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ENGINEERING DESIGN

* Engineering design is the central task of the
engineer. It is a complex process in which both
creativity and analysis play major roles.

* Design is the process of conceiving or inventing
the forms, parts, and details of a system to
achieve a specified purpose.

* Design is an innovative act whereby the engineer
creatively uses knowledge and materials to
specify the shape, function, and material content
of a system.




The design steps

(1) determine a need arising from the values

of various groups, covering the spectrum from
public policy makers to the consumer.

(2) specify in detail what the solution to that
need must be and to embody these values.

(3) develop and evaluate various alternative
solutions to meet these specifications.

(4) decide which one is to be designed in detail.

The main approach to the most effective engineering
design is parameter analysis and optimization.

* Parameter analysis is based on (1) identification of
the key parameters, (2) generation of the system
configuration, and (3) evaluation of how well the
configuration meets the needs. These three steps
form an iterative loop.

* Once the key parameters are identified and the
configuration synthesized, the designer can optimize
the parameters. Typically, the designer strives to
identify a limited set of parameters to be adjusted.
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The goal of control engineering design is to obtain

the configuration, specifications, and identification
of the key parameters of a proposed system to meet an
actual need.

The design Process consists of seven main
building blocks, which we arrange into three groups:

1. Establishment of goals and variables to be controlled,
and definition of specifications against which to measure
performance.

2. System definition and modeling.

3.Control system design and integrated system simulation
and analysis.

Control System Design Process

1. Establish control goals
2. Identify the variables to control

3. Write the specifications for the variables

4. Establish the system configuration and identify the
actuator

Ifthe 5. Obtain a model of the process, the actuator and the
performance sensor

does not meet

specifications, 6. Describe a controller and select key parameters to be

then iterate the | adjusted

configuration

and actuator 7. Optimize the parameters and analyze the
performance

If the performance meet the specifications, then
finalize design
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The performance specifications will

describe how the closed-loop system should
perform and will include:

(1) good regulation against disturbances.
(2) desirable responses to commands.
(3) realistic actuator signals.

(4) low sensitivities.

(5) robustness.

Control System Components

i. System, plant or process

— To be controlled
ii. Actuators

— Converts the control signal to a power signal
iii. Sensors

— Provides measurement of the system output
iv. Reference input

— Represents the desired output
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General Control System

Disturbance

. Controlled Manipulated
Set-point Error Signal Variable

or
Controller l; Actuator

Reference
Sensor ¢

Actual
Output
Process —»

input

Feedback Signal

The design process has been dramatically
affected by the advent of powerful and
inexpensive computers and effective control

design and analysis software.

e For example, the Boeing 777, which
incorporates the most advanced flight avionics
of any U.S. commercial aircraft, was almost
entirely computer-designed.

 The Boeing 777 test pilots flew about 2400
flights in high-fidelity simulations before the
first aircraft was even built.

10
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« Functionally, how do closed-loop systems
differ from open-loop systems?

Closed-loop systems compensate for disturbances by measuring the
response, comparing it to the input response (the desired output), and
then correcting the output response.

* Name the three major design criteria for
control systems.

Stability, transient response, and steady-state error

11

 Name the two parts of a system's response.

Steady-state, transient.

* Physically, what happens to a system that is
unstable?

It follows a growing transient response until the steady-
state response is no longer visible. The system will
either destroy itself, reach an equilibrium state because
of saturation in driving amplifiers, or hit limit stops.

12
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 Describe a typical control system analysis
task.

Determine the transient response performance
of the system.

 Describe a typical control system design
task.

Determine system parameters to meet the
transient response specifications for the system.

13

Where is control system design used?

* Control Systems are used in Industrial
Automation to regulate how devices operate
in real time. In a closed-loop control system
the controller (RTU, PLCS, DCS) feedback
(error) signal is used to adjust the control
variable such that the process is constantly
trying to match the operational set point.

14
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Where is control system design used?

Control Systems are wused in domestic
applications, general industry, military and
virtually every modern vehicle in the world.
Control Systems are very common in SCADA
and Industrial Automation systems.

Control Systems are used in industries such as
chemical processing, pulp and paper
manufacture, power generation, oil and gas
processing, and telecommunications.

15

How do you create a controller control system?

* General Tips for Designing a PID Controller

Obtain an open-loop response and determine what
needs to be improved.

Add a proportional control to improve the rise time.
Add a derivative control to reduce the overshoot.

Add an integral control to reduce the steady-state
error.

Adjust each of the gains, , and.

16
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Feedback control is Every where
you just have to look for it

17
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College of Electronics Engineering
Department of Systems and Control Engineering

CONTROL SYSTEMS DESIGN LAB
III YEAR II SEM
Lecturer; Mr. Salam Asmer

Summary: This course deals with practical aspects of the design and compensation of control
systems.

Matlab: You will use Matlab extensively. Prior familiarity with Matlab is assumed. You are not
required to purchase these packages.

Lab Reports: The Department requires formal lab reports which must satisfy the following
format rules:

1. Title page: This must include a title, group member names, course and section name and date.
2. Introduction: Explain the background and objective of the lab indicating requirements and
desired results.

3. Discussion: Discuss the underlying applicable theory and concepts that support the results.

4. Results: Present results in tabular, graphical or numeric form. Present results from required lab
exercises.

5. Discussion of Results: Discuss results data in context of comparison to expectation, accuracy,
difficulties, etc.

6. Summary and Conclusions: Discuss findings, explain errors and unexpected results; summarize
and indicate conclusions.

1. PLOTTING ROOT LOCI WITH MATLAB

1.1 AIM:
To plot the root locus for a given transfer function of the system using MATLAB.

1.2 APPARATUS:
Software: MATLAB.

1.3 MATLAB PROGRAM:
We present the MATLAB approach to the generation of root-locus plots and finding relevant
information from the root-locus plots.

In plotting root loci with MATLAB we deal with the characteristic equation of the negative
feedback control system:

1+ G(s)H(s) = 0

Then rearrange this equation so that the parameter of interest appears as the multiplying Factor in
the form



1+ [K(s+zl)(s+22)....(s+zm)])/[(s+pl))s+p2)....(s+pn)]=0
In the present discussions, we assume that the parameter of interest is the gain K, where K>0.

Which may be written as where num is the numerator polynomial and den is the denominator
polynomial.

That is,

num = (s + z1)(s + z2) ....(s + zm)

den=(s+pl)(s+p2)....(s+pn)

Note that both vectors num and den must be written in descending powers of s.

A MATLAB command commonly used for plotting root loci is:
rlocus(num,den)

Using this command, the root-locus plot is drawn on the screen. The gain vector K is
automatically determined. (The vector K contains all the gain values for which the closed loop
poles are to be computed).

If it is desired to plot the root loci with marks 'o' or 'X', it is necessary to use the following
Command:

r = rlocus(num,den)

plot(r,'0") or plot(r,'x")

Plot root loci with a square aspect ratio so that a line with slope 1 is a true 45°line. Choose the
region of root-locus plot to be

-6<x<6,-65y<6

Where x and y are the real-axis coordinate and imaginary-axis coordinate, respectively.

To set the given plot region on the screen to be square, enter the command
v =[-6 6 -6 6]; axis (v); axis('square')

With this command, the region of the plot is as specified and a line with slope 1 is at a true 45°,
not skewed by the irregular shape of the screen.

1.4 PROCEDURE:

* Write MATLAB program in the MATLAB specified documents.

+ Save the program to run it.

* The input is to be mentioned.

+ The syntax “g=tf(num,den)” gives the transfer function and is represented as g.

+ The syntax “rlocus(g)” plots the rootlocus of the transfer function g.

* rlocus(g) calculates and plots the root locus of the open loop SISO model sys.

+ Now we have to solve it theoretically.

* We have to compare the practical and theoretical outputs to verify each other correctly.



1.5 THEORETICAL CALCULATIONS:
enter the numerator of the transfer function
num=

enter the denominator of the transfer function
den=

Transfer function :

1.6 EXAMPLE: Consider the G(s) = [K]/[s(s + 1) (s+2)], Plot root loci. {[1] Page 273}

MATLAB Program

% --------- Root-locus plot ---------

num = [1];

den=[1320];

g=tf(num,den)

rlocus(num,den)

v=[-44-44]

axis(v); axis('square')

grid;

title ('Root-Locus Plot of G(s) = [K]/[s(s + 1) (s+2)]")

1.7 RESULTS AND DISCUSSION:



ROOT-LOCUS APPROACH TO
CONTROL-SYSTEMS DESIGN

Design by Root-Locus Method. The design
by the root-locus method is based on
reshaping the root locus of the system by
adding poles and zeros to the system’s
open-loop transfer function and forcing the
root loci to pass through desired closed-loop
poles in the s plane.

Series Compensation and Parallel (or
Feedback) Compensation

{Jrg : Gois) Gis)
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* The choice between series compensation and
parallel compensation depends on the nature of the
signals in the system, the power levels at various
points, available components, the designer’s
experience, economic considerations, and so on.

* In general, series compensation may be simpler than
parallel compensation.

* the number of components required in parallel
compensation will be less than the number of
components in series compensation because the
energy transfer is from a higher power level to a
lower level.

Effects of the Addition of Poles.

« The addition of a pole to the open-loop
transfer function has the effect of pulling the
root locus to the right, tending to lower the
system’s relative stability and to slow down
the settling of the response.

jw Jjo Jw
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Effects of the Addition of Zeros.

« The addition of a zero to the open-loop
transfer function has the effect of pulling the
root locus to the left, tending to make the
system more stable and to speed up the
settling of the response.

e [ e
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LEAD COMPENSATION

* The root-locus approach to design is very
powerful when the specifications are given in
terms of time-domain quantities, such as the
damping ratio and undamped natural frequency
of the desired dominant closed-loop poles,
maximum overshoot, rise time, and settling time.

* Consider a design problem in which the original
system either is unstable for all values of gain or
is stable but has undesirable transient-response
characteristics. In such a case, the reshaping of
the root locus is necessary.
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The procedures for designing a lead
compensator for the system shown in
Figure by the root-locus method may

be stated as follows

—»—@—» G.(5) | G(s) =

|

1. From the performance specifications,
determine the desired location for the
dominant closed-loop poles.

2. By drawing the root-locus plot of the
uncompensated system (original system),
ascertain whether or not the gain adjustment
alone can yield the desired closed loop poles.
If not, calculate the angle deficiency @ . This
angle must be contributed by the lead
compensator if the new root locus is to pass
through the desired locations for the
dominant closed-loop poles.




3. Assume the lead compensator Gc(s) to be:

e Ge(s)=Kca[(Ts+1)]/[(aTs+1)]
=Kc (s+ 1/T)/(s + 1/aT)
(O<a<1)

 where a and T are determined from the angle
deficiency (@). Kc is determined from the
requirement of the open-loop gain.

10

4. If static error constants are not specified,
determine the location of the pole and zero of
the lead compensator so that the lead
compensator will contribute the necessary
angle (@). If no other requirements are
imposed on the system, try to make the value
of a as large as possible. A larger value of a
generally results in a larger value of Kv, which
is desirable. Note that

K, = lin%ch(s)G(s) = K.« lil’I(lJSGC(S)

11
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5. Determine the value of Kc of the lead
compensator from the magnitude condition.

e Once a compensator has been designed,
check to see whether all performance
specifications have been met. |If the
compensated system does not meet the
performance specifications, then repeat the
design  procedure by adjusting the
compensator pole and zero until all such
specifications are met.

