
1

EDA11

2

Grid Routing

Introduction

• In the VLSI design cycle, routing follows cell

placement.

• During routing, precise paths are defined on the

layout surface, on which conductors carrying electrical

signals are run.

• Routing takes up almost 30% of the design time, and

a large percentage of layout area.

• We first take up the problem of grid routing.

LENOVO
Pencil

3

What is Grid Routing?

• The layout surface is assumed to be made up of a

rectangular array of grid cells.

• Some of the grid cells act as obstacles.

- Blocks that are placed on the surface.

 - Some nets that are already laid out.

• Objective is to find out a path (sequence of grid cells)

for connecting two points belonging to the same net.

• Two broad class of algorithms:

Maze routing algorithms.

Line search algorithms.

LENOVO
Pencil

4

Problem Definition

• The general routing problem is defined as follows.

 • Given:

- A set of blocks with pins on the boundaries.

- A set of signal nets.

- Locations of blocks on the layout floor.

• Objective:

- Find suitable paths on the available layout

space, on which wires are run to connect the

desired set of pins.

- Minimize some given objective function,

subject to given constraints.

5

• Types of routing constraints:

- Minimum width of routing wires.

- Minimum separation between adjacent wires.

- Number of routing layers available.

- Timing constraints.

Grid Routing Algorithms

1. Maze running algorithm

- Lee's algorithm

- Hadlock's algorithm

2. Line search algorithm

- Mikami-Tabuchi's algorithm

- Hightower's algorithm

3. Steiner tree algorithm

LENOVO
Pencil

6

Maze Running Algorithms

- The entire routing surface is represented by a 2-D

array of grid cells.

- All pins, wires and edges of bounding boxes

that enclose the blocks are aligned with respect to

the grid lines.

- The segments on which wires run are also

aligned.

- The size of grid cells is appropriately defined.

• Wires belonging to different nets can be

routed through adjacent cells without

violating the width and spacing rules.

• Maze routers connect a single pair of points at a time.

- By finding a sequence of adjacent cells from one

point to the other.

7

Lee's Algorithm

• The most common maze routing algorithm.

• Characteristics:

- If a path exists between a pair of points S and

T, it is definitely found.

- It always finds the shortest path.

- Uses breadth-first search.

• Time and space complexities are O(h x w) for a grid

of dimension h x w.

LENOVO
Pencil

8

Phase 1 of Lee's Algorithm

• Wave propagation phase

 - Iterative process.

- During step i, non-blocking grid cells at Manhattan

distance of i from grid cell S are all labeled with i.

 - Labeling continues until the target grid cell T is r

marked in step L.

• L is the length of the shortest path.

- The process fails if:

• T is not reached and no new grid cells can be

labeled during step i.

• T is not reached and i equal M, some upper

bound on the path length.

LENOVO
Pencil

9

Phase 2 of Lee's Algorithm

• Retrace phase

- Systematically backtrack from the target cell T

back towards the source cell S.

If T was reached during step i, then at least one grid

cell adjacent to it will be labeled i-1, and so on.

- By tracing the numbered cells in descending order,

we can reach S following the shortest path.

• There is a choice of cells that can be made in

general.

• In practice, the rule of thumb is not to change the

direction of retrace unless one has to do so.

• Minimizes number of bends.

LENOVO
Pencil

10

Phase 3 of Lee's Algorithm

• Label clearance

- All labeled cells except those corresponding to the

path just found are cleared.

 - Search complexity is as involved as the wave

propagation step itself.

LENOVO
Pencil

11

LENOVO
Pencil

12

• Memory Requirement

- Each cell needs to store a number between 1 and L,

where L=2N is some bound on the maximum path length.

Where N is number of cells in each row.

- One bit combination to denote empty cell.

- One bit combination to denote obstacles.

 log2(L+2) bits per coll.

• Improvements:

-Instead of using the sequence 1,2,3,4,5.... For

numbering the cells, the sequence 1,2,3,1,2,3,... is used.

-For a cell, labels of predecessors and successors are

different. So tracing back is easy.

log2(3+2) = 3 bits per cell.

-Use the sequence 0,0,1,1,0,0,1,1,…

• Predecessors and successors are again different.

 log2(2+2) = 2 bits per cell.

13

Reducing Running Time

1- Starting point selection

a. Choose the starting point as the one that is

farthest from the center of the grid.

2- Double fan-out

a. Propagate waves from both the source

and the target cells.

b. Labeling continues until the wavefronts

touch.

3- Framing

a. An artificial boundary is considered

outside the terminal pairs to be connected.

b. 10-20% larger than the smallest bounding

box.

14

Connecting Multi-point Nets

• A multi-pin net consists of three or more terminal

points to be connected.

• Extension of Lee's algorithm:

- One of the terminals of the net is treated as

source, and the rest as targets.

- A wave is propagated from the source until one

of the targets is reached.

- All the cells in the determined path are next

labeled as source cells, and the remaining

unconnected terminals as targets.

- Process continues.

15

Hadlock's Algorithm

• Uses a new method for cell labeling called detour

numbers.

- A goal directed search method.

- The detour number d(P) of a path P connecting

two cells S and T is defined as the number of grid

cells directed away from its target T.

- The length of the path P is given by:

 len(P) = MD (S,T) + 2 d(P)

where MD (S,T) is the Manhattan distance

between S and T.

>> The cell filling phase of Lee's algorithm can be

modified as follows:

- Fill a cell with the detour number with respect

to a specified target T (not by its distance from

source).

16

- Cells with smaller detour numbers are

expanded with high priority.

• Path retracing is of course more complex, and

requires some degree of searching.

LENOVO
Pencil

17

• Advantages Hadlock's Algorithm:

- Number of grid cells filled up is considerably

less as compared to Lee's algorithm.

- Running time for an NxN grid ranges from

O(N) to O(N
2
).

• Depends on the obstructions.

• Also locations of S and T.

18

Line Search Algorithm

• In maze running algorithms, the time and space

complexities are too high.

• An alternative approach is called line searching,

which overcomes this drawback.

• Basic idea:

- Assume no obstacles for the time being.

- A vertical line drawn through S and a

horizontal line passing though T will intersect.

 • Manhattan path between S and T.

- In the presence of obstacles, several such lines

need to be drawn.

• Line search algorithms do not guarantee finding

the optimal path.

- May need several backtrackings.

19

- Running time and memory requirements

are significantly less.

- Routing area and paths are represented by

a set if line segments.

• Not as a matrix as in Lee's or Hadlock's

algorithm.

20

Mikami-Tabuchi's Algorithm

• Let S and T denote a pair of terminals to be

connected.

• Step 1:

- Generate four lines (two horizontal and two

vertical) passing through S and T.

- Extend these lines till they hit obstructions or the

boundary of the layout.

- If a line generated from S intersects a line

generated from T, then a connecting path is found.

- If they do not intersect, they are identified as trial

lines of level zero.

• Stored in temporary storage for further

processing.

21

• Step i of Iteration:

 - Pick up trial lines of level i, one at a time.

• Along the trial line, all its grid points are

traced.

• Starting from these grid points, now trial

lines (of level i+1) are generated perpendicular

to the trial line of level i.

- If a trial line of level i+1 intersects a trial line (of any

level) from the other terminal point, the connecting

path can be found.

• By backtracing from the intersection point to S

and T.

• Otherwise, all trial lines of level (i+1) are added

to temporary storage, and the procedure repeated.

• The algorithm guarantees to find a path if it exists.

22

23

Hightower's Algorithm

• Similar to Mikami•Tabuchi's algorithm.

- Instead of generating all line segments

perpendicular to a trial line, consider only those

lines that can be extended beyond the obstacle

which blocked the preceding trial line.

-Steps of the algorithm:

- Pass a horizontal and a vertical line through source

and target points (called first-level probes).

- If the source and the target lines meet, a path is

found.

- Otherwise, pass a perpendicular line to the previous

probe whenever it intersects an obstacle.

• Concept of escape point and escape line.

24

Global Routing:
Basic Idea

• The routing problem is typically solved using a two-

step approach:

1. Global Routing

- Define the routing regions.

- Generate a tentative route for each net.

- Each net is assigned to a set of routing regions.

- Does not specify the actual layout of wires.

2. Detailed Routing

- For each routing region, each net passing

through that region is assigned particular routing

tracks.

- Actual layout of wires gots fixed.

- Associated sub-problems: channel routing and

switchbox routing.

25

Routing Regions

• Regions through which interconnecting wires are laid

out.

• How to define these regions?

- Partition the routing area into a set of non-

intersecting rectangular regions.

- Types of routing regions:

 • Horizontal channel: parallel to the x-axis with

pins at their top and bottom boundaries.

• Vertical channel: parallel to the y-axis with pins

at their left and right boundaries.

• Switchbox: rectangular regions with pins on all

four sides.

26

• Points to note:

- Identification of routing regions is a crucial first

step to global routing.

- Routing regions often do not have pre-fixed

capacities.

- The order in which the routing regions are

considered during detailed routing plays a vital

part in determining overall routing quality.

27

• Three types of channel junctions may occur:

- L-type:

• Occurs at the corners of the layout surface.

• Ordering is not important (hiring detailed

routing.

• Can be routed using channel routers.

 - T-type:

• The leg of the "T" must be routed before the

shoulder.

• Can be routed using channel routers.

- +-type:

• More complex and requires switchbox routers.

• Advantageous to convert +-junctions to T-

junctions.

28

Design Style Specific Issues

• Full Custom

- The problem formulation is similar to the general

formulation as discussed.

• All the types of routing regions and channels

junctions can occur.

- Since channels can be expanded, some violations of

capacity constraints are allowed.

 - Major violation in constraints are, however, not

allowed.

 • May need significant changes in placement.

29

• Standard Cell

- At the end of the placement phase

• Location of each cell In a row is fixed.

• Capacity and location of each feed-through is

fixed.

• Feed-throughs have predetermined capacity.

- Only horizontal channels exist.

• Channel heights are not fixed.

- Insufficient feed-throughs may lead to failure.

- Over-the-cell routing can reduce channel height, and

change the global routing problem.

30

• Gate Array

- The size and location of cells are fixed.

- Routing channels & their capacities are also

fixed.

-- Primary objective of global routing is to

guarantee routability.

- Secondary objective may be to minimize

critical path delay.

1

EDA09

2

Simulated Evolution / Genetic Algorithm

• The algorithm starts with an initial set of placement

configurations.

- Called the population.

• The process is iterative, where each iteration

is called a generation.

- The individuals of a population are evaluated to

measure their goodness.

• To move from one generation to the next, three

genetic operators are used:

1. Crossover

2. Mutation

3. Selection

3

CROSSOVER Operator

• Choose a random cut point.

• Generate offsprings by combining the left segment of

one parent with the right segment of the other.

— Some blocks may get repeated, while some

others may get deleted.

— Various ways to deal with this problem.

• Number of times the "crossover" operator is applied

is controlled by crossover rate.

4

MUTATION Operator

• Causes incremental random changes to an offspring

produced by crossover.

• Most common is pairwise exchange.

• Number of times this is done is controlled by

mutation rate.

SELECT Operator

• Select members for crossover based on their fitness

value.

- Obtained by evaluating a cost function.

• Higher the fitness value of a solution, higher will be

the probability for selection for crossover.

5

Force Directed Placement

• Explores the similarity between placement problem

and classical mechanics problem of a system of bodies

attached to springs.

• The blocks connected to each other by nets are

supposed to exert attractive forces on each other.

 - Magnitude of this force is directly proportional

to the distance between the blocks.

• Analogous to Hooke's law in mechanics.

- Final configuration is one in which the system

achieves equilibrium.
• A cell i connected to several cells j experiences a total force

Fi = ∑ where wij is the weight of connection

between i and j dij is the distance between I and J.

• If the cell i is free to move, it would do so in the direction of

force F, until the resultant force on it is zero.

• When all cells move to their zero-force target locations, the

total wire length is minimized.

6

• For cell i, if (xi
0
, yi

0
) represents the zero-force target

location, by equating the x- and y-components of the

force to zero, we get

∑ (())

∑ (())

• Solving for xi
0
 and yi

0
, we get

 ∑ ∑

 ∑ ∑

• Care are should be taken to avoid assigning more

than one cell to the same location.

7

Breuer's Algorithm

• Partitioning technique used to generate placement.

• The given circuit is repeatedly partitioned into two

sub-circuits.

— At each level of partitioning, the available

layout area is partitioned into horizontal and

vertical subsections alternately.

— Each of the sub-circuits is assigned to a

subsection.

— Process continues till each sub-circuit consists

of a single gate and has a unique place on the

layout area.

• Different sequences of cut lines used:

1. Cut Oriented Min-Cut Placement

2. Quadrature Placement

3. Bisection Placement

4. Slice Bisection Placement

8

11

Cluster Growth

• In this constructive placement algorithm, bottom-up

approach is used.

• Blocks are placed sequentially in a partially

completed layout.

- The first block (seed) is usually placed by the

user.

- Other blocks are selected and placed one by

one.

• Selection of blocks is usually based on connectivity

with placed blocks.

• Layouts produced are not usually good.

- Does not take into account the interconnections

and other circuit features.

• Useful for generating initial placements.

- For iterative placement algorithms.

1

EDA09

2

Introduction

• The purpose is to define the signal that each pin will

receive.

• It can be done:

- During floorplanning

- During placement

- After placement is fixed

> For undesigned blocks, a good assignment of pins

improves placement.

• If the blocks are already designed, still some pins can

be exchanged.

3

Pin Assignment

Input:

- A placement of blocks.

- Number of pins on each block, possibly an

ordering.

- A netlist.

• Requirements:

 - To determine the pin locations on the blocks.

Objectives:

- To minimize net-length.

4

• Functionally equivalent pins:

• Exchanging the signals does not affect the

circuit.

• Equipotential pins:

Both are internally connected and represent the

same net.

A, B :: functionally equivalent

C, D :: equipotential

5

Problem Formulation

• Purpose is to optimize the assignment of nets within

a functionally equivalent (or equipotential) pin groups.

• Objective:

- To reduce congestion or reduce the number of

crossovers.

6

Design Style Specific Issues

• Full Custom

- Two types of pin assignment problems:

a) During floorplanning, the pin location along

the block boundary can he changed as the block

is assigned a shape. <REDUCES

CONGESTION>

b) During placement, simply assign nets to pins.

• Standard Cell

 Essentially two things to be done:

a) Permuting net assignment for functionally

equivalent pins.

b) Changing equipotential pins for a net.

• Gate Array - Same as that for standard cells.

7

Classification of Algorithms

Pin Assignment
Algorithms

General
Techniques

Concentric
Circle Mapping

Topological
Method

Nine Zone
Method

Special
Techniques

Channel Pin
Assignment

8

Concentric Circle Mapping

• Uses two concentric circles to planarize the

interconnections.

 - Pins on the block being considered are shown

as points on the inner circle.

 - Interconnections to be made with other blocks

are shown as points on the outer circle.

• Divides the problem into two parts:

a) Assignment of pins to points of the two

circles.

b) Mapping the points on the inner circle to those

on the outer circle.

