College of Electronics Engineering

Systems & Control Engineering
Department

Microprocessors |

Lecture 1
(Basic Structure of Computers)

Zeyad T. Shareef

Functional Units

Input

Output

/O

Interconnection
network

Arithmetic

Control

Processor

Figure 1.1. Basic functional units of a computer.

Functional Units

« An interconnection network provides the means for

the functional units to exchange information and coordinate
their actions.

* We refer to the Arithmetic and logic circuits, in conjunction
with the main control circuits, as the processor.

Information Handled by a Computer

It Is convenient to categorize the information handled by a computer
as either instructions or data

Instructions, or machine instructions, are explicit commands that:

» Govern the transfer of information within a computer as well as between
the computer and its 1/0 devices.

» Specify the arithmetic and logic operations to be performed.

A programis a list of instructions which performs a task, programs
are stored in the memory

The instructions and data handled by a computer must be encoded In
a suitable format.

Each instruction, number, or character is encoded as a string of
binary digits called bits.

Input Unit

« Computers accept coded information through input units. The
most common input device Is the keyboard.

« Whenever a key is pressed, the corresponding letter or digit is
automatically translated into its corresponding binary code and
transmitted to the processor.

« Many other kinds of input devices for human-computer
Interaction are available, including the touchpad, mouse,
joystick, and trackball.

Memory Unit

« Memory units store programs and data.

« There are two classes of storage called primary and secondary
storage, that will be discussed later.

Arithmetic and Logic Unit (ALU)

« Most computer operations are executed in the arithmetic and
logic unit (ALU) of the processor.

 Any arithmetic or logic operation, such as addition,
subtraction, multiplication, division, or comparison of
numbers, Is Initiated by bringing the required operands into the
processor, where the operation is performed by the ALU.

Output Unit

The output unit is the counterpart of the input unit.
Its function is to send processed results to the outside world.

A familiar example of such a device is a printer. However,
printers are quite slow mechanical devices compared to the
electronic speed of a processor.

Some units, such as graphic displays, provide both an output
function, showing text and graphics, and an input function,
through touchscreen capability.

The dual role of such units is the reason for using the single
name input/output (I/O) unit in many cases.

Control Unit

« The operations of the memory, arithmetic and logic, and 1/O
units are coordinated and controlled by the control unit.

« Control circuits are responsible for generating the timing
signals that determine when a given action is to take place.

* In practice, however, much of the control circuitry Is
physically distributed throughout the computer.

The operation of a computer can
be summarized as follows:

The computer accepts information in the form of programs and
data through an input unit and stores it in the memory.

Information stored in the memory Is fetched under program
control into an arithmetic and logic unit, where it is processed.

Processed information leaves the computer through an output
unit.

All activities in the computer are directed by the control unit.

College of Electronics Engineering

Systems & Control Engineering Department
Microprocessors I

Lecture 2
(Introduction to Microprocessors)

Zeyad T. Shareef

Introduction

A computer is a programmable machine that
receives input, stores and manipulates

data//information, and provides output in a
useful format.

DIAGRAM OF A COMPUTER SYSTEM

A computer is a programmable machine that receives input, stores and
manipulates data//information, and provides output in a useful format.

SysterI Unit Screen Monitor
7 - I
- " Speaker
Speaker /
Y
P
> of
Keyboard o Microphone

Mouse

Diagram Of A Computer System

BLOCK DIAGRAM OF A BASIC COMPUTER
SYSTEM

Basic computer system consist of a Central processing unit (CPU),
memory (RAM and ROM), input/output (I/O) unit.

CPU

Address

bus

y

ROM

I/0

interface

A
A 4

/10
devices

4

A

A

y

A

Data bus

A

Block diagram of a basic computer system

Control
bus

BASIC COMPONENT OF MICROCOMPUTER

CPU - Central Processing Unit

the portion of a computer system that carries out the
instructions of a computer program

the primary element carrying out the computer's functions.
[t is the unit that reads and executes program instructions.

The data in the instruction tells the processor what to do.

Pentium D dual core processors

2.

Memory

physical devices used to store data or programs (sequences of
instructions) on a temporary or permanent basis for use in an
electronic digital computer.

Computer main memory comes in two principal varieties:
random-access memory (RAM) and read-only memory (ROM).

RAM can be read and written to anytime the CPU commands
it, but ROM is pre-loaded with data and software that never
changes, so the CPU can only read from it.

ROM is typically used to store the computer's initial start-up
instructions.

In general, the contents of RAM are erased when the power to
the computer is turned off, but ROM retains its data
indefinitely.

In a PC, the ROM contains a specialized program called the
BIOS that orchestrates loading the computer's operating
system from the hard disk drive into RAM whenever the
computer is turned on or reset.

o WM

=

o
—
ey
=
~
=

3.1/0 Unit

Input/output (I/0), refers to the communication between an
information processing system (such as a computer), and the
outside world possibly a human, or another information
processing system.

Inputs are the signals or data received by the system, and
outputs are the signals or data sent from it

Devices that provide input or output to the computer are

called peripherals

On a typical personal computer, peripherals include input
devices like the keyboard and mouse, and output devices such
as the display and printer. Hard disk drives, floppy disk
drives_and optical disc drives serve as both input and output
devices. Computer networking is another form of I/0.

EVOLUTION OF MICROPROCESSOR

Number of Transistors

bl

$
£
[
£

W 1\ 15382 NE 1957 200 A 2008 212

DATA SIZE

Nibble 4 bit
Byte 8 bit
Word 16 bit

Long word 32 bit

Nibble = 4 bit (n=0-3)
Range:0-15

Byte = 8 bit (n = 0-7)
Range 0-255

Word = 16 bit (n=0-15)
Range: 0-65,535

—

— ey

—

Sign bit 7 Upper 4 3 Lower?\libble
Nibble
/
Lower byte 0

Signbit— 15 Upperbyte 67

HRiiinAiARdinnd AARAAARAdRRAARAN

Sign bit 31 Upperword
MSB
(Most significant Bit)

16 15

Long Word = 32 bit (n = 0-31)
Range: 0-4 294 967 295

Lower word

0
LSB
(Least significant Bit)

INTERNAL STRUCTURE AND BASIC
OPERATION OF MICROPROCESSOR

ALU Register Address bus

Section
Data bus

Control and timing
section < Control bus

Block diagram of a microprocessor

ARITHMETIC AND LOGIC UNIT (ALU)

The component that performs the arithmetic and
logical operations

the most important components in a
microprocessor, and is typically the part of the
processor that is designed first.

able to perform the basic logical operations (AND,
OR), including the addition operation.

