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Grid Routing 

Introduction  

• In the VLSI design cycle, routing follows cell 

placement.  

• During routing, precise paths are defined on the 

layout surface, on which conductors carrying electrical 

signals are run.  

• Routing takes up almost 30% of the design time, and 

a large percentage of layout area.  

• We first take up the problem of grid routing. 
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What is Grid Routing?  

• The layout surface is assumed to be made up of a 

rectangular array of grid cells.  

• Some of the grid cells act as obstacles.  

- Blocks that are placed on the surface. 

 - Some nets that are already laid out.  

• Objective is to find out a path (sequence of grid cells) 

for connecting two points belonging to the same net.  

• Two broad class of algorithms:  

Maze routing algorithms.  

Line search algorithms.  
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Problem Definition  

• The general routing problem is defined as follows. 

 • Given:  

- A set of blocks with pins on the boundaries. 

- A set of signal nets.  

- Locations of blocks on the layout floor.  

• Objective:  

- Find suitable paths on the available layout 

space, on which wires are run to connect the 

desired set of pins.  

- Minimize some given objective function, 

subject to given constraints. 
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• Types of routing constraints:  

- Minimum width of routing wires.  

- Minimum separation between adjacent wires.  

- Number of routing layers available.  

- Timing constraints. 

 

Grid Routing Algorithms  

1. Maze running algorithm  

- Lee's algorithm  

- Hadlock's algorithm  

2. Line search algorithm  

- Mikami-Tabuchi's algorithm  

- Hightower's algorithm  

3. Steiner tree algorithm 
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Maze Running Algorithms  

- The entire routing surface is represented by a 2-D 

array of grid cells.  

- All pins, wires and edges of bounding boxes 

that enclose the blocks are aligned with respect to 

the grid lines. 

- The segments on which wires run are also 

aligned.  

- The size of grid cells is appropriately defined.  

• Wires belonging to different nets can be 

routed through adjacent cells without 

violating the width and spacing rules.  

• Maze routers connect a single pair of points at a time. 

- By finding a sequence of adjacent cells from one 

point to the other. 
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Lee's Algorithm  

• The most common maze routing algorithm.  

• Characteristics:  

- If a path exists between a pair of points S and 

T, it is definitely found.  

- It always finds the shortest path.  

- Uses breadth-first search.  

• Time and space complexities are O(h x w) for a grid 

of dimension h x w. 
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Phase 1 of Lee's Algorithm  

• Wave propagation phase  

 - Iterative process.  

- During step i, non-blocking grid cells at Manhattan 

distance of i from grid cell S are all labeled with i. 

 - Labeling continues until the target grid cell T is r 

marked in step L.  

• L is the length of the shortest path.  

- The process fails if:  

• T is not reached and no new grid cells can be 

labeled during step i.  

• T is not reached and i equal M, some upper 

bound on the path length. 
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Phase 2 of Lee's Algorithm  

• Retrace  phase  

- Systematically backtrack from the target cell T 

back towards the source cell S.  

If T was reached during step i, then at least one grid 

cell adjacent to it will be labeled i-1, and so on.  

- By tracing the numbered cells in descending order, 

we can reach S following the shortest path.  

• There is a choice of cells that can be made in 

general.  

• In practice, the rule of thumb is not to change the 

direction of retrace unless one has to do so.  

• Minimizes number of bends. 
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Phase 3 of Lee's Algorithm  

• Label clearance  

- All labeled cells except those corresponding to the 

path just found are cleared. 

 - Search complexity is as involved as the wave 

propagation step itself. 
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• Memory Requirement  

- Each cell needs to store a number between 1 and L, 

where L=2N is some bound on the maximum path length. 

Where N is number of cells in each row. 

- One bit combination to denote empty cell. 

- One bit combination to denote obstacles. 

 log2(L+2) bits per coll. 

  

• Improvements: 

-Instead of using the sequence 1,2,3,4,5....  For 

numbering the cells, the sequence 1,2,3,1,2,3,... is used.  

-For a cell, labels of predecessors and successors are 

different. So tracing back is easy.  

log2(3+2) = 3 bits per cell.  

-Use the sequence 0,0,1,1,0,0,1,1,…   

• Predecessors and successors are again different. 

 log2(2+2) = 2 bits per cell. 
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Reducing Running Time  

1- Starting point selection   

a. Choose the starting point as the one that is 

farthest from the center of the grid.  

2-  Double fan-out  

a. Propagate waves from both the source 

and the target cells.  

b. Labeling continues until the wavefronts 

touch.  

3- Framing  

a. An artificial boundary is considered 

outside the terminal pairs to be connected. 

b. 10-20% larger than the smallest bounding 

box. 
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Connecting Multi-point Nets  

• A multi-pin net consists of three or more terminal 

points to be connected.  

• Extension of Lee's algorithm:  

- One of the terminals of the net is treated as 

source, and the rest as targets.  

- A wave is propagated from the source until one 

of the targets is reached.  

- All the cells in the determined path are next 

labeled as source cells, and the remaining 

unconnected terminals as targets.  

- Process continues. 
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Hadlock's Algorithm  

• Uses a new method for cell labeling called detour 

numbers.  

- A goal directed search method.  

- The detour number d(P) of a path P connecting 

two cells S and T is defined as the number of grid 

cells directed away from its target T.  

- The length of the path P is given by: 

 len(P) = MD (S,T) + 2 d(P)  

where MD (S,T) is the Manhattan distance 

between S and T. 

>> The cell filling phase of Lee's algorithm can be 

modified as follows:  

- Fill a cell with the detour number with respect 

to a specified target T (not by its distance from 

source). 
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- Cells with smaller detour numbers are 

expanded with high priority.  

• Path retracing is of course more complex, and 

requires some degree of searching. 
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• Advantages Hadlock's Algorithm:  

- Number of grid cells filled up is considerably 

less as compared to Lee's algorithm. 

- Running time for an NxN grid ranges from 

O(N) to O(N
2
). 

• Depends on the obstructions.  

• Also locations of S and T. 
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Line Search Algorithm  

• In maze running algorithms, the time and space 

complexities are too high.  

• An alternative approach is called line searching, 

which overcomes this drawback.  

• Basic idea:  

- Assume no obstacles for the time being.  

- A vertical line drawn through S and a 

horizontal line passing though T will intersect.  

    • Manhattan path between S and T. 

- In the presence of obstacles, several such lines 

need to be drawn. 

• Line search algorithms do not guarantee finding 

the optimal path.  

- May need several backtrackings.  
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- Running time and memory requirements 

are significantly less. 

- Routing area and paths are represented by 

a set if  line segments.  

• Not as a matrix as in Lee's or Hadlock's 

algorithm. 
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Mikami-Tabuchi's Algorithm  

• Let S and T denote a pair of terminals to be 

connected.  

• Step 1:   

- Generate four lines (two horizontal and two 

vertical) passing through S and T.  

- Extend these lines till they hit obstructions or the 

boundary of the layout.  

- If a line generated from S intersects a line 

generated from T, then a connecting path is found. 

- If they do not intersect, they are identified as trial 

lines of level zero.  

• Stored in temporary storage for further 

processing. 
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• Step i of Iteration:  

 - Pick up trial lines of level i, one at a time.  

• Along the trial line, all its grid points are 

traced. 

• Starting from these grid points, now trial 

lines (of level i+1) are generated perpendicular 

to the trial line of level i.  

- If a trial line of level i+1 intersects a trial line (of any 

level) from the other terminal point, the connecting 

path can be found.  

• By backtracing from the intersection point to S 

and T.  

• Otherwise, all trial lines of level (i+1) are added 

to temporary storage, and the procedure repeated.  

• The algorithm guarantees to find a path if it exists. 
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Hightower's Algorithm  

• Similar to Mikami•Tabuchi's algorithm.  

- Instead of generating all line segments 

perpendicular to a trial line, consider only those 

lines that can be extended beyond the obstacle 

which blocked the preceding trial line.  

-Steps of the algorithm:   

- Pass a horizontal and a vertical line through source 

and target points (called first-level probes).  

- If the source and the target lines meet, a path is 

found.  

- Otherwise, pass a perpendicular line to the previous 

probe whenever it intersects an obstacle.  

• Concept of  escape point and escape line. 
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Global Routing: 
Basic Idea  

• The routing problem is typically solved using a two-

step approach:  

1. Global Routing  

- Define the routing regions.  

- Generate a tentative route  for each net.  

- Each net is assigned to a set of routing regions. 

- Does not specify the actual layout of wires.  

2. Detailed Routing  

- For each routing region, each net passing 

through that region is assigned particular routing 

tracks.  

- Actual layout of wires gots fixed. 

- Associated sub-problems: channel routing and 

switchbox routing. 
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Routing Regions  

• Regions through which interconnecting wires are laid 

out.  

• How to define these regions?  

- Partition the routing area into a set of non-

intersecting rectangular regions.  

- Types of routing regions: 

 • Horizontal channel: parallel to the x-axis with 

pins at their top and bottom boundaries.  

• Vertical channel: parallel to the y-axis with pins  

at their left and right boundaries.  

• Switchbox: rectangular regions with pins on all 

four sides. 
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• Points to note:  

- Identification of routing regions is a crucial first 

step to global routing.  

- Routing regions often do not have pre-fixed 

capacities.  

- The order in which the routing regions are 

considered during detailed routing plays a vital 

part in determining overall routing quality. 
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• Three types of channel junctions may occur:  

- L-type:  

• Occurs at the corners of the layout surface.  

• Ordering is not important (hiring detailed 

routing.  

• Can be routed using channel routers. 

 - T-type:  

• The leg of the "T" must be routed before the 

shoulder.  

• Can be routed using channel routers.  

- +-type:  

• More complex and requires switchbox routers.  

• Advantageous to convert +-junctions to T-

junctions. 
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Design Style Specific Issues  

• Full Custom   

- The problem formulation is similar to the general 

formulation as discussed.  

• All the types of routing regions and channels 

junctions can occur. 

- Since channels can be expanded, some violations of 

capacity constraints are allowed. 

 - Major violation in constraints are, however, not 

allowed. 

 • May need significant changes in placement.  
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• Standard Cell   

- At the end of the placement phase  

• Location of each cell In a row is fixed. 

• Capacity and location of each feed-through is 

fixed.  

• Feed-throughs have predetermined capacity.  

- Only horizontal channels exist. 

• Channel heights are not fixed.  

- Insufficient feed-throughs may lead to failure.  

- Over-the-cell routing can reduce channel height, and 

change the global routing problem. 

  



30 
 

• Gate Array  

- The size and location of cells are fixed.  

- Routing channels & their capacities are also 

fixed.  

-- Primary objective of global routing is to 

guarantee routability.   

- Secondary objective may be to minimize 

critical path delay. 
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Simulated Evolution / Genetic Algorithm 

• The algorithm starts with an initial set of placement 

configurations.  

- Called the population.  

• The process is iterative, where each iteration  

is called a generation.  

- The individuals of a population are evaluated to 

measure their goodness.  

• To move from one generation to the next, three 

genetic operators are used:  

1. Crossover  

2. Mutation  

3. Selection 
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CROSSOVER Operator  

• Choose a random cut point.  

• Generate offsprings by combining the left segment of 

one parent with the right segment of the other.  

— Some blocks may get repeated, while some 

others may get deleted.  

— Various ways to deal with this problem. 

 

• Number of times the "crossover" operator is applied 

is controlled by crossover rate. 
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MUTATION Operator  

• Causes incremental random changes to an offspring 

produced by crossover.  

• Most common is pairwise exchange.  

• Number of times this is done is controlled by 

mutation rate. 

 

SELECT Operator  

• Select members for crossover based on their fitness 

value. 

- Obtained by evaluating a cost function.  

• Higher the fitness value of a solution, higher will be 

the probability for selection for crossover. 
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Force Directed Placement  

• Explores the similarity between placement problem 

and classical mechanics problem of a system of bodies 

attached to springs.  

• The blocks connected to each other by nets are 

supposed to exert attractive forces on each other. 

 - Magnitude of this force is directly proportional 

to the distance between the blocks.  

• Analogous to Hooke's law in mechanics.  

- Final configuration is one in which the system 

achieves equilibrium. 
• A cell i connected to several cells j experiences a total force 

Fi = ∑             where wij is the weight of connection 

between i and j dij is the distance between I and J.  

• If the cell i is free to move, it would do so in the direction of 

force F, until the resultant force on it is zero.  

• When all cells move to their zero-force target locations, the 

total wire length is minimized. 
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• For cell i, if (xi
0
, yi

0
) represents the zero-force target 

location, by equating the x- and y-components of the 

force to zero, we get  

∑  (    (      ))      

∑ (    (      ))    

 

 

 

• Solving for xi
0
 and yi

0
, we get  

     ∑             ∑   

 

 

 

 

     ∑             ∑   

 

 

 

 

 

• Care are should be taken to avoid assigning more 

than one cell to the same location. 
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Breuer's Algorithm  

• Partitioning technique used to generate placement.  

• The given circuit is repeatedly partitioned into two 

sub-circuits.  

— At each level of partitioning, the available 

layout area is partitioned into horizontal and 

vertical subsections alternately.  

— Each of the sub-circuits is assigned to a 

subsection.  

— Process continues till each sub-circuit consists 

of a single gate and has a unique place on the 

layout area. 

 

• Different sequences of cut lines used:  

1. Cut Oriented Min-Cut Placement  

2. Quadrature Placement  

3. Bisection Placement  

4. Slice Bisection Placement 
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Cluster Growth  

• In this constructive placement algorithm, bottom-up 

approach is used.  

• Blocks are placed sequentially in a partially 

completed layout.  

- The first block (seed) is usually placed by the 

user. 

- Other blocks are selected and placed one by 

one.  

• Selection of blocks is usually based on connectivity 

with placed blocks. 

• Layouts produced are not usually good.  

- Does not take into account the interconnections 

and other circuit features.  

• Useful for generating initial placements.  

- For iterative placement algorithms.  

  



1 
 

EDA09



2 
 

Introduction  

• The purpose is to define the signal that each pin will 

receive.  

• It can be done: 

- During floorplanning 

- During placement  

- After placement is fixed  

> For undesigned blocks, a good assignment of pins 

improves placement. 

• If the blocks are already designed, still some pins can 

be exchanged. 
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Pin Assignment  

Input:   

- A placement of blocks.  

- Number of pins on each block, possibly an 

ordering.  

- A netlist.  

 

• Requirements:  

 - To determine the pin locations on the blocks.  

 

Objectives:   

- To minimize net-length. 
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• Functionally equivalent pins:  

• Exchanging the signals does not affect the 

circuit.  

• Equipotential pins:  

Both are internally connected and represent the 

same net. 

 
A, B :: functionally equivalent 

C, D :: equipotential  
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Problem Formulation  

• Purpose is to optimize the assignment of nets within 

a functionally equivalent (or equipotential) pin groups.  

 

• Objective:  

- To reduce congestion or reduce the number of 

crossovers. 
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Design Style Specific Issues  

• Full Custom   

- Two types of pin assignment problems:  

a) During floorplanning, the pin location along 

the block boundary can he changed as the block 

is assigned a shape. <REDUCES 

CONGESTION>  

b) During placement, simply assign nets to pins. 

• Standard Cell  

  Essentially two things to be done:  

a) Permuting net assignment for functionally 

equivalent pins.  

b) Changing equipotential pins for a net.  

 

• Gate Array  - Same as that for standard cells. 
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Classification of Algorithms  

 
 

 

  

Pin Assignment 
Algorithms 

General 
Techniques 

Concentric 
Circle Mapping

Topological 
Method 

Nine Zone 
Method 

Special 
Techniques 

Channel Pin 
Assignment
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Concentric Circle Mapping  

• Uses two concentric circles to planarize the 

interconnections. 

 - Pins on the block being considered are shown 

as points on the inner circle. 

 - Interconnections to be made with other blocks 

are shown as points on the outer circle.  

 

• Divides the problem into two parts:  

a) Assignment of pins to points of the two 

circles. 

b) Mapping the points on the inner circle to those 

on the outer circle. 
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Topological Pin Assignment  

• Similar to concentric circle mapping.  

