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- Electronic Design Automation

~ Grid Routing

Introduction

* In the VLSI design cycle, routing follows cell
placement.

* During routing, precise paths are defined on the
layout surface, on which conductors carrying electrical
signals are run.

* Routing takes up almost 30% of the design time, and
a large percentage of layout area.

 We first take up the problem of grid routing.
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""What is Grid Routing?
* The layout surface is assumed to be made up of a
rectangular array of grid cells.
» Some of the grid cells act as obstacles.
- Blocks that are placed on the surface.
- Some nets that are already laid out.
* Objective is to find out a path (sequence of grid cells)
for connecting two points belonging to the same net.

» Two broad class of algorithms:
Maze routing algorithms.

Line search algorithms. T [ il

R A DOCSSSERN SRS



LENOVO
Pencil


FAE Electronic Design Automation
" Problem Definition
* The general routing problem is defined as follows.
» Given:
- A set of blocks with pins on the boundaries.
- A set of signal nets.
- Locations of blocks on the layout floor.
* Objective:
- Find suitable paths on the available layout
space, on which wires are run to connect the
desired set of pins.
- Minimize some given objective function,
subject to given constraints.
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 Types of routing constraints:
- Minimum width of routing wires.
- Minimum separation between adjacent wires.
- Number of routing layers available.
- Timing constraints.

Grid Routing Algorithms
1. Maze running algorithm
- Lee's algorithm
- Hadlock's algorithm
2. Line search algorithm
- Mikami-Tabuchi's algorithm
- Hightower's algorithm
3. Steiner tree algorithm
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““Maze Running Algorithms
- The entire routing surface is represented by a 2-D
array of grid cells.
- All pins, wires and edges of bounding boxes
that enclose the blocks are aligned with respect to
the grid lines.
- The segments on which wires run are also
aligned.
- The size of grid cells is appropriately defined.
» Wires belonging to different nets can be
routed through adjacent cells without
violating the width and spacing rules.
* Maze routers connect a single pair of points at a time.
- By finding a sequence of adjacent cells from one
point to the other.
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Lee's Algorithm
* The most common maze routing algorithm.
 Characteristics:
- If a path exists between a pair of points S and
T, it is definitely found.
- It always finds the shortest path.
- Uses breadth-first search.
 Time and space complexities are O(h x w) for a grid
of dimension h x w.
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"“Phase 1 of Lee's Algorithm
« Wave propagation phase
- Iterative process.
- During step i, non-blocking grid cells at Manhattan
distance of i from grid cell S are all labeled with i.
- Labeling continues until the target grid cell T isr
marked in step L.
* L 1s the length of the shortest path.
- The process fails if:
* T is not reached and no new grid cells can be
labeled during step i.
* T is not reached and i1 equal M, some upper
bound on the path length.
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"“Phase 2 of Lee's Algorithm
» Retrace phase
- Systematically backtrack from the target cell T
back towards the source cell S.
If T was reached during step i, then at least one grid
cell adjacent to it will be labeled i-1, and so on.
- By tracing the numbered cells in descending order,
we can reach S following the shortest path.
 There 1s a choice of cells that can be made in
general.
* In practice, the rule of thumb is not to change the
direction of retrace unless one has to do so.
» Minimizes number of bends.
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Phase 3 of Lee's Algorithm
* Label clearance
- All labeled cells except those corresponding to the
path just found are cleared.
- Search complexity is as involved as the wave
propagation step itself.

10
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, Electronic Design Automation
* Memory Requirement
- Each cell needs to store a number between 1 and L,
where L=2N is some bound on the maximum path length.
Where N is number of cells in each row.
- One bit combination to denote empty cell.
- One bit combination to denote obstacles.
log2(L+2) bits per coll.

* Improvements:
-Instead of using the sequence 1,2,3,4,5.... For
numbering the cells, the sequence 1,2,3,1,2,3,... is used.
-For a cell, labels of predecessors and successors are
different. So tracing back is easy.
log2(3+2) = 3 bits per cell.
-Use the sequence 0,0,1,1,0,0,1,1,...
* Predecessors and successors are again different.
log2(2+2) = 2 bits per cell.
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Reducing Running Time
1- Starting point selection
a. Choose the starting point as the one that is
farthest from the center of the grid.
2- Double fan-out
a. Propagate waves from both the source
and the target cells.
b. Labeling continues until the wavefronts
touch.
3- Framing
a. An artificial boundary is considered

outside the terminal pairs to be connected.

b. 10-20% larger than the smallest bounding
box.
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Connecting Multi-point Nets
A multi-pin net consists of three or more terminal
points to be connected.
» Extension of Lee's algorithm:
- One of the terminals of the net is treated as
source, and the rest as targets.
- A wave is propagated from the source until one
of the targets is reached.
- All the cells in the determined path are next
labeled as source cells, and the remaining
unconnected terminals as targets.

- Process continues.

14
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““Hadlock's Algorithm
» Uses a new method for cell labeling called detour
numbers.
- A goal directed search method.
- The detour number d(P) of a path P connecting
two cells S and T is defined as the number of grid
cells directed away from its target T.
- The length of the path P is given by:
len(P) = MD (S,T) + 2d(P)
where MD (S,T) is the Manhattan distance
between Sand T.
>> The cell filling phase of Lee's algorithm can be
modified as follows:
- Fill a cell with the detour number with respect
to a specified target T (not by its distance from
source).

15
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- Cells with smaller detour numbers are

expanded with high priority.
* Path retracing is of course more complex, and
requires some degree of searching.
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 Advantages Hadlock's Algorithm:
- Number of grid cells filled up is considerably
less as compared to Lee's algorithm.
- Running time for an NxN grid ranges from
O(N) to O(N?).
* Depends on the obstructions.

gisi (2

» Also locations of S and T.
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" Line Search Algorithm
* In maze running algorithms, the time and space
complexities are too high.
* An alternative approach is called line searching,
which overcomes this drawback.
» Basic idea:

- Assume no obstacles for the time being.

- A vertical line drawn through S and a

horizontal line passing though T will intersect.

* Manhattan path between S and T.

- In the presence of obstacles, several such lines

need to be drawn.

* Line search algorithms do not guarantee finding

the optimal path.

- May need several backtrackings.

18
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- Running time and memory requirements

are significantly less.
- Routing area and paths are represented by

a set if line segments,
* Not as a matrix as in Lee's or Hadlock's

algorithm.

19
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" Mikami-Tabuchi's Algorithm

* Let S and T denote a pair of terminals to be

connected.

» Step 1:
- Generate four lines (two horizontal and two
vertical) passing through Sand T.
- Extend these lines till they hit obstructions or the
boundary of the layout.
- If a line generated from S intersects a line
generated from T, then a connecting path is found.
- If they do not intersect, they are identified as trial
lines of level zero.
* Stored in temporary storage for further
processing.
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e Step i of Iteration:

- Pick up trial lines of level i, one at a time.
* Along the trial line, all its grid points are
traced.
» Starting from these grid points, now trial

lines (of level i+1) are generated perpendicular
to the trial line of level i.

- If a trial line of level i+1 intersects a trial line (of any
level) from the other terminal point, the connecting
path can be found.

* By backtracing from the intersection point to S
and T.

 Otherwise, all trial lines of level (i+1) are added
to temporary storage, and the procedure repeated.
* The algorithm guarantees to find a path if it exists.

21
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¢Hightower's Algorithm

* Similar to Mikami*Tabuchi's algorithm.
- Instead of generating all line segments
perpendicular to a trial line, consider only those
lines that can be extended beyond the obstacle
which blocked the preceding trial line.

-Steps of the algorithm:

- Pass a horizontal and a vertical line through source

and target points (called first-level probes).

- If the source and the target lines meet, a path is

found.

- Otherwise, pass a perpendicular line to the previous

probe whenever it intersects an obstacle.

» Concept of escape point and escape line.

23
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Global Routing:
Basic Idea
* The routing problem is typically solved using a two-
step approach:
1. Global Routing
- Define the routing regions.
- Generate a tentative route for each net.
- Each net is assigned to a set of routing regions.
- Does not specify the actual layout of wires.
2. Detailed Routing
- For each routing region, each net passing
through that region is assigned particular routing
tracks.
- Actual layout of wires gots fixed.
- Associated sub-problems: channel routing and
switchbox routing.

24
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Routing Regions
» Regions through which interconnecting wires are laid
Out.
* How to define these regions?
- Partition the routing area into a set of non-
intersecting rectangular regions.
- Types of routing regions:

 Horizontal channel: parallel to the x-axis with
pins at their top and bottom boundaries.

* Vertical channel: parallel to the y-axis with pins
at their left and right boundaries.

» Switchbox: rectangular regions with pins on all

four sides. T )
L channel l:“_'libhi’i/;?
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* Points to note:

- Identification of routing regions is a crucial first
step to global routing.

- Routing regions often do not have pre-fixed
capacities.

- The order in which the routing regions are
considered during detailed routing plays a vital
part in determining overall routing quality.

gisi (2
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* Three types of channel junctions may occur:

- L-type:
* Occurs at the corners of the layout surface.
* Ordering is not important (hiring detailed

routing.
* Can be routed using channel routers.

- T-type:
* The leg of the "T" must be routed before the

shoulder.
* Can be routed using channel routers.

- +-type:
» More complex and requires switchbox routers.

» Advantageous to convert +-junctions to T-

junctions.

27
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Design Style Specific Issues
* Full Custom
- The problem formulation is similar to the general
formulation as discussed.
* All the types of routing regions and channels
junctions can occur.
- Since channels can be expanded, some violations of
capacity constraints are allowed.
- Major violation in constraints are, however, not
allowed.
» May need significant changes in placement.

28
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« Standard Cell

- At the end of the placement phase

* Location of each cell In a row is fixed.

* Capacity and location of each feed-through is

fixed.

* Feed-throughs have predetermined capacity.
- Only horizontal channels exist.

* Channel heights are not fixed.
- Insufficient feed-throughs may lead to failure.
- Over-the-cell routing can reduce channel height, and
change the global routing problem.

29
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» Gate Array
- The size and location of cells are fixed.
- Routing channels & their capacities are also
fixed.
-- Primary objective of global routing is to
guarantee routability.
- Secondary objective may be to minimize
critical path delay.

gisi (2
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Simulated Evolution / Genetic Algorithm
* The algorithm starts with an initial set of placement
configurations.
- Called the population.
 The process is iterative, where each iteration
Is called a generation.
- The individuals of a population are evaluated to
measure their goodness.
* To move from one generation to the next, three
genetic operators are used:
1. Crossover
2. Mutation
3. Selection
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- CROSSOVER Operator
* Choose a random cut point.
* Generate offsprings by combining the left segment of
one parent with the right segment of the other.
— Some blocks may get repeated, while some
others may get deleted.
— Various ways to deal with this problem.

* Number of times the "crossover" operator is applied
Is controlled by crossover rate.
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MUTATION Operator

» Causes incremental random changes to an offspring

produced by crossover.

» Most common is pairwise exchange.

» Number of times this is done is controlled by

mutation rate.

SELECT Operator
* Select members for crossover based on their fitness
value.

- Obtained by evaluating a cost function.
* Higher the fitness value of a solution, higher will be
the probability for selection for crossover.
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Force Directed Placement
* Explores the similarity between placement problem
and classical mechanics problem of a system of bodies
attached to springs.
 The blocks connected to each other by nets are
supposed to exert attractive forces on each other.
- Magnitude of this force is directly proportional
to the distance between the blocks.
» Analogous to Hooke's law in mechanics.
- Final configuration is one in which the system
achieves equilibrium.
* A cell 1 connected to several cells j experiences a total force
Fi =X ;(w;; * d;;) where wij is the weight of connection
between i and j dij is the distance between | and J.
* [f'the cell 1 is free to move, it would do so in the direction of
force F, until the resultant force on it is zero.
» When all cells move to their zero-force target locations, the
total wire length is minimized.
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« For cell i, if (xi’, yi°) represents the zero-force target
location, by equating the x- and y-components of the
force to zero, we get

Zi((wij * (% — xio)) =0

Z((Wij * (v — yio)) =0

i

\EY
plfi
giai (ol

« Solving for xi’ and yi°, we get (7(] )

w0 = (Y wyex) /O w4 )
J j

yi® = O Wiy ¥ / ) wij)
J J

» Care are should be taken to avoid assigning more
than one cell to the same location.
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Breuer's Algorithm

» Partitioning technique used to generate placement.
* The given circuit is repeatedly partitioned into two
sub-circuits.

— At each level of partitioning, the available
layout area is partitioned into horizontal and
vertical subsections alternately.

— Each of the sub-circuits is assigned to a
subsection.

— Process continues till each sub-circuit consists
of a single gate and has a unique place on the
layout area.

* Different sequences of cut lines used:
1. Cut Oriented Min-Cut Placement

2. Quadrature Placement

3. Bisection Placement

4. Slice Bisection Placement
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Cluster Growth
* In this constructive placement algorithm, bottom-up
approach is used.
* Blocks are placed sequentially in a partially
completed layout.
- The first block (seed) is usually placed by the
user.
- Other blocks are selected and placed one by
one.
* Selection of blocks is usually based on connectivity
with placed blocks.
* Layouts produced are not usually good.
- Does not take into account the interconnections
and other circuit features.
* Useful for generating initial placements.
- For iterative placement algorithms.

11

Algorithm Cluster_Growth
begin
B = set of blocks to be placed;
Select a seed block S from B;
Place S in the layout;
B=B-S;
while (B # ¢) do
begin
Select a block X from B;
Place X in the layout;
B=B-X;
end;
end




Electronic Design Automation

Ninevah University

Collage of Electronics Enginearing

f ol 3
( R

Electronic Design

Automation
Lecturer: H. M. Hussein

EDAQ09: Physical Design
Automation — pin Assignment

&

i s Ly

201,

Ninevah University

gigi d2alt




Electronic Design Automation
Pin Assignment
Introduction
* The purpose is to define the signal that each pin will
receive.
e It can be done:

- During floorplanning

- During placement

- After placement is fixed
> For undesigned blocks, a good assignment of pins
Improves placement.
« If the blocks are already designed, still some pins can
be exchanged.

Pin
Assignment

Pins 90 Pins 90
' (o -

Connections 90 \
V7NN
Pins 90 Pins 90
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Pin Assignment
Input:
- A placement of blocks.
- Number of pins on each block, possibly an
ordering.
- A netlist.

* Requirements:
- To determine the pin locations on the blocks.

Objectives:
- To minimize net-length.
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 Functionally equivalent pins:
» Exchanging the signals does not affect the
circuit.
 Equipotential pins:
Both are internally connected and represent the
same net.

A

—

)
0

A, B :: functionally equivalent
C, D :: equipotential

B

Functionally-Equivalent Pins:  (functionality of circuit not change if swapped)

% Metal2 [ ] Contact

W Metalt K Via

polysilicon

L

] p/n diffusion

Electrically-Equivalent Pins:  (connected)
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Problem Formulation

* Purpose is to optimize the assignment of nets within

a functionally equivalent (or equipotential) pin groups.

* Objective:
- To reduce congestion or reduce the number of
CroSSOoVers.
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Design Style Specific Issues
e Full Custom
- Two types of pin assignment problems:
a) During floorplanning, the pin location along
the block boundary can he changed as the block
Is assigned a shape. <REDUCES
CONGESTION>
b) During placement, simply assign nets to pins.
e Standard Cell
Essentially two things to be done:
a) Permuting net assignment for functionally
equivalent pins.
b) Changing equipotential pins for a net.

* Gate Array - Same as that for standard cells.
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Pin Assignment
Algorithms

General
Techniques

Concentric
Circle Mapping

Topological
Method

Nine Zone
Method

Special
Techniques

Channel Pin
Assignment
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Concentric Circle Mapping
 Uses two concentric circles to planarize the
interconnections.
- Pins on the block being considered are shown
as points on the inner circle.
- Interconnections to be made with other blocks
are shown as points on the outer circle.

» Divides the problem into two parts:
a) Assignment of pins to points of the two
circles.
b) Mapping the points on the inner circle to those

on the outer circle.
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Given: Two sets of pins

Determine the points (2)
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Determine the points (2)
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Determine initial mapping and (4) optimize the (3)
mapping (complete rotation)
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Determine initial mapping and (4) optimize the (3)
mapping (complete rotation)
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Best mapping (shortest Euclidean distance) (4)

Final pin assignment

12
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Topological Pin Assignment
 Similar to concentric circle mapping.
* Easier to complete pin assignment.
- When there is interference from other
components and barriers.
- For nets connected to more than two pins.
« [f a net has been assigned to more than two pins, then
the pin closest to the center of the primary component
IS chosen.
* Pins of primary component are mapped onto a circle
as before.
» Beginning at the bottom of the circle, and moving
clockwise, the pins are assigned to nets.

13
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Integrated Approach
* Better understanding of the different stages in
physical design automation over the years.
- Attempts are being made to merge some steps
of the design cycle.
- For example, floorplanning and placement are
considered together.
- Sometimes, placement and routing stages can
also be combined together.

» Still a problem of research.

14
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Placement
Introduction
A very important step in physical design cycle.
- A poor placement requires larger area.
- Also results in performance degradation.
» It is the process of arranging a set of modules on the
layout surface.
- Each module has fixed shape and fixed terminal
locations.
- A subset of modules may have pre-assigned
positions (e.g., I/0O pads).

15
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The Placement Problem
* Inputs:
- A set of modules with
« well-defined shapes
» fixed locations of pins.
- A netlist.

* Requirements:

- Find locations for each module so that no two
modules overlap.

- The placement is routable.

 Objectives:
- Minimize layout area.
- Reduce the length of critical nets.
- Completion of rotating.

17
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Placement Problems at Different Levels
1. System-level placement
- Place all the PCBs together such that
* Area occupied is minimum
* Heat dissipation is within limits.