The inclusion of inverters on the inputs enables
the same ALU hardware to perform the
subtraction operation (adding an inverted
operand), and the operations NAND and NOR.

INTERNAL STRUCTURE OF ALU

F L
3
QS’

[G0
s

YOy

i
r—Cle—C
O—<H
==
=

;] d
'N—(—G

T

2 bits of ALU 4 bits of ALU

CONTROL UNIT

The circuitry that controls the flow of information
through the processor, and coordinates the
activities of the other units within it.

In a way, it is the "brain within the brain”, as it
controls what happens inside the processor,
which in turn controls the rest of the PC.

On a regular processor, the control unit performs
the tasks of fetching, decoding, managing
execution and then storing results.

BUS SYSTEM

a subsystem that transfers data between
computer components inside a computer or
between computers.

4 PCI Express bus card slots (from top to bottom: x4, x16, x1 and x16),
compared to a traditional 32-bit PCIl bus card slot (very bottom).

BUS SYSTEM CONNECTION

CPU Chip Storage/Zinput Internal memory
or
Microprocessor RAM ROM
Read/write Read only
ALU
(calculating)

Internal

communication I| Bus System .

Registers
(temporary
storage) | Input interface | | Output interface |
E:cntti;c:il Input devices output devices
B Keyboard gv Monitor
Mouse Printer

L oy stick l
Scanner
/ Light pen - ﬁ
ll

Storage/input External Memory
- Floppy disc drive CD ROM °
B Hard disc drive Magnhetic tape

© Microsoft Corporation. All Rights Reserved.

DATA BUS

The data bus is 'bi-directional’

data or instruction codes from memory or
input/output.are transferred into the
microprocessor

the result of an operation or computation is sent
out from the microprocessor to the memory or
input/output.

Depending on the particular microprocessor,
the data bus can handle 8 bit or 16 bit data.

ADDRESS BUS

The address bus is 'unidirectional’, over which
the microprocessor sends an address code to the
memory or input/output.

The size (width) of the address bus is specified by
the number of bits it can handle.

The more bits there are in the address bus, the
more memory locations a microprocessor can
access.

A 16 bit address bus is capable of addressing
65,536 (64K) addresses.

CONTROL BUS

The control bus is used by the microprocessor to
send out or receive timing and control signals in
order to coordinate and regulate its operation and
to communicate with other devices, i.e. memory
or input/output.

EXAMPLES OF MICRO PROCESSOR

o Intel 8085
o Intel 8086

College of Electronics Engineering

Systems & Control Engineering
Department

Microprocessors |
Lecture 3
(Integer Numbers Representation

& Arithmetic Operations)

Zeyad T. Shareef

Integer Numbers Representation

For signed integers, the leftmost bit Is used
to indicate the sign:
0 for positive
1 for negative
There are three ways to represent signed integers:
« Sign and magnitude
* 1’s complement

e 2’s complement

B Values represented

Sign and
byb,b,b, magnitude I’s complement 2’s complement
0111 +7 +7 +7
0110 +6 +6 + 6
0101 +35 +5 +35
0100 + 4 +4 +4
0011 +3 +3 +3
0010 +2 +2 +2
0001 +1 + 1 + 1
0000 +0 +0 +0
1000 -0 -1 —8
1001 -1 -6 —7
1010 -2 -5 -6
1011 -3 -4 -5
1100 —4 -3 _4
1101 -5 -2 -3
1110 -6 -1 -2
I 111 -7 -0 -1

2’s-complement integers

2’s-complement representation is used in current
computers

Consider a four-bit signed Integer example,
where the value +5 is represented as:
0101
To form the value -5, complement all bits of
0101 toobtain 1010
and then add 1 to obtain
1011

Addition

Two examples of adding four-bit numbers:

0001 +1 0100 +4
+ 0101 + +5 + 1010 + -6

The answers fall within the representable range of —8 through +7
No overflow occurs

Subtraction

Form the 2’s-complement of the subtrahend and then
perform normal addition

1001 (—7) 1001

1011 (=5) > + 0101

1110 (=2)

Overflow

When answers do not fall within the representable
range, we say that arithmetic overflow has occurred

0110 +6 1110 -2
+ 0,100 ++4 11001 + -7

Sign extension

Replicate the sign bit to extend
4-bit signed Integers to 8-bit signed integers

0101 ‘ 00000101
1110 gy 11111110

College of Electronics Engineering

Systems & Control Engineering
Department

Microprocessors |

Lecture 4
(Internal Microprocessor Architecture)

Zeyad T. Shareef

INTRODUCTION

« Before a program is written or instruction investigated,
Internal configuration of the microprocessor must be

known.

 In a multiple core microprocessor, each core contains the
same programming model.

Processor components

In addition to the ALU and the control circuitry, the
processor contains a number of registers used for
several different purposes; generally the registers in the
processor can be categorized into:

= User-visible registers:

Registers are used during programming and specified
by the Instructions. These registers typically are 16,
32 and 64, each of which hold one word of operand

data.

Processor components

Control and status registers:

There are a variety of processor registers that are
employed to control the operation of the processor.
Most of these, on most machines, are not visible to
the user. As example of these registers:

» The program counter (PC) register holds the
memory address of the next instruction to be
executed.

» The Instruction register (IR) holds the current
Instruction that Is currently being executed.

The Programming Model

Figure 3.1 illustrates The programming model of the 16,
32 and 64 bits microprocessor architecture.

Figure 3.1 The programming model of the 8086 through the Core2 microprocessor
including the 64-bit extensions.

B4-bit Names 32-bit Memes 1E-bit Nameas B-oit Nemes
p’llll % ‘ \
RAX EAX AX AH A
REX EBX B BH BL
ACX ECX CX CH cL
RO EDX DX o oL

R8P EBP ap
A= EZl Sl
Aol EDI]
REP EEP 215
84 bits
312 oits
= 16 hits
Fa
F3
Ri0
A1
Ri2
Ri3
Fi4
A1
AFLAGE | | EFLAGE | FLAGE |
AP | | EP ||F‘ |
cs
DS
ES
5=
=]
G2

Multipurpose Registers

« RAX - a 64-bit register (RAX), a 32-bit register
(accumulator) (EAX), a 16-bit register (AX), or as either
of two 8-bit registers (AH and AL).

