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   LQG Control 



   LQG Control 

LQG controller is a modern state space technique for 

designing optimal dynamic regulators. It is used to reject 

process (w) and mesurement (v) noises and for state 

estimation for non measurable systems. 

LQG is a combination of an optimal LQR controller  with 

Linear Quadratic Estimator (LQE) (Kalman Filter) as shown 

in figure (2). 

 

 

   

 

               Figure (2). LQG control system 

 

 

 



   LQG Control  

Consider a plant that subject to a Gaussian disturbance w(t) 

(process noise) and measurement noise v(t) as shown in 

figure (3).   

 

 

 

 

 

 

 

 

                           Figure (3). LQG controller structure. 
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LQG Control 



LQG Control 



LQG Control 

If the rank of N equals the order of the system (n), then the 

system is completely observable. If the produced N matrix 

is an identity matrix, then the system is completely 

observable. 

It can also check the observability of the system easly using 

Matlab command “obsv(A,C)” 

 



Observability 
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   Estimation Kinds 

Types of  estimators 

1. Full-order state estimator 

In this type, the observer  estimates all the state variables  

of the system. 

2. Reduced-order state estimator 

In this type, the observer estimates fewer than n state 

variables, where n is the dimension of the system state 

vector.  

In this course, design techniques of full-order state observer 

will be taken into consideration  

 



   Estimation Kinds 

Full-order  Observer Design Methods 

1- Direct Comparison Method 

2-Observable Canonical Form Method 

3-Ackermann’s Formula Method 

 



States Estimation Techniques 



States Estimation Techniques 



States Estimation Techniques 

𝑸 = (𝑴𝑵)−𝟏 



States Estimation Techniques 

0 



States Estimation Techniques 

0 0 



States Estimation Techniques 

= (𝑴𝑵)−𝟏 



States Estimation Techniques 



States Estimation Techniques 
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. Example: Consider the system defined by:  

𝑥 (𝑡) = 𝐴𝑥(𝑡) + 𝐵u(t) 
𝑦 𝑡 = 𝐶𝑥 𝑡  

Where        𝐴 =
0 1
−2 −3

, B=
0
1

, C= 1 0  

Design a full-order state observer that has an undamping 

frequency of 10 rad/s and a damping ratio of 0.5. 

Solution:  

To design a state estimator, we have to check the observability of 

the system, 

The order of the system n = 2 

𝑁 =

𝐶
𝐶𝐴
.
.

𝐶𝐴𝑛−1

 

𝐶𝐴 = 1 0
0 1
−2 −3

= 0 1  



. 
N =

1 0
0 1

, the rank of N is 2,  rank(N) = n, 

Then the system is completley observable. 

To find poles of open-loop system: 

|sI-A| = 0, 

𝑠 0
0 𝑠

−
0 1
−2 −3

=0,       
𝑠 −1
2 𝑠 + 3

=0  

s(s+3)+2=0              

𝑠2 + 3𝑠 + 2 = 0   

Comparing the above equation with the below standard equation:   

 𝑠2 + 𝑎1𝑠 + 𝑎0 = 0    -----   𝑎0=2,      𝑎1=3 

𝑠2 + 3𝑠 + 2 = 0   

(s+1)(s+2) = 0 

   𝑠1 = -1 

   𝑠2 = -2 

 



. 
The characteristics equation of the desired estimator is as follows: 

𝑠2 + 2𝜉𝑤𝑛𝑠 + 𝑤𝑛
2=0 

𝑠2 + 2 ∗ 0.5 ∗ 10𝑠 + (10)2 = 0 

𝑠2 + 10𝑠 + 100 = 0 

But: 𝑠2 + 𝛼1𝑠 + 𝛼0 = 0  

𝛼0 = 100, 𝛼1 = 10 

Poles of estimator:    𝑠1 = -5+j8.66,    𝑠2 = -5-j8.66 

1. Observer design using Direct Comparison method: 

The charactersitics equation of the observer is given by 

𝑠𝐼 − 𝐴 + 𝐾𝑒𝐶 =𝑠2 + 𝛼1𝑠 + 𝛼0 

𝑠 0
0 𝑠

−
0 1
−2 −3

+
𝐾𝑒1

𝐾𝑒2
[1   0]  =  𝑠2+10𝑠 + 100  

𝑠 −1
2 𝑠 + 3

+
𝐾𝑒1 0
𝐾𝑒2 0

= 𝑠2+10𝑠 + 100  

 



. 
𝑠2 + (3 + 𝐾𝑒1)𝑠 + (3𝐾𝑒1+𝐾𝑒2 + 2) =  𝑠2 +10𝑠 + 100  

3 + 𝐾𝑒1 = 10           −−−→ 𝐾𝑒1 = 7 

3𝐾𝑒1 + 𝐾𝑒2 + 2=100 −−−→ 𝐾𝑒2 = 77 

The observer gain matrix 𝐾𝑒 =
𝐾𝑒1

𝐾𝑒2
=

7
77

 

 2. Observer design using Observable Canonical Form method 

 𝐾𝑒 = 

𝐾𝑒1

𝐾𝑒2.
.

𝐾𝑛𝑒

 =(𝑀𝑁)−1

𝛼0 − 𝑎0

𝛼1 − 𝑎1.
.

𝛼𝑛−1 − 𝑎𝑛−1

 

𝐾𝑒 = (𝑀𝑁)−1
𝛼0 − 𝑎0

𝛼1 − 𝑎1
 

𝑀 =
𝑎1 1
1 0

=
3 1
1 0

 

 N =
1 0
0 1

,      



. 
𝑀𝑁 =

3 1
1 0

1 0
0 1

 

                               𝑄 = (𝑀𝑁)−1=
0 −1
−1 3

−1
=

0 1
1 −3

 

𝐾𝑒 = 𝑄
𝛼0 − 𝑎0

𝛼1 − 𝑎1
 

                            𝐾𝑒 =
0 1
1 −3

100 − 2
10 − 3

=
0 1
1 −3

98
7

 

𝐾𝑒 =
7
77

 

3. Observer design using Ackermann’s Formula method 

𝐾𝑒 = ∅(𝐴)
𝐶
𝐶𝐴

−1 0
1

 

𝐾𝑒 = [𝐴2+𝛼1𝐴 + 𝛼0𝐼]
𝐶
𝐶𝐴

−1 0
1

 

𝐾𝑒 =
0 1
−2 −3

2

+10
0 1
−2 −3

+ 100
1 0
0 1

1 0
0 1

−1 0
1

 

 

 



. 

