College of Electronics Engineering Ninevah University

Systems and Control Engineering Department
Lecture 1

Subject: Basics of Optimal Control

Lecturer: Ass. Prof. Dr. Ibrahim Khalaf Mohammed



College of Electronics Engineering Ninevah University

SyHabus

Basic of Optimal Controller

Calculus of Variations

Optimal Control Theory

Optimal Control Design in ContinuousTime-Domain
Optimal Control Design in Discrete Time-Domain

Steady-state Quadratic Optimal Control of Discrete-Time
Systems

Steady-State Servo Optimal Control System in Discrete-
Time Form

8. Linear Quadratic Gaussian (LQG) Control

® 0 A WN P

~



Optimal Control Basics

Motivation of Optimal Control

1. Get the best performance of controller.
2. Learn the system limits.
3. Design some acceptable control.

Optimization

Optimization is the task of making the best choice
among a set of given alternatives or it is a collection
process of finding the set of conditions required to
achieve the best from a given situation.

Why Optimization?
1. To improve the performance of the system.

2. To achieve the best performance in the minimum
time with minimum error.



Optiml Control Basics

How to Perform the Optimization

Optimization process compares between different choices
through an objective function (index function).

Objective Function: It is the performance measure of a
system and Iis chosen so that the important system
sepcifications can be meet. Choosing the category of
objective function (maximum or minimum) depandes on the
natural of the control problem. It should be formulated in

mathematical form.



Steps Used To Solve Optimisation Problems

1

. Analyse the process in order to make a list of all the

variables.

Determine the optimisation criterion and specify the
objective function.

Develop the mathematical model of the process to identify
the independent and dependent variables to obtain the
number of degrees of freedom.

If the problem formulation is too large or complex simplify it
If possible.

Apply a suitable optimisation technique.

6. Check the result and examine it's sensitivity to changes in

model parameters and assumptions.



Classification of Optimisation Problems

Properties of f(x)

1. Single variable or multivariable
2. Linear or nonlinear

3. Sum of squares

4. Quadratic

5. Smooth or non-smooth

6. Sparsity

Types of Optimizations

1. Static optimisation: variables have numerical values,
fixed with respect to time.

2. Dynamic optimisation: variables are functions of time.



Typical Examples of Application

Static Optimisation

1. Plant design (sizing and layout).

2. Operation (best steady-state operating condition).
3. Parameter estimation (model fitting).

4. Allocation of resources.

5. Choice of controller parameters (e.g. gains, time
constants) to minimise a given performance index (e.g.

overshoot, settling time, integral of error squared).



Dynamic Optimisation

1. Determination of a control signal u(t) to transfer a dynamic
system from an initial state to a desired final state to satisfy a

given performance index.
2. Optimal plant start-up and/or shut down.

3. Minimum time problems



Optiml Control Basics

Design Types of Control System

1. Classical design approach: It is used to control simple
dynamic behavior systems like single-input single-output
(SISO) systems with zero initial conditions.

2. Optimal design approach: It is used to control multi-input
multi-output (MIMO) systems with complex dynamic
behavior where the classical design procedure can not
achieve the required performance specifications.



Optimal Control Basics

The following figure summarizes the optimal control problem

Optimal Control Problem

l v l

Plant Cost Function Constraints

l l l

Jmin feees
u(t) = > u(t)

Umax Umin

]max




Optimal Control Basics

Optimal Control Principles

1. Model the system in state space form with state
vector:

x(t) = [x1(t), x,(£), x3(£), eve e oo x, (0), 1T
And control vector:

u(t) = [u (), u(®),ut), .......u(®),]”

2. Minimize the cost function (J)

3. Initial and final states can be known, unkown or constriant or free.
4. System states and control input must be constrianed.

5. The final time may be known, uknown or free.

6. Derivation the control function u(t).

« For unconstriant (unbounded) control systems, Euler-lagrange
and Hamiltonian are used to find u(t).

* For constriant (bounded ) control systems, Pontryagin maximum
or minimum principle must be used.



Optimal Control Basics

Control System Performance

The control system has a good performance if the
following requiements are satisfied:

1. Minimum steady state error.

2. Good stability performance.

3. Reasonable system response speed.

4. The effect of disturbances is very small or neglected.

Performance Index

Optimum Control System

It IS a quantities measure of the performance of a system
and chosen so that the important system specifications
can be meet.



Optimal Control Basics

Some Typical Performance Criteria.
¢ maximum profit

% minimum cost

* minimum effort

¢ minimum error

* minimum waste

¢ maximum throughput

¢ best product quality



Optimal Control Basics

Conditions of Performance Index
1. Reliability.
2. Easy to apply.

Performance Indices Classification Based on System Error

1. The integral of the error (IE) .

IE = fe(t)dt

0
2. The integral of the square of the error (ISE)

T
ISE = fez(t)dt

0



Optimal Control Basics

3. The integral of the absolute mz%gnetude of the error (I1AE)
IAE = fle(t)ldt
0

4. The integral of the time multiplied by absolute value of the error
(ITAE)

ITAE = [ tle(t)| dt
The general form of the performargce index is as follows:
f
J =S(x(tr) tr) + f L(x(t),u(t),t)dt

to
Where the first term is called scalar function while the second
term is called traiectorv function, x(¢;)is the state trajectory at
the final time ¢, X(t) is state trajectory at the time ¢ (0 <t < tf)
and u(t) is the control vector input.



