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COURSE DETAILS:
• Description

This course covers three main areas: modelling, simulation, and identification. It presents several modelling methodologies 
that can be used for control systems. This will cover mathematical and analytical work. Software tools, such as 
MATLAB/Simulink, may will be used to simulate the systems and analyze the responses. Also, an introduction to system 
identification will be provided. Modeling definition. Modeling of different physical systems (mechanical, fluid, thermal and 
electrical). Differential and Laplace equations. State-space representation. Computer simulation techniques (applications using 
MATLAB Program). System response and analysis.

• Course Learning Outcomes

Upon successful completion of this course, student should:

1. Understand fundamentals of system dynamics.

2. Study the Laplace, inverse Laplace transformation.

3. Obtain a mathematical Model of different physical systems (mechanical, fluid, thermal and electrical).
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COURSE OUTLINES:

• Introduction: Engineering Systems Dynamics; Components and Systems; 

Principles of Modeling and Simulation; Modelling Categories

• ODE and The Laplace Transform: Concept; Model Formulation; Transfer 

Functions and Time Response; SISO and MISO Systems

• Physical systems and Transfer function: Mechanical, Electrical, 

Electromechanical, and fluid system.

• State Space Analysis: state space basics; state variable; state space system 

representation; electrical state space modeling; state space to transfer function; 

transfer function to state space form.

• Transfer function to state space and vice versa.

• Linearization of Nonlinear Systems.
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ASSESSMENT GUIDANCE:
• Evaluation of the student performance during the semester (total final mark) will be conducted according to the following 

activities:
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Quizzes 20%

Midterm Exam 10%

Seminar, Homework, Reports 20%

Final Exam 50%

TOTAL 100%
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FRAMEWORK FOR SYSTEM CONTROL
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INTRODUCTION: WHAT IS THE SYSTEM? 
It is a combination of elements intended to act together to accomplish an objective.

It is any collection of elements for which there are cause-and-effect relationships among the variables. 
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𝑓 = 𝑏ℎ𝑚

Some example of the systems :

• Medical/biological systems
• Socioeconomic systems
• Communication and information systems
• Planning systems
• Solar system
• Environmental systems
• Manufacturing systems
• Management systems
• Transportation systems
• Physical systems—electrical, mechanical, 
thermal, hydraulic systems, and combinations of 
them 
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INTRODUCTION: TYPES OF SYSTEMS
1. According to the Time Frame

• Discrete

• Continuous

• Hybrid

2. According to the Interactions: Interactions may be unidirectional or bidirectional, crisp or fuzzy, static or 

dynamic, etc.

3. According to the Nature and Type of Components

• Static or dynamic components

• Linear or nonlinear components

• Time-invariant or time-variant components

• Deterministic or stochastic components

• Continuous-time and discrete-time systems

4. According to the Uncertainties Involved

• Deterministic—No uncertainty in any variables, for example, model of pendulum.

• Stochastic - Some variables are random, for example, airplane in flight with random wind gusts
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INTRODUCTION: TYPES OF SYSTEMS
1. Static systems: is one whose output at any given time depends only on the 

input at that time. For example, the current flowing through a resistor depends 

only on the present value of the applied voltage.

Mathematical example of static system:

2. Dynamic Systems: is one whose present output depends on past inputs. For 

example, the present position of a bike depends on what its velocity has been 

from the start.

Mathematical example of dynamic system:
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INTRODUCTION: EXAMPLE
• Example: Check whether the following mathematical representation system is static or dynamic

a. 𝑌(𝑡) = 𝑥(3𝑡)            let t=1   so   𝑌(1) = 𝑥(3)        System is Dynamic   / 𝑌(1) depends on the future input 𝑥(3)

b. 𝑌(𝑡) = 5𝑥(𝑡)            let t=1   so 𝑌(1) = 5𝑥(1)      System is Static   / 𝑌(1) depends on the present input 𝑥(1)

c. 𝑌(𝑡) = 𝑥(−𝑡)           let t=1   so 𝑌(1) = 𝑥(−1)     System is Dynamic  / 𝑌(1) depends on the past input 𝑥(−1)

d. 𝑌(𝑡) = 𝑥(𝑐𝑜𝑠𝑡)        let t=0   so 𝑌(0) = 𝑥(𝑐𝑜𝑠0)   System is Dynamic  / 𝑌(0) depends on the future input 

𝑥(1)
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INTRODUCTION: COMPLEXITY OF SYSTEMS
Another basic issue is the complexity of a system. Complexity of a system depends on the following factors:

1. Number of interconnected components

2. Type/nature of component

3. Number of interactions

4. Strength of the interaction

5. Type/nature of interactions

A. Static or dynamic

B. Unidirectional or bidirectional

C. Constrained or non-constraint interaction

System Modeling 20 October 2025
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Number of components and number of interactions (a) 0, (b) 2, and (c) 6
in the family system.



ALPINE SKI HOUSE

INTRODUCTION: COMPLEXITY OF SYSTEMS
The complexity of a system model is sometimes measured by the number of independent energy-storing 

elements. 
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This figure is adapted from a drawing in Chapter 42 of The Shock and Vibration Handbook, third edition (1988), edited by Cyril M. Harris. It is used with the permission of the publisher, McGraw-

Hill, Inc. Part (a) of the figure also appears in the fourth edition (1996) of that book 
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INTRODUCTION
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INTRODUCTION:  INPUT AND OUTPUT OF SYSTEM
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• Input: is a variable that can affect the system's behavior.

• Output: is a variable that is to be calculated or measured.
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INTRODUCTION:  INPUT AND OUTPUT OF SYSTEM
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• Single-Input Single-Output (SISO)

• Multi-Input Multi-Output (MIMO)
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INTRODUCTION: WHAT IS THE MODEL?
• Model: is a description of a system in terms of equations. The basis for constructing a 

model of a system are the physical laws (such as the conservation of energy and Newton's 

laws) that the system elements and their interconnections are known to obey.

• Modelling: Modeling is the art of obtaining a quantitative description of a system or one 

of its elements that is simple enough to be useful for making predictions and realistic 

enough to trust those predictions.

• Mathematical Model: A set of differential equations derived using Newton’s law, circuit 

law etc. that describe dynamic behavior of a physical system or process.

• There is no the model for a system. Many different models can be associated with the 

same system depending on what level of approximation we desire.
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INTRODUCTION: WHAT IS THE MODEL?
• Applying Newton’s second law, we can write the system equation as:

• Taking the Laplace transform of Equation above, the transfer function of 

the system may be written as:

• Block diagram of a simple mechanical system:
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INTRODUCTION: MODELING CYCLE

System Modeling 20 October 2025
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Conceptual modeling is the 

process of abstracting a model 

from a real or proposed system 

into a conceptual model.
 

An executable model is a model 

conforming to an executable 

modeling language and defines an 

aspect of the behavior of a system 

in sufficient detail such that the 

model can be executed.
 

Verification is the task of determining if the implementation of a model has been done correctly. 

Validation is the task of determining 

if the model constructed accurately 

represents the underlying real system 

being modeled.
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MATHEMATICAL MODELING PROCESS
• Dynamic systems are modeled mathematically using ordinary differential equation.

• There are two ways to obtain these models:

➢ Theoretical modeling based on first (physical) principles

➢ Experimental modeling (identification) with measured input and output variables

System Formulation: For an unstable system, to design a state feedback controller, the system should be modelled 

mathematically and then formulated in state space form.
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TYPES OF MATHEMATICAL MODELLING
1. Simple Modeling: In this modeling, the effect of an external influence in the performance of the dynamic system is not 

taken into consideration. The mathematical representation of the system is given by:

𝑑𝑥

𝑑𝑦
= 𝑓(𝑥)

Where 𝒙 =  [𝒙𝟏, 𝒙𝟐, … …  𝒙𝒏] is the state vector of the system The differential equation is called autonomous system

Example: the following differential equation is used to model an electronic oscillator

𝑑𝑥1

𝑑𝑡
= 𝑥1 − 𝑥1

3 − 𝑥2

𝑑𝑥2

𝑑𝑡
= 𝑥1

Where 𝑥1 and 𝑥2 are the states of the system 
𝑑𝑥1

𝑑𝑡
, 

𝑑𝑥2

𝑑𝑡
 represent velocity of the state vector. 
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TYPES OF MATHEMATICAL MODELLING
2. Reliable Modeling: In this modeling type, the influence of external control input in the behavior of the dynamic system is taken 

into consideration. The differential equation used to model the system is given by:
𝒅𝒙

𝒅𝒕
 = 𝒇 𝒙, 𝒖

Where 𝑢 is an external influence effect (control input). The system is called forced system. The rate of change of the state 
𝒅𝒙

𝒅𝒚
 is influenced 

by the control input 𝑢(𝑡). 

