
College of Electronics Engineering

Systems & Control Engineering
Department

Microprocessors I

Lecture 1
(Basic Structure of Computers)

Zeyad T. Shareef

Functional Units

Figure 1.1. Basic functional units of a computer.

2

Functional Units

• An interconnection network provides the means for

the functional units to exchange information and coordinate

their actions.

• We refer to the Arithmetic and logic circuits, in conjunction

with the main control circuits, as the processor.

3

Information Handled by a Computer

• It is convenient to categorize the information handled by a computer

as either instructions or data

• Instructions, or machine instructions, are explicit commands that:

➢ Govern the transfer of information within a computer as well as between

the computer and its I/O devices.

➢ Specify the arithmetic and logic operations to be performed.

• A program is a list of instructions which performs a task, programs

are stored in the memory

• The instructions and data handled by a computer must be encoded in

a suitable format.

• Each instruction, number, or character is encoded as a string of

binary digits called bits.

4

Input Unit

• Computers accept coded information through input units. The

most common input device is the keyboard.

• Whenever a key is pressed, the corresponding letter or digit is

automatically translated into its corresponding binary code and

transmitted to the processor.

• Many other kinds of input devices for human-computer

interaction are available, including the touchpad, mouse,

joystick, and trackball.

5

Memory Unit

• Memory units store programs and data.

• There are two classes of storage called primary and secondary
storage, that will be discussed later.

6

Arithmetic and Logic Unit (ALU)

• Most computer operations are executed in the arithmetic and

logic unit (ALU) of the processor.

• Any arithmetic or logic operation, such as addition,

subtraction, multiplication, division, or comparison of

numbers, is initiated by bringing the required operands into the

processor, where the operation is performed by the ALU.

7

Output Unit

• The output unit is the counterpart of the input unit.

• Its function is to send processed results to the outside world.

• A familiar example of such a device is a printer. However,

printers are quite slow mechanical devices compared to the

electronic speed of a processor.

• Some units, such as graphic displays, provide both an output

function, showing text and graphics, and an input function,

through touchscreen capability.

• The dual role of such units is the reason for using the single

name input/output (I/O) unit in many cases.

8

Control Unit

• The operations of the memory, arithmetic and logic, and I/O

units are coordinated and controlled by the control unit.

• Control circuits are responsible for generating the timing

signals that determine when a given action is to take place.

• In practice, however, much of the control circuitry is

physically distributed throughout the computer.

9

The operation of a computer can
be summarized as follows:

• The computer accepts information in the form of programs and

data through an input unit and stores it in the memory.

• Information stored in the memory is fetched under program

control into an arithmetic and logic unit, where it is processed.

• Processed information leaves the computer through an output

unit.

• All activities in the computer are directed by the control unit.

10

College of Electronics Engineering

Systems & Control Engineering Department

Microprocessors I

Lecture 2
(Introduction to Microprocessors)

Zeyad T. Shareef

1

Introduction

 A computer is a programmable machine that
receives input, stores and manipulates
data//information, and provides output in a
useful format.

2

DI A G RA M O F A C O M P U T E R S Y S T E M

A computer is a programmable machine that receives input, stores and
manipulates data//information, and provides output in a useful format.

Diagram Of A Computer System

3

B L O C K DI A G RA M O F A BASIC C O M P U T E R
S Y S T E M

ROM RAM I/O

interface

I/O

devicesCPU

Basic computer system consist of a Central processing unit (CPU),

memory (RAM and ROM), input/output (I/O) unit.

Block diagram of a basic computer system

Address bus

Data bus Control

bus

4

BASIC COMPONENT OF MICROCOMPUTER

1 . C P U - Central Processing Unit

⚫ the portion of a computer system that carries out the
instructions of a computer program

⚫ the primary element carrying out the computer's functions.
It is the unit that reads and executes program instructions.

⚫ The data in the instruction tells the processor what to do.

Pentium D dual core processors
5

2. Memory
⚫ physical devices used to store data or programs (sequences of

instructions) on a temporary or permanent basis for use in an
electronic digital computer.

⚫ Computer main memory comes in two principal varieties:
random-access memory (RAM) and read-only memory (ROM).

⚫ RAM can be read and written to anytime the C P U commands
it, but R O M is pre-loaded with data and software that never
changes, so the C P U can only read from it.

⚫ R O M is typically used to store the computer's initial start-up
instructions.

⚫ In general, the contents of RAM are erased when the power to
the computer is turned off, but R O M retains its data
indefinitely.

⚫ In a PC , the R O M contains a specialized program called the
BIOS that orchestrates loading the computer's operating
system from the hard disk drive into RAM whenever the
computer is turned on or reset.

6

3. I/O Unit

7

⚫ Input/output (I/O), refers to the communication between an
information processing system (such as a computer), and the
outside world possibly a human, or another information
processing system.

