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LQG Control

In full state feedback optimal control system as shown below,
the system 1s assumed noiseless and 1its variables are
available for feedback process.

Figure (1). Full state feedback control system.
Where the state vector x=[x1 x2 ....xn]" K=[k1 k2 ... Kn]

However, this assumption may be not hold in practice as it 1s
subject to noises and not all the system states are physically
measurable. In order to apply state feedback controller
technique a Kalman filter must be included to the system.



QG Control

LQG controller i1s a modern state space technique for
designing optimal dynamic regulators. It Is used to reject
process (w) and mesurement (v) noises and for state
estimation for non measurable systems.

LQG iIs a combination of an optimal LQR controller with
Linear Quadratic Estimator (LQE) (Kalman Filter) as shown

In figure (2). y
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Figure (2). LQG control system




QG Control

Consider a plant that subject to a Gaussian disturbance w(t)
(process noise) and measurement noise v(t) as shown In

figure (3)
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Figure (3). LQG controller structure.



QG Control

The state and output equations of the system are as follows:

x(t) = Ax(t) + Bu(t) + w(t) (1)
y(t) = Cx(¢t) + v(t) (2)

While the state and output equations of the estimator are
given below:

x(t) = A%(t) + Bu(t) + K.y, (3)
y(t) = Cx(t) (4)

Where X(t) is the estimated value of the state x(t).



QG Control

x(t)y= Ax(t) + Bu(t) + K, (y,—9)
Based on (4), the above equation becomes
x(t)= Ax(t) + Bu(t) + K, (y,-Cx(t))
x(t)= (A —K,0)x(t) + Bu(t) + K,y + K,V(t) (5)

Where K, 1s the estimator gain matrix. The estimation error
1s geven by:
e(t) = x(t) — x(¢) (6)
e(ty=x(t) — x(t) (7)
Using (1) and (5), (7) can be written as follows:
e(t)=Ax(t) + Bu(t) + W(t) — (A — K,C)x(t) — Bu(t)
— ReY — KeV(t)



QG Control

e()=Ax(t) + W(t) — (A — K, C)x(t) — K,Cx(t) — K,V (t)
e(t)=(A—-K,C)x(t) —(A—K,C)x(t) + W(t) — K,V (t)
e(t) = (A— K, C)(x(t) —2(t)) + W(t) — K,V (t)

e(t)=(A—K,Cle(t) + W(t) — K, V(t) (8)
Based on (6), the control effort is given by:

u(t)= —K&(t)= — K (x(t) — e(t)) = — Kx(t) + Ke(t) .......(9)



LOG Control

Using (9), (1) becomes:
x(£)= Ax(t) + B(—Kx(t) + Ke(t)) + W (t)
x(t)= (4 — BK)x(t) + BKe(t) + W(t) (10)

Based on (8) and (10), the state equation of the LQG
controller 1s as follows:

P e Y e [ 4

Stability of the LQG controller 1s governed by the closed loop
poles of the LQG’s state matrix. Dynamic behavior of the
observer depands on the eigenvalues of the matrix (4 — K,C).
If (A— K,C) is stable then X(t) - x(t)as t — oo.



LQG Control

The transient response of the observer is faster than that of
the system itself. While the stability of the LQR controller
depends on the closed-loop poles of the matrix (A-BK).

It 1s worth considering that if the noises w(t) and v(t) have
small values then their effect on the system can be
neglected.

To design a stable state observor, the system must be
completely observable. The observability of the system 1is

examined by the following observability matix N which 1s

C
CA

given by: N =

C A;'l—l_



LQG Control

If the rank of N equals the order of the system (n), then the
system Is completely observable. If the produced N matrix

IS an Identity matrix, then the system iIs completely
observable.

It can also check the observability of the system easly using
Matlab command “obsv(A,C)”




Observability

Example: Compute the obsevalility of a system with the
following state and output matrices

_[0 1 _
A=, ,].c=no
Solution: order of the system (n) is 2
_[C

N = [CA]

CA=[0 1],
1 o
N = [o 1

N 1s a second identity matrix then the system is
observable.



College of Electronics Eng. Ninevah University

Systems and Control Eng. Department

Lecture 2

Subject: Linear Quadratic Gaussian (LQG) Control

Lecturer: Dr. Ibrahim Khalaf Mohammed



Estimation Kinds

Types of estimators
1. Full-order state estimator

In this type, the observer estimates all the state variables
of the system.