𝐾𝑒 =  
−2 −3
6 7

+
0 10

−20 −30

+
100 0
0 100

 
1 0
0 1

0
1

 

𝐾𝑒 =
98 7
−14 77

1 0
0 1

0
1

 

𝐾𝑒 =
98 7
−14 77

0
1

 

𝐾𝑒 =
7
77
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LQG Design for Noiseless System 
The state space representation of dynamic system that subject to   

process (W) and measurement (V) noises  is  given below: 

   𝑥 𝑡   = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡 + 𝐺𝑊 𝑡 +0 V(t) 
𝑦 𝑡 = 𝐶𝑥 𝑡 + 𝐷𝑢 𝑡 + 0𝑊 𝑡 + 𝐻𝑉(𝑡) 

 

If the process (W) and measurement (V) noises are very small so 

that it can neglect their effect on the system, then the state and 

output equations  are given below: 

   𝑥 𝑡   = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡  
𝑦 𝑡 = 𝐶𝑥 𝑡 + 𝐷𝑢 𝑡  

 

The estimator gain matrix can be calculated using direct 
comparison method, observable canonical method, and 
Akermann’s formula method.   
 
 



LQG Design for Noisless System 

 

While the LQR Controller gain matrix can be calculated 

using the following equation 

 

𝐾 = 𝑅−1𝐵𝑇𝑃 

 

Where P is the solution of the following Riccati equation: 

 

𝑃𝐴 + 𝐴𝑇𝑃 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 + 𝑄 = 0 

 

 

 



LQG Design for Noisless System 

In matlab the LQR gain matrix is calculated as 

below: 

𝐾 = 𝑙𝑞𝑟(𝐴, 𝐵, 𝑄, 𝑅) 

 

𝑄 is the state weighting matrix of the system  

𝑅 is the control (input) weighting matrix of the 

system 

 

 



. Example: Consider the system defined by:  

 

  𝑥(𝑡) = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡  
𝑦 𝑡 = 𝐶𝑥 𝑡 + 𝐷𝑢 𝑡  

 

Where   𝐴 =
−1 1
2 −4

 , B=
1
 0
 , C = 1 0 , 

If the state weighting matrix is Q=
100 0
0 1

, the input 

weighting matrix is R = 0.01  and  LQR controller  Riccati 

matrix P=
0.99 0.012
0.012 0.126

 , design a LQG controller for 

the following  if the desired eigenvalues of the full-order 

observer are 𝜇1 = −9,  𝜇2= −10. 

 



LQG Design for Noisless System 
Solution 

The LQG controller is a combination of LQR controller with an 
estimator: 

To design a state estimator, we have to check the observability of 
the system, 

The order of the system n = 2 

𝑁 =

𝐶
𝐶𝐴
.
.

𝐶𝐴𝑛−1

 

𝑁 =
𝐶
𝐶𝐴

 

 

𝐶𝐴 = 1 0
−1 1
2 −4

= −1 1  

 



. 
N =

1 0
−1 1

, the rank of N is 2,  rank(N) = n, 

Then the system is completley observable. 

To find poles of open-loop system: 

|sI -  A| = 0, 

𝑠 0
0 𝑠

−
−1 1
2 −4

=0,       
𝑠 + 1 −1
−2 𝑠 + 4

=0  

(s+1)(s+4)-2=0              

𝑠2 + 5𝑠 + 2 = 0   

Comparing the above equation with the below standard equation:   

 𝑠2 + 𝑎1𝑠 + 𝑎0 = 0    -----   𝑎0 = 2,      𝑎1 = 5 

𝑠2 + 5𝑠 + 2 = 0   

   𝑠1 = - 0.4384 

   𝑠2 = - 4.56 

The plant of the system is stable. 



. 
The characteristics equation of the desired estimator is as follows 

(𝑠 − 𝜇1)(𝑠 − 𝜇2) = 0 

(𝑠 + 9)(𝑠 + 10) = 0 

𝑠2 + 19𝑠 + 90 = 0 

But: 𝑠2 + 𝛼1𝑠 + 𝛼0 = 0  

𝛼0 = 90, 𝛼1 = 19 

1. Observer design using Direct Comparison method: 

The charactersitics equation of the observer is given by 

𝑠𝐼 − 𝐴 + 𝐾𝑒𝐶  = 𝑠2+𝛼1𝑠 + 𝛼0 

𝑠 0
0 𝑠

−
−1 1
2 −4

+
𝑘𝑒1
𝑘𝑒2

[1   0]  =  𝑠2+19𝑠 + 90  

𝑠 + 1 −1
−2 𝑠 + 4

−
𝑘𝑒1 0
𝑘𝑒2 0

= 𝑠2+19𝑠 + 90  

 



. 
𝑠2 + (5 + 𝑘𝑒1)𝑠 + (4𝑘𝑒1+𝑘𝑒2 + 2) =  𝑠2+19𝑠 + 90  

5 + 𝑘𝑒1 = 19           −−−→ 𝑘𝑒1 = 14 

4𝑘𝑒1 + 𝑘𝑒2 + 2=90 −−−→ 𝑘𝑒2 = 32 

The observer gain matrix 𝐾𝑒 =
𝑘𝑒1
𝑘𝑒2

=
14
32

 

 2. Observer design using Observable Canonical Form method 

 𝐾𝑒 = 

𝑘𝑒1
𝑘𝑒2.
.