⚫ Inputs are the signals or data received by the system, and
outputs are the signals or data sent from it

⚫ Devices that provide input or output to the computer are
called peripherals

⚫ On a typical personal computer, peripherals include input
devices like the keyboard and mouse, and output devices such
as the display and printer. Hard disk drives, floppy disk
drives and optical disc drives serve as both input and output
devices. Computer networking is another form of I/O.

E VOLUTION OF M ICROPROCESSOR

8

DATA SIZE

Nibble 4 bit

Byte 8 bit

Word 16 bit

Long word 32 bit

109

INTERNAL STRUCTURE AND BASIC

OPERATION OF MICROPROCESSOR

ALU Register

Section

Control and timing

section

Address bus

Data bus

Control bus

Block diagram of a microprocessor 10

ARITHMETIC AND LOGIC UNIT (ALU)
 The component that performs the arithmetic and

logical operations

 the most important components in a
microprocessor, and is typically the part of the
processor that is designed first.

 able to perform the basic logical operations (AND,
OR), including the addition operation.

 The inclusion of inverters on the inputs enables
the same A L U hardware to perform the
subtraction operation (adding an inverted
operand), and the operations N A N D and NOR.

11

INTERNAL STRUCTURE OF ALU

2 bits of ALU 4 bits of ALU 12

C ONTROL UNIT

 The circuitry that controls the flow of information
through the processor, and coordinates the
activities of the other units within it.

 In a way, it is the "brain within the brain", as it
controls what happens inside the processor,
which in turn controls the rest of the PC.

 On a regular processor, the control unit performs
the tasks of fetching, decoding, managing
execution and then storing results.

13

B U S SYSTEM

 a subsystem that transfers data between
computer components inside a computer or
between computers.

4 PCI Express bus card slots (from top to bottom: x4, x16, x1 and x16),

compared to a traditional 32-bit PCI bus card slot (very bottom).

14

B U S SYSTEM CONNECTION

15

DATA BUS

The data bus is 'bi-directional'

⚫ data or instruction codes from memory or
input/output.are transferred into the
microprocessor

⚫ the result of an operation or computation is sent
out from the microprocessor to the memory or
input/output.

Depending on the particular microprocessor,
the data bus can handle 8 bit or 16 bit data.

16

ADDRESS BUS

 The address bus is 'unidirectional', over which
the microprocessor sends an address code to the
memory or input/output.

 The size (width) of the address bus is specified by
the number of bits it can handle.

 The more bits there are in the address bus, the
more memory locations a microprocessor can
access.

 A 16 bit address bus is capable of addressing
65,536 (64K) addresses.

17

C ONTROL BUS

18

 The control bus is used by the microprocessor to
send out or receive timing and control signals in
order to coordinate and regulate its operation and
to communicate with other devices, i.e. memory
or input/output.

E XAMPLES OF MICRO PROCESSOR

 Intel 8085

 Intel 8086

19

College of Electronics Engineering

Systems & Control Engineering
Department

Microprocessors I

Lecture 3
(Integer Numbers Representation

& Arithmetic Operations)

Zeyad T. Shareef

Integer Numbers Representation

For signed integers, the leftmost bit is used

to indicate the sign:

0 for positive

1 for negative

There are three ways to represent signed integers:

• Sign and magnitude

• 1’s complement

• 2’s complement

2

3

2’s-complement integers

2’s-complement representation is used in current

computers

Consider a four-bit signed integer example,

where the value +5 is represented as:

0 1 0 1

To form the value -5, complement all bits of

0 1 0 1 to obtain 1 0 1 0

and then add 1 to obtain

1 0 1 1

4

Addition

Two examples of adding four-bit numbers:

0 0 0 1 +1 0 1 0 0 +4

+ 0 1 011 + +5 + 1 0 1 0 + -6

-------------- -------- ------------- ------

0 1 1 0 +6 1 1 1 0 -2

The answers fall within the representable range of −8 through +7

No overflow occurs 5

Subtraction

Form the 2’s-complement of the subtrahend and then

perform normal addition

6

Overflow

When answers do not fall within the representable

range, we say that arithmetic overflow has occurred

0 1 1 0 +6 1 1 1 0 -2

+ 011 0 0 + +4 11 0 0 1 + -7

------------ ------ ---------- ------

1 0 1 0 +10 0 1 1 1 -9

7

Sign extension

Replicate the sign bit to extend

4-bit signed integers to 8-bit signed integers

0 1 0 1 0 0 0 0 0 1 0 1

1 1 1 0 1 1 1 1 1 1 1 0

8

College of Electronics Engineering

Systems & Control Engineering
Department

Microprocessors I

Lecture 4
(Internal Microprocessor Architecture)

Zeyad T. Shareef

INTRODUCTION

• Before a program is written or instruction investigated,

internal configuration of the microprocessor must be

known.