3.    Comprehensive Modeling: This type of modeling can be used to represent the dynamic behavior of mechanical system influenced 
by an electrical system. In this modeling, the external control and sensors, which used to measure output of the system, are included.

The model of the system is given by:

𝒅𝒙

𝒅𝒕
 = 𝑓(𝑥, 𝑢)

𝑦 = 𝑔(𝑥, 𝑢)

Where 𝑢(𝑡) is a vector of control signal and 𝑦 is a vector of system measurements. This model implies that the system output 𝑦 is influenced by 
the control input signal 𝑢(𝑡).
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APPLICATIONS IN MECHANICAL SYSTEMS
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A vehicle suspension system.
A robot arm.
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APPLICATIONS IN ELECTRICAL AND ELECTROMECHANICAL 
SYSTEMS
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Mechanical drive for a robot arm joint.

Mechanical drive for a conveyor system.
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APPLICATIONS IN FLUID SYSTEMS
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A backhoe A hydraulic servomotor. 
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THANK YOU

Mohanad N. Noaman

Mohanad.noaman@uoninevah.edu.iq
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• Differential equation is an equation involving an unknown function and one or more of its derivatives.

• Differential equations are divided into two categories: ordinary differential equations (ODEs) and partial differential 

equations (PDEs).

• The independent variable in our ODEs will be time 𝒕 System dynamics .

• We will often denote the time derivative with an over dot, as ሶ𝑥 =
𝑑𝑥

𝑑𝑡
     ሷ𝑥 =

𝑑2𝑦

𝑑𝑡2

• The derivative of the highest order of the unknown function 𝑥(𝑡) with respect to 𝑡 is the order of the ODE. 

3 ሷ𝑥 + 7 ሶ𝑥 + 2𝑡2𝑥 = 5 + 𝑠𝑖𝑛𝑡

Differential Equations

System Modeling 20 October 2025

Differential Equations and Laplace Transform2

Dependent variable (𝒙)
is called also the solution 
or the response

Input, or forcing function

Second-order differential equation If this (input) is

= 0, it is homogeneous

≠ 0, it is nonhomogeneous
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CLASSIFICATION OF DIFFERENTIAL EQUATIONS
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3

Differential equations can be divided into several types namely

1. Ordinary Differential Equations 

2. Partial Differential Equations

3. Linear Differential Equations

4. Nonlinear differential equations

5. Homogeneous Differential Equations

6. Nonhomogeneous Differential Equations

Differential Equations and Laplace Transform
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CLASSIFICATION OF DIFFERENTIAL EQUATIONS
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Differential equations can be divided into several types 
namely

1. Ordinary Differential Equations (ODE):

are equations where the derivatives are taken with 

respect to only one variable. That is, there is only one 

independent variable.

2. Partial Differential Equations (PDE):

are equations that depend on partial derivatives of 

several variables. That is, there are several 

independent variables.

Differential Equations and Laplace Transform
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CLASSIFICATION OF DIFFERENTIAL EQUATIONS
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3. Linear Differential Equations 

4. Nonlinear differential equations

There are four condition to check as the following:

1. The degree of dependent variable is 1.

2. The degree of differential is 1.

3. The dependent variable and its derivative are not multiplied.

4. Transcendental (sin, cos, tan, . . . etc)  term does not contain dependent variable.

How check whether your equation is linear or not?

Differential Equations and Laplace Transform
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CLASSIFICATION OF DIFFERENTIAL EQUATIONS

System Modeling 20 October 2025
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There are four condition to check as the following:

1. The degree of dependent variable is 1.
2. The degree of differential equation is 1.
3. The dependent variable and its derivative are not multiplied.
4. Transcendental (sin, cos, tan, . . . etc)  term does not contain dependent variable.

𝑑2𝑦

𝑑𝑥2
+ 2𝑦

𝑑𝑦

𝑑𝑥
= 𝑠𝑖𝑛𝑥

1

2

3

4

✓ degree=1 

✓ degree of (
𝑑2𝑦

𝑑𝑥2)𝟏=1 

✗ 2𝑦
𝑑𝑦

𝑑𝑥

✓

Thus, the Equation is Non-linear

Differential Equations and Laplace Transform
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CLASSIFICATION OF DIFFERENTIAL EQUATIONS

System Modeling 20 October 2025

7

Check the following:

Differential Equations and Laplace Transform
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Laplace Transform: T-DOMAIN & S-DOMAIN

• Laplace transform converts time domain problems into functions of a complex variable, 𝑠, that is related to the frequency 

response of the system.

Where 𝑆 is the Laplace variable (Complex variable 𝑆 = 𝜎 + 𝑗𝜔) where 𝜎 and 𝜔 are the real and imaginary parts of 𝑆.

System Modeling 20 October 2025

8

Convert to S-domain

Differential Equations and Laplace Transform
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ICEBREAKING TIME !

System Modeling 20 October 2025

9 Differential Equations and Laplace Transform
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Laplace Transform

System Modeling 20 October 2025

1
0

Laplace transform operator

Input: 𝑓(𝑡) in 𝑡-domain

Output: 𝐹(𝑠) in 𝑆 - domain

• The Laplace transform provides a systematic and general method for solving linear ODEs and is 

especially useful either for nonhomogeneous equations whose right-hand side is a function of 

time or for sets of equations. Another advantage is that the transform converts linear differential 

equations into algebraic relations that can be handled easily.

ℒ 𝑓 𝑡 = 𝐹(𝑠)

The defining equation for the Laplace Transform is

 ℒ 𝑓 𝑡 = 𝐹(𝑠) = lim
𝐴→∞

0׬]

𝐴
𝑒−𝑠𝑡𝑓 𝑡 . 𝑑𝑡]

Where 𝑆 is the Laplace variable (Complex variable 𝑆 = 𝜎 + 𝑗𝜔) where 𝜎 and 𝜔 are the real and 

imaginary parts of 𝑆, respectively (𝑒− 𝜎+𝑗𝜔 𝑡 = 𝑒−𝜎𝑡  𝑒−𝑗𝜔𝑡)

Differential Equations and Laplace Transform
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Laplace Transform
Solution process for initial-value problems, using Laplace transformation.

Example 1: find Laplace transform when 𝑓(𝑡) = 1 (unit step)

ℒ 𝑓 𝑡 = 𝐹(𝑠) = lim
𝐴→∞

0׬]

𝐴
𝑒−𝑠𝑡𝑓 𝑡 . 𝑑𝑡]

ℒ 1 = 𝐹(𝑠) = lim
𝐴→∞

0׬]

𝐴
𝑒−𝑠𝑡1. 𝑑𝑡]

= lim
𝐴→∞

[−
1

𝑠
𝑒−𝑠𝑡]

𝐴
0

 = lim
𝐴→∞

[−
1

𝑠
𝑒−𝑠𝐴 − (−

1

𝑠
)] = 

1

𝑠
 (when 𝑠 > 0)                So ℒ 1  = 

1

𝑠

Example 2: find Laplace transform when 𝑓 𝑡 = 𝑒𝑎𝑡

ℒ 𝑒𝑎𝑡 = 𝐹(𝑠) = lim
𝐴→∞

0׬]

𝐴
𝑒−𝑠𝑡𝑒𝑎𝑡 . 𝑑𝑡]

= lim
𝐴→∞

0׬]

𝐴
𝑒(𝑎−𝑠)𝑡 . 𝑑𝑡]

= lim
𝐴→∞

[
1

𝑎−𝑠
𝑒(𝑎−𝑠)𝑡]

𝐴
0

 = 
1

𝑎−𝑠
[0 − 1] = -

1

𝑎− 𝑠

System Modeling 20 October 2025

1
1

𝐼𝑓 𝑎 − 𝑠 > 0, 𝑎 > 𝑠 𝑛𝑜 𝑙𝑖𝑚𝑖𝑡 𝑑𝑖𝑣𝑒𝑟𝑎𝑔𝑒  

𝐼𝑓 𝑎 − 𝑠 < 0, 𝑠 > 𝑎 𝑡ℎ𝑒𝑛

𝑒+∞ = ∞

𝑒−∞ = 0

Differential Equations and Laplace Transform
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Laplace Transforms of Derivatives and Integrals
• The Laplace transform of the nth-order derivative of 𝑥(𝑡) is given by

• In particular, for the first and second derivatives, the above-mentioned yields

• The Laplace transform of the integral of a function 𝑥(𝑡) is given by

 

System Modeling 20 October 2025
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Differential Equations and Laplace Transform
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THE INITIAL VALUE THEOREM (IVT)

System Modeling 20 October 2025

1
3

Homework: find the IVT for the 
following

• Sometimes we will need to find the value of the function 𝑥(𝑡) at 𝑡 = 0 + (a time infinitesimally greater than 0), 

given the transform  𝑋(𝑠). The answer can be obtained with the initial value theorem, which states that

• Example 1: let’s find the initial value theorem for the following 

Solution: the theorem gives

𝑋(0)= lim
𝑠→∞

𝑠. 𝑋 𝑠 = 𝑠.
7𝑠+2

𝑠(𝑠+6)
 =

7𝑠+2

𝑠+6

Now, we will divide each term by the highest order in the numerator (the power of 𝑠 in nominator).