 The accumulator is used for instructions such as
multiplication, division, and some of the adjustment
Instructions.

RBX, addressable as RBX, EBX, BX, BH, BL.

— BX register (base index) sometimes holds offset address of a
location in the memory system in all versions of the
microprocessor (memory addressing).

RCX, as RCX, ECX, CX, CH, or CL.

— a (count) general-purpose register that also holds the count for
various instructions, In the 386 or better it can also address the
data memory.

RDX, as RDX, EDX, DX, DH, or DL.
— a (data) general-purpose register

— holds a part of the result from a multiplication or part of
dividend before a division, In the 386 or better the EDX register
can also address the data memaory.

RBP, as RBP, EBP, or BP.

— points to a memory (base pointer) location for memory data
transfers.

RDI addressable as RDI, EDI, or DlI.

— often addresses (destination index) string destination data for
the string instructions.

RSI used as RSI, ESI, or SI.

— the (source index) register addresses source string data for the
string instructions.

— like RDI, RSI also functions as a general-purpose register.

R8 - R15 found in the Pentium 4 and Core2 if 64-bit extensions are
enabled.

— data are addressed as 64-, 32-, 16-, or 8-bit sizes and considered
as general purpose registers.

Special-Purpose Registers
Include RIP, RSP, and RFLAGS.
Segment registers include CS, DS, ES, SS, FS, and GS.

RIP addresses the next instruction in a section of memory.
— defined as (instruction pointer) a code segment.

RSP addresses the memory area that is used for the stack.

The stack Is that memory zone of the last-in first-out type where the
return addresses of the subroutines and the content of the registers
(POP and PUSH instructions) are saved.

« EFLAGSor RFLAGS: this register keeps the state of the microprocessor,
In addition to controlling its operations.

« The figure below shows its structure:

AN IRAT RGP M MG EATIEAE L2 8 A T A 5 4 2 210

VW

olofe|ofofefolofofo|l|]!
el

¥ 10 Flag (10) \
X Airtual Interrupt Pending (VIP)

K Virtwal Interrupt Flag (VIF)
Alignmert Check (AC)
Wirtual-808E Mode (W)
Resume Flag (RF)
Nested Task (NT)
W) Privilege Level (IOPL)
Cverflow Flag (OF)
Direction Flag (DF}
Intzrrupt Enable Flag (IF)
Trap Flag (TF)
Sign Flag (SF)
Zero Flag {(£F)
Auxiliary Carry Flag (AF)
Farity Flag (PF)
Carry Flag (CF)

A L P
C|M|F

T T
=

[
MO (ool TlEs|g],
T| E F

L

Indicates a Status Flag
Indicates a Confrol Flag
Indicates a System Flag

=) L O T T el e el ol

Raserved bit positions. DO NOT USE.
Ahvays set to values previously read.

11

C (carry) It stores the carry in the operations of addition or
the borrow in the operations of subtraction. It is also used to
show error conditions in some procedures.

| (interrupt) It controls the operations of the input pin
INTR. If I=1 the pin is enabled to generate interrupts, if it is
0 the interrupts are blocked.

Z (zero) It indicates if the result of an operation is zero. It is
1 if the result is O, it is O in the other cases.

S (sign) It indicates the sign of the result in a mathematical
or logic operation. It is 1 if the sign is negative, while itis 0
If the sign Is positive.

Segment Registers

 Four or six segment registers In various versions of the
MICroprocessor.

* Following is a list of each segment register, along with its
function in the system.

13

CS (code) It individuates a memory section where there is the
code that is relevant to programs and procedures that the
microprocessor must execute.

DS (data) It individuates a memory section where there are the
data that are used by the program.

ES (extra) an additional data segment used by some instructions
to hold destination data.

SS (stack) defines the area of memory used for the stack.

— stack entry point is determined by the stack segment and
stack pointer registers.

 FS & GS: are supplemental segment registers available in
80386—Core2 microprocessors.

— allow two additional memory segments to be accessed
by programs.

College of Electronics Engineering

Systems & Control Engineering
Department

Microprocessors |

Lecture 5
(Memory Locations and Addressing)

Zeyad T. Shareef

Memory Organization

Memory consists of many millions of cells
Each cell holds a bit of information, O or 1
Information is usually handled in larger units
A word is a group of n bits

Word length can be 16 to 64 bits

Memory is a collection of consecutive words
of the size specified by the word length

Figure 5.1 Memory words

| «——— nbitls ———— |

—— First word

———» Second word

= ith word

— Last word

Word and Byte Encoding

A common word length is 32 bits

Such a word can store a 32-bit signed integer
or four 8-bit bytes (e.g., ASCIl characters)

For 32-bit integer encoding, bit b;, is sign bit

Words in memory may store data or machine
instructions for a program

Each machine instruction may require
one or more consecutive words for encoding

Figure 5.2 Examples of encoded information in a 32-bit word

\- 32 bits

-|
21 2 I I)

L Sign bit: b5, = 0 for positive numbers

by, = 1 for negative numbers

(a) A signed integer

v v v A4
ASCII ASCII ASCII ASCII
character character character character

(b) Four characters

Addresses for Memory Locations

To store or retrieve items of information,
each memory location has a distinct address

Numbers O to 2 - 1 are used as addresses
for successive locations in the memory

The 2% locations constitute the address space
Memory size set by k (number of address bits)

Examples: k=20 - 2%°or 1M locations,
k=32 > 23?2 0or 4G locations

Byte Addressability

Byte size is always 8 bits
But word length may range from 16 to 64 bits
Impractical to assignh an address to each bit

Instead, provide a byte-addressable memory
that assigns an address to each byte

Byte locations have addresses O, 1, 2, ...

Assuming that the word length is 32 bits,
word locations have addresses 0, 4, 8, ...

Big- and Little-Endian Addressing

* Two ways to assign byte address across words:

> Big-endian addressing assigns lower byte addresses
to more significant (leftmost) bytes of the word

> Little-endian addressing assigns lower byte
addresses to less significant (rightmost) bytes of the
word.

* Commercial computers use either approach, and
some can support both approaches.

e Addresses for 32-bit words are still O, 4, §, ...
* Bitsin each byte labeled b, ... b, left to right

Figure 5.3 Byte and word addressing

Word
address Byte address Byte address

(a) Big-endian assignment (b) Little-endian assignment
9

Word Alignment

of bytes per word is normally a power of 2

Word locations have aligned addresses if they
begin at byte addresses that are multiples of
the number of bytes in a word

Examples of aligned addresses:
2 bytes per word = 0, 2, 4, ...
8 bytes per word - 0, 8, 16, ...