Calculus of Variations

Calculus of Variations; It is a field of mathematical analysis
that uses variations, which are small changes in functions and
functionals, to find maxima and minima of functionals.

The simplest form of the ceglculus of variation is as follows:
1

J(x) = fF(t,x(t),ic(t))dt

to
Where J(x) is the performance index could be distance, length,
surface etc F is a given function of three variables called
Lagrange function, x(t) is an unknown function on the interval
[to, t1], ty, t; a@re given numbers, initial and terminal values of
x(t) must be known:

x(tg) = xg

x(t1) = x4



Calculs of Variations

The problem is finding the function x = f(t) (trajectory equation
between t, and t;) that maximizes or minimizes J(x).

Theorm: (Main theorm of the Calculus of Variations)

Assume that F is a function defined on R3(Real valued three
variables function). Consider the integral:

{1

% f F(t,x(t),x(t))dt

ta
If x(t) satisfies the following Euler-Lagrange function:

OF d (0F\ )

dx dt\dx)
For t € [ty, t1], then x®™ maximizes or minimizes the integral
among all functions x = f(t) on [ty, t1]..




Calculus of Variations

Example: 1Solve

minf(x2 + x2)dt, x(0) =0, x(1) =e? -1

0
Solution:

F(t,x(t),x(t)) = x%(t) + x(t)?
0

E ot oF it
P A OF PP

d (OF d . .
E(a) = E(Zx(t) ) = 2X(t)
Applying the following Euler-Lagrange equation yields:
oF d (0F
ax dt (a) =0

2x(t) —2%x(t) =0



Calculus of Variations

The solution of the ordinary differential equation:
2x —2x =0
2X —2x =0
X—x=0
r’—r=0
r=+1
Then the general solution is:
x(t) = Aet + Be™t
Using the endpoint condition:

x(0)=0
0=Ae’+Be® - A=-B
x(1)=e?* -1
e?—1=Ael+Be '=A(et—e™!) » A=e, B=-e
Then: x(t) = ettl —el-t

x(t) = ettt +el7t



Calculus of Variations

The minimum of the performance index is as below:

f(x + x2)dt

f((et+1 1 t)2_|_ (et+1_|_el t) )dt
1

f(82t+2_282 + eZ—Zt _|_ 82t+2 _|_ 282 + eZ_Zt)dt
0

f(82t+2+82—2t _|_ 82t+2 _|_ eZ_Zt)dt

[ e2(e? +e” 2 4 o7 4 o Zf)dt_f e2(2e% + 2e72t)dt
t

8
— e[t qioet_q
Jmin = 26%[ == ——]



Ready to answer your guestions

Thank you
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Optimal Control Theory

Optimal Control Theory: It iIs modern technigue used to
solve dynamic optimization problems. The new approach is
developed to exceed the limitations associated with calculus
of variations which are: Differential functions and dealing
with interior solutions

What Is the object of optimal control theory

1. Determine the control signals that will cause a process to
satisfy the physical constriants and minimize or
maximize some performance criterion.

2. Find a control law u(t) for a given system such that a
certain optimality criterion Is achieved.



Optimal Control Theory

Optimal control theory differs from Calculus of Variations
in that it uses control variables to optimize the functionals.

In general: the optimal control problem 1s to find control
input u(t) which causes a given system (state equation):

x(t) = g(t, x(®),u(®))
u(t) = x(t)
To follow an optimal trajectory x(t) that minimizes the
following cost or index function:

1@ = [ £(6x©,u®)de
Lo



Optimal Control Theory

Where the inital value of x(t) at t = t, is given, while its
value at t = t; 1s free

The endpoint condition is as follows:
x(t;) = Free

x(t)A




Optimal Control Theory

u(t) € Rt € [ty, t1] piecewise continuous and called
control variable.

Pair of function (X(t), u(t)) that satisfies the end points
conditions and the state equation x(t) = g(t, x(t), u(t)) are
called admissible pairs.

Theorem (The maximum Principle I);

Assume that (x*(t),u*(t)) is an optimal pair for the given

problem:
tq

f f(t,x(@),u(t))dt
Lo
Subject to state equation: x(t) = g(t, x(t), u(t))

5



Optimal Control Theory

Then there exist a continuous function called adjoint
function p(t), such that for all t € [ty, t;], the following
conditions are satisfied:

a) u*(t) maximizes the Hamilton function
H(t,x*(t),u(t), p(t)) u(t) € R that is:
H(t,x*(),u*(t),p(t)) = f(t, x(t),u(t)) + px(t)

H(t, x*(t), u(t), P(t)a)HS H(t,x™(t), u*(t), p(t))

=0
ou
b) The function p(t) satisfies the following:

pt) = =22 (£, x*(0),w* (8), p(£))



Optimal Control Theory

¢) The function p(t) satisfies the transversality condition

(T).

p(ty) =0
For the sake of simplicity°
BH
Ox ax

1 f(t X (t) u (t))
g" =gt x* (), u"(t))
H* = H(t, x*(¢), u*(¢), p(t))
H(t, x(6),u(®), p(t)) = f(t, x(t), u(®)) + px(t)
OH*  of"

40 0x 0x .