9

10

11

12

13

Topological Pin Assignment

• Similar to concentric circle mapping.

• Easier to complete pin assignment.

- When there is interference from other

components and barriers.

- For nets connected to more than two pins.

• If a net has been assigned to more than two pins, then

the pin closest to the center of the primary component

is chosen.

• Pins of primary component are mapped onto a circle

as before.

• Beginning at the bottom of the circle, and moving

clockwise, the pins are assigned to nets.

14

Integrated Approach

• Better understanding of the different stages in

physical design automation over the years.

- Attempts are being made to merge some steps

of the design cycle.

- For example, floorplanning and placement are

considered together.

- Sometimes, placement and routing stages can

also be combined together.

• Still a problem of research.

15

Placement

Introduction

• A very important step in physical design cycle.

- A poor placement requires larger area.

 - Also results in performance degradation.

• It is the process of arranging a set of modules on the

layout surface.

- Each module has fixed shape and fixed terminal

locations.

- A subset of modules may have pre-assigned

positions (e.g., I/O pads).

16

17

The Placement Problem

• Inputs:

- A set of modules with

• well-defined shapes

• fixed locations of pins.

- A netlist.

 • Requirements:

- Find locations for each module so that no two

modules overlap.

- The placement is routable.

 • Objectives:

 - Minimize layout area.

- Reduce the length of critical nets.

 - Completion of rotating.

18

Placement Problems at Different Levels

1. System-level placement

- Place all the PCBs together such that

• Area occupied is minimum

• Heat dissipation is within limits.

2. Board-level placement

 - All the chips have to be placed on a PCB.

 • Area is fixed

• All modules of rectangular shape

- Objective is to

 • Minimize the number of routing layers

 • Meet system performance requirements.

19

3. Chip-level placement

- Normally, floorplanning / placement carried out

along with pin assignment.

- Limited number of routing layers (2 to 4).

• Bad placements may be unroutable.

• Can be detected only later (during routing)

 • Costly delays in design cycle.

- Minimization of area.

20

Problem Formulation

• Notations:

 B1,B2,..., Bn: modules/blocks to be placed

Wi,hi,: width and height of Bi 1<i<n

N={N1,N2,….Nm} : set of nets (i.e. the netlist)

Q={Q1,Q2,...Qk} : rectangular empty spaces for

routing

Li : estimated length of net Ni

1<i<m

21

• The problem

 Find rectangular regions R={R1,R21...Rn} for each

of the blocks such that

• Block Bi can be placed in region Ri.

• No two rectangles overlap, Ri∩Rj = Φ.

• Placement is routable (Q is sufficient to route

all nets).

• Total area of rectangle bounding R and Q is

minimized.

• Total wire length ∑𝐿𝑖 is minimized.

For high performance circuits, max{Li|

i=1,2,...,m} is minimized

. General problem is NP-complete.

. Algorithms used are heuristic in nature.

22

Interconnection Topologies

• The actual wiring paths are not known during

placement.

-For making an estimation, a placement algorithm

needs to model the topology of the interconnection

nets.

• An interconnection graph structure is used.

 • Vertices are terminals, and edges are

interconnections.

23

Estimation of Wirelength

• The speed and quality of estimation has a drastic

effect on the performance of placement algorithms.

- For 2-terminal nets, we can use Manhattan

distance as an estimate.

- If the end co-ordinates are (x1,y1) and (x2,y2),

then the wire length L= | xl - x2 |+ | y1 - y2 |

• How to estimate length of multi-terminal nets?

24

Modeling of Multi-terminal Nets

1- Complete Graph

• nC2 = n(n-1)/2 edges for a n-pin net.

• A tree has (n-1) edges which is 2/n times the

number of edges of the complete graph.

• Length is estimated as 2/n times the sum of the

edge weights.

2- Minimum Spanning Tree

• Commonly used structure.

• Branching allowed only at pin locations.

• Easy to compute.

25

3- Rectangular Steiner Tree

• A Steiner tree is the shortest route for

connecting a set of pins.

• A wire can branch from any point along its

length.

• Problem of finding Steiner tree is NP-complete.

4- Semi Perimeter

• Efficient and most widely used.

• Finds the smallest bounding rectangle that

encloses all the pins of the net to be connected.

• Estimated wire length is half the perimeter of

this rectangle.

• Always underestimates the wire length for

congested nets.

26

Design Style Specific Issues

• Full Custom

- Placing a number of blocks of various shapes

and sizes within a rectangular region.

- Irregularity of block shapes may lead to unused

areas.

 • Standard Cell

— Minimization of the layout area means:

• Minimize sum of channel heights.

• Minimize width of the widest row.

• All rows should have equal width.

 — Over-the-cell routing leads to almost "channel-

less" standard cell designs.

27

• Gate Arrays

- The problem of partitioning and placement are

the same in this design style.

- For FPGA's, the partitioned sub-circuit may be

a complex netlist.

• Map the netlist to one or more basic

blocks (placement).

28

Classification of Placement Algorithms

Placement Algorithms

Simulation Based

Simulated
Annealing

Simulated
Evolution

Force Directed

Partitioning
Based

Breuer's
Algorithm

Terminal
Propagation

Other

Cluster Growth

Force Directed

29

Simulated Annealing

• Simulation of the annealing process in metals or glass.

- Avoids getting trapped in local minima.

- Starts with an initial placement.

- Incremental improvements by exchanging blocks,

displacing a block, etc.

- Moves which decrease cost are always accepted.

- Moves which increase cost are accepted with a

probability that decreases with the number of iterations.

• Timberwolf is one of the most successful placement

algorithms based on simulated annealing.

30

Simulated Annealing Algorithm

Algorithm SA_Placement

begin

T = initial temperature;

P = initial_placement;

while (T > final_temperature) do

while (no_of_trIals_at_eachtemp not yet

completed) do

new P = PERTURB (P);

delta_C = COST (new_P) - COST (P);

if (delta_C < 0) then

P = new_P;

else if (random(0,1) > exp(delta_C/T)) then

P = new_P;

T = SCHEDULE (T); /** Decrease temperature

end

31

TimberWolf

• One of the most successfulplacement algorithms.

- Developed by Sechen and Sangiovanni-Vincentelli. •

Parameters used:

- Initial_temperature = 4,000,000

- Final_temperature = 0.1

- SCHEDULE(T) = alpha(T) x T

• alpha(T) specifies the cooling rate which depends on

the current temperature.

• a(T) is 0.8 when the cooling process just starts.

• a(T) is 0.95 in the medium range of temperature.

• a(T) is 0.8 again when temperature is low.

32

The PERTURB Function

• New configuration is generated by making a weighted

random selection from one of the following:

a) The displacement of a block to a new location.

b) The interchange of locations between two blocks.

c) An orientation change for a block.

- Mirror image of the block's x-coordinate.

- Used only when a new configuration generated using

alternative (a) is rejected.

33

The COST Function

• The cost of a solution is computed as:

 COST = cost1 + cost2 + cost3

where

cost1 : weighted sum of estimated length of all

nets

cost2 : penalty cost for overlapping

cost3 : penalty cost for uneven length among

standard cell rows.

- Overlap is not allowed in placement.

- Computationally complex to remove all overlaps.

- More efficient to allow overlaps during intermediate

placements.

• Cost function (cost2) penalizes the overlapping.

1

EDA07

2

Problem Definition

• Input:

 - A set of blocks, both fixed and flexible.

• Area of the block Ai = wi x hi

• Constraint on the Shape of the block

(rigid/flexible)

 - Pin locations of fixed blocks.

- A netlist.

• Requirements:

- Find locations for each block so that no two

blocks overlap.

- Determine shapes of flexible blocks.

• Objectives: - Minimize area.

- Reduce wire-length for critical nets.

LENOVO
Pencil

3

Example: Rigid Blocks

Feasible Floor-plans

LENOVO
Pencil

LENOVO
Pencil

4

Design Style Specific Issues

• Full Custom

- All the steps required for general cells.

• Standard Cell

- Dimensions of all cells are fixed.

- Floorplanning problem is simply the

placement problem.

- For large netlists, two steps:

• First do global partitioning.

• Placement for individual regions next.

• Gate Array

- Floorplanning problem same as placement

problem.

5

Estimating Cost of a Floorplan

• The number of feasible solutions of a floorplanning

problem is very large.

— Finding the best solution is NP-hard.

• Several criteria used to measure the quality of floor-

plans:

a) Minimize area

b) Minimize total length of wire

c) Maximize rout-ability

d) Minimize delays

e) Any combination of above.

6

• How to determine area?

- Not difficult.

- Can be easily estimated because the

dimensions of each block is known.

- Area A computed for each candidate floor-

plan.

• How to determine wire length?

- A coarse measure is used.

- Based on a model where all I/O pins of the

blocks are merged and assumed to reside at its

center.

- Overall wiring length L =∑ where

cij is the connectivity between blocks i and j

dij is the Manhattan distances between the

centers of rectangles of blocks i and j.

7

• Typical cost function used:

Cost = w1 * A + w2 * L

where w1 and w2 are user-specified

parameters.

8

Slicing Structure

• Definition

- A rectangular dissection that can be obtained

by repeatedly splitting rectangles by horizontal

and vertical lines into smaller rectangles.

• Slicing Tree

 - A binary tree that models a slicing structure.

- Each node represents a vertical cut line (V), or

a horizontal cut line (H).

• A third kind of node called Wheel (W)

appears for non-sliceable floor-plans

(discussed later).

- Each leaf is a basic block (rectangle).

9

Non-Slicing Floor plan

Hierarchical Floor plan:

10

Floor-planning Algorithms

• Several broad classes of algorithms:

1. Integer programming based

2. Rectangular dual graph based

3. Hierarchical tree based

4. Simulated annealing based

5. Other variations

11

LENOVO
Pencil

12

13

LENOVO
Pencil

14

LENOVO
Pencil

15

LENOVO
Pencil

16

LENOVO
Pencil

17

18

19

20

21

22

23

24

25

26

27

No. integer variables = 2*n

Number of 0-1 variables = n*(n-1)

No. of constraints = 4n+2n(n-1)

28

29

30

31

32

33

1

EDA07

2

VLSI Design Cycle

• Large number of devices

• Optimization requirements for high performance

• Time-to-market competition

• Cost

3

VLSI Design Cycle (contd.i

1. System specification

2. Functional design

3. Logic design

4. Circuit design

5. Physical design

6. Design verification

7. Fabrication

8. Packaging, testing, and debugging

4

 Physical Design

• Converts a circuit description into a geometric

description.

-This description is used for fabrication of the

chip.

• Basic steps in the physical design cycle

1. Partitioning

2. Floor-planning and placement

3. Routing

4. Compaction

5

6

VLSI Design Styles

• Programmable Logic Devices

— Programmable Logic Device (PLD)

— Field Programmable Gate Array (FPGA)

— Gate Array

• Standard Cell (Semi-Custom Design)

• Full-Custom Design

7

Field Programmable Gate Array (FPGA)

• User / Field Programmability.

• Array of logic cells connected via routing channels.

• Different types of cells:

- Special I/O cells.

- Logic cells.

• Mainly lookup tables

 (LUT) with associated registers.

 • Interconnection between cells:

- Using SRAM based switches.

- Using antifuse elements.

8

Configurable Logic Block:

CLB Functionalities

 • Two 4-input function generators -

Implemented using Lookup Tables

using 16x1 RAM. - Can also implement

16x1 memory.

• Two Registers Each can be

configured as flip-flop or latch. -

Independent clock polarity. -

Synchronous and asynchronous Set /

Reset.

9

I/O Block Diagram

10

Xilinx FPGA Routing

1) Fast Direct Interconnect - CLB to CLB

2) General Purpose Interconnect - Uses switch matrix.

11

FPGA Design Flow

• Design Entry

 - In schematic, VHDL, or Verilog.

• Implementation

 - Placement & Routing

- Bit-stream generation

- Analyze timing, view layout, simulation, etc.

• Download

- Directly to Xilinx hardware devices with

unlimited reconfigurations.

12

Gate Array

• In view of the fast prototyping capability, the gate

array (GA) comes after the FPGA.

 - Design implementation of

• FPGA chip is done with user

programming,

• Gate array is done with metal mask

design and processing.

• Gate array implementation requires a two-step

manufacturing process:

1. The first phase, which is based on generic (standard)

masks, results in an array of uncommitted transistors

on each GA chip.

2. These uncommitted chips can be customized later,

which is completed by defining the metal interconnects

between the transistors of the array.

13

Design Phases:

Phase 1:

 Fabricate an array of transistors/gates:

- Diffusion

- Poly-silicon

- Oxidation

Phase 2:

 Interconnect transistors/gates

- metallization.

14

• The GA chip utilization factor is higher than that of

FPGA.

The used chip area divided by the total chip

area.

• Chip speed is also higher.

- More customized design can be achieved with

metal mask designs.

 • Current gate array chips can implement as many as

hundreds of thousands of logic gates.

15

Standard Cell

• One of the most prevalent custom design styles.

-- Also called semi-custom design style.

- Requires developing full custom mask set.

• Basic idea:

- All of the commonly used logic cells are

developed, characterized, and stored in a

standard cell library.

- A typical library may contain a few hundred

cells.

• Inverters, NAND gates, NOR gates,

complex AOI, OAI gates, D-latches, and flip-

flops.

16

Characteristic of the Cells

Each cell is designed with a fixed height.

- To enable automated placement of the cells,

- Routing of inter-cell connections.

- A number of cells can be abutted side-by-side

to form rows.

• The power and ground rails typically run parallel to

upper and lower boundaries of cell.

 - Neighboring cells share a common power and

ground bus.

- nMOS transistors are located closer to the

ground rail while the pMOS transistors are

placed closer to the power rail.

• The input and output pins are located on the upper

and lower boundaries of the cell.

17

18

Floor-plan for Standard Cell Design

• Inside the I/O frame which is reserved for I/O cells,

the chip area containsrows or columns of standard

cells.

 - Between cell rows are channels for dedicated

inter-cell routing.

- Over-the-cell routing is also possible.

• The physical design and layout of logic cells ensure

that

- When placed into rows, their heights match.

- Neighboring cells can be abutted side-by-side,

which provides natural connections for power

and ground lines in each row.

19

Feed-through Cell

20

Full Custom Design

• The standard-cells based design is often called semi-

custom design.

- The cells are pre-designed for general

use and the same cells are utilized in

many different chip designs.

• In the full custom design, the entire mask design is

done anew without use of any library.

- The development cost of such a design

style is prohibitively high.

- The concept of design reuse is becoming

popular to reduce design cycle time and

cost.

21

• The most rigorous full custom design can be the

design of a memory cell.

- Static or dynamic.

- Since the same layout design is

replicated, there would not be any

alternative to high density memory chip

design.

• For logic chip design, a good compromise can be

achieved by using a combination of different design

styles on the same chip.

— Standard cells, data-path cells and PLAs.

