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SYSTEM MODELING 20 October 2025

COURSE DETAILS:

* Description

This course covers three main areas: modelling, simulation, and identification. It presents several modelling methodologies
that can be used for control systems. This will cover mathematical and analytical work. Software tools, such as
MATLAB/Simulink, may will be used to simulate the systems and analyze the responses. Also, an introduction to system
identification will be provided. Modeling definition. Modeling of different physical systems (mechanical, fluid, thermal and
electrical). Differential and Laplace equations. State-space representation. Computer simulation technigues (applications using
MATLAB Program). System response and analysis.

* Course Learning Outcomes

Upon successful completion of this course, student should:
1. Understand fundamentals of system dynamics.
2. Study the Laplace, inverse Laplace transformation.

3. Obtain a mathematical Model of different physical systems (mechanical, fluid, thermal and electrical).
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COURSE OUTLINES:

* Introduction: Engineering Systems Dynamics; Components and Systems; 1

Principles of Modeling and Simulation; Modelling Categories

* ODE and The Laplace Transform: Concept; Model Formulation; Transfer 1
Functions and Time Response; SISO and MISO Systems
. . . . L
* Physical systems and Transfer function: Mechanical, Electrical,
Electromechanical, and fluid system.
* State Space Analysis: state space basics; state variable; state space system 2
representation; electrical state space modeling; state space to transfer function;
transfer function to state space form.
* Transfer function to state space and vice versa. -
* Linearization of Nonlinear Systems. 2

INTRODUCTION TO SYSTEM DYNAMICS
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ASSESSMENT GUIDANCE:

* Evaluation of the student performance during the semester (total final mark) will be conducted according to the following

activities:

Quizzes 20%
Midterm Exam 10%
Seminar, Homework, Reports 20%
Final Exam 50%
TOTAL 100%

4 INTRODUCTION TO SYSTEM DYNAMICS
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WHY MODELING AND SIMULATION?

NASA Space
Shuttle!

INTRODUCTION TO SYSTEM DYNAMICS
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WHY MODELING AND SIMULATION?

Nasa wants to build space shuttle will successfully land on MARS !

A single space shuttle* consists of 2.5 million parts including:
» 370 Km Long wires

» 1000 Valves

» 1400 Circuit breakers

» 25000 Insulating tiles

Space shuttle must accelerate from 0 Km/h to 28000 Km/h < 9 minutes !

Space shuttle must survive Temp as low as < -150 C and as high as > 1600 C !

*https://spaceflight.nasa.gov/

INTRODUCTION TO SYSTEM DYNAMICS



WHY MODELING AND SIMULATION?

Cannot starting building space shuttle without Design Verification !

- Use Engineering knowledge to describe how each one of 2.5 million components would work
(Modeling step) in the proposed design.

- Write computer program to see if those 2.5 million components would work as required
(Simulation Step)

Once modeling and simulation verify the design, Nasa can either proceed to design refinement or
building the space shuttle.

INTRODUCTION TO SYSTEM DYNAMICS
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FRAMEWORK FOR SYSTEM CONTROL

Mechanical, Electrical, Fluid, Thermal

Time Varying Time Varying
Frequency Dependent Input Dyn am i C OUtpUt Frequency Dependent
System
A

—

+Real Physical System
l +Multi-Domain Ideal Elements

Network Representations M Od e I | n g

+|dealized Representation: Lumped Model

Linear System

Theory
+System Desigh Changes;Feedback Control
«Steady State Errors
l «Input Tracking CO ntrOI SySte m
+Response Shaping DESlg n
*“Desired” Input - Output Response
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« System madeli

=) mi(t) + bi(t) + kx(t) = F(t)

. Model: ordinary differential equation (ODE)
Ay, hitp://openclipart.org or other mathematical representation

Hardware
Image from the Open Clip X

« System dynamics

B
ma:(t) + bﬂ?(t) —|'- kﬂ?(t) — F(t) - g ! Response
Model o5
% 20 40 60 80 100
Time t [sec]
 Systemcontrol - :
E E1.5‘ ‘
Response g ? ’ | Desired
g 3 response
o %05
% 20 40 60 80 100 % 20 40 60 80 100
Time t [sec] Time t [sec]
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INTRODUCTION: WHAT IS THE SYSTEM?

It is a combination of elements intended to act together to accomplish an objective.

It is any collection of elements for which there are cause-and-effect relationships among the variables.

Some example of the systems :

* Medical/biological systems

e Socioeconomic systems

e Communication and information systems
* Planning systems

e Solar system

e Environmental systems

e Manufacturing systems

* Management systems

e Transportation systems

e Physical systems—electrical, mechanical,
thermal, hydraulic systems, and combinations of
them

INTRODUCTION TO SYSTEM DYNAMICS
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INTRODUCTION: TYPES OF SYSTEMS

1. According to the Time Frame
* Discrete
* Continuous
* Hybrid

2. According to the Interactions: Interactions may be unidirectional or bidirectional, crisp or fuzzy, static or

dynamic, etc.
Biological Chemical
3. According to the Nature and Type of Components Socioeconomic systems Systems

systems

Thermal/hydraulic
systems

e Static or dynamic components

Conceptual

systems Analysis Control

Mechanical
systems

* Linear or nonlinear components

Design/
control

. . . . . Psycho
* Time-invariant or time-variant components systems

Electrical
systems

Speculation Design

* Deterministic or stochastic components Esoteric

systems

Physical
systems

* Continuous-time and discrete-time systems

White
Black box
Box

* Deterministic—No uncertainty in any variables, for example, model of pendulum.

4. According to the Uncertainties Involved

* Stochastic - Some variables are random, for example, airplane in flight with random wind gusts

1 INTRODUCTION TO SYSTEM DYNAMICS
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INTRODUCTION: TYPES OF SYSTEMS

1. Static systems: is one whose output at any given time depends only on the . ® O 3
input at that time. For example, the current flowing through a resistor depends +.
only on the present value of the applied voltage. - ®
Mathematical example of static system: . .
L) L

y(t) = x(¢)
y(t) = tx(t) + 2x(t)

2. Dynamic Systems: is one whose present output depends on past inputs. For
example, the present position of a bike depends on what its velocity has been
from the start.

Mathematical example of dynamic system: —

y() =x(t+1)
y(t) =tx(t) +x(t—1)

INTRODUCTION TO SYSTEM DYNAMICS
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INTRODUCTION: EXAMPLE

* Example: Check whether the following mathematical representation system is static or dynamic

a. Y(t) =x(3t) lett=1 so Y(1) =x(3) System is Dynamic /Y (1) depends on the future input x(3)
b. Y(t) = 5x(t) lett=1 so Y(1) =5x(1) Systemis Static /Y (1) depends on the present input x(1)
c. Y(t)=ux(—t) lett=1 so Y1) =x(=1) Systemis Dynamic /Y (1) depends on the past input x(—1)

d Y(t) =x(cost) let t=0 so Y(0) = x(cos0) System is Dynamic /Y (0) depends on the future input

x(1)

INTRODUCTION TO SYSTEM DYNAMICS
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INTRODUCTION: COMPLEXITY OF SYSTEMS

Another basic issue is the complexity of a system. Complexity of a system depends on the following factors:

Gl |8
Single
= (&
C 0l N
3. Number of interactions e )

1. Number of interconnected components

2. Type/nature of component

(a) (b) (0)

4. Strength of the interaction Number of components and number of interactions (a) 0, (b) 2, and (c) 6
in the family system.
5. Type/nature of interactions 0
350
A. Static or dynamic , W0
B. Unidirectional or bidirectional g
= 200
C. Constrained or non-constraint interaction £ wsor
“ 100
ol
Lo . . .
0 5 10 15 20

Number of components
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INTRODUCTION: COMPLEXITY OF SYSTEMS

The complexity of a system model is sometimes measured by the number of independent energy-storing

elements.
Driver Driver =
=1 Seat-back friction =1 Seat-back friction
' Seat Seat
Seat L . Seat l i
: Seat . Seat sprin
damping %’ § caLEpIng damping ‘T' pring
Chassis Chassis
Front Front shock Rear Rear shock : Shock
springs § |_'J|:| absorbers springs § ‘L|'L—' absorbers Springs g '—"!1' absorbers
Front wheels, Rear wheels, | Wheels,
axles, etc. o axles, etc. axles, etc.
Front Rear Tires
tires tires
777 777 777 777 777 777 777 Grotid 777 777 777 777 777 777 77 Ground

This figure is adapted from a drawing in Chapter 42 of 7The Shock and Vibration Handbook, third edition (1988), edited by Cyril M. Harris. It is used with the permission of the publisher, McGraw-
Hill, Inc. Part (a) of the figure also appears in the fourth edition (1996) of that book
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INTRODUCTION

Less Real, Less Complex, More Easily Solved
—>

Design Model

<

More Real, More Complex, Less Easily Solved

Hierarchy Of Models
Always Ask: Why Am I Modeling?

INTRODUCTION TO SYSTEM DYNAMICS
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INTRODUCTION: INPUT AND OUTPUT OF SYSTEM

* Input:is a variable that can affect the system's behavior.

e Output: is a variable that is to be calculated or measured.

L = T T
: System R
e T Vo
Inputs Outputs
Two systems interconnected Two systems interconnected in loop
Vi » » Y1
o __’/ Vi=2 >N —J.Vz
v |
Z; V7
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INTRODUCTION: INPUT AND OUTPUT OF SYSTEM

* Single-Input Single-Output (SISO)
*  Multi-Input Multi-Output (MIMO)

u() ——FS . ()

uq(t) y1(t)
w, (t) > V2 (t)
u, (t) > Yn ()

INTRODUCTION TO SYSTEM DYNAMICS
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« System modeli

Hardware
ary, http://openclipart.org

Model: ordinary differential equation (ODE)
or other mathematical representation

Image from the Open Clip X

« System dynamics ,
.E1.5
ma:(t) + bﬂ?(t) —|'- kﬂ?(t) — F(t) - g ! Response
Model o5
% 20 4 6 8 100
Time t [sec]
 Systemcontrol - :
E E1.5*
% % 1 Desired
Response  § S
3 = response
£, o
% 20 40 60 80 100 °6 20 40 60 80 100

Time t [sec] Time t [sec]
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INTRODUCTION: WHAT IS THE MODEL?

 Model: is a description of a system in terms of equations. The basis for constructing a
model of a system are the physical laws (such as the conservation of energy and Newton's
laws) that the system elements and their interconnections are known to obey.

e Oven >
I
* Modelling: Modeling is the art of obtaining a quantitative description of a system or one Ideal  Actual 208
of its elements that is simple enough to be useful for making predictions and realistic 'lr 175°C l 8“
enough to trust those predictions. E@
_J

 Mathematical Model: A set of differential equations derived using Newton’s law, circuit

law etc. that describe dynamic behavior of a physical system or process.

* There is no the model for a system. Many different models can be associated with the
same system depending on what level of approximation we desire.

INTRODUCTION TO SYSTEM DYNAMICS
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INTRODUCTION: WHAT IS THE MODEL?

* Applying Newton’s second law, we can write the system equation as:

d’y

=m—5+ d_y+ . — m  ——»F
' dt’ bdt K % ]

* Taking the Laplace transform of Equation above, the transfer function _ij
the system may be written as: Step response
18 : T T
Y(s) _ 1 o 16}
F(s) ms*+bs+k = 1
a & 12}
£ g
* Block diagram of a simple mechanical system: o % g 10}-
Zs 1
8 & I
— £ i
F(s) S - > Y(5) 3
ms>+bs+k = £ 2]
O0 ZIO 4|0 6|0 8I0 l(I)O 120
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INTRODUCTION: MODELING CYCLE

Verification is the task of determining if the implementation of a model has been done correctly.