• Easier to complete pin assignment.  

- When there is interference from other 

components and barriers.  

- For nets connected to more than two pins.  

• If a net has been assigned to more than two pins, then 

the pin closest to the center of the primary component 

is chosen. 

• Pins of primary component are mapped onto a circle 

as before.  

• Beginning at the bottom of the circle, and moving 

clockwise, the pins are assigned to nets. 
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Integrated Approach  

• Better understanding of the different stages in 

physical design automation over the years.  

- Attempts are being made to merge some steps 

of the design cycle.  

- For example, floorplanning and placement are 

considered together. 

- Sometimes, placement and routing stages can 

also be combined together.  

 

• Still a problem of research. 
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Placement  

Introduction  

• A very important step in physical design cycle.  

- A poor placement requires larger area. 

 - Also results in performance degradation.   

• It is the process of arranging a set of modules on the 

layout surface.  

- Each module has fixed shape and fixed terminal 

locations.  

- A subset of modules may have pre-assigned 

positions (e.g., I/O pads). 
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The Placement Problem  

• Inputs:  

- A set of modules with  

• well-defined shapes  

• fixed locations of pins.  

- A netlist. 

 

 • Requirements:  

- Find locations for each module so that no two 

modules overlap.  

- The placement is routable. 

 

 • Objectives: 

 - Minimize layout area.  

- Reduce the length of critical nets. 

 - Completion of rotating. 
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Placement Problems at Different Levels  

1. System-level placement  

- Place all the PCBs together such that  

• Area occupied is minimum  

• Heat dissipation is within limits.  

 

2. Board-level placement 

 - All the chips have to be placed on a PCB. 

 • Area is fixed  

• All modules of  rectangular shape  

- Objective is to 

 • Minimize the number of routing layers 

 • Meet system performance requirements.  
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3. Chip-level placement  

- Normally, floorplanning / placement carried out 

along with pin assignment.  

- Limited number of routing layers (2 to 4).  

• Bad placements may be unroutable.  

• Can be detected only later (during routing) 

 • Costly delays in design cycle.  

- Minimization of area.  
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Problem Formulation  

• Notations: 

 B1,B2,..., Bn: modules/blocks to be placed 

Wi,hi,:             width and height of Bi 1<i<n  

N={N1,N2,….Nm} : set of nets (i.e. the netlist) 

Q={Q1,Q2,...Qk} : rectangular empty spaces for 

routing 

Li                         : estimated length of net Ni 

1<i<m  
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• The problem 

  Find rectangular regions R={R1,R21...Rn} for each 

of the blocks such that  

• Block Bi can be placed in region Ri.  

• No two rectangles overlap, Ri∩Rj = Φ.  

• Placement is routable (Q is sufficient to route 

all nets).  

• Total area of rectangle bounding R and Q is 

minimized. 

• Total wire length ∑𝐿𝑖 is minimized. 

For high performance circuits, max{Li| 

i=1,2,...,m} is minimized 

 

. General problem is NP-complete.  

. Algorithms used are heuristic in nature.  
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Interconnection Topologies  

• The actual wiring paths are not known during 

placement.  

-For making an estimation, a placement algorithm 

needs to model the topology of the interconnection 

nets. 

• An interconnection graph structure is used. 

 • Vertices are terminals, and edges are 

interconnections.  
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Estimation of Wirelength  

• The speed and quality of estimation has a drastic 

effect on the performance of placement algorithms.  

- For  2-terminal nets, we can use Manhattan 

distance as an estimate.  

- If the end co-ordinates are (x1,y1) and (x2,y2), 

then the wire length L= | xl - x2 |+ | y1 - y2 |  

• How to estimate length of multi-terminal nets? 
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Modeling of Multi-terminal Nets  

1- Complete Graph   

• nC2 = n(n-1)/2 edges for a n-pin net.  

• A tree has (n-1) edges which is 2/n times the 

number of edges of the complete graph.  

• Length is estimated as 2/n times the sum of the 

edge weights. 

 

2- Minimum Spanning Tree   

• Commonly used structure.  

• Branching allowed only at pin locations.  

• Easy to compute.   
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3- Rectangular Steiner Tree   

• A Steiner tree is the shortest route for 

connecting a set of pins.  

• A wire can branch from any point along its 

length.  

• Problem of finding Steiner tree is NP-complete.  

 

4-  Semi Perimeter  

• Efficient and most widely used.  

• Finds the smallest bounding rectangle that 

encloses all the pins of the net to be connected.  

• Estimated wire length is half the perimeter of 

this rectangle.  

• Always underestimates the wire length for 

congested nets. 
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Design Style Specific Issues  

• Full Custom  

- Placing a number of blocks of various shapes 

and sizes within a rectangular region. 

- Irregularity of block shapes may lead to unused 

areas. 

 

 • Standard Cell   

— Minimization of the layout area means:  

• Minimize sum of channel heights.  

• Minimize width of the widest row.  

• All rows should have equal width. 

 — Over-the-cell routing leads to almost "channel-

less" standard cell designs. 
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• Gate Arrays  

- The problem of partitioning and placement are 

the same in this design style.  

- For FPGA's, the partitioned sub-circuit may be 

a complex netlist.  

• Map the netlist to one or more basic 

blocks (placement). 

  



28 
 

Classification of Placement Algorithms  

 

 

 

 

  

Placement Algorithms

Simulation Based 

Simulated 
Annealing 

Simulated 
Evolution 

Force Directed

Partitioning 
Based 

Breuer's 
Algorithm 

Terminal 
Propagation 

Other 

Cluster Growth

Force Directed 
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Simulated Annealing  

• Simulation of the annealing process in metals or glass.  

- Avoids getting trapped in local minima. 

- Starts with an initial placement. 

- Incremental improvements by exchanging blocks, 

displacing a block, etc. 

- Moves which decrease cost are always accepted. 

- Moves which increase cost are accepted with a 

probability that decreases with the number of iterations. 

 

• Timberwolf is one of the most successful placement 

algorithms based on simulated annealing. 
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Simulated Annealing Algorithm  

Algorithm SA_Placement  

begin  

T = initial temperature;  

P = initial_placement;  

while ( T > final_temperature) do 

while (no_of_trIals_at_eachtemp not yet 

completed) do  

new P = PERTURB (P); 

delta_C = COST (new_P) - COST (P);  

if (delta_C < 0) then  

P = new_P;  

else if (random(0,1) > exp(delta_C/T)) then 

P = new_P;  

T = SCHEDULE (T); /** Decrease temperature  

end 
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TimberWolf  

• One of the most successfulplacement algorithms.  

- Developed by Sechen and Sangiovanni-Vincentelli. • 

Parameters used:  

- Initial_temperature = 4,000,000  

- Final_temperature = 0.1  

- SCHEDULE(T) = alpha(T) x T  

• alpha(T) specifies the cooling rate which depends on 

the current temperature. 

• a(T) is 0.8 when the cooling process just starts.  

• a(T) is 0.95 in the medium range of temperature.  

• a(T) is 0.8 again when temperature is low.  
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The PERTURB Function  

• New configuration is generated by making a weighted 

random selection from one of the following:  

a) The displacement of a block to a new location.  

b) The interchange of locations between two blocks.  

c) An orientation change for a block.  

- Mirror image of the block's x-coordinate.  

- Used only when a new configuration generated using 

alternative (a) is rejected. 
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The COST Function  

• The cost of a solution is computed as: 

 COST = cost1 + cost2 + cost3  

where  

cost1 : weighted sum of estimated length of all 

nets  

cost2 : penalty cost for overlapping  

cost3 : penalty cost for uneven length among 

standard cell rows.  

- Overlap is not allowed in placement.  

- Computationally complex to remove all overlaps.  

- More efficient to allow overlaps during intermediate 

placements.  

• Cost function (cost2) penalizes the overlapping. 
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Problem Definition  

• Input:  

 - A set of blocks, both fixed and flexible.  

• Area of the block Ai = wi x hi  

• Constraint on the Shape of the block 

(rigid/flexible) 

 - Pin locations of fixed blocks.  

- A netlist.  

• Requirements:  

- Find locations for each block so that no two 

blocks overlap.  

- Determine shapes of flexible blocks.  

• Objectives:  - Minimize area.  

- Reduce wire-length for critical nets. 

LENOVO
Pencil
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Example: Rigid Blocks 

 
 

Feasible Floor-plans 
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Design Style Specific Issues  

• Full Custom   

- All the steps required for general cells.  

• Standard Cell   

- Dimensions of all cells are fixed. 

- Floorplanning problem is simply the 

placement problem. 

- For large netlists, two steps:  

• First do global partitioning.  

• Placement for individual regions next. 

 

• Gate Array  

- Floorplanning problem same as placement 

problem. 
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Estimating Cost of a Floorplan  

• The number of feasible solutions of a floorplanning 

problem is very large.  

— Finding the best solution is  NP-hard. 

• Several criteria used to measure the quality of floor-

plans:  

a) Minimize area  

b) Minimize total length of wire  

c) Maximize rout-ability  

d) Minimize delays  

e) Any combination of above. 
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• How to determine area? 

- Not difficult.  

- Can be easily estimated because the 

dimensions of each block is known.  

- Area A computed for each candidate floor-

plan.  

• How to determine wire length? 

- A coarse measure is used. 

- Based on a model where all I/O pins of the 

blocks are merged and assumed to reside at its 

center.  

- Overall wiring length L =∑              where  

cij is the connectivity between blocks i and j 

dij is the Manhattan distances between the 

centers of rectangles of blocks i and j.  
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• Typical cost function used:  

Cost = w1 * A + w2 * L  

where w1 and w2 are user-specified 

parameters. 
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Slicing Structure  

• Definition   

- A rectangular dissection that can be obtained 

by repeatedly splitting rectangles by horizontal 

and vertical lines into smaller rectangles.  

• Slicing Tree  

 - A binary tree that models a slicing structure. 

- Each node represents a vertical cut line (V), or 

a horizontal cut line (H).  

• A third kind of node called Wheel (W) 

appears for non-sliceable floor-plans 

(discussed later).  

- Each leaf is a basic block (rectangle).  
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Non-Slicing Floor plan 

 

 
Hierarchical Floor plan: 
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Floor-planning Algorithms  

• Several broad classes of algorithms:  

1. Integer programming based  

2. Rectangular dual graph based  

3. Hierarchical tree based  

4. Simulated annealing based  

5. Other variations 

  



11 
 

LENOVO
Pencil



12 
 



13 
 

LENOVO
Pencil



14 
 

LENOVO
Pencil



15 
 

LENOVO
Pencil



16 
 

LENOVO
Pencil



17 
 



18 
 



19 
 



20 
 



21 
 



22 
 



23 
 



24 
 



25 
 



26 
 



27 
 

No. integer variables = 2*n 

Number of 0-1 variables = n*(n-1)    

No. of constraints = 4n+2n(n-1) 
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VLSI Design Cycle  

• Large number of devices 

• Optimization requirements for high performance  

• Time-to-market competition  

• Cost  
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VLSI Design Cycle (contd.i  

 

1. System specification 

2. Functional design  

3. Logic design  

4. Circuit design  

5. Physical design  

6. Design verification  

7. Fabrication  

8. Packaging, testing, and debugging 
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 Physical Design  

• Converts a circuit  description into a geometric 

description. 

-This description is used for fabrication of the 

chip. 

• Basic steps in the physical design cycle  

1. Partitioning  

2. Floor-planning and placement  

3. Routing  

4. Compaction  
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VLSI Design Styles  

• Programmable Logic Devices  

— Programmable Logic Device (PLD)  

— Field Programmable Gate Array (FPGA)  

— Gate Array  

 

• Standard Cell (Semi-Custom Design)  

 

• Full-Custom Design 
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Field Programmable Gate Array (FPGA)  

• User / Field Programmability.  

• Array of logic cells connected via routing channels.  

 

• Different types of cells:  

- Special I/O  cells.  

- Logic cells.  

• Mainly lookup tables 

 (LUT) with associated registers. 

 

 • Interconnection between cells:  

- Using SRAM based switches.  

- Using antifuse elements. 
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Configurable Logic Block: 

CLB Functionalities  

 

  • Two 4-input function generators - 

Implemented using Lookup Tables 

using 16x1 RAM.  - Can also implement 

16x1 memory.  

 

• Two Registers Each can be 

configured as flip-flop or latch. - 

Independent clock polarity. - 

Synchronous and asynchronous Set / 

Reset. 
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I/O Block Diagram 
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Xilinx FPGA Routing  

1) Fast Direct Interconnect - CLB to CLB  

2) General Purpose Interconnect - Uses switch matrix. 
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FPGA Design Flow  

• Design Entry  

 - In schematic, VHDL, or Verilog.  

• Implementation  

 - Placement & Routing  

- Bit-stream generation  

- Analyze timing, view layout, simulation, etc.  

• Download  

- Directly to  Xilinx hardware devices with 

unlimited reconfigurations. 
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Gate Array 

• In view of the fast prototyping capability, the gate 

array (GA) comes after the FPGA. 

 - Design implementation of  

• FPGA chip is done with user 

programming,  

• Gate array is done with metal mask 

design and processing.  

• Gate array implementation requires a two-step 

manufacturing process:  

1. The first phase, which is based on generic (standard) 

masks, results in an array of uncommitted transistors 

on each GA chip.  

2. These uncommitted chips can be customized later, 

which is completed by defining the metal interconnects 

between the transistors of the array. 
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Design Phases: 

Phase 1: 

 Fabricate an array of transistors/gates: 

- Diffusion 

- Poly-silicon 

- Oxidation 

Phase 2: 

 Interconnect transistors/gates 

- metallization.  
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• The GA chip utilization factor is higher than that of 

FPGA.  

The used chip area divided by the total chip 

area.  

• Chip speed is also higher. 

- More customized design can be achieved with 

metal mask designs. 

 

 • Current gate array chips can implement as many as 

hundreds of thousands of logic gates.  
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Standard Cell 

• One of the most prevalent custom design styles. 

-- Also called semi-custom design style.  

- Requires developing full custom mask set.  

• Basic idea:  

- All of the commonly used logic cells are 

developed, characterized, and stored in a 

standard cell library.  

- A typical library may contain a few hundred 

cells.  

• Inverters, NAND gates, NOR gates, 

complex AOI, OAI gates, D-latches, and flip-

flops. 
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Characteristic of the Cells  

Each cell is designed with a fixed height.  

- To enable automated placement of the cells,  

- Routing of inter-cell connections.  

- A number of cells can be abutted side-by-side 

to form rows. 

• The power and ground rails typically run parallel to 

upper and lower boundaries of cell. 

  - Neighboring cells share a common power and 

ground bus.  

- nMOS transistors are located closer to the 

ground rail while the pMOS transistors are 

placed closer to the power rail.  

• The input and output pins are located on the upper 

and lower boundaries of the cell. 
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Floor-plan for Standard Cell Design 

• Inside the I/O frame which is reserved for I/O cells, 

the chip area containsrows or columns of standard 

cells. 

 - Between cell rows are channels for dedicated 

inter-cell routing.  

- Over-the-cell routing is also possible.  

• The physical design and layout of logic cells ensure 

that  

- When placed into rows, their heights match. 

- Neighboring cells can be abutted side-by-side, 

which provides natural connections for power 

and ground lines in each row. 
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Feed-through Cell 
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Full Custom Design 

 

• The standard-cells based design is often called semi-

custom design.  

- The cells are pre-designed for general 

use and the same cells are utilized in 

many different chip designs. 

• In the full custom design, the entire mask design is 

done anew without use of any library.  

- The development cost of such a design 

style is prohibitively high. 

- The concept of design reuse is becoming 

popular to reduce design cycle time and 

cost. 
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• The most rigorous full custom design can be the 

design of a memory cell.  

- Static or dynamic.  

- Since the same layout design is 

replicated, there would not be any 

alternative to high density memory chip 

design.  

• For logic chip design, a good compromise can be 

achieved by using a combination of different design 

styles on the same chip.  

— Standard cells, data-path cells and PLAs. 