2. Board-level placement
- All the chips have to be placed on a PCB.
* Area is fixed
» All modules of rectangular shape
- Objective is to
* Minimize the number of routing layers
* Meet system performance requirements.

18
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el

3. Chip-level placement
- Normally, floorplanning / placement carried out
along with pin assignment.
- Limited number of routing layers (2 to 4).
 Bad placements may be unroutable.
* Can be detected only later (during routing)
* Costly delays in design cycle.
- Minimization of area.

19
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Problem Formulation
 Notations:
B1,B2,..., Bn: modules/blocks to be placed
Wi, hi,: width and height of Bi 1<i<n
N={N1,N2,....Nm} : set of nets (i.e. the netlist)
Q={Q1,Q2,...Qk} : rectangular empty spaces for
routing
Li . estimated length of net Ni
1<i<m

20
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» The problem
Find rectangular regions R={R1,R21...Rn} for each
of the blocks such that
* Block Bi can be placed in region Ri.
* No two rectangles overlap, RiNRj = @.
* Placement is routable (Q is sufficient to route
all nets).
* Total area of rectangle bounding R and Q is
minimized.
« Total wire length ) Li is minimized.
For high performance circuits, max{Li|
iI=1,2,...,m} is minimized

. General problem is NP-complete.
. Algorithms used are heuristic in nature.

21
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Interconnection Topologies
* The actual wiring paths are not known during
placement.
-For making an estimation, a placement algorithm
needs to model the topology of the interconnection
nets.
* An interconnection graph structure is used.
* Vertices are terminals, and edges are
interconnections.

22
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Estimation of Wirelength
* The speed and quality of estimation has a drastic
effect on the performance of placement algorithms.
- For 2-terminal nets, we can use Manhattan
distance as an estimate.
- If the end co-ordinates are (x1,y1) and (x2,y2),
then the wire length L= | xI - x2 |+ | y1 - y2 |
» How to estimate length of multi-terminal nets?

23
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Modeling of Multi-terminal Nets
1- Complete Graph

Complete Graph

« 'C, = n(n-1)/2 edges for a n-pin net. 26
« A tree has (n-1) edges which is 2/n times the Z
number of edges of the complete graph. = |%

* Length is estimated as 2/n times the sum of the
edge weights.

2- Minimum Spanning Tree
* Commonly used structure.
* Branching allowed only at pin locations. Minimum Spanning Tree
* Easy to compute. §MEEUPEN 00 1

24
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3- Rectangular Steiner Tree
A Steiner tree is the shortest route for
connecting a set of pins.
» A wire can branch from any point along its

length.

* Problem of finding Steiner tree is NP-complete.

4- Semi Perimeter
» Efficient and most widely used.
» Finds the smallest bounding rectangle that
encloses all the pins of the net to be connected.
* Estimated wire length is half the perimeter of
this rectangle.
» Always underestimates the wire length for
congested nets.

25
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Design Style Specific Issues
* Full Custom
- Placing a number of blocks of various shapes
and sizes within a rectangular region.
- Irregularity of block shapes may lead to unused
areas.

» Standard Cell
— Minimization of the layout area means:
* Minimize sum of channel heights.
» Minimize width of the widest row.
 All rows should have equal width.
— Over-the-cell routing leads to almost “channel-
less™ standard cell designs.

26
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» Gate Arrays

- The problem of partitioning and placement are
the same in this design style.
- For FPGA's, the partitioned sub-circuit may be
a complex netlist.

» Map the netlist to one or more basic

blocks (placement).

27
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" Classification of Placement Algorithms

Placement Algorithms

Simulation Based

Simulated
Annealing

Simulated
Evolution

— Force Directed

—

Partitioning
Based

Breuer's
Algorithm

Terminal
Propagation

28
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Force Directed
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Simulated Annealing
* Simulation of the annealing process in metals or glass.
- Avoids getting trapped in local minima.
- Starts with an initial placement.
- Incremental improvements by exchanging blocks,
displacing a block, etc.
- Moves which decrease cost are always accepted.
- Moves which increase cost are accepted with a
probability that decreases with the number of iterations.

* Timberwolf is one of the most successful placement
algorithms based on simulated annealing.

29
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Simulated Annealing Algorithm
Algorithm SA_Placement
begin
T = initial temperature;
P = initial_placement;
while ( T > final_temperature) do
"while (no_of trlals_at eachtemp not yet
completed) do
[ new P = PERTURB (P);
delta_C = COST (new_P) - COST (P);
- _| if (delta_C < 0) then

P =new P;
else if (random(0,1) > exp(delta_C/T)) then
- P =new P;

| T =SCHEDULE (T); /** Decrease temperature
end

30
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TimberWolf

* One of the most successfulplacement algorithms.

- Developed by Sechen and Sangiovanni-Vincentelli. ¢
Parameters used:

- Initial_temperature = 4,000,000

- Final_temperature = 0.1

- SCHEDULE(T) = alpha(T) x T

« alpha(T) specifies the cooling rate which depends on

the current temperature.

* a(T) is 0.8 when the cooling process just starts.

* a(T) 1s 0.95 in the medium range of temperature.

* a(T) 1s 0.8 again when temperature is low. Log T

31
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The PERTURB Function
* New configuration is generated by making a weighted
random selection from one of the following:
a) The displacement of a block to a new location.
b) The interchange of locations between two blocks.
¢) An orientation change for a block.
- Mirror image of the block's x-coordinate.
- Used only when a new configuration generated using
alternative (a) is rejected.
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The COST Function
* The cost of a solution is computed as:
COST = costl + cost2 + cost3
where
costl : weighted sum of estimated length of all
nets
cost2 : penalty cost for overlapping
cost3 : penalty cost for uneven length among
standard cell rows.
- Overlap is not allowed in placement.
- Computationally complex to remove all overlaps.
- More efficient to allow overlaps during intermediate
placements.
» Cost function (cost2) penalizes the overlapping.
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Floor-Planning
Problem Definition
e Input:
- A set of blocks, both fixed and flexible.
¢ Area of the block A; = w; x h;
e Constraint on the Shape of the block
(rigid/flexible)
- Pin locations of fixed blocks.
- A netlist.
e Requirements:
- Find locations for each block so that no two
blocks overlap.
- Determine shapes of flexible blocks.
e Objectives: - Minimize area.
- Reduce wire-length for critical nets.
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Example: Rigid Blocks

Module Width Height
A 1 1
B 1 )
C 1 1
D 1 2
E 2 1

Feasible Floor-plans

Mm

B

-
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Design Style Specific Issues
e Full Custom
- All the steps required for general cells.
e Standard Cell
- Dimensions of all cells are fixed.
- Floorplanning problem is simply the
placement problem.
- For large netlists, two steps:
e First do global partitioning.
e Placement for individual regions next.

e Gate Array
- Floorplanning problem same as placement
problem.
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Estimating Cost of a Floorplan
e The number of feasible solutions of a floorplanning
problem is very large.
— Finding the best solution is NP-hard.
e Several criteria used to measure the quality of floor-
plans:
a) Minimize area
b) Minimize total length of wire
c) Maximize rout-ability
d) Minimize delays
e) Any combination of above.
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e How to determine area?

- Not difficult.

- Can be easily estimated because the
dimensions of each block is known.

- Area A computed for each candidate floor-
plan.

e How to determine wire length?

- A coarse measure is used.

- Based on a model where all I/O pins of the
blocks are merged and assumed to reside at its
center.

- Overall wiring length L =};; ;(c;; * d;;) where
cjj is the connectivity between blocks i and j
djjis the Manhattan distances between the
centers of rectangles of blocks i and j.




Electronic Design Automation

e Typical cost function used:
Cost=wl*A+w2*L
where w1 and w2 are user-specified
parameters.
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Slicing Structure

e Definition
- A rectangular dissection that can be obtained
by repeatedly splitting rectangles by horizontal
and vertical lines into smaller rectangles.
e Slicing Tree
- A binary tree that models a slicing structure.
- Each node represents a vertical cut line (V), or
a horizontal cut line (H).
e A third kind of node called Wheel (W)
appears for non-sliceable floor-plans
(discussed later).
- Each leaf is a basic block (rectangle).

B 5
c

Fl o
p|l E
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A 8
D Cc D E

Also called "WHEEL"

Hierarchical Floor plan:
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Floor-planning Algorithms
e Several broad classes of algorithms:

gisi (2

1. Integer programming based
2. Rectangular dual graph based
3. Hierarchical tree based

4. Simulated annealing based

5. Other variations

10
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Linear programming

Linear programming (LP. or linear optimization) is a
mathematical method for determining a way to achieve the best
outcome (such as maximum profit or lowest cost) in a given
mathematical model for some list of requirements represented as
linear relationships.

linear programming is a technique for the optimization of a linear
objective function, subject to constraints.

maximizé c¢'x

subjectto Ax<b
and x>0

11
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How is ILP applied to floor planning?

* The constraints specifving a feasible floor plan are described
by a set of mathematical equations

* Solved by commercial ILP solvers.

* “An analvtical approach to floor plan design and optimization™
by Suphachai sutanthavibul. Eugene Shragowitz and
J.B.Rosen. IEEE Transaction on CAD. 1991

12
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Problem formulation

Let S be the set of modules.
Modules can be ngid or flexible.
*  Assume rigid modules.

-

Original algorithm can handle flexible modules

13
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Modulei is to the left of

A
Xitw; < Xj W,
e
*
|
I
Wy |
e Ly
- i
! I
I
h; : k L :
- ), .
(xayy) (xpyy
\J
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Moduleiis below j
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.
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Modulei is to the right of j

=
B e o

X,
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Modulei is above j

P SRR

lxoy)"
ythysy

Yi=hy2y

L

<

Y
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Relative positions of 2 modules 1 and |
governed by 4 equations

Xi - w; < .\'j
Yithi<y;

Xj= ”’j 2.\}

Yi-hj2y;

18
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Equation to be satisfied

19
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Equation to be satisfied

20
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Equation to be satisfied

21
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Notation & Problem Definition

* Let Wand H be upper bounds on the floorplan width and height.
HenceL wi—x] < Wand [y~ yi<H

* If Wand H are not given, then possible estimates of these quantities
could be W= X, w; and H=Z, /1,

22
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Linear Prog. Formulation:

Assumption: one dimension of the chip (W). is fixed.

* CASE 1: All modules are rigid and have fixed orientation.
Constraints:

(1) no two modules overlap

(2) each module is enclosed within the floorplan enveloping rectangle
of width W and height Y, 1e.x;, + w,sWand v, + I, €Y. 1<i<m
(3) all modules are in the first quadrant. x; =0 and y;=20; 1<:<n.

Objective:
* Since the width W is fixed. a possible objective to minimize would
be Y . the height of the floor plan.

23
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Linear Prog. Formulation

To summarize, we end up with the following 0-1 integer linear

program: s
Y € minimize
Subject to :

T xtw s W I<isn
Nty 1<i<n
Xptw S x Wy +yy)s 1<i<j<n

- Xp=wy2x- W -xy+yy); 1<i<j<n
Vit Sy, +H(I +x5-y5); 1<i<j<n
Yi-ly2y;- H2 -xy-yy); 1<i<j<n

X 20;y,;20; 1<i<n

24
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Linear Prog. Formulation:

CASE 2: All modules rigid and rotation allowed.

For each free-orientation module i, one 0-1 integer variable is introduced z;.
z;= 0 = module i is not rotated; z; = 1 = module 1 is rotated.

Y € minimize

Subject 9 :

—~ Xt (1-)w S W; 1<i<n
yitaw+(1-)h<Y; 1<isn
Xyt oy + (1-2)w x5 +M(xy+ yy ); 12i<j=n

o Xp= gy (1-2)wy Zx5-M(1-xy+yy); 15i<jsn
Yerzw (1= <y +M(1+x4-yy ); 1<i<jsn
Yi=gwy= (1 -2y 2 y; -M(2-Xy-yy); 1 <i<j<n

| Y20y, 20; I15isn

* M could be set equal to max(W,H) or W+ H.

*  The number of equations did not change from the first formulation. However, the
number of 0-1 integer variables have increased by n, which is equal to the number
of modules.

25
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Practice problem

* Formulate the ILP floorplanning for the following problem
mstances.

* Assume that the dimension of the fixed modules 1s given as (width,
height).

* Four fixed modules: m (4, 53), my(3, 7), my(6, 4), andmy(~, 7).
Rotation 1s not allowed.

26
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Practice problem

* Formulate the [ILP floorplanning for the following problem
instances.

* Assume that the dimension of the fixed modules s given as (width.
height).

* Four fixed modules: m;(4, 3), my(3, 7), my(6, 4), andmy~, 7).
Rotation 1s not allowed.

* We associate 8 integefvanables —(x;,1),(x5,75),(x;,1;) and (x,y,) to
denote the co-ordianates of the lower left comer of the 4 modules

* Weassociate 12 binary variables for each pair of modules- (x;,,v,,)
for modules m; and my, (x; 3,3 for modules m; and m; ete

No. integer variables = 2*n
Number of 0-1 variables = n*(n-1)
No. of constraints = 4n+2n(n-1)

27
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Minimize y*
Subject to
non-overlap constraints:

ry+wy < x3 + 20(g12 + ¥12)

ry—wy 2 ry—20(1 — x12 + n12)
v +h <2+ 231+ x12 - n12)
i —ha Z ya = 23(2 - x12 - n12)

ry+wy £ r3+ 20(x13 + n13)

xy —wy 2 xr3 — 20(1 = x13 + yn13)
vt +h < gz 4+ 23(1 + 113 — n13)
1 —hs = y3 — 23(2 = 13 — n1a)

Size of the linear program:
2 x n continuous variables, n(n - 1) integer variables, and 2n? linear
constraints.

28
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xry+wy € xq+ 20014 + y14)

ry = wy = rqg = 20(1 = r1q + y14)
i +hy < g+ 2301 4 114 = v14)
1 = hy = ya = 23(2 — 214 — y1a)
ro 4+ up < ry+ 20(xo3 + y23)

ry —wy = xy — 20(1 — x93 + y23)
y2 4+ ho < y3 4+ 23(1 + ra3 — y23)
ya — hy = y3 — 23(2 — a3 — y2)
ro 4wy < ry + 20(xoq + y24)

ry = wy = ry = 20(1 = rq + yu)
y2 + ha < ya + 23(1 + r24 — y)
y2 — hq = ya — 23(2 — x24 — y2)
ry+wy < ry+ 20(x3q + ysa)

xrg —wy 2 rg — 20(1 — 34 + y)
ys+ hy < yg+ 23(1 4+ r34 — y3q)
ys —ha = ya — 23(2 — w34 — y34)

29
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variable type constraints:
120,220, 2320, x4 20
120020 y320 y20
r12, T13, r14. r23, ra. r3q € {01}
2. Y13 Y14. Y23, 24 w34 € {0.1}

chip width constraints:
r+w <y
rp+uwp <y’
r3+wy <y’
rgtuwyg <y’
chip height constraints:

n+h <y
m+h <y
ys+hy <y*
m+hs <y

30
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Solving using GLPK, we obtain the
following solution:

= 12
r.m)=

(7.7). (x2.42) =
2.y2) = (1,1):
3.mn3) = (1,1) :
'14-14) = (1,0)
23, y23) = (1,0) :
2 .0124) (1.0) :

ysg) = (0;1) :

(1 is above 2)
(1 is above 3)

¢ (1is to the right of 4)

(2 is to the right of 3)
(2 is to the right of 4)
(3 is below 4)

31
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y' =12
(x1,m) = (7.7). (x2.42) = (9.0). (x3.y3) = (0.0). (4. 4) = (0.4)

(ry2.
(713,
(714,
(93,
(24,
(r34.

n2) = (L.1):
ns) =(1.1):
v1a) = (1,0) :
y23) = (1,0) :
y24) = (1,0) :
ys4) = (0.1) :

(1 is above 2)
(1 is above 3)
(1 s to the right of 4)
(2 is to the right of 3)
(2 is to the right of 4)
(3 is below 4)
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Same problem, rotation allowed
[

be coqeee pooes

Refer: Practical Problems in Physical design automation by Sung Kyu Lim, Springer,2008
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VLS| Design Cycle
e Large number of devices

e Optimization requirements for high performance
e Time-to-market competition
e Cost

System Spedcifications

Manual

Automation

Chip
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gigh

el
VLSI Design Cycle (contd.i

. System specification
. Functional design

. Logic design

. Circuit design

. Physical design

. Design verification

. Fabrication

0O NN OO 1 h W N B

. Packaging, testing, and debugging
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Physical Design

e Converts a circuit description into a geometric

description.

-This description is used for fabrication of the

chip.

e Basic steps in the physical design cycle
1. Partitioning
2. Floor-planning and placement
3. Routing
4. Compaction

1F

v

ENTITY test
port a: in;
end ENTITY;

System
Specification

Architectural
Design

v
Functional Design
and Logic Design

v

Circuit Design

Physical Design

Physical Verification

Signal Routing
\ Timing Closure

and Signoff
2

Layout Post
Proc?{ssing

Fabrication
v
Packaging
and Testing

; Partitioning
Floorplanning

Clock Tree Synthesis
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Digital IC Design Flow: A quick look

Pre-layout
Simulation

|

A4

Design Entry

A4

3

A 4

Logic Synthesis

Post-layout
Simulation

v

h 4

L 3

Circuit
Extraction

Floorplanning

v

Placement

A4

Routing

i

~

>

Logical
design
(front-end
CAD)

Physical
design
(back-end
CAD)
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dMVLSI Design Styles

* Programmable Logic Devices
— Programmable Logic Device (PLD)
— Field Programmable Gate Array (FPGA)
— Gate Array

e Standard Cell (Semi-Custom Design)

e Full-Custom Design
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Field Programmable Gate Array (FPGA)
e User / Field Programmability.
e Array of logic cells connected via routing channels.

e Different types of cells:
- Special I/O cells.
- Logic cells. Input/Output HE [ B8

e Mainly lookup tables BIOCk\l

(LUT) with associated registers. s M

¢ Interconnection between cells:

cs
- Using SRAM based switches. I.
cs
[10B]

l Switch

" Matrix

- Using antifuse elements. configurable "]
Logic Block
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Configurable Logic Block:
CLB Functionalities

e Two 4-input function generators -
Implemented using Lookup Tables
using 16x1 RAM. - Can also implement
16x1 memory.

e Two Registers Each can be
configured as flip-flop or latch. -
Independent clock polarity. -
Synchronous and asynchronous Set /
Reset.