12

 EXAMPLE (Ogata P313): Consider the position
control system shown in Figure The
feedforward transfer function is

G(s) =10/ [s(s + 1)]

(a) Control system; i
1 i3

(b) rOOt-locus plOt. Closed-loop j
pole — 2

Ri(s) 10 Cls)
——
ss+1) 5

Gls)
,j}

(a) (b) 13




The root-locus plot for this system is shown in
Figure. The closed-loop transfer function for the
system is :

C(s)/R(s) =10/(s*2 + s + 10)

=10/[(s + 0.5 + j3.1225)(s + 0.5 - j3.1225)]

The closed-loop poles are located at:
s=-0.5+j3.1225

The damping ratio of the closed-loop poles is
1=(1/2)/v10 = 0.1581

The undamped natural frequency of the closed-

loop poles is wn =V10 = 3.1623 rad/sec
Because the damping ratio is small, this system will have a
large overshoot in the step response and is not desirable.

It is desired to design a lead compensator Gc(s) as shown in
Figure so that the dominant closed-loop poles have the
damping ratio 1=0.5 and the undamped natural frequency wn
= 3 rad/sec.

The desired location of the dominant closed-loop poles can
be determined from:

SM2+2lwns+wn?2=s5"2+3s+9

as follows: s=-1.5+j2.5981

Jw

R(s) 10 ) PR e
—;@—y G(s) h L 1
s(s+1)

6057
| G(s) <5 _15 1 o

[ 3 15
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Assume the lead compensator Gc(s) to be:
Ge(s)=Kca[(Ts+1)] /[(aTs+1)]
=Kc (s+1/T)/(s + 1/aT) (0<a<1)
* The angle from the pole at the origin to the desired
dominant closed-loop pole at s = —1.5+j2.5981 is
120°.The angle from the pole at s=—1 to the desired

closed-loop pole is 100.894°. Hence, the angle
deficiency is

Angle deficiency=@=180° — 120° — 100.894°= — 40.894°

* Deficit angle 40.894° must be contributed by a lead
compensator. There are infinitely many solutions.

16

Method 1.

e First, draw a horizontal line passing through
point P, the desired location for one of the
dominant closed-loop poles. This is shown as
line PA in Figure. Draw also a line connecting
point P and the origin. Bisect the angle
between the lines PA and PO, as shown in
Figure. Draw two lines PC and PD that make
angles +@/2 with the bisector PB. The
intersections of PC and PD with the negative
real axis give the necessary locations for the
pole and zero of the lead network.

17
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Determination of the pole and zero of a lead network.

10

‘ = —220.894°
s(s + 1) |s=1.54 25081
S
P
A f
. ¢
/3 2
V4R A SR R
& R D

18

* Thus, if we need to force the root locus to go
through the desired closed-loop pole, the lead
compensator must contribute @=40.894° at
this point. By following the foregoing design
procedure, we can determine the zero and
pole of the lead compensator.

» Referring to last Figure, if we bisect angle APO
and take 40.894°/2 each side, then the
locations of the zero and pole are found as
follows:

zero at s=—1.9432 & pole at s=—4.6458
(For this compensator the value of a is
a =1.9432/4.6458 = 0.418.)

19

2023-02-17



* Determination of the pole and zero of the lead
compensator.

Jo k
A P

A
% _
| | I/ |

46458 -3 -1.9432 W 1 2w

/ -l

20
* Ge(s)=Kca[(Ts+1)]/[(aTs+1)]
= Kc (s + 1.9432)/(s + 4.6458)
The value of K. can be determined by use of the magnitude condition.
5 + 1.9432 10 53
5+ 4.6458 s(s + 1) |i—y50 2o
or
7 |(s + 4.6458)s(s + 1) {
c | 10(s + 1.9432) 5=—1.5+/2.5981, -
Hence, the lead compensator G (5) just designed is given by
5 N s + 1.9432
Gy =128 o s
Then, the open-loop transfer function of the designed system becomes
s + 1.9432 10
G(5)G(s) = 1,2287( 5 )
(s)G(s) s + 46458 ) s(s + 1)
and the closed-loop transfer function becomes
C(s) 12.287(s + 1.9432)
R(s) s(s + 1)(s + 4.6458) + 12.287(s + 1.9432)
B 12.287s + 23.876
s* + 5.6465° + 16.933s5 + 23.876 21
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Method 1. j< )
X Jl!_'.ll
L 2
el J-]
(a1 A
' ' e " - '
o _4 _3 _2 S/ \/
L —1
Root-locus plot of the L 2
designed System
(damping ratio= 0.5, wn =3 =
rad/sec.) 2

It is worthwhile to check the static velocity error
constant Kv for the system just designed.

K= lin‘é sG.(5)G(s)

+1.9432 10
= lim 5[1.2287 ? }

s + 4.6458 s(s + 1)

= 5.139

23
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Method 2.

 If we choose the zero of the lead compensator
at s = -1 so that it will cancel the plant pole at
s = -1, then the compensator pole must be

located at s = -3.

* Hence the lead compensator becomes

Ge(s)=Kca[(Ts+1)] /[(aaTs+1)]

=Kc (s +1)/(s + 3)

24

MethOd 2' Desired

closed-loop pole

X

Compensator
pole

*.60°

ey

Compensator
zero

Compensator pole and zero.

]

25
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The value of Kc can be determined by use of the
magnitude condition:

s+ 1 10
‘s +3s(s+ 1)|—15+/25081

=1

or
s(s +3)
10

=09

s=—1.5+/2.5081

Hence
il |

s+3

G.(s) =09

The open-loop transfer function of the designed system then becomes

G.(5)G(s) ()L}S + 1 10 9
S S e 2 s=
¢ s+3s(s+1) s(s+3)

The closed-loop transfer function of the compensated system becomes

C(s) 9

R(s) S +35+9 e

The static velocity error constant for the present
case is obtained as follows:

K, = }i]]‘éSGC(S)G(S}

9
i o] o | -
s—0 7| s(s+ 3)

Notice that the system designed by Method 1 gives a
larger value of the static velocity error constant.

This means that the system designed by Method 1
will give smaller steady-state errors in following ramp
inputs than the system designed by Method 2.

27

2023-02-17

13



Outputs ¢1, ¢2, and ¢
o o — - =
(=) oo — (%] = (=)

=
'

Unit-Step Responses of Compensated Systems and Uncompensated System

28
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College of Electronics Engineering
Department of Systems and Control Engineering

CONTROL SYSTEMS DESIGN LAB
III YEAR II SEM
Instructor: Mr. Salam Asmer

Summary: This course deals with practical aspects of the design and compensation of control
systems.

Matlab: You will use Matlab extensively. Prior familiarity with Matlab is assumed. You are
not required to purchase these packages.

Lab Reports: The Department requires formal lab reports which must satisfy the following
format rules:

1. Title page: This must include a title, group member names, course and section name and
date.

2. Introduction: Explain the background and objective of the lab indicating requirements and
desired results.

3. Discussion: Discuss the underlying applicable theory and concepts that support the results.
4. Results: Present results in tabular, graphical or numeric form. Present results from required
lab exercises.

5. Discussion of Results: Discuss results data in context of comparison to expectation,
accuracy, difficulties, etc.

6. Summary and Conclusions: Discuss findings, explain errors and unexpected results;
summarize and indicate conclusions.

2. Lead Compensation Techniques Based on the Root-Locus Approach

2.1 AIM:
Lead compensation design by the root-locus method using MATLAB.

2.2 APPARATUS:
Software: MATLAB.

2.3 PROCEDURE:
e  Write MATLAB program in the MATLAB specified documents.
e Then save the program to run it.
e Design a lead compensator Ge(s) for the dominant closed-loop poles have the
damping ratio and the undamped natural frequencies are specified.
e Plot Root-locus of the designed System.
e Comparison of step responses of the compensated and uncompensated systems.
e Comparison of Unit-ramp response curves of designed systems.

2.4 THEORETICAL CALCULATIONS:

» Original uncompensated system
enter the numerator of the transfer function
num=



enter the denominator of the transfer function
den=
Transfer function:

»  The system designed by Method 1.
enter the numerator of the transfer function
numl=
enter the denominator of the transfer function
denl=
Transfer function:

= The system designed by Method 2.
enter the numerator of the transfer function
num2=
enter the denominator of the transfer function
den2=
Transfer function:

2.5 EXAMPLE: Consider the G(s) = 10 / [s(s + 1)], Plot root loci for G(s), It is desired to design a
lead compensator Gce(s) that the dominant closed-loop poles have the damping ratio {=0.5 and the undamped
natural frequency wn = 3 rad/sec. Plot root loci of the designed system. {[1] Page 313}

»  Comparison of step responses of the compensated and uncompensated systems.
»  Comparison of Unit-ramp response curves of designed systems.

MATLAB Program

% ***** Unit-Step Response of Compensated and Uncompensated Systems *****
numl =[12.287 23.876];

denl =[1 5.646 16.933 23.876];

num?2 = [9];

den2 =[1309];

num = [10];

den=[1110];

t=0:0.05:5;

cl = step(numl,denl,t);

c2 = step(num2,den2,t);

¢ = step(num,den,t);

plot(t,cl,-',t,c2," " t,c,'x")

grid

title('Unit-Step Responses of Compensated Systems and Uncompensated System')
xlabel('t Sec')

ylabel("Outputs c1, c2, and c')

text(1.51,1.48,'Compensated System (Method 1)")

text(0.9,0.48,'Compensated System (Method 2)")

text(2.51,0.67,'Uncompensated System')

% ***** Unit-Ramp Responses of Compensated Systems *****
numl =[12.287 23.876];

denl =[1 5.646 16.933 23.876 0];

num?2 = [9];

den2 =[1390];

t=0:0.05:5;

cl = step(numl,denl,t);

c2 = step(num2,den2,t);

plot(t,cl,-',t,c2,"" t,t,"")

grid

title('"Unit-Ramp Responses of Compensated Systems')
xlabel('t Sec')

ylabel("Unit-Ramp Input and Outputs c1 and c2")



text(2.55,3.8,'Input")
text(0.55,2.8,'Compensated System (Method 1)")
text(2.35,1.75,'Compensated System (Method 2)")

2.6 RESULT:
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LAG COMPENSATION

* Consider the problem of finding a suitable
compensation network for the case where the
system exhibits satisfactory transient-response
characteristics but unsatisfactory steady-state
characteristics.

* Compensation in this case essentially consists of
increasing the open loop gain without
appreciably changing the transient-response
characteristics.

* This can be accomplished if a lag compensator is
put in cascade with the given feedforward
transfer function.

* To avoid an appreciable change in the root
loci, the angle contribution of the lag network
should be limited to a small amount, say less
than 5°.

* To assure this, we place the pole and zero of
the lag network relatively close together and
near the origin of the s plane. Then the
closed-loop poles of the compensated system
will be shifted only slightly from their original
locations. Hence, the transient-response
characteristics will be changed only slightly.
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e The main negative effect of the Ilag
compensation is that the compensator zero
that will be generated near the origin creates
a closed-loop pole near the origin. This closed
loop pole and compensator zero will generate
a long tail of small amplitude in the step
response, thus increasing the settling time.