  



22 
 

Comparison among Various Design Styles  

 Design Style 

FPGA Gate array Standard cell Full custom 

Cell size Fixed Fixed Fixed height Variable 

Cell typo Programmable Fixed Variable Variable 

Cell placement Fixed Fixed In row Variable 

Interconnect Programmable Variable Variable Variable 

Design time Very fast Fast Medium Slow 
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Circuit Partitioning: 

 

System Design  

 

 

 

 

 

 

 

 

 

 

M1, M2, …, Mn,  Interface Information 

  

•Decomposition of a complex system into 

smaller subsystems. 

•Each subsystem can be designed 

independently. •Decomposition scheme has to 

minimize the interconnections between the 

subsystems. •Decomposition is carried out 

hierarchically until each subsystem is of 

manageable size.  
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Example 

 

 

Wires 

Cut1-2: 4 

Cut2-3: 4 

 

Size: 

Cut1: 15 

Cut2: 16 

Cut3: 17 

  



25 
 

Partitioning at Different Levels 

• Can be done at multiple levels:  

— System level  

— Board level  

— Chip level.  

 

• Delay implications are different:  

— Intra-chip → X  

— Intra-board or Inter-chip → 10X  

— Inter-board → 20X 
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Problem Formulation  

1. Interconnection between partitions is minimized.  

2. Delay due to partitioning is minimized.  

3. Number of terminals must be less than a 

predetermined maximum value. 

4. The area of each partition should remain within 

specified bounds.  

5. The number of partitions should also remain within 

specified bounds. 
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Classification of Partitioning Algorithms  

 

 
  

Partitioning Algorithms

Group Migration 

kernighan-
Lin

Fiduccia-Mattheyses 

Goldberg-
Burstein

Simulation Based 

Simulated Annealing

Simulated Evolution

Performance Driven 
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Group Migration Algorithms 

• Kernighan-Lin  

 — An iterative improvement algorithm for 

balanced two-way partitioning.  

• Goldberq-Burstein   

— Uses properties of graphs to improve the 

performance of K-L algorithm. 

 • Fiduccia-Mattheyses   

— Considers multi-pin nets.  

— Can generate partitions of unequal sizes. 

 — Uses efficient data structure to represent 

nodes. 
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Extension of K-L Algorithm  

• Unequal sized blocks   

- To partition a graph with 2n vertices into two sub-

graphs of unequal sizes n/ and n2:  

• Divide the nodes into two subsets A and B, 

containing MIN (n1, n2) and MAX (n1, n2) 

vertices respectively. 

• Apply K-L algorithm, but restrict the maximum 

number of vertices that can be interchanged in 

one pass to MIN (n1, n2). 
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Unequal sized elements 

 - To generate a two-way partition of a graph whose 

vertices have unequal sizes:  

• Assume that the smallest element has unit 

size.  

• Replace each element of size s with s vertices 

which are fully connected (s-clique) with edges 

of infinite weight.  

• Apply K-L algorithm to the modified graph. 
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Simulated Annealing  and Evoluticiti  

• These belong to the probabilistic and iterative class 

of algorithms.  

• Simulated Annealing  

- Simulates the annealing process used for 

metals.  

- As in the actual annealing process, the value of 

temperature is decreased slowly till it 

approaches the freezing point.  

• Simulated Evolution  

- Simulates the biological process of evolution.  

-Each solution (generation) is improved in each 

iteration by using operators which simulate the 

biological events in the evolution process. 
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Simulated Annealing  

• Concept analogous to the annealing process for 

metals and glass.  

• A random initial partition is available as input.  

• A new partition is generated by exchanging some 

elements.  

• If the quality of partition improves, the move is 

always accepted.  

• If not, the move is accepted with a probability which 

decreases with the (increase) in a parameter called 

temperature (T). 
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Simulated Annealing Algorithm  

  
Algorithm SA  

begin  

t = to; 

cur_part =init_part; 

cur_score = SCORE(cur part);  

repeat 

repeat  

comp1 = SELECT(part1 );  

comp2 = SELECT (part2);  

trial_part = EXCHANGE (comp1, comp2, cur_part); trial_score =  SCORE (trial_part); 

delta_s = trial_score – cur_score; 

if (delta_S<0) then 

cur_score = trial_score;  

cur_part = MOVE (comp1, comp2);  

else  

r = RAND (0,1);  

if (r < exp(- delta_s/t)) then 

cur_ score = trial score; 

cur_part = MOVE(comp1, comp2); 

 until (equilibrium at t is reached); 

t= alpha *t;    / /* 0 < alpha <1 */  

until (freezing point is reached);  

end 
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• The SCORE function   

Imbalance(A,B) = I size(A) — size(B) | 

Cutcost(A,B) = Sum of weights of cut edges 

Cost = W1 * Imbalance(A,B) + W2*Cutcost(A,B)  

 

• The MOVE function  

 — Several alternatives:  

• Pairwise exchange (W1 =0)  

• Subsets of elements exchanged 

• Select that node  

- Which is internally connected to least 

number of vertices.  

- Whose contribution to external cost is 

highest. 
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Performance Driven Partitioning 

• Typically, on-board delay is three orders of 

magnitude larger than on-chip delay.  

— On-chip delay is of the order of nanoseconds. 

— On-board delay can be in the order of 

milliseconds. 

• If a critical path is cut many times by the partition, 

the delay in the path may be too large to meet the 

goals of high-performance systems. 

• Goal of partitioning in high-performance systems:  

1. Reduce the cut-size. 

2. Minimize the delay in critical paths.  

3. Timing constraints have to be satisfied. 
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• The problem can be modeled as a graph.  

- Each vertex represents a component (gate).  

- Each edge represents a connection between 

two gates.  

- Each vertex has a weight specifying the 

component delay.  

- Each edge has a weight, which depends on the 

partitions to which the edges belong.  

> This problem is very general and still a topic of 

intensive research. 

  



37 
 

Summary  

• Broadly, two classes of algorithms:  

1. Group migration based  

• High speed  

• Poor performance  

2. Simulation based  

• Low speed. 

• High performance. 
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Design Representation  

• Intermediate representation essential for efficient 

processing.  

— Input HDL behavioral descriptions translated into 

some canonical intermediate representation. 

 • Language independent 

 • Uniform view across CAD tools and users 

 - Synthesis tools carry out transformations of the 

intermediate representation. 
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Scope of High Level Synthesis  

Verilog / VHDL Description  

 

 

Control and Data Flow Graph (CDFG)  

 

 

 

 

FSM Controller             Data Path Structure 

  

Transformation 

Scheduling 

Allocation 

LENOVO
Pencil
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Simple  

Transformation  

 

  A <= B + C; 

D <= A + E; 

X <= D - A; 

Read B Read C 

Write a 

+ 

Read A Read E 

Write D 

+ 

Read D Read A 

Write X 

- 

Read C Read B 

+ 

Read E 

+ 

- 

Write X 

LENOVO
Pencil
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Transformation with Control/Data Flow  

 

  case (C)  

      1: begin 

      X = X + 3; 

      A = X + 1; 

     end  

       2: A = X + 5; 

       default: A = X + Y;  

endcase  
 

1       2      D  

B1 B2 B3 

LENOVO
Pencil
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Transformation with Control/Data Flow  

 

  

1       2      D  

B1 B2 B3 

Read x Read y 

Write A 

+ 

Read x 5 

Write A 

+ 

Read x 3 

Write X 

+ 1 

+ 
Write A 
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Another Example  

 

  If (x==0) 

    A <= + C; 

   D <= B — C;  

else  

    D = D-1; 
 

LENOVO
Pencil
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• Solving 2nd order differential equations  

 

  
module HAL (x, dx, 1.1, a, clock, y); 

 input x, dx, u, a, clock; 

 output y;  

 

always @(posedge clock) 

      while (x < a)  

            begin  

x1 = x + dx;  

u1 = u — (3* x * u * dx) — (3* y * 

dx); 

 y1 = y + (u * dx); 

 x = x1; 

 u = u1; 

 y= y1; 

              end  

endmodule 
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Compiler Transformations  

• Set of operations carried out on the intermediate 

representation.  

— Constant folding  

— Redundant operator elimination 

— Tree height transformation 

— Control flattening  

— Logic level transformation  

— Register-Transfer level transformation 

  

LENOVO
Pencil
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Constant Folding: 

 

 
  

LENOVO
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Redundant Operator Elimination: 

 

 
  

LENOVO
Pencil



11 
 

Tree height transformation 
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Control Flattening: 
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Logic Level Transformation:  
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RTL Level Transformation: 
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Partitioning  

Why Required?  

• Used in various steps of High Level Synthesis:  

- Scheduling  

- Allocation  

- Unit selection  

• The same techniques for partitioning are also used 

in physical design automation tools. 

  

LENOVO
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Component Partitioning  

• Given a netlist, create a partition which satisfies 

some objective function.  

- Clusters almost of equal sizes.  

- Minimum interconnection strength between 

clusters.  
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• An example to illustrate the concept. 
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Behavioral Partitioning  

• With respect to Verilog, can be used when: 

 — Multiple modules are instantiated in a top-level 

module description.  

• Each module becomes a partition.  

— Several concurrent "always" blocks are used.  

• Each "always" block becomes a partition. 
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Partitioning Techniques  

• Broadly two classes of algorithms:  

1- Constructive  

• Random selection  

• Cluster growth  

• Hierarchical clustering  

2-  Iterative-improvement  

• Min-cut  

• Simulated annealing 
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Random Selection  

• Randomly select nodes one at a time and place 

them into clusters of fixed size, until the proper 

size is reached.  

• Repeat above procedure until all the nodes 

have been placed.  

• Quality/Performance: 

 - Fast and easy to implement. 

 - Generally produces poor results.  

- Usually used to generate the initial partitions 

for iterative placement algorithms. 
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Cluster Growth  

m : size of each cluster,  

V : set of nodes.  

n = IVI / m; 

for (i=1; i<=n; i++)  

{  seed = vertex In V with maximum degree; 

Vi = (seed);  

V = V — (seed); 

 for (J=1; j<m; J++)  

{ 

  t = vertex in V maximally connected to Vi;  

Vi = VI U {t};  

V = V — (t); 

 }  

} 

LENOVO
Pencil
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Hierarchical Clustering  

• Consider a set of objects and group them depending 

of some measure of closeness.  

 

- The two closest objects are clustered first, and 

considered to be a single object for further 

partitioning.  

 

- The process continues by grouping two individual 

objects, or an object or cluster with another cluster.  

 

- We stop when a single cluster is generated and a 

hierarchical cluster tree has been formed.  

• The tree can be cut in any way to get clusters. 
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 Min-Cut Algorithm (Kernighan-Lin)  

• Basically a bisection algorithm. 

 - The input graph is partitioned into two subsets 

of equal sizes.  

• Till the cut-sets keep improving:  

- Vertex pairs which give the largest decrease in 

cut-size are exchanged.  

- These vertices are then locked. 

 - If no improvement is possible and some 

vertices are still unlocked, the vertices which 

give the sm  allest increase are exchanged.  
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Example: 
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• Drawbacks of K-L Algorithm  

 - It is not applicable for hyper-graphs.  

• It considers edges instead of hyper-edges.  

• It cannot handle arbitrarily weighted graphs. 

 • Partition sizes have to be specified a priori. 

  

- Time complexity is high.  

• 0(n3).  

- It considers balanced partitions only. 
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Simulated Annealing  

• Iterative improvement algorithm.  

- Simulates the annealing process in metals. 

 - Parameters:  

• Solution representation  

• Cost function  

• Moves 

 • Termination condition  

• Randomized algorithm  

- To be discussed later. 
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What is Scheduling?  

• Task of assigning behavioral operators to control 

steps.  

- Input: • CDFG  

— Output:  

• Temporal ordering of individual operations 

(FSM states)  

• Basic Objective: 

 - Obtain the fastest design within constraints  (exploit 

parallelism). 
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Scheduling Algorithms  

• Three popular algorithms:  

1. As Soon As Possible (ASAP)  

2. As Late As Possible (ALAP)  

3. Resource Constrained (List scheduling) 
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As Soon As Possible (ASAP)  

• Generated from the DFG by a breadth-first search 

from the data sources to the sinks. 

- Starts with the highest nodes (that have no 

parents) in the DFG, and assigns time steps in 

increasing order as it proceeds downwards.  

— Follows the simple rule that a successor node 

can execute only after its Parent has executed. 

 • Fastest schedule possible  

— Requires least number of control steps.  

— Does riot consider resource constraints. 

 

  

not
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As Soon As Possible (ASAP)  
 

 

  

LENOVO
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As Late As Possible (ALAP)  

• Works very similar to the ASAP algorithm, except 

that it starts at the bottom of the DFG and proceeds 

upwards.  

• Usually gives a bad solution: 

  - Slowest possible schedule (takes the maximum 

number of control steps).  

-Also does not necessarily reduce the number of 

functional units needed. 

  

LENOVO
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As Late As Possible (ALAP)  
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Resource Constrained Scheduling  

There is a constraint on the number of resources that 

can be used. 

— List-Based Scheduling 

  One of the most popular methods.  

 Generalization of ASAP scheduling, since it 

produces the same result in absence of 

resource constraints. 
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- Basic idea of List-Based Scheduling:  

• Maintains a priority list of "ready" nodes. 

• During each iteration, we try to use up all resources 

in that state by scheduling operations in the head of 

the list.  

• For conflicts, the operator with higher priority will 

be scheduled first. 
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Example: 

 

  
  

LENOVO
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ALLOCATION and BINDING 

Basic Idea: 

• Selection of components to be used in the register 

transfer level design.  

• Binding of hardware structures to behavioral 

operators and variables.  

-Register  

- ALU  

- Interconnection (MUX) 
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Example for Binding: 

 

 

Variable Life Time Analysis 



1 
 



2 
 

Introduction  

• Representation of Boolean functions  

- Canonical   

• Truth table  

• Karnaugh map 

 • Set of minterms  

- Non-Canonical  

 • Sum of products  

• Product of sums  

• Factored form  

• Binary Decision Diagram 
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Binary Decision Diagram (BDD)  

• Proposed by Akers in 1978.  

- Several variations suggested subsequently.  

• Ordered BDD (OBDD)  

• Reduced Ordered BDD (ROBDD) 

- A set of reduction rules and operators 

defined for BDDs.  

• Construction of a BDD is based on the 

Shannon expansion of a function.   

Shannon Expansion  

• Given a Boolean function f(x1,x2,...,xi...,xn) 

 • Positive cofactor fi1 = f(x1,x2,….,1,…xn 

• Negative cofactor fi0 = f(x1,x2,...,0,...,xn)  

LENOVO
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• Shannon's expansion theorem states that  

f= xi' fi
0 + xi fi

1  

f = (xi + fi0 ) (xi' + fi1 )  

  

LENOVO
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f (a,b,c,d) = abc + b’c’d+ a’bd’ 

Expand with respect to a: 

f= abc + a’b’c’d  + ab’c’d + a’bd’  

  = a’(b’c’d + bd’) + a (bc +b’c’d) 

f= a’. f(0, b,c,d) + a. f(1,b,c,d) 

 = a’ . (b’c’d+ bd’) + a. (bc+b’c’d) 

 

 a  Mux 

LENOVO
Pencil
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How to construct BDD?  

f = ac + bc + a'b'c'   with Shannon's expansion   

   = a' (b’c' + bc) + a (c + bc)  

    = a' (b'c' + bc) + a (c)  

 

 

 

 

This is the first step. The process is continued for all 

input variables. 

  

a 

c b'c’+bc 

f 

LENOVO
Pencil
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  a 

b b 

c c c c 

1 0 0 1 0 1 0 1 BDD depends on 

variable ordering 

OBDD 

b'c’ + bc 

 

b’c+bc -> c 

 

c’ 

c’.1 + c.0  

 



8 
 

Reduction Rules: 

 

  

x x x 

y 
z z z y y 

LENOVO
Pencil



9 
 

 

  

0 1 0 1 

0 1 
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Some Benefits of BDD  

• Check for tautology is trivial.  

- BDD is a constant 1.  

• Complementation.  

- Given a BDD for a function f, the BDD for f’ can 

be obtained by interchanging the terminal 

nodes. 

