigonometric Functions
	Slide 25: 3.5 Data Analysis Functions
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38: Determining Matrix Size
	Slide 39
	Slide 40: Variance and Standard Deviation
	Slide 41: Standard Deviation
	Slide 42: 3.6 Random Numbers
	Slide 43
	Slide 44
	Slide 45
	Slide 46: Gaussian Random numbers
	Slide 47
	Slide 48
	Slide 49
	Slide 50: To generate random numbers between other bounds…
	Slide 51: More about Manipulating Matrices
	Slide 52
	Slide 53: 3.7 Complex Numbers
	Slide 54: 3.8 Computational Limits
	Slide 55: Check the limits on your computer with these commands
	Slide 56
	Slide 57: When using very large or very small numbers the result may depend on the order of operation
	Slide 58: 3.9 Special Values and Miscellaneous Functions
	Slide 59: Summary
	Slide 60: Summary
	Slide 1
	Slide 2: Objectives
	Slide 3: Section 4.1 Manipulating Matrices
	Slide 4: Remember that we can define a matrix using the following syntax
	Slide 5: 2-D Matrices can also be entered by listing each row on a separate line
	Slide 6: Use an ellipsis to continue a definition onto a new line
	Slide 7
	Slide 8
	Slide 9
	Slide 10: You can define a matrix using other matrices as components
	Slide 11: Or…
	Slide 12: Indexing Into an Array allows you to change a value
	Slide 13: Adding Elements
	Slide 14
	Slide 15: Colon Operator
	Slide 16: Evenly spaced vector
	Slide 17: User specified spacing
	Slide 18: The colon can be used to represent an entire row or column
	Slide 19: You don’t need to extract an entire row or column
	Slide 20: Or…
	Slide 21
	Slide 22: Indexing techniques
	Slide 23
	Slide 24
	Slide 25: The word “end” signifies the last element in the row or column
	Slide 26: Section 4.2 Problems with Two Variables
	Slide 27: Two scalars give a scalar result
	Slide 28: A scalar and a vector give a vector result
	Slide 29: When you multiply two vectors together, they must have the same number of elements
	Slide 30: Array multiplication gives a result the same size as the input arrays
	Slide 31: Results of an element by element (array) multiplication
	Slide 32: The meshgrid function maps two vectors onto a 2-D grid
	Slide 33: Now the arrays are the same size, and can be multiplied
	Slide 34: Section 4.3 Special Matrices
	Slide 35: With a single input a square matrix is created with the zeros or ones function
	Slide 36: Two input arguments specify the number of rows and columns
	Slide 37: The diag function
	Slide 38: The diag function
	Slide 39: Magic Matrices
	Slide 40: Summary
	Slide 41: Summary – The colon operator
	Slide 42: Summary - Meshgrid
	Slide 43: Summary – Special Matrices
	Slide 1
	Slide 2: Objectives
	Slide 3: Section 5.1 5.1.1 Two Dimensional Plots
	Slide 4: Consider this x-y data
	Slide 5: Define x and y and call the plot function
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Engineers always add …
	Slide 10
	Slide 11
	Slide 12: Creating multiple plots
	Slide 13: Plots with multiple lines
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Variations
	Slide 19
	Slide 20: If you want to create multiple plots, all with the same x value you can…