Consider a lag compensator G.(s), where

1
g
. Ts+1 - T
G = =K,
C‘(S) [ BTS S 1 C 1
5+ —
BT
8yt .
] il
. i
|GC(SIJ| - Kc 1 = K[
51 +|87T

el
LY

< 500

i+
1 T




*An increase in the gain means an increase in the static
error constants. If the open loop transfer function of the

uncompensated system is G(s), then the static velocity
error constant Kv of the uncompensated system is

Then for the compensated system with the open-loop

K, = lim sG(s)

transfer function the static velocity error constant

~ ~

K,= !i}%SG((S)G(S) = limG,(s)K, = K BK,

5—0

2.

Design Procedures for Lag Compensation
1.

Draw the root-locus plot for the uncompensated
system whose open-loop transfer function is G(s).
Based on the transient-response specifications,
locate the dominant closed-loop poles on the root

locus.

Assume the transfer function of the lag
compensator to be given by

2024-02-09
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3. Evaluate the particular static error constant specified
in the problem.

4. Determine the amount of increase in the static error
constant necessary to satisfy the specifications.

5. Determine the pole and zero of the lag compensator
that produce the necessary increase in the particular
static error constant without appreciably altering the
original root loci.

6. Draw a new root-locus plot for the compensated
system. Locate the desired dominant closed-loop
poles on the root locus.

7. Adjust gain Kc of the compensator from the
magnitude condition so that the dominant closed-
loop poles lie at the desired location.

2024-02-09



EXAMPLE (Ogata P324): The feedforward transfer
function is G(s) =[1.06]/[s(s + 1)(s + 2)]

It is desired to increase the static velocity error
constant Kv to about 5 sec”—1.

Closed-loop poles

N/;}
| N J \
-3 B 54 \ 0 1 o
1.06
——
s(s+ 1) (s+2) —

(a) (b)

10

The closed-loop transfer function:

C(s) 1.06

R(s) s(s +1)(s +2) + 1.06

1.06
(s + 03307 — j0.5864)(s + 03307 + j0.5864)(s + 2.3386)

The dominant closed-loop poles are
s = —03307 £ j0.5864 = -lwnjwnv(1- 1*2)

The damping ratio of the dominant closed-loop poles is { = 0.491. The undamped natural

frequency of the dominant closed-loop poles is 0.673 rad/sec. The static velocity error constant is

0.53 sec™.

11
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To meet the required specification,

let us insert a lag compensator in cascade with the
given feedforward transfer function. To increase the
static velocity error constant by a factor of about 10,
let us choose (=10 and place the zero and pole of
the lag compensator at s=—0.05 and s=-0.005,
respectively. The transfer function of the lag
compensator becomes :

12

The angle contribution of this lag network near a
dominant closed-loop pole is about 4°. Because this
angle contribution is not very small, there is a small
change in the new root locus near the desired
dominant closed-loop poles.

The open-loop transfer function of the compensated system then becomes

- + 0.05 1.06
G.(5)G(s) = K.~
s + 0.005 s(s + 1)(s + 2)

K(s + 0.05)
s(s + 0.005)(s + 1)(s + 2)

where

K = 1.06K,

13
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Root-Locus Plots of Compensated and Uncompensated Systems

2
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05 | .D.rig.i.uﬂl..ci@s.edr.lﬁqp.péle. : —~

Imag Axis
=]

i

14

Root-Locus Plot of Compensated System near the Origin
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If the damping ratio of the new dominant closed-loop poles is kept the same, then these poles
are obtained from the new root-locus plot as follows:

[ s =031+ /055 s =—031— 055

The open-loop gain K is determined from the magnitude condition as follows:
" [s(s + 0.005)(s + 1)(s + 2)

s + 005 s=—031+0.55

Then the lag compensator gain f{'ﬂ is determined as
K. = % = 1'10_325 = 09656

Thus the transfer function of the lag compensator designed is
s + 0.05 205 + 1
s+ 0005 92005+ 1
Then the compensated system has the following open-loop transfer function:

1.0235(s + 0.05)
s(s + 0.005)(s + 1)(s + 2)

5.12(20s + 1)
T 5(200s + 1)(s + 1)(0.55 + 1)

The static velocity error constant K, is

K, = lin;)SGl(s) = 5.12sec”

G.(s) = 0.9656

Gi(s) =

16

the value of the static velocity error constant of the
compensated system is 9.66 times greater than that of
the uncompensated system.

The two other closed-loop poles for the compensated
system are found as follows:

s3 =-2.326, s4 =-0.0549

* The undamped natural frequency of the dominant
closed-loop poles of the compensated system is 0.631
rad/sec. This value is about 6% less than the original
value, 0.673 rad/sec. This implies that the transient
response of the compensated system is slower than that
of the original system.

* The maximum overshoot in the step response will
increase in the compensated system.

17
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e Comments. It is noted that under certain
circumstances, however, both lead
compensator and lag compensator may satisfy
the given specifications (both transient
response specifications and steady-state
specifications.) Then either compensation may
be used.

18

Text book

1:" Modern Control Engineering " By Katsuhiko
Ogata.

2: “ Control Systems Engineering ” By Norman
S. Nise.

19
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College of Electronics Engineering
Department of Systems and Control Engineering

CONTROL SYSTEMS DESIGN LAB
III YEAR II SEM
Instructor: Mr. Salam Asmer

Summary: This course deals with practical aspects of the design and compensation of control
systems.

Matlab: You will use Matlab extensively. Prior familiarity with Matlab is assumed. You are
not required to purchase these packages.

Lab Reports: The Department requires formal lab reports which must satisfy the following
format rules:

1. Title page: This must include a title, group member names, course and section name and
date.

2. Introduction: Explain the background and objective of the lab indicating requirements and
desired results.

3. Discussion: Discuss the underlying applicable theory and concepts that support the results.
4. Results: Present results in tabular, graphical or numeric form. Present results from required
lab exercises.

5. Discussion of Results: Discuss results data in context of comparison to expectation,
accuracy, difficulties, etc.

6. Summary and Conclusions: Discuss findings, explain errors and unexpected results;
summarize and indicate conclusions.

3. Lag Compensation Techniques Based on the Root-Locus Approach

3.1 AIM:
It is desired to increase the static velocity error constant Kv to about 5 sec-1 without

appreciably changing the location of the dominant closed-loop poles of the system using
MATLAB.

3.2 APPARATUS:
Software: MATLAB.

3.3 PROCEDURE:

e Write MATLAB program in the MATLAB specified documents.

e Then save the program to run it.

e Itis desired to increase the static velocity error constant Kv to about 5 sec-1
without appreciably changing the location of the dominant closed-loop poles

e Plot Root-locus of Compensated and Uncompensated Systems.

e The plot of the unit-ramp response curves for Compensated and Uncompensated
Systems.

e The unit-step response curves of the compensated and uncompensated systems.



3.4 THEORETICAL CALCULATIONS:

Enter the numerators and denominators of the compensated and uncompensated systems.
num=

den=

Transfer function:

nume=

denc=

Transfer function:

3.5 EXAMPLE: Consider the G(s) = [1.06]/[s(s*+1)(s+2)], Plot root loci.
It is desired to increase the static velocity error constant Kv to about 5 sec-1 without
appreciably changing the location of the dominant closed-loop poles. {[1] Page 324}

% ***** Root-locus plots of the compensated system and uncompensated system *****
% ***** Enter the numerators and denominators of the compensated and uncompensated
systems *#*#*

numc = [1 0.05];

denc =[1 3.005 2.015 0.01 0];

num = [1.06];

den=[1320];

% ***** Enter rlocus command. Plot the root loci of both systems ****3*
rlocus(nume,denc)

hold

Current plot held

rlocus(num,den)

v =[-31-2 2]; axis(v); axis('square")

grid

text(-2.8,0.2,'Compensated system')

text(-2.8,1.2,'Uncompensated system')

text(-2.8,0.58,'Original closed-loop pole")

text(-0.1,0.85,"New closed-")

text(-0.1,0.62,'Toop pole")

title('Root-Locus Plots of Compensated and Uncompensated Systems')
hold

Current plot released

% ***** Plot root loci of the compensated system near the origin *****
rlocus(nume,denc)

v =[-0.6 0.6 -0.6 0.6]; axis(v); axis('square")

grid

title('Root-Locus Plot of Compensated System near the Origin')

% ***** Unit-ramp responses of compensated system and

% uncompensated system *#*#*

% ***¥* Unit-ramp response will be obtained as the unit-step

% response of C(s)/[sR(s)] ¥****

% ***** Enter the numerators and denominators of C1(s)/[sR(s)]
% and C2(s)/[sR(s)], where C1(s) and C2(s) are Laplace

% transforms of the outputs of the compensated and un-

% compensated systems, respectively. *****

numc = [1.0235 0.0512];



denc =[1 3.005 2.015 1.0335 0.0512 0];

num = [1.06];

den=[1321.060];

% ***¥* Specify the time range (such as t= 0:0.1:50) and enter
% step command and plot command. *****

t=0:0.1:50;

cl = step(numc,denc,t);

c2 = step(num,den,t);

plot(t,cl,-",t,c2,"." t,t,'--")

grid

text(2.2,27,'Compensated system");
text(26,21.3,'Uncompensated system');

title("Unit-Ramp Responses of Compensated and Uncompensated Systems')
xlabel('t Sec");

ylabel('Outputs c1 and ¢2')

% ***** Unit-step responses of compensated system and

% uncompensated system *#*#*

% ***** Enter the numerators and denominators of the

% compensated and uncompensated systems *****

numc = [1.0235 0.0512];

denc =[1 3.005 2.015 1.0335 0.0512];

num = [1.06];

den=11321.06];

% ***¥* Qpecify the time range (such as t = 0:0.1:40) and enter
% step command and plot command. *****

t=0:0.1:40;

cl = step(numc,denc,t);

c2 = step(num,den,t);

plot(t,cl,-",t,c2,."

grid

text(13,1.12,'Compensated system')
text(13.6,0.88,'Uncompensated system')

title("Unit-Step Responses of Compensated and Uncompensated Systems')
xlabel('t Sec')

ylabel('Outputs c1 and ¢2')

3.6 RESULT:



LAG-LEAD COMPENSATION

* Lead compensation basically speeds up the
response and increases the stability of the
system.

* Lag compensation improves the steady-state
accuracy of the system, but reduces the speed of
the response.

* If improvements in both transient response and
steady-state response are desired, then both a
lead compensator and a lag compensator may be
used simultaneously.

Lag—-lead Compensation Techniques
Based on the Root-Locus Approach

* we use the lag—lead compensator:

1 1

§ + 5 O

Ts+1)Ts +1 'L 7.

Gf(S)—ch ETIS A ) =K, yl 12
L RN F

(y s + 1)(6]‘"25 + 1) s + T, s ol

* where B>1 and Y> 1. (Consider Kc to belong to
the lead portion of the lag—lead compensator.)
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* In designing lag—lead compensators, we
consider two cases where B#Y and B=Y.

e Case 1. B#Y In this case, the design process is
a combination of the design of the lead
compensator and that of the lag compensator.
The design procedure for the lag—lead
compensator follows:

1) From the given performance specifications,
determine the desired location for the
dominant closed-loop poles.

2) Using the uncompensated open-loop transfer
function G(s), determine the angle deficiency
@ if the dominant closed-loop poles are to be
at the desired location. The phase-lead
portion of the lag—lead compensator must
contribute this angle @.

3) Assuming that we later choose T2 sufficiently
large so that the magnitude of the lag
portion equal to 1.