2. Reduced-order state estimator

In this type, the observer estimates fewer than n state
variables, where n iIs the dimension of the system state
vector.

In this course, design techniques of full-order state observer
will be taken into consideration



Estimation Kinds

Full-order Observer Design Methods
1- Direct Comparison Method
2-Observable Canonical Form Method
3-Ackermann’s Formula Method



States Estimation Techniques
Direct Comparison Method

Using the state equation:
x(t)=Ax(t) + Bu(t) + W(t)
sX(s)=AX(s)+BU(s)
sX(s)-AX(s)=0

(s—A)X(s)=0

The characteristic equation of the open loop system (orignal
system) is:
sI- A|=0

Design of the estimator depends on the locations of the closed-
loop poles of the observer which should be selected properly



States Estimation Techniques
Direct Comparison Method

The estimator ‘s poles (g, Uy - o .. Uy, ) are determined from
closed-loop observer matrix.

S1 = U1, S2 = Uy eevvvnnnnnnnnn. Sn = Un
Based on (8):

é(t) = (4 — K, C)e(t)
sE(s)=(A4 — K,C)E(s)
(s-A+ K,C)E(s)=0

Based on the above equation, the characteristics equation of the
observer 1s as follows:

s — A+ K,C| =

|sI — A+ K,C|=(s- t1)(S- hp)eevveenenn... (s- Uy)
= s, sV M tays + ap=0



States Estimation Techniques
Observable Canonical Form Method

Define the following transformation matrix (Q) which uses to

transform the state equation of the system into the observable

canonical form:

Q= (MN)!
Where M is the given by:
a ap An-1 1] C
a; as 1 0 CA
M = : ,N =
an—1 1 0 O _
1 0 0 O A1




States Estimation Techniques

State and output equations of the system in controallable canonical
form are given below

x(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

y=1|[co ¢ - Cn-1]

X1 0 1 0 0 1[*17 10
X2l 1o O 0 0 [|*2| |0
Xy —Qy —a; —Apn_z —ap_1dlx,d L1

* Ju(t)



States Estimation Techniques

The observable form of the state equation 1s as follows
x(t) = Apx(t) + Bou(t)

_.le_ B0 0 0 —Qy X111 o
. 0 —aq X2 C1

=
8]
p—
e

Il
T

u(t)

_x.n_ - O 0 o 1 _an_l_ _xn_ _Cn_]__

Note: the state matrix (4,) of the observable canonical form is the
transport of the controllable canonical form (A”) and the input
matrix (B,) of the observable canonical form is the transport of the

output matrix for controllable canonical form (C1): 4, = AT,B, = CT



States Estimation Techniques

The expression used to find the observer gain matrix is given below:

Ke1] T g — Qg - C
K a,—a CA
_ -1 1 1
Ke=| - | = (MN) ' , N(obs. matrix) = '
K., [ Opn—1 — Apn—1. LcAM 1]

Where ay..... a,,_q are the solution polynomails of the open loop
characteristics equation for the system |sI — A|.Whileay .....
a,_1 are the solution polynomails of the desired characteristics
equation for the observer. For example, equation of the second order
observer may have the following form:

s% 4+ 2éwps + w2 =0

(s —u)(s —p) =0
Where p; and p, are the desired closed loop ploes of the observer.
Solution of the above equations 1s given by:



States Estimation Techniques

Ackemann’s Formula Method

The solution polynomails of the open loop characteristics equation for
the system |sI — A| is as follows:

The solution of the desired characteristics equation @ (s)of the observer
1s as follows:

B(s) = s"+a,, s I+ 4a;s + an=0
n—1 1 0
@(A) = An+an_1An_1+ ....... +a1A + a0=0



States Estimation Techniques

Ackemann’s Formula Method

The gain matrix of the observer is given by:

_ C -—1 A_
CA
K, = 8(A)| cA?

- OO O

can-1l L1
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Example: Consider the system defined by:
x(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

Where A= [_02 _13] B= [(1)] =11 0]

Design a full-order state observer that has an undamping
frequency of 10 rad/s and a damping ratio of 0.5.