𝑘𝑛𝑒

 =(𝑀𝑁)−1

𝛼0 − 𝑎0
𝛼1 − 𝑎1.

.
𝛼𝑛−1 − 𝑎𝑛−1

 

𝐾𝑒 = (𝑀𝑁)−1
𝛼0 − 𝑎0
𝛼1 − 𝑎1

 

𝑀 =
𝑎1 1
1 0

=
5 1
1 0

 , 

N =
1 0
−1 1

,       

  



. 
𝑀𝑁 =

5 1
1 0

1 0
−1    1

 = 
4 1
1    0

 

                               𝑄 = (𝑀𝑁)−1=
0 −1
−1 4

−1
 = 

0 1
1 −4

 

𝐾𝑒 = 𝑄
𝛼0 − 𝑎0
𝛼1 − 𝑎1

 

                            𝐾𝑒 =
0 1
1 −4

90 − 2
19 − 5

=
0 1
1 −4

88
14

 

𝐾𝑒 =
14
32

 

3. Observer design using Ackermann’s Formula method 

𝐾𝑒 = ∅(𝐴)
𝐶
𝐶𝐴

−1 0
1

 

𝐾𝑒 = [𝐴2+𝛼1𝐴 + 𝛼0𝐼]
𝐶
𝐶𝐴

−1 0
1

 

𝐾𝑒 =
−1 1
2 −4

2

+19
−1 1
2 −4

+ 90
1 0
0 1

1 0
−1 1

−1 0
1

 

 

 



. 

𝐾𝑒 =
3 −5

−10 18
+
−19 19
38 −76

+
90 0
0 90

1 0
1 1

0
1

 

𝐾𝑒 =
74 14
28 32

1 0
1 1

0
1

 

𝐾𝑒 =
74 14
28 32

0
1

= 
14
32

  

It can calculate the estimator gain matrix based on pole 

placement technique using the Matlab command “place” 

as follows: 

Ke=place(A',C',p)' 

Where p is the desired ploes vector of the estimator 

p = [-9 , -10] 

 



LQR controller design 

 
𝐾 = 𝑅−1𝐵𝑇𝑃 

 

𝐾 = [0.01]−1
1
0

𝑇 0.99 0.012
0.012 0.126

 

 

𝐾 = 99 1.194  

 

It can determine the LQR gain matrix K using Matlab command as 

follows: 

K = lqr (A,B,Q,R) = 99 1.194  

[K,P,Eigvalues] = lqr(A,B,Q,R) = 99 1.194  

 

 

 

 



LQG Design for Noisy System 
If the process (W) and measurement (V) noises are included to the 

system, then the state and output equations  are given below: 

   𝑥 𝑡   = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡 + 𝐺𝑊 𝑡 +0 V(t) 
𝑦 𝑡 = 𝐶𝑥 𝑡 + 𝐷𝑢 𝑡 + 0𝑊 𝑡 + 𝐻𝑉(𝑡) 

 

𝑄𝑒 = 𝐸 𝑊𝑊𝑇  
𝑅𝑒 = 𝐸 𝑉𝑉𝑇  

Inputs of the system is  u(t), W(t) and V(t) 

Where G (n x 1) and H (1 x 1)  are noise matrices, 𝑄𝑒 is the state 
weighting matrix of the estimator based on process noise and 𝑅𝑒 is 
the control weighting matrix of the estimator based on 
measurement noise.  

 

𝑄𝑒 and 𝑅𝑒 like Q and R matrices are designed by the designer.  
 

 
 
 



LQG Design for Noisy System 
 

The estimator gain matrix based on process and 
measurement noises is calculated using the following 
expression : 

 

𝑲𝒆 = 𝑷𝒆𝑪
𝑻𝑹𝒆

−𝟏 

 

Where 𝑃𝑒 is the solution of the following Riccati equation of 
the estimator: 

 

                 𝐴𝑃𝑒 + 𝑃𝑒𝐴
𝑇 − 𝑃𝑒𝐶

𝑇𝑅𝑒
−1𝐶𝑃𝑒 + 𝐺𝑄𝑒𝐺

𝑇 = 0 
 
 



LQG Design for Noisy System 

In Matlab, the estimator gain matrix of the noisy system  can be 
calculated as follows: 

 

                                                Sys=ss(A,[B G],C,[D H]) 
𝐾𝑒 = 𝑘𝑎𝑙𝑚𝑎𝑛(𝑆𝑦𝑠, 𝑄𝑒 , 𝑅𝑒) 

𝑄𝑒 = 𝐸 𝑊𝑊𝑇  
𝑅𝑒 = 𝐸 𝑉𝑉𝑇  

 

LQR Controller 

The gain matrix of the LQR controller is: 

 

𝐾 = 𝑅−1𝐵𝑇𝑃 

P is the solution of the following Riccati equation: 

 

𝑃𝐴 + 𝐴𝑇𝑃 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 + 𝑄 = 0 

 

 

 



LQG Design for Noisy System 

In matlab the LQR gain matrix is calculated as 

below: 

𝐾 = 𝑙𝑞𝑟(𝐴, 𝐵, 𝑄, 𝑅) 

 

𝑄 is the state weighting matrix  

𝑅 is the control (input) weighting matrix  

 

 



. 
Example: Consider the system defined by:  

 

  𝑥(𝑡) = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡 + 𝐺𝑊 𝑡  
𝑦 𝑡 = 𝐶𝑥 𝑡 + 𝐷𝑢 𝑡 + 0𝑊 𝑡 + 𝐻𝑉(𝑡) 

 

Where   A =
−1 1
2 −4

 , B=
1
 0
 , C = 1 0 , G=

1
 0
  and  

𝐻 = 0 . 