=

7𝑠
𝑠

+
2
𝑠

𝑠
𝑠

+
6
𝑠

=
7 +

2
∞

1 +
6
∞

=
7 + 0

1 + 0
= 7

Note: the order of numerator should be equal or higher than the order of denominator.

Differential Equations and Laplace Transform
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Final Value Theorem (FVT)

System Modeling 20 October 2025

1
4

• Suppose 𝑋(𝑠) has no poles in the right half plane (RHP) or on the imaginary axis, except possibly a simple pole (multiplicity 

of 1) at the origin. Then, 𝑥(𝑡) has a definite steady-state value, and it is given by

• Example 1: let’s find the final value theorem for the following 

Solution: The poles of 𝑋(𝑠) are at 0 and − ± 2 j. The complex conjugate pair lies in the left half plane, and 0 is a simple pole (at 

the origin), all allowed by the FVT.

𝑥𝑠𝑠 = lim
𝑠→0

𝑠. 𝑋 𝑠 =
2𝑠 + 1

𝑠2 + 4𝑠 + 5
 

Now, we will substitute each s be zero.

=
2 ∗ 0 + 1

02 + 4 ∗ 0 + 5
=

1

5

Differential Equations and Laplace Transform
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Table of Laplace transform pairs

System Modeling 20 October 2025

1
5

Differential Equations and Laplace Transform
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Table of Laplace transform pairs

System Modeling 20 October 2025

1
6

Refer to (Laplace 1, Laplace 2) Pdfs in the 
Classroom

Differential Equations and Laplace Transform
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MATLAB Exercises

• Find the Laplace transform of the following in MATLAB:

1. 𝑓(𝑡) =  𝑒𝑎𝑡

2. 𝑓(𝑡) =  𝑡𝑒−2𝑡/3

3. 𝑓(𝑡) =
sin 𝜔𝑡

𝑡

System Modeling 20 October 2025
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Differential Equations and Laplace Transform
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𝐺(𝑠) =
(𝑠 + 𝑧1) ⋅ (𝑠 + 𝑧2) ⋅ (𝑠 + 𝑧3). . .  ⋅ (𝑠 + 𝑧𝑛−1) ⋅ (𝑠 + 𝑧𝑛)

(𝑠 + 𝑝1) ⋅ (𝑠 + 𝑝2) ⋅ (𝑠 + 𝑝3). . .  ⋅ (𝑠 + 𝑝𝑛−1) ⋅ (𝑠 + 𝑝𝑛)

Transfer Function
• The concept of the transfer function is useful for analyzing the effects of the input. It represents the input-output relationship 

for a system and expressed in terms of s-domain when all the initial conditions are assumed to be zero.

𝒀 𝒔 = 𝑮 𝒔 . 𝑿 𝒔  Thus, the transfer function is 𝑮 𝒔 =
𝒀(𝒔)

𝑿 𝒔

• Definitions:

1. Poles - roots of the denominator polynomial Values that cause transfer function magnitude to go to infinity.

2. Zeros - roots of the numerator  polynomial Values that cause the transfer function to go to 0.

3. Eigenvalues - Characteristic responses of a system.  Roots of the denominator polynomial.  All eigenvalues must be negative 

for a system transient (natural response) to decay out. 
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STANDARD FORM OF TRANSFER FUNCTION
• The standard form of first order system is given by:

𝒀(𝒔)

𝑿 𝒔
=

𝜸

𝟏 + 𝝉𝒔
 

• Where, 𝜸 is the system gain and 𝝉 is the time constant of the response, which takes an indicate of the way system will 

response to the input.

• For second order system, the standard form as follows:

𝒀(𝒔)

𝑿 𝒔
=

𝜸

𝟏 +
𝟐𝝃
𝝎𝒏

𝒔 +
𝟏

𝝎𝒏
𝟐 𝒔𝟐

𝒀(𝒔)

𝑿 𝒔
=

𝝎𝒏
𝟐

𝒔𝟐 + 𝟐𝝃𝝎𝒏𝒔 + 𝝎𝒏
𝟐

Where 𝝎𝒏 is damping natural frequency [rad/s], 𝜉 is damping ratio and 𝜸 is system gain When 𝜉=1, the system is in critical 

damping case, the system is just in the border of oscillation.
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ANALOGOUS SYSTEMS
• Electrical and mechanical systems possess fixed analogy and there exist similarity between the equilibrium equations of the 

two. This allows forming such electrical systems whose behavioral characteristics are similar to the given mechanical system.

• Two systems are said to be analogous to each other if the following two conditions are satisfied:

➢ The two systems are physically different

➢ Differential equation modelling of these two systems are same

System Modeling 20 October 2025
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TRANSLATION MECHANICAL REVISION

System Modeling 20 October 2025
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Motion in mechanical systems can be:
• Translational
• Rotational, or
• Combination of above

Mechanical systems can be of two types:
• Translational systems
• Rotational systems

Variables that describe motion:
• Displacement, x
• Velocity, v
• Acceleration, a 
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TRANSLATION MECHANICAL REVISION
• The symbols for the basic variables used to describe the dynamic behavior of translational mechanical systems are:

➢ 𝑥, displacement in meters (𝑚)

➢ 𝑣, in meters per second (𝑚/𝑠)

➢ 𝑎, acceleration in meters per second per second (𝑚/𝑠2)

➢ 𝑓, force in newtons (𝑁)

➢ 𝑤, energy in joules (𝐽)

➢ 𝑝, power in watts (W)

Newton’s first law states that a particle originally at rest, or moving in a straight line with a constant speed, will remain that way as long as it is 

not acted upon by an unbalanced external force.

Newton’s second law states that the acceleration of a mass particle is proportional to the vector resultant force acting on it and is in the 

direction of this force.

Newton’s third law states that the forces of action and reaction between interacting bodies are equal in magnitude, opposite in direction, and 

collinear. 
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THE FREE BODY DIAGRAM
Is the same as you have done in statics; we will add the kinetic diagram in our 

dynamic analysis.

1. Isolate the body of interest (free body)

2. Draw your axis system (e.g., Cartesian, polar, path) 

3. Add in applied forces (e.g., weight, 225 lb pulling force)

4. Replace supports with forces (e.g., normal force) 

5. Draw appropriate dimensions (usually angles for particles) 

Put the inertial terms for the body of interest on the kinetic diagram.

1. Isolate the body of interest (free body) 

2. Draw in the mass times acceleration of the particle; if unknown, do this in 

the positive direction according to your chosen axes.

System Modeling 20 October 2025

B a s i c  S y s t e m  M o d e l s  M e c h a n i c a l  S y s t e m s5

            m =F a

Dynamic Review



ALPINE SKI HOUSE

TRANSLATION & ROTATIONAL MECHANICAL REVISION
• It will be convenient to use the following 

abbreviated “dot” notation for time 

derivatives:

ሶ𝑥 𝑡 =
𝑑𝑥

𝑑𝑡
 ,               ሷ𝑥 𝑡 =

𝑑2𝑥

𝑑𝑡2

• Thus, we can express the scalar form of 

Newton’s law as 𝑓 = 𝑚𝑥 ̈(𝑡)

• Power: 𝑝 = 𝑓𝑣 or  𝑝 =
𝑑𝑤

𝑑𝑡
 power is 

defined to be the rate at which energy is 

supplied or dissipated
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MECHANICAL ELEMENTS: TRANSLATION 
• Mass: figure shows a mass 𝒎 traveling with a velocity 𝒗. The basic variables used to describe the 

dynamic behavior of a translational mechanical system are the acceleration vector 𝒂, the velocity vector v, 

and the position vector 𝒙. They are related by the time derivatives:

𝒂 =
𝒅𝒗

𝒅𝒕
=

𝒅𝟐𝒙

𝒅𝒕𝟐

Newton’s second law is expressed as:

𝒇 =
𝒅

𝒅𝒕
𝒎𝒗 = 𝒎

𝒅𝒗

𝒅𝒕
= 𝒎𝒂

The kinetic energy is expressed as:

𝑻 𝒐𝒓 𝑲𝑬 =
𝟏

𝟐
𝒎𝒗𝟐

The energy stored in the mass is potential energy given by:

𝑽𝒈 𝒐𝒓 𝑷𝑬 = 𝒎𝒈𝒉

System Modeling 20 October 2025
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where:
𝑔 is the gravitational acceleration (9.81 𝑚/𝑠2or 32.2 𝑓𝑡/𝑠2)
ℎ is the height measured from the reference position or datum to the center of mass
Subscript g is used to denote that the potential energy is associated with gravity 
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MECHANICAL ELEMENTS: ROTATIONAL 
• Mass: For rotational mechanical systems, the basic variables used to describe system dynamics are the 

angular acceleration vector α, the angular velocity vector ω, and the angular position vector θ. The direction 

of an angular vector can be determined using the right-hand rule, as shown in Figure besides. 