• In a multiple core microprocessor, each core contains the

same programming model.

2

Processor components

In addition to the ALU and the control circuitry, the

processor contains a number of registers used for

several different purposes; generally the registers in the

processor can be categorized into:

▪ User-visible registers:

Registers are used during programming and specified

by the instructions. These registers typically are 16,

32 and 64, each of which hold one word of operand

data.

3

Processor components

▪ Control and status registers:

There are a variety of processor registers that are

employed to control the operation of the processor.

Most of these, on most machines, are not visible to

the user. As example of these registers:

➢ The program counter (PC) register holds the

memory address of the next instruction to be

executed.

➢ The instruction register (IR) holds the current

instruction that is currently being executed.

4

The Programming Model

Figure 3.1 illustrates The programming model of the 16,

32 and 64 bits microprocessor architecture.

5

Figure 3.1 The programming model of the 8086 through the Core2 microprocessor
including the 64-bit extensions.

6

Multipurpose Registers

• RAX - a 64-bit register (RAX), a 32-bit register

(accumulator) (EAX), a 16-bit register (AX), or as either

of two 8-bit registers (AH and AL).

• The accumulator is used for instructions such as

multiplication, division, and some of the adjustment

instructions.

7

• RBX, addressable as RBX, EBX, BX, BH, BL.

– BX register (base index) sometimes holds offset address of a

location in the memory system in all versions of the

microprocessor (memory addressing).

• RCX, as RCX, ECX, CX, CH, or CL.

– a (count) general-purpose register that also holds the count for

various instructions, In the 386 or better it can also address the

data memory.

• RDX, as RDX, EDX, DX, DH, or DL.

– a (data) general-purpose register

– holds a part of the result from a multiplication or part of

dividend before a division, In the 386 or better the EDX register

can also address the data memory.

8

• RBP, as RBP, EBP, or BP.

– points to a memory (base pointer) location for memory data

transfers.

• RDI addressable as RDI, EDI, or DI.

– often addresses (destination index) string destination data for

the string instructions.

• RSI used as RSI, ESI, or SI.

– the (source index) register addresses source string data for the

string instructions.

– like RDI, RSI also functions as a general-purpose register.

• R8 - R15 found in the Pentium 4 and Core2 if 64-bit extensions are

enabled.

– data are addressed as 64-, 32-, 16-, or 8-bit sizes and considered

as general purpose registers.

9

Special-Purpose Registers

• Include RIP, RSP, and RFLAGS.

• Segment registers include CS, DS, ES, SS, FS, and GS.

• RIP addresses the next instruction in a section of memory.

– defined as (instruction pointer) a code segment.

• RSP addresses the memory area that is used for the stack.

The stack is that memory zone of the last-in first-out type where the

return addresses of the subroutines and the content of the registers

(POP and PUSH instructions) are saved.

10

• EFLAGS or RFLAGS: this register keeps the state of the microprocessor,

in addition to controlling its operations.

• The figure below shows its structure:

11

• C (carry) It stores the carry in the operations of addition or

the borrow in the operations of subtraction. It is also used to

show error conditions in some procedures.

• I (interrupt) It controls the operations of the input pin

INTR. If I=1 the pin is enabled to generate interrupts, if it is

0 the interrupts are blocked.

• Z (zero) It indicates if the result of an operation is zero. It is

1 if the result is 0, it is 0 in the other cases.

• S (sign) It indicates the sign of the result in a mathematical

or logic operation. It is 1 if the sign is negative, while it is 0

if the sign is positive.

12

Segment Registers

• Four or six segment registers in various versions of the

microprocessor.

• Following is a list of each segment register, along with its

function in the system.

13

• CS (code) It individuates a memory section where there is the

code that is relevant to programs and procedures that the

microprocessor must execute.

• DS (data) It individuates a memory section where there are the

data that are used by the program.

• ES (extra) an additional data segment used by some instructions

to hold destination data.

• SS (stack) defines the area of memory used for the stack.

– stack entry point is determined by the stack segment and

stack pointer registers.

14

• FS & GS: are supplemental segment registers available in

80386–Core2 microprocessors.

– allow two additional memory segments to be accessed

by programs.