1
Sl+f

51+
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where s=sl1 is one of the dominant closed-
loop poles, choose the values of T1 and Y from
the requirement that:

Then determine the value of Kc from the

magnitude condition:
1

5+ —

4) If the static velocity error constant Kv is
specified, determine the value of B to satisfy
the requirement for Kv .The static velocity
error constant Kv is given by:

K, = lim sG.(s)G(s)

AV
T T
= lim sK, G(s)
Y g4 L 5 gt
T BT,
= hmsKCEG(S)
5s—0 %




where Kc and Y are already determined in step
3. Hence, given the value of Ky, the value of B
can be determined from this last equation.

= lim sK. s G(s)
s—0 Y

Then, using the value of B thus determined,

choose the value of T2 such that:
1

5 + =

T

Kc from: |K. = G(sy)| =1
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Case 1. B#2Y Summary

B from: ) 2
= limsK,— G(s)
s—0 Y
L1
T2 from: R
2
5 +E
1
51 _L?
—59 < 13 < Q°
51+ﬁ

10

* EXAMPLE (Ogata P335): The feedforward
transfer function is G(s) =4/[s(s + 0.5)]

It is desired to make the damping ratio of the
dominant closed-loop poles equal to 0.5 and
to increase the undamped natural frequency
to 5 rad/sec and the static velocity error

constant to 80 sec™-1.

Design an appropriate compensator to meet

all the performance specifications.

11
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This system has closed-loop poles at
s =-0.2500 %j1.9843

The damping ratio is 0.125, the undamped
natural frequency is 2 rad/sec, and the static
velocity error constant is 8 sec”—1.

v'From the performance specifications, the
dominant closed-loop poles must be at

s =-2.50 %j4.33
0.5, 5 rad/sec, 80 secM-1.

12

Let us assume that we use a lag—lead compensator
having the transfer function:

G(s) = K.

Where B2Y .Then the compensated system will have
the open-loop transfer function:

+ ! + !
8t o= S+ —
T T,
G()G(s) = K. = |G(s)
Y 1
=118+
T BT,

13
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From the performance specifications, the
dominant closed-loop poles must be at:

s =-2.50 +j4.33

4

SR — = —235°
s(s + 0.5)

5=-2.50+;4.33

the phase-lead portion of the lag—lead
compensator must contribute 55°=/180-235/
so that the root locus passes through the
desired location of the dominant closed-loop
poles.

14

To design the phase-lead portion of the
compensator, we first determine the location of the
zero and pole that will give 55° contribution. There
are many possible choices, but we shall here choose
the zero at s=—0.5 so that this zero will cancel the
pole at s=—0.5 of the plant. Once the zero is chosen,
the pole can be located such that the angle
contribution is 55°. By simple calculation or graphical
analysis, the pole must be located at s=—5.02. Thus,
the phase-lead portion of the lag—lead compensator
becomes: T1 =2,Y =5.02/0.5 =10.04

1
s+ —
T, s+ 0.5
K, = K; —
¥ s+ 502
8
T,

15
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we determine the value of Kc from the
magnitude condition:

s+ 0.5 4 _ 1
¢ s + 502 S(S + US) s=—25+j433
(s +5.02)s o
P ol = 6.26
4 §=—2.5+/4.33

16

The phase-lag portion of the compensator can
be designed as follows: First the value of B is
determined to satisfy the requirement on the
static velocity error constant:

K, = li]llD.S‘Gc(S)G(S) - lil‘IE)SKCEG(S)
55— §—> Y

B
10.04 s(s + 0.5)

= lin}]s(6.26) = 49888 = 80

B = 16.04

17




s +

Finally, we choose the value T2 such that the
following two conditions are satisfied:

- s+ :
16.04T, 16.047; 5= 25+ 433

s=—2.5+j433

We may choose several values for T2 and check if
the magnitude and angle conditions are satisfied.
After simple calculations we find for T2 =5

1 > magnitude > 0.98, -2.10°<angle<0°
T2 = 5 satisfies the two conditions.

18

Now the transfer function of the designed lag—
lead compensator is given by:

e 1 i 1
s+ — & =
2 3
G,(s) = (626) Y :
4+ — 8
2 16.04 X 5

s+ 0.5 s+ 0.2
a 6'26(5 + 5.02)(5 % 0.01247)

10(2s + 1)(5s + 1)
(0.1992s + 1)(80.19s + 1)

19
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The compensated system will have the open-
loop transfer function:

25.04(s + 0.2)
s(s + 5.02)(s + 0.01247)

G.(5)G(s) =

The characteristic equation for the compensated
system is:

§* 4+ 5.03258% + 25.10265 + 5.008
= (s + 2.4123 + j4.2756)(s + 2.4123 — j4.2756)(s + 0.2078) = 0
The new damping ratio is 0.491. Therefore the

compensated system meets all the required
performance specifications.

20

Root-Locus Plot of Compensated System
10 . !

Imag Axis
=
Q

Real Axis

21
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3/24/2018College of Electronics Engineering
Department of Systems and Control Engineering

CONTROL SYSTEMS DESIGN LAB
III YEAR II SEM
Instructor: Mr. Salam Asmer

Summary: This course deals with practical aspects of the design and compensation of control
systems.

Matlab: You will use Matlab extensively. Prior familiarity with Matlab is assumed. You are
not required to purchase these packages.

Lab Reports: The Department requires formal lab reports which must satisfy the following
format rules:

1. Title page: This must include a title, group member names, course and section name and
date.

2. Introduction: Explain the background and objective of the lab indicating requirements and
desired results.

3. Discussion: Discuss the underlying applicable theory and concepts that support the results.
4. Results: Present results in tabular, graphical or numeric form. Present results from required
lab exercises.

5. Discussion of Results: Discuss results data in context of comparison to expectation,
accuracy, difficulties, etc.

6. Summary and Conclusions: Discuss findings, explain errors and unexpected results;
summarize and indicate conclusions.

4. LAG-LEAD COMPENSATION Techniques Based on the Root-Locus Approach

4.1 AIM:

Lag-lead compensation combines the advantages of lag and lead compensations. Since the lag—lead,
compensator possesses two poles and two zeros, such compensation increase the order of the system by
2, unless cancellation of pole(s) and zero(s) occurs in the compensated system.

4.2 APPARATUS:
Software: MATLAB.

4.3 PROCEDURE:
e  Write MATLAB program in the MATLAB specified documents.
e Then save the program to run it.
e It is desired to make the damping ratio of the dominant closed-loop poles equal to
0.5 and to increase the undamped natural frequency to 5 rad/sec and the static

velocity error constant to 80 sec—1.

e Plot Root-locus of Compensated and Uncompensated Systems.

e The plot of the unit-ramp response curves for Compensated and Uncompensated
Systems.

e The unit-step response curves of the compensated and uncompensated systems.



4.4 THEORETICAL CALCULATIONS:

Enter the numerators and denominators of the compensated and uncompensated systems.
num=

den=

Transfer function:

nume=

denc=

Transfer function:

4.5 EXAMPLE: The feedforward transfer function is G(s) = [4]/[s(s+0.5)].
It is desired to make the damping ratio of the dominant closed-loop poles equal to 0.5 and to
increase the undamped natural frequency to 5 rad/sec and the static velocity error constant to

80 sec—1.{[1] Page 335}

% ***** Root-locus plots of the compensated system and uncompensated system *****
% ***** Enter the numerators and denominators of the compensated and uncompensated
systems *****

numc = [25.04 5];

denc =[1 5.032 0.0625 0];

num = [4];

den=110.50];

% ***** Enter rlocus command. Plot the root loci of both systems *****
rlocus(num,den)

hold

Current plot held

rlocus(numc,denc)

v=[-10 10 -10 10]; axis(v); axis('square")

grid

title('Root-Locus Plots of Compensated and Uncompensated Systems')
hold

Current plot released

% ***** Plot root loci of the compensated system near the origin *#***
rlocus(nume,denc)

v=[-0.6 0.6 -0.6 0.6]; axis(v); axis('square")

grid

title('Root-Locus Plot of Compensated System near the Origin')

% ***** Unit-ramp responses of compensated system and

% uncompensated system ***#*

% ***** Unit-ramp response will be obtained as the unit-step
% response of C(s)/[sR(s)] *¥****

% ***** Enter the numerators and denominators of C1(s)/[sR(s)]
% and C2(s)/[sR(s)], where C1(s) and C2(s) are Laplace

% transforms of the outputs of the compensated and un-

% compensated systems, respectively. *****

numc = [25.04 5];

denc =[15.0324 25.102 5 0];

num = [4];

den=[10.540];

% ***** Specify the time range (such as t= 0:0.01:10) and enter
% step command and plot command. *****

t=0:0.01:10;



cl = step(numc,denc,t);

c2 = step(num,den,t);

plot(t,cl,-"t,c2,". t,t,'--")

grid

title("Unit-Ramp Responses of Compensated and Uncompensated Systems')
xlabel('t Sec');

ylabel("Outputs c¢1 and ¢2')

% ***** Unit-step responses of compensated system and

% uncompensated system ***#*

% ***** Enter the numerators and denominators of the

% compensated and uncompensated systems *****

numc = [25.04 5];

denc =[15.0324 25.102 5];

num = [4];

den=110.54];

% ***** Specify the time range (such as t = 0:0.1:20) and enter
% step command and plot command. *****

t=0:0.1:20;

cl = step(numc,denc,t);

c2 = step(num,den,t);

plot(t,cl,-",t,c2,"."

grid

title('Unit-Step Responses of Compensated and Uncompensated Systems')
xlabel('t Sec")

ylabel('Outputs c1 and c2')

4.6 RESULT:



PARALLEL COMPENSATION

* We present a simple design problem involving
parallel compensation.

R ] . C
q@—» Gy(s) —p.@—» Gos)

|

C Gy

B 1+606+66H

The characteristic equation is

]. + GleH + G}_Gc = 0

* By dividing this characteristic equation by the sum of the
terms that do not involve Gc, we obtain:
GCG2

i ¢ =0
1 + GG, H

G; = @
771+ G,G,H

1 + Gch — O
* Since Gf is a fixed transfer function, the design of Gc
becomes the same as the case of series compensation.

Hence the same design approach applies to the parallel
compensated system.
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* EXAMPLE (Ogata P343): Draw a root-locus diagram.
Then determine the value of k such that the damping
ratio of the dominant closed-loop polesis 0.4

Here the system involves velocity feedback. The
open-loop transfer function is:

20
S(s + 1)(s + 4) + 20ks

R(s) 20 | Cis)
s+ 1)(s+4) s

|

Open-loop transfer function =

Notice that the adjustable variable k does not appear as a
multiplying factor. The characteristic equation for the system
is:
s+ 552+ 45 + 20ks +20 =0
Define
20k = K

Then Equation becomes: S+ 552 +4s+ Ks+20=0
Dividing both sides of Equation by the sum of the terms that
do not contain K, we get:

Ks _
s> + 552 + 45 + 20

1+

Ks
b (s +2)(s — 2)(s +5) 0
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* We shall now sketch the root loci of the system given
by last Equation. Notice that the open-loop poles are
located at s=j2, s=—j2, s==5, and the open-loop zero
is located at s=0. The root locus exists on the real axis
between 0 and -5.

li = li
SR+ ) -2 T5) s
we have
+180°(2k + 1) B
5 =

Angles of asymptote = + 90°

The intersection of the asymptotes with the real axis can be found from

Ks K K

lim — 5 = lim ——
s=¥c0 g7 4 997k dg kM) sTFoogs +f fyef e

as
§i= —2.5

i B
55w (5 + 25)

* The angle of departure (angle 6) from the pole
at s=j2 is obtained as follows:

0 =180°-90°-21.8° + 90° = 158.2°

* Note that the closed-loop poles with {=0.4
must lie on straight lines passing through the
origin and making the angles £66.42° with the
negative real axis.
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5=—1.0490 + j2.4065

* Thus, two values of K will give the damping
ratio { of the closed-loop poles equal to 0.4.