 

Design a LQG controller  so that  for LQR controller , the 
state weighting matrix,  input weighting matrix  and Riccati 

matrix are given by:  

 

Q =
100 0
0 1

, R = 0.01, P =
0.99 0.012
0.012 0.126

 

 

 



. 
The Riccati matrix, state weighting matrix and control 

weighting matrix of the estimator are given by: 

 

 𝑃𝑒=
0.2687 0.0845
0.0845 0.0363

  , 𝑄𝑒 =
0.5 0
0 0.35

 ,   𝑅𝑒= 0.15  

 



LQG Design for Noisy System 

Solution 

 

To design a state estimator, we have to check the observability 

of the system, 

The order of the system n = 2 

𝑁 =

𝐶
𝐶𝐴
.
.

𝐶𝐴𝑛−1

 

𝑁 =
𝐶
𝐶𝐴

 

𝐶𝐴 = 1 0
−1 1
2 −4

= −1 1  

 



. 
N =

1 0
−1 1

, the rank of N is 2,  rank(N) = n, 

Then the system is completley observable. 

LQR controller design 

𝐾 = 𝑅−1𝐵𝑇𝑃 

𝐾 = [0.01]−1
1
0

𝑇 0.99 0.012
0.012 0.126

 

 

𝐾 = 99 1.194  

It can determine gain matrix K using Matlab commands as follows: 

 

[Ke,P,Eigvalues]=lqr(A,B,Q,R) = 99 1.194  

 

Observer design  

𝐾𝑒 =  𝑃𝑒𝐶
𝑇𝑅𝑒

−1 =
0.2687 0.0845
0.0845 0.0363

 1 0 𝑇(0.15)−1= 
1.7916
0.5632

 

 



. 

Observer design using Matlab Commands:  

  

                      Sys=ss(A,[B G],C,[D H]) 

 
𝐾𝑒 = 𝑘𝑎𝑙𝑚𝑎𝑛(𝑆𝑦𝑠, 𝑄𝑒, 𝑅𝑒) 
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Adaptive Control 

 
 



Text Books 

 

 

P. A. Ioannou and B. Fidan, Adaptive  
 
Control Tutorial, SIAM, 2006. 
 

 
P. Ioannou and J. Sun, Robust Adaptive 
 
 
Control, Prentice Hall, 1996. 

K. J. Astrom and B. Wittenmark, Adaptive 
 
 
 Control, 2nd Edition, Addison-Wesley, 1995. 

 



History of Adaptive Control 

1950’s 

- Autopilots for high-performance  
 
- Aircrafts operating over a wide  
 
range of speeds and altitudes. 

1960’s 

- Space state and stability theory. 
 
  
1970’s-1980’s 

- Proof for stability of adaptive 
 
 control systems. 



Control System 

Plant Representation 

Control system 

Control System Design 



Control System Design (cont.) 

Problems 

 

 

 

Unknown plant model or parameters 

Plant parameters can vary with time! 

Unknown disturbance characteristics 

 

 

Adaptive controller: adapt to changes 

To adapt: to change a behaviour to conform to 
new circumstances. 



Adaptive Controller 

 A controller that adjusts its gain parameters to 
adapt to changes in the system plant and 
process  which occur with time. 

Adaptive Control Design Methods 

 

 

Identifier-based Adaptive Control 

Non-identifier-based Adaptive Control 



Non-identifier-based Adaptive Control 

 

 

 

Gain Scheduling 

Switching Control 

Multiple Model Control 

Gain Scheduling 



Switching Control 

 

Switching between multiple models 

Identifier-based Adaptive Control 

 

 

 

Model Reference Adaptive Control 

Self-Tuning Regulator 

PID control 



Model Reference 

Self-Tuning Regulator 



Adaptive Control Strategies 

 

 

Indirect Adaptive control 

Direct Adaptive Control 

Indirect Adaptive Control 

 

 Estimatation of plant parameters  

 Computing of controller parameters  

Function of  the indirect adaptive control  



Direct Adaptive Control 

 

 

No plant parametes estimation  

Estimation for  controller parameters only  

What kind of controller? 



Identification of System Parameters 

 Adaptive Control: It  is  feedback  control   for  systems with 
uncertain parameters.   
  

Types of Plantes 
1. Non - linear time - varying (NLTV) with unknown paramerters θ 
 
     𝑥 (t) = 𝑓(𝑥, 𝑢, 𝜃, 𝑡)                              state equation 
 
     𝑦 = ℎ(𝑥, 𝑢, 𝜃, 𝑡)                              output equation  
 
2. Linear time - varying (LTV) with unknown paramerters θ 
   
 
 𝑥 (t) = 𝐴 𝜃, 𝑡 𝑥 + 𝐵 𝜃, 𝑡 𝑢                  state equation 
 
 𝑦 = 𝐶 𝜃, 𝑡 𝑥 + 𝐷 𝜃, 𝑡 𝑢                   output equation 
  
3. Linear time-invariant (LTI) with unknown paramerters θ 

 
   
 𝑥 (t) = 𝐴 𝜃 𝑥 + 𝐵 𝜃 𝑢                          state equation 
 
 𝑦 = 𝐶 𝜃 𝑥 + 𝐷 𝜃 𝑢                           output equation  
 
4. Linear time-invariant (LTI)  
 
 𝑥 (t) = 𝐴𝑥(𝑡) + 𝐵𝑢(t)                               state equation 
 
 𝑦 = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡)                            output equation  
 
 
 
 
 
 



Identification of plant single parameter 

 Let a system with an input of u(t) and output of y(t) 
  

 

 

 

Where θ is unknown scalar  parameter of the plant  

and identified as 𝜃^ using measurements of u(t) and y(t) 

 at every instant. 

 

𝑦 𝑡 = 𝜃  𝑢(𝑡) 
 

  Identification of plant vector parameter 

 

 

 

 

 

Where   𝜃𝑇 is  unknown  vector  parameter  of  the 

plant and identified  as  𝜃𝑇
^
 using measurements of u(t)  

and  y(t)  at  every  instant. 

θ u(t) y(t) 

  𝜃𝑇 u(t) y(t) 



Error Model 

 
  
 
 

 

 

 

 

 

Where 𝜃^ is identified of 𝜃 
 

 

 

 

𝜃~ = 𝜃^ −𝜃 

 
Where 𝜃~ is the error between the identified and real 

value of the plant parameter. 𝜃~ is identified using 

measurements of u(t) and e(t) at every instant. 