Verification
Conceptual modeling 1s the Implemen- An executable model is a model
process of abstracting a model Conceptual ___tgtl_og__. Executable conforming to an executable
from a real or proposed system model model modeling language and defines an
into a conceptual model. R\ /// aspect of the behavior of a system
L J in sufficient detail such that the
Y o o o sl model can be executed.
Analysis Simulation
3 /
\
Qualification % // Validation
\
% /// Validation is the task of determining
\\P/ if the model constructed accurately
represents the underlying real system
Reality being modeled.

INTRODUCTION TO SYSTEM DYNAMICS
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SYSTEM MODELING

MATHEMATICAL MODELING PROCESS

* Dynamic systems are modeled mathematically using ordinary differential equation.
* There are two ways to obtain these models:

» Theoretical modeling based on first (physical) principles

» Experimental modeling (identification) with measured input and output variables

System Formulation: For an unstable system, to design a state feedback controller, the system should be modelled
mathematically and then formulated in state space form.

INTRODUCTION TO SYSTEM DYNAMICS
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TYPES OF MATHEMATICAL MODELLING

1. Simple Modeling: In this modeling, the effect of an external influence in the performance of the dynamic system is not

taken into consideration. The mathematical representation of the system is given by:
dy
7 =/
y

Where x = [x1,x2, ... ... xn] is the state vector of the system The differential equation is called autonomous system

Example: the following differential equation is used to model an electronic oscillator

dxl 3
= X1 — X1 — X
d;

dxz_x

¥ = X1

d;

dyy d .
Where x; and x, are the states of the system dil, diz represent velocity of the state vector.
t t

INTRODUCTION TO SYSTEM DYNAMICS
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TYPES OF MATHEMATICAL MODELLING

2. Reliable Modeling: In this modeling type, the influence of external control input in the behavior of the dynamic system is taken

into consideration. The differential equation used to model the system is given by:

dy
d_t = f(xr u)

. . . . dy . .
Where u is an external influence effect (control input). The system is called forced system. The rate of change of the state d—x is influenced
y

by the control input u(t).

3. Comprehensive Modeling: This type of modeling can be used to represent the dynamic behavior of mechanical system influenced
by an electrical system. In this modeling, the external control and sensors, which used to measure output of the system, are included.

The model of the system is given by:

y =g(x, u)

Where u(t) is a vector of control signal and y is a vector of system measurements. This model implies that the system output y is influenced by
the control input signal u(t).

INTRODUCTION TO SYSTEM DYNAMICS
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APPLICATIONS IN MECHANICAL SYSTEMS

| Waist rotation

& Frame mount Q\)

Three wrist

Shoulder rotations

Shock absorber ' . . i rotation
I Steering arm

Elbow
rotation

Wishbone

. . A robot arm.
A vehicle suspension system.

INTRODUCTION TO SYSTEM DYNAMICS
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APPLICATIONS IN ELECTRICAL AND ELECTROMECHANICAL
SYSTEMS

Mechanical drive for a robot arm joint.

Mechanical drive for a conveyor system.

INTRODUCTION TO SYSTEM DYNAMICS
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APPLICATIONS IN FLUID SYSTEMS

Hydraulic
lines

Piston

A backhoe A hydraulic servomotor.

INTRODUCTION TO SYSTEM DYNAMICS
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SYSTEM MODELING

Differential Eqguations

* Differential equationis an equation involving an unknown function and one or more of its derivatives.

» Differential equations are divided into two categories: ordinary differential equations (ODEs) and partial differential

equations (PDEs).

* The independent variable in our ODEs will be time t (System dynamics).

. dx . d?
* We will often denote the time derivative with an over dot, as X = a X = d_t32/

* The derivative of the highest order of the unknown function x(t) with respect to t is the order of the ODE.

=0, itis homogeneous
Second-order differential equation «—— — If this (input) is

[355]+ 7x + 2t2 x]=[5 + Sint] + 0, itis nonhomogeneous

Dependent variable (x)
is called also the solution < — Input, or forcing function

or the response

DIFFERENTIAL EQUATIONS AND LAPLACE TRANSFORM




CLASSIFICATION OF DIFFERENTIAL EQUATIONS

Differential equations can be divided into several types namely

1. Ordinary Differential Equations

2. Partial Differential Equations

3. Linear Differential Equations

4. Nonlinear differential equations

5. Homogeneous Differential Equations

6. Nonhomogeneous Differential Equations

DIFFERENTIAL EQUATIONS AND LAPLACE TRANSFORM
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CLASSIFICATION OF DIFFERENTIAL EQUATIONS

Differential equations can be divided into several types

namely
dy :

1. Ordinary Differential Equations (ODE): Fri ky, (Exponential growth)
are equations where the derivatives are taken with  dy KAy Newton's law of cool!
respect to only one variable. That is, there is only one dt vl (Newton's faw of cooling)
. . d2 d
independent variable. m d; +c d: + kz = f(t). (Mechanical vibrations)

2. Partial Differential Equations (PDE): % H:% _o, (Transport equation)
are equations that depend on partial derivatives of 5 3;:&
several variables. That is, there are several % 9p2 (Heat equation)
independent variables. 2y %u 9%

(Wave equation in 2 dimensions)

DIFFERENTIAL EQUATIONS AND LAPLACE TRANSFORM




CLASSIFICATION OF DIFFERENTIAL EQUATIONS

3. Linear Differential Equations

4. Nonlinear differential equations
RHew cheeck wihether your eguation s linear er nety

There are four condition to check as the following:

1. The degree of dependent variable is 1.

2. The degree of differential is 1.

3. The dependent variable and its derivative are not multiplied.
4

. Transcendental (sin, cos, tan, . .. etc) term does not contain dependent variable.

DIFFERENTIAL EQUATIONS AND LAPLACE TRANSFORM
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CLASSIFICATION OF DIFFERENTIAL EQUATIONS

There are four condition to check as the following:

1. The degree of dependent variable is 1.

2. The degree of differential equation is 1.

3. The dependent variable and its derivative are not multiplied.

4. Transcendental (sin, cos, tan, ... etc) term does not contain dependent variable.

d? d
—y+ 2y Y _ sinx

(1) / degree=1 ’

® V degreeof (%)El
dy

© X 2y =

o v

Thus, the Equation is Non-linear

DIFFERENTIAL EQUATIONS AND LAPLACE TRANSFORM
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CLASSIFICATION OF DIFFERENTIAL EQUATIONS

Check the following:

¥43x =541 ¥43t% =5 3F 4+ 7%+ 2% =sint

2% + 7x + 6x% = 5 + 12, because of x>
3& + 5%° + 8x = 4, because of x2

X + 4xx + 3x = 10, because of xx

DIFFERENTIAL EQUATIONS AND LAPLACE TRANSFORM
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Laplace Transform: T-DOMAIN & S-DOMAIN

* Laplace transform converts time domain problems into functions of a complex variable, s, that is related to the frequency
response of the system.

frequency
= r'y
0.1 T T T T T T S Plana _J'r_r,,..mdafnped
Pole
Q) N 1%
S i o
B 005 FARRNY
2 eritically damped / i
g 8 | \\ . : B" dampin
° Convert to S-domain LT » camping
& L
& 0.0 i ks
2-0. 5 .
< ‘\
Conjugate X __
-0.1 1 L 1 1 L ! Pole "‘--___Jl
0 0.2 0.4 0.6 0.8 1 1:2 1.4
Time (s)

Where S is the Laplace variable (Complex variable S = 0 + jw) where 0 and w are the real and imaginary parts of S.

DIFFERENTIAL EQUATIONS AND LAPLACE TRANSFORM
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Laplace Transform

The Laplace transform provides a systematic and general method for solving linear ODEs and is
especially useful either for nonhomogeneous equations whose right-hand side is a function of

time or for sets of equations. Another advantage is that the transform converts linear differential
equations into algebraic relations that can be handled easily.

Lif 1 = Fs)

e J
Laplace transform operator <—|

Input: f(t) in t-domain <—

— Output: F(s) in S - domain

The defining equation for the Laplace Transform is

LIFO] = F(s) = lim [ [, et £(©). dt]

Where S is the Laplace variable (Complex variable S = 0 + jw) where 0 and w are the real and
imaginary parts of S, respectively (e ~(0+H/ @t = g0t p—jwty

DIFFERENTIAL EQUATIONS AND LAPLACE TRANSFORM
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Laplace Transform

Solution process for initial-value problems, using Laplace transformation.

Example 1: find Laplace transform when f(t) = 1 (unit step) Initial-value problem . Algebraic equation | Solve Transform
with dependent variable > . > function
) A _g x(f) Laplace in X(s) X(s)
L[f(t)] = F(S) = lim [fo e f(t) dt] transform
A— A
. A _ _
L[1] = F(s) = lim [~ e~*1.dt] £
A—-0o Inverse laplace transform
- i _l —StA= 1 _l —SA _ _l :l :l
Jlim [—=e™*] jl_r)rc}o[ _e (=21 . (whens > 0) So L[1] .

Example 2: find Laplace transform when f(t) = e%t

£ n

L[e®] = F(s) = lim [f(;le_“eat.dt] — If a—s > 0,a > s no limit (diverage)

e’ = ;

= lim (Y e@ 9t ge1——
—jl_r)glo[fo e(@=9)t dt]

x(t)

— > Ifa—s<0,s>athen e > =10 e e o [
a

10— 1]=-— oo “a<0_

0 02 0.4 06 08 1

= lim [ie(a_s)t]g =

A—>oo a—S

DIFFERENTIAL EQUATIONS AND LAPLACE TRANSFORM
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Laplace Transforms of Derivatives and Integrals

* The Laplace transform of the nth-order derivative of x(t) is given by
L{x" (B} =5"X(s)—s""2(0) —s"(0) — ... —x"(0)
* |n particular, for the first and second derivatives, the above-mentioned yields
L{x(1)] = sX(s)~x(0)

£{:‘f(t)} = 52X (s) — sx(0) — x(0)

* The Laplace transform of the integral of a function x(t) is given by

c {J‘x(t)dt} _ %X(S)

0

DIFFERENTIAL EQUATIONS AND LAPLACE TRANSFORM
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THE INITIAL VALUE THEOREM (IVT)

* Sometimes we will need to find the value of the function x(t) att = 0 + (a time infinitesimally greater than 0),
given the transform X(s). The answer can be obtained with the initial value theorem, which states that

x(0+) = rgﬂx(r) = S]_i}[gg[s)((s)]

* Example 1: let’s find the initial value theorem for the following X (s) = ES 1 g)
S8

Solution: the theorem gives

: 75+2  7s+2
X(O):;LTO[S'X(S)] - S'S(.:+6) - SS+6

Now, we will divide each term by the highest order in the numerator (the power of s in nominator).

2
7+g_7+0_7
6 1+0 g Homework: find the IVT for the
o0 i T following

1.2
_ 35 +1 \
X(s)= s*(4s+3)

DIFFERENTIAL EQUATIONS AND LAPLACE TRANSFORM
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Final Value Theorem (FVT)

* Suppose X(s) has no poles in the right half plane (RHP) or on the imaginary axis, except possibly a simple pole (multiplicity
of 1) at the origin. Then, x(t) has a definite steady-state value, and it is given by
X5 = lim {sX(s)}

s—0

2s+1

s(s* +4s+5)
Solution: The poles of X(s) are at 0 and — £ 2 j. The complex conjugate pair lies in the left half plane, and 0 is a simple pole (at

the origin), all allowed by the FVT.

* Example 1: let’s find the final value theorem for the following X(s) =

_ 2s +1
Xss = limls X(9)] = 777575

Now, we will substitute each s be zero.