Optimal Control Theory

Since u(t) € R, there are no endpoints to consider then

OH*  Of*
0= ou ;fQu _HZ)(]Q
P = =3 = ~ 5%

u(t) = u*(t) will maximize H, then the above equation

becomes:
d [0f”
5(6) = — (f)

dt \ du

Mangasarian Theorem: Let the notation be as the statement
of the maximum principle. If H(¢t,x,u,p) 1s concave for
each t € [ty t;], then each admissible pair (x*,u*) that



Optimal Control Theory

satisfies condition (a), (b) and (c¢) of the maximum principle,
will give a maximum.

Example 1: Solve the following problem
T

maxf[l — tx(t) — u?(t)]

o)

Subject to the state equation: x(t) = u(t),
x(0)=x9 ,x(1) = free

Where x(0) and T are positive constants.
Solution:  f(t,x,u) =1 — tx(t) — u?(t)

The Hamiltom equation 1s:
H(t,x,u) = f(t,x,u) + p(t)x(t)




Optimal Control Theory

H(t,x,u) =1 — tx(t) —u?(t) + p(t)u(t)
u(t) = u*(t) shall maximize H

From condition (a):

oH
E(t,x (), u(t),p()) =0
a—H——z (t) +p(t) =0
ou “ PRE) =
u(t) = 5p(0)

025
ou?

Hence, u*(t) = ? te[0,T]

u(t) will maximize H as =-2<0



Optimal Control Theory

From condition (b):

OH" .
el CEAORNONIG)ERVIG
—t = —p(t)
p)=t > L=t sdp=tdt - [dp=[tdt
p(t) ==t2 + A (1)
From the tranversality condition (c):
p(ty) =0
Attty =T p(T)=0
Based on the equation (1):
1 1 1
pt)y= St*+ A - 0= -T2 +A4 —>A=—§T2



Optimal Control Theory

Using equation (1):

p(t) =567 =5T% = p(t) =5 (¢* = T?)
But u*(t) = @, then u*(t) = %(t2 —T?)
Based on the state equation:
x*(t) = u*(¢t)
1

1 1
X*(t) — Z(tz — TZ) — th _ZTZ

1 1
cdt = | |=t*—=T?2]dt
fx f(4 4 )

x*(t) = %ﬁ —%T2t+ B

(2)



Optimal Control Theory

Att =0, x(0) = x,
Using equation (2):

1 1
X0 _EOB_ZTZO-I_B
B=x0

Then equation (2) becomes:

T, 1,
x(t)——t —ZT t+ x,

(x*(t),u*(t)) is the optimal pair of the problem.



Optimal Control Theory

Example 2: Solve the following problem
T

max f [x(t) — u?(t)]
Subject to the state equation: x(t) = x(t) + u(t),
x(0) =0,x(T) = free
Where x(0) and T are positive constants.
Solution:  f(t,x,u) = x(t) — u?(t)
The Hamiltom equation 1s:
H(t,x,u) = f(t,x,u) + p(t)x(t)
H(t, x, u) = x(t) — u?(t) + p(t) (x(t) + u(t))
H(t, x,u) = —u?(t) + p(t)u(t) + (1 + p(t))x(t)




Optimal Control Theory

u(t) = u*(t), shall maximize H

From (a) condition:

0H
T =0
0H
5 —2u(t) + p(t) =0
u(e) =2 ( £ , this yields a maximum, since ZZTI; =-2<0

Hence, u*(t) = @ t € [0,T]

From (b) condition:
oH"

dx

= —p(t)



Optimal Control Theory

1+ p(t) = —p(t)

dp(t)
1 t) = —
1 + p(t) -
1+ 0(0) dp = —dt [Taking integral]

f1+;(t)dp:[_dt

In(1+p)=—-t+C;>1+p=et+e
14+ p=A4e7t
p=Ae t—-1 (1)
From (c) condition (Transverality Condittion):
p(T) =0



Optimal Control Theory

At t = T, using equation (1):

p(T) =Ae T -1
0=Ade " -1-> A=e"
p(t) =elet—1=¢el"t-1

But u*(t) =~ (t) then,

u*(t) = (eT t—1)

As x(t) = x(t) + u(t)
To find x™,
x*(t) — x (t) = u*(t)

x*(t) — x*(t) == (eT t—1)



Optimal Control Theory

1 1

£OE) — T—t t
x*(t) = 4e + > + De
Using endpoints condition;
x(0) =0
0 = —leT+l+D - D = 1eT—l
4 2 ' 4 2

x*(t) —x*(t) = %(eT‘t —1)

1 1 1 1
X*(t) = —ZQT_t +§+ et (ZQT _E)

1 1
x*(t) = 2 (et —el 1) + > (1 —et)
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Control Problems

There are many types of control problems which are given by:
1. The terminal control problem

This 1s used to bring the system output state as closed as
possible to a given terminal state within a given period of
time.

2. The minimum time control problem

It IS used to reach terminal state in a shortest possible time
periode. For example breaking a car at the terminal point as
hard as possible.

3. The minimum energy control problem

It iIs employed to transfer the system from the initial state to a
final state with minimum control energy.



Control Problems

4. The regulator control problem

It is used with the system initially displaced for equilibrium . It
will return the system output states to the equilibrium states In
such manner so as to minimize a given performance index.

5. The tracking control problem

This Is used to cause the system state to track desired state
while minimizing the cost function (performance index).