 

 

 

 

 

θ y(t) 

  𝜃~ u(t) e(t) 

  𝜃^ 𝑦^(t) 

u(t) 



Identification of a parameter in a dynamic system   

Let  a simple transfer function of a DC motor  
  

 
𝐾

𝐽𝑠 +𝐵
 

 

 
Where V is the input voltage of the motor, W is the  

angular velocity output, K J B are the physical parameters 

of the DC motor . 

The open-loop transfer function of the motor is given by:                                                        

G(s) = 
𝐾

𝐽𝑠+𝐵
 

                             G(s) = 

𝐾

𝐽

𝑠+
𝐵

𝐽

 = 
𝑎1

𝑠+𝜃1
 

Where 𝑎1 =  
 𝐾

𝐽
 and   𝜃1 =  

 𝐵

𝐽
 are unkown parameters 

V(t) w(t) 



Identification of a parameter in a dynamic system   

Let  a simple transfer function of a motor  
  

 
𝑎1

𝑠 + 𝜃1
 

 

 
  

    

 

Assume that 𝑎1 is known  

 

                            W s =
𝑎1

𝑠+𝜃1
V(s)  

s𝑊(𝑠)+ 𝜃1𝑊(𝑠) = 𝑎1𝑉(𝑠) 
 

Let 𝑈 𝑠 = 𝑎1𝑉(𝑠), (𝑢 𝑡 = 𝑎1𝑉(𝑡)), then 

  

s𝑊(𝑠) + 𝜃1𝑊(𝑠) = 𝑈(𝑠) 
 

V(s) W(s) 

V(s) W(s) 
1

𝑠 +𝜃1
 𝑎1 



Identification of a parameter in a Dynamic System   

Laplace inverse of the following expression yields: 

  
                               s𝑊(𝑠)+ 𝜃1𝑊(𝑠) = 𝑈(𝑠) 
 

𝑊 𝑡 = −𝜃1𝑊 𝑡 +𝑢(𝑡) 
 

 The error model of the system is as follows: 

  

𝐸 = 𝜃~𝑊 

 
 
 
 

E =
𝜃~𝑈

𝑠 +𝜃1
 

𝑠𝐸 +𝐸𝜃1 = 𝜃~𝑈 
𝑠𝐸 = −𝜃1𝐸 +𝜃~𝑈 

Laplace inverrse of the following expression gives: 

𝑒 𝑡 = −𝜃1𝑒 𝑡 + 𝜃~𝑢(𝑡) 
 

U E 
1

𝑠 +𝜃1
 𝜃~ 



Model Reference Adaptive Controller (MRAC)   

MRAC  is  one  of  the main  techniques  of   adaptive  

control . The basic block diagram of  the controller is  

given by: 

 

 

 

 

 

 

 

 

 

 

 

 

The desired performance is expressed in terms of a 

reference model which gives desired response (ym). 

There are two feedback loops: 

1. Inner loop. Its a ordinary feedback loop. 

2. Outer loop. It adjusts the parameters on the inner 

loop 



Model Reference Adaptive Controller (MRAC)   

In MRAC technique the parameters of the controller are 

adjusted based on the error between the reference model 

and the system plant. 

 

MRAC Design 

There are three methods used to design the MRAC  

which are: 

1. MIT rule 

2. Lyapunov funtions 

3. Passivity theory 

 

In this course MIT rule approach  will be considered in 

design MRAC. 

 

 

 

 

 



Thank You! 
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Model Reference Adaptive Controller (MRAC)   

MIT Design Method 

It is a scalar parameter adjustment law was proposed in 

1961 for the MRAC system 

Consider the following MRAC system  

 

 

 

 

 

 

 

 

 

 

If the transfer function of the reference model and plant 

(process) model are Gm(s) and G(s) respectively. The 

controller gain 𝜃 based on MIT rule can be computed by 

using the following formula: 

 
𝑑𝜃

𝑑𝑡
 = −𝛾 𝑒 𝑡  

𝑑𝑒(𝑡)

𝑑𝜃
 

 

Where  𝑒 𝑡 = 𝑦 𝑡 − 𝑦𝑚(t) 

  

e(t) 

ϴ 



Model Reference Adaptive Controller (MRAC)   

𝜃 depends on the system design. It can  be  a  scalar 

unknown gain parameter  𝜃1 or   vector of unknown  gain 

parameters   [𝜃1, 𝜃2, 𝜃3 … . 𝜃𝑛]𝑇. Where 𝑛 is number of 

unknown parameters . While 𝛾 is a gain constant. 
𝑑𝑒

𝑑𝜃
  is the sensitivity derivative of the system, which is 

derived from adaptation error  e(t). 

 

Example: An MRAC system with the following block 

diagram. If 𝐾1 is a known  parameter and 𝜃 is the 

controller parameter.  

 

 

 

 

 

 

 

 

 

 

  

e(t) 

ϴ 

𝑲𝟏G(s) 

G(s) 



Model Reference Adaptive Controller (MRAC)   

Derive the adjustment mechanism using MIT rule

 method     

Solution:  

 

                                     𝑒 = 𝑦 − 𝑦𝑚                                  (1) 

 

                            𝑦 = 𝐺 𝑠 𝑢 = 𝐺 𝑠 𝜃𝑢𝑐                     (2) 

 

                                   𝑦𝑚 = 𝐾1𝐺 𝑠 𝑢𝑐                            (3) 

 

Based on the above equation: 

 

                           𝑢𝑐 =
𝑦𝑚

𝐾1𝐺(𝑠)
                                     (4) 

 

𝑒 = 𝐺 𝑠 𝜃𝑢𝑐 − 𝐾1𝐺(𝑠)𝑢𝑐 

 

The sensitivity derivative 
𝑑𝑒

𝑑𝜃
 can be computed from 

the above equation: 
𝑑𝑒

𝑑𝜃
=  𝐺 𝑠 𝑢𝑐 



Model Reference Adaptive Controller (MRAC)   