_2%04+1
T 0244x0+5

1
5

DIFFERENTIAL EQUATIONS AND LAPLACE TRANSFORM



SYSTEM MODELING 20 October 2025

Table of Laplace transform pairs

No. £(t) F(s) No. ft) Fls)
- 1 —at —bt 5
1 Unit impulse 5(t) 1 12 " (ae™ —be™),a#b GiGD)
2 1, unit step u(t) 1/5 1 [ 1 o ow } 1
13 —| 1+ (be™ —ae™™) _—
3 t, unit ramp u,(t) 1/s? ab a-b s(s+a)(s+b)
1 1
14 (-1 = —
4 ot —a) oo a’ (1+at+e™) s*(s+a)
—as i it _ gl ;
5 u(t—a) e /s 15 = (1—e™ —ate™) prow
6 ' n=1,2,... (n-1)1/s" 16 sin ot @
7+ o
7 ", a>0 I'(a)" /s" 17 cos of s
7+ o
—al
8 € L 18 e sinwt ©
s+a (s+0) +
9 te™ 1 19 e cos wt __s+o
W (s+0) + o
f | 20 1-cos ot >
10 t"e™ n=1,2,... ”-m (2 + )
(s+a) 21 ot —sinof o
a3 3y
11 L(E’_M—f,’_bt)’ﬂib ; $(s"+m)
b—a (s+a)(s+b) 22 tcos ot §? — 2
(s* +®°)>
1 S
2 s A
3 y tsinomt P

DIFFERENTIAL EQUATIONS AND LAPLACE TRANSFORM
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Table of Laplace transform pairs

No. f(t) F(s) No. f(t) F(s)
24 L (sin wf — wf cos of) _ 35 i[e"" +2e7T" sin(22 af — L 7)) s
20° (s* + ) 3a 2 b s —a3
1. &2 1 , , 1
25 — (sin ot + of cos wt) 5 36 — [coshat sin at — sinh at cos at] -
2m (s% +?)? 4a s +4a
1 . . S
1 1 . 1 . s 1 37 —sinhatsinat —
26 _w% . I:m_zsmmzf-asmﬁhf:lf O] # 03 & +0)E +0d) 2;1 B _;_4a
1 3 38 —3(sinhaf—sinat) 1 1
27 ——(cos et —cos @st), of # w3 e 2a s _a
@3 — 7 (8" + @1)(s” +3) 1 5
23 sinh at . 39 ?(coshat —cos at) E—
s*—a?
2 an
? coshat 5 ’ 5 *Gamma function I'(a) = j t*~le™ dt.
s =0 : A
1 1. 1 .
31 1 [coshat —coshbt], a#b s
a’ -b’ ’ (s* —a’)(s” =b?)
32 i[.ez'"" +2e7" sin(ﬁg— at —Lm)] L
3a’ ° s +a
33 e 4 26" sin(E gt + 17)] 5 Refer to (laplace 1, Laplace 2) Pdfs in the
3a s ta Classroom
1 .. La o, 1
34 ?IE t_2¢72 sm{éf,_iuﬂ-én)] e
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4\ MATLAB Exercises

e Find the Laplace transform of the following in MATLAB:
1. f(t) = et
2. f(t) = te 2t/3

sin wt

3 () =5

DIFFERENTIAL EQUATIONS AND LAPLACE TRANSFORM
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Transfer Function

* The concept of the transfer function is useful for analyzing the effects of the input. It represents the input-output relationship
for a system and expressed in terms of s-domain when all the initial conditions are assumed to be zero.

Y(s) = G(s).X(s) Thus, the transfer function is G(s) = % X((t))—>system—> ygt)) X(S)—m—> Y(s)
X(s Yi(s

_ Input Output
* Definitions:

1. Poles - roots of the denominator polynomial Values that cause transfer function magnitude to go to infinity.
2. Zeros - roots of the numerator polynomial Values that cause the transfer function to go to 0.

3. Eigenvalues - Characteristic responses of a system. Roots of the denominator polynomial. All eigenvalues must be negative

for a system transient (natural response) to decay out.

Zeros
G(s) = |(S +2z1) (s+2y) (s+23)... (s+2z,_1) (s+ Zn)l
(G5t (5+p) (5+p3).. - (5+Pn-1) (S+pa)
Poles

DIFFERENTIAL EQUATIONS AND LAPLACE TRANSFORM
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STANDARD FORM OF TRANSFER FUNCTION

* The standard form of first order system is given by:

Y(s) v
X(s) 1+4+7s

* Where, ¥ is the system gain and t is the time constant of the response, which takes an indicate of the way system will

response to the input.

* For second order system, the standard form as follows:

Y(s) Y

X(s) 28 .15
1+ wns + w%s

Y(s) w7,

X(s) s?+2&8w,s+ w2

Where w,, is damping natural frequency [rad/s], £ is damping ratio and y is system gain When &=1, the system is in critical
damping case, the system is just in the border of oscillation.

DIFFERENTIAL EQUATIONS AND LAPLACE TRANSFORM
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ANALOGOUS SYSTEMS

* Electrical and mechanical systems possess fixed analogy and there exist similarity between the equilibrium equations of the
two. This allows forming such electrical systems whose behavioral characteristics are similar to the given mechanical system.

* Two systems are said to be analogous to each other if the following two conditions are satisfied:

» The two systems are physically different

> Differential equation modelling of these two systems are same

v(f)

M L d,U !
N e M +BuO+K [ v = £
B “w/(t) dw t
5 @ T2+ Bu(r) + K / GOV ()
di
o S Ld—+Rz C / Mdh = e(r)
¥ g dp
e(1) R ERRNTE TP ASE sued
§> % S 220 +7 [p0an = q0)
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TRANSLATION MECHANICAL REVISION

Motion in mechanical systems can be:
e Translational

e Rotational, or

e Combination of above

Mechanical systems can be of two types:
e Translational systems
e Rotational systems

Variables that describe motion:
e Displacement, x

e VVelocity, v

e Acceleration, a

BASIC SYSTEM MODELS MECHANICAL SYSTEMS
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TRANSLATION MECHANICAL REVISION

* The symbols for the basic variables used to describe the dynamic behavior of translational mechanical systems are:

x, displacement in meters (m)

v, in meters per second (m/s)

a, acceleration in meters per second per second (m/s?)
f, force in newtons (N)

w, energy in joules (J)

YV V.V V V V

p, power in watts (W)

Newton’s first law states that a particle originally at rest, or moving in a straight line with a constant speed, will remain that way as long as it is

not acted upon by an unbalanced external force.

Newton’s second law states that the acceleration of a mass particle is proportional to the vector resultant force acting on it and is in the

direction of this force.

Newton’s third law states that the forces of action and reaction between interacting bodies are equal in magnitude, opposite in direction, and

collinear.

BASIC SYSTEM MODELS MECHANICAL SYSTEMS




THE FREE BODY DIAGRAM

Is the same as you have done in statics; we will add the kinetic diagram in our
dynamic analysis.

1. Isolate the body of interest (free body) -
2. Draw your axis system (e.g., Cartesian, polar, path)

3. Addin applied forces (e.g., weight, 225 |b pulling force)

4. Replace supports with forces (e.g., normal force)

5. Draw appropriate dimensions (usually angles for particles)

Put the inertial terms for the body of interest on the kinetic diagram.
1. Isolate the body of interest (free body)

2. Draw in the mass times acceleration of the particle; if unknown, do this in
the positive direction according to your chosen axes.

Dynamic Review BASIC SYSTEM MODELS MECHANICAL SYSTEMS
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TRANSLATION & ROTATIONAL MECHANICAL REVISION

* |t will be convenient to use the following

abbreviated “dot” notation for time

derivatives:
() = & () = &2
—odt’ T dtz
p o a <

* Thus, we can express the scalar form of
Newton’s law as f = mx'(t)

* Power: p=fv orp =4 power is

dt
defined to be the rate at which energy is

supplied or dissipated

force/velocity force/position

Vs f=Mavidt = Md¥/dr
Damper
(Viscous f: Bv f: B dx/dt

friction)

Spring

f=k/Mad

(Stiftness)

BASIC SYSTEM MODELS

MECHANICAL SYSTEMS
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MECHANICAL ELEMENTS: TRANSLATION

* Mass: figure shows a mass m traveling with a velocity v. The basic variables used to describe the
dynamic behavior of a translational mechanical system are the acceleration vector a, the velocity vector v,
and the position vector x. They are related by the time derivatives:

dv d*x
“T T ar " —
Newton’s second law is expressed as: —
f d () dv
=—(mv)=m -—=-ma
dt dt
. . . potential
The kinetic energy is expressed as: . < energy ¢
1 A
T or KE = Emv2
The energy stored in the mass is potential energy given by: 'éi,ﬁ‘:rg'jf
V,or PE = mgh ((.
where: - —>
g is the gravitational acceleration (9.81 m/s?or 32.2 ft/s?) ] kin"gi‘i’::"::::gy

h is the height measured from the reference position or datum to the center of mass
Subscript g is used to denote that the potential energy is associated with gravity

BASIC SYSTEM MODELS MECHANICAL SYSTEMS
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MECHANICAL ELEMENTS: ROTATIONAL

* Mass: For rotational mechanical systems, the basic variables used to describe system dynamics are the

angular acceleration vector a, the angular velocity vector w, and the angular position vector 6. The direction Q) o
of an angular vector can be determined using the right-hand rule, as shown in Figure besides.

dw _ d?*e : s O
a—dt—dtz,a—w—e -
The torque T or moment M about the fixed-point O:
z My/tT=1,a

A disk rotating about an axis
through a fixed-point O.

The kinetic energy for a rotational mass about a fixed-point O is expressed as

1 2
T or KE = Elow

The potential energy for a rotational mass:
V4,or PE = mgh

* where:
g is the gravitational acceleration (9.81 m/s?or 32.2 ft/s?)
h is the height measured from the reference position or datum to the center of mass
Subscript g is used to denote that the potential energy is associated with gravity

BASIC SYSTEM MODELS MECHANICAL SYSTEMS
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MECHANICAL ELEMENTS: TRANSLATION

* Friction: If a moving particle contacts a rough surface, it may be necessary to use the frictional equation, which
relates the frictional and normal forces Fg and N acting at the surface of contact by using the coefficient of kinetic
friction, i.e., Fp= ppN. Remember that Fj always acts such that it opposes the motion of the particle relative to the
surface it contacts. If the particle is on the verge of relative motion, then the coefficient of static friction should be used.

w
- ___, Impending
motion
p— \ J
o 1 }ILSN .
limiting static frictional j » normal force h .
uEN 225N . o
coefficient of static friction ; s
Equilibrium :
w
_ — Motion
Py = HalY P
kinetic frictional force «— —— normal force
/ ,
coefficient of kinetic friction
&y
N R,

BASIC SYSTEM MODELS MECHANICAL SYSTEMS
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MECHANICAL ELEMENTS: TRANSLATION

* Spring: Stiffness is the resistance of an elastic body to deflection or deformation by an applied force.

>

d,+x %l l l |
l l+s
o dgy = Length of spring when no force applied S _y__ L l
S
X

Most common: ideal spring

o d; = Final total length of spring after applied force unstretched N -
m
o x(t) = Elongation caused by f
equilibrium
position
dt)=d, +x(t) = x()=d(t)—d, mg —ks =0 "
f — fx motion

When a spring is stretched or compressed, potential energy is stored in the spring and is given by V, = %kx2

BASIC SYSTEM MODELS MECHANICAL SYSTEMS
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MECHANICAL ELEMENTS: TRANSLATION

* Spring: Stiffness is the resistance of an elastic body to deflection or deformation by an applied force.

The linear spring 1s an approximation of something like

m / Linear
>
X Non-linear
Multiple applied forces: f =k(x,—x,)=kAx X
k

When a spring is stretched or compressed, potential energy is stored in the spring and is given by V, = ikx2

BASIC SYSTEM MODELS MECHANICAL SYSTEMS
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MECHANICAL ELEMENTS: ROTATIONAL

* Spring: For a torsional spring, we have T = kA@

K
where: G 6 6 6‘
T is the applied torque T 6 T 6,
K is the torsional spring stiffness in units of N - m/rad or ft - lb/rad (a) (b)
O is the angular deformation of the spring A torsional spring element with (a) one fixed end and (b) two free ends.