Solution:

To design a state estimator, we have to check the observability of
the system,

The order of the system n =2

C
CA

N =

_CAh—1_
ca=11 o2, L]=10 1



1o N _
N = [0 1],the rank of N Is 2, rank(N) =n,

Then the system is completley observable.
To find poles of open-loop system:
sl-A| =0,

b 1% Sl [l

s(s+3)+2=0

s?°+35s+2=0

Comparing the above equation with the below standard equation:
s+a;s+ag=0 --—--- > ay=2, a;=3

s?°+35s+2=0

(s+1)(s+2) =0

s =-1

S, = -2



The characteristics equation of the desired estimator is as follows:
s% 4+ 2&w,s + wy, =0

s2+2x05%10s+ (10)2=0

s+ 10s+100=0

But: s2 + a;s +ag =0

ap = 100, ay =10

Poles of estimator: s; =-5+)8.66, s, =-5-]8.66

1. Observer design using Direct Comparison method:
The charactersitics equation of the observer is given by
sl — A+ K,C|=s?+ ays + ag

B 0]_[_0 _13]+ gez 1 0]|: s24+10s + 100

— 2
[2 S+3 [Kez 0] s24+10s + 100



s+ B3+ K,)s + (BK,1+K,p +2) = s +10s + 100
3+K,, =10 ——— K, =7

3Kel + Kez + 2=100 —_—— > Kez — 77
The observer gain matrix K, = KeZ] [77]

2. Observer design using Observable Canonical Form method

Ke1] T Qo — Qg
Ko=| 2 =umyt| T
_K;w_ [ An—1 — Ap—1.
Ke= MN[0 Z )
M = _al 0] 3 é
N=lo 5l




v =[1 ollo 3

k= Sllh0-sFh Sll5]
Ke=[777]

3. Observer design using Ackermann’s Formula method
B C 110
Ke = 0(4) [CA] [1]

K, = [A%+a, A + a,l] [ca: R m

k=18 0% Llewoold 91 9]




=2 =31.10 10
Ke‘ ] —20 —30

wool|lo 1l

Ke _[ 14 77” [O]

Re _[ 14 77”0
Ke _[77]

+ [100
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QG Design for Noiseless System

The state space representation of dynamic system that subject to
process (W) and measurement (V) noises is given below:

x(t) = Ax(t) + Bu(t) + GW (t)+0 V(t)
y(t) = Cx(t) + Du(t) + OW(t) + HV (t)

If the process (W) and measurement (V) noises are very small so
that it can neglect their effect on the system, then the state and
output equations are given below:

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

The estimator gain matrix can be calculated using direct
comparison method, observable canonical method, and
Akermann’s formula method.



QG Design for Noisless System

While the LQR Controller gain matrix can be calculated
using the following equation

K=R'B'P
Where P Is the solution of the following Riccati equation:

PA+ AP —PBR'BTP+0 =0



QG Design for Noisless System

In matlab the LQR gain matrix is calculated as

below:
K =lgr(A,B,Q,R)

Q 1s the state weighting matrix of the system

R 1s the control (input) weighting matrix of the
system



Example: Consider the system.defined by:

x(t)=Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

—1

Where A = [ )

Lle=[gle=1 o

100 O

L0 1
weighting matrix iIs = 0.01 and LQR controller Riccati

0.99 0.012

0.012 0.126
the following If the desired eigenvalues of the full-order

observer are u; = -9, u,= —10.

If the state weighting matrix is Q= ] the Input

matrix P= [ ] , design a LQG controller for



LQG Design for Noisless System

solution

The LQG controller i1s a combination of LQR controller with an
estimator:

To design a state estimator, we have to check the observability of
the system,

The order of the system n = 2

N =

_(:A;”t—l_
N = [Cil]

CA = [1 o][‘z1 _14]=[—1 1]



1 0 . _
N_[—l 1],the rank of N i1s 2, rank(N) =n,

Then the system is completley observable.
To find poles of open-loop system:
sl- Al =0,
[8 (s)] - 21 —14”:0’ ‘S—+21 s +14 =0
(s+1)(s+4)-2=0
s?+55s+2=0
Comparing the above equation with the below standard equation:
s+a;s+ag=0 --—--- > ay=2, a;=5
s?°+55+2=0
s; =-0.4384
s, =-4.56
The plant of the system is stable.