 • Equivalence check. 

 - Two functions f and g are equivalent if their 

BDDs (under the same variable ordering) are the 

same. 
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An Important Point  

• The size of a BDD can vary drastically if the order in 

which the variables are expanded is changed.  

• The number of nodes in the BDD can be exponential 

in the number of variables in the worst case, even 

after reduction. 

  

LENOVO
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Use of BDD in Synthesis  

• BDD is canonical for a given variable ordering.  

• It implicitly uses factored representation: 
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MUX realization of functions: 
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MUX- based Functional Decomposition: 
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To Summarize  

• BDDs have been used traditionally to represent and 

manipulate Boolean functions. 

- Used in synthesis systems.  

- Used in formal verification tools.  

- Efficient packages to manipulate BDDs are available. 

 



1 



2 
 

LENOVO
Pencil



3 
 

  

 

 

 

LENOVO
Pencil



4 
 

 

LENOVO
Pencil



5 
 

 
 

LENOVO
Pencil



6 
 

 



7 
 

 

LENOVO
Pencil



8 
 

 



9 
 

• Takes a logic level netlist as input, and simulate 

functional behavior.  

- "Netlist" obtained from schematic capture or 

synthesis.  

- For simulation, the behavior of components is 

used.  

• Available from component library  

• Gates, flip-flops, MUX, registers, adder 

 • Ability to handle large circuits (millions of gates)  

 - Should be very fast  

- Hardware accelerators. 
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- Functional correctness of the netlist  

• Requires application of a set of test vectors   

test bench  

- Timing analysis 

 • Estimation of delay, critical paths 

 • Hazards, races, etc. 

 - Test generation  

• Required for manufacture test. 
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• Input: Boolean equations and FSMs  

• Output: A netlist of gates and flip-flops  

- Combinational circuits and sequential circuits 

are typically handled separately  

• Design Goals: 

- Minimize number of levels (delay)  

- Minimize number of gates (area)  

- Minimize signal activity (power)  

• Typical Constraints: 

 - Target library (say, only NAND, NOT gates) 
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 - Ability to handle large circuits within a 

reasonable amount of time.  

• Problem is known to be NP-complete   

- Ability to handle mutually conflicting requirements 

(area & delay)  

- Typically a fully automated process  

• Algorithms/heuristics well understood 

• Do not need user intervention  

- Use technology dependent considerations  

• Break a 20-input gate into smaller gates  

• Use gates available in the library 
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• Basic Concept:

- During logic synthesis, map portions of the

netlist to "cells" available in the cell library

• Standard library (NAND, NOR, NOT, A01)

• FPGA cells, standard cells

• Objectives:

- Minimize area, delay, power

- Should be fast

• Able to handle large circuits, and large

technology libraries.

An Example: AND_OR_INVERT 
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• Verify that the synthesized netlist matches the 

original specification  

- Detect design errors, also synthesis errors  

- Basic objective is to ensure functional 

correctness, and to locate errors, if any  

• Broadly two approaches:  

1. Simulation   

• Fast, incremental, can handle large circuits  

2. Formal verification   

• Slow, exhaustive, for small circuits only 
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• Convert from logic equations to gate-level netlists 

(assume combinational logic). 

 - Maximize speed  

 - Minimize area, power  

 

a'bc + abc + d  bc + d 
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• PLA Format  

.i 3 

.o 3  

.p 4  

1x1 011 

 x00 010  

1x0 100  

x11 011  

.e  

• Sum-of-product form  

x = ac'  

y = ac + b'c' + bc  

z = ac + bc 
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1. Simplification of logic equations  

- Reduce number of literals (and operands) 

 2. Synthesis 

- Map logic equations to gates (AND, OR, etc)  

3. Gate-level optimization  

- Replace OR-NOT by NOR, for example  

- Delay, power, area  

4. Technology mapping  

- Map from gates to technology library  

- FPGA, TTL chips, standard cells, etc. 
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• Karnaugh Maps 

- For n inputs, the map contains 2n entries 

- Objective is to find minimum prime cover  

• Minimum  fewest terms  

• Prime  choose only maximal covers  

- Don't care terms are used to advantage 

- Difficult to automate  

• Minimum cover problem is NP-complete  

• Process can get into a local minima 
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- Number of cells is exponential in the number of 

input variables.  

• Imagine a 50-input circuit. 

- Requires efficient data structures  

• For representing the function  

• For searching for minimal prime cover  

-  Quine-McCluskey method  

• Easy to implement in software. 

• Computational complexity remains high. 

  

LENOVO
Pencil
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• Some notations:  

— For an n-input function, n-dimensional Boolean 

space  

• Each point mapped to a unique combination of 

the n literals. 

 • Entries in K-map, minterm. 

— Cube: 

• Conjunction (AND) of literals in an n-

dimensional space. 

 • Points on the n-dimensional  

hypercube that are ‘’1’’. 
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• Expression  

- Disjunction (OR) of cubes  

• Don't cares  

- Literals that are missing from a cube 
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• Basic Approach 

- Minimize cover of "ON-set" of the function 

 • ON-set  set of vertices that correspond to 

"1" min-terms  

• Minimum set of cubes  

• Size of the cubes can be increased by 

exploiting don't care literals 
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• The Espresso Algorithm (Outline) : 

Start with the sum-of-products  form (i.e., cubes 

covering the ON-set)  

- In an iterative loop 

• Expands  

• Remove redundancy Irredundant 

• Reduce cubes until no further improvement is 

possible. 

- Perturb the solution, and repeat the previous 

iterative step, as long as the time budget permits. 

• For each cube, add a sub-cube not covered by 

any other cube.  

• expand sub-cubes and add them if they cover 

another cube. 
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Cube operation: expand 

• Make each cube as large as possible without

covering a point in the OFF-set.

- Increases the number of literals in the cover.

- Sets the stage for finding a new and possibly

better solution. 

• Example:

f = a'bc' + bc + ab'c'     ;Don't care: ab'c 

f = + bc + ac + ab' 

LENOVO
Oval

LENOVO
Oval

LENOVO
Oval

LENOVO
Rectangle
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Cube operation :: irredundant  

• Throw out redundant cubes.  

- Points may be covered by several cubes after 

the `expand" step.  

- Remove smaller cubes whose points are 

covered by larger cubes.  

- There must be one cube for every essential 

vertex.  

• Example: 

 f = a'b+ bc + ac + ab'  

 

f = a'b + ac + ab'  

 

One vertex in ( bc ) is covered by ( a'b)  & the other by 

( ac ) 
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Cube operation :: reduce  

• The cubes in the cover are reduced in size. 

 - The number of literals in the cover is reduced.  

- Smaller cubes can expand in more directions.  

- Smaller cubes are more likely to be covered by 

other cubes during expansion.  

• Example  

f = a'b + ac + ab'  

 

 

f = a'b + abc + ab'c' 
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- In general, the new cover will be different from the 

initial cover. 

  • "expand" and "irredundant" steps can possibly 

find out a new way to cover the points in the ON-

set. 

• Hopefully, the new cover will be smaller. 
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Cube operation: perturbations   

Example:  

 

(Reduce Gasp) 

f = a' + b  f = a' + b + a'b' + ab  

 

 

(Expand Gasp) 

f = a'b' + a'b  + ab   f = a'b' + a'b + b  

 

  

00 01 

10 11 

00 01 

10 11 

LENOVO
Oval

LENOVO
Oval

LENOVO
Oval

LENOVO
Oval

LENOVO
Oval

LENOVO
Oval

LENOVO
Oval

LENOVO
Oval

LENOVO
Oval

LENOVO
Oval
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Espresso :: conclusion  

• The algorithm successively generates new 

covers until no further improvement is possible. 

• Produces near-optimal solutions.  

• Used for PLA minimization, or as a sub-

function in multilevel logic minimization.  

• Can process very large circuits. 

- 10,000 literals, 100 inputs, 100 outputs  

- Less than 15 minutes on a high-speed 

workstation 
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• In many applications, 2-level logic is unsuitable as 

compared to random (multilevel) logic.  

- Gates with high fan-in are slow, and take more 

area.  

- It makes sense to transform a 2-level logic 

realization to multi-level logic. 

 

    
  



31 
 

• A classic example:: XOR function 

 — For an 8-input XOR function,  

• For 2-level NAND-NAND realization  
8C1 + 8C3 + 8C5 + 8C7 = 128 NAND8 gates 

       1 NAND128 gate  

 

• For 3-level XOR realization  

7 XOR2 gates  

 28 NAND2 gates  

Number of levels = 9 
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Multilevel logic optimization:  

1. Local 

 » Rule-based transformation 

2. Global  

» Weak division 
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Local Optimization Technique  

• Perform rule-based local transformations.  

- Objective  to reduce area, delay, power.  

- Developing a good set of rules is a challenge. 

 - Should be comprehensive enough so as to 

completely explore the design space.  

 

• Basic idea:  

- Apply a transformation which reduces cost. 

- Iterate and continue applying transformations 

as long as solution keeps improving. 
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• AND/OR transformations  

 - Reduce the size of the circuit, critical path.  

 -Typical transformations: 

 a . 1 = a 

a + 1 = 1 

a + a' = 1 

 a . a' = 0  

(a')' = a 

a + a' . b = a + b 

xor (xor(a1,a2 .....,an), b) = xor(a1,a2,….,an,b)  

 

• Transform the AND/OR form to NAND form (or NOR 

form).     
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• NAND (NOR) transformations 

 - Some synthesis systems assume that all gates are of 

the same type (NAND or NOR).  

- Does not require technology mapping.  

- Rules framed that transform a NAND (NOR) network 

to another.  

Examples: 

NAND (NOT (NAND (alb)), c) = NAND (a,b,c)  

 

NAND (NAND(a,b,c), NAND(a,b,c')) = NAND(a,b) 
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Global Optimization Technique   

• Used in GE Socrates.  

- Looks at all the equations at one time. 

• Perform weak division. 

- Divide out common sub-expressions. 

- Literal count gets reduced. 

 • The following iterative steps are carried out:  

- Generate the candidate sub-expressions.  

- Select a sub-expression to divide. 

 - Divide functions by selected sub-expression. 

  

F1 = ab + ac 

    = a(b+c)  = a. F2 

F2 = b+c 



37 
 

Example  

• Original equations:  

f1= a.b.c + b.c.d + b.e.g  

f2 = b.c.f.h + d.g + a.b.g   No. of literals = 18  

— We  find literals saved for sub-expressions: 

 b.c 4    a.b  2 

   a + d  2    b.g  2  

Select the sub-expression bc.  

• Modified equations (after iteration 1):  

f1= (a + d).u + b.e.g  

f2 = u.f.h + d.g + a.b.g  

u = b.c       No. of literals = 14 
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f1 = (a + d).u + b.e.g 

 f2 = u.f.h + d.g + a.b.g  

u = b.c  

— Literals saved for the sub-expressions: b.g 2  

• Modified equations (after iteration 2):  

f1= (a + d).u + e.v  

f2 = u.f.h + d.g + a.v  

u = b.c 

 v = b.g     No. of literals = 12 

 

 • No common sub-expressions    STOP 
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About the algorithm  

• Basically a greedy algorithm  

- Can get stuck in local minima. 

- Give a "bounce" to come out of local minima. 

 • Like the "gasp" function in Espresso. •  

 
— Generation of all candidate expressions is 

expensive.  

• Some heuristic used. 
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• A very popular & widely used algorithm. 

  - Uses factoring of equations. 

 - Similar to weak division used in Socrates.  

- The target technology is CMOS gate. 

 • Complex gates realizing any complex 

functions.  

• Example:  

f’ = (a + b + c)  

g' = (a + b) . (d + e + f) h 
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Basic Concept  

• For global optimization,  

- Use algebraic factorization to identify common 

sub-expressions. 

 - Avoid exponential search. 

• For local optimization, 

- Identify 2-level sub-circuits. 

- Minimize them using Espresso, or some similar 

approach.  
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Global Optimization Approach  

• Given a netlist of gates  

- Scan the network  

- Apply simple heuristics to "clean up" the netlist.  

• Constant propagation  

• Double inverter elimination  

• Espresso minimization of each equation: 

- Then proceed for global optimization with a view to 

minimize area.  
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— Basically an iterative approach. 

 • Enumerate all common factors and identify 

the "best" candidate. 

• Equations themselves may be common 

factors.  

• Invert an equation if it helps.   

 f=a + b + c  f’=a’ b’ c’   

— Factors may show up in the inverted form. 

• Number of literals used to estimate area.  
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Some Illustrative Examples 

• Factoring can reduce area. 

- An equation in simple sum-of-products form 

can have many literals. 

• Many transistors for CMOS realization. 

- Factoring the equation reduces the number of 

literals.  

• Reduces number of transistors in CMOS 

realization. 
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f = a b e’ f + a b g + a c e’ f + a c g + a d e’ f + a c d g  

 22 literals   44 transistors 

 

 

f = (a (b + c) + d) (e’ f + g (b + c)) 

 9 literals  18 transistors 
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Common sub-expressions: 

f= a b c + a d g + a c’ f 

g= a c’ d + a d f                         (15 literals, 30 t) 

 

 

u= ac’ 

f= u b + a d g + u f 

g= u d + a d f     (14 literals, 28 t) 

 

 

u= ac’ 

f= u (b + f) + a d g 

g= d( u + a f)   (12 literals, 24 t) 
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Area: Minimum no. of transistors. 

Delay: Number of levels would be reduced 

- No division 

- Only factorization. 

Power: signal activity.  
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. Sequential statements within procedural 

blocks (“always” and “initial”) can use two types 

of assignment: 

- Blocking assignment:  =

- No-blocking assignment: <=
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Blocking assignment: (using  = ) 

. Most commonly used type. 

• The target of assignment gets updated before 

the next sequential statement in the procedural 

block is executed.  

• A statement using blocking assignment blocks 

the execution of the statements following it, 

until it gets completed.  

• Recommended style for modeling 

combinational logic.  

  

  

  



4 

- Non-Blocking Assignment (using ‘<=1’)

• The assignment to the target gets scheduled for the

end of the simulation cycle.

- Normally occurs at the end of the sequential

block.

- Statements subsequent to the instruction

under consideration are not blocked by the

assignment.

• Recommended style for modeling sequential logic.

- Can be used to assign several 'reg' type

variables synchronously, under the control of a

common clock.
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- Non-Blocking Assignment (using ‘<=1’)

. The assignment to the target gets scheduled for the 

end of the simulation cycle. 

- Normally occurs at the end of the sequential

block.

-Statements subsequent to the instruction

under consideration are not blocked by the

assignment.

• Recommended style for modeling sequential

logic. 

- Can be used to assign several `reg' type

variables synchronously, under the control of a

common clock.
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Some Rules to be followed: 

• Verilog synthesizer ignores the delays specified in a 

procedural assignment statement.  

- May lead  to functional mismatch between the 

design model and the synthesized netlist.   

• A variable cannot appear as the target of both a 

blocking and a non-blocking assignment.  