G3
G2
Gl

F4
F3
F2
Fl

K

(Clock)
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1/0 Block Diagram

SRAM

Contig Bits

\ Hl _

D0 ) L~

Flip Output

E Bufter
Input _I
Butte

o

Flip-

Flop/ Delay

>Latch
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Xilinx FPGA Routing
1) Fast Direct Interconnect - CLB to CLB
2) General Purpose Interconnect - Uses switch matrix.

Pass transistor Tri-state buffer
routing switch routing switch Logic block

CHCH
24

e

Routing wire Logic block pin to
) routing connection point
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FPGA Design Flow
e Design Entry

- In schematic, VHDL, or Verilog.
e Implementation

- Placement & Routing

- Bit-stream generation

- Analyze timing, view layout, simulation, etc.
e Download

- Directly to Xilinx hardware devices with
unlimited reconfigurations.

11
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el
Gate Array
e In view of the fast prototyping capability, the gate
array (GA) comes after the FPGA.
- Design implementation of
* FPGA chip is done with user
programming,
e Gate array is done with metal mask
design and processing.
e Gate array implementation requires a two-step

manufacturing process:
1. The first phase, which is based on generic (standard)
masks, results in an array of uncommitted transistors
on each GA chip.
2. These uncommitted chips can be customized later,
which is completed by defining the metal interconnects
between the transistors of the array.

12
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Design Phases:
Phase 1:
Fabricate an array of transistors/gates:
- Diffusion
- Poly-silicon
- Oxidation
Phase 2:
Interconnect transistors/gates
- metallization.

13
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* The GA chip utilization factor is higher than that of

FPGA.

The used chip area divided by the total chip

area.
e Chip speed is also higher.

- More customized design can be achieved with
metal mask designs.

e Current gate array chips can implement as many as
hundreds of thousands of logic gates.

14
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Standard Cell
e One of the most prevalent custom design styles.
-- Also called semi-custom design style.
- Requires developing full custom mask set.
e Basic idea:
- All of the commonly used logic cells are
developed, characterized, and stored in a
standard cell library.
- A typical library may contain a few hundred
cells.
¢ Inverters, NAND gates, NOR gates,
complex AOI, OAI gates, D-latches, and flip-
flops.

15
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Characteristic of the Cells

Each cell is designed with a fixed height.
- To enable automated placement of the cells,
- Routing of inter-cell connections.
- A number of cells can be abutted side-by-side
to form rows.
e The power and ground rails typically run parallel to
upper and lower boundaries of cell.
- Neighboring cells share a common power and
ground bus.
- nMOS transistors are located closer to the
ground rail while the pMOS transistors are
placed closer to the power rail.
e The input and output pins are located on the upper
and lower boundaries of the cell.

16
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2. Standard cell layout

17
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Floor-plan for Standard Cell Design
¢ Inside the I/O frame which is reserved for 1/0 cells,
the chip area containsrows or columns of standard
cells.
- Between cell rows are channels for dedicated
inter-cell routing.
- Over-the-cell routing is also possible.
e The physical design and layout of logic cells ensure
that
- When placed into rows, their heights match.
- Neighboring cells can be abutted side-by-side,
which provides natural connections for power
and ground lines in each row.

18
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Feed-through Cell

Feedthrough cell

Row of cells

e

B

<— Routing Channel

19
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Full Custom Design

* The standard-cells based design is often called semi-
custom design.

- The cells are pre-designed for general
use and the same cells are utilized in
many different chip designs.

¢ In the full custom design, the entire mask design is
done anew without use of any library.

- The development cost of such a design
style is prohibitively high.

- The concept of design reuse is becoming
popular to reduce design cycle time and
cost.

20
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e The most rigorous full custom design can be the
design of a memory cell.

- Static or dynamic.

- Since the same layout design is
replicated, there would not be any
alternative to high density memory chip
design.

e For logic chip design, a good compromise can be
achieved by using a combination of different design
styles on the same chip.

— Standard cells, data-path cells and PLAs.

21
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Comparison among Various Design Styles

Gate array Standard cell

Design Style

Full custom

Cell size Fixed Fixed Fixed height  Variable
Cell typo Programmable Fixed Variable Variable
Cell placement Fixed Fixed In row Variable
Interconnect Programmable Variable Variable Variable
Design time Very fast Fast Medium Slow

22
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Circuit Partitioning:

System Design

eDecomposition of a complex system into
smaller subsystems.

eEach subsystem can be designed
independently. eDecomposition scheme has to
minimize the interconnections between the
subsystems. eDecomposition is carried out
hierarchically until each subsystem is of
manageable size.

M1, M2, ..., Mn, Interface Information

23
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Example

Wires
Cutl-2:4
Cut2-3:4

Size:
Cutl: 15

Cut2: 16 i | v
Cut3: 17

(b)

24
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Partitioning at Different Levels
e Can be done at multiple levels:
— System level
— Board level
— Chip level.

e Delay implications are different:
— Intra-chip 2 X
— Intra-board or Inter-chip = 10X
— Inter-board = 20X

FPGA DEVICE
D - [
Board H : Board
Device 1 Internal Delay ... Data Path Delay REGE Internal Delay 1 !
oINS i oour e
1
’ Q“———@E—Q’ D‘ 340_.‘ D\ %O.E’ ————— ’ )
T o O T
1 Input E T T Tf_:‘.._."I,m i Output § ™=,
; Delay 1 Sl Tsa § I Dela 3
A v | BUFG ’{l\ j]\ H v ;g.
H § i [
™ i /
Port Clock ~ CLKO 5? 1. : i Port Clock
l< : >|< >l< : >|
[ Inter-chip path | Intra-chip path | Inter-chip path |
[} [
1
L}
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Problem Formulation

1. Interconnection between partitions is minimized.
2. Delay due to partitioning is minimized.

3. Number of terminals must be less than a
predetermined maximum value.

4. The area of each partition should remain within
specified bounds.

5. The number of partitions should also remain within
specified bounds.

26
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Classification of Partitioning Algorithms

Partitioning Algorithms

Group Migration Simulation Based Performance Driven
kem‘%%ha”' Simulated Annealing
Lin
Fiduccia-Mattheyses Simulated Evolution
Goldberg-
Burstein

27



Sk Electronic Design Automation

Group Migration Algorithms

e Kernighan-Lin
— An iterative improvement algorithm for
balanced two-way partitioning.

e Goldberg-Burstein
— Uses properties of graphs to improve the
performance of K-L algorithm.

e Fiduccia-Mattheyses
— Considers multi-pin nets.
— Can generate partitions of unequal sizes.
— Uses efficient data structure to represent

nodes.

28
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Extension of K-L Algorithm

e Unequal sized blocks

- To partition a graph with 2n vertices into two sub-

graphs of unequal sizes n/ and n2:
¢ Divide the nodes into two subsets A and B,
containing MIN (n1, n2) and MAX (n1, n2)
vertices respectively.
e Apply K-L algorithm, but restrict the maximum
number of vertices that can be interchanged in
one pass to MIN (n1, n2).

29
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Unequal sized elements

- To generate a two-way partition of a graph whose
vertices have unequal sizes:

e Assume that the smallest element has unit
size.

* Replace each element of size s with s vertices

which are fully connected (s-clique) with edges
of infinite weight.

e Apply K-L algorithm to the modified graph.

30
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Simulated Annealing and Evoluticiti

e These belong to the probabilistic and iterative class

of algorithms.

e Simulated Annealing
- Simulates the annealing process used for
metals.
- As in the actual annealing process, the value of
temperature is decreased slowly till it
approaches the freezing point.

e Simulated Evolution
- Simulates the biological process of evolution.
-Each solution (generation) is improved in each
iteration by using operators which simulate the
biological events in the evolution process.

31
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Simulated Annealing

e Concept analogous to the annealing process for
metals and glass.

e A random initial partition is available as input.

e A new partition is generated by exchanging some
elements.

e If the quality of partition improves, the move is
always accepted.

e If not, the move is accepted with a probability which
decreases with the (increase) in a parameter called
temperature (T).

32
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Simulated Annealing Algorithm

Algorithm SA
begin
t=to;
cur_part =init_part;
cur_score = SCORE(cur part);
repeat
repeat
compl = SELECT(partl );
comp?2 = SELECT (part2);
trial_part = EXCHANGE (comp1, comp?2, cur_part); trial_score = SCORE (trial_part);
delta_s = trial_score — cur_score;
if (delta_S<0) then
cur_score = trial_score;
cur_part = MOVE (comp1, comp2);
else
r = RAND (0,1);
if (r < exp(- delta_s/t)) then
cur_ score = trial score;
cur_part = MOVE(compl, comp2);
until (equilibrium at t is reached);
t=alpha *t; //*0<alpha<1*/
until (freezing point is reached);
end

33
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e The SCORE function
Imbalance(A,B) = | size(A) — size(B) |
Cutcost(A,B) = Sum of weights of cut edges
Cost = W1 * Imbalance(A,B) + W2*Cutcost(A,B)

e The MOVE function
— Several alternatives:
e Pairwise exchange (W1 =0)
e Subsets of elements exchanged
e Select that node
- Which is internally connected to least
number of vertices.
- Whose contribution to external cost is
highest.
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Performance Driven Partitioning
e Typically, on-board delay is three orders of
magnitude larger than on-chip delay.
— On-chip delay is of the order of nanoseconds.
— On-board delay can be in the order of
milliseconds.
e If a critical path is cut many times by the partition,
the delay in the path may be too large to meet the
goals of high-performance systems.
¢ Goal of partitioning in high-performance systems:
1. Reduce the cut-size.
2. Minimize the delay in critical paths.
3. Timing constraints have to be satisfied.
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e The problem can be modeled as a graph.
- Each vertex represents a component (gate).
- Each edge represents a connection between
two gates.
- Each vertex has a weight specifying the
component delay.
- Each edge has a weight, which depends on the
partitions to which the edges belong.
> This problem is very general and still a topic of
intensive research.

36



Electronic Design Automation

Summary
e Broadly, two classes of algorithms:
1. Group migration based
e High speed
* Poor performance
2. Simulation based
e Low speed.
e High performance.
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Design Representation
* Intermediate representation essential for efficient

processing.
— Input HDL behavioral descriptions translated into
some canonical intermediate representation.

e Language independent

e Uniform view across CAD tools and users
- Synthesis tools carry out transformations of the
intermediate representation.
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Scope of High Level Synthesis
Verilog / VHDL Description

l

Control and Data Flow Graph (CDFG)

gisi (2

Transformation

Scheduling /
Allocation /

FSM Controller Data Path Structure


LENOVO
Pencil


gisi (2

Simple
Transformation

Electronic Resign Automation

A<=B+C;
D<=A+E;
X<=D-A;

Read B

Read C

Read B Read C
+
Write a
Read A Read E
Write D
Read D Read A
4

Write X

Read E

/

=

Write X
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" Transformation with Control/Data Flow

case (C)
1: begin
X=X+3; 1 2
A=X+1;
end
2:A=X+5; B1 B2
default: A= X +Y; \
endcase
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Transformation with Control/Data Flow

Read x Ready
/
+
1 2 D
Write A
B1 B2 B3
Reqd X 5
Reqd X /3 Write A
1

Write A

/
Write X\@\l/
6
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Another Example

If (x==0)
A<=+C;
D<=B—C;

else
D =D-1;
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module HAL (x, dx, 1.1, a, clock, y);
input x, dx, u, a, clock;
output y;

always @(posedge clock)
while (x < a)
begin
x1 =x+dx;

i oo
* Solving 2nd order differential equations

ul=u—(3*x*u*dx)—(3*y*

dx);
yl=y+ (u* dx);
X =x1;
u=ul;
y=v1,
end

endmodule
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Compiler Transformations

e Set of operations carried out on the intermediate
representation.

— Constant folding

— Redundant operator elimination

— Tree height transformation

— Control flattening

— Logic level transformation

— Register-Transfer level transformation
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Control Flattening

12
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RTL Level Transformation:

14
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Partitioning

Why Required?

e Used in various steps of High Level Synthesis:

- Scheduling
- Allocation
- Unit selection

e The same techniques for partitioning are also used
in physical design automation tools.

15


LENOVO
Pencil


Electronic Design Automation

Component Partitioning
e Given a netlist, create a partition which satisfies
some objective function.
- Clusters almost of equal sizes.
- Minimum interconnection strength between
clusters.

16



Electronic Design Automation

17

n2-



Electronic Design Automation

Behavioral Partitioning

gisi (2

e With respect to Verilog, can be used when:
— Multiple modules are instantiated in a top-level
module description.
e Each module becomes a partition.
— Several concurrent "always" blocks are used.
e Each "always" block becomes a partition.

18
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Partitioning Techniques
e Broadly two classes of algorithms:
1- Constructive
e Random selection
e Cluster growth
¢ Hierarchical clustering
2- lterative-improvement
e Min-cut
e Simulated annealing

19
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Random Selection

gisi (2

e Randomly select nodes one at a time and place
them into clusters of fixed size, until the proper
size is reached.

e Repeat above procedure until all the nodes
have been placed.

e Quality/Performance:

- Fast and easy to implement.

- Generally produces poor results.

- Usually used to generate the initial partitions
for iterative placement algorithms.

20
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Cluster Growth
m : size of each cluster,
V : set of nodes.
n=IVl/ m;
for (i=1; i<=n; i++)
{ seed = vertex In V with maximum degree;
Vi = (seed);
V=V — (seed);
for (J=1; j<m; J++)
{
t = vertex in V maximally connected to Vi;
Vi=VI U {t};
V=V —(t)

21
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Hierarchical Clustering

e Consider a set of objects and group them depending
of some measure of closeness.

- The two closest objects are clustered first, and
considered to be a single object for further
partitioning.

- The process continues by grouping two individual
objects, or an object or cluster with another cluster.

- We stop when a single cluster is generated and a

hierarchical cluster tree has been formed.
® The tree can be cut in any way to get clusters.

22
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Min-Cut Algorithm (Kernighan-Lin)
e Basically a bisection algorithm.
- The input graph is partitioned into two subsets
of equal sizes.
e Till the cut-sets keep improving:
- Vertex pairs which give the largest decrease in
cut-size are exchanged.
- These vertices are then locked.
- If no improvement is possible and some
vertices are still unlocked, the vertices which
give the sm allest increase are exchanged.

24
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Example:

Initial Solation

25
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e Drawbacks of K-L Algorithm

gisi (2

- It is not applicable for hyper-graphs.
e |t considers edges instead of hyper-edges.
e |t cannot handle arbitrarily weighted graphs.
e Partition sizes have to be specified a priori.

- Time complexity is high.

* 0(n%).
- It considers balanced partitions only.

28



Electronic Design Automation

Simulated Annealing

gisi (2

e lterative improvement algorithm.
- Simulates the annealing process in metals.
- Parameters:
e Solution representation
e Cost function
e Moves
e Termination condition
e Randomized algorithm
- To be discussed later.

29
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~ What is Scheduling?
e Task of assigning behavioral operators to control

steps.

- Input: ¢ CDFG

— Output:
e Temporal ordering of individual operations
(FSM states)

e Basic Objective:

- Obtain the fastest design within constraints (exploit

parallelism).

30
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Scheduling Algorithms

gisi (2

e Three popular algorithms:
1. As Soon As Possible (ASAP)
2. As Late As Possible (ALAP)
3. Resource Constrained (List scheduling)

32
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As Soon As Possible (ASAP)
e Generated from the DFG by a breadth-first search
from the data sources to the sinks.
- Starts with the highest nodes (that have no
parents) in the DFG, and assigns time steps in
increasing order as it proceeds downwards.
— Follows the simple rule that a successor node

can execute only after its Parent has executed.
e Fastest schedule possible

gisi (2

— Requires least number of control steps.
— Does Fi6t consider resource constraints.

33
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‘_ As Late As Possible (ALAP)
e Works very similar to the ASAP algorithm, except

that it starts at the bottom of the DFG and proceeds
upwards.

e Usually gives a bad solution:

- Slowest possible schedule (takes the maximum
number of control steps).

-Also does not necessarily reduce the number o
functional units needed.

35
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As Late As Possible (ALAP)

~ ALAP Schedule

o

36
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Resource Constrained Scheduling

There is a constraint on the number of resources that
can be used.
— List-Based Scheduling
» One of the most popular methods.
» Generalization of ASAP scheduling, since it
produces the same result in absence of
resource constraints.

37
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- Basic idea of List-Based Scheduling:

e Maintains a priority list of "ready" nodes.

e During each iteration, we try to use up all resources
in that state by scheduling operations in the head of
the list.

e For conflicts, the operator with higher priority will
be scheduled first.

38
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ALLOCATION and BINDING
Basic Idea:
e Selection of components to be used in the register

transfer level design.
¢ Binding of hardware structures to behavioral
operators and variables.