The characteristics equation of the desired estimator is as follows
(s—u)(s—uz)=0

(s+9)(s+10)=0

s +19s+90=0

But: s + a;s +ag =0

ay, =90, a; =19

1. Observer design using Direct Comparison method:
The charactersitics equation of the observer is given by
sl —A+K,C|=s’+a;s +

° 0]_[—21 _14]+[i;][1 0]‘:52+19s+90

0
S_+1 S+4] [k O]:s +19s + 90




s+ (5+ky)s + (4koyt+ke, +2) = s2+19s5 + 90
5+ k,, =19 ——— k= 14
4k81 + kez + 2=90 ———- kez = 32

The observer gain matrix K, = [l,zel] = [é;}]
ez

2. Observer design using Observable Canonical Form method

(Ke1] - Qo — Ao
k 2 a; —a
K.=| *l=umy-t| T
Ky g dan—l — dp-1.
_1[%0 — Qo
o= iy [0

a 1 5 1
M_ 1 —
0] 1 0’

1 O
-1 1r



=[5 4[L O] 1)

Q = (MN) 1= S [0 1
-1 1 —4
Xy — g

=l LIRSS LI
fe = [32
3. Observer design using Ackermann’s Formula method
-1
ke =0[g,] [3]

K, = [A%a,A + agl] lé‘}d_l H

ke=|[50 Lo Llvool (L 9T




Ke‘[[ ?10 185 [3189 —.1;)6]_'_[90 90“1 O”O]
Ke=[35 5all1 1[4

K= l26 salla)ls2
It can calculate the estimator gain matrix based on pole
placement technique using the Matlab command “place”
as follows:
Ke=place(A',C',p)’
Where p iIs the desired ploes vector of the estimator
p=1[9,-10]



L OR controller design

K =R"1BTP

0.99 0.012]

T
K=[0-01]_1[g)] [o.o12 0.126

K =199 1.194]

It can determine the LQR gain matrix K using Matlab command as
follows:

K=1lgr (A,B,Q,R) = [99 1.194]
[K,P,Eigvalues] = Igr(A,B,Q,R) = [99 1.194]



QG Design for Noisy System

If the process (W) and measurement (V) noises are included to the
system, then the state and output equations are given below:

x(t) = Ax(t) + Bu(t) + GW (t)+0 V(t)
y(t) = Cx(t) + Du(t) + OW(t) + HV (t)

Qe = E(WWT)
R, =E(WVT)
Inputs of the system iIs u(t), W(t) and V(t)

Where G (n x 1) and H (1 x 1) are noise matrices, Q, Is the state
weighting matrix of the estimator based on process noise and R, Is
the control weighting matrix of the estimator based on
measurement noise.

Q. and R, like Q and R matrices are designed by the designer.



QG Design for Noisy System

The estimator gain matrix based on process and
measurement noises Is calculated using the following
expression :

K,=P,CTR,1

Where P, Is the solution of the following Riccati equation of
the estimator:

AP, + P,AT — P,CTR,”'CP, + GQ,GT =0



QG Design for Noisy System

In Matlab, the estimator gain matrix of the noisy system can be
calculated as follows:

Sys=ss(A,[B G],C,[D H])
K, = kalman(Sys, Q., R,)
Qe = E(WWT)
R, =E(WVT)

LOR Controller
The gain matrix of the LQR controller is:

K =R 'BTP
P is the solution of the following Riccati equation:

PA+ ATP — PBR™BTP+Q =0



LQG Design for Noisy System

In matlab the LQR gain matrix is calculated as

below:
K =lgr(A,B,Q,R)

Q 1s the state weighting matrix
R 1s the control (input) weighting matrix



Example: Consider the system defined by:

x(t)= Ax(t) + Bu(t) + GW (¢t)
y(t) = Cx(t) + Du(t) + OW(t) + HV (t)

Where A=[_21 _14],B=H)],C=[1 0],G=[1

0]and
H=0.