𝜶 =
𝒅𝒘

𝒅𝒕
=

𝒅𝟐𝜽

𝒅𝒕𝟐  , 𝜶 = ሶ𝝎 = ሷ𝜽

The torque τ or moment M about the fixed-point O:

෍ 𝑴𝟎 / 𝝉 = 𝑰𝒐𝜶

The kinetic energy for a rotational mass about a fixed-point O is expressed as

𝑻 𝒐𝒓 𝑲𝑬 =
𝟏

𝟐
𝑰𝒐𝝎𝟐

The potential energy for a rotational mass:

𝑽𝒈 𝒐𝒓 𝑷𝑬 = 𝒎𝒈𝒉

• where:

𝑔 is the gravitational acceleration (9.81 𝑚/𝑠2or 32.2 𝑓𝑡/𝑠2)

ℎ is the height measured from the reference position or datum to the center of mass

Subscript g is used to denote that the potential energy is associated with gravity 

System Modeling 20 October 2025
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MECHANICAL ELEMENTS: TRANSLATION
• Friction: If a moving particle contacts a rough surface, it may be necessary  to  use  the   frictional   equation,  which  

relates  the frictional  and  normal  forces  𝑭𝒔 and  N acting at the  surface of contact by using the coefficient of kinetic 

friction, i.e., 𝑭𝒌=  𝝁𝒌N. Remember that  𝑭𝒌 always acts  such that it opposes the motion of the particle relative to the 

surface it contacts. If the particle is on the verge of relative motion, then the coefficient of static friction should be used.

System Modeling 20 October 2025
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MECHANICAL ELEMENTS: TRANSLATION
• Spring: Stiffness is the resistance of an elastic body to deflection or deformation by an applied force.

When a spring is stretched or compressed, potential energy is stored in the spring and is given by 𝑽𝒆 =
𝟏

𝟐
𝒌𝒙𝟐

System Modeling 20 October 2025
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o 𝒅𝟎 = Length of spring when no force applied

o 𝒅𝒕 = Final total length of spring after applied force

o 𝒙 𝒕 = Elongation caused by 𝑓
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MECHANICAL ELEMENTS: TRANSLATION
• Spring: Stiffness is the resistance of an elastic body to deflection or deformation by an applied force.

When a spring is stretched or compressed, potential energy is stored in the spring and is given by 𝑽𝒆 =
𝟏

𝟐
𝒌𝒙𝟐
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MECHANICAL ELEMENTS: ROTATIONAL 
• Spring: For a torsional spring, we have  𝝉 = 𝒌∆𝜽

• Assume that 𝜃1 and 𝜃2 are the angular displacements of respective ends corresponding to the applied torque. If 𝜃2> 𝜃1 > 0, 

then

𝝉 = 𝒌(𝜃2 - 𝜃1)

The potential energy stored in a torsional spring element is expressed as

𝑽𝒆 =
𝟏

𝟐
𝒌𝜽𝟐

System Modeling 20 October 2025
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where:

τ is the applied torque
K is the torsional spring stiffness in units of 𝑁 · 𝑚/𝑟𝑎𝑑 or 𝑓𝑡 · 𝑙𝑏/𝑟𝑎𝑑
θ is the angular deformation of the spring A torsional spring element with (a) one fixed end and (b) two free ends. 
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MECHANICAL ELEMENTS: TRANSLATION
• Damper: Also known as viscous friction or linear friction. Friction is the force that opposes the relative motion or tendency 

of such motion of two surfaces in contact.
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Above left:

• B is proportional to contact area and viscosity of oil.

• B is inversely proportional to the thickness of film.

Above right:

• B is small enough to be neglected (this is always an approximation.)

• Damping is used to model a dashpot (damper), e.g. shock absorbers on cars. 
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MECHANICAL ELEMENTS: ROTATIONAL 
• Damper: For a torsional damper, the linear relationship between the externally applied torque and the angular velocity is given 

by:

𝝉 = 𝑩𝝎

• If 𝜔2  >  𝜔1  >  0, the magnitude of the applied torque is

𝝉 = 𝑩(𝝎𝟐 − 𝝎𝟏)
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A rotational viscous damper with (a) one fixed end and (b) two free ends 
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MECHANICAL ELEMENTS: 
• Dashpot: A dashpot element is a form of damping and 

can be considered to be represented by a piston moving 

in a viscous medium in a cylinder. As the piston moves 

the liquid passes through the edges of the piston, 

damping the movement of the piston. The force F which 

moves the piston is proportional to the velocity of the 

piston movement and is given by

𝑓 = 𝑏
𝑑𝑦

𝑑𝑡

Note: A dashpot does not store energy.

System Modeling 20 October 2025
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EQUIVALENCE
• In many mechanical systems, multiple springs or dampers are used. In such cases, an equivalent spring stiffness constant or 

damping coefficient can be obtained to represent the combined elements.

• Springs in Parallel

• to the two springs are 𝑓1 and 𝑓2, respectively. Because the system is in static equilibrium, the total force is given by

𝑓 = 𝑓1 + 𝑓2 = 𝐾1𝑥 + 𝐾2𝑥 = 𝐾1 + 𝐾2 𝑥 = 𝐾𝑒𝑞𝑥

𝐾𝑒𝑞 = 𝐾1 + 𝐾2

𝐾𝑒𝑞 = 𝐾1 + 𝐾2 + ⋯ + 𝐾𝑛

Note: for damping case, it is same:

𝐶𝑒𝑞 = 𝐶1 + 𝐶2 + ⋯ + 𝐶𝑛

System Modeling 20 October 2025
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EQUIVALENCE
• Springs in Series

• Consider a system of two springs, k1 and k2, in series, as shown in below. the equivalent spring stiffness of the system is:

𝑥 = 𝑥1 + 𝑥2 =
𝑓

𝐾1
+

𝑓

𝐾2
= 𝑓(

1

𝐾1
+

1

𝐾2
) =

𝑓

𝐾𝑒𝑞 

1

𝐾𝑒𝑞
=

1

𝐾1
+

1

𝐾2

𝐾𝑒𝑞 =
𝐾1𝐾2

𝐾1 + 𝐾2

Note: for damping case, it is same: 𝐶𝑒𝑞 =
𝐶1𝐶2

𝐶1+𝐶2
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B a s i c  S y s t e m  M o d e l s  M e c h a n i c a l  S y s t e m s17



ALPINE SKI HOUSE

SUMMARY
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LAW OF DISPLACEMENTS
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MECHANICAL ELEMENTS: 
• Gear train: A gear train is a mechanism used for transmitting rotary motion 

and torque through interlocking teeth.

• A gear train is made when two or more gears are meshed

• Driver gear causes motion then Driver gear causes motion

• The rpm of the larger gear is always slower than the rpm of the smaller gear.

• Variables to know

𝑛  = number of teeth
𝑑  = diameter
𝑤 = angular velocity (speed)
𝑡 = torque

• Equations to know Gear Ratio 

GR =
𝑁𝐺

𝑁𝑝
=

𝐷𝐺

𝐷𝑝
=

𝜔𝑝

𝜔𝐺
=

𝑇𝐺

𝑇𝑝

System Modeling 20 October 2025
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MECHANICAL ELEMENTS: 
• Pulley and Belt Systems:

• All power transmission belts are either friction drive or positive drive. Friction drive 

belts rely on the friction between the belt and pulley to transmit power. They require 

tension to maintain the right amount of friction. Flat belts are the purest form of 

friction drive while V-belts have a friction multiplying effect because of wedging action 

on the pulley.

• Positive drive or synchronous belts rely on the engagement of teeth on the belt with 

grooves on the pulley. There is no slip with this belt except for ratcheting or tooth 

jumping.

Equations:

𝐷1

𝐷2
=

𝜔2

𝜔1
=

𝑇1

𝑇2
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PROCEDURE OF SYSTEM MODELING
➢ Divide the system into idealized components.