-Register

- ALU

- Interconnection (MUX)

42
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Example for Binding:

Variable Life Time Analysis

43
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Introduction

e Representation of Boolean functions
- Canonical

e Truth table

e Karnaugh map

e Set of minterms
- Non-Canonical

e Sum of products

e Product of sums

e Factored form

¢ Binary Decision Diagram
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Binary Decision Diagram (BDD)
e Proposed by Akers in 1978.
- Several variations suggested subsequently.
e Ordered BDD (OBDD)
e Reduced Ordered BDD (ROBDD)
- A set of reduction rules and operators
defined for BDDs.
e Construction of a BDD is based on the
Shannon expansion of a function.
Shannon Expansion
e Given a Boolean function f(x4,X3,...,Xi...,Xn)
e Positive cofactor fi' = f(x1,x2,....,1,...xn
e Negative cofactor fi’ = f(x1,x2,...,0,...,xn)

3
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« Shannon's expansion theorem states that
f=x' fi + x fi'
f=(x+fi") (x' +fi")
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f (a,b,c,d) = abc + b’c’d+ a’bd’
Expand with respect to a:
f=abc+a’b’c’d +ab’c’d + a’bd’
=a’(b’'c’d + bd’) + a (bc +b’c’d)
f=2a’. f(0, b,c,d) + a. f(1,b,c,d)
=a’ . (b’c’d+ bd’) + a. (bc+b’c’d)
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How to construct BDD?

f=ac+bc+a'b'c with Shannon's expansion
=a'(b’c'+ bc)+a(c+ bc)
=a'(b'c'+bc)+a(c)

b'c’+bc

This is the first step. The process is continued for all
input variables.
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b'c’ + bc

b’ctbc -> ¢

c’.1+c0

—

BDD depends on
variable ordering
OBDD
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dMSome Benefits of BDD

e Check for tautology is trivial.
- BDD is a constant 1.

e Complementation.
- Given a BDD for a function f, the BDD for f' can
be obtained by interchanging the terminal
nodes.

e Equivalence check.
- Two functions f and g are equivalent if their
BDDs (under the same variable ordering) are the
same.

11
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An Important Point

e The size of a BDD can vary drastically if the order in
which the variables are expanded is changed.

e The number of nodes in the BDD can be exponential
in the number of variables in the worst case, even
after reduction.

12
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Use of BDD in Synthesis

e BDD is canonical for a given variable ordering.

e It implicitly uses factored representation:

13
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To Summarize

e BDDs have been used traditionally to represent and
manipulate Boolean functions.

- Used in synthesis systems.

- Used in formal verification tools.

- Efficient packages to manipulate BDDs are available.

19
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LOGIC SIMULATION

e Takes a logic level netlist as input, and simulate
functional behavior.
- "Netlist" obtained from schematic capture or
synthesis.
- For simulation, the behavior of components is
used.
¢ Available from component library
e Gates, flip-flops, MUX, registers, adder
e Ability to handle large circuits (millions of gates)
- Should be very fast
- Hardware accelerators.
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¢ SIMULATION OBJECTIVES

- Functional correctness of the netlist
* Requires application of a set of test vectors 2>
test bench
- Timing analysis
e Estimation of delay, critical paths
e Hazards, races, etc.
- Test generation
e Required for manufacture test.

10
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Logie Synthesis
¢ Input: Boolean equations and FSMs
e Output: A netlist of gates and flip-flops
- Combinational circuits and sequential circuits
are typically handled separately
e Design Goals:
- Minimize number of levels (delay)
- Minimize number of gates (area)
- Minimize signal activity (power)
e Typical Constraints:
- Target library (say, only NAND, NOT gates)

11
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o Special Considerations
- Ability to handle large circuits within a
reasonable amount of time.
e Problem is known to be NP-complete
- Ability to handle mutually conflicting requirements
(area & delay)
- Typically a fully automated process
e Algorithms/heuristics well understood
e Do not need user intervention
- Use technology dependent considerations
® Break a 20-input gate into smaller gates
e Use gates available in the library

12
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Technology Mapping
e Basic Concept:
- During logic synthesis, map portions of the
netlist to "cells" available in the cell library
e Standard library (NAND, NOR, NOT, A01)
* FPGA cells, standard cells
e Objectives:
- Minimize area, delay, power
- Should be fast
e Able to handle large circuits, and large
technology libraries.
An Example: AND_OR_INVERT

13
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Logie Verffication
e Verify that the synthesized netlist matches the
original specification
- Detect design errors, also synthesis errors
- Basic objective is to ensure functional
correctness, and to locate errors, if any
e Broadly two approaches:
1. Simulation
e Fast, incremental, can handle large circuits
2. Formal verification
e Slow, exhaustive, for small circuits only

14
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The Basic Problenm

e Convert from logic equations to gate-level netlists
(assume combinational logic).

- Maximize speed

- Minimize area, power

a'bc+abc+d=>bc+d

- D

b
c L/, d >0

15



Electronic Design Automation

Logic Speciiication
e PLA Format

dC

b'c’

ac

i3 @
I 4

1x1 011
x00 010

bc

1x0 100
x11011 d da
.€

e Sum-of-product form

X = ac'

y=ac+b'c'+bc

zZ=ac+bc

16
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Logie Synthesis Problem
1. Simplification of logic equations

- Reduce number of literals (and operands)
2. Synthesis

- Map logic equations to gates (AND, OR, etc)
3. Gate-level optimization

- Replace OR-NOT by NOR, for example

- Delay, power, area
4. Technology mapping

- Map from gates to technology library

- FPGA, TTL chips, standard cells, etc.

17
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s
Two-level Minimization
e Karnaugh Maps
- For n inputs, the map contains 2" entries
- Objective is to find minimum prime cover
e Minimum - fewest terms
¢ Prime = choose only maximal covers
- Don't care terms are used to advantage
- Difficult to automate
e Minimum cover problem is NP-complete
® Process can get into a local minima

18
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® Problems with K-maps:
- Number of cells is exponential in the number of
input variables.
¢ [magine a 50-input circuit.
- Requires efficient data structures
e For representing the function
e For searching for minimal prime cover
- Quine-McCluskey method
e Easy to implement in software.
e Computational complexity remains high.

19
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Espresso: A 2-level logic optimizer
e Some notations:
— For an n-input function, n-dimensional Boolean
space
e Each point mapped to a unique combination of
the n literals.
e Entries in K-map, minterm.
— Cube: c
e Conjunction (AND) of literals in an n- 011

dimensional space.
001

¢ Points on the n-dimensional
hypercube that are “1”.

101

111

/'110

20
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e Expression
- Disjunction (OR) of cubes

e Don't cares

- Literals that are missing from a cube

w Cube: b’
D ab
Don’t care: a

21



Electronic Design Automation

e Basic Approach
- Minimize cover of "ON-set" of the function

e ON-set = set of vertices that correspond to
"1" min-terms

e Minimum set of cubes

e Size of the cubes can be increased by
exploiting don't care literals

22
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¢ The Espresso Algorithm (Outline) :
Start with the sum-of-products form (i.e., cubes
covering the ON-set)
- In an iterative loop
e Expands
e Remove redundancy Irredundant
e Reduce cubes until no further improvement is
possible.
- Perturb the solution, and repeat the previous
iterative step, as long as the time budget permits.
e For each cube, add a sub-cube not covered by
any other cube.
e expand sub-cubes and add them if they cover
another cube.

23
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Cube operation: expand
e Make each cube as large as possible without
covering a point in the OFF-set.
- Increases the number of literals in the cover.
- Sets the stage for finding a new and possibly
better solution.

e Example:
f=a'bc'+ bc+ab'c ;:Don't care: ab'c ¢

1 11
1 001

101
f=+bc+ac+ab'

@ 110

000 100

24
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Cube operation :: irredundant

e Throw out redundant cubes.
- Points may be covered by several cubes after
the ‘expand" step.
- Remove smaller cubes whose points are
covered by larger cubes.
- There must be one cube for every essential
vertex.

e Example:
f=a'b+ bc+ac+ab'

f=a'b+ac+ab'

One vertex in ( bc) is covered by ( a'b) & the other by
(ac)

25
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Cube operation :: reduce

e The cubes in the cover are reduced in size.
- The number of literals in the cover is reduced.
- Smaller cubes can expand in more directions.
- Smaller cubes are more likely to be covered by

other cubes during expansion.

e Example

f=a'b+ac+ab'

4

f=a'b+abc+ab'c

26
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- In general, the new cover will be different from the
initial cover.
e "expand" and "irredundant” steps can possibly
find out a new way to cover the points in the ON-
set.
e Hopefully, the new cover will be smaller.

27
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Cube operation: perturbations

Example: 00
(Reduce Gasp)
f=a'+b>f=a'+b+a'b'+ab ”

(Expand Gasp)
f=a'b'+a'b +ab—> f=a'b'+a'b+b

28
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Espresso :: conclusion

® The algorithm successively generates new
covers until no further improvement is possible.
e Produces near-optimal solutions.
¢ Used for PLA minimization, or as a sub-
function in multilevel logic minimization.
e Can process very large circuits.

- 10,000 literals, 100 inputs, 100 outputs

- Less than 15 minutes on a high-speed
workstation

29
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Multilevel Logic Minimization
* In many applications, 2-level logic is unsuitable as
compared to random (multilevel) logic.
- Gates with high fan-in are slow, and take more
area.
- It makes sense to transform a 2-level logic
realization to multi-level logic.

oYY
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\/
4
il
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¢ A classic example:: XOR function
— For an 8-input XOR function,
e For 2-level NAND-NAND realization
5C, +%C5 + %C5 + °C; = 128 NANDS gates
1 NAND128 gate

* For 3-level XOR realization

7 XOR2 gates

- 28 NAND?2 gates
Number of levels =9

31
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Multilevel logic optimization:
1. Local
» Rule-based transformation
2. Global
» Weak division

32
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Local Optimization Technique
e Perform rule-based local transformations.
- Objective = to reduce area, delay, power.
- Developing a good set of rules is a challenge.
- Should be comprehensive enough so as to
completely explore the design space.

e Basic idea:
- Apply a transformation which reduces cost.
- Iterate and continue applying transformations
as long as solution keeps improving.

33
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e AND/OR transformations
- Reduce the size of the circuit, critical path.
-Typical transformations:

a.l=a
a+l=1
at+a' =1
a.a =0
(d')'=a

a+a'.b=a+b
xor (xor(al,a2 .....,an), b) = xor(al,a2,....,an,b)

¢ Transform the AND/OR form to NAND form (or NOR
form).

34
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e NAND (NOR) transformations

- Some synthesis systems assume that all gates are of
the same type (NAND or NOR).

- Does not require technology mapping.

- Rules framed that transform a NAND (NOR) network
to another.

Examples:
NAND (NOT (NAND (alb)), c) = NAND (a,b,c)

NAND (NAND(a,b,c), NAND(a,b,c')) = NAND(a,b)

35
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Global Optimization Technique

e Used in GE Socrates. Fl=ab+ac
- Looks at all the equations at one time. =a(b+c) =a.F2
¢ Perform weak division. F2 = b+c

- Divide out common sub-expressions.
- Literal count gets reduced.
e The following iterative steps are carried out:
- Generate the candidate sub-expressions.
- Select a sub-expression to divide.
- Divide functions by selected sub-expression.

36
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Example
e Original equations:
fl=a.b.c+b.c.d+b.e.g
f2=b.cf.h+d.g+a.b.g > No. of literals = 18
— We find literals saved for sub-expressions:
b.c >4 a.b—>2
a+d—>2 b.g—>2
Select the sub-expression bc.
e Modified equations (after iteration 1):
fl=(a+d).u+b.eg

f2=ufh+d.g+a.b.g
u=b.c - No. of literals = 14

37
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fl=(a+d).u+b.eg

f2=ufh+d.g+a.b.g

u=b.c

— Literals saved for the sub-expressions: b.g 22
e Modified equations (after iteration 2):

fl=(a+d).u+e.v

f2=uf.h+dg+av

u=b.c

v=b.g - No. of literals = 12

e No common sub-expressions —> STOP

38
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About the algorithm

e Basically a greedy algorithm
- Can get stuck in local minima.
- Give a "bounce" to come out of local minima.
e Like the "gasp" function in Espresso.

Giobal munumum

{optimal solation)

local minima

— Generation of all candidate expressions is
expensive.
* Some heuristic used.

39
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MULTILEVEL LOGIC INTERACTIVE SYNTHESIS SYSTEM
(MIS)

e A very popular & widely used algorithm.
- Uses factoring of equations.
- Similar to weak division used in Socrates.
- The target technology is CMOS gate.
e Complex gates realizing any complex
functions.
e Example:
ff=(a+b+c)
g'=(a+b).(d+e+f)h

40
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Basic Concept
e For global optimization,

- Use algebraic factorization to identify common
sub-expressions.
- Avoid exponential search.
e For local optimization,
- Identify 2-level sub-circuits.
- Minimize them using Espresso, or some similar
approach.

41
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Global Optimization Approach
¢ Given a netlist of gates
- Scan the network
- Apply simple heuristics to "clean up" the netlist.
e Constant propagation
e Double inverter elimination
¢ Espresso minimization of each equation:
- Then proceed for global optimization with a view to
minimize area.

42




Electronic Design Automation

— Basically an iterative approach.

e Enumerate all common factors and identify
the "best" candidate.

e Equations themselves may be common
factors.

e Invert an equation if it helps.
f=a+b+c>f=a’b’'c

— Factors may show up in the inverted form.

e Number of literals used to estimate area.
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Some lllustrative Examples
e Factoring can reduce area.

S ab+ac
- An equation in simple sum-of-products form

can have many literals. ""'I_I ‘E'"lz
e Many transistors for CMOS realization. :| :|

- Factoring the equation reduces the number of B_| _|
literals. — ¢ —
e Reduces number of transistors in CMOS
realization. a

a

b C

44
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f=abe'f+abg+ace’'f+acg+ade’ f+acdg
- 22 literals 2 44 transistors

f=(a(b+c)+d)(e’f+g(b+c))
=» 9 literals = 18 transistors

45
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Common sub-expressions:
f=abc+adg+acf
g=ac' d+adf (15 literals, 30 t)

u=ac’
f=ub+adg+uf
g=ud+adf (14 literals, 28 t)

u=ac’
f=u(b+f)+adg
g=d(u+af) (12 literals, 24 t)

46
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Area: Minimum no. of transistors.

Delay: Number of levels would be reduced
- No division
- Only factorization.

Power: signal activity.

47
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Blocking & Non-blocking Assignments

. Sequential statements within procedural

|II

blocks (“always” and “initial”) can use two types

of assignment:
- Blocking assignment: =

- No-blocking assignment: <=
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Blocking assignment: (using =)

. Most commonly used type.

e The target of assignment gets updated before
the next sequential statement in the procedural
block is executed.

e A statement using blocking assignment blocks
the execution of the statements following it,
until it gets completed.

e Recommended style for modeling
combinational logic.
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- Non-Blocking Assignment (using ‘<=1’)

e The assignment to the target gets scheduled for the
end of the simulation cycle.

- Normally occurs at the end of the sequential
block.

- Statements subsequent to the instruction
under consideration are not blocked by the
assignment.

e Recommended style for modeling sequential logic.

- Can be used to assign several 'reg' type
variables synchronously, under the control of a
common clock.
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- Non-Blocking Assignment (using ‘<=1’)

. The assignment to the target gets scheduled for the
end of the simulation cycle.
- Normally occurs at the end of the sequential
block.
-Statements subsequent to the instruction
under consideration are not blocked by the
assignment.
e Recommended style for modeling sequential
logic.
- Can be used to assign several ‘reg' type
variables synchronously, under the control of a
common clock.



Electronic Design Automation

Some Rules to be followed:

e Verilog synthesizer ignores the delays specified in a
procedural assignment statement.

- May lead to functional mismatch between the
design model and the synthesized netlist.

e A variable cannot appear as the target of both a
blocking and a non-blocking assignment.

- Following is not permissible:
value = value+'1;

value <= init;
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Example 1:

// Up-don counter (synchronous clear)

module counter(mode, clr, Id, d_in, clk, count);
input mode, clr, Id, clk; input [0:7] d_in;
output [0:7] count; reg[0:7] count;

always @(posedge clk)
if (Id)
count <=d_in;
else if (clr)
count <=0;
else if (mode)
count <= count + 1;
else
count <= count —1;

endmodule
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Example 2:

// Parameteterized design :: an N-bit counter
module counter( clr, clk, count);

parameter N=7;

input clr, clk;

output [0:N] count; reg[0:N] count;

always @(posedge clk)
if (clr)
count <=0;
else
count <= count + 1;

endmodule

clr

clk

l
¥

colnt
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Example 3:

// Using more than one clocks in module
module multiple_clk( clk1, clk2, a, b, c, f1, f2);
input clk1, clk2, a, b, c;
output f1,f2; regfl, f2;

always @(posedge clkl)
f1 <= a&b;
always @(posedge clk2)
f2 <= b”c;
endmodule

D

clk1

D

clk2
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Example 4:

// Using multiple edges of same clock
module multi_phase_clk( clk, a, b, f);
input clk, a, b;
output f; regf, t;

always @(posedge clk)
f <= t&b;
always @(negedge clk)
t <= a’b;
endmodule

10
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Example 5: Ring counter 1

// A ring counter

module ring_counter( clk, init, count); 10000000

input clk, init;
output [7:0] count;
reg [7:0] count;

always @(posedge clk)

begin
if (init)
count = 8’b10000000;
else begin
count = count <<1;
count[0] = count[7];
end
end

endmodule

11
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Example 6: Ring counter 2 Modified-1

// A ring counter

module ring_counter_M1( clk, init, count);
input clk, init;
output [7:0] count;
reg [7:0] count;

always @(posedge clk)

begin
if (init)
count = 8’b10000000;
else begin
count <= count <<1;
count[0] <= count[7];
end
end

endmodule

10000000

12
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Example 7: Ring counter 3 Modified-2

// A ring counter

module ring_counter_M2( clk, init, count);
input clk, init;
output [7:0] count;
reg [7:0] count;

always @(posedge clk)

begin
if (init)
count = 8’b10000000;
else
count = {count[6:0], count[7]};
end
endmodule

10000000

13




Electronic Design Automation

About "Loop" Statements

e Verilog supports four types of loops:

- 'while' loop

- 'for' loop

- 'forever' loop

- 'repeat’ loop
e Many Verilog synthesizers’ supports only for' loop
for synthesis:

- Loop bound must evaluate to a constant.