* Assume that 6; and 8, are the angular displacements of respective ends corresponding to the applied torque. If 8,> 68, >0,
then

T=k(0,-60,)

The potential energy stored in a torsional spring element is expressed as

1 2
Ve - EkB

BASIC SYSTEM MODELS MECHANICAL SYSTEMS




MECHANICAL ELEMENTS: TRANSLATION

* Damper: Also known as viscous friction or linear friction. Friction is the force that opposes the relative motion or tendency

of such motion of two surfaces in contact. : . .
J = BAv, where Av =v,-v, and B = viscosity constant/coefficient

—>V) —>V
B m m
NNAN\N
\m OO Flow —————> Piston moti
1ston motion v
S e/ e :
— b _ NN\
. %Vj %VI V1 V2 —_—
Above left:

 Bis proportional to contact area and viscosity of oil.

 Bis inversely proportional to the thickness of film.

Above right:

» Bis small enough to be neglected (this is always an approximation.)

* Damping is used to model a dashpot (damper), e.g. shock absorbers on cars. Ail_

BASIC SYSTEM MODELS MECHANICAL SYSTEMS
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MECHANICAL ELEMENTS: ROTATIONAL

* Damper: For a torsional damper, the linear relationship between the externally applied torque and the angular velocity is given

by: ﬂ B B
YA VAN aVe
=00 g

(b)

A rotational viscous damper with (a) one fixed end and (b) two free ends

T=Bw
(a)

e Ifw, > wy; > 0, the magnitude of the applied torque is

T = B(w; — wq)

Dustorbance

77777

LJ Dramper
VA7,

SALIIIIIIY,
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MECHANICAL ELEMENTS:

* Dashpot: A dashpot element is a form of damping and Dioor StOpper

Vehicle Suspension

PX

can be considered to be represented by a piston moving
in a viscous medium in a cylinder. As the piston moves
the liquid passes through the edges of the piston,
damping the movement of the piston. The force Fwhich
moves the piston is proportional to the velocity of the
piston movement and is given by 0/ .

Bridge Suspension

—— Flyover Suspension

dy
f—ba

Note: A dashpot does not store energy.

BASIC SYSTEM MODELS MECHANICAL SYSTEMS
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EQUIVALENCE

* In many mechanical systems, multiple springs or dampers are used. In such cases, an equivalent spring stiffness constant or

damping coefficient can be obtained to represent the combined elements.

* Springs in Parallel

* tothe two springs are f; and f,, respectively. Because the system is in static equilibrium, the total force is given by

f =f1 +f2 = le‘l'KZx = (Kl +K2)x = Keqx

Koq = Ky + K,
Keq = K1 + K + -+ Ky f f fi f
Note: for damping case, it is same: 1 1 1 11s
Cog=Ci+Cy+ -+ Cy b = kg ki ,
ANNNNANNRNNNY ANNNNNNNNNN ANNNNNNNNNN
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EQUIVALENCE

* Springs in Series

* Consider a system of two springs, k1 and k2, in series, as shown in below. the equivalent spring stiffness of the system is:

fof_ 1, 1 f

x=x1+x2 =_+_=f(_+_ =
K, K, Ki K" Kgq
f
1 _1, 1 =
= f
Keqg Ki K ky
—l X1 A
_ KK, ky S
Keg = 5— f
K, + K,
1 = 1, | 7=
e k, " ke k,
. L 1%2
Note: for damping case, it is same: Ceq =
1 2
SRR AN AN

BASIC SYSTEM MODELS MECHANICAL SYSTEMS
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SUMMARY

—> X
Mass:  Newton’s 2 Law
ma=md2x=m@=2f. m i}
dt* dt ‘
k

Stiffness f=k(x,—x,) < W@’O’\_%f

(Spring):
Hx ] |—>.1v.:2
>V,
Friction Sedml>v m|—=>v
- -y )= 2 2
(Damping): S =B(v,=w)=BAv g B~ ome)
I I |
B: viscosity constant, >v, >,
unit: N-s/m No friction

> f Idealized shock
F>x, >, absorber (dashpot)
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LAW OF DISPLACEMENTS

—  If the ends of two elements are connected, these ends are forced to
move with the same displacement, velocity, and acceleration.

—> X
/ —>
. k X a_om\__
—wr— | —>x
1 N m | — —>v m
4 |8 1 T1
B 779777977: v A - —> Y 779777977:

—>V

k, k, . k, k,
4 ) —um ———
—> X —>X; X
— Newton’s 2™ law at a point:

The sum of the forces at a connection between elements equals zero.

j} -~ fzr k}
(® —wr— e
T] éﬁ

F4
!
AR

0 va ﬁf B; ﬁ;} y T
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MECHANICAL ELEMENTS:

* Gear train: A gear train is a mechanism used for transmitting rotary motion

and torque through interlocking teeth.

* Agear train is made when two or more gears are meshed

* Driver gear causes motion then Driver gear causes motion

* The rpm of the larger gear is always slower than the rom of the smaller gear.

Gear Pinion

e \Variables to know

n = number of teeth

d = diameter

w = angular velocity (speed)
t = torque

Spur Gear Set

.

* Equations to know Gear Ratio

N D w T
GR :—G = -G — P — G

Helical Gear Set Planetary Gear Set Herringbone Gear Hypoid Gear

BASIC SYSTEM MODELS MECHANICAL SYSTEMS
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MECHANICAL ELEMENTS:

e Pulley and Belt Systems:

belt

* All power transmission belts are either friction drive or positive drive. Friction drive /
o, pulley

belts rely on the friction between the belt and pulley to transmit power. They require
tension to maintain the right amount of friction. Flat belts are the purest form of
friction drive while V-belts have a friction multiplying effect because of wedging action j’z

on the pulley.

* Positive drive or synchronous belts rely on the engagement of teeth on the belt with
grooves on the pulley. There is no slip with this belt except for ratcheting or tooth

jumping.

Equations:
Dy w, Ty
D, B w1 B T,
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PROCEDURE OF SYSTEM MODELING

» Divide the system into idealized components.
» Apply physical laws to the elements.
» Apply interconnection laws between elements.

» Combine the equations to obtain the model.

Motor Coupling Load
I |
[——] . Jm - J :
(o0 =[ 4 Ra La & l M- !
Vg em— __ Tm dn de dy LJ i
/ \ : |
| [
||
wn c
k Ly CRi—KW g AW
© “E_d;_ at = fmWm g ]m?z ml — Ay Wi — K (0, — 6) — d (W, — W)
7 m ow
£ — = W, ) £ 3 o
= l
_: @ =W ; ——=—-diW, — K0, — 0y) —d. (W, — Wy,)
S dt 5 dt
<
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MECHANICAL APPLICATIONS:

Example: A Single-Degree-of-Freedom Mass—Spring—Damper System
Consider the simple mass—spring—damper system subjected to an input force f, as shown in figure:
A. Apply Newton’s second law to derive the differential equation of motion.

B. Determine the transfer function form. Assume that the system output is the displacement x and the initial
conditions are x(0) =0and x(0) = 0.

|—>x

PP
S
.y

BASIC SYSTEM MODELS MECHANICAL SYSTEMS
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MECHANICAL APPLICATIONS:

e Solution: ——>Xx

N k
Let us choose the displacement of the mass as the coordinate x. The free-body diagram of Q
the mass is shown below. Applying Newton’s second law in the x direction gives N W
\ — m —>f
+—>x:2Fx=max, Q il
- \ b
f(t)— kx — bx = mx,
which can be rearranged into the standard input—output differential equation form
mX + bx + kx = (t). %
Taking the Laplace transform of both sides of the preceding equation with zero initial f
diti e i k = kx <«—
conditions results in m > f
(ms? + bs + k) X(s) = F(s) Jp = bk <«—

Thus, the transfer function relating the input f(t) to the output x(t) is

X(s) _ 1
F(s) ms*+bs+k

BASIC SYSTEM MODELS MECHANICAL SYSTEMS




MECHANICAL APPLICATIONS:

‘ Simulink block diagram corresponding to Example. (m = 5kg,b = 3N.s/m,K = 4N /m)

Acceleration 1 Velocity ] Displacement
. I 1/m > " . > - . >
Step —P|-
Mass term Integrator Integrator 1 Scope

<L

Damping term

<]

Spring term

BASIC SYSTEM MODELS MECHANICAL SYSTEMS



MECHANICAL APPLICATIONS:

‘ Simscape block diagram corresponding to Example.

2.5
Mechanical
translational 92}
reference 1
g B
Ideal force source ;;_’ 1.5}
[:F}
€ £
o) LE e «d
J | SPS s =t
> a
Step Simulink-PS
converter 0.5
Mechanical 0 / . . . .
translational —t S\ Ro— 0 2 4 6 8 10
reference ) _ Mechanical Time (s)
g_"—' Translational spring . JI_‘ translational Displacement output x(7) of the mechanical system in
) Translational damper reference 2 Example
Mass _f_E
flx)=0 ———{ [ Ro——
By v}V
Solver b PSS > I_l
configurator E 2 >
Ideal translational
motion sensor PS-Simulink Scope
converter
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MECHANICAL APPLICATIONS:

Example: A Single-Degree-of-Freedom Rotational Mass—Spring—Damper System

Consider a simple disk—shaft system shown in Figure a, in which the disk rotates about a fixed axis through
point O. A single-degree-of-freedom torsional mass—spring—damper system in Figure b can be used to
approximate the dynamic behavior of the disk—shaft system. I, is the mass moment of inertia of the disk about
point O, K represents the elasticity of the shaft, and B represents torsional viscous damping. Derive the
differential equation of motion and find the transfer function.

/-T

5] N
N T\/ N
ﬁ‘\\ ‘[-0 \ K® f
NN\ N
Y .
B N BB\
(a) (b) (c)

BASIC SYSTEM MODELS MECHANICAL SYSTEMS
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MECHANICAL APPLICATIONS:

Solution:

The free-body diagram of the disk is shown in Figure c. Because the disk rotates about a fixed axis, we can
apply Rotational mass force equation about the fixed-point 0. Assuming that counterclockwise is the positive

direction, we have .
+ . ZMD =l /‘

T—KO—BO=1,0. K® f

Bé\
I00+BO+KO=1. (c)
By taking Laplace transform:

10529(5) + BSQ(S) + KH(S) = T(S)

Then the TF is
9(5) _ 1
T(S) IOSZ +Bs+ K

BASIC SYSTEM MODELS MECHANICAL SYSTEMS
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ELECTRICAL ELEMENTS

* Voltage and current are the primary variables used to describe a circuit’s behavior. Currentis the flow of electrons. It is the
time rate of change of electrons passing through a defined area, such as the cross section of a wire. The mathematical
description of the relation between the number of electrons (called charge Q) and current i is

=% QW) =[ide

Cdt
The unit of charge is the cou/lomb (C), and the unit of current is the ampere (A)

* Energy is required to move a charge between two points in a circuit. The work per unit charge required to do this is called

voltage.
— —
+ .J-. . + + ! +
Most resistors are designed to have a linear relation between the
. . l'l-‘i 1"_1'; R
current passing through them and the voltage difference across them. N "
This linear relation is Ohm’s law. It states that B T
= =
vV =1IR (a) (b)

(a) A battery-lightbulb circuit.
(b) Circuit diagram representation of the battery-lightbulb circuit

BASIC SYSTEM MODELS MECHANICAL SYSTEMS
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RESISTOR

* A resistor is an element for which there is an algebraic relationship between the voltage across its N
© AVAVAVAY:

terminals and the current. it-that is, an element that can be described a curve of v versus i.

v

v=iR R=Y% p=Ri2=21y2
1 R

* where R is the resistance in ohms (Q).

Band A BandB ganhqc oBand D
1st Digit  2nd Digit pmuttiplier % Tolerance

* Capacitor stores electrons on 2 parallel plates separated by an insulating dielectric material in an
electric field. For a linear the and voltage are Related by:

q=~Cv

where Cis the capacitance in farads (F).