Some computers permit unaligned addresses

Real Mode Memory Addressing

* Real mode operation allows addressing of only
the first 1M byte of memory space—even in
Pentium 4 or Core2 microprocessor.

— the first 1M byte of memory is called the real memory,
conventional memory, or DOS memory system.

— The DOS operating system requires that the
microprocessor operates in the real mode.

— Windows does not use the real mode.

Real Mode Memory Addressing

* Only the 8086 and 8088 operate exclusively in the
real mode.

* Note that if the Pentium 4 or Core2 operate in the
64-bit mode, it cannot execute real mode
applications.

Segments and Offsets

* Segments in the real mode always have a length
of 64K bytes.

* All real mode memory addresses must consist of a
segment address plus an offset address.

— segment address defines the beginning address of any
64K-byte memory segment.

— offset address selects any location within the
64K byte memory segment.

* Figure 5.4 shows how the segment plus offset
addressing scheme selects a memory location.

Figure 5.4 The real mode memory-addressing scheme, using a segment
address plus an offset

FFFFF

1FFFF

1F000

10000

00000

Real mode memory

h—-"'f--_‘_--i-_
-—-"-'___-F--—
=7 Offset = FODO
B4K-byte
segment
Segment register
- 1 0 0 0

— this shows a memory
segment beginning at
10000H, ending at
location 1FFFFH

e 64K bytes in length

— also shows how an offset
address, called a
displacement, of FOOOH
selects location 1FOOOH in
the memory

The segment register in Figure 5.4 contains 1000H, yet it
addresses a starting segment at location 10000H. In the

real mode, each segment register is internally appended
with a OH on its rightmost end.

Once the beginning address is known, the ending address
is found by adding FFFFH.

— because a real mode segment of memory is 64K in
length.

The offset address is always added to the segment
starting address to locate the data.

Segment and offset address is sometimes written as
1000:2000.

— a segment address of 1000H; an offset of 2000H

Example

Segment Register
2000H
2001H
2100H

Start Address
20000H
20010H
21000H

End Address
2FFFFH
3000FH
30FFFH

16

Default Segment and Offset Registers

* The microprocessor has rules that apply to
segments whenever memory is addressed.

— these rules define the segment and offset register
combination

* For example, the code segment register defines
the start of the code segment.

* The instruction pointer locates the next
instruction within the code segment.

e Another of the default combinations is the stack.

— stack data are referenced through the stack segment
at the memory location addressed by either the stack
pointer (SP/ESP) or the pointer (BP/EBP).

* The 8086—80286 microprocessors allow four
memory segments and the 80386—Core2
microprocessors allow six memory segments.

Table 5.1 Default 16-bit segment and offset combinations

Segment Offset Special Purpose
CS IP Instruction address
SS SP or BP Stack address
DS BX, DI, Sl, an 8- or 16-bit number Data address
ES DI for string instructions String destination address

Table 5.2 Default 32-bit segment and offset combinations

Segment Offset Special Purpose
CS EIP Instruction address
SS ESP or EBP Stack address
DS EAX, EBX, ECX, EDX, ESI, EDI, Data address
an 8- or 32-bit number
ES EDI for string instructions String destination address
FS No default General address
GS No default General address

19

A memory segment can touch or overlap if 64K
bytes of memory are not required for a segment.

Think of segments as windows that can be moved
over any area of memory to access data or code.

A program can have more than four or six
segments but only access four or six segments at a
time.

Figure 5.5 shows a system that contains four
memory segments.

Figure 5.5 A memory system showing the placement of four memory

segments

Memory
FFFFF
I
I
SE000
SBFFF
Extra
43000 4000 |ES
4BFFF
A4000
d_:]:F:
Stack
34000 3400|585
33FFF
30000
2FFFF
Code
20000 2000 |C8
1FFFF
[Ciata
10000 1 000 |DS
OFFFF
00000

21

College of Electronics Engineering

Systems & Control Engineering
Department

Microprocessors |

Lecture 6
Memory Locations and Addressing (cont.)

Zeyad T. Shareef

Protected Mode Memory Addressing

* Protected mode memory addressing (80286 and above)
allows access to data and programs located within & above
the first 1M byte of memory.

* Protected mode is where Windows operates.

e The offset address is still used to access information located
within the memory segment.

* |nthe 80386 and above, the offset address can be a 32-bit
number instead of a 16-bit number in the protected mode.
A 32-bit offset address allows the microprocessor to access
data within a segment that can be up to 4G bytes in length.

Selectors and Descriptors

Indirectly, the register still selects a memory segment, but
not directly as in real mode.

In place of a segment address, the segment register contains
a selector that selects a descriptor from a descriptor table.

The descriptor describes the memory segment’s location,
length, and access rights.

> itselects one of 8192 descriptors from one of two tables of descriptors

There are two descriptor tables used with the segment
registers: a global descriptor (system descriptor) and a local
descriptor (application descriptor).

* Each descriptor table contains 8192 descriptors, so a total
of 16,384 descriptors are available to an application at
any time.

* Because the descriptor describes a memory segment, this
allows up to 16,384 memory segments to be described
for each application.

* Figure 5.1 shows the format of a descriptor for the 80286
and 80386-P4 as examples. Descriptors for the 80286
and the 80386—Core2 differ slightly.

— each descriptor is 8 bytes in length

Figure 5.1 The 80286 and 80386 descriptors

a1 80286 0
0000 0000 0000 0000 Access Rights Base
B23 B16
Base Limnit
B15 Bo JL15 LO
21 80386-P4 0
Base G|D ﬁ Limit J Access Rights Base
B31 B24 L19 L1 B23 B16
Base Limnit
B15 Bo | L15 LO

* The base address of the descriptor indicates the starting
location of the memory segment. The base address is a 24-bit
address for the 80286 microprocessor, and a 32-bit address
for the 80386 and above.

 The segment limit contains the last offset address found in a
segment. For example, if a segment begins at memory
location FOOOOOH and ends at location FOOOFFH, the base
address is FOOOOOH and the limit is FFH.

For the 80286 microprocessor, the base address is FOOOOOH
and the limit is OOFFH. For the 80386 and above, the base
address is OOFOOO00H and the limit is OOOFFH.