- Following is not permissible:  

value = value+ '1; 

value <= init;  
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Example 1: 

 

 

  

// Up-don counter (synchronous clear) 
module counter(mode, clr, ld, d_in, clk, count); 
 input mode, clr, ld, clk;  input [0:7] d_in; 
 output [0:7] count;       reg[0:7]  count; 
  
 always @(posedge clk) 
  if (ld) 
   count <= d_in; 
  else if (clr) 
    count <= 0; 
   else if (mode) 
     count <= count + 1; 
    else 
     count <= count – 1;  
endmodule 
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Example 2: 

 

// Parameteterized design :: an N-bit counter 
module counter( clr, clk, count); 

parameter N=7; 
input clr, clk;   
output [0:N] count;       reg[0:N]  count; 

always @(posedge clk) 
if (clr) 

count <= 0; 
else 

count <= count + 1; 

endmodule 

clr clk

count
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Example 3: 

 

  

// Using more than one clocks in module 
module multiple_clk( clk1, clk2, a, b, c, f1, f2); 
 input clk1, clk2, a, b, c;   
 output f1, f2;       reg f1, f2; 
  
 always @(posedge clk1) 
  f1 <= a&b; 
 always @(posedge clk2) 
  f2 <= b^c; 
endmodule 
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Example 4: 

 

  

// Using multiple edges of same clock 
module multi_phase_clk( clk, a, b, f); 
 input clk, a, b;   
 output f;       reg f, t; 
  
 always @(posedge clk) 
  f <= t&b; 
 always @(negedge clk) 
  t <= a^b; 
endmodule 
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Example 5: Ring counter 1 

// A ring counter  
module ring_counter( clk, init, count); 

input clk, init;   
output [7:0] count;     
reg [7:0] count; 

always @(posedge clk) 
begin 

if (init) 
count = 8’b10000000; 

else begin 
count = count <<1; 
count[0] = count[7]; 

end 
end 

endmodule 
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Example 6: Ring counter 2 Modified-1 

// A ring counter  
module ring_counter_M1( clk, init, count); 

input clk, init;   
output [7:0] count;     
reg [7:0] count; 

always @(posedge clk) 
begin 

if (init) 
count = 8’b10000000; 

else begin 
count <= count <<1; 
count[0] <= count[7]; 

end 
end 

endmodule 
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Example 7: Ring counter 3 Modified-2 

  // A ring counter  
module ring_counter_M2( clk, init, count); 
 input clk, init;   
 output [7:0] count;      

reg [7:0] count; 
  
 always @(posedge clk) 
 begin 
  if (init) 
   count = 8’b10000000; 
  else  
   count = {count[6:0], count[7]}; 
 end 
endmodule 
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About "Loop" Statements 

• Verilog supports four types of loops:

- 'while' loop

- 'for' loop

- 'forever' loop

- 'repeat' loop

• Many Verilog synthesizers’ supports only `for' loop

for synthesis:

- Loop bound must evaluate to a constant.

- Implemented by unrolling the 'for' loop, and

replicating the statements.
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Modeling Memory 

• Synthesis tools are usually not very efficient in

synthesizing memory.

— Best modeled as a component. 

 — Instantiated in a design. 

• Implementing memory as a two-dimensional

register file is inefficient.
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Example 8: Memory Modeling 

// ROM  
module mem_example( clk, en, adbus , dbus, rw); 

parameter N=16; 
input clk, rw, en;   
input  [N-1:0] adbus;     
output [N-1:0] dbus; 

ROM Mem1 (clk, en, rw, adbus, dbus); 

endmodule 
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Example 9: Tri_state gates Modeling 

// A ring counter  
module bus_diver( in, out, en); 

input en;    input [0:7] in; 
output [0:7] out;      
reg [0:7] out; 

always @(en or in) 

if (en) 
out = in; 

else 
out = 8’bz; 

endmodule 



18 

Modeling Finite State Machines 

• Two types of FSMs

- Moore Machine

- Mealy Machine
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Moore Machine: Example 1 

• Traffic Light Controller

- Simplifying assumptions made

- Three lights only (RED, GREEN, YELLOW)

- The lights glow cyclically at a fixed rate

-Say, 10 seconds each

- The circuit will be driven by a clock of

appropriate frequency.

clk

R

G

Y
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module traffic_light (clk, light);  

input clk;  

output [0:2] light; reg [0:2] light; 

parameter S0=0, S1=1, S2=2;  

parameter RED=3'b100, GREEN=3'b010, YELLOW=3'b001;  

reg [0:1] state;  

always @ (posecige clk)  

case (state)  

S0: begin II S0 means RED  

light <= YELLOW;  

state <= S1;  

        end 

 S1: begin // S1 means YELLOW  

light <= GREEN;  

state <= S2;  

        end  

S2: begin // S2 means GREEN 

  light <= RED; state <= SO;  

       end 

 default: begin  

  light <= RED; state <= SO;  

end  

endcase 

 endmodule 
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Comment on the solution 

—  Five flip-flops are synthesized  

• Two for 'state'  

• Three for `light' (outputs are also latched 

into flip-flops)  

— If we want non-latched outputs, we have to 

modify the Verilog code.  

• Assignment to 'light' made in a separate 

'always' block.  

• Use blocking assignment. 

  



22 

module traffic_light_nonlatched_op (clk, lig); 

 input clk; 

 output [0:2] light;      reg [0:2] light; 

parameter S0=0, S1=1, S2=2; 

 parameter RED=3'b100, GREEN=3'b010, YELLOW=3’b001; 

 reg [0:1] state;  

always @ (posedge clk) 

case (state) 

S0: state <= S1; 

 S1: state <= S2; 

 S2: state <= S0; 

default: state <=S0; 

endcase 

always @ (state) 

case (state) 

S0: light= RED; 

S1: light = YELLOW; 

S2: light= GREEN; 

default: light = RED; 

endcase 

 endmodule 
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Moore Machine: Example 2 

Serial Parity detector 
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module parity_gen (x, clk, z); 

input x, clk; 

output z; 

 reg z; 

 reg even_odd; // The machine state 

parameter EVEN=0, ODD=1;  

always @ (posedge clk) 

case (even_odd) 

EVEN: begin  

z <= x ? 1 : 0;  

even_odd <= x ? ODD : EVEN; 

end 

ODD: begin 

z <= x ? 0 : 1;  

even_odd <= x ? EVEN : ODD; 

end 

end case 

endmodule 
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Mealy Machine: Example 

Sequence detector for the pattern ‘0110’ 
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// Sequence detector for the pattern '0110' 

module seq_detector (x, clk, z); 

input x, clk; 

 output z;  reg z;  

parameter S0=0, S1=1, S2=2, S3=3; 

reg [0:1] PS, NS;  

always @ (posedge clk)  

PS <= NS; 

always @ (PS or x) 

case (PS)  

S0: begin  

z = x ? 0 : 0; 

NS = x ? S0 :S1; 

      end;  

S1: begin 

 z = x ? 0 : 0;  

NS = x ? S2 : S1; 

      end; 

S2: begin 

z = x ? 0 : 0; 

 NS = x ? S3 : S1; 

       end; 

S2: begin 

z = x ? 0 : 1; 

 NS = x ? S0 : S1; 

  end; endmodule 
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Example with Multiple Modules  
• A simple example showing multiple module definitions.  
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module complementor (Y, X, comp); 

 input [7:0] X;  

input comp;  

output [7:0] Y;  reg [7:0] Y;  

 

always @ (X or comp) 

 if (comp)  

Y = ~X;  

else  

Y = X; 

 endmodule 

module adder (sum, cy_out, inl, in2, cy_in); 

 input [7:0] inl, in2;  

input cy_in;  

output [7:0] sum;  reg [7:0] sum;  

output cy_out;   reg cy_out;  

 

always @ (inl or in2 or cy_in)  

     {cy_out, sum} = inl in2 cy_in;  

endmodule 

module parity_checker (out_par, in_word); 

 input [8:0] in_word;  

output out_par;  

always @ (in_word) 

     out_par = A (in_word);  

endmodule 
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//Top level module  

module add_sub_parity (p, a, b, add_sub); 

 input [7:0] a, b; 

 input add_sub; // 0 for add, 1 for subtract  

output p; // parity of the result  

wire [7:0] Bout, sum;  wire carry;  

 

complementor M1 (Bout, B, add_sub); 

 adder M2 (sum, carry, A, Bout, add_sub);  

parity_checker M3 (p, {carry, sum});  

endmodule 
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Memory Modeling Revisited  

• Memory is typically included by instantiating a pre-

designed module.  

• Alternatively, we can model memories using two-

dimensional arrays 

 - Array of register variables.  

• Behavioral model of memory  

- Mostly used for simulation purposes.  

- For small memories, even for synthesis. 
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//Memory Example  

module memory_model (……………….); 

  

reg [7:0] mem[0:1023]; 

 

endmodule 

0 

1023 
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How to Initialize memory  

• By reading memory data patterns from a specified 

disk file.  

- Used for simulation.  

- Used in test benches.  

• Two Verilog functions are available:  

1- $readmemb (filename, memname, startaddr, 

stopaddr)  

Data read in binary format.  

2. $readmemh (filename, memname, startaddr, 

stopaddr) 

 Data read hexadecimal format. 
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  //Memory Example  

module memory_model (……………….); 

 reg [7:0] mem[0:1023]; 

 

begin  

 $readmemh(“mem.dat”, mem); 

end 

 

endmodule 
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A Specific Example :: Single Port RAM with 

Synchronous Read-Write 

 

  
module ram_1 (addr, data, clk, rd, wr, cs); 

 input [9:0] addr;  

input clk, rd, wr, cs;  

inout [7:0] data; 

 reg [7:0] mem [1023:0];  

reg [7:0] d_out;  

 

assign data = (cs && rd) ? d_out ; 8’bz;  

always @ (posedge clk)  

if (cs && wr && !rd) mem [addr] = data; 

always @ (posedge clk) 

 if (cs && rd && !wr) d_out = mem [addr];  

 

endmodule 
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A Specific Example :: Single Port RAM with 

Asynchronous Read-Write 

 module ram_2(addr, data,  rd, wr, cs); 

 input [9:0] addr;  

input rd, wr, cs;  

inout [7:0] data; 

 reg [7:0] mem [1023:0];  

reg [7:0] d_out;  

 

assign data = (cs && rd) ? d_out ; 8’bz;  

always @ (addr or data or rd or wr or cs)  

if (cs && wr && !rd) mem [addr] = data; 

always @ (addr or data or rd or wr or cs) 

 if (cs && rd && !wr) d_out = mem [addr];  

 

endmodule 
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A Specific Example :: ROM/EPROM 

 module rom(addr, data,  rd_en, cs); 

 input [2:0] addr;  

input rd_en, cs;  

output [7:0] data; 

 reg [7:0] data;  

 

always @ (addr or  rd_en or cs)  

  case (addr) 

   0: 22; 

   1:45; 

    

 

   7:12; 

  endcase 

endmodule 
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Verilog Test Bench  

• What is test bench?  

- A Verilog procedural block which executes only 

once. 

 - Used for simulation.  

— Test bench generates clock, reset, and the 

required test vectors.  

  

Module Under Test 

Test Bench 

Stimulus Compare logic 
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How to Write Testbench?  

• Create a dummy template  

- Declare inputs to the module-under-test (MUT) 

as "reg", and the outputs as "wire" 

- Instantiate the MUT. 

 • Initialization  

- Assign some known values to the MUT inputs. 

• Clock generation logic  

- Various ways to do so.  

• May include several simulator directives  

-- Like $display, $monitor, $dumpfile, 

$dumpvars, $finish. 
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• $display 

 Prints text or variables to stdout.  

- Syntax same as "printf". 

 • $monitor  

Similar to $display, but prints the value 

whenever the value of some variable in the 

given list changes.  

• $finish  

Terminates the simulation process.  

• $dumpfile  

Specify the file that will be used for storing the 

waveform.  

• $dumpvars 

 Starts dumping all the signals to the specified 

file. 
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Example Testbench 

 

  

  

module shifter_toplevel;  

reg clk, clear, shift;  

wire [7:0] data;  

shift_register S1 (clk, clear, shift, data);  

 

initial  

begin 

 clk = 0; clear = 0; shift = 0;  

end  

always  

#10 clk = !clk;  
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initial  

begin  

$dumpfile ("shifter.vcd"); 

$dumpvars;  

end  

 

initial  

begin 

  $display ("\ttime, \tclk, \tclr, \tsft, \tdata);  

$monitor ("%d, %d, %d, %d, %d, %d”, $time, clk, reset, clear, shift, data);  

end  

 

initial  

#400 Sfinish;  

 

***** REMAINING CODE HERE  

endmodule 
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A Complete Example:  

  

module testbench;  

wire wl, w2, w3; 

 xyz m1(wl, w2, w3);  

test_xyz m2 (wl, w2, w3);  

endmodule  

 

module xyz (f, A, B);  

input A, B; output f;  

nor #1 (f, A, B); 

endmodule 
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module test_xyz (f, A, B);  

input f; output A, B; 

reg A, B; 

initial 

begin 

$mointer($time, “A=%b”, B=%b”, “f=%b”, A, B, f); 

 

#10 A=0; B=0; 

#10 A=1; B=0; 

#10 A=1; B=1; 

#10 A=0; B=1; 

#10 $finish; 

end 

endmodule 
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. A parameter is a constant with a name. 

. No size is allowed to be specified for it.  

- The size gets decided from constant 

itself (32bit) 

. Examples: 

   

  

parameter Hi=25, Lo=5; 
parameter up=b00,  down=b01, steady=b10  
  
 



3 
 

Logic values 

. The common values used in modeling 

hardware are: 

 - 0 :: Logic-0 or FALSE 

 - 1 :: Logic-1 or TRUE 

 - x :: Unknown (or don’t care) 

 - z :: High impedance  

. Initialization: 

 - All unconnected nets set to ‘z’ 

 - All register variables set to ‘x’ 

  

  

‘1’ 

‘z’ 
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Logic Gates 

- Verilog provides a set of predefined logic 

gates. 

- They respond to inputs (0, 1, x, or z) in a logic 

way. 

- Examples:: AND .   
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Primitive logic gates (instantiations): 
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Primitive Tri-state gates (instantiations): 

     

  



7 
 

Some Points to Note: 

. For all primitive gates: 

- The output port must be connected to a net 

(a wire). 

- The input ports may be connected to nets or 

register type variables. 

- They can have a single output but any 

number of inputs. 

- An optional delay may be specified. 

 -> Logic synthesis tools ignore time delays.  
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Example 1: 

 

  

‘timescale 1ns/1ns 
module ex_or(f, a, b); 
 input a, b; 
 output f; 
 wire t1, t2, t3; 
  

nand #5 m1(t1, a, b); 
and #5 m1(t2, a, t1); 
and #5 m1(t3, t1, b); 
or #5 m1(f, t2, t3); 

     
endmodule 
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Hardware Modeling Issues: 

. The values computed can be held in 

 - A ‘wire’ 

 - A ‘flip-flop’ (edge-triggered storage cell) 

- A ‘latch’ (level-sensitive storage cell) 

. A variable can be of 

 -‘net’ data type: 

  -> Maps to a wire during synthesis. 

- ‘register’ data type 

 -> Maps either to a ‘wire’ or to a 

‘storage cell’ depending on the context under 

which a value is assigned. 
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Example 2: 

 

  
module carry(cy, a, b, c); 
 input a, b, c; 
 output f1, f2; 
 wire a, b, c; 
 reg f1, f2; 
  
 always @(a or b or c) 
 begin 
  f1= ~(a & b); 
  f2= f1 ^ c; 
 end      
endmodule 
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Example 3:  

 

  

module carry(cy, a, b, c); 
 input a, b, c; 
 output f1, f2; 
 wire a, b, c; 
 reg f1, f2; 
  
 always @(a or b or c) 
 begin 
  f2= f1 ^ c; 
   f1= ~(a & b); 
 end      
endmodule 
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Example 4: 

  

  
// A latch gets inferred here 
module simple_latch(data, load, d_out); 
 input data, load; 

output d_out; 
 reg t; 
 
 always @(load or data) 
 begin 
  if(!load) 
   t=data; 
  d_out = !t; 
 end 
endmodule 
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Verilog Operators: 

. Arithmetic operators: 

 *, /, +, -, %. 

. Logical operators: 

 !   :: logical negation 

 && :: logical AND 

 ||  :: logical OR 

. Relational operators: 

 >, <, >=, <=, ==, != 

. Bitwise operators: 

 ~, &, |, ^, ~^ 
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Verilog Operators: 

. Reduction operators (operate on all the bits 

within a word). Example: b =  &a;   //a 8bit  

. Shift operators: 

 >>, << 

. Concatenation {}      a={b,c}    

. Replication {{}}         a= {2{c}} 

. Conditional 

 <condition> ? <expr1> : <expr2>  
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Example 5: 

 

  
module oper_example(x, y, f1, f2); 
 input x, y; 

output f1, f2; 
 wire [9:0] x, y; 
 wire [4:0] f1; 
 wire f2; 
 
 assign f1= x[4:0] & y[4:0]; 
 assign f2= x[2] | ~f1[3]; 
 assign f2= ~& x; 
 assign f1=f2? x[9:5] : x[4:0]; 
endmodule 
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Example 6:  

 

  

// An 8 bit adder description 
module para_adder(sum, cout, in1, in2, cin); 
 input [7:0] in1, in2; input cin; 

output [7:0] sum; output cout; 
  
 assign #20 {cout, sum} =in1+in2+cin; 
  
 
endmodule 
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Some points:  

. The presence of a ‘z’ or ‘x’ in a reg or wire being used 

in arithmetic expression results in the whole 

expression being unknown ‘x’ . 