Design a LQG controller so that for LQR controller , the
state weighting matrix, Input weighting matrix and Riccati
matrix are given by:

_ 100 © _ 1099 0.012
Q_[o 1]’R_0'01'P_ [0.012 0.126



The Riccati matrix, state Weighting matrix and control
weighting matrix of the estimator are given by:

0.2687 0.0845] 0, = [O.S

0
Fe [0.0845 0.0363 0 0.35 ]’ e= 015



LQG Design for Noisy System

Solution

To design a state estimator, we have to check the observability
of the system,

The order of the system n =2

C
CA
N =
_CA;l—l
_IC
o CA] 1 1
ca=01 ol| _|=[-1 1]



10 L _
N = [_1 1], the rank of N is 2, rank(N) =n,

Then the system is completley observable.
LOR controller design

K =R 1BTp
11771099 0.012
— 1
K =10.01] [o] 10.012 0.126

K =199 1.194]
It can determine gain matrix K using Matlab commands as follows:

[Ke,P,Eigvalues]=Igr(A,B,Q,R) = [99 1.194]

Observer design

7916
5632

0.2687 0.0845

roq5-1= [1
0.0845 0.0363 (1 0]7(0.15) [0.

K= RCTR,™" =|



Observer design using Matlab Commands:

Sys=ss(A,|B G],C,[D H])

K, = kalman(Sys,Q,,R,)



s
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Text Books

# P. A. loannou and B. Fidan, Adaptive
Control Tutorial, SIAM, 2006.

# P. loannou and J. Sun, Robust Adaptive

Control, Prentice Hall, 1996.

# K. J. Astrom and B. Wittenmark, Adaptive

Control, 2nd Edition, Addison-Wesley, 1995.



History of Adaptive Control

1950’s

- Autopilots for high-performance
- Aircrafts operating over a wide
range of speeds and altitudes.

1960°s
- Space state and stability theory.

1970°s-1980°s
- Proof for stability of adaptive
control systems.
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Control System Design (cont.)

Uncertainty |
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Problems

» Unknown plant model or parameters
* Plant parameters can vary with time!
« Unknown disturbance characteristics

@

» Adaptive controller: adapt to changes

» To adapt: to change a behaviour to conform to
new circumstances.



Adaptive Controller

» A controller that adjusts its gain parameters to
adapt to changes in the system plant and
process which occur with time.
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X
» ldentifier-based Adaptive Control

» Non-identifier-based Adaptive Control



Non-identifier-based Adaptive Control
T
* Gain Scheduling

» Switching Control

*Multiple Model Control
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Switching Control
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Identifier-based Adaptive Control

« Model Reference Adaptive Control
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. PID control
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Adaptive Control Strategies

. Indirect Adaptive control

- Direct Adaptive Control

Indirect Adaptive Control
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« Estimatation of plant parameters

» Computing of controller parameters



Direct Adaptive Control
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Identification of System Parameters

Adaptive Control: It is feedback control for systems with
uncertain parameters.

Types of Plantes

1. Non - linear time - varying (NLTV) with unknown paramerters 0
x(t) = f(x,u,0,t) state equation
y = h(x,u,0,t) output equation

2. Linear time - varying (LTV) with unknown paramerters 0

x(t)=A4(00,t)x + B(0,t)u state equation
y=C(6,t)x+D(6,t)u output equation

3. Linear time-invariant (LT1) with unknown paramerters 0

x(t)=A(0)x + B(6)u State equation
y=C@)x+D(O)u output equation
4. Linear time-invariant (LTI)

x(t) = Ax(t) + Bu(t) state equation

y = Cx(t) + Du(t) output equation



Identification of plant single parameter

Let a system with an input of u(t) and output of y(t)

u(t) y(t

Where @ Is unknown scalar parameter of the plant
and identified as 8" using measurements of u(t) and y(t)
at every Instant.

y(t) =0 u(t)

Identification of plant vector parameter

u(t) y(t

Where 67 is unknown vector parameter of the

plant and identified as oT" using measurements of u(t)
and y(t) at every Instant.



Error Model

y(t)
Y (1)

Where 8" is identified of 6

u(t) e(t)

~=0" -6

u(t) —

Where 6~ is the error between the identified and real
value of the plant parameter. 6~ Is identified using
measurements of u(t) and e(t) at every instant.



Identification of a parameter in a dynamic system

Let asimple transfer function of a DC motor

K
VO js+5 —— W()

Where V Is the Input voltage of the motor, W Is the
angular velocity output, K J B are the physical parameters
of the DC motor .