* Notice that the 80286 has a 16-bit limit and the 80386
through the Pentium 4 have a 20-bit limit. 6

* The access rights byte controls access to the protected
mode segment.

* |f the segment grows beyond its limit, the operating system
is interrupted, indicating a general protection fault.

* Note that in 64-bit mode there is only a code segment and
no other segment descriptor types.

 There is another feature found in the 80386 through
the Pentium 4 descriptor that is not found in the 80286
descriptor: the G bit, or granularity bit.

e |f G=0, the limit specifies a segment limit of 00000H to
FFFFFH.

* |f G=1, the value of the limit is multiplied by 4K bytes

(appended with FFFH). The limit is then O0000FFFH to
FFFFFFFFH

EXAMPLE 1

Base = Start = 10000000H
G=20
End = Base + Limit = 10000000H + 001FFH = 100001FFH

Example 1 shows the segment start and end if the base address is 10000000H, the limit
is 00IFFH, and the G bit = 0.

EXAMPLE 2
Base = Start = 10000000H
G=1

End = Base + Limit = 10000000H + 001FFFFFH = 101FFFFFH

Example 2 uses the same data as Example 1 , except that the G bit = 1. Notice that the
limit is appended with FFFH to determine the ending segment address.

e Descriptors are chosen from the descriptor table by the
segment register.

* The segment register contains a 13-bit selector field, a
table selector bit, and a requested privilege level field.

-The 13-bit selector chooses one of the 8192
descriptors from the descriptor table as mentioned
before.

- The Tl bit selects either the global or the local
descriptor table.

- Requested Privilege Level (RPL) requests the access
privilege level of a memory segment.

Figure 5.2 The contents of a segment register during protected mode operation of
the 80286 through Core2 microprocessors

15 32 10

Selector TI| RPL

RPL = Requested privilege level where
00 is the highest and 11 is the lowest

.

Tl =0 Global descriptor table
Tl =1 Local descriptor table

Selects one descriptor from 8192 descriptors
in either the global or the local descriptor table

.
L

11

* Figure 5.3 shows how the segment register, containing a
selector, chooses a descriptor from the global descriptor
table.

* The entry in the global descriptor table selects a segment
in the memory system.

* |n this illustration, DS contains O008H, which accesses the
descriptor number 1 from the global descriptor table
using a requested privilege level of 00.

e Descriptor number 1 contains a descriptor that defines
the base address as 00100000H with a segment limit of
OOOFFH

 This means that a value of 0008H loaded into DS causes

the microprocessor to use memory locations
00100000H-001000FFH

* Descriptor zero is called the null descriptor, must

contain all zeros, and may not be used for accessing
memory.

Figure 5.3 Using the DS register to select a description from the global descriptor
table. In this example, the DS register accesses memory
locations 00100000H—001000FFH as a data segment

Memory system

FFFFFF
Global descriptor table
po—
r— N
/—__/
N
100100
1000FF
00 a Data segment
00
Descriptor 1 g 2
(‘) g - 100000
OFFFFF
00
DS 00
| 0008 }——= F F — jme—— e
=" et s e
N———
000000

14

Flat Mode Memory Addressing

A flat mode memory system is one in which there is no
segmentation.

— does not use a segment register to address a location in the memory.

The memory system in a Pentium-based computer (Pentium 4 or
Core2) that uses the 64-bit extensions uses a flat mode memory
system.

First byte address is at 00 0000 0000H; the last location is at
FF FFFF FFFFH.

— address is 40-bits

The segment register still selects the privilege level of the
software.

Figure 5.4 The 64-bit flat mode memory model

Linear Address

00000F0000 >

FFFFFFFFFF

00000F0000

16

College of Electronics Engineering

Systems & Control Engineering
Department

Microprocessors |

Lectures 7 and 8
(Addressing Modes)

Zeyad T. Shareef

DATA ADDRESSING MODES

e MOV instruction is a common and flexible instruction.

— provides a basis for explanation of data-addressing modes

* Figure 6.1 illustrates the MOV instruction and defines
the direction of data flow.

* Source is to the right and destination to the left, next
to the opcode MOV.

— an opcode, or operation code, tells the microprocessor
which operation to perform.

Figure 6.1 The MOV instruction showing the source, destination, and direction of
data flow.

{)

MOV AX,BX
A A

- Source
Destination

Figure 6.2 8086—Core2 data-addressing modes

Type

Regisier

Immediate

Direct

Register indirsci

Bass-plus-indax

Register relative

Basa relative-plus-index

Scaled index

Instruction

MOV AN BX

MOV CGH.3AH

MOV [1234H].AX

MOV [BX]LCL

MOV [BX+SIL.BP

MOV CL [BX+4]

MOV ARRAY[BX+SI],0X

MOV [EBX+2 x ESI|AX

Source

ister
X

Address Generatlon

Destination

Data
3aH

Ragister
A

Reqistar
AX

DS=10H+DISP .

FlEE;iEI:er

10000H + 1234H

= D5 =10H + BX

Registar
5P

Mamaory
sddrass
10304H

—

10000H + 03004

DS« 10H + BX + 5l -
10000H + 0300H + 0200H

D5 = 10H+BX +4

Aegister
NES

—

Reqistar
AX

—

10000H + 0300H + 4

D5 = 10H + ARRAY + BX + 5l
T0000H + 1000H + 03004 + 02004

—_—

D5 = 10H + EBX + 2 = ES| .
10000H + QOO00E00H + GO000400H

Motes: EBX = DO000300H, ESI = 000002004, ARRAY = 10004, and DS = 1000H

FIEE'E'IH

Memory
address
11234H

Memory
addrass
1300H

Memiony
address
10600H

HAeg=ter
CL

Memory
address
11500H

tem
E||:||:Ir|zll::;.va}r
10700H

Register Addressing

* The most common form of data addressing.

 The microprocessor contains these 8-bit register

names used with register addressing: AH, AL, BH,
BL, CH, CL, DH, and DL.

e 16-bit register names: AX, BX, CX, DX, SP, BP, SI,
and DI.

In 80386 & above, extended 32-bit register names
are: EAX, EBX, ECX, EDX, ESP, EBP, EDI, and ESI.

64-bit mode register names are: RAX, RBX, RCX,
RDX, RSP, RBP, RDI, RSI, and R8 through R15.

Important for instructions to use registers that are
the same size.

— never mix an 8-bit \with a 16-bit register, an 8- or a 16-
bit register with a 32-bit register

— this is not allowed by the microprocessor and results
in an error when assembled.