Performance Index

The general form of performance index (J) 1s given by:
Ly
] = f (xT Qx + u"Ru)dt
Lo

Where Q and R are the state and control weighting matrices
respectively and they are always square and positive
semidefinite matrices, J/ always a scalar quantity.

In procedure of design of control systems the cost function
should be minimize to a smallest value.



Linear Quadratic Regulator in Continuous Time

Linear Quadratic Regulator (LQR) 1s state feedback controller
system, which 1s classified as an optimal control system.

LQR 1s a mult1 variable controller technique used in many
industrial applications as 1t basically seeks a compromise
between the best performance and minimum control nput.

It worth considering that this technique 1s highly
recommended 1n the precision movement applications due to
its good tracking performance.

Consider a system with the following state space
representation :

x(t) = Ax(t) + Bu(t) (1)
y(t) = Cx(¢t) + Du(t) (2)



Linear Quadratic Regulator in Continuous Time

Where A 1s system matrix, B is input matrix, C 1s output matrix
and D 1s feed forward matrix.

The controller approach involves applying the input matrix:
u(t) = —K x(t) (3)

To track the 1nput commands while minimizing the
following performance index:

tq
] = f (x" Qx + u' Ru)dt (4)
to



Linear Quadratic Regulator in Continuous Time

Where K 1s the optimal state feedback gain matrix of LQR
controller that its expression can be derived based optimal
control theory approach. As follows:
The Hamilton equation 1s given by :
H=f+px

Using equations (1) and (4), the above equation becomes:

H =x"Qx + u"Ru + p(Ax + Bu)

H =x"0x + pAx + u"Ru + pBu
Based on (a) condition:

OH
ou _
Ru+BTp=0
Ru=—B"p

u=—-R"1BTp 7



Linear Quadratic Regulator in Continuous Time

Assume p(t) = P(t)x(t) where P(t) is a positive
semidefintion matrix, then the closed loop feedback control
effort 1s as follows:

u=—RIBTP(t)x(¢t)

Comparing equation (3) with the above equation, the feedback
gain matrix 1s as follows:

K =R BTP(¢t)
Where P(t) is the stabilizing solution of the following Riccati

equation:
ATP +PA—PBR 'BTP+0Q =0



Linear Quadratic Regulator in Continuous Time

The LQR controller weighting matrices Q and R should be set
properly using numerical optimization algorithms such as
Genetic algorithm, Particle Swarm Optimization (PSO),
Artificial Bee Colony (ABC) etc such that the control system
can achieve best performance.

System Eigen values

The stability of systems can be studied through calculating
their eigen values which corresponding to poles positions
of the systems. The system is stable if its poles are located
in the left hand side of the s-plan.

The block diagram of regultor system is shown below:

r—>Q“—>-*X—>I—>v

K




Linear Quadratic Regulator in Continuous Time

u=r—Kx
For regulation system r = 0, then

u=—-Kx

The state space representation 1s as follows:

State equation: x = Ax + Bu (1)
Output equation: ¥ = Cx (2)

Where x 1s state vector of the system with dimension (n x 1).
The state and output equation in the s-domain are given by:

sX(s) = AX(s) + BU(s) (3)
Y(s) = CX(s) (4)
Based on equation (3):



Linear Quadratic Regulator in Continuous Time

sX(s) —AX(s) = BU(s)

X(s)(s —A) = BU(s) (5)
The control law in the s-domain is given by:
U(s) = —K X(s) (6)

Substitute equation (6) in equation (5) yields:

X(s)(s] — A) = — BKX(s)
X(s)|sl—A+BK|=0

Based on the above equation the term:
|s] — A + BK]|

IS called characterstics equation that can be used to determine
the eigen values of the closed- loop control system.



Linear Quadratic Regulator in Continuous Time

Example 1: A regulator control system contains a plant that
described by the following state space form:

=19 LG+

y=1[1 0]x

And has a performancgo index:

_ r[2 0 2
]—f [x [O 1]x+u ]dt
0
Determine (a). The Riccati matrix P

(b). The state feedback gain matrix K
(c). The closed-loop eigenvalues



Linear Quadratic Regulator in Continuous Time

Solution: A= [_01 _12] , B= [(1)], Q= [g (1)],R = scalar =1

Solving (a):
The Riccati equation is:

PA+A"™P+Q—-PBRB'TP =0

_[P11 P12170 171 _ [—P12 P11—2P12]
PA = [p21 Pzz” —2] D22 P21 — 2p22

ar=[% 3] e o e s

T
AP = [P11—2P21 P12 — 2P22-



Linear Quadratic Regulator in Continuous Time

PERBTP = [, ] []]10 1 g

PBR-1BTP = P12] (D21 D22 = [P12P21 P12P§2]
P22 P22P21 D22
Applying Riccati equation:
—P12 P11 — 2P12] +[ —P21 —P22 ]_|_ [2 0
—P22 D21 — 2P22 P11 — 2P21 P12 — 2P22 0 1

2

_ [P12P21 P12P22] — 0
P22P21 D22 B

Since P 1s symmetric, p,; = P12, the above equation can be
expressed as follows:



Linear Quadratic Regulator in Continuous Time

—P12 — P12 +2 —p12° =0
P11 — 2P12 — P22 — P12P22 = 0
—P22 + P11 — 2P12 — P12P22 = 0
P12 — 2D22 + P12 — 2D22 + 1 = pp* =0

Equation (2) and (3) are the same, from equation (1):
P12° +2p12—2=0

Solving the above equation yields:
P12 = P21 = 0.732,
P12 = P21 = —2.732

The positive one 1s the right solution
Based on equation (4):
2p12 — 4Py + 1 — P22°=0

(1)
(2)
(3)
(4)



Linear Quadratic Regulator in Continuous Time

Drr? + 4pyy — 1 —2%0.732 = 0
Do’ + 4py, — 2464 = 0
Solving the above equation gives:
Pro = 0.542 and — 4.542
The solution is p,, = 0.542
Using equation (3)
P11 —2*0.732 —0.542 — 0.732 * 0.542 = 0
p11 = 2.403

Then the Riccati matrix is given by:
p— [2.403 0.732

0.732 0.542
Solving (b):

K=R'BTP=1[0 1]|

2.403 0.732

0.732 0547 = [0.732 0.542]



Linear Quadratic Regulator in Continuous Time

Solving (¢):
To find the closed-loop eigenvalues of the system the
following equation 1s used:

s — A+ BK| =0
Hf) S_—lo _2] [O] [0.732 0.542]| =0
s ‘_0

|-1 S+2] [O732 0542]

”1.732 s+ 2. 542” =0

s%+ 2.542s + 1.732 =0
s; = —1.271+4+j0.341,s, = —1.271 —j0.341
The system i1s stable.



Linear Quadratic Regulator in Continuous Time

Example 2: Consider a system with the following state

equation:
.x:l —_ xl
2=l 2kl + [l
Q =eye(2),R=1

Show that the system can not be stabilized by the state
feedback control scheme.

u=—Kx
Whatever the gain matrix 1s chosen.
Solution:
The state and input matrices are given below:
-1 1 1
A= [ 0 2]' B = [o]

And the gain matrix for second order system is K = [k, k3]




Linear Quadratic Regulator in Continuous Time

sl — A+ BK| =0

(S %fﬁ][kl ka]| = 0
S+1 _1 kl
‘[0 s—21 1o 0”=0

”s+ 1+ ky 122:21” — 0

(s+1+k)(s—2)=0
Slz_l_kl, 52=2
The system 1s unstable whatever the gain matrix K i1s chosen

as the second pole s, = 2 1s in the right - hand -side of the s-
plane.



Linear Quadratic Regulator in continuous time

Example 3: Consider a system with the following state
space form:

X1 0 1 O01]M* 0
x’z =10 0 1 | [X2(+|0|u
x.3 0 -2 -=3J1%3 1

y=[1 0 0]
[f its block diagram 1s given in the following figure.
(1). Design LQR controller.
(2). Find state equation of the system.
(3). Find the unit step response of the controlled system.

Modern Control Systems 20



Linear Quadratic Regulator in Continuous Time

Example 3: Consider a system with the following state

space form:
X1 0 1 O0171[*] [0
=[0 , 1”x2+0u
X3 0 -2 -=311%3] 11

y=[1 0 0]
[f its block diagram is given in the following figure.
(1). Design LQR controller.
(2). Find state equation of the system.
(3). Find the unit step response of the controlled system.

Modern Control Systems 21



Linear Quadratic Regulator in Continuous Time

4. If the Riccati matrix 1s given below, find the LQR gain matrix.

55.12 14.67 1 ]
P=114.67 7.02 0.53
1 0.53 0.11.

5. If the state vector 1s x =

, find the the control input value.

X

> V=X

ko e

Modern Control Systems 22



Linear Quadratic Regulator in Continuous Time

Solution:
The error 1s:

e =1—2Xx
The control signal 1s:
u=kie—kyx, — kyxs
u=ky(r—x1) = kyx, — kzxz
U= kir —kix; — kyxy — k3x;

u = k17" — [k1 kz k3] X2

u=kyr—Kx

For regulator system r = 0, then



Linear Quadratic Regulator in Continuous Time

u=-lky ky k3]|X2

The state feedback gain matrix 1is:
K=1lki ky k3l

The standard state and input weighting matrices are given
by:

—CI11 0 0
Q=10 g, 0], R=[1]
0 0 qs3

To get fast output- response (11 must be sufficient large
compared with g,, and g33 and R.



Linear Quadratic Regulator in Continuous Time

Let q41=100 , g,, = 1,g33=1 and R= 0.01, using “lgr”
Matlab command the feedback gain matrix 1s calculated as
follows:
K =1qr(A,B,Q,R)
K =1100 53.12 11.6711]
Solving (2):

x = Ax + Bu

But u=kyr —Kx

x = Ax + B(kyr — Kx)

x = Ax — BKx + B kqr
The state equation of the system is as follows:

x= (A—BK)x+ B kqr (1)

From equation (1) the state of the system 1s x while the mput
IS T



Linear Quadratic Regulator in Continuous Time

Solving (3):

Based on equation (1)
X =A,qx + Bou
y= Cqx+ D u

A, = A—BK
B, = Bk
CCl =C

D., =D

To find the unit step response
[)/, x, t] = step(Acr, Bers Cety Dep)



LQR controller in continuous time.

4. If the Riccati matrix 1s given below, find the controller

gain matrix.

'55.12 14.67
P =114.67 7.02
1 0.53

K =10.01]"'0 0 1]"|14.67

1
0.53
0.11.