 

Based on (4) thre above equation becomes: 

 

𝑑𝑒

𝑑𝜃
=  𝐺 𝑠

𝑦𝑚

𝐾1𝐺(𝑠)
 =  

𝑦𝑚

𝐾1
  

 

 

Using MIT rule: 

 
𝑑𝜃

𝑑𝑡
 = −𝛾 𝑒 𝑡  

𝑑𝑒

𝑑𝜃
= −𝛾 𝑒 𝑡

𝑦𝑚

𝐾1
 

  

Let  

𝛾𝑛 =
𝛾

𝐾1
 

Then  
𝑑𝜃

𝑑𝑡
= −𝛾𝑛 𝑦𝑚𝑒 
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It is clear from the above equation that the rate of 

change of the parameter θ should be made 

proprotional to the product of the error and the 

model output.  

 

By taking laplace transform for the  above 

equation: 

 

𝑠 𝜃 = −𝛾𝑛 𝑦𝑚𝑒 
 

The final form for the controller gain 
parameter is as follows:  
 

 𝜃 =
−1

𝑠
𝛾𝑛 𝑦𝑚𝑒 

 

 



MRAC Design  
The block diagram of the MRAC system is 

below: 

u 



. 

For design model reference block 

The standard form of the second order model reference is 

as follows: 

𝐺𝑚 𝑠 =
𝑊𝑛

2

𝑠2 + 2𝜉𝑤𝑛𝑠 + 𝑊𝑛
2 

 

Where 𝜉 is damping ratio, and 𝑤𝑛 is un-damped natural 

frequency, which is the frequency of oscillation without 

damping. 

According to damping ratio value, a second order system 

can be set into the following categories: 

1- Over damped response (𝜉 > 1) 

2- Critical damped response (𝜉 =1 ) 

3- Under damped  response ( 0< 𝜉 < 1) 

4- No damped response (𝜉 =0) 

 

 

 

 

 

 

 



. 

Rise time : 

𝑡𝑟 =
𝜋 − tan−1 1 − 𝜉2

𝜉

𝑤𝑛 1 − 𝜉2
 

 

Settling time: 

 

 Setting time (2%) 

𝑡𝑠 =
4

𝜉𝑤𝑛
 

Settling time (5%) 

 

𝑡𝑠 =
3

𝜉𝑤𝑛
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Model Reference Adaptive Controller (MRAC)   

Example: Consider a system with an output model 
𝑑𝑦

𝑑𝑡
 = −𝑎𝑦 + 𝑏𝑢 

where u is the control input. Assume it is desirable to 

obtain a closed-loop system described by: 

 
𝑑𝑦𝑚

𝑑𝑡
 = −𝑎𝑚𝑦 + 𝑏𝑚𝑢𝑐 

 

with an adaptation error formula: 

 

𝑒 = 𝑦 − 𝑦𝑚 

 
The controller formula is described by: 

 

u = 𝑘1𝑢𝑐 − 𝑘2𝑦 

 

Where 𝑘1 =
𝑏𝑚

𝑏
 and 𝑘2 =

𝑎𝑚−𝑎

𝑏
 where 𝑎𝑚 > 𝑎 

 

Design a MRAC system using MIT rule 

 



Model Reference Adaptive Controller (MRAC)   

Solution: 

The transfer function of the system plant is as follows: 

 
𝑑𝑦

𝑑𝑡
 = −𝑎𝑦 + 𝑏𝑢 

 

s𝑌 s = −𝑎𝑌(𝑠) + 𝑏𝑈(𝑠) 

 

s + a 𝑌 s = 𝑏𝑈 𝑠  
 

G(s) =
𝑌(s)

𝑈(s)
= 

𝑏

𝑠 + 𝑎
 

 For the model reference  

 
𝑑𝑦𝑚

𝑑𝑡
 = −𝑎𝑚𝑦𝑚 + 𝑏𝑚𝑢𝑐 

 

The transfer function of the model is: 

 

s𝑌𝑚 s = −𝑎𝑚𝑌𝑚(𝑠) + 𝑏𝑚𝑈𝑐(𝑠) 

 

(s +𝑎𝑚)𝑌𝑚 s = 𝑏𝑚𝑈𝑐(𝑠) 

 



Model Reference Adaptive Controller (MRAC)   

𝐺𝑚 𝑠 =
𝑌𝑚 𝑠

𝑈𝑐 𝑠
= 

𝑏𝑚

𝑠 + 𝑎𝑚
 

 

Based on the above equations the block diagram of the 

system is given by:  

 

 

 

 

 

 

 

  

  

 

 

For the below closed-loop  subsystem, the transfer function 

Is given by:  
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𝑌(𝑠)

𝑘1𝑈𝑐 (𝑠)
=

𝑏
𝑠 + 𝑎

1 +
𝑏

𝑠 + 𝑎
𝑘2

 

𝑌(𝑠)

𝑘1𝑈𝑐 (𝑠)
=

𝑏
𝑠 + 𝑎

𝑠 + 𝑎 + 𝑏𝑘2
𝑠 + 𝑎

=
𝑏

𝑠 + 𝑎 + 𝑏𝑘2
 

                   𝑌(𝑠) =
𝑏𝑘1

𝑠+𝑎+𝑏𝑘2
𝑈𝑐(𝑠)                   (1) 

The error  equation is  
𝑒 = 𝑦 − 𝑦𝑚 

 
e= 𝑌(𝑠) − 𝑌𝑚(𝑠) 

 

e=
𝑏𝑘1

𝑠+𝑎+𝑏𝑘2
𝑈𝑐 𝑠 −

𝑏𝑚𝑈𝑐(𝑠)

𝑠+𝑎𝑚
 

 
The parameters of the controller are k1 and 
k2: 
The sensitivity derivative is : 
 