. The logical operators (!, &&, ||) all evaluate to a 1-

bit result (0, 1, or x). 

. The relational operators (>, <, ….) also evaluate to a 

1-bit result (0 or 1). 

. Boolean false is equivalent to 1’b0 

  Boolean true is equivalent to 1’b1. 
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Some valid statements: 

 

 

 

 

 

 

 

 

  

assign outp = (p == 4’b1111) 
if (load && (select == 2’b01)) ….. 
 
assign a = b >> 1; 
assign a= b << 3; 
 
assign f= {a,b}; 
assign f= {a, 3’b101,b}; 
assign f= {x[2], y[0], a}; 
 
assign f={4{a}} 
assign f={2’b10,  3{2’b01},  x}; 
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Description Styles in Verilog: 

. Two different styles of description:  

1. Data flow 

 Continuous assignment (combinational ) 

2. Behavioral 

 Blocking (combinational ) 

 Non-blocking (sequential)  
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Data flow Style: Continuous Assignment: 

. Identified by the keyword ‘’assign’’: 

assign a = b & c; 

assign f[2]=c[0]; 

. Forms a static binding between: 

 The net being assigned on LHS. 

 The expression on the RHS. 

. The assignment continuously active: 

. Almost exclusively used to model combinational  

logic. 

. For an assign statement: 

 RHS: contain register or net. 

 LHS: must be net type, like wire.   
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Example 7:  

  module gen_mux (data, select, out); 
 input [0:7] data; 

input [0:2] select; 
output out; 

  
 assign out= data[select]; 
 
endmodule  
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Example 8:  

  module gen_demux (in, select, out); 
 input in; 

input [0:1] select; 
output [0:3] out; 

  
 assign out[select] = in; 
 
endmodule  
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Example 9: 

  
// level sensitive latch 
//Using assign to describe  
//sequential logic 
module level_latch (D, Q, En); 
 input D, En; 

output Q; 
  
 assign Q = En ? D : Q; 
 
endmodule  
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Behavioral Style: Procedural Assignment: 

. The procedural block defines: 

 A region containing sequential statements. 

 The statements execute in they order they 

are written.  

. Two types of procedural blocks: 

 “always” block: A continues loop that never 

terminates.  

 “initial” block: Executed once in the 

beginning of simulation (used in test-

benches).  
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. A module can contain any number of “always” 

blocks, all of which execute concurrently.  

. Basic syntax of “always” block: 

   

 

 

 

 

 

. The @(event_expression) is required for both 

combinational and sequential logic description.  

module ______; 
 always @(event_expression) 
 begin 
 
  sequential statements; 
 
 end 
endmodule  
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. Only “reg” type variables can be assigned within an 

“always” block. 

 The sequential “always” block executes only 

when the event expression triggers. 

 At other times the block is doing nothing. 

 An object being assigned to must therefore 

remember the last value assigned (not 

continuously driven) 

 So, only “reg” type type variables can be 

assigned within an “always” block. 

 Of course, any kind of variables may appear in 

the event expression (reg, wire, etc.) 
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Sequential Statements: 

1-   

 

 

 

2-   

 

 

3-  

 

 

begin 
 sequential_statements; 
end  
// end not required if there is only 
//one statemnet 

 

if (expression) 
 sequential_statement; 
else  
 sequential_statement; 

case (expression) 
 expr:  sequential_statement; 
 ……………….. 

 Default: sequential_statement; 

endcase 
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4-   

 

 

5-   

 

6-   

 

7-   

 

8-   

 

9-   

 

forever 
 sequential_statement; 

repeat (expression) 
 sequential_statement; 
 

while (expression) 
 sequential_statement; 
  

for (expression1; expression2, expression3 ) 
 sequential_statement; 
  

# (time_value)    //makes a block suspend for time_value time units; 
 

@ (event_expression) //makes a block suspend until 
                                        //  event_expression triggers. 
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Example 10: 

 

  

// A combinational logic example 
module mux2-1 (in1, in0, s, f); 
 input in1, in0, s; 

output f; 
reg f; 

  
 always @(in1 or in0 or s) 
  if (s) 
   f=in1; 
  else 
   f= in0; 
endmodule  
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Example 11:  

 

  

// A sequential logic example 
module dff_negedge (D, clock, Q, Qbar); 
 input D, clock; 

output Q, Qbar; 
reg Q, Qbar; 

  
 always @(negedge clock) 
  begin 
   Q= D; 
   Qbar= ~D; 
  end 
endmodule  
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Example 12:  

 

  

// Another sequential logic example 
module incomplete_state_spec (curr_state, flag); 
 input [0:1] curr_state; 

output [0:1] flag; 
reg [0:1] flag; 

  
 always @( curr_state) 
  case (curr_state) 
   0, 1 : flag=2; 
   3     : flag=0; 
  endcase 
endmodule  

 

case 

0 
1 

3 
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Example 12 repated:  

 

  

// Another sequential logic example 
module incomplete_state_spec (curr_state, flag); 
 input [0:1] curr_state; 

output [0:1] flag; 
reg [0:1] flag; 

  
 always @( curr_state) 
  begin 
   flag = 0 

case (curr_state) 
    0, 1 : flag=2; 
    3     : flag=0; 
   endcase 
  end 
endmodule  

 

case 

0 
1 

2 

3 
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Example 13:  

 

  

// ALU example 
module ALU_4bit (f, a, b, op); 
 input [1:0] op;     input [3:0] a,b; 

output [3:0] f; reg [3:0] f; 
  

parameter  ADD=2’b00, SUB=2’b01,  
 MUL=2’b10, DIV=2’b11;  

 always @( a or b or op) 
  case (op) 
   ADD: f= a+b; 
   SUB: f=a-b; 
   MUL: f =a*b; 
   DIV: f= a/b; 
  endcase 
endmodule  
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Example 14:  

 // priority encoder example 
module pri_encoder (in, code); 
 input [0:3] in;      

output [0:1] code; 
reg [0:1] code; 

  
 always @( in) 
  case (1’b1) 
   in[0] : code = 2’b00; 
   in[1] : code = 2’b01; 
   in[2] : code = 2’b10; 
   in[3] : code = 2’b11; 
  endcase 
endmodule  
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CMOS Fabrication and Layout 
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• Transistors  are fabricated  on a thin silicon wafer that 
serve as both a mechanical support and electrical 
common point called substrate

• Fabrication process (a.k.a. Lithography) is similar to 
printing press

– On each step, different materials are deposited
or etched

• Easiest way to understand physical layout is to look 
at the wafer from two perspectives:

– Top-section

– Cross-section
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• “Carving pictures in stone using light”



8 

• Start with blank wafer

• Build invert from bottom up

p substrate 
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• First step will be to form the n-well

– Cover wafer with protective layer of SiO
2
 (oxide)

to grow SiO2 on top of Si wafer put the Si with H2O  
or O2 in oxidation furnace at 900 – 1200 C 

– (Remove layer where n-well should be built)

– (Implant or diffuse n dopants into exposed wafer)

– (Strip off SiO
2
)
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• Photoresist is a light-sensitive organic polymer 

• Softens where exposed to light 

p substrate 

SiO
2 

Photoresist 

NOTE: The silicon oxide is just to protect the wafer 
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• Expose photoresist through n-well mask 

• Strip off exposed photoresist 

p substrate 

SiO
2 

Photoresist 
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• Etch oxide with hydrofluoric acid (HF)

– Seeps through skin and eats bone: nasty stuff!!!

• Only attacks oxide where resist has been exposed

p substrate 

SiO
2

Photoresist 
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• n-well is formed with diffusion or ion implantation 

• Diffusion 

– Place wafer in furnace with arsenic gas 

– Heat until As atoms diffuse into exposed Si 

• Ion Implantation 

– Blast wafer with beam of As ions 

– Ions blocked by SiO
2
, only enter exposed Si 

n well 

SiO
2 
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• Strip off the remaining oxide using HF

• Back to bare wafer with n-well

• Subsequent steps involve similar series of steps

p substrate 

n well 
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• Deposit very thin layer of gate oxide  

< 20 Å (6-7 atomic layers) 

• Chemical Vapor Deposition (CVD) of silicon layer 

– Place wafer in furnace with Silane gas (SiH
4
) 

– Forms many small crystals called polysilicon 

– Heavily doped to be good conductor 
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• Use same lithography process to pattern polysilicon
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• The polysilicon gate serves as a mask to allow precise  
alignment of the source and drain with the gate 

• Use oxide and masking to expose where n+ dopants  
should be diffused or implanted 

• n-diffusion forms nMOS source, drain, and n-well 
contact 
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• Pattern oxide and form n+ regions

• Self-aligned process (poysilicon gate) “blocks” diffusion under 
the gate

• Polysilicon is better than metal for self-aligned gates because it 
doesn’t melt during later processing
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• Historically dopants were diffused

• Usually ion implantation today (but regions are still 
called diffusion)

• Strip off oxide to complete patterning step
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• Similar set of steps form p+ diffusion regions for pMOS 
source and drain and substrate contact
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• Now we need to create the devices' terminals

• Cover chip with thick field oxide (FOX)

• Etch oxide where contact cuts are needed
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• Sputter on aluminum over whole wafer, filling the contacts as well

• Pattern to remove excess metal, leaving wires
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24 
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FOX 



27 

• Chips are specified with set of masks

• Minimum dimensions of masks determine transistor size (and
hence speed, cost, and power)

• Feature size f = distance between source and drain

– Set by minimum width of polysilicon

• Feature size improves 30% every 3 years or so

• Normalize for feature size when describing design rules

• Express rules in terms of □ = f/2

– E.g. □ = 0.3 μm in 0.6 μm process
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• Metal and diffusion have minimum width and spacing of 4□

• Contacts are 2□ x 2□ and must be surrounded by 1□ on the 

layers above and below

• Polysilicon uses a width of 2□

• Polysilicon overlaps diffusions by 2□ where a transistor is desired 
and has spacing or 1□ away where no transistor is desired

• Polysilicon and contacts have a spacing of 3□ from other
polysilicon or contacts

• N-well surrounds pMOS transistors by 6□ and avoid nMOS
transistors by 6□
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• Layout can be very time consuming

• Design gates to fit together nicely

• Build a library of standard cells

• Standard cell design methodology

– V
DD

 and GND should abut (standard height)

– Adjacent gates should satisfy design rules

– nMOS at bottom and pMOS at top

– All gates include well and substrate contacts
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• Transistor dimensions specified as W / L
ratio

• Minimum size is 4□ / 2□, sometimes 
called 1 unit

• In f = 0.6 μm process, this is 1.2 μm wide, 0.6 μm long

The power and ground 
lines are called supply 
rails 
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Usually the pMOS has 
width 2 or 3 times the  
width of the nMOS 
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Three abutted standard cell inverters 
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• Stick diagrams help plan layout quickly 

– Need not be to scale 

– Draw with color pencils or dry-erase markers 
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• A wiring track is the space required for a wire 

– 4□ width, 4□ spacing from neighbor = 8□ pitch 

– Transistors also consume one wiring track 
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• Wells must surround transistors by 6□

– Implies 12□ between opposite transistor flavors

– Leaves room for one wire track
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• Estimate area by counting wiring tracks

– Multiply by 8 to express in □
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Resistance estimation 

 Resistance of uniform slab  
can be given as, 

Where  = resistivity 

t= thickness 

l= conductor length 

w=conductor width 

or,  

R
s
is the sheet resistance / 

ohms 
w 

l R 

t

.  
 

ohms 
w 

l 
R  R

s
. 

I 

l 

t 

w 
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Resistance estimation (cont.) 

 Resistance of certain layers 

Material R
s
(/) 

metal 0.03 

Poly 15100 

Diffusion p 80 

Diffusion n 35 

Silicide  24 

N-well 1K  5K 
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Resistance estimation 

 For MOSFET channel resistance 

R
channel

= R
Sheet

(L/W) 

where R
sheet

= 1/µC
OX

(V
gs

-V
t
) 

For P and n channels 

R
sheet

= 1000 ->30,000 / 

N+ 
L 

N + 

channel 

L 

W 
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Resistance 

 Depends on resistivity of material  (Rho) 

 Sheet resistance R
s 
=  /t 

 Resistance R = R
s
* L / W 

 Corner approximation - count a corner as half a  
square 

Corner (1/2 Square) 

Corner (1/2 Square) 
1/2 Square 

Corner (1/2 Square) 

1/2 Square 

Example: 

R = R
s(poly)

* 13 + 2*(1/2) + 3*(1/2) squares 
R = 4Ω/sq * 15.5 squares = 62Ω 
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Inverter resistance estimation 

 CMOS inverter (no static
current)

 Switching current

VDD 

Vin

VGS 

IL VOUT = VDS 

IDS 

MP 

MN 

Vin Vout

VDD

Rs,p (L/W) 

Rs,n (L/W) 

25 10 35 

1 

, , 

max 

, , 

max 

DD DD 

s p s n 

DD 

s p s n 

DD 

total 

DD 

V V 

R R 

V 
I 

for L W 

W 

L 
R 

W 

L 
R 

V 

R 

V 
I 

  

+ 



+ 

  

+ 

  

. 

35 

2 

max 
DD 
V 

switching power loss  I V
DD


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Capacitance estimation 

The dynamic response of MOS systems strongly depends on  
the parasitic capacitances associated with the MOS device.  
The total load capacitance on the output of a CMOS gate is  
the sum of: 
 gate capacitance (of other inputs connected to out) 

 diffusion capacitance (of drain/source regions) 

 routing capacitances (output to other inputs) 

gate 

drain 

source 

substrate 

CGD 

CGS CSB 

CDB 

CGB 
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Capacitance (1/2) 

 Transistors 

 Depends on area of transistor gate 

 Depends on physical materials, thickness of insulator 

 Given for a specific process as C
g 

 Diffusion to substrate 

 Side-wall capacitance - capacitance from periphery 

 bottom-wall capacitance - capacitance to substrate 

 Given for a specific process as C
diff,bot

, C
diff,side 

Dr. Ahmed H. Madian-VLSI 
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Capacitance (2/2) 

 Metal to substrate 

 Parallel plate capacitance is dominant 

 Need to account for fringing, too 

 Poly to substrate 

 Parallel plate plus fringing, like metal 

 don’t confuse poly over substrate with gate capacitance 

 Also important: capacitance between conductors 

 Metal1-Metal1 

 Metal1-Metal2 

Dr. Ahmed H. Madian-VLSI 
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Capacitance estimation (cont.) 

 Gate capacitance 

 Diffusion capacitance 

 Routing capacitance 

 C
diff 

>C
poly

>C
m1

>C
m2 

n+ 
substrate 

gate 

C
gate 

insulator 

C
diff. 

gate 

n+ 
substrate 

Metal layer 

C
routing 
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Capacitance estimation 

 In general, capacitance could be calculated using 

d 

A 

d 

A 
C 

.



o
.
r
. 

ox 

o r 

unitarea 
C C 

d

  . 
/ d 
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Gate Capacitance 

 C
g
= C

gs
+ C

gd
+ C

gb 
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Capacitance estimation (cont.) 

 Diffusion capacitance (source/drain) 
Source 

Diffusion 
Area 

Drain 
Diffusion 

Area 

b 

a 

Gate 

insulator 
CJP 

Side wall capacitance 

CJa 

area capacitance 

C
s,diff

 C
d ,Area

.A+C
d ,sidewalls

.P 

Where A = area and p = perimeters 
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Routing capacitance 

 single conductor capacitance 

 multiple conductor capacitance 
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Capacitance estimation (cont.) 