At point P, the value of K is:
(s +j2)(s — j2)(s + 5)

K = = 8.9801
§ 5=—1.0490+2.4065

K ;
k = 20 - 0.4490 at pomnt P

For k=0.4490, the three closed-loop poles are located
at:

s =-1.0490 +j2.4065, s =-1.0490 - j2.4065, s = -2.9021
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* At point Q, the value of K is:
(x + 2}z — j2)(s + 5)

K= — 28.260

A s=—2.1589+j4.9652

K
k = 20 1.4130 at point Q

For k=1.4130, the three closed-loop poles are located
at:

s =-2.1589 +j4.9652, s = -2.1589 - j4.9652, s = -0.6823

10

* Notice that the system with k=0.4490 has a pair of
dominant complex-conjugate closed-loop poles,
while in the system with k=1.4130 the real closed-
loop pole at s=—0.6823 is dominant, and the
complex-conjugate closed-loop poles are not
dominant.

* The system with k=0.4490 (which exhibits a faster
response with relatively small overshoot) has a much
better response characteristic than the system with
k=1.4130 (which exhibits a slow over damped
response).Therefore, we should choose k=0.4490 for
the present system.

11
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Unit-Step Responses of Two Systems

k = 0.4490

Outputs ¢l and ¢2

12

* Homework: EXAMPLE -(A-6-20)- Ogata P392

13




College of Electronics Engineering
Department of Systems and Control Engineering

CONTROL SYSTEMS DESIGN LAB
III YEAR II SEM
Instructor: Mr. Salam Asmer

Summary: This course deals with practical aspects of the design and compensation of control
systems.

Matlab: You will use Matlab extensively. Prior familiarity with Matlab is assumed. You are not
required to purchase these packages.

Lab Reports: The Department requires formal lab reports which must satisfy the following
format rules:

1. Title page: This must include a title, group member names, course and section name and date.
2. Introduction: Explain the background and objective of the lab indicating requirements and
desired results.

3. Discussion: Discuss the underlying applicable theory and concepts that support the results.

4. Results: Present results in tabular, graphical or numeric form. Present results from required lab
exercises.

5. Discussion of Results: Discuss results data in context of comparison to expectation, accuracy,
difficulties, etc.

6. Summary and Conclusions: Discuss findings, explain errors and unexpected results; summarize
and indicate conclusions.

5. Parallel Compensation Based on the Root-Locus Approach

5.1 AIM:
Design approach applies to the parallel compensated system.

5.2 APPARATUS:
Software: MATLAB.

5.3 PROCEDURE:
e Determine the value of k (parallel compensated) such that the damping ratio is
specified.
e Plot the unit-step response curves of the systems.



5.4 THEORETICAL CALCULATIONS:
num=

den=

Transfer function:

5.5 EXAMPLE: Consider the G(s) = [20]/[(s(s*+1)(s+4))+20Ks].
Plotting the unit-step response curves in one diagram, to compare the unit-step responses of both
systems, for k=0.4490 and for k=1.4130

% ---------- Unit-step response ----------

% ***** Enter numerators and denominators of systems with
% k =0.4490 and k = 1.4130, respectively. *****
numl = [20];

denl =[1512.98 20];

num?2 = [20];

den2 =[1532.26 20];

t=10:0.1:10;

cl = step(numl,denl,t);

c2 = step(num2,den2,t);

plot(t,cl,t,c2)

text(2.5,1.12,'k = 0.4490")

text(3.7,0.85,'k = 1.4130")

grid

title("Unit-step Responses of Two Systems')
xlabel('t Sec')

ylabel('Outputs c1 and c2")

5.6 RESULT:



Frequency-Response Method

* developed in 1930s and 1940s by Nyquist, Bode, Nichols,
and many others.

* By the term frequency response, we mean the steady-
state response of a system to a sinusoidal input.

* advantage of the frequency-response approach is that we
can use the data obtained from measurements on the
physical system without deriving its mathematical model.
Frequency-response tests are, in general, simple and can be
made accurately by use of readily available sinusoidal signal
generators and precise measurement equipment

* Phase margin: The phase margin is that amount
of additional phase lag at the gain crossover
frequency required to bring the system to the
verge of instability. The gain crossover frequency
is the frequency at which |G(jw)|, the magnitude
of the open loop transfer function, is unity. The
phase margin Y is 180° plus the phase angle @ of
the open-loop transfer function at the gain
crossover frequency, or Y = 180° + @

* The phase margin is positive for Y>0 and negative
for Y<0. For a minimum phase system to be
stable, the phase margin must be positive.

* In the logarithmic plots, the critical point in the
complex plane corresponds to the 0 dB and —180°
lines.[P464]
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Gain margin: The gain margin is the reciprocal of the
magnitude |G(jw)| at the frequency at which the
phase angle is —180°. Defining the phase crossover
frequency w1l to be the frequency at which the phase
angle of the open-loop transfer function equals —180°
gives the gain margin Kg: Kg =1/ |G(j w1 )|
In terms of decibels,

Kg dB =20 log Kg =-20 log | G(jw1)]|
a positive gain margin (in decibels) means that the
system is stable, and a negative gain margin (in
decibels) means that the system is unstable.

The gain margin expressed in decibels is positive if Kg is
greater than unity and negative if Kg is smaller than
unity .[P466]
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CONTROL SYSTEMS DESIGN BY
FREQUENCY RESPONSE APPROACH

* The frequency-response approach is very useful
in designing control systems.

* a Bode diagram of the compensator can be
simply added to the original Bode diagram, and
thus plotting the complete Bode diagram is a
simple matter.

* Also, if the open-loop gain is varied, the
magnitude curve is shifted up or down without
changing the slope of the curve, and the phase
curve remains the same. For design purposes,
therefore, it is best to work with the Bode
diagram.

* A common approach to the design based on the
Bode diagram is that we first adjust the open-
loop gain so that the requirement on the steady-
state accuracy is met. Then the magnitude and
phase curves of the uncompensated open loop
(with the open-loop gain just adjusted) are
plotted. If the specifications on the phase margin
and gain margin are not satisfied, then a suitable
compensator that will reshape the open-loop
transfer function is determined. Finally, if there
are any other requirements to be met, we try to
satisfy them, unless some of them are mutually
contradictory.
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Basic Characteristics of Lead, Lag,
and Lag-Lead Compensation.

* Lead compensation essentially yields an appreciable
improvement in transient response and a small change
in steady-state accuracy. It may accentuate high-
frequency noise effects.

* Lag compensation, on the other hand, yields an
appreciable improvement in steady-state accuracy at
the expense of increasing the transient-response time.
Lag compensation will suppress the effects of high-
frequency noise signals.

* Lag—lead compensation combines the characteristics of
both lead compensation and lag compensation.

LEAD COMPENSATION

* Characteristics of Lead Compensators. Consider a
lead compensator having the following transfer

function:
. i
8 5=
Ts + 1 T ;
‘aiasz+1_ CS¢L (0<a<1l)
" aT

* where a is the attenuation factor of the lead
compensator. It has a zero at s=—1/T and a pole at
s=—1/(aT). Since 0< a <1, we see that the zero is
always located to the right of the pole in the complex
plane.




* The minimum value of a is usually taken to be about
0.05. (This means that the maximum phase lead that
may be produced by a lead compensator is about
65°.)

* the maximum phase-lead angle and the value of a:

1 — a
] 2 1 — «a
Sln¢’n_1+a_1+a
2

10

* The Bode diagram of a lead compensator when Kc=1 and a =0.1.
The corner frequencies for the lead compensator are w =1/T and
w =1/(aT)=10/T. By examining Figure, we see that wm is the
geometric mean of the two corner frequencies, or

1 1 1
logw,, = 5 log — + log—

T aT
10
dB 0
-10
=20
90° |-
E ),
= ’ *m
oo E t
0.1 L 10 10 100
i T T i T

win rad/sec

* wm =1/ (Va .T) the lead compensator is basically a high-pass
filter.

11
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Lead Compensation Techniques Based on the
Frequency-Response Approach.

* The primary function of the lead compensator is to
reshape the frequency-response curve to provide
sufficient phase-lead angle to offset the excessive
phase lag associated with the components of the
fixed system.

* Assume that the performance specifications are
given in terms of phase margin, gain margin, static
velocity error constants, and so on.

12

The procedure for designing a lead compensator
1. Assume the following lead compensator:

5+ =
Ts +1 T
G.(s) = K.a Ts+1 K 1 0<a<l)
s+ —
al
Define
Ka=K
Then
Ts +1
G(s) = K——
A9 =K e+ 1

The open-loop transfer function of the compensated system is

Tt 1. Ts1 Is 1
GG =K e 1 DO i NO0) =g, 7908
where
Gi(s) = KG(s)

Determine gain K to satisfy the requirement on the given static error constant.
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2. Using the gain K thus determined, draw a Bode diagram
of G1(jw), the gain adjusted but uncompensated system.
Evaluate the phase margin.

3. Determine the necessary phase-lead angle to be added
to the system. Add an additional 5° to 12° to the phase-
lead angle required, because the addition of the lead
compensator shifts the gain crossover frequency to the
right and decreases the phase margin.

4. Determine the attenuation factor a by use of Equation.
Determine the frequency where the magnitude of the
uncompensated system G1(jw) is equal to -20 log(1/va).
Select this frequency as the new gain crossover
frequency. This frequency corresponds to wm =1/ (Va .T)
and the maximum phase shift @m occurs at this
frequency.

14

5. Determine the corner frequencies of the lead compensator as

follows:
1
Zero of lead compensator:  ® = T
1
Pole of lead compensator: ©0=—:
al

6. Using the value of K determined in step 1 and that of «
determined in step 4, calculate constant Kc from:

7. Check the gain margin to be sure it is satisfactory. If not,
repeat the design process by modifying the pole—zero location
of the compensator until a satisfactory result is obtained.

15




EXAMPLE (Ogata P496): Consider the system shown in Figure.

4
s(s+2)

¢ It is desired to design a compensator for the system so that
the static velocity error constant Kv is 20 sec”-1, the phase
margin is at least 50°, and the gain margin is at least 10 dB.

We shall use a lead compensator of the form:

1

S+ =

. Ts +1 T
G.(s)= K; = K,

t(‘s‘) La Q'TS e ]. C L

oT

8

16

The compensated system will have the open-loop transfer function G, (s)G(s).

Define

Gl(S) = KG(.S‘) == S(_jfZ)

where K = K,a.

The first step in the design is to adjust the gain K to meet the steady-
state performance specification or to provide the required static
velocity error constant. Since this constant is given as 20 sec-1, we
obtain:

TR | L., WO TSR . ISR
o = limsG(s)G(s) = lims Ty Gils) = i oo = 2K =

K =10

17
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With K = 10, the compensated system will satisfy the steady-state requirement.

We shall next plot the Bode diagram of

. 40 20
G(jw) = — = -
jo(jo +2)  jw(0.5jw + 1)
40
20
B 0
-20
—40 ™
OC
—o0° |
S 17
isos [

1 2 4 ? 810 20 40 60 100
18

From this plot, the phase and gain margins of the system are
found to be 17° and +infinity dB, respectively.