The open-loop transfer function of the motor Is given by:

6E)=—
S) —
Js+B
K
- J - 41
G)=——F =
) S+? s+01

Where a, = 7Kand 0; = ?are unkown parameters



Identification of a parameter in a dynamic system

Let asimple transfer function of a motor

a1

V(SfF—> s+, —> W(s)

V(s) —> : ! ) ——>W(s)

Assume that a, Is known

ai

W(s) = vy V(s)
sW(s) + 0, W(s) = a;V(s)

Let U(s) = a4V (s), (u(t) = a,V(t)), then

sW(s) + 0, W(s) =U(s)



Identification of a parameter in a Dynamic System

Laplace inverse of the following expression yields:
sW(s) +0,W(s) =U(s)
W) = —0,W(t) + u(t)

The error model of the system is as follows:

E=0"W

U 1 >E
S‘l‘gl

6~ U
s+ 6,
sE+E6, =0"U
sE =—0,E+60"U
Laplace inverrse of the following expression gives:
e(t) = —0,e(t) + 67 u(t)

E =



Model Reference Adaptive Controller (MRAC)

MRAC is one of the main techniques of adaptive
control . The basic block diagram of the controller is

given by:
Reference
Model
: Outer loop _

Adjustment
Mechanism

Controller
Parameters

Command
Signal u,

Process
1

Imter@

The desired performance Is expressed In terms of a

reference model which gives desired response (ym).

There are two feedback loops:

1. Inner loop. Its a ordinary feedback loop.

2. Outer loop. It adjusts the parameters on the inner
loop




Model Reference Adaptive Controller (MRAC)

In MRAC technique the parameters of the controller are
adjusted based on the error between the reference model

and the system plant.

MRAC Design
There are three methods used to design the MRAC

which are:

1. MITrule

2. Lyapunov funtions
3. Passivity theory

In this course MIT rule approach will be considered In
design MRAC.



Thank You!
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Model Reference Adaptive Controller (MRAC)

MIT Design Method
It Is a scalar parameter adjustment law was proposed In

1961 for the MRAC system

‘ I Reference |
Model

e(t) ¥

Adjustment l l
Mechanism
Controller
Parameters

Command
Signal u, Process y

If the transfer function of the reference model and plant
(process) model are Gm(s) and G(S) respectively. The
controller gain @ based on MIT rule can be computed by

using the following formula:

do de(t)

—==ve(t) —

Where e(t) = y(t) — ¥ (®)



Model Reference Adaptive Controller (MRAC)

6 depends on the system design. It can be a scalar
unknown gain parameter 6, or vector of unknown gain
parameters  [04,0,,05 ....8,]]". Where n is number of
unknown parameters . While y Is a gain constant.

% IS the sensitivity derivative of the system, which Is

derived from adaptation error e(t).

Example: An MRAC system with the following block
diagram. If K; Is a known parameter and 6 Is the
controller parameter.

4| K,G(s)

Ym

e(t)

Adjustment
—y| Mechanism

G(s) I_ y

Controller
Parameters

Command
Signal u,




Model Reference Adaptive Controller (MRAC)

Derive the adjustment mechanism using MIT rule
method

Solution:
€=y~ Vm (1)
y = G(s)u = G(s)Ou, (2)
Ym = K3G(S)u, (3

Based on the above equation:

_ _Im
Yo = ke @

e = G(s)Ou, — KiG(s)u,

The sensitivity derivative % can be computed from

the above equation:

de
5= G(s)u,



Model Reference Adaptive Controller (MRAC)

Based on (4) thre above equation becomes:

() — Ym

K1G(5) K4

Using MIT rule:
do de _ Vm
—=—ve() —=—ye(t) X,
et
v, = v
Then
do
E —Vn Ym€



It IS clear from the above equation that the rate of
change of the parameter O should be made
proprotional to the product of the error and the

model output.

By taking laplace transform for the above
equation:

SO = =V, Yme

23

The final form for the controller gain
parameter is as follows:

8—_1
— < Yn Ymé€



MRAC Design

The block diagram of the MRAC system IS
below:

K, G(s)|2m




For design model reference block

The standard form of the second order model reference is
as follows:

W;,*
s2 4+ 28w, s + W, *

Gm(s) =

Where £ Is damping ratio, and w,, Is un-damped natural
frequency, which is the frequency of oscillation without
damping.