* If the previous equation is differentiated the element law for a fixed linear capacitor becomes

__Cdv
RPT

Energy stored in capacitor: o | | O
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INDUCTOR

* Aninductor is an element for which there is an algebraic relationship between the voltage
across its terminals and the derivative of the flux linkage. For a linear inductor,
di

— [ —
V=M

where L is the inductance with units of Henries (H).

The energy supplied to an inductor is stored in its magnetic field E = %Li2

IMPEDANCE

1. RESISTOR Zg
2. CAPACITOR Z,

3. INDUCTOR Z;
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SERIES AND PARALLEL RESISTANCES

* Series g —
RSy i i
Req=R1+R2+"'+Rn + : _1 + ll l‘z
Vg /M R R
* Parallel g) ) §+ g) 1§ § 2
11,1, 1 R
Req Ri R; R, - L
Series resistors. Parallel resistors
L
Equivalent Transform Impedance (Series) T
L
1 4
Zr=Zp+Z;+2Z, Zr =R+ L(t) + —— j L.
C(t) @ Current
Equivalent Transform Impedance (Parallel) 1 o § "
1_1+1+1 1_1+1+1 R
ZT - ZRr Z] ZC ZT B R L(t) 1
C(t)
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LAPLACE IN ELECTRIC CIRCUITS

* For a resistor:
o(t)=Ri(t) —MWW—

v L —f
V(s)=R I(s)

Impedance Z: instantaneous
ratio of voltage difference to

current

« D
I(s) Remember that

Z,=R
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LAPLACE IN ELECTRIC CIRCUITS

* For a capacitor:

Definition of C:
i(r) = c ol cudlt)
dt v(t)
b L
I(s)=CsV(s)
.v V(s) 1 " Remember that
L | capacitor | = = —
I(s) sC 5 1
C™ . -~
C joC /
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LAPLACE IN ELECTRIC CIRCUITS

* For an inductor:

Y e N
% (5 ) sl Remember that

I(s) Z = joL

BASIC SYSTEM MODELS MECHANICAL SYSTEMS
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TF OF ELECTRIC CIRCUITS

O—l 0—‘
Zp
Uin(t) V. (s) R
O O
ic:(f)l = Z Vpui(t) fcfs)l = 1/(sC) V,u(s)
v. (t) 7
i(t)=—" _As)=——V_{s)
ZR+ZC ZR+ZC
V_(s) Z
_ . H g out — C
’Ei'out(f) Z. zc(t) (s) V. (s)  Z+Z.
Z 1/(sC 1
o ()= —= o (1) H(s)= —5C)
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TF OF ELECTRIC CIRCUITS

Calculate the TF of the following circuit:

O r O

‘/fﬂ (5)
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EFFECT OF LOADING

when we connect an output (oscilloscope, speakers, ...) we load the circuit:

o—{  fp—oe o
VI-”(S) —— Zaui VUUE(S) T
Vin(s) !
- Zowt Viyuls)
1 / S C Z O _ 0
H (S) ( ) | I out

TR+ (10 Z )

HOMEWORK: calculate TF when loading is a capacitor C
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HOMEWORK: PRACTICE

Calculate the TF of the following circuits:

o— o o—\YYVVV—1 o
Viuls) Vour(s) Viu(s) Vout(s)
0 o o 1 o
circuit A circuit B
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KIRCHHOFF’S VOLTAGE LAW

* Kirchhoff’s Current Law (KCL)
— The sum of all currents (flow) entering a node is zero \
» Kirchhoff’s Voltage Law (KVL)

— The oriented sum of all voltages (efforts) around any
closed loop is zero = _—

a. Applying Kirchhoff’s voltage law to the single loop along the clockwise direction gives ‘
—V,+vg+v,+v:,=0

For the series loop, the same current flows through each element. The expressions for vpg,

vy, and v, are

UR:iR

We then have: v, = Ri + L2 + = [ idt

BASIC SYSTEM MODELS MECHANICAL SYSTEMS




SYSTEM MODELING 20 October 2025

KIRCHHOFF’S CURRENT LAW

* When the terminals of two or more circuit elements are connected together, the common junction is referred to as a node.
For a node in a circuit, Kirchhoff’s current law states that the sum of the currents entering the node must be equal to the
sum of the currents leaving that node. The algebraic sum of the currents at the node must be zero,

Zj ij = 0 where ij is the current of the jth element at the node.

* Consider the parallel RLC circuit shown in Figure, in which an ideal current source supplies the desired current to the circuit.

O

We can apply Kirchhoff’s law to either the ground or node 1. Applying — . O+
Kirchhoff’s current law to node 1 gives fal le fcl
ia—iR—iL—iC=0

For the parallel connection, the voltages across all three elements are ! ! N

the sa;m;oe. The expressions for i, iy, and i are P C\) e R " | ve—— ¢ v,

g =— -

“ R ; _ _

. 1 . Vg 1 Vo

i Lfdvodt ia= Lfvodt c—
vO

lc = C m & O -
dt =
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RECALL!

Recall both Node and Loop analysis method.
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SUMMARY

* Voltage-current and energy relations for circuit elements.

2
Resistance: v = iR P = Ri? = UE
apacitance: v = — i — _Cuv
p v c J, 5
di 1
Inductance: v = L—l E = -Li’
dt 2
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Relationship Between Electrical and Translational Elements

Notation Variable Notation Variable

X Position q Charge

V(= X) Velocity i=q Current
a(=v=X) Acceleration z; =q Change in current

F Force e (orv) Voltage

BASIC SYSTEM MODELS MECHANICAL SYSTEMS
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Relationship Between Electrical and Translational Elements

i
F=Ma Newton’s 20 Jaw e=L d—; Inductor law
e(t)—e(0) = 1 I iwydu Capacitor law
F = Kx Spring law ¢
€ = E q

F =By Damper law e = Ri Resistor law

BASIC SYSTEM MODELS MECHANICAL SYSTEMS
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Relationship Between Electrical and Translational Elements

(cont’d)
Notation Variable Notation Variable
M Mass I Inductance
. 1 .
K Spring constant = 1/Capacitance
B Damping constant R Resistance

BASIC SYSTEM MODELS MECHANICAL SYSTEMS
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OPERATIONAL AMPLIFIERS

* Anideal op amp has these characteristics: V_

1. Infinite input impedance O —_—

2. Infinite bandwidth Vout

3. Infinite differential gain V"‘ Op amp O
4. Zero output impedance o _|_

Two “Golden Rules” follow:
Rule 1. The inputs draw no current.

Rule2. With negative feedback, output would do anything it takes to satisfy: VT =V ™.

BASIC SYSTEM MODELS MECHANICAL SYSTEMS
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OPERATIONAL AMPLIFIERS

* Determine the relation between the input voltage v; and the output voltage v,of the op-amp circuit shown in Figure

below. Assume that the op amp has the following properties:
1. The op-amp gain G is very large,
2.V, =-Gvl; and

3. The op-amp input impedance is very large, and thus the current izdrawn by the op amp is very small

o, K n, R
AN AN
R! .f] 13 Rl' 11 f3
AM—"4—o-~ L A== S
1 L+
+ G % 4
o+ <
® :
O

(a) (b)
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SYSTEM MODELING

OPERATIONAL AMPLIFIERS

i f b R
The voltage-current relation for each resistor gives R i |is YW R i |is VW
. Vi — U 1 o W T + °
i = + O
R, G’D ) G’D U Yo
and - - l =
-, 1 °
i» = =
R (a) (b)
From conservation of charge, i} =i, + i3. However, from property 3, i3 ~ 0, which implies that
1 7 i. Thus,
v — 1 U —
R~ R
From property 1, v; = —v,/G. Substitute this into the preceeding equation:
Vs Vo VU,

Ui
— 4+ — — -
R] R]G RIG R?.

Because G is very large, the terms containing G in the denominator are very small, and we
obtain

Solve for v,:

BASIC SYSTEM MODELS MECHANICAL SYSTEMS
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OPERATIONAL AMPLIFIERS

* Negative Voltage Feedback

Some of the voltage from the output is fed-back to the inverting (minus) terminal (negative feedback).

Ly

e |f V+increases, (V' — V™) increases

« op amp amplifies (VY — V™) to the output

* but output is connectedto V™~

e so V™ alsoincreases, and (V' — V™) is reduced

Result: with negative feedback, V' = V'~ (Rule 2) OP amP ¢ O

V0ut

BASIC SYSTEM MODELS MECHANICAL SYSTEMS
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OPERATIONAL AMPLIFIERS R Rg

* Inverting Configuration

* non-inverting input (+) is to ground

* inverting input is between two resistors that connect input to output

op amp
ldeal op amp: + Vout
e Vt -V~ =0,50V" =0
\V4
* infinite input impedance (so I~ = 0) V. V
_ n _ out + - -
= and [, = V-V =0,50V =0
in fb R
in fb
Im + Ifb =0 infinite input impedance (soI” =0)

BASIC SYSTEM MODELS MECHANICAL SYSTEMS
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OPERATIONAL AMPLIFIERS

* Non-Inverting Configuration

R R
* non-inverting input (+) is tied to input m fb
— F—
* inverting input (-) is between two resistors that connect ground to output < —
ldeal op amp:
e Vt -V~ =0,50V" =V"*
Op amp
* infinite input impedance (so I~ = 0) let
o +
n out_Vm V
. = and . = Vi-Vv =0,50V =V" mn
in tb
Rin be

v R

m m

BASIC SYSTEM MODELS MECHANICAL SYSTEMS
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OPERATIONAL AMPLIFIERS

 What is the transfer function of this circuit?

Rin Zc
- | | l
Vin I I
op amp
+ Vout
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OPERATIONAL AMPLIFIERS

 What is the transfer function of this circuit?

2% R
Rin Zc
There are two impedances in parallel: o— I I |
Vin
sR.C+1
i: 1+1 :sC+1 =/

BASIC SYSTEM MODELS MECHANICAL SYSTEMS



SYSTEM MODELING 20 October 2025

OPERATIONAL AMPLIFIERS

* An Op-Amp Differentiator & Integrator
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POTENTIOMETERS MODELING

Perhaps the simplest coupled electromechanical system is the rotary potentiometer. The image below
shows how a potentiometer works, followed by a photograph of an actual potentiometer.

wiper turns with dial

resistive material
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POTENTIOMETERS MODELING

* This wiper can rotate about the center of the potentiometer while maintaining electrical contact with the terminal labeled

n o

W.
* The resistance between the wiper and "A" is labeled R1, the resistance between the wiper and "B" is labeled R2.

* The total resistance between "A" and "B" is constant, R1+R2= R;;.
* If the potentiometer is turned to the extreme counterclockwise position such that the wiper is touching "A" we will call this

6=0; in this position R1=0 and R2=R;;.
* If the wiper is in the extreme clockwise position such that it is touching "B" we will call this 8=0max ; in this position R1=Rtot

and R2=0.

‘\

-
i -~
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POTENTIOMETERS MODELING

R1 and R2 vary linearly with 0 between the two extremes:

e = R, e = R, e
out RT + Rz in RM in +
ein -
We can now substitute the expression for R1 in T
terms of 6, 9
;) Re
e =— e = e

In this expression you can see that e, is directly proportional to 0, the rotation of the potentiometer.

BASIC SYSTEM MODELS MECHANICAL SYSTEMS
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MODELLING LINEAR SYSTEMS: MOTOR MODELING

* The DC motor is a common plant component in industrial systems — it directly provides rotary motion in response to an

electrical input. In this section we shall derive the mathematical model of a simple DC motor and it’s Transfer Function in
the frequency domain.

Battery Amature Conductor

Commutator

Permanent Magnet

BASIC SYSTEM MODELS MECHANICAL SYSTEMS



DC MOTOR MODELING

The motor has a Voltage V applied to the motor’s armature that is influenced by a fixed magnetic

field. This results in an applied motor torque which rotates the motor in the direction of 6 . The
output of the system is the rotational angular rate w of the shaft.