Note that a few instructions are exceptions to this
rule.

Figure 6.3 shows the operation of the
MOV BX, CX instruction.

The source register’s contents do not change.
— the destination register’s contents do change.
The contents of the destination register or
destination memory location change for all

instructions except the CMP and TEST
Instructions.

The MOV BX, CX instruction does not affect the
leftmost 16 bits of register EBX.

Figure 6.3 The effect of executing the MOV BX, CX instruction at the point just
before the BX register changes. Note that only the rightmost 16 bits of register EBX
change

Register array

EAX
EBX 2 2 3 4 7 6 AF<
ECX 11 AC 1 2 3 4 1 2 3 4

Table 6.1 Examples of register addressing

Assembly Language Size Operation

MOV AL BL 8 bits Copies BL into AL

MOV CH,CL 8 bits Copies CL into CH

MOV HaB,CL 8 bits Copies CL to the byte portion of B8 (64-bit mode)
MOV RaB,CH 8 bits Not allowed

MOV AX,CX 16 bits Copies CX into AX

MOV SPBP 16 bits Copies BP into SP

MOV DS, AX 16 bits Copies AX into DS

MOV BER10W 16 bits Copies R10 into BP (64-bit mode)

MOV SI.DI 16 bits Copies Dl into Sl

MOV BX,ES 16 bits Copies ES into BX

MOV ECX,EBX 32 bits Copies EBX into ECX

MOV ESP.EDX 32 bits Copies EDX into ESP

MOV EDX,RaD 32 bits Copies R9 into EDX (64-bit mode)

MOV RAX,RDX 64 bits Copies HDX into RAX

MOV DS,CX 16 bits Copies CX into DS

MOV ES,DS — Not allowed (segment-to-segment)

MOV BL,DX — Not allowed (mixed sizes)

MOV CS5,AX — Not allowed (the code segment register may not

be the destination register)

Immediate Addressing

 Term immediate implies that data immediately
follow the hexadecimal opcode in the memory.

— immediate data are constant data.

— data transferred from a register or memory location
are variable data.

* Figure 6.4 shows the operation of a
MOV EAX,13456H instruction.

Figure 6.4 The operation of the MOV EAX,13456H instruction. This instruction
copies the immediate data (13456H) into EAX

Reqister array Program

EAX 3 3 3 3 6 2 9 1 ‘L MOV EAX,13456H
EBX 13456H = j

e As with the MOV instruction illustrated in Figure
6.3, the source data overwrites the destination
data.

 The letter H appends hexadecimal data.

 Decimal data don’t require any special codes or
adjustments.

—an example is the 100 decimal in the
MOV AL,100 instruction

* An ASCll-coded character or characters may be

depicted in the immediate form if the ASCIl data
are enclosed in apostrophes.

— be careful to use the apostrophe (‘) for ASCII data and
not the single quotation mark.

* Binary data are represented if the binary number
is followed by the letter B.

— in some assemblers, the letter Y.

Table 6.2 Examples of immediate addressing

Assembly Language Size Operation

MOV BL,44 8 bits Copies 44 decimal (2CH) into BL

MOV AX,44H 16 bits Copies 0044H into AX

MQV SI1,0 16 bits Copies 0000H into SI

MOV CH,100 8 bits Copies 100 decimal (64H) into CH

MOV ALA 8 bits Copies ASCII A into AL

MOV AH,1 8 bits Not allowed in 64-bit mode, but allowed in 32-
or 16-bit modes

MOV AX,AB’ 16 bits Copies ASCII BA" into AX

MOV CL,11001110B 8 bits Copies 11001110 binary into CL

MOV EBX,12340000H 32 bits Copies 12340000H into EBX

MOV ESI 12 32 bits Copies 12 decimal into ESI

MOV EAX,100B 32 bits Copies 100 binary into EAX

MOV RCX,100H 64 bits Copies 100H into RCX

*Note: This is not an error. The ASCII characters are stored as BA, so exercise care when using word-sized
pairs of ASCII characters.

Direct Data Addressing

* Applied to many instructions in a typical program.

* Address is formed by adding the displacement to
the default data segment address or an alternate
segment address.

Figure 6.5 The operation of the MOV AL,[1234H] instruction when DS=1000H

Memory

e
11235H

AH AL
EAX 8AH < 8AH 8 A | 11234H

EBX

11233H

ECX

11232H

I e I

-\\\‘\-

* This instruction transfers a copy contents of
memory location 11234H into AL.

* the effective address is formed by adding 1234H
(the offset address) and 10000H (the data
segment address of 1000H times 10H) in a system
operating in the real mode.

Register Indirect Addressing

* Allows data to be addressed at any memory
location through an offset address held in any of
the following registers: BP, BX, DI, and SI.

Figure 6.6 The operation of the MOV AX,[BX] instruction when BX = 1000H
and DS = 0100H. Note that this instruction is shown after the contents of
memory are transferred to AX

00002002

EAX AH AL 3412

3 4 1 2 “\ 3 4 00002001
EBX 10 00 1000 5000 1 2 00002000

ECX
_/__/v-
M _/‘/NM
00001002
CS 00001001
*1000
DS 0100 = 00001000

*After DS is appended with a 0.

 The data segment is used by default with register

indirect addressing or any other mode that uses
BX, DI, or Sl to address memory.

* |f the BP register addresses memory, the stack
segment is used by default.

— these settings are considered the default for
these four index and base registers

Table 6.3 Examples of register indirect addressing

Assembly Language Size Operation

MOV CX,[BX] 16 bits Copies the word contents of the data segment memory
location addressed by BX into CX

MOV [BP],DL* 8 bits Copies DL into the stack segment memory location
addressed by BP

MOV [DI],BH 8 bits Copies BH into the data segment memory location
addressed by DI

MOV [DI],[BX] — Memory-to-memory transfers are not allowed except with
string instructions

MOV AL,[EDX] 8 bits Copies the byte contents of the data segment memory
location addressed by EDX into AL

MOV ECX,[EBX] 32 bits Copies the doubleword contents of the data segment
memory location addressed by EBX into ECX

MOV RAX,[RDX] 64 bits Copies the quadword contents of the memory location

address by the linear address located in RDX into RAX
(64-bit mode)

Base-Plus-Index Addressing

* Similar to indirect addressing because it indirectly
addresses memory data.

* The base register often holds the beginning
location of a memory array.