	Slide 21
	Slide 22
	Slide 23: Plots of Complex Arrays
	Slide 24
	Slide 25: Multiple arrays of complex numbers
	Slide 26
	Slide 27: 5.1.2 Line, Color and Mark Style
	Slide 28: Available choices
	Slide 29: Specify your choices in a string
	Slide 30: plot(x,y,':ok')
	Slide 31
	Slide 32
	Slide 33: Axis scaling
	Slide 34
	Slide 35: Additional Annotations
	Slide 36
	Slide 37: Improving your labels
	Slide 38: Superscripts and Subscripts
	Slide 39: Tex Markup Language
	Slide 40: Section 5.2 Subplots
	Slide 41: subplot(2,2,1)
	Slide 42
	Slide 43: Section 5.3 Other Types of 2-D Plots
	Slide 44: Polar Plots
	Slide 45
	Slide 46: Practice Exercise 5.3
	Slide 47: Bar Graphs and Pie Charts
	Slide 48
	Slide 49
	Slide 50: X-Y Graphs with Two Y Axes
	Slide 51: For example
	Slide 52: Scaling Depends on the largest value plotted
	Slide 53
	Slide 54: Adding Labels
	Slide 55: Give the plot a name – also called a ‘handle’
	Slide 56: 5.3 Function Plots
	Slide 57
	Slide 58: Section 5.4 Three Dimensional Plotting
	Slide 59: 5.4.1 Three Dimensional Line Plots
	Slide 60
	Slide 61: 5.4.2 Surface Plots
	Slide 62: Both Mesh and Surf
	Slide 63
	Slide 64: Using mesh with 3 variables
	Slide 65
	Slide 66: Surf plots
	Slide 67
	Slide 68: Shading
	Slide 69: Default shading
	Slide 70: Shading Interp
	Slide 71: Shading flat
	Slide 72: Colormaps
	Slide 73: Colormap hot
	Slide 74: Colormap cool
	Slide 75: Section 5.5 Editing Plots from the Menu Bar
	Slide 76: Once you’ve created a plot you can adjust it using the menu bar
	Slide 77
	Slide 78
	Slide 79: Saving your plots
	Slide 1
	Slide 2: Objectives
	Slide 3: Section 6.1 Creating Function M-files
	Slide 4: Syntax
	Slide 5: User-defined functions must start with a function definition line
	Slide 6: A simple function
	Slide 7
	Slide 8: Comments
	Slide 9
	Slide 10: Functions can accept…
	Slide 11: Functions with Multiple Inputs and Outputs
	Slide 12
	Slide 13: Functions with Multiple Outputs
	Slide 14
	Slide 15: Recall the size function
	Slide 16: Functions with no input or no output
	Slide 17
	Slide 18: Determining the number of input and output arguments
	Slide 19: The input to these functions is represented using a string
	Slide 20: You can use these functions in your programming to make your functions more versatile
	Slide 21: When a variable number of arguments is allowed…
	Slide 22: Local Variables
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Global Variables
	Slide 27: Global Variables
	Slide 28: Accessing M-file Code
	Slide 29
	Slide 30
	Slide 31: Section 6.2 Creating Your Own Toolbox of Functions
	Slide 32
	Slide 33: Create your own toolbox
	Slide 34
	Slide 35: Section 6.3 Anonymous Functions
	Slide 36: Define anonymous functions in a script M-file
	Slide 37
	Slide 38: Saving Anonymous Functions
	Slide 39: Section 6.4 Function Functions
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44: Summary – Function M-Files
	Slide 45: Summary – Function M-files
	Slide 46: Summary - IO
	Slide 47: Summary - Comments
	Slide 48: Summary - Toolboxes
	Slide 49: Summary – Anonymous Functions
	Slide 1
	Slide 2: Objectives
	Slide 3: Objectives (cont.)