𝑑𝑒

𝑑𝑘1
=

𝑏𝑈𝑐 𝑠

𝑠 + 𝑎 + 𝑏𝑘2
                (2) 
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and 

𝑑𝑒

𝑑𝑘2
=

−𝑏2𝑘1𝑈𝑐(𝑠)

(𝑠 + 𝑎 + 𝑏𝑘2)2
 

 
𝑑𝑒

𝑑𝑘2
= −

𝑏

𝑠 + 𝑎 + 𝑏𝑘2
  

𝑏𝑘1𝑈𝑐 𝑠

𝑠 + 𝑎 + 𝑏𝑘2
             

 
Based on  equation (1) the above equation 

becomes: 
𝑑𝑒

𝑑𝑘2
= −

𝑏

𝑠 + 𝑎 + 𝑏𝑘2
  𝑌 𝑠                  (3) 

 

The formula  
de

dk1
 and 

de

dk2
 can not be used  

because the process parameters a and b  are not 

known. Approximation is required in order to 

obtain realization parameter adjustment. 

𝑘2 =
𝑎𝑚 − 𝑎

𝑏
 

𝑠 + 𝑎 + 𝑏𝑘2=𝑠 + 𝑎 + 𝑏
𝑎𝑚−𝑎

𝑏
= 𝑠 + 𝑎𝑚 

Applying MIT rule  for  k1 parametrer gives: 
𝑑𝑘1

𝑑𝑡
= −𝛾𝑒

𝑑𝑒

𝑑𝑘1
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Based on  equation (2) te last equation 
becomes: 
 

𝑑𝑘1

𝑑𝑡
= −𝛾𝑒

𝑑𝑒

𝑑𝑘1
= −𝛾𝑒

𝑏𝑈𝑐 𝑠

𝑠 + 𝑎 + 𝑏𝑘2
 

𝑑𝑘1

𝑑𝑡
= −𝛾𝑒

𝑏𝑈𝑐 𝑠

𝑠 + 𝑎𝑚
 

Let  γn = γb 
𝒅𝒌𝟏

𝒅𝒕
= −𝜸𝒏𝒆

𝑼𝒄 𝒔

𝒔 + 𝒂𝒎
                     (𝟒) 

For k2 parameter 
𝑑𝑘2

𝑑𝑡
= −𝛾𝑒

𝑑𝑒

𝑑𝑘2
 

Based on equation (3), the above equation  

becomes: 
𝑑𝑘2

𝑑𝑡
= −𝛾𝑒 ∗ −

𝑏𝑌(𝑠)

𝑠 + 𝑎 + 𝑏𝑘2
 

 
𝑑𝑘2

𝑑𝑡
= 𝛾𝑒

𝑏𝑌(𝑠)

𝑠 + 𝑎𝑚
 

 
𝒅𝒌𝟐

𝒅𝒕
= 𝜸𝒏𝒆

𝒀 𝒔

𝒔 + 𝒂𝒎
                 (𝟓) 



. 

Based on equation (4) and (5), the block 

diagram of the MRAC system is given 

below: 
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Model Reference Adaptive Controller (MRAC)   

Example: Consider a system with an output model 
𝑑𝑦

𝑑𝑡
 = −𝑦 + 0.5𝑢 

where u is the control input. Assume it is desirable to 

obtain a closed-loop system described by: 

 
𝑑𝑦𝑚

𝑑𝑡
 = −2𝑦𝑚 + 2𝑢𝑐 

 

with an adaptation error formula: 

 

𝑒 = 𝑦 − 𝑦𝑚 

 
The controller formula is described by: 

 

u = 𝑘1𝑢𝑐 − 𝑘2𝑦 

 

Where  

 

Design a MRAC system using MIT rule for 𝛾𝑛= 1 

 



 Solution:   
Using the same  design procedure  mentioned in the 
previous example (example 2), the gain parameters 
expressions are given below: 

 
𝒅𝒌𝟏

𝒅𝒕
= −𝜸𝒏𝒆

𝑼𝒄 𝒔

𝒔 + 𝟐
                     (𝟏) 

  
 

𝒅𝒌𝟐

𝒅𝒕
= 𝜸𝒏𝒆

𝒀 𝒔

𝒔 + 𝟐
                       (𝟐) 

 
 
 
 
 



MRAC_MIT Technique  

The simulink model of the system is shown below:  
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MRAC Based Lyapunov Theorm  

Example: Consider a system with an output model 
𝑑𝑦

𝑑𝑡
 = −𝑦 + 𝑏𝑢 

where u is the control input, b is unknown, 𝑏 > 0. 

Assume it is desirable to obtain a closed-loop system 

described by: 

 
𝑑𝑦𝑚

𝑑𝑡
 =−𝑦𝑚 +𝑢𝑐 

 

Where 𝑢𝑐 is set point. 

with an adaptation error formula: 

 

𝑒 = 𝑦−𝑦𝑚 

 
The controller formula is described by: 

 

u = 𝜃𝑢𝑐 
 

Design a MRAC system using Lyapunov  thorem 

Solution: 

𝑒 = 𝑦 − 𝑦𝑚   
𝑒 = −𝑦+𝑏𝑢 +𝑦𝑚 −𝑢𝑐 

 



            𝑒 = − 𝑦−𝑦𝑚 +𝑏𝜃𝑢𝑐 −𝑢𝑐                      

𝑒 = −𝑒 + 𝑏(𝜃 −
1

𝑏
)𝑢𝑐                        (1) 

Candidate Lyapunov function: 

𝑉(𝑒,𝜃) =
1

2
𝑒2 +

𝑏

2𝛾
(𝜃 −

1

𝑏
)2 

𝑉 (𝑒,𝜃) = 𝑒𝑒 +
𝑏

𝛾
𝜃 −

1

𝑏
𝜃                           (2) 

Substitute equation(1) in equation (2): 

𝑉 (𝑒,𝜃) = 𝑒[−𝑒 +𝑏 𝜃 −
1

𝑏
𝑢𝑐] +

𝑏

𝛾
𝜃 −

1

𝑏
𝜃  

𝑉 𝑒,𝜃 = −𝑒2 +𝑏 𝜃 −
1

𝑏
[𝑒𝑢𝑐 +

𝜃 

𝛾
] 

𝑒𝑢𝑐 +
𝜃 

𝛾
 =  0 

𝜃 = −𝛾𝑒𝑢𝑐                                 (3) 
𝑉 𝑒,𝜃 = −2𝑒𝑒  

Using equation (1), the above equation becomes: 

𝑉 𝑒,𝜃 = −2𝑒[−𝑒 +𝑏(𝜃 −
1

𝑏
)𝑢𝑐] 

𝑉 𝑒,𝜃 = 2𝑒2 −2 𝑏𝜃 −1 𝑒𝑢𝑐 
 
 
 

 
 
 



. 