15

College of Electronics Engineering

Systems & Control Engineering
Department

Microprocessors I

Lecture 5
(Memory Locations and Addressing)

Zeyad T. Shareef

Memory Organization

• Memory consists of many millions of cells

• Each cell holds a bit of information, 0 or 1

• Information is usually handled in larger units

• A word is a group of n bits

• Word length can be 16 to 64 bits

• Memory is a collection of consecutive words
of the size specified by the word length

2

Figure 5.1 Memory words

3

Word and Byte Encoding

• A common word length is 32 bits

• Such a word can store a 32-bit signed integer
or four 8-bit bytes (e.g., ASCII characters)

• For 32-bit integer encoding, bit b31 is sign bit

• Words in memory may store data or machine
instructions for a program

• Each machine instruction may require
one or more consecutive words for encoding

4

Figure 5.2 Examples of encoded information in a 32-bit word

5

Addresses for Memory Locations

• To store or retrieve items of information,
each memory location has a distinct address

• Numbers 0 to 2k − 1 are used as addresses
for successive locations in the memory

• The 2k locations constitute the address space

• Memory size set by k (number of address bits)

• Examples: k = 20 → 220 or 1M locations,
k = 32 → 232 or 4G locations

6

Byte Addressability

• Byte size is always 8 bits

• But word length may range from 16 to 64 bits

• Impractical to assign an address to each bit

• Instead, provide a byte-addressable memory
that assigns an address to each byte

• Byte locations have addresses 0, 1, 2, …

• Assuming that the word length is 32 bits,
word locations have addresses 0, 4, 8, …

7

Big- and Little-Endian Addressing

• Two ways to assign byte address across words:

⮚Big-endian addressing assigns lower byte addresses
to more significant (leftmost) bytes of the word

⮚Little-endian addressing assigns lower byte
addresses to less significant (rightmost) bytes of the
word.

• Commercial computers use either approach, and
some can support both approaches.

• Addresses for 32-bit words are still 0, 4, 8, …

• Bits in each byte labeled b7 … b0, left to right

8

Figure 5.3 Byte and word addressing

9

Word Alignment

• # of bytes per word is normally a power of 2

• Word locations have aligned addresses if they
begin at byte addresses that are multiples of
the number of bytes in a word

• Examples of aligned addresses:
2 bytes per word → 0, 2, 4, …
8 bytes per word → 0, 8, 16, …

• Some computers permit unaligned addresses

10

Real Mode Memory Addressing

• Real mode operation allows addressing of only
the first 1M byte of memory space—even in
Pentium 4 or Core2 microprocessor.

– the first 1M byte of memory is called the real memory,
conventional memory, or DOS memory system.

– The DOS operating system requires that the
microprocessor operates in the real mode.

– Windows does not use the real mode.

11

Real Mode Memory Addressing

• Only the 8086 and 8088 operate exclusively in the
real mode.

• Note that if the Pentium 4 or Core2 operate in the
64-bit mode, it cannot execute real mode
applications.

12

Segments and Offsets

• Segments in the real mode always have a length
of 64K bytes.

• All real mode memory addresses must consist of a
segment address plus an offset address.

– segment address defines the beginning address of any
64K-byte memory segment.

– offset address selects any location within the
64K byte memory segment.

• Figure 5.4 shows how the segment plus offset
addressing scheme selects a memory location.

13

– this shows a memory
segment beginning at
10000H, ending at
location 1FFFFH

• 64K bytes in length

– also shows how an offset
address, called a
displacement, of F000H
selects location 1F000H in
the memory

Figure 5.4 The real mode memory-addressing scheme, using a segment

address plus an offset

14

• The segment register in Figure 5.4 contains 1000H, yet it
addresses a starting segment at location 10000H. In the
real mode, each segment register is internally appended
with a 0H on its rightmost end.

• Once the beginning address is known, the ending address
is found by adding FFFFH.

– because a real mode segment of memory is 64K in
length.

• The offset address is always added to the segment
starting address to locate the data.

• Segment and offset address is sometimes written as
1000:2000.

– a segment address of 1000H; an offset of 2000H

15

16

Default Segment and Offset Registers

• The microprocessor has rules that apply to
segments whenever memory is addressed.

– these rules define the segment and offset register
combination

• For example, the code segment register defines
the start of the code segment.

• The instruction pointer locates the next
instruction within the code segment.

17

• Another of the default combinations is the stack.

– stack data are referenced through the stack segment
at the memory location addressed by either the stack
pointer (SP/ESP) or the pointer (BP/EBP).

• The 8086–80286 microprocessors allow four
memory segments and the 80386–Core2
microprocessors allow six memory segments.

18

Table 5.2 Default 32-bit segment and offset combinations

Table 5.1 Default 16-bit segment and offset combinations

19

• A memory segment can touch or overlap if 64K
bytes of memory are not required for a segment.

• Think of segments as windows that can be moved
over any area of memory to access data or code.

• A program can have more than four or six
segments but only access four or six segments at a
time.

• Figure 5.5 shows a system that contains four
memory segments.

20

Figure 5.5 A memory system showing the placement of four memory

segments

21

College of Electronics Engineering

Systems & Control Engineering
Department

Microprocessors I

Lecture 6
Memory Locations and Addressing (cont.)