- Implemented by unrolling the 'for' loop, and

replicating the statements.

14
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Modeling Memory
e Synthesis tools are usually not very efficient in
synthesizing memory.

— Best modeled as a component.

— Instantiated in a design.

e Implementing memory as a two-dimensional
register file is inefficient.

15
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Example 8: Memory Modeling

// ROM
module mem_example( clk, en, adbus , dbus, rw);
parameter N=16;
input clk, rw, en;
input [N-1:0] adbus;
output [N-1:0] dbus;

ROM Mem1 (clk, en, rw, adbus, dbus);

endmodule

16
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Example 9: Tri_state gates Modeling

// A ring counter

module bus_diver( in, out, en);
input en; input [0:7] in;
output [0:7] out;
reg [0:7] out;

always @(en orin)

if (en)
out =in;
else
out = 8bz;
endmodule

17



Electronic Design Automation

gisi (2

Modeling Finite State Machines

e Two types of FSMs

- Moore Machine

PS ()/p
Loglc Logic

- Mealy Machine

18
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Moore Machine: Example 1

e Traffic Light Controller

- Simplifying assumptions made
- Three lights only (RED, GREEN, YELLOW)

- The lights glow cyclically at a fixed rate

-Say, 10 seconds each
- The circuit will be driven by a clock of
appropriate frequency.

19



module traffic_light (clk, light);
input clk;
output [0:2] light; reg [0:2] light;
parameter S0=0, S1=1, S2=2;
parameter RED=3'b100, GREEN=3'b010, YELLOW=3'b001,;
reg [0:1] state;
always @ (posecige clk)
case (state)
S0O: begin Il SO means RED
light <= YELLOW;
state <= S1;
end
S1: begin // S1 means YELLOW
light <= GREEN;
state <= S2;
end
S2: begin // S2 means GREEN
light <= RED; state <= SO;
end
default: begin
light <= RED; state <= SO;
end
endcase
endmodule
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Comment on the solution
— Five flip-flops are synthesized
e Two for 'state’
e Three for ‘light' (outputs are also latched
into flip-flops)
— If we want non-latched outputs, we have to
modify the Verilog code.
e Assignment to 'light' made in a separate
‘always' block.

* Use blocking assignment.

R
: Covnb G
s HEES

| W "7>r-—'/

21



module traffic_light_nonlatched_op (clk, lig);
input clk;
output [0:2] light;  reg [0:2] light;
parameter S0=0, S1=1, S2=2;
parameter RED=3'b100, GREEN=3'b010, YELLOW=3'b001;
reg [0:1] state;

always @ (posedge clk)
case (state)
SO: state <= S1;
S1: state <=S2;
S2: state <= S0;
default: state <=S0;
endcase
always @ (state)
case (state)
SO: light= RED;
S1: light = YELLOW;
S2: light= GREEN;
default: light = RED;
endcase
endmodule

22



Electronic Design Automation

Moore Machine: Example 2

Serial Parity detector

X —>

clk ——»

23
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module parity_gen (x, clk, z);
input x, clk;
output z;
regz;
reg even_odd; // The machine state
parameter EVEN=0, ODD=1;

always @ (posedge clk)
case (even_odd)

EVEN: begin
z2<=x7?1:0;
even_odd <=x? ODD : EVEN;
end
ODD: begin
z<=x7?0:1;
even_odd <=x ? EVEN : ODD;
end
end case

endmodule
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Mealy Machine: Example
Sequence detector for the pattern ‘0110’

R—-->"

clk —»

1/0

X 0011001101100
Z 0000100010010

25



// Sequence detector for the pattern '0110'
module seq_detector (x, clk, z);

input x, clk;
output z; reg z;
parameter S0=0, S1=1, S2=2, S3=3;
reg [0:1] PS, NS;
always @ (posedge clk)
PS <= NS;
always @ (PS or x)
case (PS)
SO: begin 1/0

z=x70:0;
NS = x ? SO :S1; .® 0/0

end;
S1: begin
z=x?0:0;
NS=x7?S2:51;

0/0

1/0 ’. 1/0

0/0

end;
S2: begin
z=x7?0:0;
NS=x7?S3:51;
end;
S2: begin
z=x?0:1;
NS=x7?S0:S1;
end; endmodule
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Example with Multiple Modules
® A simple example showing multiple module definitions.

13

A U»

en
Complementor
Bout
Nl 4 ¢ in
, EAURES add sub
carry l Usnm
Yarvity Checker 4
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module complementor (Y, X, comp); module adder (sum, cy_out, inl, in2, cy_in);
input [7:0] X; input [7:0] inl, in2;
input comp; input cy_in;
output [7:0]Y; reg[7:0]Y; output [7:0] sum; reg [7:0] sum;
output cy_out; reg cy_out;
always @ (X or comp)
if (comp) always @ (inl or in2 or cy_in)
Y ="X; {cy_out, sum}=inlin2 cy_in;
else endmodule
Y=X;

endmodule

module parity_checker (out_par, in_word);
input [8:0] in_word;
output out_par;
always @ (in_word)
out_par = A (in_word);

endmodule

28
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//Top level module
module add_sub_parity (p, a, b, add_sub);
input [7:0] a, b;
input add_sub; // 0 for add, 1 for subtract
output p; // parity of the result
wire [7:0] Bout, sum;  wire carry;

complementor M1 (Bout, B, add_sub);

adder M2 (sum, carry, A, Bout, add_sub);

parity_checker M3 (p, {carry, sum});
endmodule

29
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Memory Modeling Revisited
e Memory is typically included by instantiating a pre-
designed module.
e Alternatively, we can model memories using two-
dimensional arrays

- Array of register variables.

¢ Behavioral model of memory
- Mostly used for simulation purposes.
- For small memories, even for synthesis.

30
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//Memory Example

module memory_model (...................);

reg [7:0] mem[0:1023];

endmodule

31
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How to Initialize memory
* By reading memory data patterns from a specified
disk file.

- Used for simulation.

- Used in test benches.
e Two Verilog functions are available:

1- Sreadmemb (filename, memname, startaddr,

stopaddr)
Data read in binary format.
2. Sreadmembh (filename, memname, startaddr,
stopaddr)
Data read hexadecimal format.

32
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//Memory Example
module memory_model (................... );
reg [7:0] mem[0:1023];

begin
Sreadmemh(“mem.dat”, mem);

end

endmodule

33
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A Specific Example :: Single Port RAM with
Synchronous Read-Write

module ram_1 (addr, data, clk, rd, wr, cs);
input [9:0] addr;
input clk, rd, wr, cs;
inout [7:0] data;
reg [7:0] mem [1023:0];
reg [7:0] d_out;

assign data = (cs && rd) ? d_out ; 8'bz;
always @ (posedge clk)

if (cs && wr && !rd) mem [addr] = data;
always @ (posedge clk)

if (cs && rd && !wr) d_out = mem [addr];

endmodule

T
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A Specific Example :: Single Port RAM with
Asynchronous Read-Write

module ram_2(addr, data, rd, wr, cs);
input [9:0] addr;
input rd, wr, cs;
inout [7:0] data;
reg [7:0] mem [1023:0];
reg [7:0] d_out;

assign data = (cs && rd) ? d_out ; 8'bz;
always @ (addr or data or rd or wr or cs)

if (cs && wr && !rd) mem [addr] = data;
always @ (addr or data or rd or wr or cs)

if (cs && rd && !wr) d_out = mem [addr];

endmodule

TT
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A Specific Example :: ROM/EPROM

module rom(addr, data, rd_en, cs);
input [2:0] addr;
input rd_en, cs;
output [7:0] data;
reg [7:0] data;

always @ (addr or rd_en or cs)
case (addr)
0:22;
1:45;

7:12;
endcase
endmodule
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Verilog Test Bench
e What is test bench?

- A Verilog procedural block which executes only
once.

- Used for simulation.

— Test bench generates clock, reset, and the
required test vectors.

Stimulus Module Under Test Compare logic

Test Bench

37
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How to Write Testbench?

e Create a dummy template
- Declare inputs to the module-under-test (MUT)
as "reg", and the outputs as "wire"
- Instantiate the MUT.
e |nitialization
- Assign some known values to the MUT inputs.
¢ Clock generation logic
- Various ways to do so.
e May include several simulator directives
-- Like Sdisplay, Smonitor, Sdumpfile,
Sdumpvars, Sfinish.

38
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e Sdisplay
Prints text or variables to stdout.
- Syntax same as "printf".
e Smonitor
Similar to Sdisplay, but prints the value
whenever the value of some variable in the
given list changes.
e Sfinish
Terminates the simulation process.
e Sdumpfile
Specify the file that will be used for storing the
waveform.
e Sdumpvars
Starts dumping all the signals to the specified
file.

39
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Example Testbench

module shifter_toplevel;
reg clk, clear, shift;
wire [7:0] data;

shift_register S1 (clk, clear, shift, data);

initial
begin
clk = 0; clear = 0; shift = 0;
end
always
#10 clk = !clk;

40



initial

begin
Sdumpfile ("shifter.ved");
Sdumpvars;

end

initial
begin
Sdisplay ("\ttime, \tclk, \tclr, \tsft, \tdata);
Smonitor ("%d, %d, %d, %d, %d, %d”, Stime, clk, reset, clear, shift, data);

end
initial

#400 Sfinish;

*¥x%** REMAINING CODE HERE
endmodule

41
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A Complete Example:

module testbench;
wire wl, w2, w3;
xyz m1(wl, w2, w3);
test_xyz m2 (wl, w2, w3);
endmodule

module xyz (f, A, B);
input A, B; output f;
nor #1 (f, A, B);
endmodule

testbench
Xyz
w2f f w3 W1
test xyz

42




Electronic Design Automation

module test_xyz (f, A, B);
input f; output A, B;
reg A, B;
initial
begin
Smointer(Stime, “A=%b”, B=%b”, “f=%b”, A, B, f);

#10 A=0; B=0;
#10 A=1; B=0;
#10 A=1; B=1;
#10 A=0; B=1;
#10 Sfinish;
end
endmodule

43
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test xyz

44
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Parameters
. A parameter is a constant with a name.
. No size is allowed to be specified for it.

-The size gets decided from constant
itself (32bit)

. Examples:

parameter Hi=25, Lo=5;
parameter up=b00, down=b01, steady=b10
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Logic values
. The common values used in modeling
hardware are:

- 0:: Logic-0 or FALSE

- 1:: Logic-1 or TRUE

- X :: Unknown (or don’t care)

-z :: High impedance

. Initialization:
- All unconnected nets set to ‘z
- All register variables set to ‘X’

) 1’
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Logic Gates

- Verilog provides a set of predefined logic

gates.

- They respond to inputs (0, 1, x, or z) in a logic

way. N
Y
- Examples:: AND . B_:

0&0 =20
0&1 =20
1&1 21
1&x 2 x

D&x =0
1& 2z 2 x
Z&X 2 X 4

o >

0&0
0&1
1&1
1&x
0&x
1&2
0&z

20
=21
=0
2> x
= X
2 X
> X

out
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Primitive logic gates (instantiations):

and G (out, in1, in2); =

nand G (out, in1, in2); 47 o
or G (out,int,in2); :J >~
nor G (out, in1, in2); 43 >
xor G (out, in1, in2); :7) >
xnor G (out, in1, in2); QjD‘H
not G (out1, in); A4[>O_o
buf G (out1, in);

Input —D— Output
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Primitive Tri-state gates (instantiations):

bufif1 G (out, in, ctrl);

E

bufif0 G (out, in, ctrl); Q_‘
E
A I}' A

notif1 G (out, in, ctrl);
notif0 G (out, in, ctrl);

E (enable)

A |} A
E

A B A
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Some Points to Note:
. For all primitive gates:

- The output port must be connected to a net
(a wire).
- The input ports may be connected to nets or
register type variables.
- They can have a single output but any
number of inputs.
- An optional delay may be specified.

-> Logic synthesis tools ignore time delays.
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Example 1:
‘timescale 1ns/1ns A 4 t1
module ex_or(f, a, b); B -}_
input a, b; ©
output f; A
wire tl, t2, t3;
B t3

nand #5 m1(t1, a, b);
and #5 m1(t2, a, t1);
and #5 m1(t3, t1, b);
or #5 m1(f, t2, t3);

endmodule
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Hardware Modeling Issues:

. The values computed can be held in
- A ‘wire’
- A “flip-flop’ (edge-triggered storage cell)
- A ‘latch’ (level-sensitive storage cell)

. A variable can be of
-‘net’ data type:
-> Maps to a wire during synthesis.
- ‘register’ data type
-> Maps either to a ‘wire’ or to a
‘storage cell’ depending on the context under
which a value is assigned.

10
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Example 2:

module carry(cy, a, b, c); a
input a, b, c; b —
output f1, f2;
wire a, b, c;
reg f1, f2;

f1

always @(a or b or c)
begin

fl1=~(a & b); The synthesis system
f2=f1A¢; will generate a wire
for (1

end

endmodule

11
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Example 3:

module carry(cy, a, b, c); ]
input a, b, c; b n
output f1, f2;
wire a, b, c; c
reg f1, f2;
always @(a or b or c)
begin The synthesis system
f2=f1Ac; will not generate a
f1= ~(a & b); storage cell for {1
end
endmodule

12
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Example 4:

// A latch gets inferred here
module simple_latch(data, load, d_out);
input data, load;

output d_out; ]:
reg i, load

data /0 Qo d_out

always @(load or data)

begin
if('load)
t=data;
d_out=1It; Ilse part missing: so
end lateh is inferred.
endmodule
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Verilog Operators:

. Arithmetic operators:
* /[, + - %.

. Logical operators:
I ::logical negation
&& :: logical AND
|| ::logical OR

. Relational operators:
> <, >= <=, ==, |I=

. Bitwise operators:

NI &I |I AI ~A

14
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el

Verilog Operators:

. Reduction operators (operate on all the bits
within a word). Example: b = &a; //a 8bit
. Shift operators:

>> <<

. Concatenation {} a={b,c}

10
I1
12
I3

I4
15
16
I7

. Replication {{}} a= {2{c}} | I

. Conditional e
" d

<condition> ? <exprl> : <expr2> c

15



Example 5:

Electronic Design Automation

input x, y;
output f1, f2;
wire [9:0] x, y;
wire [4:0] f1,;
wire f2;

assign f2=x[2] |
assign f2=~& x;

endmodule

assign f1=x[4:0] & y[4:0];

assign f1=f2? x[9:5] : x[4:0]; x[4:0]

X
) >—
module oper_example(x, y, f1, f2); -

x[2]

f1[3] {»Di 2\

~f1[3];

X[9:5] —

16
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Example 6:

// An 8 bit adder description

module para_adder(sum, cout, in1, in2, cin);
input [7:0] in1, in2; input cin;
output [7:0] sum; output cout;

assign #20 {cout, sum} =in1+in2+cin;
para_adder:1

4 N
M wien ADDER:1 — 0
m2AT0)_ |
endmodule w | | o
porl gpa |
+ ort_result
port_opb __|
ort_cout
Madd_AUX_1_addsub00001
A 4

17 para_adder
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Some points:

. The presence of a ‘" or ‘X’ in a reg or wire being used
in arithmetic expression results in the whole
expression being unknown ‘x’ .

. The logical operators (!, &&, | |) all evaluate to a 1-
bit result (0, 1, or x).

. The relational operators (>, <, ....) also evaluate to a
1-bit result (0 or 1).

. Boolean false is equivalent to 1’b0

Boolean true is equivalent to 1’b1.

18
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Some valid statements:

assign outp = (p ==4'b1111)
if (load && (select == 2’b01)) .....

assigna=b>>1;
assign a= b << 3;

assign f={a,b};
assign f={a, 3’b101,b};
assign f= {x[2], y[0], a};

assign f={4{a}}
assign f={2’b10, 3{2’b01}, x};

19
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Description Styles in Verilog:
. Two different styles of description:

1. Data flow

» Continuous assignment (combinational )
2. Behavioral

» Blocking (combinational )

» Non-blocking (sequential)

20
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Data flow Style: Continuous Assignment:

. Identified by the keyword “assign’’:
assigna=b &c;
assign f[2]=c[0];

. Forms a static binding between:
» The net being assigned on LHS.
» The expression on the RHS.

. The assignment continuously active:
. Almost exclusively used to model combinational
logic.

. For an assign statement:

» RHS: contain register or net.
» LHS: must be net type, like wire.

21



Electronic Design Automation

Example 7:

input [0:7] data;
input [0:2] select;
output out;

assign out= data[select];

endmodule

module gen_mux (data, select, out);

Non-constant index in
expression on RIS
pgencrates o MUN

gen_mux:1
4 b
MU X:1
data(Q7) | Data(7:0 ort_result
select(Q:2) | oft_select
Mmux__ COND_11
22 A 4

out



Electronic Design Automation

ok

Example 8:

module gen_demux (in, select, out); Non-constant index in
input in; A

i CxXpressi '
input [0:1] select; pression on LIS
output [0:3] out; generates a decoder

assign out[select] = in;

endmodule

CETHDLCompilers:226 — "exl . vw" line 27 Index in bit-select of wector wire 'out' must be constant
CE'HDLCompilers:53 — "exl.vw"™ line 27 Illegal left hand =side of continuous assign

23



Electronic Design Automation

Example 9:

// level sensitive latch
//Using assign to describe
//sequential logic
module level_latch (D, Q, En);
input D, En;
output Q;

assignQ=En?D:Q;

endmodule

24
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Electronic Design Automation

Behavioral Style: Procedural Assignment:
. The procedural block defines:

> A region containing sequential statements.
» The statements execute in they order they
are written.