K =R™1BTP

'55.12 14.67
7.02
1 0.53

1
0.53

0.11.

K =[100 53.12 11.67]
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LQR controller in continuous time

02
5. If the state vector 1s x = | 1.5 |, find the the control input
0.75.
value.
u=rky —Kx
0.2 -
u=1%100—-[100 53.12 11.67]] 1.5
10.75.

u =100 — (20 + 79.685.3 + 8.73)

u=100—-108.4 = -84
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Linear Quadratic Regulator in Discrete-Time

Assume a completely state controllable linear system has a
discrete-time form as follows:

x(k+1) =Gx(k) + Hu(k)
Where x(k) 1s state vector (n-vector)
u(k) 1s control vector (input vector) (n-vector)
(: 1s (n X n) nonsingular state matrix.
H 1s (n X r) input matrix, r 1s the number of inputs

The objective of LQR controller 1s to find the optimal control
sequence  u(0),u(1),u(2),....u(N — 1) that minimizes the
following performance index:

] =2XT(N)SX(N) + 5 ZN=3[XT(K)QX (k) + UT (k)RU (k)



LQR_In Discrete-Time

Where Q is (n X n) real symmetric matrix or Hermitian matrix.
R 1s (r x r) positive definite Hermitian matrix.
S 1s (n X n) positive definite or positive semi-
definite Hermitian matrix.

S = P(N)
The LQR gain matrix in discrete-time given by:

K(k) =R™*H"(G")7'[P(k) — Q)
Where P(k) is calculated by solving the following equation:

P(k)=Q+G"'P(k+ 1D)[I + HR™*HT"P(k + )]G



LQR_In Discrete-Time

Minimum of performance index:

The minimum value of performance index (J) can be
calculated using the following equation:

Jmin =5 X (0)P(0)X(0)

Where P(0) is Hermitian matrix



Control Problems

Example 1: Consider a discrete-time control system defined
by:
x(k+1) =0.3679x(k) + 0.6321u(k), x(0) =1

Determine the optimal control law (u(k)) required to
minimize the following performance index:

==
J

9

02 % X2(6) + U2 ()

/= 2
0

Where S =1,0 =1and R = 1.
Then determine the mimimum value of the cost function (J).



LOR in Discrete-Time

Solution:
P(k)=Q+G"P(k+ D[+ HR *HTP(k + 1] G

G =0.3679,H = 0.6321

P(k) =1+ 0.3679P(k + 1) [1 + 0.6321(1)(0.6321)
P(k + 1)]710.3679

The above equation can be simplified to the following equation
P(k) =1+ 0.1354P(k+ 1) [1+0.3996P(k + 1)]"t (1)

The boundary condition for P(k + 1)
P(N)=S

N=10.S=1,P(10)=S=1,
Computing of P(k) from k = 9to k = 0 is given bv:



LOR in Discrete-Time

At k = 9, using equation (1):

P(k) =1+ 0.1354P(k + 1) [1 + 0.3996P(k + 1)]?
P(9) =1+ 0.1354P(10) [1 + 0.3996P(10)]?

P(9) =1+ 0.1354 %1 [1+ 0.3996 *« 1]7¢

P(9) = 1.1354 [1.3996]7! = 1.0967

At k = 8, using equation (1):

P(8) =1+ 0.1354P(9) [1 + 0.3996P(9)] !

P(8) =1+ 0.1354 * 1.0967 [1 + 0.3996 * 1.0967]
P(8) = 1.103

At k = 7, using equation (1):
P(7) =1+ 0.1354P(8) [1 + 0.3996P(8)]"* = 1.1036

(1)



LOR in Discrete-Time

At k = 6, using equation (1):

P(6) =1+ 0.1354P(7) [1 + 0.3996P(7)]"! = 1.1037

At k = 5,4,3,2,1,0, using equation (1):

P(k) = 1.1037

The steady state value of P matrix (P;) can be obtained using
equation (1) as follows: P(k) = P(k + 1) = P,

P, =1+ 0.1354P,[1 + 0.3996P,] !

0.3996P,.° + 0.465P,, — 1 = 0

P, = 1.1037 or P,,=—2.2674

P, must be positive, then
P, =1.1037



LOR in Discrete-Time

The feedback gain (K) is calculated as follows:
K() = RTHT(GT)[P(K) ~ Q]
K(k) = 1(0.6321) (0.3679) [P (k) — 1]
K(k) =1.7181|P(k) — 1]
At k=10, using equation (2):
K(10) = 1.7181|P(10) — 1]
K(10) = 1.7181|1 —-1] =0
At k=9, using equation (2):
K(9) =1.7181[P(9) — 1]
K(9) =1.7181[1.0967 — 1] = 0.1662
By using the same manner:

K(8) =0.1773, K(7) = 0.1781,

(2)



LOR in Discrete-Time

K(6)=K((B)=K#)......K(0) =0.1781
To find states values:
x(k+1) = Gx(k) + Hu(k)
x(k+1) =0.3679x(k) + 0.6321u(k)
But: u(k) = —K(k)x(k)
x(k +1) = (0.3679 — 0.6321K (k))x(k)  (3)
At k = 0, using equation (3):
x(1) = (0.3679 — 0.6321K(0) )x(0)
x(1) = (0.3679 — 0.6321 * 0.1781)1 = 0.2553
At k = 1, using equation (3):
x(2) = (0.3679 — 0.6321K(1))x(1) = 0.0652



LOR in Discrete-Time

At k = 2, using equation (3):

x(3) = (0.3679 — 0.6321K (2))x(2) = 0.0166
At k = 3, using equation (3):

x(4) = (0.3679 — 0.6321K (3) )x(3) = 0.00424
The values of x(k) for k = 5,6,7,8,9,10 approache to zero
rapidly.