_ a9 _

w—dt—B (1)

Our model also assumes that the motor has simple viscous friction, that is the friction in the
motor is directly proportional to the shaft angular rate but operating in the opposite direction
(opposing rotation).

motor friction = —bo (2)

where b is the motor viscous friction constant.

BASIC SYSTEM MODELS MECHANICAL SYSTEMS



SYSTEM MODELING 8 November 2025

DC MOTOR MODELING

The torque generated by a DC motor is proportional to the current flowing in the armature
circuit and the strength of the magnetic field. In this analysis we’ll assume the field is of fixed

strength and thus that the motor torque T is related to the armature current i by a constant
factor K; as shown in equation 3

T = K,i (3)

The back e.m.f. produced by the motor is directly proportional to the angular velocity of the
shaft (and of opposite polarity to applied voltage) and is given by equation 4

e=K,0 (4)

BASIC SYSTEM MODELS MECHANICAL SYSTEMS
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DC MOTOR MODELING

In SI units the motor torque and back e.m.f. constants are equal K; = K, = K.
By applying Newton’s second law to the rotor we get

] =T —bO =Ki— bb (5)

Applying Kirchoff’s Voltage Law to the Armature circuit yields

LZ+Ri=V—e=V-K@ (6)

We can re-write these equations in terms of w thus:

J& + bw = Ki (7)

di . v
LE+RI—V Kw (8)
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DC MOTOR MODELING

Thus 7 and 8 are the differential equations that represent the DC motor. In order to expressthe
performance of the system as a transfer function relating the output w to the input V expressed

in terms of the Laplace variableswe need to take Laplace transforms of these
equations:

JsW(s) + bW (s) = KI(s) (9)
LsI(s) + RI(s) = V(s) —KW(s) _ (10)

Where W(s) and I(s) are the Laplace transforms of w(t) and i(t).

By eliminating I(s) from equations 9 and 10 we can see that the transfer function (in the s-
domain) of the DC motor is given by

W) _ K
V) (Js+b)(Ls+R)+K*

P(s) = (11)
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DC MOTOR MODELING

Aside
If we rewrote 7 and 8 in terms of 8 instead of w we get

] + b0 =Ki (12)
L=+Ri=V-K@ (13)

Taking Laplace transforms:
]s%20(s) + bsO(s) = KI(s) (14)
LsI(s) + RI(s) = V(s) — KsO(s) (15)

Re-arranging to eliminate I(s) yields

0(s) _ K
V(s) {(Us+b)(Ls+R)+K2}s

(16)

Thus 56) _ LW or @(s) = wE)

V(s) s V(s) s (17)

This is consistent with intuition and shows that in the s domain O is the integral of W. i.e.
angular velocity is the derivative of angular displacement.
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MOTOR MODELLING: DC MOTOR SPEED MODEL

For the simulations we are assuming the following motor parameters L=0.5, r=1, b=0.1, J=0.01, K=0.01

< =
.

Resistance Viscous Friction

>- didt(i) ] i Torque - d2/dt2(theta) ——) d/fit(theta)
In = Armature - Outi

Inductance Integrator  Current Kt Inertia Integrator1
Input Voltage Mioker
Angular
Speed

<
back emft
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MODELING OF FLUID SYSTEMS

Gases and liquids are collectively referred to as fluids. Fluid systems are used in many industrial as well as commercial applications. For
example, liquid level control is a well-known application of liquid systems. Similarly, gas systems are used in robotics and in industrial
movement control applications.

CONSERVATION OF MASS

For incompressible fluids, conservation of mass is equivalent to conservation of volume, because the fluid density is constant. If we
know the mass density p and the volume flow rate, we can compute the mass flow rate. That is, g,,= pq,,, where gq,, and q,, are the
mass and volume flow rates.

The weight density as ¥ = pg, where g is the acceleration due to gravity.

The mass density of fresh water near room temperature is 1.94 slug/ft3, or 1000 kg /m3.

The mass density of air at sea level and near room temperature is approximately 0.0023 slug/ft3 or 1.185 kg/m3.

Pressure is the force per unit area that is exerted by the fluid (P=F/A).

For a liquid of density p, the absolute pressure p and the liquid height h are related by

YV VVY

p=pa+pgh

BASIC SYSTEM MODELS FLUID SYSTEM MODELING
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SYSTEM MODELING

MODELING OF FLUID SYSTEMS

Gases and liquids are collectively referred to as fluids. Fluid systems are used in many industrial as well as commercial applications. For
example, liquid level control is a well-known application of liquid systems. Similarly, gas systems are used in robotics and in industrial

movement control applications.

HYDRAULIC SYSTEMS:

1- Hydraulic resistance
Hydraulic resistance is the resistance to flow which occurs as a result of a liquid flowing through valves or changes in a pipe diameter. If
the pressures at either side of a hydraulic resistance are P1 and P2, then the hydraulic resistance R is defined as

R= Pressure difference  p;— py
Change in flow rate, m’/s q
\—
—» 4
P
2
Py
R
Pl - PZ — Rq = ) | 1
‘ pi P2

Hydraulic Resistance «
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SYSTEM MODELING

HYDRAULIC SYSTEMS:

1- Hydraulic resistance
Hydraulic resistance occurs whenever there is a pressure difference, such as liquid flowing from a pipe of one diameter to one of a

different diameter. If the pressures at either side of a hydraulic resistance are P1 and P2, then the hydraulic resistance R is defined as

R, R, Req
qm—> [;E |;|E] —> 4, = gm —> [;|2| —>{n R = Rl + Rz
P1 P2 P3 P P3
|§|21| dm1
: 5 L 1,2
m —> —>fqm = Gm—> —>qm =
P Ry qma|[ P2 P 12} Req Ry R
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MODELING OF FLUID SYSTEMS

2- Hydraulic capacitance
Hydraulic capacitance is the term used to describe energy storage with a liquid where it is stored in the form of potential energy.
Consider the tank shown in Figure 2.51b. If g;and g, are the inflow and outflow, respectively, and V is the volume of the fluid inside

the tank, we can write

h—qp = ﬂ =A dh _ Change in liquid stored, m’

Ty C
dt dt Change in head, m

Now, the pressure difference is given by

-]
=— | (g1 —g2)dt
P-P=hpg=p or h=-L- p=c )i
Pg
Substituting first Equation in the second Equation , we obtain / - \
1
Ad !
th —q2 = e P L
pg dt «—
dp P hI A R
_g. =CEE = q p, FEia il op
ql ﬂiz C dr J —— 1 2 —»
Py : P,
the hydraulic capacitance can be defined as (a) NG J @
FIGURE 2.51
C= i Hydraulic system elements. (a) Hydraulic resistance. (b) Hydraulic capacitance. (c) Hydraulic inertance.

P&
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MODELING OF FLUID SYSTEMS

3- Hydraulic inertance

Hydraulic inertance is similar to the inductance in electrical systems and is derived from the inertia force required to accelerate fluid
in a pipe.

Let P;- P, be the pressure drop that we want to accelerate in a cross-sectional area A, where m is the fluid mass and v is the fluid
velocity. Applying Newton’s second law, we can write

do
—=A(P,-P
mdf (A >)

If the pipe length is L, then the mass is given by m = LpA

We can now write Equation above LpA % = AP - D)
dov
P-PB)=Lp— N
(P-P)=Lp df l / \
but the rate of flow is given by g = Av, so Equation above can be written as Py L
«—
) THE
(-p)=2%4 = “I S boEEAE s
A dt / P —F 2
Py : P,
Lp d (a) (b) (©
I=— (Pl—Pz):I—q
A dt FIGURE 2.51 - /

Hydraulic system elements. (a) Hydraulic resistance. (b) Hydraulic capacitance. (c) Hydraulic inertance.
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SYSTEM MODELING

MODELING OF FLUID SYSTEMS

Example: A Single-Tank Liquid-Level System with a Pump
Consider the single-tank liquid-level system shown in Figure below, where a pump is connected to the bottom of the tank through a

valve of linear resistance R. The inlet to the pump is open to the atmosphere, and the pressure of the fluid increases by Ap when
crossing the pump. Derive the differential equation relating the liquid height h and the volume flow rate g, at the outlet. The tank’s
cross-sectional area A is constant. The density p of the liquid is constant.

Solution
We begin by applying the law of conservation of T7 to the tank,

av_, _
e 0 TC Pa
The fluid ¥ . inside the tank is Ah. For constant fluid density and const
sectional area,
av_ A% ["f—_-ﬁﬁh-\\
dt dt N 4
ORD Py s
7
The mass flow rate into the tank is —> @ I:;F:l ,/ A i/ / —> {,
Pa Ap P11 P2 LAl
_Phhp
q i R A

7 BASIC SYSTEM MODELS FLUID SYSTEM MODELING
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MODELING OF FLUID SYSTEMS

where p; = p, + Ap and p, = p, + pgh, which is equal to the hydrostatic pressure at the
bottom of the tank. Thus,

_ Ap—pgh
Gmi ==

The mass flow rate out of the tank can be expressed in terms of the volume flow rate g,

as
dmo = "o Pa
Substituting these expressions into the law of conservation of mass gives ©
AR
AN
, " RQ Vs
Rearranging the equation gives @ Z ViV
—> @ [;IEjl ///p {1/ / —> 4,
di pg, Ap Pa pp 1 P2 N2
A—+2h-—Lt=- g,
dt R R A

For a liquid-level system with two or more tanks, we apply the law of conservation of
mass to each tank.

8 BASIC SYSTEM MODELS FLUID SYSTEM MODELING
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SYSTEM MODELING

MODELING OF FLUID SYSTEMS

Example:
Figure below shows a liquid level system where liquid enters a tank at the rate of gi and leaves at the rate of g, through an orifice.

Derive the mathematical model for the system, showing the relationship between the height h of the liquid and the input flow rate g;.

Solution:
—go= 2P Recalling th =h
Recall G q:-—pg di ecalling that p = hpg,
4 —»
dh
= A—+(, 1
1 ]
Sincep,-p,=Rq,
T
_p—p> _ hpg H R
=R R 2 v — 4,
Agp

So that substituting in Equation 2 in 1 gives

dt
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SYSTEM MODELING

MODELING OF FLUID SYSTEMS

Equation 3 shows the variation of the height of the water with the inflow rate. If we take the Laplace transform of both sides, we

obtain
_ PE 1
Gi(s) = Ash{s}+?h{5} a(5) > > h(s)
As +pg/R
and the transfer function of the system can be written as
his) _ 1 g —»
Gil) As+ Pg
R
H R
v — 4o
A gp

1 BASIC SYSTEM MODELS FLUID SYSTEM MODELING
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HOMEWORK

A liquid level system is shown in Figure 2.69 where g, and g, are the inflow and
outflow rates, respectively. The system has two fluid resistances, R, and R,, in
series. Derive an expression for the mathematical model for the system.

4 —»

e ® & § & & =" ® "® &

FIGURE269 pnnnnnnthtthhthh il h —» 4,
Liquid level system Apg
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OUTLINES

* How to find mathematical model, called a state- space representation, for a linear, time-invariant system

* How to convert between transfer function and state space models

MODELING METHODS

There are three methods used for modeling dynamic systems

1. Differential equations

2. Transfer functions

3. State space

e Uses matrices and vectors to represent the system parameters and variables

 In control engineering, a state space representation is a mathematical model of a physical system as a set of input,

output and state variables related by first-order differential equations. To abstract from the number of inputs, outputs

and states, the variables are expressed as vectors.

STATE-SPACE REPRESENTATION




SYSTEM MODELING 1 December 2025

MOTIVATION FOR STATE-SPACE MODELING

Conventional Control Theory (root-locus and frequency response analysis and design) is applicable to linear, time
invariant, single-input, single-output systems. This is a complex frequency-domain approach. The transfer function

relates the input to output and does not show internal system behavior.

Modern Control Theory (state-space analysis and design) is applicable to linear or nonlinear, time-varying or time
invariant, multiple-input, multiple-output systems. This is a time-domain approach. This state-space system

description provides a complete internal description of the system, including the flow of internal energy.