. Two types of procedural blocks:

> “always” block: A continues loop that never
terminates.

» “initial” block: Executed once in the
beginning of simulation (used in test-
benches).

25



Electronic Design Automation

. A module can contain any number of “always”
blocks, all of which execute concurrently.

. Basic syntax of “always” block:

module ;
always @(event_expression)
begin

sequential statements;

end
endmodule

. The @(event_expression) is required for both
combinational and sequential logic description.

26



Electronic Design Automation

. Only “reg” type variables can be assigned within an
“always” block.

|I(

» The sequential “always” block executes only
when the event expression triggers.

» At other times the block is doing nothing.

» An object being assigned to must therefore
remember the last value assigned (not
continuously driven)

» So, only “reg” type type variables can be
assigned within an “always” block.

» Of course, any kind of variables may appear in

the event expression (reg, wire, etc.)

27



Electronic Design Automation

Sequential Statements:

1- begin
sequential_statements;
end
// end not required if there is only
//one statemnet
2-

if (expression)
sequential_statement;
else
sequential_statement;

3- | case (expression)
expr: sequential_statement;

Default: sequential_statement;

endcase

28



Electronic Design Automation

forever
sequential_statement;

5- | repeat (expression)
sequential_statement;

6- | While (expression)
sequential_statement;

for (expressionl; expression2, expression3 )
sequential_statement;

# (time_value) //makes a block suspend for time_value time units;

9- | @ (event_expression) //makes a block suspend until
// event_expression triggers.

29



Electronic Design Automation
Example 10:
. . in0
// A combinational logic example
module mux2-1 (in1, in0, s, f); 1

input inl, inO, s;
output f;
reg f;

always @(in1 or in0O or s)
if (s)
f=in1;
else
f=1in0;
endmodule

30



Electronic Design Automation

Example 11:

// A sequential logic example

module dff_negedge (D, clock, Q, Qbar);
input D, clock;
output Q, Qbar;
reg Q, Qbar;

always @(negedge clock)
begin
Q= D;
Qbar="~D;
end
endmodule

lo |o

31



Electronic Design Automation

Example 12:

// Another sequential logic example

module incomplete_state_spec (curr_state, flag);
input [0:1] curr_state;
output [0:1] flag;
reg [0:1] flag;

always @( curr_state)
case (curr_state)

0, 1:flag=2;
3 :flag=0;
endcase

endmodule

case

> Latehis inferred

32



Electronic Design Automation

Example 12 repated:

// Another sequential logic example case
module incomplete_state_spec (curr_state, flag);
input [0:1] curr_state;
output [0:1] flag;
reg [0:1] flag; \

always @( curr_state) l l
begin : '
flag=0
case (curr_state) i
0, 1: flag=2; ’
3 :flag=0;
i endcase 2> Latehis avoided
endmodule

33



Electronic Design Automation

Example 13:

// ALU example

module ALU_4bit (f, a, b, op);
input [1:0] op; input [3:0] a,b;
output [3:0] f; reg[3:0]f;

parameter ADD=2"b00, SUB=2'b01,
MUL=2"b10, DIV=2"b11;
always @( a or b or op)
case (op)
ADD: f= a+b;
SUB: f=a-b;
MUL: f =a*b;
DIV: f= a/b;
endcase
endmodule

34
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Example 14:

Electronic Design Automation

input [0:3] in;

reg [0:1] code;

always @( in)
case (1’b1)
in[0] :
in[1] :
in[2] :
in[3] :
endcase
endmodule

// priority encoder example
module pri_encoder (in, code);

output [0:1] code;

code = 2’b00;
code = 2'b01;
code = 2'b10;
code =2'b11;

35
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Electronic Design Automation

— Found 2-bkit latch for signal <code>.

Latches may be generated from incomplete case or i1f statements.

We do not recommend the use of latches in FPGA/CPLD designs, as they may lead to timing proklems.

pri_encoder:1

code<0>_imp

22 module pri encoder (in, code): cedell)
23 input [0:3] in:

24 output [0:1] code;

25 reg [0:1] code;

= ) . code<0>_imp
27 always B( in)

28 case (1'kl)

25 in[0] : code = 2'b00; code<1>

30 in[l] : code = 2'b0L1;

31 in[2] : code = 2'bB10;

2 in[3] : code = 2'bl11;

33 default : code =0;

34 endcase

35 endmodule

pri_encoder

36
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CMOS Fabrication and Layout

Transistors are fabricated on a thin silicon wafer that
serve as both a mechanical support and electrical

common point called substrate

Fabrication process (a.k.a. Lithography) is similar to
printing press

— On each step, different materials are deposited
or etched

Easiest way to understand physical layout is to look
at the wafer from two perspectives:

— Top-section
— Cross-section



Photo Lythography

*  “Carving pictures in stone using light’

UV light floods backside of mask.

EERRRENN

Photomask —ﬂ Quartz Glass |

Chrome Pattern \ _
Gaps in
iat i hrome allow
Photoresist is exposed C

where UV illuminates it. UV through.
Y \J Y
Photoresist . .

Wafer

Unexposed
photoresist is
eventually
removed by an
appropriate
solvent leaving
the islands of
exposed
photoresist.

| FIG 3.1 | Photomasking with a negative resist (lens system between mask and
wafer omitted to improve clarity and avoid diffracting the reader ©)



Fabrication Steps

* Start with blank wafer
*  Build invert from bottom up

p substrate




n-well Formation

*  First step will be to form the n-well

— Cover wafer with protective layer of SIO, (oxide)

to grow SiO, on top of Si wafer put the Si with H,O

or O, in oxidation furnace at 900 — 1200 C
— (Remove layer where n-well should be built)

— (Implant or diffuse n dopants into exposed wafer)

— (Strip off SIO,)

p substrate

Si0,



Deposit silicon-oxide and
photoresist

*  Photoresist is a light-sensitive organic polymer
*  Softens where exposed to light

Photoresist
= SIO2

p substrate

\ NOTE: The silicon oxide is just to protect the wafer

10



Photo-Lithography

*  Expose photoresist through n-well mask
*  Strip off exposed photoresist

Photoresist
|_

SiO
2

p substrate




Etching

*  Etch oxide with hydrofluoric acid (HF)

— Seeps through skin and eats bone: nasty stuff!!!
*  Only attacks oxide where resist has been exposed

Photoresist
SiO2

p substrate

12



The n-well
* n-well is formed with diffusion or ion implantation
* Diffusion
— Place wafer in furnace with arsenic gas

— Heat until As atoms diffuse into exposed Si
* |on Implantation

— Blast wafer with beam of As ions
— lons blocked by SiO,, only enter exposed Si

[ SiO2

n well

13




Strip protective oxide

*  Strip off the remaining oxide using HF
* Back to bare wafer with n-well
*  Subsequent steps involve similar series of steps

n well

p substrate




Gate oxide and Polysilicon

*  Deposit very thin layer of gate oxide

< 20 A (6-7 atomic layers)

*  Chemical Vapor Deposition (CVD) of silicon layer
—  Place wafer in furnace with Silane gas (SiH,)

— Forms many small crystals called polysilicon
— Heavily doped to be good conductor

ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ
''''''''''''''''''''''''''''''''''''

HHHHHHHHHHHHHHHHHH

ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ

............................................. F| DWH"W”
rrrrrrrrrrrrrrrrrrrrrrrrrrrrr

p substrate

1 Thin gate oxide
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Polysilicon patterning

*  Use same lithography process to pattern polysilicon

''''''''''''''''''''''''''''''''''
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
''''''''''''''''''''''''''''''''
...................................................

W T "N TS . N T T T T . T . T

o o .

issssssssSSsSSsSsd - fSSssSssSSsSssSssSSsSSseSsSESs . pESSSSESSESsSsssss |
L L] L] L L]
Yo W

Polysiicon

Polysiicon
Thin gate oxide

n well

p substrate




Self-aligned polysilicon gate
process

The polysilicon gate serves as a mask to allow precise
alignment of the source and drain with the gate
U

se oxide and masking to expose where n+ dopants
should be diffused or implanted

n-diffusion forms nMOS source, drain, and n-well
contact

protedhve layer
of oxide

afs W, s
------------------------------------------------------------------------------------------------------------------------------
---------------------------------------------------------------
llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

P substrate

17



Formation of the n-diffusions

Pattern oxide and form n+ regions

Self-aligned process (poysilicon gate) “blocks” diffusion under
the gate

Polysilicon is better than metal for self-aligned gates because it
doesn’t melt during later processing

n+ Diffusion

n well
b substrate 18




The n-diffusions

Historically dopants were diffused

Usually ion implantation today (but regions are still
called diffusion)

p substrate

Strip off oxide to complete patterning step

n well

p substrate




The p-diffusions

*  Similar set of steps form p+ diffusion regions for pMOS
source and drain and substrate contact

p+ Diffusion

pt pt

b substrate




Contacts

*  Now we need to create the devices' terminals
*  Cover chip with thick field oxide (FOX)

. Etch oxide where contact cuts are needed
Contact

el HHHRHRRHHRHRRR e ce] e Thick field ovide
pto| oot n+ p+ p+ |

.........

b substrate




Metallization

. Sputter on aluminum over whole wafer, filling the contacts as well

. Pattern to remove excess metal, leaving wires

{ el el
| T
“BF £

p substrate

n well

f//
.

Metal

" AT Thick field oxide

22



Fabrication Steps Summary (1/3

(a) p-substrate
SiO2
(b) p-substrate
Photoresist
Sio,
(c) p-substrate
] Photoresist
Si02
(d) p-substrate
Photoresist
|
| ’: Sio,
(e) p-substrate
1 ™ sio,
(f) p-substrate
] ] sio,
L n-well J
((¢)]
L n-well J
(h) p-substrate

IEWEEE Cross-sections while manufacturing the n-well

23



Fabrication Steps Summary (2/3)

(a)

(b)

(c)

(d)

(e)

U}

LU IR P

L

N AN

]

e
B )

[{[tMIEYA Cross-sections while manufacturing polysilicon and n-diffusion

24



Fabrication Steps Summary (3/3)

(©)

N

o Lo

p-substrate

Eves]

N

| [ ]
N

p-substrate

EES)

N

N

{/AJ/// ////r//[

p-substrate

“4

7
p+ n+

n-well

liJ

Thick field oxide

FOX

Metal
Thick field oxide

HI!EE Cross-sections while manufacturing p-diffusion, contacts, and metal

25



Layout Design

Chips are specified with set of masks

Minimum dimensions of masks determine transistor size (and
hence speed, cost, and power)

Feature size f = distance between source and drain

—  Set by minimum width of polysilicon
Feature size improves 30% every 3 years or so

Normalize for feature size when describing design rules
Express rules in terms of o = f/2

— E.g.0=0.3 ymin 0.6 ym process

27



Layout Design Rules &

Metal1 Metal2 Diffusion  Polysilicon

A ] N arlfan 4 an NN
7 NN NN
2 7NN NN N
NN 1] -
2 2 N N VN N
b o s/
T <= ¢ 6\ s/
N
Metall-  Metali- Metal1- 37 § /é,
Diffusion  Polysilicon Metal2 N

Contact  Contact Vias ////////

E[EWEEE] simplified N-based design rules for layouts with 2-metas layers (MOSIS)

28



Design Rules Summary

Metal and diffusion have minimum width and spacing of 4

Contacts are 2o x 20 and must be surrounded by 10 on the
layers above and below

Polysilicon uses a width of 2o

Polysilicon overlaps diffusions by 2o where a transistor is desired
and has spacing or 1o away where no transistor is desired

Polysilicon and contacts have a spacing of 3o from other
polysilicon or contacts

N-well surrounds pMOS transistors by 6o and avoid nMOS
transistors by 60

29



Logic Gates layout

Layout can be very time consuming
Design gates to fit together nicely

Build a library of standard cells

Standard cell design methodology
— V__and GND should abut (standard height)

— Adjacent gates should satisfy design rules
—  nMOS at bottom and pMOS at top

— All gates include well and substrate contacts

30



The power and ground

lines are called suppl
ails * Inverter Layout
Voo R * Transistor dimensions specified as W / L

ratio

*  Minimum size is 4o/ 20, sometimes

called 1 unit /\
8/2 2
4/2 1

(b) c)
IIEEE Inverter with dimensions labeled v

*In f=0.6 um process, this is 1.2 um wide, 0.6 ymlong ™

[
__v.-‘.v‘v‘_v¢ N
GND N3
b a tu WL,




Inverter Standard Cell Layout

Usually the pMOS has
width 2 or 3 times the
width of the nMOS

32



Inverter Standard Cell Area (1/2)

401

$
an
A
a0

[ 4a
127
4
4

To next metal
| e
—]
——

33

W

N,
el N
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16 .
12A] 4M | 4N | 40 |27

Inverter Standard Cell Area (2)

A

\ Yl
\ . <

SN g

>

N\

<

34

Three abutted standard cell inverters



3-input Standard Cell NAND

t A
4 A

i

7
NZ

7

7k
/ //%g’ﬁﬁ%// "

. =

% ‘7/////////4

/////////

[EE®P] 3-input NAND standard cell
gate layouts



Stick Diagrams

* Stick diagrams help plan layout quickly
— Need not be to scale

— Draw with color pencils or dry-erase markers

Vb Q@/A// / Vb Q@/A // s /@ C// ] ] Contact
§ E Q ’ Metal1
g N AN N
’ N\ /XY ?2'/ :
Y N AY pdiff
2 N N N
: NN N -
diff
L i .
GND /77 A GND I L 7777777777 A Polysilicon
(a) (b)

FIG 1.43 BT diagrams of inverter and 3-input NAND gate. Color version on inside front
cover.
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Wiring Tracks

* Awiring track is the space required for a wire
— 4o width, 4o spacing from neighbor = 8o pitch

— Transistors also consume one wiring track

(@)

G pitch of routing tracks

-

40

4 A

4 A

4%

NANNNAN

(b)

|
|

40

4 %

37



Well Spacing

*  Wells must surround transistors by 60

— Implies 120 between opposite transistor flavors

— Leaves room for one wire track

©

N —
\ )\
\‘ 4?\-¢ N A
V

120 ﬁ% 2
N ¥ My Y
\ 7772 N 7,
\ 1\

b

_—
S

FIG 1.45 Spacing between nMOS and

pMOS transistors
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Area Estimation

Estimate area by counting wiring tracks
— Multiply by 8 to express in O

40 A

32 A

FIG 1.46 3-input NAND gate area estimation

Hori 2ontol
(X g = 32

L /
O C.raA
I L

|I.-" 1~
Ll |

Yoo A
L

39



Resistance estimation

= Resistance of uniform slab

can be given as,
R_P. I

o tw
Where p = resistivity

t= thickness

|= conductor length
w=conductor width

or, l

R=R_._ ohms
”

RS IS the sheet resistance Q/[

/a G U C Dr. Ahmed H. Madian-VLSI

German University in Gairo



iResistance estimation (cont.)

= Resistance of certain layers

metal 0.03
Poly 15->100
Diffusion p 80
Diffusion n 35
Silicide 224
N-well 1K - 5K

/a G U C Dr. Ahmed H. Madian-VLSI



s For MOSFET channel resistance

R

channel Sheet

where R, = 1/uC (V -V) L)

For P and n channels
R

sheet

2GUC

German Universit yin Gairo

(L/W)

i Resistance estimation

= 1000 ->30,000 Q/[]

Dr. Ahmed H. Madian-VLSI

o N+

channel




Resistance

= Depends on resistivity of material p (Rho)

= Sheet resistance R = p /t

= ResistanceR=R. *L/W

= Corner approximation - count a corner as half a

square
Example: u

R=R_ . 13+ 2%1/2)+ 3*(1/12) squares
R= 45?5&* 15.5 squares = 62Q

C(::"r}er (1/2 Square) - 1/2 Square

+—1/2 Square
Corner (1/2 Square) —» «— Corner (1/2 Square)

2GUC

German University in Gairo



iInverter resistance estimation

=  CMOS inverter (no static

current) Voo -
= Switching current
1 _ Vo _ Voo o (LW) ale .
max Rt tal R +R L :l IT
ota s S\ 117 I Vour = Vos
v d Va— l—o
fOr L=w=l LDS
I . Voo = Voo _Vop R, (L/W) R_” | My
™ R, *R, 25 10 35 v =
ye L
switching power loss = I m)l(/bD — 3050 ) -

/a G U C Dr. Ahmed H. Madian-VLSI 10

German University in Gairo



i Capacitance estimation

The dynamic response of MOS systems strongly depends on
the parasitic capacitances associated with the MOS device.
The total load capacitance on the output of a CMOS gate is
the sum of:

= (gate capacitance (of other inputs connected to out)
= diffusion capacitance (of drain/source regions)

= routing capacitances (output to other inputs)
CGD CDB

/\substrate
C:SB

ource
[

\) G U C Dr. Ahmed H. Madian-VLSI GB "

German University in Gairo

gate

|
|
GS




i Capacitance (1/2)

= [ransistors
= Depends on area of transistor gate
= Depends on physical materials, thickness of insulator
= Given for a specific process as Cg

= Diffusion to substrate
= Side-wall capacitance - capacitance from periphery
= bottom-wall capacitance - capacitance to substrate

= Given for a specific process as Cdiﬂc’bot, Cdiﬂc,Side

/a G U C Dr. Ahmed H. Madian-VLSI 13

German University in Gairo



i Capacitance (2/2)

= Metal to substrate
= Parallel plate capacitance is dominant

= Need to account for fringing, too
= Poly to substrate

= Parallel plate plus fringing, like metal
= don’t confuse poly over substrate with gate capacitance

= Also important: capacitance between conductors
= Metall-Metall

s Metall-Metal2

/a G U C Dr. Ahmed H. Madian-VLSI

German University in Gairo
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Capacitance estimation (cont.)