— the index register holds the relative position of an
elementin the array.

— whenever BP addresses memory data, both the stack

segment register and BP generate the effective
address.

* Figure 6.7 shows how data are addressed by the
MOV DX,[BX + DI] instruction when the
microprocessor operates in the real mode.

Figure 6.7 An example showing how the base-plus-index addressing mode functions
for the MOV DX,[BX + DI] instruction. Notice that memory address 02010H is
accessed because DS=0100H, BX=1000H and DI=0010H

Memory
V___/
02015H
EAX
02014H
ECX 02012H
L — | A B 02011H
EDX A B 0 3
<—/18°3 0 3 | 02010H <—
0200FH
ESP T N —
EBP
1000H
ESI
0010H 2010H
EDI 0010 2 C +
1010H
f 1000H

DS x 10H

Table 6.4 Examples of base-plus index addressing

Assembly Language Size Operation

MOV CX,[BX+DI] 16 bits Copies the word contents of the data segment memory
location addressed by BX plus Dl into CX

MOV CH,[BP+Sl] 8 bits Copies the byte contents of the stack segment memory
location addressed by BP plus Sl into CH

MOV [BX+SI],SP 16 bits Copies SP into the data segment memory location
addressed by BX plus S

MQV [BP+DI],AH 8 bits Copies AH into the stack segment memory location
addressed by BP plus DI

MOV CL,[EDX+EDI] 8 bits Copies the byte contents of the data segment memory

MOV [EAX+EBX],ECX 32 bits

MOV [RSI+RBX],RAX 64 bit

location addressed by EDX plus EDI into CL

Copies ECX into the data segment memory location
addressed by EAX plus EBX

Copies RAX into the linear memory location addressed
by RSI plus RBX (64-bit mode)

Register Relative Addressing

* Similar to base-plus-index addressing and
displacement addressing.

— datain a segment of memory are addressed by adding
the displacement to the contents of a base or an index
register (BP, BX, DI, or Sl)

* Figure 6.8 shows the operation of the

MOV AX,[BX+1000H] instruction.

e Remember that a real mode segment is 64K bytes
long.

Figure 6.8 The operation of the MOV AX, [BX+1000H] instruction, when BX=0100H
and DS=0200H

Memory
et
Register array
eax[2222 [Aol 76 <“_ O A0 |03101H
EBx| 0000 |01 00 7 6 | 03100H -
_—— — 0100H
1000H
1100H ———
DS x 10H -

2000H 3100H

Base Relative-Plus-Index Addressing

* Similar to base-plus-index addressing.
— adds a displacement

— uses a base register and an index register to form the
memory address.

* Least-used addressing mode.

* Figure 6.9 shows how data are referenced if the
instruction executed by the microprocessor is
MOV AX,[BX + SI + 100H].

— displacement of 100H adds to BX and S| to form the
offset address within the data segment

* This addressing mode is too complex for frequent
use in programming.

Figure 6.9 An example of base relative-plus-index addressing using a MOV
AX,[BX+SI+100H] instruction. Note: DS=1000H, BX=20H, SI=10H

EAX
EBX
ECX
EDX

ESP
EBP

ESI

Memory
- \~
Register array
— A 3 10131H
A3|16 A316
16 10130H <—
00|20
0020H
0030H 0130H
0010
OO10H 10130H
i e 10000H

0100H ps x 10H

Stack Memory-Addressing Modes

* The stack plays an important role in all
Microprocessors.

— holds data temporarily and stores return addresses
used by procedures.

e Stack memory is LIFO (last-in, first-out) memory.

e Data are placed on the stack with a PUSH
instruction; removed with a POP instruction.
e Stack memory is maintained by two registers:

— the stack pointer (SP or ESP)
— the stack segment register (SS)

Figure 6.10 The PUSH and POP instructions: (a) PUSH BX places the contents of BX
onto the stack; (b) POP CX removes data from the stack and places them into CX.
Both instructions are shown after execution.

Mamory

Register amray —]
EAX
_'\ 12
EBX 12134 1234
14 |=
ECX
EDX
-'r._",r'-n_r"'\-
ESP — (%)
R —— 1
S5 = 10H
{a)
Registar array Memory
EAX —
EBX)
" | 12
ECX 1213 4 1234
—_— \I_'_‘_‘—'—-—-—-_._________ 34
L
ESP

85 = 10H
(b)

Note that PUSH and POP store or retrieve words
of data—never bytes—in 8086 - 80286.

80386 and above allow words or double-words to
ne transferred to and from the stack.

Data may be pushed onto the stack from any 16-
0it register or segment register.
— in 80386 and above, from any 32-bit extended register

Data may be popped off the stack into any
register or any segment register except CS.

College of Electronics Engineering

Systems & Control Engineering
Department

Microprocessors |

Lecture 9
(Instruction Set Architecture)

Zeyad T. Shareef

Machine Instruction

e Aninstruction (or command) is encoded as a bit
pattern recognizable by the CPU.

 Machine Instruction types:

» Data Transfer: copy data from one location to
another

» Arithmetic/Logic: use existing bit patterns to
compute a new bit patterns

» Control: direct the execution of the program

Memory Operations

Memory contains data & program instructions

Control circuits initiate transfer of data and
instructions between memory and processor.

Read operation: memory retrieves contents at
address location given by processor

Write operation: memory overwrites contents
at given location with given data

Register Transfer Notation

e Register transfer notation is used to describe
nardware-level data transfers and operations

e Use [...] to denote contents of a location.

e Use <« to denote transfer to a destination

* Example: R2 « [LOC]
(transfer from LOC in memory to register R2)

Assembly-Language Notation

Another notation is needed to represent
machine instructions & programs using them;

Assembly language is used for this purpose.

Examples in this chapter will use English words
for the operations (e.g., Load, Store, and Add)

In the assembly language instructions of actual
(commercial) processors, mnemonics are used,
usually abbreviations (e.g., LD, ST, and ADD).

Mnemonics differ from processor to processor.

RISC and CISC Instruction Sets

* Nature of instructions distinguishes computers.

 Two fundamentally different approaches:

* Reduced Instruction Set Computers (RISC)
»have one-word instructions
» Few, simple, efficient, and fast instructions
»Examples: PowerPC from Apple/IBM/Motorola
and ARM

e Complex Instruction Set Computers (CISC)
» have multi-word instructions
» Many, convenient, and powerful instructions
» Example: Intel

RISC Instruction Sets

* Each RISC instruction fits in a single word.
* A load/store architecture is used, meaning:

—only Load and Store instructions are used
to access memory operands

—operands for arithmetic/logic instructions
must be in registers, or one of them may be
given explicitly in instruction word.