22

Comparison among Various Design Styles

 Design Style

FPGA Gate array Standard cell Full custom

Cell size Fixed Fixed Fixed height Variable

Cell typo Programmable Fixed Variable Variable

Cell placement Fixed Fixed In row Variable

Interconnect Programmable Variable Variable Variable

Design time Very fast Fast Medium Slow

23

Circuit Partitioning:

System Design

M1, M2, …, Mn, Interface Information

•Decomposition of a complex system into

smaller subsystems.

•Each subsystem can be designed

independently. •Decomposition scheme has to

minimize the interconnections between the

subsystems. •Decomposition is carried out

hierarchically until each subsystem is of

manageable size.

24

Example

Wires

Cut1-2: 4

Cut2-3: 4

Size:

Cut1: 15

Cut2: 16

Cut3: 17

25

Partitioning at Different Levels

• Can be done at multiple levels:

— System level

— Board level

— Chip level.

• Delay implications are different:

— Intra-chip → X

— Intra-board or Inter-chip → 10X

— Inter-board → 20X

26

Problem Formulation

1. Interconnection between partitions is minimized.

2. Delay due to partitioning is minimized.

3. Number of terminals must be less than a

predetermined maximum value.

4. The area of each partition should remain within

specified bounds.

5. The number of partitions should also remain within

specified bounds.

27

Classification of Partitioning Algorithms

Partitioning Algorithms

Group Migration

kernighan-
Lin

Fiduccia-Mattheyses

Goldberg-
Burstein

Simulation Based

Simulated Annealing

Simulated Evolution

Performance Driven

28

Group Migration Algorithms

• Kernighan-Lin

 — An iterative improvement algorithm for

balanced two-way partitioning.

• Goldberq-Burstein

— Uses properties of graphs to improve the

performance of K-L algorithm.

 • Fiduccia-Mattheyses

— Considers multi-pin nets.

— Can generate partitions of unequal sizes.

 — Uses efficient data structure to represent

nodes.

29

Extension of K-L Algorithm

• Unequal sized blocks

- To partition a graph with 2n vertices into two sub-

graphs of unequal sizes n/ and n2:

• Divide the nodes into two subsets A and B,

containing MIN (n1, n2) and MAX (n1, n2)

vertices respectively.

• Apply K-L algorithm, but restrict the maximum

number of vertices that can be interchanged in

one pass to MIN (n1, n2).

30

Unequal sized elements

 - To generate a two-way partition of a graph whose

vertices have unequal sizes:

• Assume that the smallest element has unit

size.

• Replace each element of size s with s vertices

which are fully connected (s-clique) with edges

of infinite weight.

• Apply K-L algorithm to the modified graph.

31

Simulated Annealing and Evoluticiti

• These belong to the probabilistic and iterative class

of algorithms.

• Simulated Annealing

- Simulates the annealing process used for

metals.

- As in the actual annealing process, the value of

temperature is decreased slowly till it

approaches the freezing point.

• Simulated Evolution

- Simulates the biological process of evolution.

-Each solution (generation) is improved in each

iteration by using operators which simulate the

biological events in the evolution process.

32

Simulated Annealing

• Concept analogous to the annealing process for

metals and glass.

• A random initial partition is available as input.

• A new partition is generated by exchanging some

elements.

• If the quality of partition improves, the move is

always accepted.

• If not, the move is accepted with a probability which

decreases with the (increase) in a parameter called

temperature (T).

33

Simulated Annealing Algorithm

Algorithm SA

begin

t = to;

cur_part =init_part;

cur_score = SCORE(cur part);

repeat

repeat

comp1 = SELECT(part1);

comp2 = SELECT (part2);

trial_part = EXCHANGE (comp1, comp2, cur_part); trial_score = SCORE (trial_part);

delta_s = trial_score – cur_score;

if (delta_S<0) then

cur_score = trial_score;

cur_part = MOVE (comp1, comp2);

else

r = RAND (0,1);

if (r < exp(- delta_s/t)) then

cur_ score = trial score;

cur_part = MOVE(comp1, comp2);

 until (equilibrium at t is reached);

t= alpha *t; / /* 0 < alpha <1 */

until (freezing point is reached);

end

34

• The SCORE function

Imbalance(A,B) = I size(A) — size(B) |

Cutcost(A,B) = Sum of weights of cut edges

Cost = W1 * Imbalance(A,B) + W2*Cutcost(A,B)

• The MOVE function

 — Several alternatives:

• Pairwise exchange (W1 =0)

• Subsets of elements exchanged

• Select that node

- Which is internally connected to least

number of vertices.

- Whose contribution to external cost is

highest.

35

Performance Driven Partitioning

• Typically, on-board delay is three orders of

magnitude larger than on-chip delay.

— On-chip delay is of the order of nanoseconds.

— On-board delay can be in the order of

milliseconds.

• If a critical path is cut many times by the partition,

the delay in the path may be too large to meet the

goals of high-performance systems.

• Goal of partitioning in high-performance systems:

1. Reduce the cut-size.

2. Minimize the delay in critical paths.

3. Timing constraints have to be satisfied.

36

• The problem can be modeled as a graph.

- Each vertex represents a component (gate).

- Each edge represents a connection between

two gates.

- Each vertex has a weight specifying the

component delay.

- Each edge has a weight, which depends on the

partitions to which the edges belong.

> This problem is very general and still a topic of

intensive research.

37

Summary

• Broadly, two classes of algorithms:

1. Group migration based

• High speed

• Poor performance

2. Simulation based

• Low speed.

• High performance.

1

EDA06

2

Design Representation

• Intermediate representation essential for efficient

processing.

— Input HDL behavioral descriptions translated into

some canonical intermediate representation.

 • Language independent

 • Uniform view across CAD tools and users

 - Synthesis tools carry out transformations of the

intermediate representation.

3

Scope of High Level Synthesis

Verilog / VHDL Description

Control and Data Flow Graph (CDFG)

FSM Controller Data Path Structure

Transformation

Scheduling

Allocation

LENOVO
Pencil

4

Simple

Transformation

 A <= B + C;

D <= A + E;

X <= D - A;

Read B Read C

Write a

+

Read A Read E

Write D

+

Read D Read A

Write X

-

Read C Read B

+

Read E

+

-

Write X

LENOVO
Pencil

5

Transformation with Control/Data Flow

 case (C)

 1: begin

 X = X + 3;

 A = X + 1;

 end

 2: A = X + 5;

 default: A = X + Y;

endcase

1 2 D

B1 B2 B3

LENOVO
Pencil

6

Transformation with Control/Data Flow

1 2 D

B1 B2 B3

Read x Read y

Write A

+

Read x 5

Write A

+

Read x 3

Write X

+ 1

+
Write A

7

Another Example

 If (x==0)

 A <= + C;

 D <= B — C;

else

 D = D-1;

LENOVO
Pencil

31

• Solving 2nd order differential equations

module HAL (x, dx, 1.1, a, clock, y);

 input x, dx, u, a, clock;

 output y;

always @(posedge clock)

 while (x < a)

 begin

x1 = x + dx;

u1 = u — (3* x * u * dx) — (3* y *

dx);

 y1 = y + (u * dx);

 x = x1;

 u = u1;

 y= y1;

 end

endmodule

8

Compiler Transformations

• Set of operations carried out on the intermediate

representation.

— Constant folding

— Redundant operator elimination

— Tree height transformation

— Control flattening

— Logic level transformation

— Register-Transfer level transformation

LENOVO
Pencil

9

Constant Folding:

LENOVO
Pencil

10

Redundant Operator Elimination:

LENOVO
Pencil

11

Tree height transformation

12

Control Flattening:

13

Logic Level Transformation:

14

RTL Level Transformation:

15

Partitioning

Why Required?

• Used in various steps of High Level Synthesis:

- Scheduling

- Allocation

- Unit selection

• The same techniques for partitioning are also used

in physical design automation tools.

LENOVO
Pencil

16

Component Partitioning

• Given a netlist, create a partition which satisfies

some objective function.

- Clusters almost of equal sizes.

- Minimum interconnection strength between

clusters.

17

• An example to illustrate the concept.

18

Behavioral Partitioning

• With respect to Verilog, can be used when:

 — Multiple modules are instantiated in a top-level

module description.

• Each module becomes a partition.

— Several concurrent "always" blocks are used.

• Each "always" block becomes a partition.

19

Partitioning Techniques

• Broadly two classes of algorithms:

1- Constructive

• Random selection

• Cluster growth

• Hierarchical clustering

2- Iterative-improvement

• Min-cut

• Simulated annealing

20

Random Selection

• Randomly select nodes one at a time and place

them into clusters of fixed size, until the proper

size is reached.

• Repeat above procedure until all the nodes

have been placed.

• Quality/Performance:

 - Fast and easy to implement.

 - Generally produces poor results.

- Usually used to generate the initial partitions

for iterative placement algorithms.

21

Cluster Growth

m : size of each cluster,

V : set of nodes.

n = IVI / m;

for (i=1; i<=n; i++)

{ seed = vertex In V with maximum degree;

Vi = (seed);

V = V — (seed);

 for (J=1; j<m; J++)

{

 t = vertex in V maximally connected to Vi;

Vi = VI U {t};

V = V — (t);

 }

}

LENOVO
Pencil

22

Hierarchical Clustering

• Consider a set of objects and group them depending

of some measure of closeness.

- The two closest objects are clustered first, and

considered to be a single object for further

partitioning.

- The process continues by grouping two individual

objects, or an object or cluster with another cluster.

- We stop when a single cluster is generated and a

hierarchical cluster tree has been formed.

• The tree can be cut in any way to get clusters.

23

LENOVO
Pencil

24

 Min-Cut Algorithm (Kernighan-Lin)

• Basically a bisection algorithm.

 - The input graph is partitioned into two subsets

of equal sizes.

• Till the cut-sets keep improving:

- Vertex pairs which give the largest decrease in

cut-size are exchanged.

- These vertices are then locked.

 - If no improvement is possible and some

vertices are still unlocked, the vertices which

give the sm allest increase are exchanged.

25

Example:

26

27

28

• Drawbacks of K-L Algorithm

 - It is not applicable for hyper-graphs.

• It considers edges instead of hyper-edges.

• It cannot handle arbitrarily weighted graphs.

 • Partition sizes have to be specified a priori.

- Time complexity is high.

• 0(n3).

- It considers balanced partitions only.

29

Simulated Annealing

• Iterative improvement algorithm.

- Simulates the annealing process in metals.

 - Parameters:

• Solution representation

• Cost function

• Moves

 • Termination condition

• Randomized algorithm

- To be discussed later.

30

What is Scheduling?

• Task of assigning behavioral operators to control

steps.

- Input: • CDFG

— Output:

• Temporal ordering of individual operations

(FSM states)

• Basic Objective:

 - Obtain the fastest design within constraints (exploit

parallelism).

32

Scheduling Algorithms

• Three popular algorithms:

1. As Soon As Possible (ASAP)

2. As Late As Possible (ALAP)

3. Resource Constrained (List scheduling)

33

As Soon As Possible (ASAP)

• Generated from the DFG by a breadth-first search

from the data sources to the sinks.

- Starts with the highest nodes (that have no

parents) in the DFG, and assigns time steps in

increasing order as it proceeds downwards.

— Follows the simple rule that a successor node

can execute only after its Parent has executed.

 • Fastest schedule possible

— Requires least number of control steps.

— Does riot consider resource constraints.

not

34

As Soon As Possible (ASAP)

LENOVO
Pencil

35

As Late As Possible (ALAP)

• Works very similar to the ASAP algorithm, except

that it starts at the bottom of the DFG and proceeds

upwards.

• Usually gives a bad solution:

 - Slowest possible schedule (takes the maximum

number of control steps).

-Also does not necessarily reduce the number of

functional units needed.

LENOVO
Pencil

36

As Late As Possible (ALAP)

37

Resource Constrained Scheduling

There is a constraint on the number of resources that

can be used.

— List-Based Scheduling

 One of the most popular methods.

 Generalization of ASAP scheduling, since it

produces the same result in absence of

resource constraints.

38

- Basic idea of List-Based Scheduling:

• Maintains a priority list of "ready" nodes.

• During each iteration, we try to use up all resources

in that state by scheduling operations in the head of

the list.

• For conflicts, the operator with higher priority will

be scheduled first.

39

Example:

LENOVO
Pencil

42

ALLOCATION and BINDING

Basic Idea:

• Selection of components to be used in the register

transfer level design.

• Binding of hardware structures to behavioral

operators and variables.

-Register

- ALU

- Interconnection (MUX)

43

Example for Binding:

Variable Life Time Analysis

1

2

Introduction

• Representation of Boolean functions

- Canonical

• Truth table

• Karnaugh map

 • Set of minterms

- Non-Canonical

 • Sum of products

• Product of sums

• Factored form

• Binary Decision Diagram

3

Binary Decision Diagram (BDD)

• Proposed by Akers in 1978.

- Several variations suggested subsequently.

• Ordered BDD (OBDD)

• Reduced Ordered BDD (ROBDD)

- A set of reduction rules and operators

defined for BDDs.

• Construction of a BDD is based on the

Shannon expansion of a function.

Shannon Expansion

• Given a Boolean function f(x1,x2,...,xi...,xn)

 • Positive cofactor fi1 = f(x1,x2,….,1,…xn

• Negative cofactor fi0 = f(x1,x2,...,0,...,xn)

LENOVO
Pencil

4

• Shannon's expansion theorem states that

f= xi' fi
0 + xi fi

1

f = (xi + fi0) (xi' + fi1)

LENOVO
Pencil

5

f (a,b,c,d) = abc + b’c’d+ a’bd’

Expand with respect to a:

f= abc + a’b’c’d + ab’c’d + a’bd’

 = a’(b’c’d + bd’) + a (bc +b’c’d)

f= a’. f(0, b,c,d) + a. f(1,b,c,d)

 = a’ . (b’c’d+ bd’) + a. (bc+b’c’d)

 a Mux

LENOVO
Pencil

6

How to construct BDD?

f = ac + bc + a'b'c' with Shannon's expansion

 = a' (b’c' + bc) + a (c + bc)

 = a' (b'c' + bc) + a (c)

This is the first step. The process is continued for all

input variables.

a

c b'c’+bc

f

LENOVO
Pencil

7

 a

b b

c c c c

1 0 0 1 0 1 0 1 BDD depends on

variable ordering

OBDD

b'c’ + bc

b’c+bc -> c

c’

c’.1 + c.0

8

Reduction Rules:

x x x

y
z z z y y

LENOVO
Pencil

9

0 1 0 1

0 1

10

11

Some Benefits of BDD

• Check for tautology is trivial.

- BDD is a constant 1.

• Complementation.

- Given a BDD for a function f, the BDD for f’ can

be obtained by interchanging the terminal

nodes.

 • Equivalence check.

 - Two functions f and g are equivalent if their

BDDs (under the same variable ordering) are the

same.

12

An Important Point

• The size of a BDD can vary drastically if the order in

which the variables are expanded is changed.

• The number of nodes in the BDD can be exponential

in the number of variables in the worst case, even

after reduction.