According to damping ratio value, a second order system
can be set into the following categories:

1- Over damped response (¢ > 1)

2- Critical damped response (¢ =1)

3- Under damped response (0< ¢ < 1)

4- No damped response (¢ =0)

A Underdamped
160 l

140
120 Overshoot

100 4

Steady-state error
Overdamped within tolerance band

a
O

Output value (%)
s ®
(o) O

N
O

®

Time

Rise time

- Settling time - -



Rise time :

—1\/1_52

T — tan
$

Wn\/l_fz

Settling time:

¢ Setting time (2%)

¢ Settling time (5%)
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Model Reference Adaptive Controller (MRAC)

Example: Consider a system with an output model
ay _
dt

where u Is the control Input. Assume it Is desirable to

obtain a closed-loop system described by:

= —ay + bu

dy
d;n —Umnmy + bmuc

with an adaptation error formula:
e =Y = Ym
The controller formula is described by:
u=kiu. —k,y
Where k; = %’” and k, = % where a,, > a

Design a MRAC system using MIT rule



Model Reference Adaptive Controller (MRAC)

Solution:
The transfer function of the system plant is as follows:

@v__
= ay + bu

sY(s) = —aY(s) + bU(s)
(s+a)Y(s) = bU(s)

_Y(s) b
G(S)_%_ S+a

For the model reference

The transfer function of the model is:
SYm(S) = _amYm(S) T mec(S)

(s +am)Ym (s) = b Uc(s)



Model Reference Adaptive Controller (MRAC)
e

Y (s) bm
N U(s) s+ Am

Based on the above equations the block diagram of tl
system Is given by:

For the below closed-loop subsystem, the transfer functior
Is given by:




b
Y(s) s+a
b

klUC (S) B 1+

b
Y(S) _ s+ a _ b
kiU.(s) s+a+bk, s+a+ bk,

S+a
Uc(s) (1)

S+ak2

__ bkq
Y(S) B s+a+bk,

The error equation is
E=Y~—Ym

23

e— Y(S) — Ym(s)

bk bnUc(s
e— 1 UC(S) __Ym C( )
st+a+bk, stam

The parameters of the controller are k1 and
k2:
The sensitivity derivative is :

de bU_.(s)

_ — 2
dk, s+ a-+ bk, (2)




and
de  —b*kyUc(s)
dk, (s + a+ bk,)?

de b bk, U.(s)

dk,  s+a+bk, s+a+ bk,

Based on equation (1) the above eguation

becomes:
de B b
» dk,  s+a+ bk,

Y(s) 3)

de de
The formula — and — can not be used
dk4 dk,

because the process parameters a and b are not
known. Approximation is required Iin order to

obtain realization parameter adjustment.
I
7 b
s+a+bk,=s+a+b(“2) =s+ay,
Applying MIT rule for k, parametrer gives:
dk, de

at 'k,



Based on equation (2) te last equation
becomes:

dk, de bU_.(s)
dt _yed_kl N _yes+a+bk2
dk4 bU_.(s)
dt - S+ a,
Let y, =vb
Demert @
= For k, parameter
dk, de
dr -k,

Based on equation (3), the above equation
becomes:

dk, bY (s)
dt s+ a + bk,
dk,  bY(s)
dt re s+a,
dkz Y(S)
— = Vn (5)

dt es+am



Based on equation (4) and (5), the block
diagram of the MRAC system Is given
below:
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Model Reference Adaptive Controller (MRAC)

Example: Consider a system with an output model
% =—y + 0.5u

where u Is the control Input. Assume It IS desirable to
obtain a closed-loop system described by:

dYm _
d_:fn — _Zym + Zuc

with an adaptation error formula:
€E=Y~"Vm
The controller formula is described by:
u = kju, — kpy
Where

Design a MRAC system using MIT rule for y,,= 1



Solution:

Using the same design procedure mentioned in the
previous example (example 2), the gain parameters
expressions are given below:

dkl UC(S)
PR TY D
dkz Y(S)
—. — Vn€ (2)

dt s+ 2



MRAC_MIT Technigue

The simulink model of the system is shown below:

o []
>
g |:| Scope x_stateb
Scope x_stated .| bm WI
+aMm
Transfer Fon
—»
N ) I—’ ]
+ -
- ucit)
ﬂ_ﬂ_ et ) ol Scope x_state? Scope x_state1
- x »+ 4 b Y
Pukse oD Scope x_siates —*  —
Gener gtor Product1 _ 5+a
) |:| . Add4 Transfer Fen2
Product3
K1 ¥
Constant N
x 2 w1
lBcope x_stated
1— Integrator 1_ Integrator
uc{t) i
dSoidt
-, Transfer Fen2  Product
X L -gamima_n !
. - - gemma_n | | x )
Product? o cfer Font e
elt)
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MRAC Based Lyapunov Theorm