Zeyad T. Shareef

Protected Mode Memory Addressing

• Protected mode memory addressing (80286 and above)
allows access to data and programs located within & above
the first 1M byte of memory.

• Protected mode is where Windows operates.

• The offset address is still used to access information located
within the memory segment.

• In the 80386 and above, the offset address can be a 32-bit
number instead of a 16-bit number in the protected mode.
A 32-bit offset address allows the microprocessor to access
data within a segment that can be up to 4G bytes in length.

2

Selectors and Descriptors

• Indirectly, the register still selects a memory segment, but
not directly as in real mode.

• In place of a segment address, the segment register contains
a selector that selects a descriptor from a descriptor table.

• The descriptor describes the memory segment’s location,
length, and access rights.
➢ it selects one of 8192 descriptors from one of two tables of descriptors

• There are two descriptor tables used with the segment
registers: a global descriptor (system descriptor) and a local
descriptor (application descriptor).

3

• Each descriptor table contains 8192 descriptors, so a total
of 16,384 descriptors are available to an application at
any time.

• Because the descriptor describes a memory segment, this
allows up to 16,384 memory segments to be described
for each application.

• Figure 5.1 shows the format of a descriptor for the 80286
and 80386-P4 as examples. Descriptors for the 80286
and the 80386–Core2 differ slightly.
– each descriptor is 8 bytes in length

4

Figure 5.1 The 80286 and 80386 descriptors

5

• The base address of the descriptor indicates the starting
location of the memory segment. The base address is a 24-bit
address for the 80286 microprocessor, and a 32-bit address
for the 80386 and above.

• The segment limit contains the last offset address found in a
segment. For example, if a segment begins at memory
location F00000H and ends at location F000FFH, the base
address is F00000H and the limit is FFH.

For the 80286 microprocessor, the base address is F00000H
and the limit is 00FFH. For the 80386 and above, the base
address is 00F00000H and the limit is 000FFH.

• Notice that the 80286 has a 16-bit limit and the 80386
through the Pentium 4 have a 20-bit limit. 6

• The access rights byte controls access to the protected
mode segment.

• If the segment grows beyond its limit, the operating system
is interrupted, indicating a general protection fault.

• Note that in 64-bit mode there is only a code segment and
no other segment descriptor types.

7

• There is another feature found in the 80386 through
the Pentium 4 descriptor that is not found in the 80286
descriptor: the G bit, or granularity bit.

• If G=0, the limit specifies a segment limit of 00000H to
FFFFFH.

• If G=1, the value of the limit is multiplied by 4K bytes
(appended with FFFH). The limit is then 00000FFFH to
FFFFFFFFH

8

9

• Descriptors are chosen from the descriptor table by the
segment register.

• The segment register contains a 13-bit selector field, a
table selector bit, and a requested privilege level field.

-The 13-bit selector chooses one of the 8192
descriptors from the descriptor table as mentioned
before.

- The TI bit selects either the global or the local
descriptor table.

- Requested Privilege Level (RPL) requests the access
privilege level of a memory segment.

10

Figure 5.2 The contents of a segment register during protected mode operation of
the 80286 through Core2 microprocessors

11

• Figure 5.3 shows how the segment register, containing a
selector, chooses a descriptor from the global descriptor
table.

• The entry in the global descriptor table selects a segment
in the memory system.

• In this illustration, DS contains 0008H, which accesses the
descriptor number 1 from the global descriptor table
using a requested privilege level of 00.

12

• Descriptor number 1 contains a descriptor that defines
the base address as 00100000H with a segment limit of
000FFH

• This means that a value of 0008H loaded into DS causes
the microprocessor to use memory locations
00100000H–001000FFH

• Descriptor zero is called the null descriptor, must
contain all zeros, and may not be used for accessing
memory.

13

Figure 5.3 Using the DS register to select a description from the global descriptor
table. In this example, the DS register accesses memory

locations 00100000H–001000FFH as a data segment

14

Flat Mode Memory Addressing

• A flat mode memory system is one in which there is no
segmentation.
– does not use a segment register to address a location in the memory.

• The memory system in a Pentium-based computer (Pentium 4 or
Core2) that uses the 64-bit extensions uses a flat mode memory
system.

• First byte address is at 00 0000 0000H; the last location is at
FF FFFF FFFFH.
– address is 40-bits

• The segment register still selects the privilege level of the
software.

15

Figure 5.4 The 64-bit flat mode memory model

16

College of Electronics Engineering

Systems & Control Engineering
Department

Microprocessors I

Lectures 7 and 8
(Addressing Modes)

Zeyad T. Shareef

DATA ADDRESSING MODES

• MOV instruction is a common and flexible instruction.

– provides a basis for explanation of data-addressing modes

• Figure 6.1 illustrates the MOV instruction and defines
the direction of data flow.

• Source is to the right and destination to the left, next
to the opcode MOV.