LENOVO
Pencil

13

Use of BDD in Synthesis

• BDD is canonical for a given variable ordering.

• It implicitly uses factored representation:

14

MUX realization of functions:

15

16

MUX- based Functional Decomposition:

17

LENOVO
Pencil

18

LENOVO
Pencil

19

To Summarize

• BDDs have been used traditionally to represent and

manipulate Boolean functions.

- Used in synthesis systems.

- Used in formal verification tools.

- Efficient packages to manipulate BDDs are available.

1

2

LENOVO
Pencil

3

LENOVO
Pencil

4

LENOVO
Pencil

5

LENOVO
Pencil

6

7

LENOVO
Pencil

8

9

• Takes a logic level netlist as input, and simulate

functional behavior.

- "Netlist" obtained from schematic capture or

synthesis.

- For simulation, the behavior of components is

used.

• Available from component library

• Gates, flip-flops, MUX, registers, adder

 • Ability to handle large circuits (millions of gates)

 - Should be very fast

- Hardware accelerators.

10

- Functional correctness of the netlist

• Requires application of a set of test vectors 

test bench

- Timing analysis

 • Estimation of delay, critical paths

 • Hazards, races, etc.

 - Test generation

• Required for manufacture test.

11

• Input: Boolean equations and FSMs

• Output: A netlist of gates and flip-flops

- Combinational circuits and sequential circuits

are typically handled separately

• Design Goals:

- Minimize number of levels (delay)

- Minimize number of gates (area)

- Minimize signal activity (power)

• Typical Constraints:

 - Target library (say, only NAND, NOT gates)

12

 - Ability to handle large circuits within a

reasonable amount of time.

• Problem is known to be NP-complete

- Ability to handle mutually conflicting requirements

(area & delay)

- Typically a fully automated process

• Algorithms/heuristics well understood

• Do not need user intervention

- Use technology dependent considerations

• Break a 20-input gate into smaller gates

• Use gates available in the library

13

• Basic Concept:

- During logic synthesis, map portions of the

netlist to "cells" available in the cell library

• Standard library (NAND, NOR, NOT, A01)

• FPGA cells, standard cells

• Objectives:

- Minimize area, delay, power

- Should be fast

• Able to handle large circuits, and large

technology libraries.

An Example: AND_OR_INVERT

14

• Verify that the synthesized netlist matches the

original specification

- Detect design errors, also synthesis errors

- Basic objective is to ensure functional

correctness, and to locate errors, if any

• Broadly two approaches:

1. Simulation

• Fast, incremental, can handle large circuits

2. Formal verification

• Slow, exhaustive, for small circuits only

15

• Convert from logic equations to gate-level netlists

(assume combinational logic).

 - Maximize speed

 - Minimize area, power

a'bc + abc + d  bc + d

16

• PLA Format

.i 3

.o 3

.p 4

1x1 011

 x00 010

1x0 100

x11 011

.e

• Sum-of-product form

x = ac'

y = ac + b'c' + bc

z = ac + bc

17

1. Simplification of logic equations

- Reduce number of literals (and operands)

 2. Synthesis

- Map logic equations to gates (AND, OR, etc)

3. Gate-level optimization

- Replace OR-NOT by NOR, for example

- Delay, power, area

4. Technology mapping

- Map from gates to technology library

- FPGA, TTL chips, standard cells, etc.

18

• Karnaugh Maps

- For n inputs, the map contains 2n entries

- Objective is to find minimum prime cover

• Minimum  fewest terms

• Prime  choose only maximal covers

- Don't care terms are used to advantage

- Difficult to automate

• Minimum cover problem is NP-complete

• Process can get into a local minima

19

- Number of cells is exponential in the number of

input variables.

• Imagine a 50-input circuit.

- Requires efficient data structures

• For representing the function

• For searching for minimal prime cover

- Quine-McCluskey method

• Easy to implement in software.

• Computational complexity remains high.

LENOVO
Pencil

20

• Some notations:

— For an n-input function, n-dimensional Boolean

space

• Each point mapped to a unique combination of

the n literals.

 • Entries in K-map, minterm.

— Cube:

• Conjunction (AND) of literals in an n-

dimensional space.

 • Points on the n-dimensional

hypercube that are ‘’1’’.

21

• Expression

- Disjunction (OR) of cubes

• Don't cares

- Literals that are missing from a cube

22

• Basic Approach

- Minimize cover of "ON-set" of the function

 • ON-set  set of vertices that correspond to

"1" min-terms

• Minimum set of cubes

• Size of the cubes can be increased by

exploiting don't care literals

23

• The Espresso Algorithm (Outline) :

Start with the sum-of-products form (i.e., cubes

covering the ON-set)

- In an iterative loop

• Expands

• Remove redundancy Irredundant

• Reduce cubes until no further improvement is

possible.

- Perturb the solution, and repeat the previous

iterative step, as long as the time budget permits.

• For each cube, add a sub-cube not covered by

any other cube.

• expand sub-cubes and add them if they cover

another cube.

24

Cube operation: expand

• Make each cube as large as possible without

covering a point in the OFF-set.

- Increases the number of literals in the cover.

- Sets the stage for finding a new and possibly

better solution.

• Example:

f = a'bc' + bc + ab'c' ;Don't care: ab'c

f = + bc + ac + ab'

LENOVO
Oval

LENOVO
Oval

LENOVO
Oval

LENOVO
Rectangle

25

Cube operation :: irredundant

• Throw out redundant cubes.

- Points may be covered by several cubes after

the `expand" step.

- Remove smaller cubes whose points are

covered by larger cubes.

- There must be one cube for every essential

vertex.

• Example:

 f = a'b+ bc + ac + ab'

f = a'b + ac + ab'

One vertex in (bc) is covered by (a'b) & the other by

(ac)

26

Cube operation :: reduce

• The cubes in the cover are reduced in size.

 - The number of literals in the cover is reduced.

- Smaller cubes can expand in more directions.

- Smaller cubes are more likely to be covered by

other cubes during expansion.

• Example

f = a'b + ac + ab'

f = a'b + abc + ab'c'

27

- In general, the new cover will be different from the

initial cover.

 • "expand" and "irredundant" steps can possibly

find out a new way to cover the points in the ON-

set.

• Hopefully, the new cover will be smaller.

28

Cube operation: perturbations

Example:

(Reduce Gasp)

f = a' + b  f = a' + b + a'b' + ab

(Expand Gasp)

f = a'b' + a'b + ab  f = a'b' + a'b + b

00 01

10 11

00 01

10 11

LENOVO
Oval

LENOVO
Oval

LENOVO
Oval

LENOVO
Oval

LENOVO
Oval

LENOVO
Oval

LENOVO
Oval

LENOVO
Oval

LENOVO
Oval

LENOVO
Oval

29

Espresso :: conclusion

• The algorithm successively generates new

covers until no further improvement is possible.

• Produces near-optimal solutions.

• Used for PLA minimization, or as a sub-

function in multilevel logic minimization.

• Can process very large circuits.

- 10,000 literals, 100 inputs, 100 outputs

- Less than 15 minutes on a high-speed

workstation

30

• In many applications, 2-level logic is unsuitable as

compared to random (multilevel) logic.

- Gates with high fan-in are slow, and take more

area.

- It makes sense to transform a 2-level logic

realization to multi-level logic.

31

• A classic example:: XOR function

 — For an 8-input XOR function,

• For 2-level NAND-NAND realization
8C1 + 8C3 + 8C5 + 8C7 = 128 NAND8 gates

 1 NAND128 gate

• For 3-level XOR realization

7 XOR2 gates

 28 NAND2 gates

Number of levels = 9

32

Multilevel logic optimization:

1. Local

 » Rule-based transformation

2. Global

» Weak division

33

Local Optimization Technique

• Perform rule-based local transformations.

- Objective  to reduce area, delay, power.

- Developing a good set of rules is a challenge.

 - Should be comprehensive enough so as to

completely explore the design space.

• Basic idea:

- Apply a transformation which reduces cost.

- Iterate and continue applying transformations

as long as solution keeps improving.

34

• AND/OR transformations

 - Reduce the size of the circuit, critical path.

 -Typical transformations:

 a . 1 = a

a + 1 = 1

a + a' = 1

 a . a' = 0

(a')' = a

a + a' . b = a + b

xor (xor(a1,a2,an), b) = xor(a1,a2,….,an,b)

• Transform the AND/OR form to NAND form (or NOR

form).

35

• NAND (NOR) transformations

 - Some synthesis systems assume that all gates are of

the same type (NAND or NOR).

- Does not require technology mapping.

- Rules framed that transform a NAND (NOR) network

to another.

Examples:

NAND (NOT (NAND (alb)), c) = NAND (a,b,c)

NAND (NAND(a,b,c), NAND(a,b,c')) = NAND(a,b)

36

Global Optimization Technique

• Used in GE Socrates.

- Looks at all the equations at one time.

• Perform weak division.

- Divide out common sub-expressions.

- Literal count gets reduced.

 • The following iterative steps are carried out:

- Generate the candidate sub-expressions.

- Select a sub-expression to divide.

 - Divide functions by selected sub-expression.

F1 = ab + ac

 = a(b+c) = a. F2

F2 = b+c

37

Example

• Original equations:

f1= a.b.c + b.c.d + b.e.g

f2 = b.c.f.h + d.g + a.b.g  No. of literals = 18

— We find literals saved for sub-expressions:

 b.c 4 a.b  2

 a + d  2 b.g  2

Select the sub-expression bc.

• Modified equations (after iteration 1):

f1= (a + d).u + b.e.g

f2 = u.f.h + d.g + a.b.g

u = b.c  No. of literals = 14

38

f1 = (a + d).u + b.e.g

 f2 = u.f.h + d.g + a.b.g

u = b.c

— Literals saved for the sub-expressions: b.g 2

• Modified equations (after iteration 2):

f1= (a + d).u + e.v

f2 = u.f.h + d.g + a.v

u = b.c

 v = b.g  No. of literals = 12

 • No common sub-expressions  STOP

39

About the algorithm

• Basically a greedy algorithm

- Can get stuck in local minima.

- Give a "bounce" to come out of local minima.

 • Like the "gasp" function in Espresso. •

— Generation of all candidate expressions is

expensive.

• Some heuristic used.

40

• A very popular & widely used algorithm.

 - Uses factoring of equations.

 - Similar to weak division used in Socrates.

- The target technology is CMOS gate.

 • Complex gates realizing any complex

functions.

• Example:

f’ = (a + b + c)

g' = (a + b) . (d + e + f) h

41

Basic Concept

• For global optimization,

- Use algebraic factorization to identify common

sub-expressions.

 - Avoid exponential search.

• For local optimization,

- Identify 2-level sub-circuits.

- Minimize them using Espresso, or some similar

approach.

42

Global Optimization Approach

• Given a netlist of gates

- Scan the network

- Apply simple heuristics to "clean up" the netlist.

• Constant propagation

• Double inverter elimination

• Espresso minimization of each equation:

- Then proceed for global optimization with a view to

minimize area.

43

— Basically an iterative approach.

 • Enumerate all common factors and identify

the "best" candidate.

• Equations themselves may be common

factors.

• Invert an equation if it helps.

 f=a + b + c  f’=a’ b’ c’

— Factors may show up in the inverted form.

• Number of literals used to estimate area.

44

Some Illustrative Examples

• Factoring can reduce area.

- An equation in simple sum-of-products form

can have many literals.

• Many transistors for CMOS realization.

- Factoring the equation reduces the number of

literals.

• Reduces number of transistors in CMOS

realization.

45

f = a b e’ f + a b g + a c e’ f + a c g + a d e’ f + a c d g

 22 literals  44 transistors

f = (a (b + c) + d) (e’ f + g (b + c))

 9 literals  18 transistors

46

Common sub-expressions:

f= a b c + a d g + a c’ f

g= a c’ d + a d f (15 literals, 30 t)

u= ac’

f= u b + a d g + u f

g= u d + a d f (14 literals, 28 t)

u= ac’

f= u (b + f) + a d g

g= d(u + a f) (12 literals, 24 t)

47

Area: Minimum no. of transistors.

Delay: Number of levels would be reduced

- No division

- Only factorization.

Power: signal activity.

1

LENOVO
Pencil

LENOVO
Pencil

LENOVO
Pencil

2

. Sequential statements within procedural

blocks (“always” and “initial”) can use two types

of assignment:

- Blocking assignment: =

- No-blocking assignment: <=

3

Blocking assignment: (using =)

. Most commonly used type.

• The target of assignment gets updated before

the next sequential statement in the procedural

block is executed.

• A statement using blocking assignment blocks

the execution of the statements following it,

until it gets completed.

• Recommended style for modeling

combinational logic.

4

- Non-Blocking Assignment (using ‘<=1’)

• The assignment to the target gets scheduled for the

end of the simulation cycle.

- Normally occurs at the end of the sequential

block.

- Statements subsequent to the instruction

under consideration are not blocked by the

assignment.

• Recommended style for modeling sequential logic.

- Can be used to assign several 'reg' type

variables synchronously, under the control of a

common clock.

5

- Non-Blocking Assignment (using ‘<=1’)

. The assignment to the target gets scheduled for the

end of the simulation cycle.

- Normally occurs at the end of the sequential

block.

-Statements subsequent to the instruction

under consideration are not blocked by the

assignment.

• Recommended style for modeling sequential

logic.

- Can be used to assign several `reg' type

variables synchronously, under the control of a

common clock.

6

Some Rules to be followed:

• Verilog synthesizer ignores the delays specified in a

procedural assignment statement.

- May lead to functional mismatch between the

design model and the synthesized netlist.

• A variable cannot appear as the target of both a

blocking and a non-blocking assignment.

- Following is not permissible:

value = value+ '1;

value <= init;

7

Example 1:

// Up-don counter (synchronous clear)
module counter(mode, clr, ld, d_in, clk, count);
 input mode, clr, ld, clk; input [0:7] d_in;
 output [0:7] count; reg[0:7] count;

 always @(posedge clk)
 if (ld)
 count <= d_in;
 else if (clr)
 count <= 0;
 else if (mode)
 count <= count + 1;
 else
 count <= count – 1;
endmodule

8

Example 2:

// Parameteterized design :: an N-bit counter
module counter(clr, clk, count);

parameter N=7;
input clr, clk;
output [0:N] count; reg[0:N] count;

always @(posedge clk)
if (clr)

count <= 0;
else

count <= count + 1;

endmodule

clr clk

count

9

Example 3:

// Using more than one clocks in module
module multiple_clk(clk1, clk2, a, b, c, f1, f2);
 input clk1, clk2, a, b, c;
 output f1, f2; reg f1, f2;

 always @(posedge clk1)
 f1 <= a&b;
 always @(posedge clk2)
 f2 <= b^c;
endmodule

10

Example 4:

// Using multiple edges of same clock
module multi_phase_clk(clk, a, b, f);
 input clk, a, b;
 output f; reg f, t;

 always @(posedge clk)
 f <= t&b;
 always @(negedge clk)
 t <= a^b;
endmodule

11

Example 5: Ring counter 1

// A ring counter
module ring_counter(clk, init, count);

input clk, init;
output [7:0] count;
reg [7:0] count;

always @(posedge clk)
begin

if (init)
count = 8’b10000000;

else begin
count = count <<1;
count[0] = count[7];

end
end

endmodule

12

Example 6: Ring counter 2 Modified-1

// A ring counter
module ring_counter_M1(clk, init, count);

input clk, init;
output [7:0] count;
reg [7:0] count;

always @(posedge clk)
begin

if (init)
count = 8’b10000000;

else begin
count <= count <<1;
count[0] <= count[7];

end
end

endmodule

13

Example 7: Ring counter 3 Modified-2

 // A ring counter
module ring_counter_M2(clk, init, count);
 input clk, init;
 output [7:0] count;

reg [7:0] count;

 always @(posedge clk)
 begin
 if (init)
 count = 8’b10000000;
 else
 count = {count[6:0], count[7]};
 end
endmodule

14

About "Loop" Statements

• Verilog supports four types of loops:

- 'while' loop

- 'for' loop

- 'forever' loop

- 'repeat' loop

• Many Verilog synthesizers’ supports only `for' loop

for synthesis:

- Loop bound must evaluate to a constant.