= Gate capacitance

. . . c — insulator
= Diffusion capacitance e i
substrate

= Routing capacitance

——C.

. C,.>C._ >C_>C 1

diff poly m2 77

routin
substrate T
/a G U C Dr. Ahmed H. Madian-VLSI 15
o




iCapacitance estimation

= In general, capacitance could be calculated using

c. & .© .
c= Ao 4
d d
C =€, &, = ;
/unitarea COX d
d

/a G U C Dr. Ahmed H. Madian-VLSI

16



iGate Capacitance

0 C9=Cgs+ ng+Cgb

/a G U C Dr. Ahmed H. Madian-VLSI

German University in Gairo
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Capacitance estimation (cont.)

b

— Cia Gate

: insutator l:

= Diffusion capacitance (source/drain)

Side wall capacitance ~ aréa capacitance

Cs,diﬁ - Cd ,Area'A T Ca’ ,Sidewalls'P

Where A = area and p = perimeters

/a G U C Dr. Ahmed H. Madian-VLSI 18

German University in Cairo



i Routing capacitance

= Single conductor capacitance
= multiple conductor capacitance

/a G U C Dr. Ahmed H. Madian-VLSI

German University in Gairo
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Capacitance estimation (cont.)

Fringing capacitance

outing capacitance: a) single conductor capacitance

Half cylinders

etal 1
i ‘ t ‘
1
1T T T w h
substrate
W t
P I1
C, g = 2+ _ 2 _
otal . ,
2 A [ 2 b 4 LQ
In + +
t t i 4
Dr. Ahmed H. Madian-VLSI 20

2GUC

German University in Gairo




K

outing capacitance:

C12
Metal 2 Metal 1 [ Metal 2
Vin | | Vout
C, c
p— —
— C12
_1 G — l
etal 1 =
C
m— A Vout N lxln 12
"C +C
2 12
substrate

GUC

German University in Gairo

Dr. Ahmed H. Madian-VLSI

Capacitance estimation (cont.)

b) multiple conductor capacitance

21



i Multilayer capacitance calculations

= Example: given the layout shown in the figure calculate the

total capacitance at source and gate given that:

C

metal/Area

poly/Area
Gate/A
d,a/A
d,side/L

C
C
C
C
A

2GUC

German University in Gairo

Dr. Ahmed H. Madian-VLSI

= 0.025uF/pum? 1002 4

= 0.045pF/um? Cue

= 0.7 fFlumz Cu H |~

= 0.33fF/um? S

— 26ﬂ:/um & 30

=5.1pum
112n

4 2% TCpy

75}

22



100A 4\

Solution = |-

W

Cor | 20
Source capacitance Sy B
Coaitt= Caa- At Cysigewans- P T2
4x A% T Ca
A =40 * 3\ =12 )\? 4%
P = 2%(4) + 30)=14 A R
C. G “c,
So, C, . = 0.33% 12 A242.6* 14 1,=63 51fF )

/a G U C Dr. Ahmed H. Madian-VLSI 23

German University in Gairo



Solution (cont.)

Gate capacitance 1002 .

Cwp

_ 3\ c "

CG,totaI - C|\/| + CMP+CP1+CG+CP2 I 1/. T
o
CM =0.025* 10013 A=7.517 C oot . 30
Cyyp= 0.045 * 40* 4 ) = 0.72).2 i
CPl =0.045 * 2).* 2. = 0.18).2 43 p1
C,, =0.045* 20 2), =0.18)°

CG =07 *2)* 3\ =4.2)2 Cwr— Cvp—T€P1—T— TCqae TCos

/a G U C Dr. Ahmed H. Madian-VLSI 24

German University in Gairo



Inductance estimation

nductance is normally small but as the process shrink on-chip inductance must be
taken into account.

= Bond-wire inductance can cause deleterious effects in large, high speed 1/O buffers.
= The inductance of bonding wires and the pins on packages could be calculated by,

= H 8p 4
Design technigues to overcome this problem: L T1 n W Tt
v'separate power pins for 1/O pads and chip core

v'multiple power and ground pins A
v'careful selection of the position of the power and
ground pins on the package I h

v"adding decoupling capacitances on the board
v'increase the rise and fall times substrate

v'use advanced package technologies (SMD, etc)

/a G U C Dr. Ahmed H. Madian-VLSI 36

German University in Gairo




MOS Transistors

Four terminal device: gate, source, drain, body
Gate — oxide — body stack looks like a capacitor

Gate and body are conductors (body is also called the substrate)
SIO,, (oxide) is a "good” insulator (separates the gate from the body

Called metal—-oxide—semiconductor (MOS) capacitor, even though
gate is mostly made of poly-crystalline silicon (polysilicon)

Source  Gate Drain ~ Source  Gate Drain
Polysilicon Polysilicon
SiO2 SiOZ
n+ n+ |
= s
p bulk Si n bulk Si

NMOS PMOS



NMOS Operation

Body is commonly tied to ground (0 V)
Drain is at a higher voltage than Source

When the gate is at a low voltage:

P-type body is at low voltage

Source-body and drain-body “diodes” are OFF
No current flows, transistor is OFF

Source Gate Drain
Polysilicon
?7 SiO2
— 0
n+ e i |
ST 'D
P bulk Si




NMOS Operation Cont.

When the gate is at a high voltage: Positive charge
on gate of MOS capacitor

Negative charge is attracted to body under the gate
Inverts a channel under gate to “n-type” (N-channel, hence

called the NMQOS) if the gate voltage is above a threshold
voltage (VT)

Now current can flow through “n-type” silicon from source
through channel to drain, transistor is ON

Source Gate Drain

Polysilicon
T SO
=5

———— 1

n+ Lo S| B L 1
ST 'D
p bulk Si
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PMOS Transistor

Similar, but doping and voltages reversed

Body tied to high voltage (V)
Drain is at a lower voltage than the Source
Gate low: transistor ON

Gate high: transistor OFF

Bubble indicates inverted behavior
Source Gate Drain

Polysilicon

n bulk Si
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Electronic Design Automation

Course Outline

Digital circuit design flow.
Verilog Hardware description language
Logic Synthesis
- Multilevel logic minimization.
- Technology mapping
- High-level synthesis
Testability Issues
Physical Design Automation
- Floor planning, Placement, Routing.



| Electronic Design Automation
Digital Design Flow
. Design complexity increased rapidly

-Increased size and complexity
-CAD tools are essential

. The present trend

-Standardize the design flow.
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What is design flow?

. Standardized design procedure
- starting from the design idea down to the actual
implementation.

. Encompasses many steps

- Specification

- Synthesis

- Simulation

- Layout

- Testability analysis
- Many more...
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New CAD tools

- Based on Hardware Description Language (HDL)

- HDLs provide formats for representing the outputs of
various design steps.

- An HDL based CAD tool transforms from its HDL input
into HDL output which contains more hardware
information.

. Behavioral level to register transfer level.
. Register transfer level to gate level.
. Gate level to transistor level.
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Two compting HDLs

1-VHDL
2-Verilog
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Simplistic view of Design flow:




Electronic Design Automation

AN

Design Representation

. A design can be represented at various levels from three
different points of view:

1- Behavioral
2- Structural
3- Physical

. can be represented by Y-diagram
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Electronic Design Automation

Behavioral Representation:

. Specifies how a particular design should respond to given set of
inputs.

. May be specified by:

- Boolean equations.

- Tables of input and output values.

- Algorithms written in standard HLL like C.

- Algorithms written in special HDL like Verilog.

10
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An algorithm level description:

module carry(cy, a,b,c);
input a,b,c;
outputy;
assign
cy = (a&b) | (b&c)|(c&a)
endmodule

11
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Boolean behavioral specification for cy:

primitive carry(cy, a,b,c);
input a,b,c;
outputy;
talbel

//abc:cy
11°7:
17?2 1:
?11:
00 ?:
1?0:
?00:
End table
endprimitive

ol ool N

12
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Structural Representation
. Specifies how components are interconnected.

. In general, the description is a list of modules and their
interconnects.

- called netlist.

- can be specified at various levels.
. At the structural level of, the level of abstraction are:

- the module level

- the gate level

- the switch level

- the circuit level

13
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Electronic Design Automation

. In each level more details is revealed about
implementation.

14
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Structural representation : example

4- Bit adder

module add4(s,cy4,cy_in,x,y);
input [3:0] x, y;
input cy_in;
output [3:0] s;
output cy4;
wire [2:0] cy_out;
add BO (cy_out[0],s[0],x[0],y[0],cy_in);
add B1 (cy_out[1],s[1],x[1],y[1], cy_out[O]);
add B2 (cy_out[2],s[2],x[2],y[2], cy_out[1]);
add B3 (cy4, s[3],x[3],y[3], cy_out[2]);
endmodule
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module add (cy_out,sum,a,b,cy _in);
input a,b,cy_in;
output sum, cy_out;
sum s1(sum,a,b,cy_in);
carry cl(cy _out,a,b,cy_in);
endmodule

module carry (cy_out ,a,b,cy _in);
input a,b,cy_in;
input cy_out;
wire t1,t2,t3;
and gl(t1,a,b);
and g2(t2,a,c);
and g3(t3,b,c);
or gd(cy_out,t1,t2,t3);
endmodule
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lmlt

Physical Representation:

. The lowest level of physical specification:

- Photo-mask information required by the various
processing steps in the fabrication process.
. At the module level, the physical layout for 4-bit adder
may be defined by a rectangle or polygon, and a collection
of ports.

18
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Physical Representation: example;

module add4(s,cy4,cy_in,x,y);
input x[3:0], y[3:0];
input cy_in;
output [3:0] s;
output cy4;
boundary [0,0,130,500];
port x[0] aluminum width=1 origin=[0,35];
port y[0] aluminum width=1 origin=[0,85];
port cy_in polysilicon width=2 origin=[70,0];
port s[0] aluminum width=1 origin=[120,65];

add a0 origin=[0,0];
add al origin=[0,120];
endmodule
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About Verilog:

. Along with VHDL, Verilog is among the most widely used HDLs.
. Main differences:

» VHDL was designed to support system-level design and
specification.

» Verilog was designed primarily for digital hardware
designers developing FPGAs and ASICs.

. The differences become clear if someone analyze the language
features.

21
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. VHDL

» Provides some high-level constructs not available in
Verilog (user defined types, configurations, etc.).

. Verilog

» Provides comprehensive support for low-level digital
design. Not available in native VHDL(type definition and
called packages need to be included)

22
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Concept of Verilog “ module”
. In Verilog, the basic unit of hardware is called module.

» Modules cannot contain definitions of other modules.

» A module can, however, be instantiated within another
module.

» Allows the creation of hierarchy in Verilog description.

module module_name (list_of ports);
input declaration;
output declaration;
local net declaration;
parallel statements;
endmodule

23
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Example 1: simple AND gate

module simpleand (f,x,y);
input x,y;
output f;
assign f=x & y;
endmodule

Example 2: two-level circuit

module two-level (a,b,c,d,f);
input a,b,c,d;
output f;
wire t1,t2;
assigntl=a & b;
assign t2="~(c|d);
assign f=t1 " t2;
endmodule

L%
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Example 3: a hierarchical design

module add3 (s,cy3,cy_in,x,y);
input [2:0] x,y;
input cy_in;
output [2:0] s;
output cy3;
wire [1:0] cy_out;
add BO (cy_out[0],s[0],x[0],y[0],cy_in);
add B1 (cy_out[1],s[1],x[1],y[1], cy_out[0]);
add B2 (cy3 ,5[2],x[21,y[2], cy_out[1]);

endmodule

25
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Specifying Connectivity:
. There are two alternate ways of specifying connectivity:

» Positional association
o The connections are listed in the same order
add Al(c_out,sum,a,b,c_in);
» Explicit association
o May be listed in any order

add A1(.in1(a), .in2(b),.cin(c_in),.sum(sum),.cout(c_out));

26



Electronic Design Automation

Variable Data Types
. A variable belongs to one of two data types:

» Net
o Must be continuously driven
o Used to model connections between continuous
assignments & instantiations.
> Register
o Retains the last value assigned to it
o Often used to represent storage elements

27
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Net data type:
. Different ‘net’ types supported for synthesis:
» wire, wor, wand, tri, supplyO, supplyl

. ‘wire’ and ‘tri’ are equivalent; when there are multiple drivers
driving them, the outputs of the drivers are shorted together.

. ‘wor’ / ‘wand’ inserts OR / AND gate at the connection.

. ‘supply0’ / supplyl model power supply connections.

28
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Example 4:

module using_wire (a,b,c,d,f);
input a,b,c,d;
output f;
wire f;
assign f=a & b;
assign f=c|d;
endmodule

module using_wired_and (a,b,c,d,f);
input a,b,c,d;
output f;
wand f; //f as wand
assign f=a & b;
assign f=c|d;
endmodule




Electronic Design Automation

Example 5:

module using_supply_wire (a,b,c,f);
input a,b,c;
output f;
wire t1,t2;
supplyO gnd;
supplyl vdd;

nand G1 (t1,vdd,a,b);

xor G2 (t1,c,gnd);

and G3(f,t1,t2);
endmodule

30
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Register data type:

. Different ‘register’ types supported for synthesis:
> reg, integer

. the ‘reg’ declaration explicitly specifies the size.

» regx,y; //single- bit register variable

» reg [15:0] bus; //16-bit bus, bus [15] MSB
» unsigned

» used to model the actual hardware register

. For ‘integer’, it takes the default size, usually 32-bit.

» Synthesizer tries to determine the size.
» Sinegd
» Used for loop counting

31
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Example 6:

module simple_counter (clk,rst,count);
input clk,rst;
output count;
reg [31:0] count;

always @(posedge clk)

begin
if (rst)
count = 32'b0;
else
count = count +1;
end
endmodule

32
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» When ‘integer’ is used, the synthesis system often caries
out a data flow analysis of the model to determine its

actual size.
> wire [1:10] a,b;
integer ¢;
c=a+b:

» The size of c can be determined to be equal 11 (10 bits
plus a carry).

» A value may be specified in either the ‘sized’ or the ‘un-
sized’ form > syntax: <size>'<base><numbr>

Examples:
8'b01110011 // 8-bit binary number

12’hA2D /11010 0010 1101 in binary
12’hCx5 /1 1100 xxxx 0101 in binary

25 /I signed number, 32 bits
b0 Il logic 0
1’b1. Il logic 1

33
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Why silicon?

Semiconductor devices are of two forms
(1) Discrete Units
(11) Integrated Units

Discrete Units can be diodes. transistors, etc.

Integrated Circuits uses these discrete units to make one device.
Integrated Circuits can be of two forms
(1) Monolithic-where transistors. diodes. resistors are
fabricated and interconnected on the same chip.
(11) Hybrid- 1n these circuits, elements are discrete form and
others are connected on the chip with discrete elements
externally to those formed on the chip
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Why silicon?

v Two other semiconductors, germanium and gallium arsenide, present
special problems while silicon has certain specific advantages not available
with the others.

v' A major advantage of silicon. in addition to its abundant availability in the
form of sand. 1s that 1t 15 possible to form a superior stable oxide, S10,,.
which has superb insulating properties.

v Both Si and Ge do not suffer, in the processing steps, from possible
decomposition that may occur in compound semiconductors such as GaAs.

v Lastly, at the present time, silicon remains the major semiconductor in the
mndustry.
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How to product pure silicon

Silicon From Sand
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Single crystal silicon

L.| Wafer Preparation - | Assembly and Packaging: P H
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Semiconductor Manufacturing Process

Fundamental Processing Steps

1.Silicon Manufacturing
a) Czochralski method.
b) Wafer Manufacturing
c) Crystal structure

2.Photolithography
a) Photoresists
b) Photomask and Reticles
c) Patterning
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Semiconductor Manufacturing Process

3.0x1de Growth & Removal
a) Oxide Growth & Deposition
b) Oxide Removal
c) Other effects
d) Local Oxidation

4. Diffusion & lon Implantation
a) Diffusion
b) Other effects
¢) lon Implantation
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Semiconductor Manufacturing Process

Oxidation

The process of oxidation consists of growing a thin film of silicon
dioxide on the surface of the silicon wafer.

Diffusion

This process consists of the introduction of a few tenths to several
micrometers of impurities by the solid-state diffusion of dopants
Into selected regions of a wafer to

form junctions.

lon Implantation

This is a process of introducing dopants into selected areas of the
surface of the wafer by bombarding the surface with high-energy
lons of the particular dopant.
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Semiconductor Manufacturing Process

Photolithography

In this process, the image on the reticle iIs transferred to the
surface of the wafer.

Epitaxy

Epitaxy is the process of the controlled growth of a crystalline
doped layer of silicon on a single crystal substrate.
Metallization and interconnections

After all semiconductor fabrication steps of a device or of an
Integrated circuit are completed, it becomes necessary to provide
metallic interconnections for the integrated circuit and for
external connections to both the device and to the IC.



~— Semiconductor Manufacturing
Process

Etching Techniques

Etching is the process of selective removal of regions of a
semiconductor ,metal, or silicon dioxide.

Diftusion

*Most of these diffusion processes occur in two steps: the predeposition and
the drive-in diffusion.