➢ Apply physical laws to the elements.

➢ Apply interconnection laws between elements.

➢ Combine the equations to obtain the model.
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𝐿𝑎

𝑑𝑖

𝑑𝑡
= 𝑉𝑠 − 𝑅𝑎𝑖 − 𝐾𝑚𝑊𝑚

𝑑𝜃𝑚

𝑑𝑡
= 𝑊𝑚

𝑑𝜃𝑙

𝑑𝑡
= 𝑊𝑙

𝐽𝑚

𝑑𝑊𝑚

𝑑𝑡
= 𝐾𝑚𝑖 − 𝑑𝑚𝑊𝑚 − 𝐾𝑐 𝜃𝑚 − 𝜃𝑙 − 𝑑𝑐 𝑊𝑚 − 𝑊𝑐

𝐽𝑙

𝑑𝑊𝑙

𝑑𝑡
= −𝑑𝑙𝑊𝑙 − 𝐾𝑐 𝜃𝑙 − 𝜃𝑚 − 𝑑𝑐 𝑊𝑙 − 𝑊𝑚
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MECHANICAL APPLICATIONS: 
Example: A Single-Degree-of-Freedom Mass–Spring–Damper System

Consider the simple mass–spring–damper system subjected to an input force 𝑓, as shown in figure:

A. Apply Newton’s second law to derive the differential equation of motion.

B. Determine the transfer function form. Assume that the system output is the displacement 𝑥 and the initial 

conditions are 𝑥(0) = 0 and ሶ𝑥 0 = 0.
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MECHANICAL APPLICATIONS: 
• Solution:

Let us choose the displacement of the mass as the coordinate 𝑥. The free-body diagram of 

the mass is shown below. Applying Newton’s second law in the 𝑥 direction gives

which can be rearranged into the standard input–output differential equation form

Taking the Laplace transform of both sides of the preceding equation with zero initial 

conditions results in

Thus, the transfer function relating the input 𝑓(𝑡) to the output 𝑥(𝑡) is
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MECHANICAL APPLICATIONS: 
Simulink block diagram corresponding to Example. (𝑚 = 5𝑘𝑔, 𝑏 = 3𝑁. 𝑠/𝑚, 𝐾 = 4𝑁/𝑚)
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MECHANICAL APPLICATIONS: 
Simscape block diagram corresponding to Example.
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Displacement output x(t) of the mechanical system in 

Example 
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MECHANICAL APPLICATIONS: 
Example: A Single-Degree-of-Freedom Rotational Mass–Spring–Damper System

Consider a simple disk–shaft system shown in Figure a, in which the disk rotates about a fixed axis through 

point 𝑂. A single-degree-of-freedom torsional mass–spring–damper system in Figure b can be used to 

approximate the dynamic behavior of the disk–shaft system. 𝐼𝑜 is the mass moment of inertia of the disk about 

point 𝑂, K represents the elasticity of the shaft, and B represents torsional viscous damping. Derive the 

differential equation of motion and find the transfer function.
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MECHANICAL APPLICATIONS: 
Solution:

The free-body diagram of the disk is shown in Figure c. Because the disk rotates about a fixed axis, we can 

apply Rotational mass force equation about the fixed-point 𝑂. Assuming that counterclockwise is the positive 

direction, we have

By taking Laplace transform: 

𝐼𝑜𝑠2𝜃(𝑠) + 𝐵𝑠𝜃(𝑠) + 𝐾𝜃(𝑠) = 𝑇(𝑠)

Then the TF is

𝜃(𝑠)

𝑇(𝑠)
=

1

𝐼𝑜𝑠2 + 𝐵𝑠 + 𝐾
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ELECTRICAL ELEMENTS
• Voltage and current are the primary variables used to describe a circuit’s behavior. Current is the flow of electrons. It is the 

time rate of change of electrons passing through a defined area, such as the cross section of a wire. The mathematical 

description of the relation between the number of electrons (called charge 𝑄) and current 𝑖 is

𝑖 =
𝑑𝑄

𝑑𝑡
        𝑄 𝑡 = ׬ 𝑖 𝑑𝑡 

The unit of charge is the coulomb (C), and the unit of current is the ampere (A)

• Energy is required to move a charge between two points in a circuit. The work per unit charge required to do this is called 

voltage. 
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(a) A battery-lightbulb circuit.
(b) Circuit diagram representation of the battery-lightbulb circuit

Most resistors are designed to have a linear relation between the 
current passing through them and the voltage difference across them. 
This linear relation is Ohm’s law. It states that

𝑣 = 𝑖𝑅



ALPINE SKI HOUSE

RESISTOR
• A resistor is an element for which there is an algebraic relationship between the voltage across its 

terminals and the current. it-that is, an element that can be described a curve of 𝑣 versus 𝑖.

𝑣 = 𝑖𝑅       𝑅 =
𝑣

𝑖
    𝑃 = 𝑅𝑖2 =

1

𝑅
𝑣2

• where 𝑅 is the resistance in ohms (Ω).

CAPACITOR
• Capacitor stores electrons on 2 parallel plates separated by an insulating dielectric material in an 

electric field. For a linear the and voltage are Related by:

𝑞 = 𝐶𝑣
where C is the capacitance in farads (F).

• If the previous equation is differentiated the element law for a fixed linear capacitor becomes

𝑖 = 𝐶
𝑑𝑣

𝑑𝑡

Energy stored in capacitor:

𝐸 =
1

2
𝐶𝑣2
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INDUCTOR
• An inductor is an element for which there is an algebraic relationship between the voltage 

across its terminals and the derivative of the flux linkage. For a linear inductor,

𝑣 = 𝐿
𝑑𝑖

𝑑𝑡

where L is the inductance with units of Henries (H).

The energy supplied to an inductor is stored in its magnetic field 𝐸 =
1

2
𝐿𝑖2

IMPEDANCE

1. RESISTOR   𝒁𝑹

2. CAPACITOR  𝒁𝑪

3. INDUCTOR  𝒁𝑳
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SERIES AND PARALLEL RESISTANCES
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• Series

𝑅𝑒𝑞 = 𝑅1 + 𝑅2 + ⋯ + 𝑅𝑛

• Parallel

1

𝑅𝑒𝑞
=

1

𝑅1
+

1

𝑅2
+ ⋯ +

1

𝑅𝑛

Equivalent Transform Impedance (Series)

𝒁𝑻 = 𝒁𝑹 + 𝒁𝑳 + 𝒁𝑪 𝒁𝑻 = 𝑹 + 𝑳 𝒕 +
𝟏

𝑪(𝒕)

Equivalent Transform Impedance (Parallel)

𝟏

𝒛𝑻
=

𝟏

𝒛𝑹
+

𝟏

𝒛𝑳
+

𝟏

𝒛𝑪
 

𝟏

𝒛𝑻
=

𝟏

𝑹
+

𝟏

𝑳(𝒕)
+

𝟏

𝟏
𝑪(𝒕)

Series resistors. Parallel resistors 



ALPINE SKI HOUSE

LAPLACE IN ELECTRIC CIRCUITS
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• For a resistor:

Impedance Z: instantaneous 
ratio of voltage difference to 
current 
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LAPLACE IN ELECTRIC CIRCUITS
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• For a capacitor:
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LAPLACE IN ELECTRIC CIRCUITS
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• For an inductor:
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TF OF ELECTRIC CIRCUITS
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TF OF ELECTRIC CIRCUITS
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Calculate the TF of the following circuit:
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EFFECT OF LOADING
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when we connect an output (oscilloscope, speakers, …) we load the circuit:
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HOMEWORK: PRACTICE
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Calculate the TF of the following circuits:
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KIRCHHOFF’S VOLTAGE LAW
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a. Applying Kirchhoff’s voltage law to the single loop along the clockwise direction gives

−𝑣𝑎 + 𝑣𝑅 + 𝑣𝐿 + 𝑣𝐶 = 0

For the series loop, the same current flows through each element. The expressions for 𝑣𝑅, 

𝑣𝐿, and 𝑣𝐶  are

𝑣𝑅=𝑖𝑅

𝑣𝐿=𝐿
𝑑𝑖

𝑑𝑡

𝑣𝐶=
1

𝐶
׬ 𝑖𝑑𝑡

We then have:  𝑣𝑎 = 𝑅𝑖 + 𝐿
𝑑𝑖

𝑑𝑡
+

1

𝐶
׬ 𝑖𝑑𝑡
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KIRCHHOFF’S CURRENT LAW
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• When the terminals of two or more circuit elements are connected together, the common junction is referred to as a node. 

For a node in a circuit, Kirchhoff’s current law states that the sum of the currents entering the node must be equal to the 

sum of the currents leaving that node. The algebraic sum of the currents at the node must be zero,

σ𝑗 𝑖𝑗 = 0  where 𝑖𝑗  is the current of the jth element at the node.