- Implemented by unrolling the 'for' loop, and

replicating the statements.

15

Modeling Memory

• Synthesis tools are usually not very efficient in

synthesizing memory.

— Best modeled as a component.

 — Instantiated in a design.

• Implementing memory as a two-dimensional

register file is inefficient.

16

Example 8: Memory Modeling

// ROM
module mem_example(clk, en, adbus , dbus, rw);

parameter N=16;
input clk, rw, en;
input [N-1:0] adbus;
output [N-1:0] dbus;

ROM Mem1 (clk, en, rw, adbus, dbus);

endmodule

17

Example 9: Tri_state gates Modeling

// A ring counter
module bus_diver(in, out, en);

input en; input [0:7] in;
output [0:7] out;
reg [0:7] out;

always @(en or in)

if (en)
out = in;

else
out = 8’bz;

endmodule

18

Modeling Finite State Machines

• Two types of FSMs

- Moore Machine

- Mealy Machine

19

Moore Machine: Example 1

• Traffic Light Controller

- Simplifying assumptions made

- Three lights only (RED, GREEN, YELLOW)

- The lights glow cyclically at a fixed rate

-Say, 10 seconds each

- The circuit will be driven by a clock of

appropriate frequency.

clk

R

G

Y

20

module traffic_light (clk, light);

input clk;

output [0:2] light; reg [0:2] light;

parameter S0=0, S1=1, S2=2;

parameter RED=3'b100, GREEN=3'b010, YELLOW=3'b001;

reg [0:1] state;

always @ (posecige clk)

case (state)

S0: begin II S0 means RED

light <= YELLOW;

state <= S1;

 end

 S1: begin // S1 means YELLOW

light <= GREEN;

state <= S2;

 end

S2: begin // S2 means GREEN

 light <= RED; state <= SO;

 end

 default: begin

 light <= RED; state <= SO;

end

endcase

 endmodule

21

Comment on the solution

— Five flip-flops are synthesized

• Two for 'state'

• Three for `light' (outputs are also latched

into flip-flops)

— If we want non-latched outputs, we have to

modify the Verilog code.

• Assignment to 'light' made in a separate

'always' block.

• Use blocking assignment.

22

module traffic_light_nonlatched_op (clk, lig);

 input clk;

 output [0:2] light; reg [0:2] light;

parameter S0=0, S1=1, S2=2;

 parameter RED=3'b100, GREEN=3'b010, YELLOW=3’b001;

 reg [0:1] state;

always @ (posedge clk)

case (state)

S0: state <= S1;

 S1: state <= S2;

 S2: state <= S0;

default: state <=S0;

endcase

always @ (state)

case (state)

S0: light= RED;

S1: light = YELLOW;

S2: light= GREEN;

default: light = RED;

endcase

 endmodule

23

Moore Machine: Example 2

Serial Parity detector

24

module parity_gen (x, clk, z);

input x, clk;

output z;

 reg z;

 reg even_odd; // The machine state

parameter EVEN=0, ODD=1;

always @ (posedge clk)

case (even_odd)

EVEN: begin

z <= x ? 1 : 0;

even_odd <= x ? ODD : EVEN;

end

ODD: begin

z <= x ? 0 : 1;

even_odd <= x ? EVEN : ODD;

end

end case

endmodule

25

Mealy Machine: Example

Sequence detector for the pattern ‘0110’

26

// Sequence detector for the pattern '0110'

module seq_detector (x, clk, z);

input x, clk;

 output z; reg z;

parameter S0=0, S1=1, S2=2, S3=3;

reg [0:1] PS, NS;

always @ (posedge clk)

PS <= NS;

always @ (PS or x)

case (PS)

S0: begin

z = x ? 0 : 0;

NS = x ? S0 :S1;

 end;

S1: begin

 z = x ? 0 : 0;

NS = x ? S2 : S1;

 end;

S2: begin

z = x ? 0 : 0;

 NS = x ? S3 : S1;

 end;

S2: begin

z = x ? 0 : 1;

 NS = x ? S0 : S1;

 end; endmodule

27

Example with Multiple Modules
• A simple example showing multiple module definitions.

28

module complementor (Y, X, comp);

 input [7:0] X;

input comp;

output [7:0] Y; reg [7:0] Y;

always @ (X or comp)

 if (comp)

Y = ~X;

else

Y = X;

 endmodule

module adder (sum, cy_out, inl, in2, cy_in);

 input [7:0] inl, in2;

input cy_in;

output [7:0] sum; reg [7:0] sum;

output cy_out; reg cy_out;

always @ (inl or in2 or cy_in)

 {cy_out, sum} = inl in2 cy_in;

endmodule

module parity_checker (out_par, in_word);

 input [8:0] in_word;

output out_par;

always @ (in_word)

 out_par = A (in_word);

endmodule

29

//Top level module

module add_sub_parity (p, a, b, add_sub);

 input [7:0] a, b;

 input add_sub; // 0 for add, 1 for subtract

output p; // parity of the result

wire [7:0] Bout, sum; wire carry;

complementor M1 (Bout, B, add_sub);

 adder M2 (sum, carry, A, Bout, add_sub);

parity_checker M3 (p, {carry, sum});

endmodule

30

Memory Modeling Revisited

• Memory is typically included by instantiating a pre-

designed module.

• Alternatively, we can model memories using two-

dimensional arrays

 - Array of register variables.

• Behavioral model of memory

- Mostly used for simulation purposes.

- For small memories, even for synthesis.

31

//Memory Example

module memory_model (……………….);

reg [7:0] mem[0:1023];

endmodule

0

1023

32

How to Initialize memory

• By reading memory data patterns from a specified

disk file.

- Used for simulation.

- Used in test benches.

• Two Verilog functions are available:

1- $readmemb (filename, memname, startaddr,

stopaddr)

Data read in binary format.

2. $readmemh (filename, memname, startaddr,

stopaddr)

 Data read hexadecimal format.

33

 //Memory Example

module memory_model (……………….);

 reg [7:0] mem[0:1023];

begin

 $readmemh(“mem.dat”, mem);

end

endmodule

34

A Specific Example :: Single Port RAM with

Synchronous Read-Write

module ram_1 (addr, data, clk, rd, wr, cs);

 input [9:0] addr;

input clk, rd, wr, cs;

inout [7:0] data;

 reg [7:0] mem [1023:0];

reg [7:0] d_out;

assign data = (cs && rd) ? d_out ; 8’bz;

always @ (posedge clk)

if (cs && wr && !rd) mem [addr] = data;

always @ (posedge clk)

 if (cs && rd && !wr) d_out = mem [addr];

endmodule

35

A Specific Example :: Single Port RAM with

Asynchronous Read-Write

 module ram_2(addr, data, rd, wr, cs);

 input [9:0] addr;

input rd, wr, cs;

inout [7:0] data;

 reg [7:0] mem [1023:0];

reg [7:0] d_out;

assign data = (cs && rd) ? d_out ; 8’bz;

always @ (addr or data or rd or wr or cs)

if (cs && wr && !rd) mem [addr] = data;

always @ (addr or data or rd or wr or cs)

 if (cs && rd && !wr) d_out = mem [addr];

endmodule

36

A Specific Example :: ROM/EPROM

 module rom(addr, data, rd_en, cs);

 input [2:0] addr;

input rd_en, cs;

output [7:0] data;

 reg [7:0] data;

always @ (addr or rd_en or cs)

 case (addr)

 0: 22;

 1:45;

 7:12;

 endcase

endmodule

37

Verilog Test Bench

• What is test bench?

- A Verilog procedural block which executes only

once.

 - Used for simulation.

— Test bench generates clock, reset, and the

required test vectors.

Module Under Test

Test Bench

Stimulus Compare logic

38

How to Write Testbench?

• Create a dummy template

- Declare inputs to the module-under-test (MUT)

as "reg", and the outputs as "wire"

- Instantiate the MUT.

 • Initialization

- Assign some known values to the MUT inputs.

• Clock generation logic

- Various ways to do so.

• May include several simulator directives

-- Like $display, $monitor, $dumpfile,

$dumpvars, $finish.

39

• $display

 Prints text or variables to stdout.

- Syntax same as "printf".

 • $monitor

Similar to $display, but prints the value

whenever the value of some variable in the

given list changes.

• $finish

Terminates the simulation process.

• $dumpfile

Specify the file that will be used for storing the

waveform.

• $dumpvars

 Starts dumping all the signals to the specified

file.

40

Example Testbench

module shifter_toplevel;

reg clk, clear, shift;

wire [7:0] data;

shift_register S1 (clk, clear, shift, data);

initial

begin

 clk = 0; clear = 0; shift = 0;

end

always

#10 clk = !clk;

41

initial

begin

$dumpfile ("shifter.vcd");

$dumpvars;

end

initial

begin

 $display ("\ttime, \tclk, \tclr, \tsft, \tdata);

$monitor ("%d, %d, %d, %d, %d, %d”, $time, clk, reset, clear, shift, data);

end

initial

#400 Sfinish;

***** REMAINING CODE HERE

endmodule

42

A Complete Example:

module testbench;

wire wl, w2, w3;

 xyz m1(wl, w2, w3);

test_xyz m2 (wl, w2, w3);

endmodule

module xyz (f, A, B);

input A, B; output f;

nor #1 (f, A, B);

endmodule

43

module test_xyz (f, A, B);

input f; output A, B;

reg A, B;

initial

begin

$mointer($time, “A=%b”, B=%b”, “f=%b”, A, B, f);

#10 A=0; B=0;

#10 A=1; B=0;

#10 A=1; B=1;

#10 A=0; B=1;

#10 $finish;

end

endmodule

44

1

2

. A parameter is a constant with a name.

. No size is allowed to be specified for it.

- The size gets decided from constant

itself (32bit)

. Examples:

parameter Hi=25, Lo=5;
parameter up=b00, down=b01, steady=b10

3

Logic values

. The common values used in modeling

hardware are:

 - 0 :: Logic-0 or FALSE

 - 1 :: Logic-1 or TRUE

 - x :: Unknown (or don’t care)

 - z :: High impedance

. Initialization:

 - All unconnected nets set to ‘z’

 - All register variables set to ‘x’

‘1’

‘z’

4

Logic Gates

- Verilog provides a set of predefined logic

gates.

- They respond to inputs (0, 1, x, or z) in a logic

way.

- Examples:: AND .

5

Primitive logic gates (instantiations):

6

Primitive Tri-state gates (instantiations):

7

Some Points to Note:

. For all primitive gates:

- The output port must be connected to a net

(a wire).

- The input ports may be connected to nets or

register type variables.

- They can have a single output but any

number of inputs.

- An optional delay may be specified.

 -> Logic synthesis tools ignore time delays.

8

9

Example 1:

‘timescale 1ns/1ns
module ex_or(f, a, b);
 input a, b;
 output f;
 wire t1, t2, t3;

nand #5 m1(t1, a, b);
and #5 m1(t2, a, t1);
and #5 m1(t3, t1, b);
or #5 m1(f, t2, t3);

endmodule

10

Hardware Modeling Issues:

. The values computed can be held in

 - A ‘wire’

 - A ‘flip-flop’ (edge-triggered storage cell)

- A ‘latch’ (level-sensitive storage cell)

. A variable can be of

 -‘net’ data type:

 -> Maps to a wire during synthesis.

- ‘register’ data type

 -> Maps either to a ‘wire’ or to a

‘storage cell’ depending on the context under

which a value is assigned.

11

Example 2:

module carry(cy, a, b, c);
 input a, b, c;
 output f1, f2;
 wire a, b, c;
 reg f1, f2;

 always @(a or b or c)
 begin
 f1= ~(a & b);
 f2= f1 ^ c;
 end
endmodule

12

Example 3:

module carry(cy, a, b, c);
 input a, b, c;
 output f1, f2;
 wire a, b, c;
 reg f1, f2;

 always @(a or b or c)
 begin
 f2= f1 ^ c;
 f1= ~(a & b);
 end
endmodule

13

Example 4:

// A latch gets inferred here
module simple_latch(data, load, d_out);
 input data, load;

output d_out;
 reg t;

 always @(load or data)
 begin
 if(!load)
 t=data;
 d_out = !t;
 end
endmodule

14

Verilog Operators:

. Arithmetic operators:

 *, /, +, -, %.

. Logical operators:

 ! :: logical negation

 && :: logical AND

 || :: logical OR

. Relational operators:

 >, <, >=, <=, ==, !=

. Bitwise operators:

 ~, &, |, ^, ~^

15

Verilog Operators:

. Reduction operators (operate on all the bits

within a word). Example: b = &a; //a 8bit

. Shift operators:

 >>, <<

. Concatenation {} a={b,c}

. Replication {{}} a= {2{c}}

. Conditional

 <condition> ? <expr1> : <expr2>

16

Example 5:

module oper_example(x, y, f1, f2);
 input x, y;

output f1, f2;
 wire [9:0] x, y;
 wire [4:0] f1;
 wire f2;

 assign f1= x[4:0] & y[4:0];
 assign f2= x[2] | ~f1[3];
 assign f2= ~& x;
 assign f1=f2? x[9:5] : x[4:0];
endmodule

17

Example 6:

// An 8 bit adder description
module para_adder(sum, cout, in1, in2, cin);
 input [7:0] in1, in2; input cin;

output [7:0] sum; output cout;

 assign #20 {cout, sum} =in1+in2+cin;

endmodule

18

Some points:

. The presence of a ‘z’ or ‘x’ in a reg or wire being used

in arithmetic expression results in the whole

expression being unknown ‘x’ .

. The logical operators (!, &&, ||) all evaluate to a 1-

bit result (0, 1, or x).

. The relational operators (>, <, ….) also evaluate to a

1-bit result (0 or 1).

. Boolean false is equivalent to 1’b0

 Boolean true is equivalent to 1’b1.