– an opcode, or operation code, tells the microprocessor
which operation to perform.

Figure 6.1 The MOV instruction showing the source, destination, and direction of
data flow.

Figure 6.2 8086–Core2 data-addressing modes

Register Addressing

• The most common form of data addressing.

• The microprocessor contains these 8-bit register
names used with register addressing: AH, AL, BH,
BL, CH, CL, DH, and DL.

• 16-bit register names: AX, BX, CX, DX, SP, BP, SI,
and DI.

• In 80386 & above, extended 32-bit register names
are: EAX, EBX, ECX, EDX, ESP, EBP, EDI, and ESI.

• 64-bit mode register names are: RAX, RBX, RCX,
RDX, RSP, RBP, RDI, RSI, and R8 through R15.

• Important for instructions to use registers that are
the same size.
– never mix an 8-bit \with a 16-bit register, an 8- or a 16-

bit register with a 32-bit register

– this is not allowed by the microprocessor and results
in an error when assembled.

• Note that a few instructions are exceptions to this
rule.

• Figure 6.3 shows the operation of the
MOV BX, CX instruction.

• The source register’s contents do not change.

– the destination register’s contents do change.

• The contents of the destination register or
destination memory location change for all
instructions except the CMP and TEST
instructions.

• The MOV BX, CX instruction does not affect the
leftmost 16 bits of register EBX.

Figure 6.3 The effect of executing the MOV BX, CX instruction at the point just
before the BX register changes. Note that only the rightmost 16 bits of register EBX

change

Table 6.1 Examples of register addressing

Immediate Addressing

• Term immediate implies that data immediately
follow the hexadecimal opcode in the memory.

– immediate data are constant data.

– data transferred from a register or memory location
are variable data.

• Figure 6.4 shows the operation of a

MOV EAX,13456H instruction.

Figure 6.4 The operation of the MOV EAX,13456H instruction. This instruction
copies the immediate data (13456H) into EAX

• As with the MOV instruction illustrated in Figure
6.3, the source data overwrites the destination
data.

• The letter H appends hexadecimal data.

• Decimal data don’t require any special codes or
adjustments.

– an example is the 100 decimal in the
MOV AL,100 instruction

• An ASCII-coded character or characters may be
depicted in the immediate form if the ASCII data
are enclosed in apostrophes.

– be careful to use the apostrophe (‘) for ASCII data and
not the single quotation mark.

• Binary data are represented if the binary number
is followed by the letter B.

– in some assemblers, the letter Y.

Table 6.2 Examples of immediate addressing

Direct Data Addressing

• Applied to many instructions in a typical program.

• Address is formed by adding the displacement to
the default data segment address or an alternate
segment address.

Figure 6.5 The operation of the MOV AL,[1234H] instruction when DS=1000H

• This instruction transfers a copy contents of
memory location 11234H into AL.

• the effective address is formed by adding 1234H
(the offset address) and 10000H (the data
segment address of 1000H times 10H) in a system
operating in the real mode.

Register Indirect Addressing

• Allows data to be addressed at any memory
location through an offset address held in any of
the following registers: BP, BX, DI, and SI.

Figure 6.6 The operation of the MOV AX,[BX] instruction when BX = 1000H
and DS = 0100H. Note that this instruction is shown after the contents of
memory are transferred to AX

• The data segment is used by default with register
indirect addressing or any other mode that uses
BX, DI, or SI to address memory.

• If the BP register addresses memory, the stack
segment is used by default.

– these settings are considered the default for
these four index and base registers

Table 6.3 Examples of register indirect addressing

Base-Plus-Index Addressing

• Similar to indirect addressing because it indirectly
addresses memory data.

• The base register often holds the beginning
location of a memory array.

– the index register holds the relative position of an
element in the array.

– whenever BP addresses memory data, both the stack
segment register and BP generate the effective
address.

• Figure 6.7 shows how data are addressed by the
MOV DX,[BX + DI] instruction when the
microprocessor operates in the real mode.

Figure 6.7 An example showing how the base-plus-index addressing mode functions
for the MOV DX,[BX + DI] instruction. Notice that memory address 02010H is
accessed because DS=0100H, BX=1000H and DI=0010H

Table 6.4 Examples of base-plus index addressing

Register Relative Addressing

• Similar to base-plus-index addressing and
displacement addressing.

– data in a segment of memory are addressed by adding
the displacement to the contents of a base or an index
register (BP, BX, DI, or SI)

• Figure 6.8 shows the operation of the
MOV AX,[BX+1000H] instruction.

• Remember that a real mode segment is 64K bytes
long.

Figure 6.8 The operation of the MOV AX, [BX+1000H] instruction, when BX=0100H
and DS=0200H

Base Relative-Plus-Index Addressing

• Similar to base-plus-index addressing.