• Consider the parallel RLC circuit shown in Figure, in which an ideal current source supplies the desired current to the circuit.

We can apply Kirchhoff’s law to either the ground or node 1. Applying 
Kirchhoff’s current law to node 1 gives 

𝑖𝑎 − 𝑖𝑅 − 𝑖𝐿 − 𝑖𝐶 = 0
For the parallel connection, the voltages across all three elements are 
the same. The expressions for 𝑖𝑎, 𝑖𝐿, and 𝑖𝐶  are

𝑖𝑎 =
𝑣0

𝑅
𝑖𝐿 =

1

𝐿
׬ 𝑣𝑜𝑑𝑡 𝑖𝑎=

𝑣0

𝑅
+ 

1

𝐿
׬ 𝑣𝑜𝑑𝑡+ 𝐶

𝑑𝑣𝑜

𝑑𝑡

𝑖𝐶 = 𝐶
𝑑𝑣𝑜

𝑑𝑡
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RECALL!
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Recall both Node and Loop analysis method.
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SUMMARY 
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6

• Voltage-current and energy relations for circuit elements.
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OPERATIONAL AMPLIFIERS
• An ideal op amp has these characteristics:

1. Infinite input impedance

2. Infinite bandwidth

3. Infinite differential gain

4. Zero output impedance

Two “Golden Rules” follow:

Rule 1. The inputs draw no current.

Rule2. With negative feedback, output would do anything it takes to satisfy: 𝑉+ = 𝑉−.
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OPERATIONAL AMPLIFIERS
• Determine the relation between the input voltage 𝑣𝑖  and the output voltage 𝑣𝑜of the op-amp circuit shown in Figure 

below. Assume that the op amp has the following properties:

1. The op-amp gain G is very large,

2. 𝑣𝑜 = −Gv1; and

3. The op-amp input impedance is very large, and thus the current 𝑖3drawn by the op amp is very small
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OPERATIONAL AMPLIFIERS
The voltage-current relation for each resistor gives

System Modeling 20 October 2025

B a s i c  S y s t e m  M o d e l s  M e c h a n i c a l  S y s t e m s4



ALPINE SKI HOUSE

OPERATIONAL AMPLIFIERS
• Negative Voltage Feedback

Some of the voltage from the output is fed-back to the inverting (minus) terminal (negative feedback).

• If V+ increases, (𝑉+ − 𝑉−) increases

• op amp amplifies (𝑉+ − 𝑉−) to the output

• but output is connected to 𝑉−

• so 𝑉− also increases, and (𝑉+ − 𝑉−) is reduced

Result: with negative feedback, 𝑉+ ≅ 𝑉− (Rule 2)
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OPERATIONAL AMPLIFIERS
• Inverting Configuration

• non-inverting input (+) is to ground

• inverting input is between two resistors that connect input to output

Ideal op amp:

• 𝑉+ − 𝑉− = 0 , so 𝑉− = 0

• infinite input impedance (so 𝐼−  =  0)
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OPERATIONAL AMPLIFIERS
• Non-Inverting Configuration

• non-inverting input (+) is tied to input

• inverting input (-) is between two resistors that connect ground to output

Ideal op amp:

• 𝑉+ − 𝑉− = 0 , so 𝑉− = 𝑉+

• infinite input impedance (so 𝐼−  =  0)
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OPERATIONAL AMPLIFIERS
• What is the transfer function of this circuit?
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OPERATIONAL AMPLIFIERS
• What is the transfer function of this circuit?
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OPERATIONAL AMPLIFIERS
• An Op-Amp Differentiator & Integrator
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𝑖1 = 𝑖2
𝑣𝑖 − 𝑣1

𝑅
= 𝐶

𝑑

𝑑𝑡
𝑣𝑖 − 𝑣𝑜

𝑣𝑜 = −
1

𝑅𝐶
න 𝑣𝑖𝑑𝑡
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POTENTIOMETERS MODELING
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Perhaps the simplest coupled electromechanical system is the rotary potentiometer.  The image below 

shows how a potentiometer works, followed by a photograph of an actual potentiometer.
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POTENTIOMETERS MODELING
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• This wiper can rotate about the center of the potentiometer while maintaining electrical contact with the terminal labeled 
"w.“

• The resistance between the wiper and "A" is labeled R1, the resistance between the wiper and "B" is labeled R2.
• The total resistance between "A" and "B" is constant, R1+R2= 𝑅𝑡𝑜𝑡.
• If the potentiometer is turned to the extreme counterclockwise position such that the wiper is touching "A" we will call this 

𝜃=0; in this position R1=0 and R2=𝑅𝑡𝑜𝑡. 
• If the wiper is in the extreme clockwise position such that it is touching "B" we will call this 𝜃=𝜃max ;  in this position R1=Rtot 

and R2=0.
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POTENTIOMETERS MODELING
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R1 and R2 vary linearly with θ between the two extremes:

Using the voltage divider principle we can write:

We can now substitute the expression for R1 in 
terms of θ,

In this expression you can see that eout is directly proportional to θ, the rotation of the potentiometer.
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MODELLING LINEAR SYSTEMS: MOTOR MODELING
• The DC motor is a common plant component in industrial systems – it directly provides rotary motion in response to an 

electrical input. In this section we shall derive the mathematical model of a simple DC motor and it’s Transfer Function in 

the frequency domain.
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Electrical Part Mechanical Part



ALPINE SKI HOUSE

DC MOTOR MODELING
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DC MOTOR MODELING
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DC MOTOR MODELING
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DC MOTOR MODELING
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DC MOTOR MODELING
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MOTOR MODELLING: DC MOTOR SPEED MODEL
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For the simulations we are assuming the following motor parameters L=0.5, r=1, b=0.1, J=0.01, K=0.01 
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MODELING OF FLUID SYSTEMS
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Gases and liquids are collectively referred to as fluids. Fluid systems are used in many industrial as well as commercial applications. For 
example, liquid level control is a well-known application of liquid systems. Similarly, gas systems are used in robotics and in industrial 
movement control applications.

CONSERVATION OF MASS
For incompressible fluids, conservation of mass is equivalent to conservation of volume, because the fluid density is constant. If we 
know the mass density 𝜌 and the volume flow rate, we can compute the mass flow rate. That is, 𝑞𝑚= 𝜌𝑞𝑣, where 𝑞𝑚 and 𝑞𝑣  are the 
mass and volume flow rates. 
➢ The weight density as 𝛾 = 𝜌𝑔, where 𝑔 is the acceleration due to gravity.
➢ The mass density of fresh water near room temperature is 1.94 𝑠𝑙𝑢𝑔/𝑓𝑡3, 𝑜𝑟 1000 𝑘𝑔/𝑚3.
➢ The mass density of air at sea level and near room temperature is approximately 0.0023 𝑠𝑙𝑢𝑔/𝑓𝑡3 or 1.185 𝑘𝑔/𝑚3.
➢ Pressure is the force per unit area that is exerted by the fluid (P=F/A).
➢ For a liquid of density 𝜌, the absolute pressure 𝑝 and the liquid height h are related by
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MODELING OF FLUID SYSTEMS
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Gases and liquids are collectively referred to as fluids. Fluid systems are used in many industrial as well as commercial applications. For 
example, liquid level control is a well-known application of liquid systems. Similarly, gas systems are used in robotics and in industrial 
movement control applications.

HYDRAULIC SYSTEMS:
1- Hydraulic resistance
Hydraulic resistance is the resistance to flow which occurs as a result of a liquid flowing through valves or changes in a pipe diameter. If 
the pressures at either side of a hydraulic resistance are P1 and P2, then the hydraulic resistance R is defined as

𝑃1 − 𝑃2 = 𝑅𝑞

Hydraulic Resistance
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HYDRAULIC SYSTEMS:
1- Hydraulic resistance
Hydraulic resistance occurs whenever there is a pressure difference, such as liquid flowing from a pipe of one diameter to one of a 
different diameter. If the pressures at either side of a hydraulic resistance are P1 and P2, then the hydraulic resistance R is defined as

𝑅 = 𝑅1 + 𝑅2

1

𝑅𝑒𝑞
=

1

𝑅1
+

1

𝑅2
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2- Hydraulic capacitance
Hydraulic capacitance is the term used to describe energy storage with a liquid where it is stored in the form of potential energy. 
Consider the tank shown in Figure 2.51b. If 𝑞1and 𝑞2 are the inflow and outflow, respectively, and 𝑉 is the volume of the fluid inside 
the tank, we can write

Substituting first Equation in the second Equation , we obtain
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3- Hydraulic inertance
Hydraulic inertance is similar to the inductance in electrical systems and is derived from the inertia force required to accelerate fluid 
in a pipe.
Let 𝑃1− 𝑃2 be the pressure drop that we want to accelerate in a cross-sectional area A, where 𝑚 is the fluid mass and 𝑣 is the fluid 
velocity. Applying Newton’s second law, we can write

above

but the rate of flow is given by q = Av, so Equation above can be written as 
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Example: A Single-Tank Liquid-Level System with a Pump
Consider the single-tank liquid-level system shown in Figure below, where a pump is connected to the bottom of the tank through a 
valve of linear resistance 𝑅. The inlet to the pump is open to the atmosphere, and the pressure of the fluid increases by Δ𝑝 when 
crossing the pump. Derive the differential equation relating the liquid height ℎ and the volume flow rate 𝑞0 at the outlet. The tank’s 
cross-sectional area 𝐴 is constant. The density 𝜌 of the liquid is constant.
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Example:
Figure below shows a liquid level system where liquid enters a tank at the rate of qi and leaves at the rate of 𝑞0 through an orifice. 
Derive the mathematical model for the system, showing the relationship between the height ℎ of the liquid and the input flow rate 𝑞𝑖 .