19

Some valid statements:

assign outp = (p == 4’b1111)
if (load && (select == 2’b01)) …..

assign a = b >> 1;
assign a= b << 3;

assign f= {a,b};
assign f= {a, 3’b101,b};
assign f= {x[2], y[0], a};

assign f={4{a}}
assign f={2’b10, 3{2’b01}, x};

20

Description Styles in Verilog:

. Two different styles of description:

1. Data flow

 Continuous assignment (combinational)

2. Behavioral

 Blocking (combinational)

 Non-blocking (sequential)

21

Data flow Style: Continuous Assignment:

. Identified by the keyword ‘’assign’’:

assign a = b & c;

assign f[2]=c[0];

. Forms a static binding between:

 The net being assigned on LHS.

 The expression on the RHS.

. The assignment continuously active:

. Almost exclusively used to model combinational

logic.

. For an assign statement:

 RHS: contain register or net.

 LHS: must be net type, like wire.

22

Example 7:

 module gen_mux (data, select, out);
 input [0:7] data;

input [0:2] select;
output out;

 assign out= data[select];

endmodule

23

Example 8:

 module gen_demux (in, select, out);
 input in;

input [0:1] select;
output [0:3] out;

 assign out[select] = in;

endmodule

24

Example 9:

// level sensitive latch
//Using assign to describe
//sequential logic
module level_latch (D, Q, En);
 input D, En;

output Q;

 assign Q = En ? D : Q;

endmodule

25

Behavioral Style: Procedural Assignment:

. The procedural block defines:

 A region containing sequential statements.

 The statements execute in they order they

are written.

. Two types of procedural blocks:

 “always” block: A continues loop that never

terminates.

 “initial” block: Executed once in the

beginning of simulation (used in test-

benches).

26

. A module can contain any number of “always”

blocks, all of which execute concurrently.

. Basic syntax of “always” block:

. The @(event_expression) is required for both

combinational and sequential logic description.

module ______;
 always @(event_expression)
 begin

 sequential statements;

 end
endmodule

27

. Only “reg” type variables can be assigned within an

“always” block.

 The sequential “always” block executes only

when the event expression triggers.

 At other times the block is doing nothing.

 An object being assigned to must therefore

remember the last value assigned (not

continuously driven)

 So, only “reg” type type variables can be

assigned within an “always” block.

 Of course, any kind of variables may appear in

the event expression (reg, wire, etc.)

28

Sequential Statements:

1-

2-

3-

begin
 sequential_statements;
end
// end not required if there is only
//one statemnet

if (expression)
 sequential_statement;
else
 sequential_statement;

case (expression)
 expr: sequential_statement;
 ………………..

 Default: sequential_statement;

endcase

29

4-

5-

6-

7-

8-

9-

forever
 sequential_statement;

repeat (expression)
 sequential_statement;

while (expression)
 sequential_statement;

for (expression1; expression2, expression3)
 sequential_statement;

(time_value) //makes a block suspend for time_value time units;

@ (event_expression) //makes a block suspend until
 // event_expression triggers.

30

Example 10:

// A combinational logic example
module mux2-1 (in1, in0, s, f);
 input in1, in0, s;

output f;
reg f;

 always @(in1 or in0 or s)
 if (s)
 f=in1;
 else
 f= in0;
endmodule

31

Example 11:

// A sequential logic example
module dff_negedge (D, clock, Q, Qbar);
 input D, clock;

output Q, Qbar;
reg Q, Qbar;

 always @(negedge clock)
 begin
 Q= D;
 Qbar= ~D;
 end
endmodule

32

Example 12:

// Another sequential logic example
module incomplete_state_spec (curr_state, flag);
 input [0:1] curr_state;

output [0:1] flag;
reg [0:1] flag;

 always @(curr_state)
 case (curr_state)
 0, 1 : flag=2;
 3 : flag=0;
 endcase
endmodule

case

0
1

3

33

Example 12 repated:

// Another sequential logic example
module incomplete_state_spec (curr_state, flag);
 input [0:1] curr_state;

output [0:1] flag;
reg [0:1] flag;

 always @(curr_state)
 begin
 flag = 0

case (curr_state)
 0, 1 : flag=2;
 3 : flag=0;
 endcase
 end
endmodule

case

0
1

2

3

34

Example 13:

// ALU example
module ALU_4bit (f, a, b, op);
 input [1:0] op; input [3:0] a,b;

output [3:0] f; reg [3:0] f;

parameter ADD=2’b00, SUB=2’b01,
 MUL=2’b10, DIV=2’b11;

 always @(a or b or op)
 case (op)
 ADD: f= a+b;
 SUB: f=a-b;
 MUL: f =a*b;
 DIV: f= a/b;
 endcase
endmodule

35

Example 14:

 // priority encoder example
module pri_encoder (in, code);
 input [0:3] in;

output [0:1] code;
reg [0:1] code;

 always @(in)
 case (1’b1)
 in[0] : code = 2’b00;
 in[1] : code = 2’b01;
 in[2] : code = 2’b10;
 in[3] : code = 2’b11;
 endcase
endmodule

36

Ninevah University

Collage of Electronics Engineering

CMOS Fabrication and Layout

1

• Transistors are fabricated on a thin silicon wafer that
serve as both a mechanical support and electrical
common point called substrate

• Fabrication process (a.k.a. Lithography) is similar to
printing press

– On each step, different materials are deposited
or etched

• Easiest way to understand physical layout is to look
at the wafer from two perspectives:

– Top-section

– Cross-section

2

• “Carving pictures in stone using light”

8

• Start with blank wafer

• Build invert from bottom up

p substrate

9

• First step will be to form the n-well

– Cover wafer with protective layer of SiO
2
 (oxide)

to grow SiO2 on top of Si wafer put the Si with H2O
or O2 in oxidation furnace at 900 – 1200 C

– (Remove layer where n-well should be built)

– (Implant or diffuse n dopants into exposed wafer)

– (Strip off SiO
2
)

10

• Photoresist is a light-sensitive organic polymer

• Softens where exposed to light

p substrate

SiO
2

Photoresist

NOTE: The silicon oxide is just to protect the wafer

11

• Expose photoresist through n-well mask

• Strip off exposed photoresist

p substrate

SiO
2

Photoresist

12

• Etch oxide with hydrofluoric acid (HF)

– Seeps through skin and eats bone: nasty stuff!!!

• Only attacks oxide where resist has been exposed

p substrate

SiO
2

Photoresist

13

• n-well is formed with diffusion or ion implantation

• Diffusion

– Place wafer in furnace with arsenic gas

– Heat until As atoms diffuse into exposed Si

• Ion Implantation

– Blast wafer with beam of As ions

– Ions blocked by SiO
2
, only enter exposed Si

n well

SiO
2

14

• Strip off the remaining oxide using HF

• Back to bare wafer with n-well

• Subsequent steps involve similar series of steps

p substrate

n well

15

• Deposit very thin layer of gate oxide

< 20 Å (6-7 atomic layers)

• Chemical Vapor Deposition (CVD) of silicon layer

– Place wafer in furnace with Silane gas (SiH
4
)

– Forms many small crystals called polysilicon

– Heavily doped to be good conductor

16

• Use same lithography process to pattern polysilicon

17

• The polysilicon gate serves as a mask to allow precise
alignment of the source and drain with the gate

• Use oxide and masking to expose where n+ dopants
should be diffused or implanted

• n-diffusion forms nMOS source, drain, and n-well
contact

18

• Pattern oxide and form n+ regions

• Self-aligned process (poysilicon gate) “blocks” diffusion under
the gate

• Polysilicon is better than metal for self-aligned gates because it
doesn’t melt during later processing

19

• Historically dopants were diffused

• Usually ion implantation today (but regions are still
called diffusion)

• Strip off oxide to complete patterning step

20

• Similar set of steps form p+ diffusion regions for pMOS
source and drain and substrate contact

21

• Now we need to create the devices' terminals

• Cover chip with thick field oxide (FOX)

• Etch oxide where contact cuts are needed

22

• Sputter on aluminum over whole wafer, filling the contacts as well

• Pattern to remove excess metal, leaving wires

23

24

25

FOX

27

• Chips are specified with set of masks

• Minimum dimensions of masks determine transistor size (and
hence speed, cost, and power)

• Feature size f = distance between source and drain

– Set by minimum width of polysilicon

• Feature size improves 30% every 3 years or so

• Normalize for feature size when describing design rules

• Express rules in terms of □ = f/2

– E.g. □ = 0.3 μm in 0.6 μm process

28

29

• Metal and diffusion have minimum width and spacing of 4□

• Contacts are 2□ x 2□ and must be surrounded by 1□ on the

layers above and below

• Polysilicon uses a width of 2□

• Polysilicon overlaps diffusions by 2□ where a transistor is desired
and has spacing or 1□ away where no transistor is desired

• Polysilicon and contacts have a spacing of 3□ from other
polysilicon or contacts

• N-well surrounds pMOS transistors by 6□ and avoid nMOS
transistors by 6□

30

• Layout can be very time consuming

• Design gates to fit together nicely

• Build a library of standard cells

• Standard cell design methodology

– V
DD

 and GND should abut (standard height)

– Adjacent gates should satisfy design rules

– nMOS at bottom and pMOS at top

– All gates include well and substrate contacts

31

• Transistor dimensions specified as W / L
ratio

• Minimum size is 4□ / 2□, sometimes
called 1 unit

• In f = 0.6 μm process, this is 1.2 μm wide, 0.6 μm long

The power and ground
lines are called supply
rails

32

Usually the pMOS has
width 2 or 3 times the
width of the nMOS

33

34
Three abutted standard cell inverters

35

36

• Stick diagrams help plan layout quickly

– Need not be to scale

– Draw with color pencils or dry-erase markers

37

• A wiring track is the space required for a wire

– 4□ width, 4□ spacing from neighbor = 8□ pitch

– Transistors also consume one wiring track

38

• Wells must surround transistors by 6□

– Implies 12□ between opposite transistor flavors

– Leaves room for one wire track

39

• Estimate area by counting wiring tracks

– Multiply by 8 to express in □

Dr. Ahmed H. Madian-VLSI 5

Resistance estimation

 Resistance of uniform slab
can be given as,

Where  = resistivity

t= thickness

l= conductor length

w=conductor width

or,

R
s
is the sheet resistance /

ohms
w

l R

t

. 


ohms
w

l
R  R

s
.

I

l

t

w

Dr. Ahmed H. Madian-VLSI 6

Resistance estimation (cont.)

 Resistance of certain layers

Material R
s
(/)

metal 0.03

Poly 15100

Diffusion p 80

Diffusion n 35

Silicide 24

N-well 1K  5K

Dr. Ahmed H. Madian-VLSI 7

Resistance estimation

 For MOSFET channel resistance

R
channel

= R
Sheet

(L/W)

where R
sheet

= 1/µC
OX

(V
gs

-V
t
)

For P and n channels

R
sheet

= 1000 ->30,000 /

N+
L

N +

channel

L

W

9

Resistance

 Depends on resistivity of material  (Rho)

 Sheet resistance R
s
=  /t

 Resistance R = R
s
* L / W

 Corner approximation - count a corner as half a
square

Corner (1/2 Square)

Corner (1/2 Square)
1/2 Square

Corner (1/2 Square)

1/2 Square

Example:

R = R
s(poly)

* 13 + 2*(1/2) + 3*(1/2) squares
R = 4Ω/sq * 15.5 squares = 62Ω

Dr. Ahmed H. Madian-VLSI 10

Inverter resistance estimation

 CMOS inverter (no static
current)

 Switching current

VDD

Vin

VGS

IL VOUT = VDS

IDS

MP

MN

Vin Vout

VDD

Rs,p (L/W)

Rs,n (L/W)

25 10 35

1

, ,

max

, ,

max

DD DD

s p s n

DD

s p s n

DD

total

DD

V V

R R

V
I

for L W

W

L
R

W

L
R

V

R

V
I

 

+



+

 

+

 

.

35

2

max
DD
V

switching power loss  I V
DD



Dr. Ahmed H. Madian-VLSI 12

Capacitance estimation

The dynamic response of MOS systems strongly depends on
the parasitic capacitances associated with the MOS device.
The total load capacitance on the output of a CMOS gate is
the sum of:
 gate capacitance (of other inputs connected to out)

 diffusion capacitance (of drain/source regions)

 routing capacitances (output to other inputs)

gate

drain

source

substrate

CGD

CGS CSB

CDB

CGB

13

Capacitance (1/2)

 Transistors

 Depends on area of transistor gate

 Depends on physical materials, thickness of insulator

 Given for a specific process as C
g

 Diffusion to substrate

 Side-wall capacitance - capacitance from periphery

 bottom-wall capacitance - capacitance to substrate

 Given for a specific process as C
diff,bot

, C
diff,side

Dr. Ahmed H. Madian-VLSI

14

Capacitance (2/2)

 Metal to substrate

 Parallel plate capacitance is dominant

 Need to account for fringing, too

 Poly to substrate

 Parallel plate plus fringing, like metal

 don’t confuse poly over substrate with gate capacitance

 Also important: capacitance between conductors

 Metal1-Metal1

 Metal1-Metal2

Dr. Ahmed H. Madian-VLSI

Dr. Ahmed H. Madian-VLSI 15

Capacitance estimation (cont.)

 Gate capacitance

 Diffusion capacitance

 Routing capacitance

 C
diff

>C
poly

>C
m1

>C
m2

n+
substrate

gate

C
gate

insulator

C
diff.

gate

n+
substrate

Metal layer

C
routing

Dr. Ahmed H. Madian-VLSI 16

Capacitance estimation

 In general, capacitance could be calculated using

d

A

d

A
C 

.



o
.
r
.

ox

o r

unitarea
C C 

d

  .
/ d

Dr. Ahmed H. Madian-VLSI 17

Gate Capacitance

 C
g
= C

gs
+ C

gd
+ C

gb

Dr. Ahmed H. Madian-VLSI 18

Capacitance estimation (cont.)

 Diffusion capacitance (source/drain)
Source

Diffusion
Area

Drain
Diffusion

Area

b

a

Gate

insulator
CJP

Side wall capacitance

CJa

area capacitance

C
s,diff

 C
d ,Area

.A+C
d ,sidewalls

.P

Where A = area and p = perimeters

Dr. Ahmed H. Madian-VLSI 19

Routing capacitance

 single conductor capacitance

 multiple conductor capacitance

Dr. Ahmed H. Madian-VLSI 20

Capacitance estimation (cont.)

Metal 1

substrate

Fringing capacitance










































 + +


+


+





ln 1
2 2 2

2

2 2

t

h

t

h

t

h
h

t
w

C
total



Routing capacitance: a) single conductor capacitance

w h

t

Half cylinders

Dr. Ahmed H. Madian-VLSI 21

Capacitance estimation (cont.)