Example: Consider a system with an output model

dy _
= y + bu

where u Is the control Input, b Is unknown, b > 0.
Assume It Is desirable to obtain a closed-loop system
described by:

de
dt y m + uC

Where u.. Is set point.
with an adaptation error formula:

€=y~ Vm
The controller formula is described by:
u = 6u,

Design a MRAC system using Lyapunov thorem
Solution:

€=y~ Ym
e=—-y+bu+y, —



e =—(¥y — ¥m) +bOu, —u,
6 =—e+b(0—u (1)
Candidate Lyapunov function:

V(e,0) == e o (6 — )2

V(e 6) = eé+§(9—%)9 (2)

Substitute equation(1) in equation (2):

. B 1 b 1\ .
V(e 0) —e[—e+b(9—z)uc] +)_/(9_E>0

V(e,8) = —e? +b <9 — %) [eu, + %]

14
0 = —yeu, 3)
V(e 6) = —2eé
Using equation (1), the above equation becomes:
. 1
V(e,8) = —2e[—e+ b(0 — E)uC]

V(e 6) = 2e? —2(b0 — 1eu,

0
eu. +-=20



Example: Design MRAC using Lyapunov method for the first order system with:
Model reference

d
% = —AmYm + bl
Plant:
% = —ay + bu
a and b are unknown, b > 0,
Control law:
u=0iu,— 0,y
Solution:
y =—ay+ bu

y =—ay + b(61u. — 6;y)
y = (—a—b0y)y + bbiu,
=Y~ Vm
€=y = Y¥m
é =(—a—b0)y +bOju, + apyYm — bl

e = _am(y - Ym) + (am —a-— bez)y + (bel_bm)uc

é =—aype+ (a,, —a—bb)y + (b6,—b,)u, (1)
Candidate Lyapunov function:
1 2 1 2 1 2
V(e 01,0;) = Ee + m(am —a—bb,) +2_)/b (b6 — b))

V(e 0,,6,) = eé — yib (am — a — bO,)b6, + yib (b8, — b,,) b6,
V(e; 91; 92) = e[_ame + (am —a-— bez)y + (bel - bm)uc]

> (am — a=b6,)8,+ (b6; — byn) 6y (2)
1.
ey. — ;92 == O
91 - _yeuc (4)

For simulink implementation of the MRAC system:
Laplace transformation of equation (3) and (4) yields:
1

0, = ——
1= Yeu

1

6, =—
2 SVey



« Simulink model of the system based on Lyapunnov function method.

=N

Scope x_state6

bm ym
5+ am

N[ et O
+ >
r uc(t) | Scope x_state2 . Scope x_state
X >+ “ b y
ue(t) = s+a
thetal Y
X theta2

v

h 4

o

3 3

dSofdt

X -Gamma

L »
Gamma X
elt)
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Model Reference Adaptive Controller (MRAC)

Example: Consider a system with an output model
% =—y + 0.5u

where u Is the control Input. Assume It Is desirable to
obtain a closed-loop system described by:

dYm _
— =2V + 2u,

with an adaptation error formula:
e =Y~ Vm
The controller formula is described by:
u=Kkiu; — kyy
Where
1. Design a MRAC system using Lyapunov function
nased on y,,= 1.

2. Find the gain and settling time of the model reference
mathematically.




Solution:

Using the same design procedure mentioned in the
previous example (example 2), the gain parameters
expressions are given below:

46,
T = Tl (1)
de,
— = ¥ney (2)
2
Gm(S) — E

The standard form of the model reference:

Gm(5) = s+ 1

Compare to the standard form

G (s) =

05s+1

Gain K=1, time constantt = 0.5 s,
settlingtimet, =57 =25s.



MRAC Lyapunov functionTechnique

The simulink model of the system based on Lyapunov
function method is shown below:

eeeeeeeeeeeee