Metal 1 

substrate 

Fringing capacitance 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

 

 

 
 

 

 

 
 

 

 


 
 


 + + 


+ 

 
+ 

 

 

ln 1
2 2 2

2 

2 2 

t 

h 

t 

h 

t 

h 
h 

t 
w 

C
total

 

Routing capacitance: a) single conductor capacitance 

w h 

t 

Half cylinders 
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Capacitance estimation (cont.) 

Metal 2 

Metal 1 

substrate 

C12 
C2 

C1 

C1 
C2 

C12 

Metal 1 Metal 2 

Vin 
Vout 

2 12 

. 
12 

C C 

C 
V
out

V
in 

+ 

   

Routing capacitance: b) multiple conductor capacitance 
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Multilayer capacitance calculations 

 Example: given the layout shown in the figure calculate the  

total capacitance at source and gate given that: 

C
metal/Area

= 0.025µF/µm2 

C
poly/Area

= 0.045µF/µm2 

C
Gate/A      

= 0.7 fF/µm2 

C
d,a/A           

= 0.33fF/µm2 

C
d,side/L      

= 2.6fF/µm 

 = 5.1µm 

100 

3 CM 

4 

4 

2 

3 

2 

4 2
4 

CMP 

CP1 

Cgate 

CP1 
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Solution 
100 

3 CM 

4 

4 

2 

3 

2 

4 2
4 

CMP 

CP1 

Cgate 

CP1 

Source capacitance 

C
S,diff

= C
d,A

. A + C
d,side walls

. P 

A   = 4 * 3 = 12 2 

P   = 2*(4 + 3)=14  

So, C
S, diff

= 0.33* 12 2+2.6* 14 =63.51fF 
Cs 

S D 

G 

CG 

CD 
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Solution (cont.) 

100 

3 CM

4

4

2

3

2

4 2
4

CMP

CP1

Cgate

CP1

Gate capacitance 

C
G,total

= C
M

+ C
MP

+C
P1

+C
G
+C

P2

C
M

= 0.025 * 100*3 =7.52

C
MP

= 0.045 * 4* 4  = 0.722

C
P1

= 0.045 * 2* 2 = 0.182

C
P2

= 0.045 * 2* 2 = 0.182

C
G

= 0.7  * 2* 3 = 4.22 CM CMP CP1 Cgate CP1
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Inductance estimation 

 Inductance is normally small but as the process shrink on-chip inductance must be

taken into account.

 Bond-wire inductance can cause deleterious effects in large, high speed I/O buffers.

 The inductance of bonding wires and the pins on packages could be calculated by,

 
 

 
 
 


+ 



 d

h 

w 

h 
L ln

8 4 

2 

 

substrate 

h 

W 

Design techniques to overcome this problem: 

separate power pins for I/O pads and chip core

multiple power and ground pins

careful selection of the position of the power and

ground pins on the package

adding decoupling capacitances on the board

increase the rise and fall times

use advanced package technologies (SMD, etc)



MOS Transistors 

 Four terminal device: gate, source, drain, body

 Gate – oxide – body stack looks like a capacitor

 Gate and body are conductors (body is also called the substrate)

 SiO
2
 (oxide) is a “good” insulator (separates the gate from the body

 Called metal–oxide–semiconductor (MOS) capacitor, even though

gate is mostly made of poly-crystalline silicon (polysilicon)

n+ 

p 

Source Gate Drain 

bulk Si 

SiO
2 

Polysilicon 

n+ 

SiO
2 

n 

Source Gate Drain 

bulk Si 

Polysilicon 

p+ p+ 

NMOS 
PMOS 



NMOS Operation 

 Body is commonly tied to ground (0 V)

 Drain is at a higher voltage than Source

 When the gate is at a low voltage:

 P-type body is at low voltage

 Source-body and drain-body “diodes” are OFF

 No current flows, transistor is OFF

n+ 

p 

Source Gate Drain 

bulk Si 

SiO
2 

Polysilicon 

n+ 
D 

0 

S 



NMOS Operation Cont.  

 When the gate is at a high voltage: Positive charge  
on gate of MOS capacitor  
 Negative charge is attracted to body under the gate  

 Inverts a channel under gate to “n-type” (N-channel, hence   

    called the NMOS) if the gate voltage is above a threshold  

voltage (VT)  

 Now current can flow through “n-type” silicon from source  

through channel to drain, transistor is ON  

n+ 

p 

Source Gate Drain 

bulk Si 

SiO
2 

Polysilicon 

n+ 
D 

1 

S 



PMOS Transistor 

 Similar, but doping and voltages reversed

 Body tied to high voltage (V
DD

)

 Drain is at a lower voltage than the Source

 Gate low: transistor ON

 Gate high: transistor OFF

 Bubble indicates inverted behavior

SiO
2 

n 

Source Gate Drain 

bulk Si 

Polysilicon 

p+ p+ 
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. Design complexity increased rapidly  

- Increased size and complexity 

- CAD tools are essential 

. The present trend 

- Standardize the design flow.   
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What is design flow? 

. Standardized design procedure 

 - starting from the design idea down to the actual 

implementation. 

. Encompasses many steps 

 - Specification 

 - Synthesis 

 - Simulation 

 - Layout 

- Testability analysis 

- Many more… 
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New CAD tools 

- Based on Hardware Description Language (HDL) 

- HDLs provide formats for representing the outputs of 

various design steps. 

- An HDL based CAD tool transforms from its HDL input 

into HDL output which contains more hardware 

information.   

 . Behavioral level to register transfer level. 

 . Register transfer level to gate level. 

 . Gate level to transistor level. 
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Two compting HDLs 

1- VHDL 

2- Verilog 
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Simplistic view of  Design flow: 
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Design Representation 

. A design can be represented at various levels from three 

different points of view: 

1- Behavioral 

2- Structural 

3- Physical 

. can be represented by Y-diagram 
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Behavioral Representation: 

. Specifies how a particular design should respond to given set of 

inputs. 

. May be specified by: 

- Boolean equations. 

- Tables of input and output values. 

- Algorithms written in standard HLL like C. 

- Algorithms written in special HDL like Verilog. 
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An algorithm level description: 

 

 

  

module carry(cy, a,b,c); 
 input a,b,c; 
 output y; 
 assign 
     cy = (a&b)|(b&c)|(c&a) 
endmodule 
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Boolean behavioral specification for cy: 

 

  
primitive carry(cy, a,b,c); 
 input a,b,c; 
 output y; 
 talbel 
     // a  b  c  :  cy 

1  1  ? : 1 
  1  ?  1 : 1 
  ?  1  1 : 1 
  0  0  ? : 0 
  1  ?  0 : 0 
  ?  0  0 : 0 
 End table      
endprimitive 
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Structural Representation 

. Specifies how components are interconnected. 

. In general, the description is a list of modules and their 

interconnects. 

 - called netlist. 

 - can be specified at various levels. 

. At the structural level of, the level of abstraction are: 

- the module level 

- the gate level 

- the switch level 

- the circuit level 
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. In each level more details is revealed about 

implementation.  

 



15 
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Structural representation :  example 

4- Bit adder 

  
module add4(s,cy4,cy_in,x,y); 
 input [3:0] x, y; 

input cy_in; 
 output [3:0] s; 
 output cy4; 
 wire [2:0] cy_out; 
  add B0 (cy_out[0],s[0],x[0],y[0],cy_in); 
  add B1 (cy_out[1],s[1],x[1],y[1], cy_out[0]); 

add B2 (cy_out[2],s[2],x[2],y[2], cy_out[1]); 
add B3 (cy4,           s[3],x[3],y[3], cy_out[2]); 

endmodule 
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 module add (cy_out,sum,a,b,cy_in); 
 input a,b,cy_in; 

output sum, cy_out; 
  sum s1(sum,a,b,cy_in); 
  carry c1(cy_out,a,b,cy_in); 
endmodule 

 
module carry (cy_out ,a,b,cy_in); 
 input a,b,cy_in; 

input cy_out; 
 wire t1,t2,t3; 
  and g1(t1,a,b); 
  and g2(t2,a,c); 
  and g3(t3,b,c); 
  or    g4(cy_out,t1,t2,t3); 
endmodule 
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Physical Representation: 

. The lowest level of physical specification: 

 - Photo-mask information required by the various 

processing steps in the fabrication process. 

. At the module level, the physical layout for 4-bit adder 

may be defined by a rectangle or polygon, and a collection 

of ports. 
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Physical Representation: example; 

 

  

module add4(s,cy4,cy_in,x,y); 
 input x[3:0] , y[3:0]; 

input cy_in; 
 output [3:0] s; 
 output cy4; 
 boundary [0,0,130,500]; 
 port x[0] aluminum width=1 origin=[0,35]; 
 port y[0] aluminum width=1 origin=[0,85]; 
 port cy_in polysilicon width=2 origin=[70,0]; 

port s[0] aluminum width=1 origin=[120,65]; 
 
add a0 origin=[0,0]; 
add a1 origin=[0,120]; 

endmodule 
 



20 
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About Verilog: 

. Along with VHDL, Verilog is among the most widely used HDLs. 

. Main differences:  

 VHDL was designed to support system-level design and 

specification. 

 Verilog was designed primarily for digital hardware 

designers developing FPGAs and ASICs. 

. The differences become clear if someone analyze the language 

features.   
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. VHDL 

 Provides some high-level constructs not available in 

Verilog (user defined types, configurations, etc.). 

. Verilog 

 Provides comprehensive support for low-level digital 

design. Not available in native VHDL(type definition and 

called packages need to be included) 
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Concept of Verilog ‘’ module’’  

. In Verilog, the basic unit of hardware is called module. 

 Modules cannot contain definitions of other modules.  

 A module can, however, be instantiated within another 

module. 

 Allows the creation of hierarchy in Verilog description.  

 

  module module_name (list_of_ports); 
 input declaration; 

output declaration; 
 local net declaration; 
 parallel statements; 
endmodule 
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Example 1: simple AND gate 

 

 

 

 

 

 

Example 2: two-level circuit  

 

  

module simpleand (f,x,y); 
 input x,y; 

output f; 
 assign f=x & y; 
endmodule 

 

module two-level (a,b,c,d,f); 
 input a,b,c,d; 

output f; 
 wire t1,t2; 
 assign t1= a & b; 

assign t2= ~(c|d); 
assign f= t1 ^ t2; 

endmodule 
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Example 3: a hierarchical design 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

module add3 (s,cy3,cy_in,x,y); 
 input [2:0] x,y; 
 input cy_in; 

output [2:0] s; 
output cy3; 

 wire [1:0] cy_out; 
 add B0 (cy_out[0],s[0],x[0],y[0],cy_in); 

add B1 (cy_out[1],s[1],x[1],y[1], cy_out[0]); 
add B2 (cy3           ,s[2],x[2],y[2], cy_out[1]); 

 
endmodule 
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Specifying Connectivity: 

. There are two alternate ways of specifying connectivity: 

 Positional association 

o The connections are listed in the same order 

add A1(c_out,sum,a,b,c_in); 

 Explicit association  

o May be listed in any order  

         add A1(.in1(a), .in2(b),.cin(c_in),.sum(sum),.cout(c_out)); 
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Variable Data Types 

. A variable belongs to one of two data types: 

 Net 

o Must be continuously driven 

o Used to model connections between continuous 

assignments & instantiations. 

 Register  

o Retains the last value assigned to it 

o Often used to represent storage elements 
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Net data type: 

. Different ‘net’ types supported for synthesis: 

 wire , wor, wand, tri, supply0, supply1 

. ‘wire’ and ‘tri’ are equivalent; when there are multiple drivers 

driving them, the outputs of the drivers are shorted together. 

. ‘wor’ / ‘wand’ inserts OR / AND gate at the connection. 

. ‘supply0’ / supply1 model power supply connections. 
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Example 4: 

 

  

module using_wire (a,b,c,d,f); 
 input a,b,c,d; 

output f; 
 wire f; 
 assign f= a & b; 

assign f= c|d; 
endmodule 

 

module using_wired_and (a,b,c,d,f); 
 input a,b,c,d; 

output f; 
 wand f;   //f as wand 
 assign f= a & b; 

assign f= c|d; 
endmodule 
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Example 5: 

  module using_supply_wire (a,b,c,f); 
 input a,b,c; 

output f; 
wire t1,t2; 

 supply0 gnd; 
 supply1 vdd; 
 
 nand G1 (t1,vdd,a,b); 

xor G2 (t1,c,gnd); 
and G3(f,t1,t2);  

endmodule 
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Register data type: 

. Different ‘register’ types supported for synthesis: 

 reg, integer 

. the ‘reg’ declaration explicitly specifies the size. 

 reg x,y;    // single- bit register variable 

 reg [15:0] bus;   //16-bit bus, bus [15] MSB 

 unsigned 

 used to model the actual hardware register 

. For ‘integer’, it takes the default size, usually 32-bit. 

 Synthesizer tries to determine the size. 

 Sinegd  

 Used for loop counting 
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Example 6: 

 

  

module simple_counter (clk,rst,count); 
 input clk,rst; 

output count; 
reg [31:0] count; 

  
 always @(posedge clk) 
 begin 
 
  if (rst) 
   count = 32’b0; 
  else 
   count = count +1; 

end 
endmodule 
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 When ‘integer’ is used, the synthesis system often caries 

out a data flow analysis of the model to determine its 

actual size. 

 . 

 

 The size of c can be determined to be equal 11 (10 bits 

plus a carry). 

 A value may be specified in either the ‘sized’ or the ‘un-

sized’ form > syntax:  <size>’<base><numbr> 

  

wire [1:10] a,b; 
 integer     c; 
 c = a +b; 
  





Why silicon?



Why silicon? 



How to product pure silicon



STEPS OF PRODUCTION 



STEPS OF PRODUCTION 



Semiconductor Manufacturing Process 

Fundamental Processing Steps 

1.Silicon Manufacturing 
   a) Czochralski method. 

   b) Wafer Manufacturing 

   c) Crystal structure 

 

2.Photolithography 
    a) Photoresists 

    b) Photomask and Reticles 

    c) Patterning 

     



3.Oxide Growth & Removal
a) Oxide Growth & Deposition

b) Oxide Removal

c) Other effects

d) Local Oxidation

4. Diffusion & Ion Implantation
a) Diffusion

b) Other effects

c) Ion Implantation

Semiconductor Manufacturing Process 



Oxidation 

The process of oxidation consists of growing a thin film of silicon 

dioxide on the surface of the silicon wafer. 

Diffusion 

This process consists of the introduction of a few tenths to several 

micrometers of impurities by the solid-state diffusion of dopants 

into selected regions of a wafer to 

form junctions. 

Ion Implantation 

This is a process of introducing dopants into selected areas of the 

surface of the wafer by bombarding the surface with high-energy 

ions of the particular dopant. 

Semiconductor Manufacturing Process 



Photolithography 

In this process, the image on the reticle is transferred to the 

surface of the wafer. 

Epitaxy 

Epitaxy is the process of the controlled growth of a crystalline 

doped layer of silicon on a single crystal substrate. 

Metallization and interconnections 

After all semiconductor fabrication steps of a device or of an 

integrated circuit are completed, it becomes necessary to provide 

metallic interconnections for the integrated circuit and for 

external connections to both the device and to the IC. 

Semiconductor Manufacturing Process 



Etching Techniques 

Etching is the process of selective removal of regions of a 

semiconductor ,metal, or silicon dioxide. 