Metal 2

Metal 1

substrate

C12
C2

C1

C1
C2

C12

Metal 1 Metal 2

Vin
Vout

2 12

.
12

C C

C
V
out

V
in

+

  

Routing capacitance: b) multiple conductor capacitance

Dr. Ahmed H. Madian-VLSI 22

Multilayer capacitance calculations

 Example: given the layout shown in the figure calculate the

total capacitance at source and gate given that:

C
metal/Area

= 0.025µF/µm2

C
poly/Area

= 0.045µF/µm2

C
Gate/A

= 0.7 fF/µm2

C
d,a/A

= 0.33fF/µm2

C
d,side/L

= 2.6fF/µm

 = 5.1µm

100

3 CM

4

4

2

3

2

4 2
4

CMP

CP1

Cgate

CP1

Dr. Ahmed H. Madian-VLSI 23

Solution
100

3 CM

4

4

2

3

2

4 2
4

CMP

CP1

Cgate

CP1

Source capacitance

C
S,diff

= C
d,A

. A + C
d,side walls

. P

A = 4 * 3 = 12 2

P = 2*(4 + 3)=14 

So, C
S, diff

= 0.33* 12 2+2.6* 14 =63.51fF
Cs

S D

G

CG

CD

Dr. Ahmed H. Madian-VLSI 24

Solution (cont.)

100

3 CM

4

4

2

3

2

4 2
4

CMP

CP1

Cgate

CP1

Gate capacitance

C
G,total

= C
M

+ C
MP

+C
P1

+C
G
+C

P2

C
M

= 0.025 * 100*3 =7.52

C
MP

= 0.045 * 4* 4  = 0.722

C
P1

= 0.045 * 2* 2 = 0.182

C
P2

= 0.045 * 2* 2 = 0.182

C
G

= 0.7 * 2* 3 = 4.22 CM CMP CP1 Cgate CP1

Dr. Ahmed H. Madian-VLSI 36

Inductance estimation

 Inductance is normally small but as the process shrink on-chip inductance must be

taken into account.

 Bond-wire inductance can cause deleterious effects in large, high speed I/O buffers.

 The inductance of bonding wires and the pins on packages could be calculated by,









+



 d

h

w

h
L ln

8 4

2



substrate

h

W

Design techniques to overcome this problem:

separate power pins for I/O pads and chip core

multiple power and ground pins

careful selection of the position of the power and

ground pins on the package

adding decoupling capacitances on the board

increase the rise and fall times

use advanced package technologies (SMD, etc)

MOS Transistors

 Four terminal device: gate, source, drain, body

 Gate – oxide – body stack looks like a capacitor

 Gate and body are conductors (body is also called the substrate)

 SiO
2
 (oxide) is a “good” insulator (separates the gate from the body

 Called metal–oxide–semiconductor (MOS) capacitor, even though

gate is mostly made of poly-crystalline silicon (polysilicon)

n+

p

Source Gate Drain

bulk Si

SiO
2

Polysilicon

n+

SiO
2

n

Source Gate Drain

bulk Si

Polysilicon

p+ p+

NMOS
PMOS

NMOS Operation

 Body is commonly tied to ground (0 V)

 Drain is at a higher voltage than Source

 When the gate is at a low voltage:

 P-type body is at low voltage

 Source-body and drain-body “diodes” are OFF

 No current flows, transistor is OFF

n+

p

Source Gate Drain

bulk Si

SiO
2

Polysilicon

n+
D

0

S

NMOS Operation Cont.

 When the gate is at a high voltage: Positive charge
on gate of MOS capacitor
 Negative charge is attracted to body under the gate

 Inverts a channel under gate to “n-type” (N-channel, hence

 called the NMOS) if the gate voltage is above a threshold

voltage (VT)

 Now current can flow through “n-type” silicon from source

through channel to drain, transistor is ON

n+

p

Source Gate Drain

bulk Si

SiO
2

Polysilicon

n+
D

1

S

PMOS Transistor

 Similar, but doping and voltages reversed

 Body tied to high voltage (V
DD

)

 Drain is at a lower voltage than the Source

 Gate low: transistor ON

 Gate high: transistor OFF

 Bubble indicates inverted behavior

SiO
2

n

Source Gate Drain

bulk Si

Polysilicon

p+ p+

1

2

3

. Design complexity increased rapidly

- Increased size and complexity

- CAD tools are essential

. The present trend

- Standardize the design flow.

4

What is design flow?

. Standardized design procedure

 - starting from the design idea down to the actual

implementation.

. Encompasses many steps

 - Specification

 - Synthesis

 - Simulation

 - Layout

- Testability analysis

- Many more…

5

New CAD tools

- Based on Hardware Description Language (HDL)

- HDLs provide formats for representing the outputs of

various design steps.

- An HDL based CAD tool transforms from its HDL input

into HDL output which contains more hardware

information.

 . Behavioral level to register transfer level.

 . Register transfer level to gate level.

 . Gate level to transistor level.

6

Two compting HDLs

1- VHDL

2- Verilog

7

Simplistic view of Design flow:

8

Design Representation

. A design can be represented at various levels from three

different points of view:

1- Behavioral

2- Structural

3- Physical

. can be represented by Y-diagram

9

10

Behavioral Representation:

. Specifies how a particular design should respond to given set of

inputs.

. May be specified by:

- Boolean equations.

- Tables of input and output values.

- Algorithms written in standard HLL like C.

- Algorithms written in special HDL like Verilog.

11

An algorithm level description:

module carry(cy, a,b,c);
 input a,b,c;
 output y;
 assign
 cy = (a&b)|(b&c)|(c&a)
endmodule

12

Boolean behavioral specification for cy:

primitive carry(cy, a,b,c);
 input a,b,c;
 output y;
 talbel
 // a b c : cy

1 1 ? : 1
 1 ? 1 : 1
 ? 1 1 : 1
 0 0 ? : 0
 1 ? 0 : 0
 ? 0 0 : 0
 End table
endprimitive

13

Structural Representation

. Specifies how components are interconnected.

. In general, the description is a list of modules and their

interconnects.

 - called netlist.

 - can be specified at various levels.

. At the structural level of, the level of abstraction are:

- the module level

- the gate level

- the switch level

- the circuit level

14

. In each level more details is revealed about

implementation.

15

16

Structural representation : example

4- Bit adder

module add4(s,cy4,cy_in,x,y);
 input [3:0] x, y;

input cy_in;
 output [3:0] s;
 output cy4;
 wire [2:0] cy_out;
 add B0 (cy_out[0],s[0],x[0],y[0],cy_in);
 add B1 (cy_out[1],s[1],x[1],y[1], cy_out[0]);

add B2 (cy_out[2],s[2],x[2],y[2], cy_out[1]);
add B3 (cy4, s[3],x[3],y[3], cy_out[2]);

endmodule

17

 module add (cy_out,sum,a,b,cy_in);
 input a,b,cy_in;

output sum, cy_out;
 sum s1(sum,a,b,cy_in);
 carry c1(cy_out,a,b,cy_in);
endmodule

module carry (cy_out ,a,b,cy_in);
 input a,b,cy_in;

input cy_out;
 wire t1,t2,t3;
 and g1(t1,a,b);
 and g2(t2,a,c);
 and g3(t3,b,c);
 or g4(cy_out,t1,t2,t3);
endmodule

18

Physical Representation:

. The lowest level of physical specification:

 - Photo-mask information required by the various

processing steps in the fabrication process.

. At the module level, the physical layout for 4-bit adder

may be defined by a rectangle or polygon, and a collection

of ports.

19

Physical Representation: example;

module add4(s,cy4,cy_in,x,y);
 input x[3:0] , y[3:0];

input cy_in;
 output [3:0] s;
 output cy4;
 boundary [0,0,130,500];
 port x[0] aluminum width=1 origin=[0,35];
 port y[0] aluminum width=1 origin=[0,85];
 port cy_in polysilicon width=2 origin=[70,0];

port s[0] aluminum width=1 origin=[120,65];

add a0 origin=[0,0];
add a1 origin=[0,120];

endmodule

20

21

About Verilog:

. Along with VHDL, Verilog is among the most widely used HDLs.

. Main differences:

 VHDL was designed to support system-level design and

specification.

 Verilog was designed primarily for digital hardware

designers developing FPGAs and ASICs.

. The differences become clear if someone analyze the language

features.

22

. VHDL

 Provides some high-level constructs not available in

Verilog (user defined types, configurations, etc.).

. Verilog

 Provides comprehensive support for low-level digital

design. Not available in native VHDL(type definition and

called packages need to be included)

23

Concept of Verilog ‘’ module’’

. In Verilog, the basic unit of hardware is called module.

 Modules cannot contain definitions of other modules.

 A module can, however, be instantiated within another

module.

 Allows the creation of hierarchy in Verilog description.

 module module_name (list_of_ports);
 input declaration;

output declaration;
 local net declaration;
 parallel statements;
endmodule

24

Example 1: simple AND gate

Example 2: two-level circuit

module simpleand (f,x,y);
 input x,y;

output f;
 assign f=x & y;
endmodule

module two-level (a,b,c,d,f);
 input a,b,c,d;

output f;
 wire t1,t2;
 assign t1= a & b;

assign t2= ~(c|d);
assign f= t1 ^ t2;

endmodule

25

Example 3: a hierarchical design

module add3 (s,cy3,cy_in,x,y);
 input [2:0] x,y;
 input cy_in;

output [2:0] s;
output cy3;

 wire [1:0] cy_out;
 add B0 (cy_out[0],s[0],x[0],y[0],cy_in);

add B1 (cy_out[1],s[1],x[1],y[1], cy_out[0]);
add B2 (cy3 ,s[2],x[2],y[2], cy_out[1]);

endmodule

26

Specifying Connectivity:

. There are two alternate ways of specifying connectivity:

 Positional association

o The connections are listed in the same order

add A1(c_out,sum,a,b,c_in);

 Explicit association

o May be listed in any order

 add A1(.in1(a), .in2(b),.cin(c_in),.sum(sum),.cout(c_out));

27

Variable Data Types

. A variable belongs to one of two data types:

 Net

o Must be continuously driven

o Used to model connections between continuous

assignments & instantiations.

 Register

o Retains the last value assigned to it

o Often used to represent storage elements

28

Net data type:

. Different ‘net’ types supported for synthesis:

 wire , wor, wand, tri, supply0, supply1

. ‘wire’ and ‘tri’ are equivalent; when there are multiple drivers

driving them, the outputs of the drivers are shorted together.

. ‘wor’ / ‘wand’ inserts OR / AND gate at the connection.

. ‘supply0’ / supply1 model power supply connections.

29

Example 4:

module using_wire (a,b,c,d,f);
 input a,b,c,d;

output f;
 wire f;
 assign f= a & b;

assign f= c|d;
endmodule

module using_wired_and (a,b,c,d,f);
 input a,b,c,d;

output f;
 wand f; //f as wand
 assign f= a & b;

assign f= c|d;
endmodule

30

Example 5:

 module using_supply_wire (a,b,c,f);
 input a,b,c;

output f;
wire t1,t2;

 supply0 gnd;
 supply1 vdd;

 nand G1 (t1,vdd,a,b);

xor G2 (t1,c,gnd);
and G3(f,t1,t2);

endmodule

31

Register data type:

. Different ‘register’ types supported for synthesis:

 reg, integer

. the ‘reg’ declaration explicitly specifies the size.

 reg x,y; // single- bit register variable

 reg [15:0] bus; //16-bit bus, bus [15] MSB

 unsigned

 used to model the actual hardware register

. For ‘integer’, it takes the default size, usually 32-bit.

 Synthesizer tries to determine the size.

 Sinegd

 Used for loop counting

32

Example 6:

module simple_counter (clk,rst,count);
 input clk,rst;

output count;
reg [31:0] count;

 always @(posedge clk)
 begin

 if (rst)
 count = 32’b0;
 else
 count = count +1;

end
endmodule

33

 When ‘integer’ is used, the synthesis system often caries

out a data flow analysis of the model to determine its

actual size.

 .

 The size of c can be determined to be equal 11 (10 bits

plus a carry).

 A value may be specified in either the ‘sized’ or the ‘un-

sized’ form > syntax: <size>’<base><numbr>



wire [1:10] a,b;
 integer c;
 c = a +b;

Why silicon?

Why silicon?

How to product pure silicon

STEPS OF PRODUCTION

STEPS OF PRODUCTION

Semiconductor Manufacturing Process

Fundamental Processing Steps

1.Silicon Manufacturing
 a) Czochralski method.

 b) Wafer Manufacturing

 c) Crystal structure

2.Photolithography
 a) Photoresists

 b) Photomask and Reticles

 c) Patterning

3.Oxide Growth & Removal
a) Oxide Growth & Deposition

b) Oxide Removal

c) Other effects

d) Local Oxidation

4. Diffusion & Ion Implantation
a) Diffusion

b) Other effects

c) Ion Implantation

Semiconductor Manufacturing Process

Oxidation

The process of oxidation consists of growing a thin film of silicon

dioxide on the surface of the silicon wafer.

Diffusion

This process consists of the introduction of a few tenths to several

micrometers of impurities by the solid-state diffusion of dopants

into selected regions of a wafer to

form junctions.

Ion Implantation

This is a process of introducing dopants into selected areas of the

surface of the wafer by bombarding the surface with high-energy

ions of the particular dopant.

Semiconductor Manufacturing Process

Photolithography

In this process, the image on the reticle is transferred to the

surface of the wafer.

Epitaxy

Epitaxy is the process of the controlled growth of a crystalline

doped layer of silicon on a single crystal substrate.

Metallization and interconnections

After all semiconductor fabrication steps of a device or of an

integrated circuit are completed, it becomes necessary to provide

metallic interconnections for the integrated circuit and for

external connections to both the device and to the IC.

Semiconductor Manufacturing Process

Etching Techniques

Etching is the process of selective removal of regions of a

semiconductor ,metal, or silicon dioxide.

Semiconductor Manufacturing
Process

Crystal Growth and Wafer Manufacturing

FABRICATING SILICON
 Quartz, or Silica, Consists of Silicon Dioxide

 Sand Contains Many Tiny Grains of Quartz

 Silicon Can be Artificially Produced by
Combining Silica and Carbon in Electric
Furnice

 Gives Polycrystalline Silicon (multitude of
crystals)

 Practical Integrated Circuits Can Only be
Fabricated from Single-Crystal Material

CRYSTAL GROWTH
 Czochralski Process is a

Technique in Making
Single-Crystal Silicon

 A Solid Seed Crystal is
Rotated and Slowly
Extracted from a Pool
of Molten Si

 Requires Careful
Control to Give Crystals
Desired Purity and
Dimensions

CRYSTAL GROWTH

CYLINDER OF MONOCRYSTALLINE

 The Silicon Cylinder is
Known as an Ingot

 Typical Ingot is About 1 or 2
Meters in Length

 Can be Sliced into
Hundreds of Smaller
Circular Pieces Called
Wafers

 Each Wafer Yields
Hundreds or Thousands of
Integrated Circuits

WAFER MANUFACTURING
 The Silicon Crystal is Sliced by Using a Diamond-Tipped

Saw into Thin Wafers

 Sorted by Thickness

 Damaged Wafers Removed During Lapping

 Etch Wafers in Chemical to Remove any Remaining Crystal
Damage

 Polishing Smoothes Uneven Surface Left by Sawing Process

Photolithography

Photolithography

Photolithography

Photolithography is

a technique that is

used to define the

shape of micro-

machined structures

on a wafer.