The specification calls for a phase margin of at least 50°.We
thus find the additional phase lead necessary to satisfy the
relative stability requirement is 33°.To achieve a phase margin
of 50° without decreasing the value of K, the lead
compensator must contribute the required phase angle.

Noting that the addition of a lead compensator modifies the
magnitude curve in the Bode diagram, we realize that the gain
crossover frequency will be shifted to the right. We must
offset the increased phase lag of G1(jw) due to this increase in
the gain crossover frequency. Considering the shift of the gain
crossover frequency, we may assume that @m, the maximum
phase lead required, is approximately 38°. (This means that 5°
has been added to compensate for the shift in the gain
crossover frequency.)

19
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the maximum phase-lead angle and the value of a:

sing,, =

@m =38° corresponds to a =0.24. Once the attenuation
factor a has been determined on the basis of the required
phase-lead angle, the next step is to determine the corner
frequencies w =1/T and w =1/(aT) of the lead compensator.
To do so, we first note that the maximum phase-lead angle
@m occurs at the geometric mean of the two corner
frequencies or w = 1/ (Va .T) . The amount of the
modification in the magnitude curve at due to the inclusion
of the term (Ts+1)/(at Ts+1) is:

20

1
i % jof N | s
Va
Note that
%: \/{iﬁ — — = 62dB
and |G] (jm)| = —6.2 dB corresponds to @ = 9 rad/sec. We shall select this frequency to be the new

gain crossover frequency w.. Noting that this frequency corresponds to 1/(VaT), or
w, = 1/(VaT), we obtain

1
= = Vaw, = 441

and

21
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The lead compensator thus determined is

s +441 0227s + 1

G(s) = K—— = Ka—————
{5) = Ke 184 T K% 00585 + 1
where the value of K, is determined as

K 10
K=—==—=47
‘" a 024

Thus, the transfer function of the compensator becomes

s + 4.41 0.227s + 1
G.(s) = 41.7 =
(s) s + 184 0.054s + 1
Note that
Gels) Gy(s) = () 10G(s) = G.(s)G(s)
g = 10 .

* The compensated system has the following open-loop
transfer function:

s + 4.41 -+

G} s} = 4T e d 55 + 2)

* Note that the bandwidth is approximately equal to
the gain crossover frequency. The lead compensator
causes the gain crossover frequency to increase
from 6.3 to 9 rad/sec. The increase in this frequency
means an increase in bandwidth. This implies an
increase in the speed of response.

* The phase and gain margins are seen to be
approximately 50° and +infinity dB, respectively.

23

2024-02-26

11



2024-02-26

40
20 -
L L TR
‘\\ = W
P | I .t S
sdg } (> \‘“x.

=20

G =10G %

¥

—40

4 G,
B 0
o
RS S — G.G
1807 G Lo~ ﬂ““isfrk—m_ :{*;”“‘ﬂ——ﬂ
o 2 4 6 fo 2 40 60 100
e In Tad/sec 24
Unit-Step Responses of Compensated and Uncompensated Systems
1.4 ' ! 1 ' !
Compensated system : E :
- i
=
E
=
O 06 Lo e e s i
0 1 i | 1 1
0 1 2 3 4 5 6
f Sec
25

12



Unit-Ramp Responses of Compensated and Uncompensated Systems
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College of Electronics Engineering
Department of Systems and Control Engineering

CONTROL SYSTEMS DESIGN LAB
III YEAR II SEM
Instructor: Mr. Salam Asmer

Summary: This course deals with practical aspects of the design and compensation of control
systems.

Matlab: You will use Matlab extensively. Prior familiarity with Matlab is assumed. You are not
required to purchase these packages.

Lab Reports: The Department requires formal lab reports which must satisfy the following
format rules:

1. Title page: This must include a title, group member names, course and section name and date.
2. Introduction: Explain the background and objective of the lab indicating requirements and
desired results.

3. Discussion: Discuss the underlying applicable theory and concepts that support the results.

4. Results: Present results in tabular, graphical or numeric form. Present results from required lab
exercises.

5. Discussion of Results: Discuss results data in context of comparison to expectation, accuracy,
difficulties, etc.

6. Summary and Conclusions: Discuss findings, explain errors and unexpected results; summarize
and indicate conclusions.

6. Basic Characteristics of Lead Compensation by frequency-response approach.

6.1 AIM:

Plot bode diagram. The plot of the unit-step response curves and unit ramp of the compensated
and uncompensated systems using MATLAB to examine the frequency characteristics of the lead
compensator.

6.2 APPARATUS:
Software: MATLAB.

6.3 PROCEDURE:
e Plot bode diagram of Compensated and Uncompensated Systems.

e The plot of the unit-step response curves and unit ramp of the compensated and
uncompensated systems.

6.4 THEORETICAL CALCULATIONS:



Enter the numerators and denominators of the compensated and uncompensated systems.
num=

den=

Transfer function:

numc=

denc=

Transfer function:

6.5 EXAMPLE: Consider the G(s) = [20]/[s(0.5s+1)], Plot bode diagram. {[1] Page 496}
num = [20];

den=[.510];

bode(num,den)

grid

title('Bode Diagram of G1(s) = [20]/[s(0.5s+1)], ")

++ Plot The unit-step response curves of the system before and after compensation, G(s) =
[4)/[s(s+2)], It is desired to design a compensator for the system so that the static velocity
error constant Kv is 20 sec”—1, the phase margin is at least 50°, and the gain margin is at
least 10 dB.

Yo ****XUnit-step responses™ ****

num = [4];

den=[124];

numc = [166.8 735.588];

denc =[1 20.4 203.6 735.588];
t=0:0.02:6;

[cl,x1,t] = step(num,den,t);

[c2,x2,t] = step(numc,denc,t);

plot (t,c1,".,t,c2,-"

grid

title('Unit-Step Responses of Compensated and Uncompensated Systems')
xlabel('t Sec')

ylabel('Outputs')
text(0.4,1.31,'Compensated system')
text(1.55,0.88,'Uncompensated system')

Y%*****¥Unit-ramp responses™****
num = [4];

den=[1240];

numce = [166.8 735.588];

denc = [1 20.4 203.6 735.588 0];
t=10:0.02:6;

[c1,x1,t] = step(num,den,t);

[c2,x2,t] = step(numc,denc,t);

plot (t,cl,"'t,c2,"-")

grid

title('Unit-Step Responses of Compensated and Uncompensated Systems')
xlabel('t Sec')

ylabel('Outputs')
text(0.4,1.31,'Compensated system')
text(1.55,0.88,'Uncompensated system')

6.6 RESULT:



bode diagram of compensated system
num = [166.8 735.5];

den=[120.4 36.8 0];

bode(num,den)

grid
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LAG COMPENSATION

Characteristics of Lag Compensators. Consider a lag
compensator having the following transfer function:

Ts + 1 S+%

S

=KB—————=K —— - |
by

BT

In the complex plane, a lag compensator has a zero at s=—1/T
and a pole at s=—1/(B T). The pole is located to the right of the
zero. Thus, the lag compensator is essentially a low-pass filter.

dB

30
20 \
lﬂ | simne T A R B s s
0 I . . I
00 _-_\ ............... <k
T .. S—— i
0.01 0.1 1 10
T T T Fi
w in rad/sec

Bode diagram of a lag compensator B(jwT+1)/(j w B T+1),
with B =10, Kc=1

The primary function of a lag compensator is to provide
attenuation in the high frequency range to give a system
sufficient phase margin.
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The procedure for designing lag compensators

1. Assume the following lag compensator:

1
Ts + 1 ok
G.(s) = K. BTs + 1 = K, . T B=1
BT
Define
K.pB=K
Then
G.Js) = K%

The open-loop transfer function of the compensated system is

Ts +1 ek 1 T& =+ 1
Gels)G(s) = K gr 160 = gpg 4 1 KOU) = 57 1 GO)
where
G,(s) = KG(s)

Determine gain K to satisfy the requirement on the given static velocity error
constant.

2. If the gain-adjusted but uncompensated system G1(jw)=KG(jw)
does not satisfy the specifications on the phase and gain
margins, then find the frequency point where the phase angle of
the open-loop transfer function is equal to —180° plus the
required phase margin. The required phase margin is the
specified phase margin plus 5° to 12°. Choose this frequency as
the new gain crossover frequency.
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3. To prevent detrimental effects of phase lag due to
the lag compensator, the pole and zero of the lag
compensator must be located substantially lower
than the new gain crossover frequency. Therefore,
choose the corner frequency w=1/T (corresponding
to the zero of the lag compensator) 1 octave to 1
decade below the new gain crossover frequency. (If
the time constants of the lag compensator do not
become too large, the corner frequency w=1/T may
be chosen 1 decade below the new gain crossover
frequency.)

* Notice that we choose the compensator pole and
zero sufficiently small. Thus the phase lag occurs at
the low-frequency region so that it will not affect the
phase margin.

4. Determine the attenuation necessary to bring the
magnitude curve down to O dB at the new gain
crossover frequency. Noting that this attenuation is
determine the value of B. Then the other corner
frequency (corresponding to the pole of the lag
compensator) is determined from w =1/(BT).

5. Using the value of K determined in step 1 and that of
B determined in step 4, calculate constant Kc from:

Kc =K\ B




EXAMPLE (Ogata P505): Consider the system shown in Figure.

1
g ®_’ s(s +1) (0.55 + 1) >

It is desired to compensate the system so that the static
velocity error constant Kv is 5 sec”—1, the phase margin is at
least 40°, and the gain margin is at least 10 dB.

We shall use a lag compensator of the form

1
Ts+ 1 i
Gls) = Kbgrr~ K (B> D)
tr
Define
KB =K
Define also
K

Gi(s) = KG(s) = i iy0ss + 1)

The first step in the design is to adjust the gain K to meet the required static velocity error con-
stant. Thus,

; ; : : Tt : .
K, = !%EEIJSGL.(S)G{S‘) = }Iﬂl;][l]smGl{S} = I}lJ]EHSGl{S)
sK

—fm————— =K =5
sV s(s + 1)(055 + 1)
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With K=5, the compensated system satisfies the steady-state
performance requirement. We shall next plot the Bode
diagram of

Gi(jo) = 3

jo(jo + 1)(0.5jw + 1)

The magnitude curve and phase-angle curve of G1(jw) are
shown in Figure. From this plot, the phase margin is found to
be -20°, which means that the gain-adjusted but
uncompensated system is unstable.

10
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Noting that the addition of a lag compensator
modifies the phase curve of the Bode diagram,
we must allow 5° to 12° to the specified phase
margin to compensate for the modification of the
phase curve. Since the frequency corresponding
to a phase margin of 40° is 0.7 rad/sec, the new
gain crossover frequency (of the compensated
system) must be chosen near this value. To avoid
overly large time constants for the lag
compensator, we shall choose the corner
frequency w=1/T(which corresponds to the zero
of the lag compensator) to be 0.1 rad/sec
=([0.7/8]=0.1).