– adds a displacement

– uses a base register and an index register to form the
memory address.

• Least-used addressing mode.

• Figure 6.9 shows how data are referenced if the
instruction executed by the microprocessor is
MOV AX,[BX + SI + 100H].

– displacement of 100H adds to BX and SI to form the
offset address within the data segment

• This addressing mode is too complex for frequent
use in programming.

Figure 6.9 An example of base relative-plus-index addressing using a MOV
AX,[BX+SI+100H] instruction. Note: DS=1000H, BX=20H, SI=10H

Stack Memory-Addressing Modes

• The stack plays an important role in all
microprocessors.

– holds data temporarily and stores return addresses
used by procedures.

• Stack memory is LIFO (last-in, first-out) memory.

• Data are placed on the stack with a PUSH
instruction; removed with a POP instruction.

• Stack memory is maintained by two registers:

– the stack pointer (SP or ESP)

– the stack segment register (SS)

Figure 6.10 The PUSH and POP instructions: (a) PUSH BX places the contents of BX
onto the stack; (b) POP CX removes data from the stack and places them into CX.
Both instructions are shown after execution.

• Note that PUSH and POP store or retrieve words
of data—never bytes—in 8086 - 80286.

• 80386 and above allow words or double-words to
be transferred to and from the stack.

• Data may be pushed onto the stack from any 16-
bit register or segment register.

– in 80386 and above, from any 32-bit extended register

• Data may be popped off the stack into any
register or any segment register except CS.

College of Electronics Engineering

Systems & Control Engineering
Department

Microprocessors I

Lecture 9
(Instruction Set Architecture)

Zeyad T. Shareef

Machine Instruction

• An instruction (or command) is encoded as a bit
pattern recognizable by the CPU.

• Machine Instruction types:

➢Data Transfer: copy data from one location to
another

➢Arithmetic/Logic: use existing bit patterns to
compute a new bit patterns

➢Control: direct the execution of the program

2

Memory Operations

• Memory contains data & program instructions

• Control circuits initiate transfer of data and
instructions between memory and processor.

• Read operation: memory retrieves contents at
address location given by processor

• Write operation: memory overwrites contents
at given location with given data

3

Register Transfer Notation

• Register transfer notation is used to describe
hardware-level data transfers and operations

• Use […] to denote contents of a location.

• Use  to denote transfer to a destination

• Example: R2  [LOC]
(transfer from LOC in memory to register R2)

4

Assembly-Language Notation

• Another notation is needed to represent
machine instructions & programs using them;

Assembly language is used for this purpose.

• Examples in this chapter will use English words
for the operations (e.g., Load, Store, and Add)

• In the assembly language instructions of actual
(commercial) processors, mnemonics are used,
usually abbreviations (e.g., LD, ST, and ADD).

• Mnemonics differ from processor to processor.
5

RISC and CISC Instruction Sets
• Nature of instructions distinguishes computers.

• Two fundamentally different approaches:
• Reduced Instruction Set Computers (RISC)
➢have one-word instructions
➢Few, simple, efficient, and fast instructions
➢Examples: PowerPC from Apple/IBM/Motorola

and ARM

• Complex Instruction Set Computers (CISC)
➢have multi-word instructions
➢Many, convenient, and powerful instructions
➢Example: Intel

6

RISC Instruction Sets

• Each RISC instruction fits in a single word.

• A load/store architecture is used, meaning:

– only Load and Store instructions are used
to access memory operands

– operands for arithmetic/logic instructions
must be in registers, or one of them may be
given explicitly in instruction word.

7

RISC Instruction Sets

• For simplicity, lets assume that A, B, and C are
labels representing memory word addresses;
R2, R3 and R4 are processor registers.

• To add the contents of locations A and B, then
store the result in location C, the following
steps are needed:

Fetch contents of locations A and B, compute
sum, and transfer result to location C.

8

RISC Instruction Sets

• Sequence of simple RISC instructions for this
task:

Load R2, A
Load R3, B
Add R4, R2, R3
Store R4, C

• Load instruction transfers data to register.

• Store instruction transfers data to the memory.

9

Fetching and executing instructions

• Example: Load R2, LOC

The processor control circuits do the following:

• Send address in PC to memory; issue Read

• Load instruction from memory into IR

• Increment PC to point to next instruction

• Send address LOC to memory; issue Read

• Load word from memory into register R2

10

A Program in the Memory

• Consider the preceding 4-instruction program

• How is it stored in the memory?
(32-bit word length, byte-addressable)

• Place first RISC instruction word at address i

• Remaining instructions are at i + 4, i + 8, i + 12

11

12

Instruction Execution/Sequencing

• How is the previous program executed?