 Photolithography
Photoresist
The first step in the photolithography process is to

develop a mask, which will be typically be a chromium

pattern on a glass plate.

Next, the wafer is then coated with a polymer which is

sensitive to ultraviolet light called a photoresist.

Afterward, the photoresist is then developed which

transfers the pattern on the mask to the photoresist

layer.

Photolithography
Photoresist
There are two basic types of Photoresists Positive and

Negative.

Positive resists.

Positive resists decomposes ultraviolet light. The resist is

exposed with UV light wherever the underlying material is to

be removed. In these resists, exposure to the UV light changes

the chemical structure of the resist so that it becomes more

soluble in the developer. The exposed resist is then washed

away by the developer solution, leaving windows of the bare

underlying material. The mask, therefore, contains an exact

copy of the pattern which is to remain on the wafer.

 Photolithography
 Photoresist

Negative resists

Exposure to the UV light causes the negative resist to become

polymerized, and more difficult to dissolve. Therefore, the

negative resist remains on the surface wherever it is exposed,

and the developer solution removes only the unexposed

portions. Masks used for negative photoresists, therefore,

contain the inverse (or photographic "negative") of the

pattern to be transferred.

 Photolithography
 Model

 Figure 1a shows a thin film of
some material (eg, silicon
dioxide) on a substrate of
some other material (eg, a
silicon wafer).

 Photoresist layer (Figure 1b)

 Ultraviolet light is then
shone through the mask
onto the photoresist (figure
1c).

Photolithography
Model

 The photoresist is then
developed which transfers
the pattern on the mask to
the photoresist layer (figure
1d).

 A chemical (or some other
method) is then used to
remove the oxide where it is
exposed through the
openings in the resist (figure
1e).

 Finally the resist is removed
leaving the patterned oxide
(figure 1f).

Positive and negative resist

user
Pencil

 Photolithography
 Photomasks and Reticles

Photomask

 This is a square glass plate with a patterned emulsion of

metal film on one side. The mask is aligned with the

wafer, so that the pattern can be transferred onto the

wafer surface. Each mask after the first one must be

aligned to the previous pattern.

user
Pencil

Photolithography
Photomasks and Reticles

When a image on the photomask is projected several time side

by side onto the wafer, this is known as stepping and the

photomask is called a reticle.

An common reticle is the 5X

The patterns on the 5X reticle are reduced 5 times when projected

onto the wafer. This means the dies on the photomask are 5 times

larger than they are on the final product. There are other kinds of

reduction reticles (2X, 4X, and 10X), but the 5X is the most

commonly used. Reduction reticles are used on a variety of steppers,

the most common being ASM, Canon, Nikon, and GCA.

user
Pencil

Photolithography
Photomasks and Reticles

Examples of 5X Reticles:

user
Pencil

Photolithography
Photomasks and Reticles
 Once the mask has been accurately aligned with the pattern

on the wafer's surface, the photoresist is exposed through the

pattern on the mask with a high intensity ultraviolet light.

There are three primary exposure methods: contact,

proximity, and projection.

user
Pencil

Photolithography
Patterning

The last stage of Photolithography is a process called ashing.

This process has the exposed wafers sprayed with a mixture of

organic solvents that dissolves portions of the photoresist .

Conventional methods of ashing require an oxygen-plasma ash,

often in combination with halogen gases, to penetrate the crust

and remove the photoresist. Usually, the plasma ashing process

also requires a follow-up cleaning with wet-chemicals and acids

to remove the residues and non-volatile contaminants that

remain after ashing. Despite this treatment, it is not unusual to

repeat the "ash plus wet-clean" cycle in order to completely

remove all photoresist and residues.

user
Pencil

Oxidation of Silicon

The simplest method of producing an oxide layer
consists of heating a silicon wafer in an oxidizing
atmosphere.

 SiO2 growth is a key process step in manufacturing all Si
devices ,Thick (1µm) oxides are used for field oxides
(isolate devices from one another)

o Dense and hard SiO2 layer act as contamination barrier
Hardness of the SiO2 layer protect the surface from scratches during

fabrication process

o Sacrificial layers are grown and removed to clean up surfaces

 The stability and ease of formation of SiO2 was one of the
reasons that Si replaced Ge as the semiconductor of choice.

user
Pencil

1. Dry oxidation

2. Wet oxidation

3. Thermal oxidation

4. High pressure oxidation

Type of oxidation

 Oxidation temperature 900-1200C

 Oxidation: Si wafer  placed in a heated

chamber  exposed to oxygen gas

user
Pencil

Dry oxide - Pure dry oxygen is employed

Disadvantage
- Dry oxide grows very slowly.

Advantage
- Oxide layers are very uniform.
- Relatively few defects exist at the oxide-silicon

interface (These defects interfere with the proper
operation of semiconductor devices)

- It has especially low surface state charges and thus make
ideal dielectrics for MOS transistors.

Si (solid) + O2 (gas)  SiO2 (solid) (dry oxidation)

user
Pencil

Wet oxide - In the same way as dry oxides, but steam is

injected

Disadvantage

 Hydrogen atoms liberated by the decomposition of the water
molecules produce imperfections that may degrade the oxide
quality.

Advantage

1. Wet oxide grows fast.

2. Useful to grow a thick layer of field oxide

Si (solid) + 2H2O (gas)  SiO2 (solid) + 2H2(gas) (wet oxidation)

user
Pencil

Thermal oxidation

• the growth of a layer of silicon dioxide (SiO2) on the substrate surface

• Requires only substrate heating to 900-1200 °C in a dry (O2) or wet

(H2O steam) ambient using an oxidation furnace

• Silicon oxidizes quite readily one reason why Si is so widely used

user
Pencil

High Pressure Oxidation

 High pressure oxidation results in faster oxidation rate

 Advantage of high pressure oxidation
• Drop the oxidation temperature

• Reduce oxidation time

Thin oxide produced using high pressure oxidation  higher dielectric

strength than oxides grown at atmospheric pressure

user
Pencil

Si wafer

Si wafer

Si wafer

• In a furnace with O2 gas environment

• Oxygen atoms combine readily
with Si atoms

• Linear- oxide grows in equal
amounts for each time

• Around 500Å thick

• Above 500Å, in order for oxide layer
to keep growing, oxygen and Si atoms
must be in contact

• SiO2 layer separate the oxygen in the
chamber from the wafer surface

Initial

Linear

Parabolic

user
Pencil

Deposited Oxides
 Oxide is frequently employed as an insulator between two

layers of metalization. In such cases, some form of
deposited oxide must be used rather than the grown
oxides.

 Deposited oxides can be produced by various reactions
between gaseous silicon compounds and gaseous oxidizers.
Deposited oxides tend to possess low densities and large
numbers of defect sites. Not suitable for use as gate
dielectrics for MOS transistors but still acceptable for use
as insulating layers between multiple conductor layers, or
as protective overcoats.

user
Pencil

Key Variables in Oxidation

 Temperature

- reaction rate

- solid state diffusion

 Oxidizing species

- wet oxidation is much faster than dry oxidation

 Surface cleanliness

- metallic contamination can catalyze reaction

- quality of oxide grown (interface states)

user
Pencil

Etching

 Etching is the process where unwanted areas of films are
removed by either dissolving them in a wet chemical
solution (Wet Etching) or by reacting them with gases in
a plasma to form volatile products (Dry Etching).

 Resist protects areas which are to remain. In some cases
a hard mask, usually patterned layers of SiO2 or Si3N4, are
used when the etch selectivity to photoresist is low or the
etching environment causes resist to delaminate.

 This is part of lithography - pattern transfer.

user
Pencil

user
Pencil

Wet Chemical Etching
 Wet etches:

- are in general isotropic

(not used to etch features less than ≈ 3
µm)
- achieve high selectivities for most film
combinations

- capable of high throughputs
- use comparably cheap equipment
- can have resist adhesion problems

- can etch just about anything

-Use acid or basic solutions. For instance,
hydrofluoric acid buffered with ammonium fluoride
is typically used to etch SiO2

user
Pencil

Example Wet Processes
 For SiO2 etching
 - HF + NH4F+H20 (buffered oxide etch or BOE)
 For Si3N4

 - Hot phosphoric acid: H3PO4 at 180 °C
 - need to use oxide hard mask
 Silicon
 - Nitric, HF, acetic acids
 - HNO3 + HF + CH3COOH + H2O
 Aluminum
 - Acetic, nitric, phosphoric acids at 35-45 °C
 - CH3COOH+HNO3+H3PO4

user
Pencil

What is a plasma
(glow discharge)?

 A plasma is a partially ionized gas made up of equal
parts positively and negatively charged particles.

 Plasmas are generated by flowing gases through an
electric or magnetic field.

 These fields remove electrons from some of the gas
molecules. The liberated electrons are accelerated, or
energized, by the fields.

 The energetic electrons slam into other gas molecules,
liberating more electrons, which are accelerated and
liberate more electrons from gas molecules, thus
sustaining the plasma.

user
Pencil

1. Purely physical (sputtering)

• Can be anisotropic

• All materials have sputter

yields within a factor of about

3. therefore seIectivities will be

low

• nonvolatile species can

redeposit on surfaces

• e. Ion Milling process

• In dry etching, ions of a neutral

material are accelerated toward

the surface and cause ejection of

atoms of all materials

Dry or Plasma Etching

user
Pencil

Dry or Plasma Etching

user
Pencil

Dry or Plasma Etching
Combination of chemical and physical etching

– Reactive Ion Etching (RIE)
Directional etching due to ion assistance.

In RIE processes the wafers sit on the powered electrode.
This placement sets up a negative bias on the wafer
which accelerates positively charge ions toward the
surface. These ions enhance the chemical etching
mechanisms and allow anisotropic etching.

 Wet etches are simpler, but dry etches provide better
line width control since it is anisotropic.

• Plasma etching has the advantage of offering a well-defined

directionality to the etching action, creating patterns with sharp

vertical contours.

user
Pencil

Other Effects of Oxide Growth and
Removal

 Oxide Step

- The differences in oxide thickness and in the
depths of the silicon surfaces combine to produce
a characteristic surface discontinuity

 The growth of a thermal oxide affects the doping
levels in the underlying silicon

 The doping of silicon affects the rate of oxide growth

user
Pencil

Local Oxidation of Silicon (LOCOS)
 LOCOS: localized oxidation of silicon using silicon

nitride as a mask against thermal oxidation.

 A technique called local oxidation of silicon (LOCOS)
allows the selective growth thick oxide layers

 CMOS and BiCMOS processes employ LOCOS to grow
a thick field oxide over electrically inactive regions of
the wafer

•The presence of another material such as silicon nitride (Si3N4)

on the surface inhibits the growth of oxide in that region

user
Pencil

Diffusion , Ion Implantation

And Epitaxial processes

Diffusion
•Most of these diffusion processes occur in two steps: the

predeposition and the drive-in diffusion,

•In the pre deposition step. a high concentration of dopant

atoms are introduced at the silicon surface by a vapor that

contains the dopant at a temperature of about 1000°C. In

recent years Ion Implantation is used.

•At the temperature of l000°C.silicon atoms move out of

their lattice sites creating a high density of vacancies and

breaking the bond with the neighboring atoms.

•The second step is drive-in process. used to drive the

impurities deeper into the surface without adding anymore

impurities.

user
Pencil

Diffusion

•Common dopants are boron for P-type layers and phosphorus.

antimony and arsenic for N-type layers.

•A typical arrangement of the process of diffusion is shown in

Figure.

•The wafers are placed in a quartz furnace tube that is heated

by resistance heaters surrounding it. So that the wafers may be

inserted and removed easily from the furnace. they are placed

in a slotted quartz carrier known as a boat. To introduce a

phosphorus dopant. as aim example. phosphorus oxychloride

user
Pencil

Diffusion

user
Pencil

• (POCI3) is placed in a container either inside the quartz tube, in a

region of relatively low temperature. or in a container outside the

furnace at a temperature that helps maintain its liquid form

• Nitrogen and oxygen gas are made to pass over the container. These

gases carry the dopant vapor into the furnace, where the gases are

deposited on the surface of the wafers. These gases react with the

silicon, forming a layer on the surface of the wafer that contains

silicon,oxygen, and phosphorus. At the high temperature of the

furnace. phosphorus diffuses easily into the silicon.

• Diffusion depth is controlled by the time and temperature of the

drive-in process.

• By precise control of the time and temperature (to within

0.25°C).accurate junction depths of fraction of a micron can be

obtained.

Diffusion

user
Pencil

To generate ions. such as those of phosphorus. an arc discharge is made

to occur in a gas. such as phosphine (PH3).that contains the dopant.

The ions are then accelerated in an electric field so that they acquire an

energy of about 20keV and are passed through a strong magnetic field.

Because during the arc discharge unwanted impurities may have been

generated. the magnetic field acts to separate these impurities from the

dopant ions based on the fact that the amount of deflection of a particle

in a magnetic field depends on its mass.

 Following the action of the magnetic field, the ions are further

accelerated so that their energy reaches several hundred keV, whereupon

they are focused on and strike the surface of the silicon wafer.

Ion Implantation

user
Pencil

•In ion implantation,

dopantatoms are accelerated

toward the substrate surface

and enter due to their kinetic

energy

•This is the preferred

technique for introduction of

dopantatoms since the

amount of lateral diffusion is

much lower

user
Pencil

showing the ion beam hitting the 300mm wafer end-station.

Ion Implantation Equipment

Ions generated in a source (from feed gas, e.g. BF3,

AsH3, PH3 ... or

heated solid source, then ionized in arc chamber by

electrons from hot filament) select desired species by

q/m, using a magnet,

accelerated by an E-field and focused using

electrostatic lenses and impact substrate (a bend

removes neutrals) in raster pattern.

user
Pencil

user
Pencil

Comparison of Diffusion and Ion
Implantation

 Diffusion is a cheaper and more simplistic method,
but can only be performed from the surface of the
wafers. Dopants also diffuse unevenly, and interact
with each other altering the diffusion rate.

 Ion implantation is more expensive and complex. It
does not require high temperatures and also allows
for greater control of dopant concentration and
profile. It is an anisotropic process and therefore
does not spread the dopant implant as much as
diffusion.

user
Pencil

Epitaxial Growth

Epitaxial is used to deposit N on N+ silicon, which is impossible it.

accomplish by diffusion. It is also used in isolation between bipolar

transistors wherein N- is deposited on P.

We list below, and with reference to Figure. the sequence of operation

involved in the process:

1. Heat wafer to 1200°C.

2. Turn on H2, to reduce the SiO2, on the wafer surface.

3. Turn on anhydrous HCL to vapor-etch the surface of the wafer. This

removes a small amount of silicon and other contaminants.

4. Turn off HCL

5. Drop temperature to 1100°C.

6. Turn on silicon tetrachloride (SiCl4)

7. Introduce dopant.

Epitaxial process

user
Pencil

Epitaxial process

user
Pencil