12

we add about 12° to the given phase margin = 40°.
The required phase margin is now 52°The phase
angle of the uncompensated open-loop transfer
function is —128° at about w=0.5 rad/sec. So we
choose the new gain crossover frequency to be 0.5
rad/sec. To bring the magnitude curve down to 0 dB
at this new gain crossover frequency, the lag
compensator must give the necessary attenuation,
which in this case is =20 dB. Hence,

1
20log — =-20 =10
3 B

13
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The other corner frequency w =1/(BT), which
corresponds to the pole of the lag compensator, is
then determined as:

1/(BT)=0.01 rad/sec

Thus, the transfer function of the lag compensator is

105 + 1 10
G,(s) = K.(10 - K,

§ o

100
Since the gain K was determined to be 5 and 8 was determined to be 10, we have
K

Jme— = — = 05
K B 10
The open-loop transfer function of the compensated system is
5(10s + 1)
§(100s + 1)(s + 1)(0.5s + 1)

Ge(s)G(s) =

* The phase margin of the compensated system is
about 40°, which is the required value. The gain
margin is about 11 dB, which is quite acceptable. The
static velocity error constant is 5 sec”-1, as required.
The compensated system, therefore, satisfies the
requirements on both the steady state and the
relative stability.

* Note that the new gain crossover frequency is
decreased from approximately 1 to 0.5 rad/sec. This
means that the bandwidth of the system is reduced.

15
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Unit-Step Responses of Compensated and Uncompensated Systems

1.4

12

A ! : ! : ;
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A Few Comments on Lag Compensation

1. Lag compensators are essentially low-pass filters.
Therefore, lag compensation permits a high gain
at low frequencies (which improves the steady-
state performance) and reduces gain in the
higher critical range of frequencies so as to
improve the phase margin. Note that in lag
compensation we utilize the attenuation
characteristic of the lag compensator at high
frequencies rather than the phase lag
characteristic. (The phase-lag characteristic is of
no use for compensation purposes.)

18

2. The closed-loop pole located near the origin gives
a very slowly decaying transient response,
although its magnitude will become very small
because the zero of the lag compensator will
almost cancel the effect of this pole. However,
the transient response (decay) due to this pole is
so slow that the settling time will be adversely
affected.

3. The attenuation due to the lag compensator will shift
the gain crossover frequency to a lower frequency
point where the phase margin is acceptable. Thus,
the lag compensator will reduce the bandwidth of
the system and will result in slower transient
response.

19




4. Since the lag compensator tends to integrate
the input signal, it acts approximately as a
proportional-plus-integral controller. Because
of this, a lag-compensated system tends to
become less stable. To avoid this undesirable
feature, the time constant T should be made
sufficiently larger than the largest time
constant of the system.

5. Conditional stability may occur when a system
having saturation or limiting is compensated
by use of a lag compensator. To avoid this, the
system must be designed.

2024-02-26

10



College of Electronics Engineering
Department of Systems and Control Engineering

CONTROL SYSTEMS DESIGN LAB
III YEAR II SEM
Instructor: Mr. Salam Asmer

Summary: This course deals with practical aspects of the design and compensation of control
systems.

Matlab: You will use Matlab extensively. Prior familiarity with Matlab is assumed. You are
not required to purchase these packages.

Lab Reports: The Department requires formal lab reports which must satisfy the following
format rules:

1. Title page: This must include a title, group member names, course and section name and
date.

2. Introduction: Explain the background and objective of the lab indicating requirements and
desired results.

3. Discussion: Discuss the underlying applicable theory and concepts that support the results.
4. Results: Present results in tabular, graphical or numeric form. Present results from required
lab exercises.

5. Discussion of Results: Discuss results data in context of comparison to expectation,
accuracy, difficulties, etc.

6. Summary and Conclusions: Discuss findings, explain errors and unexpected results;
summarize and indicate conclusions.

7. Basic Characteristics of Lag Compensation by frequency-response approach.

7.1 AIM:

Plot bode diagram. The plot of the unit-step response curves and unit ramp of the
compensated and uncompensated systems using MATLAB to examine the frequency
characteristics of the lag compensator.

7.2 APPARATUS:
Software: MATLAB.

7.3 PROCEDURE:
e Plot bode diagram of Compensated and Uncompensated Systems.
e The plot of the unit-step response curves and unit ramp of the compensated and
uncompensated systems.

7.4 THEORETICAL CALCULATIONS:

Enter the numerators and denominators of the compensated and uncompensated systems.
num=

den=



Transfer function:
numec=

denc=

Transfer function:

7.5 EXAMPLE: Consider the G(s) = [1]/ [s(s+1) (0.5s+1)], Plot bode diagram. {[1] Page
505}
¢+ Plot The unit-step response curves of the system before and after compensation, G(s)
= [1]/[s(s+1)(0.5s+1)], it is desired to design a compensator for the system so that the
static velocity error constant Kv is 5 sec”—1, the phase margin is at least 40°, and the
gain margin is at least 10 dB.

num = [5];
den=[.51.510];
bode(num,den)
grid

numc = [50 5];

denc =[50 150.5 101.5 1 0];

bode(numc,denc)

grid

title('Bode Diagram of G(s) = [50s+5]/[(50s"4+150.5s"3+101.5s"2+s)], ")

%*****Unit-step response™®****

num = [1];

den=[0.51511];

numc = [50 5];

denc =[50 150.5 101.5 51 5];
t=10:0.1:40;

[c1,x1,t] = step(num,den,t);

[c2,x2,t] = step(numc,denc,t);
plot(t,cl,"."t,c2,-")

grid

title('Unit-Step Responses of Compensated and Uncompensated Systems')
xlabel('t Sec')

ylabel("Outputs')
text(12.7,1.27,'Compensated system')
text(12.2,0.7,'Uncompensated system')

Y%*****Unit-ramp response™****
numl =[1];

denl =[0.51.5110];

numlc =[50 5];

denlc =[50 150.5 101.5 51 50];
t=0:0.1:20;

[y1,z1,t] = step(numl,denl,t);
[y2,22,t] = step(numlc,denlc,t);
plot(t,y1," t,y2,"- t.t,'--);

grid

title('"Unit-Ramp Responses of Compensated and Uncompensated Systems')
xlabel('t Sec')

ylabel('Outputs')
text(8.3,3,'Compensated system')
text(8.3,5,'Uncompensated system')

7.6 RESULT:



LAG-LEAD COMPENSATION

* Characteristic of Lag—Lead Compensator. Consider
the lag—lead compensator given by

s o o

B T I,
G.(s) = K, -
Yy 1

s+ —[\s+—

T BI;

where y > 1 and B > 1. The term

1
_|_7
TE 1l Em+i
= | —— (vy>1)
s+l ¥ £S+1
T, i

produces the effect of the lead network, and the term

1
S+ -
T T,s +1
2=(725 ) B> 1)
1 BT,s + 1
81,

produces the effect of the lag network.
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* Figure shows the Bode diagram of a lag—lead compensator when Kc=1, Y=
B =10, and T2=10T1 Notice that the magnitude curve has the value 0 dB at
the low- and high-frequency regions.

0 /
dB -10 \
=20
=30
90°
L /-—\,\\
e _\ //
[ \‘_—/
—00°
0.001 0.01 0.1 Y 10 100
Ty T T, T T Ty
w in rad/sec

In designing a lag—lead compensator,
we frequently choose B=Y.

* Let us assume that the lag—lead compensator is of
the following form:

(Tys + 1)(Tos + 1) (5_%)(5*%)

Ge(s) = K. (%S , 1)(3@; by i (5 * %)(5 b Bsz)

* where B>1.

* We shall illustrate the details of the procedures for designing
a lag—lead compensator by an example.
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* EXAMPLE [P513 Ogata]: Consider the unity-
feedback system whose open-loop transfer
function is

K
§is + L)y + 2)

G(s) =

It is desired that the static velocity error
constant be 10 sec”-1, the phase margin be
50°, and the gain margin be 10 dB or more.

* Assume that we use the lag—lead compensator given
by Equation .

G.ls) = K (Tis + 1)(Tps + 1) & (5*%)(5;%)

| (%s—l)(BTgerl] C(s—%)(s+’8;§)

* [Note that the phase lead portion increases both the
phase margin and the system bandwidth (which
implies increasing the speed of response).The phase-
lag portion maintains the low-frequency gain.]
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Since the gain K of the plant is adjustable, let
us assume that Kc=1

- o 5 K =
Ky = msGila)Gle) = sGils) o e v

K =20

We shall next draw the Bode diagram of the
uncompensated system with K=20

60

40

/
o
/

/
/.

dB -

AN
/
,
p

40
90°

0

—-90°

-180°

T

50
\f-..,

_270° f i =
001 002 004 01 02 0406 1 2 4 6 10

w in rad/sec
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* The phase margin of the gain-adjusted but
uncompensated system is found to be -32°,
which indicates that the gain-adjusted but
uncompensated system is unstable.

* The next step in the design of a lag—lead
compensator is to choose a new gain crossover
frequency. From the phase-angle curve for G(jw),
we notice that angle of G(jw) = -180° at w=1.5
rad/sec. It is convenient to choose the new gain
crossover frequency to be 1.5 rad/sec so that the
phase lead angle required at w =1.5 rad/sec is
about 50°, which is quite possible by use of a
single lag—lead network.

10

* Once we choose the gain crossover frequency
to be 1.5 rad/sec, we can determine the
corner frequency of the phase-lag portion of
the lag—lead compensator. Let us choose the
corner frequency w = 1/T2 (which corresponds
to the zero of the phase-lag portion of the
compensator) to be 1 decade below the new
gain crossover frequency, or at w =0.15
rad/sec.

11
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e Recall that for the lead compensator the
maximum phase-lead angle @m is given by
Equation, where a is 1/B in the present case.

* Notice that B =10 corresponds to @m=54.9°.
Since we need a 50° phase margin, we may
choose B =10. (Note that we will be using
several degrees less than the maximum angle,
54.9°.) Thus, B =10

12

* Then the corner frequency w = 1/ B T2 (which
corresponds to the pole of the phase-lag
portion of the compensator) becomes w
=0.015 rad/sec. The transfer function of the
phase-lag  portion of the lag—lead
compensator then becomes :

+0.15 6.67s + 1
i 10(75 )

s+ 0015 \667s +1

13
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* The phase-lead portion can be determined as
follows: Since the new gain crossover frequency
is w =1.5 rad/sec, G(j1.5) is found to be 13 dB.
Hence, if the lag—lead compensator contributes

-13 dB at w =1.5 rad/sec, then the new gain
crossover frequency is as desired.

* From this requirement, it is possible to draw a
straight line of slope 20 dB/decade, passing
through the point (1.5 rad/sec, —13 dB). The
intersections of this line and the 0-dB line and —
20 dB line determine the corner frequencies.
Thus, the corner frequencies for the lead portion
are w =0.7 rad/sec and w =7 rad/sec.

14

* Thus, the transfer function of the lead portion
of the lag—lead compensator becomes:

S+0.7_i(1.433‘+1)
s + 7 10 \0.143s + 1

 Combining the transfer functions of the lag
and lead portions of the compensator, we
obtain the transfer function of the lag—lead
compensator. Since we chose Kc=1, we have :

15




. )_(S+0.7)(3+0.15)_(1.43s+1>(6.675+1>
(s) = s+7 J\s+0015/) \0143s + 1/\66.7s + 1

(s + 0.7)(s + 0.15)20
(s + 7)(s + 0.015)s(s + 1)(s + 2)
B 10(1.43s + 1)(6.67s + 1)
~ 5(0.143s + 1)(66.7s + 1)(s + 1)(0.55 + 1)

Ge(s)G(s) =

The phase margin of the compensated system is 50°,
the gain margin is 16 dB, and the static velocity error
constant is 10 sec™-1. All the requirements are
therefore met, and the design has been completed.

16
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Output
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Unit-Ramp Response of Compensated System
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College of Electronics Engineering
Department of Systems and Control Engineering

CONTROL SYSTEMS DESIGN LAB
III YEAR II SEM
Instructor: Mr. Salam Asmer

Summary: This course deals with practical aspects of the design and compensation of control
systems.