The optimal control sequence u(k) 1s now obtained as
follows:

u(k) = —K(k)x(k)
Fork =0
u(0) = —=K(0)x(0) = —-0.1781 1 = —-0.1718



LOR in Discrete-Time

Fork =1
u(l) = —-K(1)x(1) = —0.1781 * 0.2553 = —0.0455

Fork = 2
u(2) = -K(2)x(2) = —-0.1781 * 0.0652 = —0.0116

Fork = 3
u(3) = —K(3)x(3) = —0.1781 * 0.0166 = —0.00296

Fork = 4
u(4) = —-K(4)x(4) = —0.1781 % 0.00424 = —0.000756

u(k) =0 for k =5,6,7,8,9,10

The minimum value of the performance index (/)

1 1
Jmin = ExT(O)P(O)x(O) =~ (1%1.1037 + 1) = 0.5518
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Steady-State of Discrete-Time Optimal

Control

To find steatdy-state gain matrix (K) of optimal control

systems, we need steady-state solution
Riccati equation:

of the following

P=Q+G'P[I+ HR'HTP]"G

Where the steady-state matrix P(k) 1s d

efined as P. The

solution begins the with P = 0 and iterate t
stationary solution is obtained.

e equation until a

Based on the steady-state solution of the above Riccati
equation, the steady state gain matrix can be calculated using

the following equation:

K =RHT(GT) (P - Q)



Steady-State of Discrete-Time Optimal Control

Example: consider the folowing discrete time system:
x(k+1) = Gx(k) + Hu(k)

102 0 1 . .
Where G = [ o o 4], H = [ 1], the performance index (J) 1s
given by:

J = %;(x%k)@x(k) +u” (k)Ru(k)

Where Q = [é 0(.)5],R =1

The control law that minimizes / 1s given by:
u(k) = —Kx(k)
Derermine the steady state gain matrix.



LOR In Discrete-Time

Solution: Start the steady state solution of the Riccati equation
with P = [8 8]
First iteration: P=Q+GT'P[I + HR™'HTP]™1G
P=[o o5l *[% oallo ollly 71+[110x 1l
[0 0]/-1 [0.2 0 |
0 O . 0 0 0.4
F= [0 0.5]
Second iteration: P=Q+G'P[I + HR"*HTP]"1G
1 O 0.2 07111 O 1 O 1
F= [0 0.5] +| 0 %.4] [0 O02.5] [!)0 T [1] 1l
o osl o o4




LOR in Discrete-Time

p— [1024 —0.016
0.016 0.564

Third iteration: P =Q + G'P[I + HR™'H'P]™1G

N 0.2 1.024 —0.016] |1
P_l_-o 0.5] +!024 0.4]06({6016 002564 _[o
a1 00006 0sea VLo 04

p— [ 1.0251 —0 0186
0.0186 0.5723
Forth iteration: P=Q+G"P[I+ HR"'H"P]™1

1 0.2 1.0251 —0.0186
P_1‘O 03 +1[ozs10'4] 58'%686 03" %% [
i 0] 5o0se 05723 1o 0a




LOR in Discrete-Time

Fifth iteration:

p=[1

dh

o osl

1[1 1]

Sixth 1teration:

p =1

+[;

o osl

1[1 1]

p— [ 1.0252 —0.0189
0.0189 0.5723
P=Q+G"P[I + HR"'HTP]71G
[0.2 ] 1.0252 —0.0189 -[1
0.411-0.0189 0. 5723 0
1.0252 0. 0189 [0 2 -
—0.0189 0.5723 0 4.
1.0252 0. 0189
—0.0189 0.5724
P=Q+G'P[I+ HR"*HTP]71G
[0.2 ] 1.0252 —0.01897 (1
0.411-0.0189 0. 5724 10
1.0252 —0.0189 [o 2
—0.0189 0.5724 0 4.



LOR in Discrete-Time

p— [10252 —0.0189
0.0189 0.5724

When P matrix stays constant, steady state 1s reached.

1.0252 —-0.0189

P =
>3 —0.0189 0.5724

Steady state gain matrix

K= R‘lHT(GT)‘l(P - Q)
B 0.2 N 1.0252 —0.0189
K =101 ([ 0.4. ) ( —0.0189 0.5724
- [o 0_5]) —[0.0786 0.0865]
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Steady-State of Discrete-Time Optimal Control

Consider a servo control system shown in the following

figure.

() Vi u(k)

Xk

. YK

With the following state and output equations:
x(k +1) = Gx(k) + Hu(x)
y(k) = Cx(k)

(1)
(2)



Steady-State Servo Control System

The plant of the system does not involve an integrator. This
system uses state feedback and integral control.