STATE-SPACE REPRESENTATION
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MOTIVATION FOR STATE-SPACE MODELING

>

YV V V V

Easier for computers to perform matrix algebra

o e.g. MATLAB does all computations as matrix math

Handles multiple inputs and multi output dynamic systems.

Gives a more geometric understanding of dynamic systems.

Forms the basic for much modern control theory.
Provides more information about the system

o Provides knowledge of internal variables (states)

STATE-SPACE REPRESENTATION
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STATE VARIABLES, STATE-VARIABLE EQUATIONS, AND STATE EQUATION

State-Space Form

x(t) = f(x,u,t) x(t) = A(D)X(t) + B(t)u(r)
y(t) = g(x,1u,t) y(t) = C(t)x(t) + D(t)u(t)
Non-Linear, Time-Varying Linear, Time-Varying

o

| D(t)
Direct Transmission Matrix
Input Matrix State Variables + Outputs
B + x(t) x(t) N Y(t)
——) B(t) > J.dt ) C(t) )
u(t) L +

Inputs Output Matrix

State Matrix

At) |

STATE-SPACE REPRESENTATION
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STATE VARIABLES, STATE-VARIABLE EQUATIONS, AND STATE EQUATION

» The state is the minimum amount of information needed about the system at time t, such that its future
behavior can be determined without reference to any input before t,.

» State variablesform the smallest set of independent variables that completely describe the state of a system.

» The state variables are independent variables capable of defining the state from which one can completely
describe the system behavior. These variables completely describe the effect of the past history of the system

on its response in the future.

» Given the mathematical model of a dynamic system, the state variables are determined as follows:

* The number of state variables is the same as the number of initial conditions needed to completely solve the

system model.

STATE-SPACE REPRESENTATION
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STATE VARIABLES, STATE-VARIABLE EQUATIONS, AND STATE EQUATION

State Variables |_> x
In the mechanical system shown in Figure aside, all parameter values are in consistent é k=10
physical units. The model of this system is provided by its equation of motion y > F()
—] «
2% +0.5% +10x = F(t) 05 Tm=2

Two initial conditions x(0) and x(0)

The state variables are selected as x; =x and x, =x

State Variables Equation:

There are as many state-variable equations as there are state variables. Each state-variable equation is a first-
order ODE whose left side is the first derivative of a state variable and whose right side is an algebraic function

of the state variables, system inputs, and possibly time t.

STATE-SPACE REPRESENTATION
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STATE VARIABLES, STATE-VARIABLE EQUATIONS, AND STATE EQUATION

State Variables Equation:

-

y
Suppose a dynamic system has n state variables x4, x5, ...., x,and m inputs 71 k=10
— T
: , . /
Uq, Uy, ... ., Uy,. Then, the state-variable equations take the generic form g o)
(X ] .
x] =ﬁ(xlf el fxﬂ;u]f —ee rum;t) b—05 m=2

-562 =f2(x11 ey X Uy, e rum;t)
2x+0.5x +10x = F(t)

kin =fn(x'1; ooy XnyUr, e ;um;t)

Where f1, f>, ...., [ are algebraic functions of the state variables and inputs and are generally nonlinear

The state-variable equations can be written as

il = x2
i';:_ = E[—O.SIQ —101'] +P(f)]

STATE-SPACE REPRESENTATION
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STATE VARIABLES, STATE-VARIABLE EQUATIONS, AND STATE EQUATION

State Equation
x = Ax+ Bu
x| "
Xo Uy .
x =4 = state vector, u=4{ = input vector
Xy Uy,
11 a1z A1y by by, b
253 (25y] ) . by by e by . )
A= " | = state matrix, B= " |= input matrix
_anl II31’::2 ann | _bnl bnz bnm 3}

STATE-SPACE REPRESENTATION
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STATE VARIABLES, STATE-VARIABLE EQUATIONS, AND STATE EQUATION

State Equation |_, .
oW / J—
4 X1 =% 2 k=10
X2 = 1[-0.5x, —10x; + F(1)] y R
—} “~m=2
r.’h 0 1 X1 0 b=05 !
ol it s
X2) |- -1 |lX2) [z 2x+0.5x +10x = F(¢)

Therefore, the state equation is

Since there is only one input F(#), input vector u is scalar and denoted by u.

STATE-SPACE REPRESENTATION
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STATE VARIABLES, STATE-VARIABLE EQUATIONS, AND STATE EQUATION

Output Equation and State-Space Form

x
Output Equation: / |_)
; k=10
AT —
_ /
—1
B ] —1 A . —
Ci1 €12 .. Ciy b=05 m=2
C21 Cap ...  Cgy
C= = output matrix . :
P 2% +0.5% +10x = F(t)
_Cp1 Cp2 CP"_pxn [O 1] X, )
= +0-u
Y X,
_dll dqs dlm_ So that C = [ 0 1]and D = 0. Note that the direct
transmission matrix D is 1 x1 and hence denoted by D .
dy dn ... dy, ) .. ,
D= = direct transmission matrix
_d-"“’l dpz d?’m dpxm

STATE-SPACE REPRESENTATION
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STATE VARIABLES, STATE-VARIABLE EQUATIONS, AND STATE EQUATION

Output Equation and State-Space Form

State-Space Form:
The combination of the state equation and the output equation is called the state-space form.

Matrix
Vectar Vector VE-I:BHF Matrix
State EQUation \{x = Anxnxnx] + anmumx] 1| (f) _ Ax(r) —|— Bﬂ(f)
Output Equation —> ¥px1 = Cpxnxnx1 + Dpxmumxl Scalar

y(1) = Cx(7)+ Du(z)

Scalar

Vector or Matrix Vectaor

STATE-SPACE REPRESENTATION
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State-Space Example1

system dynamics transfer function
mX+bx+kx=f Y(s) 2 =k ¢
input U = f U(s) ] mSZ n bs n k
output y = f — bx — kx - .
state-space modeling lf

X1, X5: second-order system
state variables: x; = x, x,= X <« cancompletely describe

the system'’s state
state-space dynamics

[ill - [ X ! ] (xl) + [ 0 ]H <« first-order vector
*2 —k/m  —b/m]\xz 1/m

differential equation
X1
y=|-k -—b] (x2)+1><u

state-space representation

‘J'c=Ax+Bu, y=Cx+Du

STATE-SPACE REPRESENTATION
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STATE SPACE REPRESENTATION OF NTH-ORDER SYSTEMS OF LINEAR
DIFFERENTIAL EQUATIONS

Consider the followin nth order system:
y" + a1y”'1 + i tapqyt+a,y=u

Where y is the system output and u is the system input.
The system has nth integrators (state variables). Let us
define n-state variables

X1 =.'V'

STATE-SPACE REPRESENTATION
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STATE SPACE REPRESENTATION OF NTH-ORDER SYSTEMS OF LINEAR
DIFFERENTIAL EQUATIONS

).’.:1:3’(.'2
.'X.:zsz

Xn-1 = Xn
x:n == _an xl Y e _alxn + u

Then the state space equation is given by:

x = Ax + Bu
xn [0 1 0 01 (o
X 0 0 1 0 0
2
x=|xsla=|0 0 0 0 ,B =0
' 0 0 0 1 '

STATE-SPACE REPRESENTATION



SYSTEM MODELING

STATE SPACE REPRESENTATION OF NTH-ORDER SYSTEMS OF LINEAR
DIFFERENTIAL EQUATIONS

Since, the output equation is:
y=X1
The state space output equation is

y = Cx where C=[100... 0]

Note: No. of Order system equal to No. of State equation

STATE-SPACE REPRESENTATION
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STATE SPACE REPRESENTATION OF NTH-ORDER SYSTEMS OF LINEAR
DIFFERENTIAL EQUATIONS

General Procedure: Example:y + 3y + 7y + 6y =f
1- Solve ODE for highest order derivative (dzr(f)) 1-y=f-3y =7y — 6y
. _ dx(t) d?x(t d™ lx(t
2- Define state vectorsas  x(t) = [x(t) ZE') djg) dt”f(l ) 1* 2-X{ =V, Xy =V, X3 = J
3- Define Input/control vectors as  w(t)=[uy (t), uz (1), Upmy]” 3-Inputu = f, outputy
4- \Write state equations: 4- %1 = X3,X3 = X3,X3 = f-3y — 7y — 6y
x(t) = Ax(t) + Bu(t)
X1 0 1 01 0
Xl=10 0 1 ||X2]+|0|u
X3 —6 -7 -=311%3 1
5- Write output equations X1
y(t) = Cx(t) + Du(t) 5-y=[1 0 0]|*
X3

STATE-SPACE REPRESENTATION
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STATE-SPACE MODELING

The equations of motion are derived as ’—’ *1 r )
ky=5

.- . . V4 2=
{éxl +10x; = 5(x2 —x1) - 0.8(x, —x1) = F /] r— 10 T —
X2 +5(x, —x1) +0.8(x, — %) = F 1
2 ( 2 1) ( 2 1) 2 ;W > Fl(t) > Pz(t)
-1 _
The system model comprises two second-order ODEs; hence, a total of M= —} my=1
four initial conditions are needed for complete solution. There are b=0.8

therefore four state variables, selected as

X1 =Xq
X2 = X
X3 :I"]
X4 = X rifl = X3

x'g =X
32:3 — —30x1 + 103:2 +1.6I4 —1.61'3 +2F_|
._i:‘l = —ng + 5.3'(.'] —0.8x4 + D.Bxg +_F2

The state-variable equations are then formed as <

STATE-SPACE REPRESENTATION
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STATE-SPACE MODELING

x = Ax+Bu
where
(x| 0 0 1 0 | 0 0]
1 0 0 F
x=1"21 , A= 0 0 0 , B= ,u={ "
X3 -30 10 -16 1.6 2 0 B,
X4, ' 5 -5 08 -08] , 0 1],
Since the outputs are x; and x;, we have
X1 X1
Y= J\.fl a X3
As a result, the output equation is where
1 0 0 O
V21 = CoaXaa + Dooting C= , D=0,
o 0 1 0],

STATE-SPACE REPRESENTATION
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FOR MORE INFORMATION

£

< Click Here >

STATE-SPACE REPRESENTATION



https://www.youtube.com/watch?v=hpeKrMG-WP0
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TRANSFER FUNCTION TO STATE SPACE

e Many techniques are available for obtaining state space representations of transfer functions

STATE SPACE REPRESENTATIONS IN CANONICAL FORMS

Consider a system defined by,
¥ + a1y + -t an_19 + any = boul™ + b1u(™Y 4o 4 by 10+ bu

where 'u’ is the input and 'y’ is the output. This equation can also be written as,

w _ bos™+b; sm—1l4...4b,,_15+b.,
s"+a18" "+ tan—15+an

U(s) —

2 STATE-SPACE REPRESENTATION
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TRANSFER FUNCTION TO STATE SPACE

CANONICAL ForM I Controllable Canonical Form (CCF)

Y(s) _ bos™ +b15™ 1+ 4byy_15+bm
o We have, U(S) — Sn+a15ﬂ—1+---+an_15+ﬂ-n

Y(s) _ Y(s) o X(s)
¢ Lot 7y = XG) X Ul
o Thus,
Y(S) -1
X() bos™ + b1s™ L 4+ bm_15+
X(s) 1
U(s)  s*+as"1+---+apn_15+ay
(* ]
(t) SN i SN S
U — N a . e s n—1— -
B dtn L ggn—1 Lt
d™x t) dn—1lx . dx -
dtr Hdgn—1 Lt

3 STATE-SPACE REPRESENTATION



TRANSFER FUNCTION TO STATE SPACE

CANONICAL ForwMm 1

Let:m::r:;:r:z:i—f ;m3=%§---xn='§;;_lf
517 [0 1 0 0 il 07
o 0 0 1 0 2 0
=1 . . Sl E Y
1
_-:i:ﬂ_ __an _an_l 580 oo o _al_ -:E.n- _1_
. - .dMxe dn— 1z o
We know that,
Y(s) = X(s)(bos™ +bis™ 4+ -+ bm_15+bm)
dn—1g dn—2g dx
~y(t) = bo Zmt Tt b1 b
y(t) = boxn +b1xn_1+---+bpx1