Example: Design MRAC using Lyapunov method for the first order system with: 

Model reference  
𝑑𝑦𝑚
𝑑𝑡

= −𝑎𝑚𝑦𝑚 + 𝑏𝑚𝑢𝑐 

Plant: 
𝑑𝑦

𝑑𝑡
= −𝑎𝑦 + 𝑏𝑢 

a and b are unknown,  𝑏 > 0,  

Control law: 

𝑢 = 𝜃1𝑢𝑐 − 𝜃2𝑦 

Solution: 

𝑦 = −𝑎𝑦 + 𝑏𝑢 

 

𝑦 = −𝑎𝑦 + 𝑏(𝜃1𝑢𝑐 − 𝜃2𝑦) 

 

𝑦 = (−𝑎 − 𝑏𝜃2)𝑦 + 𝑏𝜃1𝑢𝑐 

 

𝑒 = 𝑦 − 𝑦𝑚 

 

𝑒 = 𝑦 − 𝑦𝑚  

 

𝑒 = −𝑎 − 𝑏𝜃2 𝑦 + 𝑏𝜃1𝑢𝑐 + 𝑎𝑚𝑦𝑚 − 𝑏𝑚𝑢𝑐 

 

𝑒 = −𝑎𝑚 𝑦 − 𝑦𝑚 + 𝑎𝑚 − 𝑎 − 𝑏𝜃2 𝑦 + (𝑏𝜃1−𝑏𝑚)𝑢𝑐 

 

𝑒 = −𝑎𝑚𝑒 + 𝑎𝑚 − 𝑎 − 𝑏𝜃2 𝑦 + (𝑏𝜃1−𝑏𝑚)𝑢𝑐                                   (1) 

Candidate Lyapunov function:        

𝑉(𝑒, 𝜃1, 𝜃2) =
1

2
𝑒2 +

1

2𝛾𝑏
(𝑎𝑚 − 𝑎 − 𝑏𝜃2)

2+
1

2𝛾𝑏
(𝑏𝜃1 − 𝑏𝑚)

2 

𝑉 𝑒, 𝜃1, 𝜃2 = 𝑒𝑒 −
1

𝛾𝑏
𝑎𝑚 − 𝑎 − 𝑏𝜃2 𝑏𝜃2 +

1

𝛾𝑏
(𝑏𝜃1 − 𝑏𝑚) 𝑏𝜃1  

𝑉 𝑒, 𝜃1, 𝜃2 = 𝑒 −𝑎𝑚𝑒 + 𝑎𝑚 − 𝑎 − 𝑏𝜃2 𝑦 + 𝑏𝜃1 − 𝑏𝑚 𝑢𝑐  

                                                         −
1

𝛾
𝑎𝑚 − 𝑎 − 𝑏𝜃2 𝜃 2+

1

𝛾
(𝑏𝜃1 − 𝑏𝑚) 𝜃1                   (2) 

𝑒𝑦 −
1

𝛾
𝜃2 = 0 

                  𝜃2 = 𝛾𝑒𝑦                 (3) 

                 𝜃1 = −𝛾𝑒𝑢𝑐                 (4) 

For simulink implementation of the MRAC system: 

Laplace transformation of equation (3) and (4) yields: 

𝜃1 = −
1

𝑠
𝛾𝑒𝑢𝑐 

𝜃2 =
1

𝑠
𝛾𝑒𝑦 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



. 

• Simulink model of the system based on Lyapunnov function method. 
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Adaptive Control 



Model Reference Adaptive Controller (MRAC)   

Example: Consider a system with an output model 
𝑑𝑦

𝑑𝑡
 = −𝑦 + 0.5𝑢 

where u is the control input. Assume it is desirable to 

obtain a closed-loop system described by: 

 
𝑑𝑦𝑚

𝑑𝑡
 = −2𝑦𝑚 + 2𝑢𝑐 

 

with an adaptation error formula: 

 

𝑒 = 𝑦 − 𝑦𝑚 

 
The controller formula is described by: 

 

u = 𝑘1𝑢𝑐 − 𝑘2𝑦 

 

Where  

 

1. Design a MRAC system using Lyapunov function 

based on 𝛾𝑛= 1. 

2. Find the gain and settling time of the model reference 

mathematically. 

 



 Solution:   
Using the same  design procedure  mentioned in the 
previous example (example 2), the gain parameters 
expressions are given below: 

𝑑𝜃1

𝑑𝑡
= −𝛾𝑛𝑒𝑢𝑐               (1) 

  
𝑑𝜃2

𝑑𝑡
= 𝛾𝑛𝑒𝑦                      (2) 

 

𝐺𝑚 𝑠 =
2

𝑠+2
  

  
The standard form of the model reference: 
 

𝐺𝑚 𝑠 =
𝐾

𝜏𝑠 + 1
 

 
Compare to the standard form 

𝐺𝑚 𝑠 =
1

0.5𝑠 + 1
 

 
Gain K=1, time constant 𝜏 = 0.5 𝑠,  
settling time 𝑡𝑠 = 5𝜏 = 2.5 s. 
 
 
 
 



MRAC_Lyapunov functionTechnique  

The simulink model of the system based on Lyapunov 

function method is shown below:  

 