RISC Instruction Sets

* For simplicity, lets assume that A, B, and C are
abels representing memory word addresses;
R2, R3 and R4 are processor registers.

 To add the contents of locations A and B, then
store the result in location C, the following
steps are needed:

Fetch contents of locations A and B, compute
sum, and transfer result to location C.

RISC Instruction Sets

e Sequence of simple RISC instructions for this
task:

Load R2, A
Load R3, B
Add R4, R2,R3
Store R4, C

* Load instruction transfers data to register.
e Store instruction transfers data to the memory.

Fetching and executing instructions

* Example: Load R2, LOC

The processor control circuits do the following:
* Send address in PC to memory; issue Read
* Load instruction from memory into IR
* Increment PC to point to next instruction
* Send address LOC to memory; issue Read
* Load word from memory into register R2

A Program in the Memory

Consider the preceding 4-instruction program

How is it stored in the memory?
(32-bit word length, byte-addressable)

Place first RISC instruction word at address i
Remaining instructions areati+4, /+8, i+ 12

Address Contents

Begin execution here —= | Load R2.A
i+4 Load R3.B 4-1nstruction
> program
i+ 8 Add R4.R2,R3 segment
i+ 12 Store R4, C
A - -—
the program
c L |

12

Instruction Execution/Sequencing

* How is the previous program executed?
* Processor has program counter (PC) register
e Address i for first instruction placed in PC

e Control circuits fetch and execute instructions,
one after another — straight-line sequencing

* During execution of each instruction,
PC register is incremented by 4

e PC contents are i + 16 after Store is executed

	Slide 1
	Slide 2: Functional Units
	Slide 3: Functional Units
	Slide 4: Information Handled by a Computer
	Slide 5: Input Unit
	Slide 6: Memory Unit
	Slide 7: Arithmetic and Logic Unit (ALU)
	Slide 8: Output Unit
	Slide 9: Control Unit
	Slide 10: The operation of a computer can be summarized as follows:
	Slide 1
	Slide 2: Integer Numbers Representation
	Slide 3
	Slide 4: 2’s-complement integers
	Slide 5: Addition
	Slide 6: Subtraction
	Slide 7: Overflow
	Slide 8: Sign extension
	Slide 1
	Slide 2: INTRODUCTION
	Slide 3: Processor components
	Slide 4: Processor components
	Slide 5: The Programming Model
	Slide 6: Figure 3.1 The programming model of the 8086 through the Core2 microprocessor including the 64-bit extensions.
	Slide 7: Multipurpose Registers
	Slide 8
	Slide 9
	Slide 10: Special-Purpose Registers
	Slide 11
	Slide 12
	Slide 13: Segment Registers
	Slide 14
	Slide 15
	Slide 1
	Slide 2: Memory Organization
	Slide 3
	Slide 4: Word and Byte Encoding
	Slide 5
	Slide 6: Addresses for Memory Locations
	Slide 7: Byte Addressability
	Slide 8: Big- and Little-Endian Addressing
	Slide 9
	Slide 10: Word Alignment
	Slide 11: Real Mode Memory Addressing
	Slide 12: Real Mode Memory Addressing
	Slide 13: Segments and Offsets
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Default Segment and Offset Registers
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Figure 5.5 A memory system showing the placement of four memory segments
	Slide 1
	Slide 2: Protected Mode Memory Addressing
	Slide 3: Selectors and Descriptors
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Figure 5.3 Using the DS register to select a description from the global descriptor table. In this example, the DS register accesses memory locations 00100000H–001000FFH as a data segment
	Slide 15: Flat Mode Memory Addressing
	Slide 16
	Slide 1
	Slide 2: DATA ADDRESSING MODES
	Slide 3: Figure 6.1 The MOV instruction showing the source, destination, and direction of data flow.
	Slide 4: Figure 6.2 8086–Core2 data-addressing modes
	Slide 5: Register Addressing
	Slide 6
	Slide 7
	Slide 8: Figure 6.3 The effect of executing the MOV BX, CX instruction at the point just before the BX register changes. Note that only the rightmost 16 bits of register EBX change
	Slide 9
	Slide 10: Immediate Addressing
	Slide 11: Figure 6.4 The operation of the MOV EAX,13456H instruction. This instruction copies the immediate data (13456H) into EAX
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Direct Data Addressing
	Slide 16: Figure 6.5 The operation of the MOV AL,[1234H] instruction when DS=1000H
	Slide 17: Register Indirect Addressing
	Slide 18: Figure 6.6 The operation of the MOV AX,[BX] instruction when BX = 1000H and DS = 0100H. Note that this instruction is shown after the contents of memory are transferred to AX
	Slide 19
	Slide 20
	Slide 21: Base-Plus-Index Addressing
	Slide 22
	Slide 23: Figure 6.7 An example showing how the base-plus-index addressing mode functions for the MOV DX,[BX + DI] instruction. Notice that memory address 02010H is accessed because DS=0100H, BX=1000H and DI=0010H
	Slide 24
	Slide 25: Register Relative Addressing
	Slide 26: Figure 6.8 The operation of the MOV AX, [BX+1000H] instruction, when BX=0100H and DS=0200H
	Slide 27: Base Relative-Plus-Index Addressing
	Slide 28
	Slide 29: Figure 6.9 An example of base relative-plus-index addressing using a MOV AX,[BX+SI+100H] instruction. Note: DS=1000H, BX=20H, SI=10H
	Slide 30: Stack Memory-Addressing Modes
	Slide 31
	Slide 32: Figure 6.10 The PUSH and POP instructions: (a) PUSH BX places the contents of BX onto the stack; (b) POP CX removes data from the stack and places them into CX. Both instructions are shown after execution.
	Slide 33
	Slide 1
	Slide 2: Machine Instruction
	Slide 3: Memory Operations
	Slide 4: Register Transfer Notation
	Slide 5: Assembly-Language Notation
	Slide 6: RISC and CISC Instruction Sets
	Slide 7: RISC Instruction Sets
	Slide 8: RISC Instruction Sets
	Slide 9: RISC Instruction Sets
	Slide 10: Fetching and executing instructions
	Slide 11: A Program in the Memory
	Slide 12
	Slide 13: Instruction Execution/Sequencing