STATE-SPACE REPRESENTATION
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TRANSFER FUNCTION TO STATE SPACE

CANONICAL ForMm 1

o Case-2: If m =n,

i u(t) —a dn_lm—---—a ﬁ—am
am Hagn—1 mmha "
d"— 1z dm1zg
y(t) = bo(u(t) —a: e anx) + by gy + -+ bna
dr 1z dx
y(t) = (b1 —aibg)—— + -+ (bp—16n_1bg) — + (b — anbp) + bou
dtn—1 dt
T
2
Y= by —anby : bpo1—am_1bo -+ bi—aibo| | | T [bo]u
In

STATE-SPACE REPRESENTATION
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TRANSFER FUNCTION TO STATE SPACE

i . __ 55%47s49
Consider a transfer function, G(s) = 3570613
Y(s) _ Y(s) X(s) _  5s%47s+9
Let U(s) ~ X(s) X U(s) = s34+8s5246s5+2
Thus,
Y (s) 2
_ 1
X(5) 55" +7s+9 (1)
X(s) 1 2)
U(s) s34 852+ 6s+ 2
From eq(2), U(s) = X(s)[s® + 85 + 65 + 2]
d>z d*x
u(t) — dt3 +8F +'6——|—2:B
d>x . (t) — 8 d?x 6 dx 5
a dt? a "

6 STATE-SPACE REPRESENTATION



TRANSFER FUNCTION TO STATE SPACE

ExAaMPLES ON CANONICAL ForM-I: EXAMPLE-1

2
Letmlzm;mgz—'mgzi—tg’#

T1 0 1 0 T1 0
ifg —2 —6 —8 I3 1

From eq(1l), Y (s)= X(s)[5s?+ Ts+ 9]

d*x dx
t) = o0—4+7—+9
y(t) a2 e T
y(t) = bxz+ Txa+ 92,
Tl
y = |9 7 5] |z2| +[0]u
I3

7 STATE-SPACE REPRESENTATION
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TRANSFER FUNCTION TO STATE SPACE

i . _ 55247549
Consider a transfer function, G(s) = 23 T os+15
Let
X(s) 1
U(s) s242s+15
d*x dx
dt? dt (%)
I _d
Letm1—$,$2—d—f

8 STATE-SPACE REPRESENTATION
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TRANSFER FUNCTION TO STATE SPACE

Y (s)

= 5s°+T7s+9
X(.s) s+ (s +
d?x dx
t = H—4+T7T—+4+9
y(t) az T
dx dx

= H(—1bx —2— t T— +9

( x dt—l—u())-l— dt+ x

dx
= —66x —3— + Hu(t
z—3—+ u(t)

y = [-66 -3 [i;]—l—[i’)]u

STATE-SPACE REPRESENTATION




STATE-SPACE TO TRANSFER FUNCTION

e The transfer function (for SISO systems) or transfer matrix (for MIMO systems) can be systematically derived
from the state-space form.
- Consider the state-space form

x(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

First, we note that the Laplace transform of a vector such as x is handled as

r:l:lﬁ Fﬁ{x1}"
Laplace transform

=42 T £ixi = x(e) = P

X L

Assuming zero initial state vector, x(0)=0,,%1, Laplace transformation of the state-space form yields

sX(s)= AX(s)+ BU(s)
¥Y(s)=CX(s)+ DU(s)

STATE-SPACE REPRESENTATION
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STATE-SPACE TO TRANSFER FUNCTION

e The first equation is manipulated as To find the | ri
* To find the Inverse matrix:

Pre-multiply by b
(sI— A)X(s) = BU(s) = X(s)=(sI-A)'BU() LetE =% 7|
(sT-A)"1 c d
* Inserting this into the second equation results in l

Y(s) = C(sI - A)'BU(s) + DU(s) , (4 -]
E—l - adj(E) —_l=c a

= [C{SI—A)_]B +D]U{S) " det(E)  ad-cb

* For a SISO system with input u and output vy, the transfer
functionis G(s) =Y (s)/U(s), sothat Y(s) = G(s)U(s).

G(s)=C(I-A'B+D

Where I is identity matrix

STATE-SPACE REPRESENTATION
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STATE-SPACE TO TRANSFER FUNCTION

* Example: Single-Input-Single-Output System
A system’s state-space representation is

x=Ax+Bu
y=Cx+Du
Where
Xy 0 1 0
X:{IZ} A:I:_] _%]r B=|:1}, C=|:] %]; D:O! H=1u
Solution:

Since both uand y are 1 X 1, the system is SISO; hence, there is only one transfer function.

G(s)=C(sI-A)"'B - With this, the transfer function is obtained as
{SI—A}"=; s+3 1
s+2s+1) -1 s

1 s+2 1[0 lg41
G{5}=C[SI —ﬂ)-lB =1 B 3 — 2
[ 2:'52+-§5+1|: -1 s||1| s*+2s+1

STATE-SPACE REPRESENTATION
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STATE-SPACE TO TRANSFER FUNCTION

* Example: Single-Input-Single-Output System
A system’s state-space representation is

x=Ax+Bu
y=Cx+Du
Where
Xy 0 1 0
X:{IZ} A:I:_] _%]r B=|:1}, C=|:] %]; D:O! H=1u
Solution:

Since both uand y are 1 X 1, the system is SISO; hence, there is only one transfer function.

G(s)=C(sI-A)"'B - With this, the transfer function is obtained as
{SI—A}"=; s+3 1
s+2s+1) -1 s

1 s+2 1[0 lg41
G{5}=C[SI —ﬂ)-lB =1 B 3 — 2
[ 2:'52+-§5+1|: -1 s||1| s*+2s+1

STATE-SPACE REPRESENTATION
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LINEARIZATION

» The object of linearization is to derive a linear model whose response will agree closely with that of the
nonlinear model.

» The systems that we have studied so far have primarily been assumed linear, making their analysis somewhat
straightforward.

» Many dynamic systems contain elements that are inherently nonlinear, which cannot be treated as linear,
except for a restricted range of operating conditions.

» The most direct way of dealing with a nonlinear model is to linearize it about a reference equilibrium.

2 LINEARIZATION
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LINEARIZATION

» Consider again the general, nonlinear system in Equation below:

S
>

Linear approximation
of fat P

S (%)

Operating point
» Often have a nonlinear set of dynamics given by % = f(x, u)

» where x is once gain the state vector, u is the vector of inputs, and f (-, -) is a
nonlinear vector function that describes the dynamics. (a)

» First step is to define the point about which the linearization will be performed
typically about equilibrium points — a point for which if the system starts there it
will remain there for all future time.

» So in theory, if the state gets to an equilibrium, it will perfectly stay at the
equilibrium forever.

3 LINEARIZATION
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LINEARIZATION

> In practice, because of noise, disturbances, etc., the state never stays perfectly at x,
but may rather stay close to it. This motivates the study of nonlinear systems near
their equilibria, as we see next. AS

> Let
Ax = x(t) — x
Au=u(t)—u

» How to find equilibrium point or operating point?
Characterized by setting the state derivative to zero: x =f(x,u) =0

We can solve for X, u, if the input is known! Then these are equilibrium points /
or operation points. (b)

Analytically, we can use the Taylor series expansion of f(x) about the operating point, as

2
(x— D)t 1df
P Z'dx

Linear terms

4 LINEARIZATION

f(x)= f(x)+djf (x—X)*+ .. +H.0.T
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LINEARIZATION

Assuming Ax = x(t) — X'is small, the linear approximation of f(x)is achieved by
retaining the first two terms, while neglecting the remaining terms containing higher
powers of x(t) — x : AS
_, df
(x)= f(x)+—L| Ax
f) = fx)+—

X

Therefore, the closer x(t) is to x of the operating point, the better the linear AfI
approximation will be at.

Recall the vector equation x= f(x, u), each equation of which can be expanded as

Linearization x~f(xu)+ % | (x —X) + % |@m(u —u) Y
x(t) = f(x(t),u(t)),

y(t) = h(x(t), u(t)) ]

»

_ _. . dh _. . dh _
y ~ h(x,u) T o |zo(x —X) + u |zm(u —u)

5 LINEARIZATION
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LINEARIZATION

x(t) = f(x(t),u(t)), Linearization x ~ f(x,u) + % l@w(x—x) + % |@w(w—u)
)

y(£) = h(x(t). u(t - L )
y~h(xX,u) + o —X) + —|zn(u—-u)

Ax =x(t) — x Au=u(t) —u y —h(x,u) = Ay

Then Ax = x = g |GwAx + % |@wAu  since x is constant and f (x, u)=0 at operating points. ?}E = [ gfl gi; ]
oh oh
Ay = 52 lawhx + 30 e Au

6 LINEARIZATION
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LINEARIZATION

A B

Ak~ | \@,—,)le 2| gwyhu
C D

Ay = % | Ax gz |zm) AU

7 LINEARIZATION
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LINEARIZATION

. af af oh oh
Ax = a |(§,ﬁ) Ax + a |(f,ﬁ) Au Ay ~ a |(J_C,1_l) Ax + a |(f,ﬁ) Au
Cof Oh . Oh T [ ofi 91 9f ]
dry  Jz9 drn duy  dus Y Jum
o 0 ... S of M ... Oh o oh dh b oh
— rp  Jr3 Tn — duy Ou Dy = T e e e T = —
Alt) = | B(t) = Lo | dx4 0x,, (£) ou
| dr) dr drn ] (%,0) [ Juy  dug Oum (% 1)

Typically drop the “A” as they are rather cumbersome, and (abusing notation) we write the state equations as:

M'
—
L
R
Il

A(t)x(t) + B(t)u(t)
C(t)x(t) + D(t)u(t)

8 LINEARIZATION
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EXAMPLE:

(A simple pendulum). Consider the dynamics of the pendulum depicted below, where u denotes an
input torque provided by a DC motor.

I\

LINEARIZATION
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SOLUTION:

The equation of motion for this system is

2
I% + Mglsinf = u
y=29,
Solve for higher order:
X mgl . 1
6 =—"Lsing +-u
I I
State variablesare x; = 6 ,x, = 6 mg sinf 8 mg coso
. . . . mgl .
State variable equationsare x; = x, , X, = ——1Sinxy +-u output y = x4

|

Nonlinear term

So, we need linearization!

1 LINEARIZATION
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SOLUTION:
£(x,u) = [ i ]  h(x,u) = ;.
i}ismﬂ:l —1—-;
[1=X1=X3, [, =%, = —nglsinxl +%u

Calculate the equmbrlum point when f(x,u) =0

mgl u
x, =0, ——gsmx1 +32 - U =0 then sinx =—
I mgl

suppose we turn off the DC motor, that is, we set u = 0.

sink = 0,x = [0, kr] wherek =0,+1, 12, ......

1 LINEARIZATION
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SOLUTION:
£(x,u) = [ i ]  h(x,u) = ;.
—EIQI sinzy + 7
fi=x1 =X, f =%, = —nglsinxl +%u

Calculate the equilibrium point when f(x,u) = 0

mgl . 1 .- u
X =O,—Tgsmx1 +7u=0 then Smx=m—gl

suppose we turn off the DC motor, that is, we set u = 0.

sink = 0,x = [0, kr] wherek =0,+1,+2,......

1 LINEARIZATION
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SOLUTION:

Linearization
0 1 0
A= B = = (10 —
!—Mfi COS T'1 U] Llr:| ¢ { ] b 0

So at equilibrium point (i, u) = (m, 0)

| mg sind Mg mg cosO
Az 0 1| |Axm 0 g
| T | Mgl + [, | Au
i ﬂ.ﬂ?l
Ay = 10] — Az,
- ﬂﬂ?g

1 LINEARIZATION
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