• Processor has program counter (PC) register

• Address i for first instruction placed in PC

• Control circuits fetch and execute instructions,
one after another → straight-line sequencing

• During execution of each instruction,
PC register is incremented by 4

• PC contents are i + 16 after Store is executed

13

	Slide 1
	Slide 2: Functional Units
	Slide 3: Functional Units
	Slide 4: Information Handled by a Computer
	Slide 5: Input Unit
	Slide 6: Memory Unit
	Slide 7: Arithmetic and Logic Unit (ALU)
	Slide 8: Output Unit
	Slide 9: Control Unit
	Slide 10: The operation of a computer can be summarized as follows:
	Slide 1
	Slide 2: Integer Numbers Representation
	Slide 3
	Slide 4: 2’s-complement integers
	Slide 5: Addition
	Slide 6: Subtraction
	Slide 7: Overflow
	Slide 8: Sign extension
	Slide 1
	Slide 2: INTRODUCTION
	Slide 3: Processor components
	Slide 4: Processor components
	Slide 5: The Programming Model
	Slide 6: Figure 3.1 The programming model of the 8086 through the Core2 microprocessor including the 64-bit extensions.
	Slide 7: Multipurpose Registers
	Slide 8
	Slide 9
	Slide 10: Special-Purpose Registers
	Slide 11
	Slide 12
	Slide 13: Segment Registers
	Slide 14
	Slide 15
	Slide 1
	Slide 2: Memory Organization
	Slide 3
	Slide 4: Word and Byte Encoding
	Slide 5
	Slide 6: Addresses for Memory Locations
	Slide 7: Byte Addressability
	Slide 8: Big- and Little-Endian Addressing
	Slide 9
	Slide 10: Word Alignment
	Slide 11: Real Mode Memory Addressing
	Slide 12: Real Mode Memory Addressing
	Slide 13: Segments and Offsets
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Default Segment and Offset Registers
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Figure 5.5 A memory system showing the placement of four memory segments
	Slide 1
	Slide 2: Protected Mode Memory Addressing
	Slide 3: Selectors and Descriptors
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Figure 5.3 Using the DS register to select a description from the global descriptor table. In this example, the DS register accesses memory locations 00100000H–001000FFH as a data segment
	Slide 15: Flat Mode Memory Addressing
	Slide 16
	Slide 1
	Slide 2: DATA ADDRESSING MODES
	Slide 3: Figure 6.1 The MOV instruction showing the source, destination, and direction of data flow.
	Slide 4: Figure 6.2 8086–Core2 data-addressing modes
	Slide 5: Register Addressing
	Slide 6
	Slide 7
	Slide 8: Figure 6.3 The effect of executing the MOV BX, CX instruction at the point just before the BX register changes. Note that only the rightmost 16 bits of register EBX change
	Slide 9
	Slide 10: Immediate Addressing
	Slide 11: Figure 6.4 The operation of the MOV EAX,13456H instruction. This instruction copies the immediate data (13456H) into EAX
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Direct Data Addressing
	Slide 16: Figure 6.5 The operation of the MOV AL,[1234H] instruction when DS=1000H
	Slide 17: Register Indirect Addressing
	Slide 18: Figure 6.6 The operation of the MOV AX,[BX] instruction when BX = 1000H and DS = 0100H. Note that this instruction is shown after the contents of memory are transferred to AX
	Slide 19
	Slide 20
	Slide 21: Base-Plus-Index Addressing
	Slide 22
	Slide 23: Figure 6.7 An example showing how the base-plus-index addressing mode functions for the MOV DX,[BX + DI] instruction. Notice that memory address 02010H is accessed because DS=0100H, BX=1000H and DI=0010H
	Slide 24
	Slide 25: Register Relative Addressing
	Slide 26: Figure 6.8 The operation of the MOV AX, [BX+1000H] instruction, when BX=0100H and DS=0200H
	Slide 27: Base Relative-Plus-Index Addressing
	Slide 28
	Slide 29: Figure 6.9 An example of base relative-plus-index addressing using a MOV AX,[BX+SI+100H] instruction. Note: DS=1000H, BX=20H, SI=10H
	Slide 30: Stack Memory-Addressing Modes
	Slide 31
	Slide 32: Figure 6.10 The PUSH and POP instructions: (a) PUSH BX places the contents of BX onto the stack; (b) POP CX removes data from the stack and places them into CX. Both instructions are shown after execution.
	Slide 33
	Slide 1
	Slide 2: Machine Instruction
	Slide 3: Memory Operations
	Slide 4: Register Transfer Notation
	Slide 5: Assembly-Language Notation
	Slide 6: RISC and CISC Instruction Sets
	Slide 7: RISC Instruction Sets
	Slide 8: RISC Instruction Sets
	Slide 9: RISC Instruction Sets
	Slide 10: Fetching and executing instructions
	Slide 11: A Program in the Memory
	Slide 12
	Slide 13: Instruction Execution/Sequencing