Semiconductor Manufacturing 
Process 



Crystal Growth and Wafer Manufacturing 



FABRICATING SILICON 
 Quartz, or Silica, Consists of Silicon Dioxide

 Sand Contains Many Tiny Grains of Quartz

 Silicon Can be Artificially Produced by
Combining Silica and Carbon in Electric
Furnice

 Gives Polycrystalline Silicon (multitude of
crystals)

 Practical Integrated Circuits Can Only be
Fabricated from Single-Crystal Material



CRYSTAL GROWTH 
 Czochralski Process is a 

Technique in Making 
Single-Crystal Silicon 

 A Solid Seed Crystal is 
Rotated and Slowly 
Extracted from a Pool 
of Molten Si 

 Requires Careful 
Control to Give Crystals 
Desired Purity and 
Dimensions 



CRYSTAL GROWTH 



CYLINDER OF MONOCRYSTALLINE 

 The Silicon Cylinder is
Known as an Ingot

 Typical Ingot is About 1 or 2
Meters in Length

 Can be Sliced into
Hundreds of Smaller
Circular Pieces Called
Wafers

 Each Wafer Yields
Hundreds or Thousands of
Integrated Circuits



WAFER MANUFACTURING 
 The Silicon Crystal is Sliced by Using a Diamond-Tipped 

Saw into Thin Wafers 

 Sorted by Thickness 

 Damaged Wafers Removed During Lapping 

 Etch Wafers in Chemical to Remove any Remaining Crystal 
Damage 

 Polishing Smoothes  Uneven Surface Left by Sawing Process 



Photolithography 



Photolithography



Photolithography 

Photolithography is 

a technique that is 

used to define the 

shape of micro-

machined structures 

on a wafer. 

 



          Photolithography 
Photoresist 
The first step in the photolithography process is to 

develop a mask, which will be typically be a chromium 

pattern on a glass plate.  

Next, the wafer is then coated with a polymer which is 

sensitive to ultraviolet light called a photoresist. 

Afterward, the photoresist is then developed which 

transfers the pattern on the mask to the photoresist 

layer. 



Photolithography  
Photoresist 
There are two basic types of Photoresists Positive and 

Negative. 

 

Positive resists. 

 

Positive resists decomposes ultraviolet light. The resist is 

exposed with UV light wherever the underlying material is to 

be removed. In these resists, exposure to the UV light changes 

the chemical structure of the resist so that it becomes more 

soluble in the developer. The exposed resist is then washed 

away by the developer solution, leaving windows of the bare 

underlying material. The mask, therefore, contains an exact 

copy of the pattern which is to remain on the wafer.  
 
 



   Photolithography 
   Photoresist 

Negative resists 

Exposure to the UV light causes the negative resist to become 

polymerized, and more difficult to dissolve. Therefore, the 

negative resist remains on the surface wherever it is exposed, 

and the developer solution removes only the unexposed 

portions. Masks used for negative photoresists, therefore, 

contain the inverse (or photographic "negative") of the 

pattern to be transferred.  



   Photolithography
   Model

 Figure 1a shows a thin film of
some material (eg, silicon
dioxide) on a substrate of
some other material (eg, a
silicon wafer).

 Photoresist layer (Figure 1b )

 Ultraviolet light is then
shone through the mask
onto the photoresist (figure
1c).



Photolithography 
Model 

 The photoresist is then 
developed which transfers 
the pattern on the mask to 
the photoresist layer (figure 
1d).  
 

 A chemical (or some other 
method) is then used to 
remove the oxide where it is 
exposed through the 
openings in the resist (figure 
1e).  
 

 Finally the resist is removed 
leaving the patterned oxide 
(figure 1f).  
 



Positive and negative resist 
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Pencil



   Photolithography 
   Photomasks and Reticles 

Photomask 

      This is a square glass plate with a patterned emulsion of 

metal film on one side. The mask is aligned with the 

wafer, so that the pattern can be transferred onto the 

wafer surface. Each mask after the first one must be 

aligned to the previous pattern.  
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Photolithography 
Photomasks and Reticles 

When a image on the photomask is projected several time  side 

by side onto the wafer, this is known as stepping and the 

photomask is called a reticle. 

An common reticle is the 5X 
 

The patterns on the 5X reticle are reduced 5 times when projected 

onto the wafer. This means the dies on the photomask are 5 times 

larger than they are on the final product. There are other kinds of 

reduction reticles (2X, 4X, and 10X), but the 5X is the most 

commonly used. Reduction reticles are used on a variety of steppers, 

the most common being ASM, Canon, Nikon, and GCA. 
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Photolithography 
Photomasks and Reticles 

Examples of 5X Reticles: 
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Photolithography 
Photomasks and Reticles 
      Once the mask has been accurately aligned with the pattern 

on the wafer's surface, the photoresist is exposed through the 

pattern on the mask with a high intensity ultraviolet light. 

There are three primary exposure methods: contact, 

proximity, and projection.  

user
Pencil



Photolithography 
Patterning 

The last stage of Photolithography is a process called ashing. 

This process has the exposed wafers sprayed with a mixture of 

organic solvents that dissolves portions of the photoresist .   

Conventional methods of ashing require an oxygen-plasma ash, 

often in combination with halogen gases, to penetrate the crust 

and remove the photoresist.  Usually, the plasma ashing process 

also requires a follow-up cleaning with wet-chemicals and acids 

to remove the residues and non-volatile contaminants that 

remain after ashing.  Despite this treatment, it is not unusual to 

repeat the "ash plus wet-clean" cycle in order to completely 

remove all photoresist and residues.  
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Oxidation of Silicon 

The simplest method of producing an oxide layer 
consists of heating a silicon wafer in an oxidizing 
atmosphere. 



 SiO2 growth is a key process step in manufacturing all Si 
devices ,Thick ( 1µm) oxides are used for field oxides        
(isolate devices from one another )                              

o Dense and hard SiO2 layer act as contamination barrier                   
Hardness of the SiO2 layer  protect  the surface from  scratches  during 

fabrication process  

o  Sacrificial layers are grown and removed to clean up surfaces  

 The stability and ease of formation of SiO2 was one of the 
reasons that Si replaced Ge as the semiconductor of choice. 
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1. Dry oxidation 

2. Wet oxidation 

3. Thermal oxidation 

4. High pressure oxidation 

 

Type of oxidation 

 Oxidation temperature 900-1200C 

 Oxidation: Si wafer  placed in a heated 

chamber  exposed to oxygen gas 
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Dry oxide - Pure dry oxygen is employed

Disadvantage 
- Dry oxide grows very slowly.

Advantage 
- Oxide layers are very uniform.
- Relatively few defects exist at the oxide-silicon

interface (These defects interfere with the proper
operation of semiconductor devices)

- It has especially low surface state charges and  thus make
ideal dielectrics for MOS transistors.

Si (solid) + O2 (gas)  SiO2 (solid) (dry oxidation) 
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Wet oxide - In the same way as dry oxides, but steam is

injected 

Disadvantage 

 Hydrogen atoms liberated by the decomposition of the water
molecules produce imperfections that may degrade the oxide
quality.

Advantage

1. Wet oxide grows fast.

2. Useful to grow a thick layer of field oxide

Si (solid) + 2H2O (gas)  SiO2 (solid) + 2H2(gas) (wet oxidation) 
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Thermal oxidation  

• the growth of a layer of silicon dioxide (SiO2) on the substrate surface 

• Requires only substrate heating to 900-1200 °C in a dry (O2) or wet 

(H2O steam) ambient using an oxidation furnace 

• Silicon oxidizes quite readily one reason why Si is so widely used 
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High Pressure Oxidation 

 High pressure oxidation results in faster oxidation rate 

 Advantage of high pressure oxidation 
• Drop the oxidation temperature 

• Reduce oxidation time 

Thin oxide produced using high pressure oxidation  higher dielectric 

strength than oxides grown at atmospheric pressure 
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Si wafer 

Si wafer 

Si wafer 

• In a furnace with O2 gas environment

• Oxygen atoms combine readily
with Si atoms

• Linear- oxide grows in equal
amounts for each time

• Around 500Å thick

• Above 500Å, in order for oxide layer
to keep growing, oxygen and Si atoms
must be in contact

• SiO2 layer separate  the oxygen in the
chamber from the wafer surface 

Initial 

Linear 

Parabolic 
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Deposited Oxides  
 Oxide is frequently employed as an insulator between two 

layers of metalization.  In such cases, some form of 
deposited oxide must be used rather than the grown 
oxides. 

 Deposited oxides can be produced by various reactions 
between gaseous silicon compounds and gaseous oxidizers.  
Deposited oxides tend to possess low densities and large 
numbers of defect sites.  Not suitable for use as gate 
dielectrics for MOS transistors but still acceptable for use 
as insulating layers between multiple conductor layers, or 
as protective overcoats.  
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Key Variables in Oxidation 

 Temperature

- reaction rate

- solid state diffusion

 Oxidizing species

- wet oxidation is much faster than dry oxidation

 Surface cleanliness

- metallic contamination can catalyze reaction

- quality of oxide grown (interface states)
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Etching 

 Etching is the process where unwanted areas of films are 
removed by either dissolving them in a wet chemical 
solution (Wet Etching) or by reacting them with gases in 
a plasma to form volatile products (Dry Etching).  

  

 Resist protects areas which are to remain.  In some cases 
a hard mask, usually patterned layers of SiO2 or Si3N4, are 
used when the etch selectivity to photoresist is low or the 
etching environment causes resist to delaminate.  

 This is part of lithography - pattern transfer. 
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Wet Chemical Etching 
 Wet etches:

- are in general isotropic

(not used to etch features less than ≈ 3
µm) 
- achieve high selectivities for most film
combinations

- capable of high throughputs
- use comparably cheap equipment
- can have resist adhesion problems

- can etch just about anything

-Use acid or basic solutions. For instance,
hydrofluoric acid buffered with ammonium fluoride 
is typically used to etch SiO2 
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Example Wet Processes 
 For SiO2 etching  
 - HF + NH4F+H20  (buffered oxide etch or BOE)  
 For Si3N4  

 - Hot phosphoric acid: H3PO4 at 180 °C  
 - need to use oxide hard mask  
 Silicon  
 - Nitric, HF, acetic acids  
 - HNO3 + HF + CH3COOH + H2O  
 Aluminum  
 - Acetic, nitric, phosphoric acids at 35-45 °C   
 - CH3COOH+HNO3+H3PO4  
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What is a plasma  
(glow discharge)? 

 A plasma is a partially ionized gas made up of equal
parts positively and negatively charged particles.

 Plasmas are generated by flowing gases through an
electric or magnetic field.

 These fields remove electrons from some of the gas
molecules.  The liberated electrons are accelerated, or
energized, by the fields.

 The energetic electrons slam into other gas molecules,
liberating more electrons, which are accelerated and
liberate more electrons from gas molecules, thus
sustaining the plasma.
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1. Purely physical (sputtering) 

 

• Can be anisotropic  

• All materials have sputter 

yields within a factor of about 

3. therefore seIectivities will be 

low 

•  nonvolatile species can 

redeposit on surfaces 

•  e. Ion Milling process  
 

• In dry etching, ions of a neutral 

material are accelerated toward 

the surface and cause ejection of 

atoms of all materials  

Dry or Plasma Etching 
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Dry or Plasma Etching 
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Dry or Plasma Etching 
Combination of chemical and physical etching 

– Reactive Ion Etching (RIE)
Directional etching due to ion assistance. 

In RIE processes the wafers sit on the powered  electrode. 
This placement sets up a negative bias on the wafer 
which accelerates positively charge ions  toward the 
surface.  These ions enhance the  chemical  etching 
mechanisms and allow anisotropic etching.  

 Wet etches are simpler, but dry etches provide better
line width control since it is anisotropic.

• Plasma etching has the advantage of offering a well-defined

directionality to the etching action, creating patterns with sharp

vertical contours.
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Other Effects of Oxide Growth and 
Removal 

 Oxide Step 

- The differences in oxide thickness and in the 
depths of the silicon surfaces combine to produce 
a characteristic surface discontinuity 

 The growth of a thermal oxide affects the doping 
levels in the underlying silicon 

 The doping of silicon affects the rate of oxide growth 
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Local Oxidation of Silicon (LOCOS) 
 LOCOS: localized oxidation of silicon using silicon

nitride as a mask against thermal oxidation.

 A technique called local oxidation of silicon (LOCOS)
allows the selective growth thick oxide layers

 CMOS and BiCMOS processes employ LOCOS to grow
a thick field oxide over electrically inactive regions of
the wafer

•The presence of another material such as silicon nitride (Si3N4)

on the surface inhibits the growth of oxide in that region
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Diffusion , Ion Implantation 

And Epitaxial processes 



Diffusion 
•Most of these diffusion processes occur in two steps: the

predeposition and the drive-in diffusion,

•In the pre deposition step. a high concentration of dopant

atoms are introduced at the silicon surface by a vapor that

contains the dopant at a temperature of about 1000°C. In

recent years Ion Implantation is used.

•At the temperature of l000°C.silicon atoms move out of

their lattice sites creating a high density of vacancies and

breaking the bond with the neighboring atoms.

•The second step is drive-in process. used to drive the

impurities deeper into the surface without adding anymore

impurities.
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Diffusion 

•Common dopants are boron for P-type layers and phosphorus.

antimony and arsenic for N-type layers.

•A typical arrangement of the process of diffusion is shown in

Figure.

•The wafers are placed in a quartz furnace tube that is heated

by resistance heaters surrounding it. So that the wafers may be

inserted and removed easily from the furnace. they are placed

in a slotted quartz carrier known as a boat. To introduce a

phosphorus dopant. as aim example. phosphorus oxychloride
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Diffusion 
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• (POCI3) is placed in a container either inside the quartz tube, in a

region of relatively low temperature. or in a container outside the

furnace at a temperature that helps maintain its liquid form

• Nitrogen and oxygen gas are made to pass over the container. These

gases carry the dopant vapor into the furnace, where the gases are

deposited on the surface of the wafers. These gases react with the

silicon, forming a layer on the surface of the wafer that contains

silicon,oxygen, and phosphorus. At the high temperature of the

furnace. phosphorus diffuses easily into the silicon.

• Diffusion depth is controlled by the time and temperature of the

drive-in process.

• By precise control of the time and temperature (to within

0.25°C).accurate junction depths of fraction of a micron can be

obtained.

Diffusion 
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To generate ions. such as those of phosphorus. an arc discharge is made 

to occur in a gas. such as phosphine (PH3).that contains the dopant. 

The ions are then accelerated in an electric field so that they acquire an 

energy of about 20keV and are passed through a strong magnetic field. 

Because during the arc discharge unwanted impurities may have been 

generated. the magnetic field acts to separate these impurities from the 

dopant ions based on the fact that the amount of deflection of a particle 

in a magnetic field depends on its mass. 

 Following the action of the magnetic field, the ions are further 

accelerated so that their energy reaches several hundred keV, whereupon 

they are focused on and strike the surface of the silicon wafer.  

Ion Implantation 
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•In ion implantation, 

dopantatoms are accelerated 

toward the substrate surface 

and enter due to their kinetic 

energy 

•This is the preferred 

technique for introduction of 

dopantatoms since the 

amount of lateral diffusion is 

much lower 
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showing the ion beam hitting the 300mm wafer end-station. 



Ion Implantation Equipment 

Ions generated in a source (from feed gas, e.g. BF3, 

AsH3, PH3 ... or 

heated solid source, then ionized in arc chamber by 

electrons from hot filament) select desired species by 

q/m, using a magnet, 

accelerated by an E-field and focused using 

electrostatic lenses and impact substrate (a bend 

removes neutrals) in raster pattern. 
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Comparison of Diffusion and Ion 
Implantation 

 Diffusion is a cheaper and more simplistic method, 
but can only be performed from the surface of the 
wafers. Dopants also diffuse unevenly, and interact 
with each other altering the diffusion rate. 

 

 Ion implantation is more expensive and complex. It 
does not require high temperatures and also allows 
for greater control of dopant concentration and 
profile. It is an anisotropic process and therefore 
does not spread the dopant implant as much as 
diffusion.   
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Epitaxial Growth 

Epitaxial is used to deposit N on N+ silicon, which is impossible it. 

accomplish by diffusion. It is also used in isolation between bipolar 

transistors wherein N- is deposited on P. 

We list below, and with reference to Figure. the sequence of operation 

involved in the process: 

1. Heat wafer to 1200°C.

2. Turn on H2, to reduce the SiO2, on the wafer surface.

3. Turn on anhydrous HCL to vapor-etch the surface of the wafer. This

removes a small amount of silicon and other contaminants.

4. Turn off HCL

5. Drop temperature to 1100°C.

6. Turn on silicon tetrachloride (SiCl4)

7. Introduce dopant.

Epitaxial process
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Epitaxial process
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