Solution:

Recall 

So that substituting in Equation 2 in 1 gives

1

2

3
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Equation 3 shows the variation of the height of the water with the inflow rate. If we take the Laplace transform of both sides, we 
obtain
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• How to find mathematical model, called a state- space representation, for a linear, time-invariant system

• How to convert between transfer function and state space models

MODELING METHODS 
There are three methods used for modeling dynamic systems

1. Differential equations

2. Transfer functions

3. State space

• Uses matrices and vectors to represent the system parameters and variables

• In control engineering, a state space representation is a mathematical model of a physical system as a set of input, 

output and state variables related by first-order differential equations. To abstract from the number of inputs, outputs 

and states, the variables are expressed as vectors. 
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Conventional Control Theory (root-locus and frequency response analysis and design) is applicable to linear, time 

invariant, single-input, single-output systems. This is a complex frequency-domain approach. The transfer function 

relates the input to output and does not show internal system behavior.

Modern Control Theory (state-space analysis and design) is applicable to linear or nonlinear, time-varying or time 

invariant, multiple-input, multiple-output systems. This is a time-domain approach. This state-space system 

description provides a complete internal description of the system, including the flow of internal energy.



ALPINE SKI HOUSE

MOTIVATION FOR STATE-SPACE MODELING

System Modeling 1 December 2025

S t a t e - S p a c e  R e p r e s e n t a t i o n4

➢ Easier for computers to perform matrix algebra

◦ e.g. MATLAB does all computations as matrix math

➢ Handles multiple inputs and multi output dynamic systems.

➢ Gives a more geometric understanding of dynamic systems.

➢ Forms the basic for much modern control theory.

➢ Provides more information about the system

◦ Provides knowledge of internal variables (states)
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State-Space Form
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➢ The state is the minimum amount of information needed about the system at time 𝑡0 such that its future

behavior can be determined without reference to any input before 𝑡0. 

➢ State variables form the smallest set of independent variables that completely describe the state of a system.

➢ The state variables are independent variables capable of defining the state from which one can completely

describe the system behavior. These variables completely describe the effect of the past history of the system 

on its response in the future.

➢  Given the mathematical model of a dynamic system, the state variables are determined as follows:

• The number of state variables is the same as the number of initial conditions needed to completely solve the 

system model.
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State Variables

In the mechanical system shown in Figure aside, all parameter values are in consistent

physical units. The model of this system is provided by its equation of motion

Two initial conditions 

The state variables are selected as                               

State Variables Equation:

There are as many state-variable equations as there are state variables. Each state-variable equation is a first-

order ODE whose left side is the first derivative of a state variable and whose right side is an algebraic function 

of the state variables, system inputs, and possibly time 𝑡. 
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State Variables Equation:

Suppose a dynamic system has n state variables 𝑥1, 𝑥2, … . , 𝑥𝑛and m inputs

𝑢1, 𝑢2, … . , 𝑢𝑚. Then, the state-variable equations take the generic form

Where 𝑓1, 𝑓2, … . , 𝑓𝑛 are algebraic functions of the state variables and inputs and are generally nonlinear

The state-variable equations can be written as
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State Equation
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State Equation
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Output Equation and State-Space Form
Output Equation:

So that C = [ 0  1]and D = 0. Note that the direct 
transmission matrix D is 1 ×1 and hence denoted by D .
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Output Equation and State-Space Form

State-Space Form:
The combination of the state equation and the output equation is called the state-space form. 

State Equation

Output Equation
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Note: No. of Order system equal to No. of State equation
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General Procedure:

1- Solve ODE for highest order derivative   (
𝑑𝑛𝑥(𝑡)

𝑑𝑡𝑛 )

2- Define state vectors as    ҧ𝑥 𝑡 = [𝑥 𝑡  
𝑑𝑥 𝑡

𝑑𝑡
 

𝑑2𝑥 𝑡

𝑑𝑡2  . . . .
𝑑𝑛−1𝑥(𝑡)

𝑑𝑡𝑛−1  ]𝑇  

3- Define Input/control vectors as     ത𝑢 𝑡 =[𝑢1 𝑡 , 𝑢2 𝑡 , 𝑢𝑚(𝑡)]𝑇

4- Write state equations:
ሶ𝑥 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡

5- Write output equations
𝑦 𝑡 = 𝐶𝑥 𝑡 + 𝐷𝑢(𝑡)

Example: ഺ𝒚 + 𝟑 ሷ𝒚 + 𝟕 ሶ𝒚 + 𝟔𝒚 = 𝒇

1- ഺ𝑦=𝑓- 3 ሷ𝑦 − 7 ሶ𝑦 − 6𝑦

2- 𝑥1 = 𝑦, 𝑥2 = ሶ𝑦, 𝑥3 = ሷ𝑦

3- Input 𝑢 = 𝑓, output 𝑦

4- ሶ𝑥1 = 𝑥2, ሶ𝑥2 = 𝑥3, ሶ𝑥3 = 𝑓− 3 ሷ𝑦 − 7 ሶ𝑦 − 6𝑦

ሶ𝑥1

ሶ𝑥2

ሶ𝑥3

=
0 1 0
0 0 1

−6 −7 −3

𝑥1

𝑥2

𝑥3

+
0
0
1

𝑢

5- 𝑦 = 1 0 0

𝑥1

𝑥2

𝑥3
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The equations of motion are derived as

The system model comprises two second-order ODEs; hence, a total of 
four initial conditions are needed for complete solution. There are 
therefore four state variables, selected as

The state-variable equations are then formed as
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FOR MORE INFORMATION

Click Here

https://www.youtube.com/watch?v=hpeKrMG-WP0
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• Many techniques are available for obtaining state space representations of transfer functions
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Controllable Canonical Form (CCF)
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• The transfer function (for SISO systems) or transfer matrix (for MIMO systems) can be systematically derived
from the state-space form.
- Consider the state-space form

ሶ𝑥 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡
𝑦 𝑡 = 𝐶𝑥 𝑡 + 𝐷𝑢(𝑡)

First, we note that the Laplace transform of a vector such as x is handled as

Assuming zero initial state vector, 𝑥(0)=0𝑛×1, Laplace transformation of the state-space form yields
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• The first equation is manipulated as

• Inserting this into the second equation results in

• For a SISO system with input u and output y, the transfer
function is 𝐺 𝑠 = 𝑌(𝑠)/𝑈(𝑠), so that 𝑌 𝑠 = 𝐺 𝑠 𝑈(𝑠).

Where 𝐈 is identity matrix

• To find the Inverse matrix:
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• Example: Single-Input-Single-Output System
A system’s state-space representation is

Where

Solution:

Since both 𝑢 and 𝑦 are 1 × 1, the system is SISO; hence, there is only one transfer function.

• - With this, the transfer function is obtained as
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• Example: Single-Input-Single-Output System
A system’s state-space representation is

Where

Solution:

Since both 𝑢 and 𝑦 are 1 × 1, the system is SISO; hence, there is only one transfer function.

• - With this, the transfer function is obtained as
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➢ The object of linearization is to derive a linear model whose response will agree closely with that of the
nonlinear model.

➢ The systems that we have studied so far have primarily been assumed linear, making their analysis somewhat
straightforward.

➢ Many dynamic systems contain elements that are inherently nonlinear, which cannot be treated as linear,
except for a restricted range of operating conditions.