The equation for the integrator is:
V(k) =V(k—1)+r(k) — y(k) (3)
u(k) = —Kx(k) + KI V(k) (4)

Equation (3) can be rewritten it as follows:
Vik+1)=V(k)+rtk+1) —y(k+1)
Vik+1)=V(k)+r(k+1)—Cx(k+1)

Based on equation (1):
Vik+1)=V(k)+r(k+1)—C[Gx(k) + Hu(k)]

Based on equation(4), the above equation becomes:
Vik+1)=V(k)+r(k+1)—CGx(k) — CH(—Kx(k) + KIV (k)]

Vik+1)=(01—-CHKI)V(k) + (—CG + CHK)x(k) +r(k + 1) (5)



Steady-State Servo Control System

Based on equation (1) and equation (4):

x(k +1) = Gx(k) + H(—Kx(k) + KIV (k))

x(k + 1) = (G — HK)x(k) + HKI V (k) (6)
Based on equation (5) and equation (6), the state and output
equations are given by:

[x{k + 1)‘ _ [_ G — HK HKI ‘ [iik}

0
V(k+1) CG + CHK 1— CHKI {jk)‘ T ’1] r(k +1)

Y = (€01 [0

For a step input (k) =r



Steady-State Servo Control System

(k+1) — (k)
[I)j(k_l-l_— 1)‘ N LCGG +HCI§[K 1 —H(I:{ém] [;(k)] i lﬂ

() = (¢ 01 [

For a step input, as k approaches infinity
x(k) — x (o)
u(k) - u()
V(k) - V()

(7)

Based on equation (3)

V(e0) = V() + 1(e0) — y(o0)

y(0) =r(0) =71
There 1s no steady state error. By substituting k = oo into
equation (7), 1t can obtain:



Steady-State Servo Control System

X (0 G — HK HKI X( 0
[V%oogl - LCG +CHK 1-— CHKI‘ [VEoog T H (8)
Define:
xe(k) = x(k) — x(o)
Ve(k) =V (k) — V()
Xe(k+1) =x(k+ 1) — x(0)
V,(k+1)=V(k+1)—V(0)
Subtract equation (8) from equation(7):
x(k +1) - x(OO)] _ [ G — HK HKI [xC)] [0]
V(k+1) — V() —CG +CHK 1—-CHKIV (k) r
B [ G — HK HKI ”x(OO) 0
—CG +CHK 1—CHKHI V()] Lr




Steady-State Servo Control System

[xe(k + 1)] _ [ G — HK HKI 1[xe(k)
V,(k+ 1)~ l-cG +CcHK 1-CHKII|V,(k)

il =Lee S0l Lealtx el

xe (k)
Ve(k)

The above equation becomes:

[)IC/:((;: JJ:B] ¢ 6 1 ﬁe((gH_’ZH] Wk) (10)
W (k) = —Kx.(k) + KIV, (k)

Let W(k) = [-K KI][

Using equation (4):
u(k) = —Kx(k) + K1V (k)

uo (k) = —Kx, (k) + KIV, (k) (11)



Steady-State Servo Control System

W(k) = ue(k)
Based on equation (11), equation (10) becomes:
xe(k +1) xe (k) H
[v winl=Lee ool Leulw®
x1 (k) = x.(k)
x, (k) = Ve (k)

Based on the above assumption, equation (11) becomes:

Up,(k) = —Kx,(k) + KIx,(k)

ue(k) =Wy =[-K KI] [283

ue(k) = Wy = — Kx (k)

(12)

(13)



Steady-State Servo Control System

K=[K -KI]
And equation (13) becomes:

o= e Aol [Lealwe
x(k+1) =Gx(k) + W (k)

W = — Kx(k)

6=[_¢e 2=l

The performance index of the servo system is as follows:

J = > TienolXT () QX (k) +WT (k)RW (k)]

(13)



Steady-State Servo Control System

Example: Consider a servo system with the following state and output
equations.

x(k+1)=0.5x(k) +2u(k)
y(k) = x(k)
An integral controller is included to the system as shown in the

following figure:
> Kl H Z-1 x(k) }M}
M -
.|.




Steady-State Servo Control System

[f the weighting matrices of the LQR controller are given by:

_[100 O 4.

Q _ [ 0 1]9 R - 1)
Determine integral gain (K1) and feedback gain (K) so that the system
1s stable and will exhibit an acceptable transient response to the unit

step input 1f the sampling time T = 0.1 sec.
Solution:

x(k+1)=05x(k) +2u(k)
y(k) = x(k)
G=05 H=2,C=1
The state equation of the system with mtegral action 1s given by:
xq(k + 1)] 1 G 0 [xl(k)] H
) =Lee o)t [Lealw

x(k +1) = Gx(k) + BW (k)



Steady-State Servo Control System

&= ;agGO (1)] - —0(')55 (1)] Fo = LIZH] = [_22]

P=1o 0]

P=0+GTP[[+HR™*HTP]71G

Begin the solution with matrix P = 0 and iterate the above Riccati
equation until a stationary solution (steady state P matrix) is obtamed.

After many iteration, the steady state P matrix is given by:

P=[ 100 —0.0119
—0.0119 10.5168



Steady-State Servo Control System

Using the above steady state P matrix, the feedback control 1is
calculated as follows:

K = (R + HTPH) 'HTPG
K=[K -KI]
K =[0.2494 —0.0475]

The feedback gain matrix K = 0.2494
and the mtegral gain KI = 0.0475.