	Slide 4: Structures
	Slide 5: 7.1 Relational and Logical Operators
	Slide 6: Relational Operators
	Slide 7: Comparisons are either true or false
	Slide 8: MATLAB compares corresponding elements and determines if the result is true or false for each
	Slide 9
	Slide 10: Logical Operators
	Slide 11: 7.2 Flow Charts and Pseudo-Code
	Slide 12: Pseudo-code
	Slide 13: Pseudo-code Example
	Slide 14: Outline the steps
	Slide 15: Convert the steps to M-file comments
	Slide 16: Insert the MATLAB code between the comments
	Slide 17: Flow Charting
	Slide 18: Simple Flow Chart Symbols
	Slide 19
	Slide 20: 7.3 Logical Functions
	Slide 21: find
	Slide 22: For example…
	Slide 23: The find function returns the index number for elements that meet a criteria
	Slide 24
	Slide 25
	Slide 26: You could use the disp and fprintf functions in this program to create a more readable report
	Slide 27
	Slide 28: By combining relational and logical operators you can create fairly complicated search criteria
	Slide 29: Applicant pool
	Slide 30: Let’s use Pseudo-code to plan this program
	Slide 31
	Slide 32
	Slide 33: The find command can return either…
	Slide 34: Imagine you have a matrix of patient temperature values measured in a clinic
	Slide 35: Use the find command to determine which patients have elevated temperatures
	Slide 36: If we want the row and column…
	Slide 37: Using fprintf we can create a more readable report
	Slide 38: 7.4 Selection Structures
	Slide 39: Simple if
	Slide 40
	Slide 41: If statements
	Slide 42: Consider this bit of code
	Slide 43
	Slide 44
	Slide 45: The if/else structure
	Slide 46: Flow chart of an if/else structure
	Slide 47: Use an if structure to calculate a natural log
	Slide 48: M-file Program
	Slide 49: Interactions in the Command Window
	Slide 50: The if/else/elseif structure
	Slide 51
	Slide 52
	Slide 53
	Slide 54: As a general rule…
	Slide 55: switch/case
	Slide 56: When to use switch/case
	Slide 57: The structure of switch/case
	Slide 58: Suppose you want to determine what the airfare is to one of three cities
	Slide 59
	Slide 60: Remember…You tell the input command to expect a string by adding ‘s’ in the second field.
	Slide 61: Menu
	Slide 62
	Slide 63
	Slide 64: When you run this code a menu box appears
	Slide 65: If I select Honolulu…
	Slide 66: Summary
	Slide 67: Summary – Sequence
	Slide 68: Summary – Selection Structure
	Slide 69: Summary – Repetition Structures
	Slide 70: Summary – Relational Operators
	Slide 71: Summary – Logical Operators
	Slide 72: Summary – Logical Functions
	Slide 73: Summary – if family
	Slide 74: Summary switch/case
	Slide 75: Structures
	Slide 76: Types of Loops
	Slide 77: When to use loops
	Slide 78: 7.5 For Loops
	Slide 79
	Slide 80: Here’s a simple example
	Slide 81: Here’s a simple example
	Slide 82: One of the most common ways to use a loop is to define a matrix
	Slide 83: Hint
	Slide 84: Another use is in combination with an if statement to determine how many times something is true
	Slide 85: Summary of the for loop structure
	Slide 86: 7.6 While Loops
	Slide 87
	Slide 88
	Slide 89
	Slide 90: Hint
	Slide 91: Summary
	Slide 92: Summary – Sequence
	Slide 93: Summary – Selection Structure
	Slide 94: Summary – Repetition Structures
	Slide 95: Summary – Relational Operators
	Slide 96: Summary – Logical Operators
	Slide 97: Summary - Loops
	Slide 1
	Slide 2: Objectives
	Slide 3: Simulink
	Slide 4: 9.1 Applications
	Slide 5: Open from the command line – or use the icon
	Slide 6
	Slide 7: The model window is where Simulink models are created and executed
	Slide 8
	Slide 9: Create a simple model to add two numbers together
	Slide 10: Sum Block
	Slide 11: The constants are connected to a sum block. Change the values in the constant blocks by double clicking and modifying the constant value field
	Slide 12: Completed Model
	Slide 13
	Slide 14
	Slide 15: Example 9.1
	Slide 16: Example 9.1 - Simulink Model
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Instead of sending the results to a ‘Scope’ – we could send them to the MATLAB workspace
	Slide 21: 9.2 Solving Differential Equations
	Slide 22
	Slide 23: Results from Simulink and from MATLAB’s Symbolic Algebra approach
	Slide 24: Example 9.3 Behavior of a Falling Object
	Slide 25
	Slide 26
	Slide 27: Example 9.4 Position of a Falling Object
	Slide 28: Simulink Model
	Slide 29
	Slide 30: Summary