Crystal Growth and Wafer Manufacturing
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FABRICATING SILICON

Quartz, or Silica, Consists of Silicon Dioxide
Sand Contains Many Tiny Grains of Quartz

Silicon Can be Artificially Produced by
Combining Silica and Carbon in Electric
Furnice

Gives Polycrystalline Silicon (multitude of
crystals)

Practical Integrated Circuits Can Only be
Fabricated from Single-Crystal Material
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- CRYSTAL GROWTH

Czochralski Process is a
Technique in Making
Single-Crystal Silicon

A Solid Seed Crystal is
Rotated and Slowly

Extracted from a Pool
of Molten Si

Requires Careful
Control to Give Crystals
Desired Purity and
Dimensions




CRYSTAL GROWTH
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CYLINDER OF MONOCRYSTALLINE

* The Silicon Cylinder is
Known as an Ingot

* Typical Ingot is About 1 or 2
Meters in Length

* Can be Sliced into
Hundreds of Smaller

Circular Pieces Called
Wafers

e Each Wafer Yields
Hundreds or Thousands of
Integrated Circuits
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WAFER MANUFACTURING

The Silicon Crystal is Sliced by Using a Diamond-Tipped
Saw into Thin Wafers

Sorted by Thickness
Damaged Wafers Removed During Lapping

Etch Watfers in Chemical to Remove any Remaining Crystal
Damage

Polishing Smoothes Uneven Surface Left by Sawing Process

Slicing Lapping Etch Polish
e St
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Photolithography

Deep UV Photolithography



Photolithography

Photolithography is
a technique that is
used to define the
shape of micro-
machined structures
on a wafer.




— Photolithography

Photoresist

The first step In the photolithography process is to
develop a mask, which will be typically be a chromium
pattern on a glass plate.

Next, the wafer Is then coated with a polymer which is
sensitive to ultraviolet light called a photoresist.

Afterward, the photoresist is then developed which
transfers the pattern on the mask to the photoresist

layer.



/ ° | e ss
— Photolithography
Photoresist
There are two basic types of Photoresists Positive and
Negative.

Positive resists.

Positive resists decomposes ultraviolet light. The resist Is
exposed with UV light wherever the underlying material is to
be removed. In these resists, exposure to the UV light changes
the chemical structure of the resist so that it becomes more
soluble in the developer. The exposed resist is then washed
away by the developer solution, leaving windows of the bare
underlying material. The mask, therefore, contains an exact
copy of the pattern which is to remain on the wafer.



~—Photolithography
Photoresist

Negative resists

Exposure to the UV light causes the negative resist to become
polymerized, and more difficult to dissolve. Therefore, the
negative resist remains on the surface wherever it is exposed,
and the developer solution removes only the unexposed
portions. Masks used for negative photoresists, therefore,
contain the inverse (or photographic ""negative'’) of the
pattern to be transferred.



~ Photolithography

Model

Figure 1a shows a thin film of
some material (eg, silicon
dioxide) on a substrate of
some other material (eg, a
silicon wafer).

Photoresist layer (Figure 1b )

Ultraviolet light is then
shone through the mask
onto the photoresist (figure
1C).
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~—Photolithography

Model

The photoresist is then
developed which transfers
the pattern on the mask to

tg)e photoresist layer (figure
1d).

A chemical (or some other
method) is then used to
remove the oxide where it is
exposed through the
op)enings in the resist (figure
1€e).

Finally the resist is removed
leaving the patterned oxide
(figure 1f).
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Positive and negative resis
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~—Photolithography

Photomasks and Reticle

Photomask
This Is a square glass plate with a patterned emulsion of
metal film on one side. The mask is aligned with the
wafer, so that the pattern can be transferred onto the
wafer surface. Each mask after the first one must be
aligned to the previous pattern.

1st laver 2nd layer added ard layver added
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—Photolithography

Photomasks and Reticles

When a image on the photomask iIs projected several time sid
by side onto the wafer, this is known as stepping and the
photomask is called a reticle.

An common reticle is the 5X

The patterns on the 5X reticle are reduced 5 times when projected
onto the wafer. This means the dies on the photomask are 5 times
larger than they are on the final product. There are other kinds of
reduction reticles (2X, 4X, and 10X), but the 5X is the most
commonly used. Reduction reticles are used on a variety of steppers,
the most common being ASM, Canon, Nikon, and GCA.
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“Photolithography
Photomasks and Reticles

Examples of 5X Reticles:

e x = iiiminator é%%
o
. ﬁﬁ condenser
=
photomask
{reticlel

reduction

or lens
silicon
wafer
S+ RETICLE OME EXPOSURE
OMNTO & W A&FER
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_ Photolithography
Photomasks and Reticles

Once the mask has been accurately aligned with the pattern
on the wafer's surface, the photoresist is exposed through the
pattern on the mask with a high intensity ultraviolet light.
There are three primary exposure methods: contact,

proximity, and projection.

CONTACT PROXIMITY PROJECTION

LIGHT ,
SOURCE ~ =& A ﬁ

= L2 £

=
MASK i l l \/ ¥
PHOTORESIST an/‘= / A 7
SILICON \@/\:

e -

WAFER
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“Photolithography
Patterning

The last stage of Photolithography is a procesS called ashing.
This process has the exposed wafers sprayed with a mixture of
organic solvents that dissolves portions of the photoresist .

Conventional methods of ashing require an oxygen-plasma ash,
often in combination with halogen gases, to penetrate the crust
and remove the photoresist. Usually, the plasma ashing process
also requires a follow-up cleaning with wet-chemicals and acids
to remove the residues and non-volatile contaminants that
remain after ashing. Despite this treatment, it is not unusual to
repeat the "ash plus wet-clean" cycle in order to completely
remove all photoresist and residues.
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The simplest method of producing an oxide layer
consists of heating a silicon wafer in an oxidizing
atmosphere.



Oxidation of Silicon

Si0, growth is a key process step in manufacturing all Si
devices ,Thick ( 1um) oxides are used for field oxides
(isolate devices from one another )

> Dense and hard SiO, layer act as contamination barrier
Hardness of the SiO, layer protect the surface from scratches during

fabrication process
Sacrificial layers are grown and removed to clean up surfaces

The stability and ease of formation of SiO, was one of the
reasons that Si replaced Ge as the semiconductor of choice.



/
Oxidation of Silicon

+ Heat wafers in an Si+ 0, — SiO,
atmosphere containing an Si+2H,0 — SiO, +2H,
oxidant, usually O,, steam, Si+2N,0 = Si0, + 2N,
or N,O.

Quartz Heater

Tube ‘\\‘ :

(Juartz Boat Heater
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Type of oxidation

Dry oxidation

Wet oxidation

Thermal oxidation
High pressure oxidation

e 0 o B

» Oxidation temperature 900-1200°C
» Oxidation: Si wafer — placed in a heated
chamber — exposed to oxygen gas
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Oxidation of Silicon

DI‘Y oxide - Pure dry oxygen is employed
Disadvantage
- Dry oxide grows very slowly.
Advantage
- Oxide layers are very uniform.
- Relatively few defects exist at the oxide-silicon
interface (These defects interfere with the proper
operation of semiconductor devices)

- It has especially low surface state charges and thus make
ideal dielectrics for MOS transistors.

Si (solid) + O, (gas) — SIO, (solid) (dry oxidation)
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Oxidation of Silicon

Wet oxide - in the same way as dry oxides, but steam is
injected

Disadvantage

Hydrogen atoms liberated by the decomposition of the water
molecules produce imperfections that may degrade the oxide
quality.

Advantage
Wet oxide grows fast.

Useful to grow a thick layer of field oxide

Si (solid) + 2H,0 (gas) — SIO, (solid) + 2H,(gas) (wet oxidation)
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= Thermal oxidation

« Silicon oxidizes quite readily one reason why Si is so widely used

gquartz furnace tube exhaust
| |
O2
X ®
U o\o o o© o —
: heating coils extlernal
i quartz boat NCCeSS
H-O o
main furnace unit
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~~ High Pressure Oxidation

N/

“* High pressure oxidation results in faster oxidation rate

\/

¢ Advantage of high pressure oxidation
« Drop the oxidation temperature
« Reduce oxidation time

Thin oxide produced using high pressure oxidation
strength than oxides grown at atmospheric pressure

igher dielestric

Stainless
Steel Jacket Quartz Process
| Chamber
.
R R e g
| N %
High Pressure B
Inert Gas B
High Pressure = I I l l I | I S
Oxidant Gas
N\ 1 il | 5
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Initial

In a furnace with O, gas eNvironment

Oxygen atoms combine readily
with Si atoms

Linear- oxide grows in equal
amounts for each time

Around 500A thick

Above 5004, in order for oxide layer
to keep growing, oxygen and Si atoms
must be In contact

SI10, layer separate the oxygen in the
chamber from the wafer surface
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Deposited Oxides

Oxide is frequently employed as an insulagdr betweéen two
layers of metalization. In such cases, sqrhie form of
deposited oxide must be used rather than the grown
oxides.

Deposited oxides can be produced by various reactions
between gaseous silicon compounds and gaseous oxidizers.
Deposited oxides tend to possess low densities and large
numbers of defect sites. Not suitable for use as gate
dielectrics for MOS transistors but still acceptable for use
as insulating layers between multiple conductor layers, or
as protective overcoats.
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Key Variables in Oxidation

Temperature

- reaction rate

- solid state diffusion
Oxidizing species

- wet oxidation is much faster than dry oxidation
Surface cleanliness

- metallic contamination can catalyze reaction

- quality of oxide grown (interface states)
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Etching

Etching is the process where unwanted areas of films are
removed by either dissolving them in a wet chemical
solution (Wet Etching) or by reacting them with gases in
a plasma to form volatile products (Dry Etching).

Resist protects areas which are to remain. In some cases
a hard mask, usually patterned layers of SiO, or Si,N , are
used when the etch selectivity to photoresist is low or the

etching environment causes resist to delaminate.
This is part of lithography - pattern transfer.
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Terminology

Resist

« Isotropic etch etched film—-_ /&

Substrate

— a process that etches
at the same rate in all

directions.

 Anisotropic etch otched “'“‘“‘H‘égéggégé"" o

Substrate

— a process that etches
only in one direction.
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Wet Chemical Etching

Wet etches:

- are in general isotropic
(not used to etch features less than = 3

pm)

- achieve high selectivities for most film
combinations

- capable of high throughputs

- use comparably cheap equipment

- can have resist adhesion problems

- can etch just about anything

-Use acid or basic solutions. For instance,
hydrofluoric acid buffered with ammonium fluoride
is typically used to etch SiO2
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Example Wet Processes

For SiO, etching

- HF + NH_ F+H,o0 (buffered oxide etch or BOE)
For 5i,N,

- Hot phosphoric acid: H,PO, at 180 °C

- need to use oxide hard mask

Silicon

- Nitric, HF, acetic acids

- HNO, + HF + CH,COOH + H,O
Aluminum

- Acetic, nitric, phosphoric acids at 35-45 °C
- CH,COOH+HNO,+H,PO,
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‘What is a plasma
(glow discharge)?

A plasma is a partially ionized gas
parts positively and negatively charged particles

Plasmas are generated by flowing gases through an
electric or magnetic field.

These fields remove electrons from some of the gas
molecules. The liberated electrons are accelerated, or
energized, by the fields.

The energetic electrons slam into other gas molecules,
liberating more electrons, which are accelerated and
liberate more electrons from gas molecules, thus
sustaining the plasma.
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~ Dry or Plasma Etching

1.

Purely physical (sputtering)

Can be anisotropic
All materials have sputter
yields within a factor of about
3. therefore selectivities will be
low

nonvolatile species can
redeposit on surfaces

e. lon Milling process

In dry etching, ions of a neutral
material are accelerated toward
the surface and cause ejection of
atoms of all materials
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Dry or Plasma Etching

* Purely chemical

isotropic

can have high selectivities

similar to wet etching

ex. Hich Pressure Plasma process

| Chemical Erching |

O@E% Desorpuon of

by-products
Surface reaclions ol
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rathicals + surface OGlm \
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lsotropic etch . .
Y Semiconductor Manufacturing Technology,

Cuirk and Serda, Prentice Hall, 2001
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/ [ﬂor Plasma EtEhing

Combination of chemical and physical etching
- Reactive Ion Etching (RIE)

Directional etching due to ion assistance.

In RIE processes the wafers sit on the powered electr
This placement sets up a negative bias on the wafer
which accelerates positively charge ions toward ti{e
surface. These ions enhance the chemical etching

mechanisms and allow anisotropic etching.

Wet etches are simpler, but dry etches provide better
line width control since it is anisotropic.

 Plasma etching has the advantage of offering a well-defined
directionality to the etching action, creating patterns with sharp
vertical contours.
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"Other Effects of Oxide Growth and
Removal

Oxide Step

- The differences in oxide thickness and in the
depths of the silicon surfaces combine to produce
a characteristic surface discontinuity

The growth of a thermal oxide affects the doping
levels in the underlying silicon

The doping of silicon affects the rate of oxide growth
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Local Oxidation of Silicon (L

LOCOS: localized oxidation of silicon using silicon
nitride as a mask against thermal oxidation.

A technique called local oxidation of silicon (LOCOS)
allows the selective growth thick oxide layers

CMOS and BiCMOS processes employ LOCOS to grow
a thick field oxide over electrically inactive regions of
the wafer

*The presence of another material such as silicon nitride (Si3N4)
on the surface inhibits the growth of oxide in that region
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Diffusion

*Most of these diffusion processes occur 1n two steps: the
predeposition and the drive-in diffusion,

*In the pre deposition step. a high concentration of dopant
atoms are introduced at the silicon surface by a vapor that
contains the dopant at a temperature of about 1000°C. In
recent years lon Implantation is used.

At the temperature of 1000°C.silicon atoms move out of
their lattice sites creating a high density of vacancies and
breaking the bond with the neighboring atoms.

*The second step is drive-in process. used to drive the
Impurities deeper into the surface without adding anymore
Impurities.
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Diffu o /
Diffusion

Common dopants are boron for P-type layers and phosphorus.
antimony and arsenic for N-type layers.

*A typical arrangement of the process of diffusion 1s shown in
Figure.

*The wafers are placed in a quartz furnace tube that is heated
by resistance heaters surrounding it. So that the wafers may be
Inserted and removed easily from the furnace. they are placed
In a slotted quartz carrier known as a boat. To introduce a

phosphorus dopant. as aim example. phosphorus oxychloride
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“Diffusion

resistance heaters

quartz furnace tube
quartz tube \
N N
\ = =2 i 4
N st} = ———— Vent
2 U St end caps
Liguid impurity scurce . quartz boat
silicon w
O,

Figure 6.5 Physical layout of equipment uscd in diffusion.

phosphorus
- dopant
atoms
deposited

77 7777 s

SiO5

= N dopant atoms diffuse in
AN silicon but not in SiO,
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Diffusion -
(POCI3) is placed in a container eitherT
region of relatively low tempera 4 containeroutside the
furnace at a temperature that he adhtain its liquid form
Nitrogen and oxygen gas are made to pass over the container. These
gases carry the dopant vapor into the furnace, where the gases are
deposited on the surface of the wafers. These gases react with the
silicon, forming a layer on the surface of the wafer that contains

silicon,oxygen, and phosphorus. At the high temperature of the
furnace. phosphorus diffuses easily into the silicon.

quartz tube, in a

Diffusion depth is controlled by the time and temperature of the
drive-in process.

By precise control of the time and temperature (to within
0.25°C).accurate junction depths of fraction of a micron can be

obtained.
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lon Implantation

To generate 1ons. such as those of phosphorus. an arc discharge is made
to occur in a gas. such as phosphine (PH3).that contains the dopant.

The 1ons are then accelerated in an electric field so that they acquire an
energy of about 20keV and are passed through a strong magnetic field.
Because during the arc discharge unwanted impurities may have been
generated. the magnetic field acts to separate these impurities from the
dopant ions based on the fact that the amount of deflection of a particle
In a magnetic field depends on its mass.

Following the action of the magnetic field, the ions are further
accelerated so that their energy reaches several hundred keV, whereupon

they are focused on and strike the surface of the silicon wafer.
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In 1on implantation,
dopantatoms are accelerated
toward the substrate surface
and enter due to their kinetic
energy

*This 1s the preferred
technigue for introduction of
dopantatoms since the
amount of lateral diffusion is
much lower

accelerated Boron atoms
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showing the ion beam hitting the 300mm wafer end-station.

© 19898 Copvriaht Eaton Corporation \



lon Implantation Equipment

lons generated In a source (from feed gas, e.g. BE
AsH3, PH3 ... or

heated solid source, then ionized In W. by
electrons from hot filament) select desired species by
g/m, using a magnet,

accelerated by an E-field and focused using
electrostatic lenses and impact substrate (a bend
removes neutrals) In raster pattern.
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~Comparison of Diffusion and lon /
Implantation

Diffusion is a cheaper and more simplistic method,
but can only be performed from the surface of the
wafers. Dopants also diffuse unevenly, and interact
with each other altering the diffusion rate.

Ion implantation is more expensive and complex. It
does not require high temperatures and also allows
for greater control of dopant concentration and
profile. It is an anisotropic process and therefore
does not spread the dopant implant as much as
diffusion.
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Epitaxial process
Epitaxial Growth
Epitaxial is used to deposit N on N+ silicon, which is impossible it.
accomplish by diffusion. It is also used in isolation between bipolar
transistors wherein N- is deposited on P.
We list below, and with reference to Figure. the sequence of operation
Involved in the process:
1. Heat wafer to 1200°C.
2. Turn on H2, to reduce the S102, on the wafer surface.
3. Turn on anhydrous HCL to vapor-etch the surface of thg’waféx_This
removes a small amount of silicon and other contaminans.
4. Turn off HCL
5. Drop temperature to 1100°C.

6. Turn on silicon tetrachloride (SiCl4)
7. Introduce dopant.
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gas valve and
flow gauge ®

Epitaxial process

RF heating coil
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