➢ The most direct way of dealing with a nonlinear model is to linearize it about a reference equilibrium.
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➢ Consider again the general, nonlinear system in Equation below:

➢ Often have a nonlinear set of dynamics given by

➢ where x is once gain the state vector, u is the vector of inputs, and f (·, ·) is a
nonlinear vector function that describes the dynamics.

➢ First step is to define the point about which the linearization will be performed
typically about equilibrium points – a point for which if the system starts there it
will remain there for all future time.

➢ So in theory, if the state gets to an equilibrium, it will perfectly stay at the
equilibrium forever.
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➢ In practice, because of noise, disturbances, etc., the state never stays perfectly at 𝑥 ̅,
but may rather stay close to it. This motivates the study of nonlinear systems near
their equilibria, as we see next.

➢ Let
∆𝑥 = 𝑥 𝑡 − ҧ𝑥
∆𝑢 = 𝑢 𝑡 − ത𝑢

➢ How to find equilibrium point or operating point?
Characterized by setting the state derivative to zero:
We can solve for ҧ𝑥, ത𝑢 , if the input is known! Then these are equilibrium points
or operation points.

Analytically, we can use the Taylor series expansion of 𝑓 𝑥 about the operating point, as

+ 𝐻. 𝑂. 𝑇
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Assuming ∆𝑥 = 𝑥 𝑡 − ഥ𝑥 is small, the linear approximation of 𝑓 𝑥 is achieved by
retaining the first two terms, while neglecting the remaining terms containing higher
powers of 𝑥 𝑡 − ഥ𝑥 :

Therefore, the closer 𝑥(𝑡) is to ҧ𝑥 of the operating point, the better the linear
approximation will be at.

Recall the vector equation ሶ𝑥= 𝑓(𝑥, 𝑢), each equation of which can be expanded as

ሶ𝒙 ≈ 𝒇 ഥ𝒙, ഥ𝒖 +
𝝏𝒇

𝝏𝒙
| ഥ𝒙,ഥ𝒖 (𝒙 − ഥ𝒙) +

𝝏𝒇

𝝏𝒖
|(ഥ𝒙,ഥ𝒖)(𝒖 − ഥ𝒖)

𝒚 ≈ 𝒉 ഥ𝒙, ഥ𝒖 +
𝝏𝒉

𝝏𝒙
| ഥ𝒙,ഥ𝒖 (𝒙 − ഥ𝒙) +

𝝏𝒉

𝝏𝒖
|(ഥ𝒙,ഥ𝒖)(𝒖 − ഥ𝒖)

Linearization
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ሶ𝒙 ≈ 𝒇 ഥ𝒙, ഥ𝒖 +
𝝏𝒇

𝝏𝒙
| ഥ𝒙,ഥ𝒖 (𝒙 − ഥ𝒙) +

𝝏𝒇

𝝏𝒖
|(ഥ𝒙,ഥ𝒖)(𝒖 − ഥ𝒖)

𝒚 ≈ 𝒉 ഥ𝒙, ഥ𝒖 +
𝝏𝒉

𝝏𝒙
| ഥ𝒙,ഥ𝒖 (𝒙 − ഥ𝒙) +

𝝏𝒉

𝝏𝒖
|(ഥ𝒙,ഥ𝒖)(𝒖 − ഥ𝒖)

Then ∆ ሶ𝑥 = ሶ𝑥 =
𝝏𝒇

𝝏𝒙
| ഥ𝒙,ഥ𝒖 ∆𝒙 +

𝝏𝒇

𝝏𝒖
|(ഥ𝒙,ഥ𝒖)∆𝒖 since ҧ𝑥 is constant and 𝑓 ҧ𝑥, ത𝑢 =0 at operating points.

∆𝑦 ≈
𝝏𝒉

𝝏𝒙
| ഥ𝒙,ഥ𝒖 ∆𝒙 +

𝝏𝒉

𝝏𝒖
|(ഥ𝒙,ഥ𝒖) ∆𝒖

Linearization

∆𝑥 = 𝑥 𝑡 − ҧ𝑥 ∆𝑢 = 𝑢 𝑡 − ത𝑢 𝑦 − ℎ ҧ𝑥, ത𝑢 = ∆𝑦
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∆ ሶ𝑥 ≈
𝝏𝒇

𝝏𝒙
| ഥ𝒙,ഥ𝒖 ∆𝒙 +

𝝏𝒇

𝝏𝒖
|(ഥ𝒙,ഥ𝒖)∆𝒖

∆𝑦 ≈
𝝏𝒉

𝝏𝒙
| ഥ𝒙,ഥ𝒖 ∆𝒙 +

𝝏𝒉

𝝏𝒖
|(ഥ𝒙,ഥ𝒖) ∆𝒖

A B

C D
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∆ ሶ𝑥 ≈
𝝏𝒇

𝝏𝒙
| ഥ𝒙,ഥ𝒖 ∆𝒙 +

𝝏𝒇

𝝏𝒖
|(ഥ𝒙,ഥ𝒖)∆𝒖 ∆𝑦 ≈

𝝏𝒉

𝝏𝒙
| ഥ𝒙,ഥ𝒖 ∆𝒙 +

𝝏𝒉

𝝏𝒖
|(ഥ𝒙,ഥ𝒖) ∆𝒖

( ҧ𝑥, ത𝑢) ( ҧ𝑥, ത𝑢)

𝐶 𝑡 =
𝜕ℎ

𝜕𝑥1
…………

𝜕ℎ

𝜕𝑥𝑛
𝐷 𝑡 =

𝜕ℎ

𝜕𝑢

Typically drop the “∆” as they are rather cumbersome, and (abusing notation) we write the state equations as:
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(A simple pendulum). Consider the dynamics of the pendulum depicted below, where u denotes an 
input torque provided by a DC motor.
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The equation of motion for this system is

Solve for higher order:

ሷ𝜃 = −
𝑚𝑔𝑙

𝐼
𝑠𝑖𝑛𝜃 +

1

𝐼
𝑢

State variables are 𝑥1 = 𝜃 , 𝑥2 = ሶ𝜃

State variable equations are ሶ𝑥1 = 𝑥2 , ሶ𝑥2 = −
𝑚𝑔𝑙

𝐼
𝑠𝑖𝑛𝑥1 +

1

𝐼
𝑢 output 𝑦 = 𝑥1

Nonlinear term

So, we need linearization!

𝑚𝑔 𝑠𝑖𝑛𝜃
𝑚𝑔 𝑐𝑜𝑠𝜃
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𝑓1 = ሶ𝑥1 = 𝑥2, 𝑓2 = ሶ𝑥2 =−
𝑚𝑔𝑙

𝐼
𝑠𝑖𝑛𝑥1 +

1

𝐼
𝑢

Calculate the equilibrium point when 𝑓 𝑥, 𝑢 = 0

𝑥2 = 0 , −
𝑚𝑔𝑙

𝐼
𝑠𝑖𝑛𝑥1 +

1

𝐼
𝑢 =0   then    𝑠𝑖𝑛 ҧ𝑥 =

ഥ𝑢

𝑚𝑔𝑙

suppose we turn off the DC motor, that is, we set ത𝑢 = 0.

𝑠𝑖𝑛 ҧ𝑥 = 0, ҧ𝑥 = 0 , 𝑘𝜋 𝑤ℎ𝑒𝑟𝑒 𝑘 = 0,±1,±2,……

𝑚𝑔 𝑠𝑖𝑛𝜃
𝑚𝑔 𝑐𝑜𝑠𝜃
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𝑓1 = ሶ𝑥1 = 𝑥2, 𝑓2 = ሶ𝑥2 =−
𝑚𝑔𝑙

𝐼
𝑠𝑖𝑛𝑥1 +

1

𝐼
𝑢

Calculate the equilibrium point when 𝑓 𝑥, 𝑢 = 0

𝑥2 = 0 , −
𝑚𝑔𝑙

𝐼
𝑠𝑖𝑛𝑥1 +

1

𝐼
𝑢 =0   then    𝑠𝑖𝑛 ҧ𝑥 =

ഥ𝑢

𝑚𝑔𝑙

suppose we turn off the DC motor, that is, we set ത𝑢 = 0.

𝑠𝑖𝑛 ҧ𝑥 = 0, ҧ𝑥 = 0 , 𝑘𝜋 𝑤ℎ𝑒𝑟𝑒 𝑘 = 0,±1,±2,……

𝑚𝑔 𝑠𝑖𝑛𝜃
𝑚𝑔 𝑐𝑜𝑠𝜃
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Linearization

So at equilibrium point ҧ𝑥, ത𝑢 = (𝜋 , 0)

𝑚𝑔 𝑠𝑖𝑛𝜃
𝑚𝑔 𝑐𝑜𝑠𝜃

𝐴 = 𝐵 = 𝐶 = 𝐷 = 0
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THANK YOU
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