Matlab: You will use Matlab extensively. Prior familiarity with Matlab is assumed. You are
not required to purchase these packages.

Lab Reports: The Department requires formal lab reports which must satisfy the following
format rules:

1. Title page: This must include a title, group member names, course and section name and
date.

2. Introduction: Explain the background and objective of the lab indicating requirements and
desired results.

3. Discussion: Discuss the underlying applicable theory and concepts that support the results.
4. Results: Present results in tabular, graphical or numeric form. Present results from required
lab exercises.

5. Discussion of Results: Discuss results data in context of comparison to expectation, accuracy,
difficulties, etc.

6. Summary and Conclusions: Discuss findings, explain errors and unexpected results;
summarize and indicate conclusions.

8. Basic Characteristics of Lag- Lead Compensation by frequency-response
approach.

8.1 AIM:

Plot Bode diagram. The plot of the unit-step response curves and unit ramp of the compensated
and uncompensated systems using MATLAB to examine the frequency characteristics of the
lag- Lead compensator.

8.2 APPARATUS:
Software: MATLAB.

8.3 PROCEDURE:
e We will follow the details of the procedures for designing a lag—lead compensator
by the reference.
e Plot Bode diagram of Compensated and Uncompensated Systems.
e The plot of the unit-step response curves and unit ramp of the compensated and
uncompensated systems.



8.4 THEORETICAL CALCULATIONS:

Enter the numerators and denominators of the compensated and uncompensated systems.
num=

den=

Transfer function:

nume=

denc=

Transfer function:

8.5 EXAMPLE: Consider the G(s) = [K]/ [s(s+1) (s+2)], Plot bode diagram. {[1] Page 513}

¢+ Plot The unit-step response curves of the system before and after compensation, G(s)
= [K]/ [s(s+1) (st2)], it is desired to design a compensator for the system so that the
static velocity error constant Kv is 10 sec”"—1, the phase margin is at least 50°, and the
gain margin is at least 10 dB.

num = [20];
den=[1320];
bode(num,den)
grid

numc = [20 17 2.1];
denc =[1 10.015 23.245 14.345 0.205 07;
bode(numc,denc)

grid
num = [1];
den=[1321];

numc = [20 17 2.1];

denc =1 10.015 23.145 34.345 17.205 2.1];

t=0:0.1:20;

[cl,x1,t] = step(num,den,t);

[c2,x2,t] = step(numc,denc,t);

plot(t,cl,"."t,c2,-")

grid

title('"Unit-Step Responses of Compensated and Uncompensated Systems')
xlabel('t Sec')

ylabel('Outputs')

Y%*****Unit-ramp response™****

numl =[1];

denl =[13210];

numlc=[20172.1];

denlc =[110.015 23.145 34.345 17.205 2.1 0];
t=0:0.1:20;

[y1,z1,t] = step(num1,denl,t);

[y2,22,t] = step(numlc,denlc,t);
plot(t,yl,""t,y2,-",t,t,'-");

grid

title('Unit-Ramp Responses of Compensated and Uncompensated Systems')
xlabel('t Sec')

ylabel('Outputs')

8.6 RESULT:



PID Controllers

elt is interesting to note that more than half of the
industrial controllers in use today are PID controllers or
modified PID controllers.

eThe usefulness of PID controls lies in their general
applicability to most control systems. In particular,
when the mathematical model of the plant is not
known and therefore analytical design methods cannot
be used, PID controls prove to be most useful.

How do the PID parameters affect system

dynamics? |
U(s)=Gpp (s)E(s) = (K,, +K,; ; +KDSJE(S)

The effects of increasing each of the controller parameters Kp,
K, and Kp can be summarized as

Response | Rise Time | Overshoot | Settling Time | S-S Error
Kp Decrease Increase NT Decrease
K, Decrease Increase Increase Eliminate
Kp NT Decrease Decrease NT

NT: No definite trend. Minor change.
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ZIEGLER—NICHOLS RULES FOR TUNING
PID CONTROLLERS

* The process of selecting the controller parameters to
meet given performance specifications is known as
controller tuning. Ziegler and Nichols suggested rules
for tuning PID controllers (meaning to set values of the
controller) based on experimental step responses or
based on the value of Kp that results in marginal
stability when only proportional control action is used.
Ziegler—Nichols rules, which are briefly presented in
the following, are useful when mathematical models
of plants are not known. (These rules can, of course,
be applied to the design of systems with known
mathematical)

PID control of a plant

K1+ %+ T,s) b—pm]| Plant -
l‘;.
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Ziegler-Nichols Rules for Tuning PID Controllers. Ziegler and Nichols pro-
posed rules for determining values of the proportional gain K, integral time 7;, and de-
rivative time 7, based on the transient response characteristics of a given plant. Such
determination of the parameters of PID controllers or tuning of PID controllers can be
made by engineers on-site by experiments on the plant. (Numerous tuning rules for PID
controllers have been proposed since the Ziegler—Nichols proposal. They are available
in the literature and from the manufacturers of such controllers.)

There are two methods called Ziegler—Nichols tuning rules: the first method and the
second method. We shall give a brief presentation of these two methods.

(FirsttMethod) In the first method, we obtain experimentally the response of the
plant to a unit-step input, as shown in Figure 8-2. If the plant involves neither integra-
tor(s) nor dominant complex-conjugate poles, then such a unit-step response curve may
look S-shaped, as shown in Figure 8-3. This method applies if the response to a step
input exhibits an S-shaped curve. Such step-response curves may be generated experi-
mentally or from a dynamic simulation of the plant.

Unit-step response of a plant

ki

Plant
u(t) e(t)

c(f)
Y Tangent line at
inflection point

/-
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Ziegler—Nichols Tuning Rule Based on
Step Response of Plant (First Method)

Type of
Controller K, T, T,
T
P z o 0
T L
Pl 0.9 I 03 0
i4
PID 1.2 i 2L 0.5L

Notice that the PID controller tuned by the first method of Ziegler—Nichols rules
gives

1
G/(s) = Kp(l + i + T,,s)

T 1
=12—(1+4+ —— + 05Ls
12L( ILs 05L€)

2]

s

= 0.6T

Thus. the PID controller has a pole at the origin and double zeros at s = —1/L.
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Figure 84
Closed-loop system
with a proportional
controller.

Figure 8-5

Sustained oscillation
with period F,.
(P, is measured in

(SeeondMethiodd In the second method, we first set 7; = co and T, = 0. Using the
proportional control action only (see Figure 8-4), increase K, from 0 to a critical value
K., at which the output first exhibits sustained oscillations. (If the output does not ex-
hibit sustained oscillations for whatever value K p may take, then this method does not
apply.) Thus, the critical gain K, and the corresponding period P,, are experimentally

ol (1) o)
—»@—» K, {——| Plant

c(t)

sec.)
determined (see Figure 8-5). Ziegler and Nichols suggested that we set the values of
the parameters K, 7;, and T, according to the formula shown in Table 8-2.
Table 8-2 Ziegler—Nichols Tuning Rule Based on Critical Gain
K, and Critical Period P, (Second Method)
Type of
Controller K, T T,
P 0.5K,, ) 0
P1 0.45K, = P. 0
e or ]2 cr
PID 0.6K,. 0.5P, 0.125P.,
Notice that the PID controller tuned by the second method of Ziegler-Nichols rules
gives

Thus, the PID controller has a pole at the origin and double zeros at s = —4/P,.

) 1
G.(s5) = K,,(l + Ts + T,ﬂs)

i

0.61(“(1 + + 0,1253.,;)

05F,s

ol g

)
= 0.075K, P, ————

11
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(EXAMPEEB=D Consider the control system shown in Figure 8-6 in which a PID controller is used to control the
system. The PID controller has the transfer function

1
G(s) = K,,(l & S & T,,s)

Although many analytical methods are available for the design of a PID controller for the pres-
ent system, let us apply a Ziegler—Nichols tuning rule for the determination of the values of pa-
rameters K, T;, and 7. Then obtain a unit-step response curve and check to see if the designed
system exhibits approximately 25% maximum overshoot. If the maximum overshoot is excessive
(40% or more), make a fine tuning and reduce the amount of the maximum overshoot to ap-
proximately 25% or less.

Since the plant has an integrator, we use the second method of Ziegler—Nichols tuning rules.
By setting 7; = co and T, = 0, we obtain the closed-loop transfer function as follows:

C(s) K,
R(s)  s(s+1)(s +5) + K,

12
R(s) G 1 C(s)
) SG+DE+5)
Figure 8-6 PID
PID-controlled controller

system.

The value of K, that makes the system marginally stable so that sustained oscillation occurs can
be obtained by use of Routh’s stability criterion. Since the characteristic equation for the
closed-loop system is

s +657+55+K,=0

the Routh array becomes as follows:

s? 1 5
$ 6 K,
K 30 - K,

6
5V K

13
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Examining the coefficients of the first column of the Routh table, we find that sustained oscilla-

tion will occur if K, = 30. Thus, the critical gain K, is
K180
With gain K, set equal to K, (= 30), the characteristic equation becomes

$+652+55+30=0

To find the frequency of the sustained oscillation, we substitute s = jw into this characteristic

equation as follows:
(jo)? + 6(jw)? + 5(jw) + 30 = 0
or
6(5 — @?) + jo(5 — ?) =0

14

from which we find the frequency of the sustained oscillation to be w*> = Sorw = V/5. Hence, the

period of sustained oscillation is

e @F
P.=—=—— =28099
e @

Referring to Table 8-2, we determine K,,, T;, and T, as follows:
5 = 06K, = d8

T; = 05P;, = 1.405
T, = 0.125P, = 0.35124

The transfer function of the PID controller is thus

1
GUs) = K1+ 7+ Tis )

= 18(1 + + 0.351245)

1.405s

_63223(s + 1.4235)?
s

15
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Figure 8-7

Block diagram of the
system with PID
controller designed
by use of the
Ziegler-Nichols
tuning rule (second
method).

The PID controller has a pole at the origin and double zero at s = —1.4235. A block diagram of

the control system with the designed PID controller is shown in Figure 8-7.

R(s)

63223 (s + 1.4235)%

C(s)

s

1
s(s+ 1)(s +5)

PID controller

Next, let us examine the unit-step response of the system. The closed-loop transfer function
C(s)/R(s) is given by

C(s)

6.3223s% + 18s + 12.811

R(s) TS+ 65 + 11322352 + 18s + 12811

The unit-step response of this system can be obtained easily with MATLAB. See MATLAB
Program 8-1. The resulting unit-step response curve is shown in Figure 8-8. The maximum
overshoot in the unit-step response is approximately 62%. The amount of maximum overshoot is
excessive. It can be reduced by fine tuning the controller parameters. Such fine tuning can be
made on the computer. We find that by keeping K, = 18 and by moving the double zero of the

PID controller to s = —0.65—that is, using the PID controller

G, = 18<1 e ! + 0.7692 ) = 13.846 (o + OG5, (8-1
(s) = 30775 | TS ) T s -1)
Unit-Step Response
1.8 T r . . .
Kcr=30 6 |
Kp=18 14 ]
a=1.4 12 1
Qo
T 1
fos v
Figure 8-8 =
Unit-step response 0.6 |
curve of PID- 04 |
controlled system
designed by use of 0.2 ]
the Ziegler-Nichols : . : : : ;
tuning rule (second o 2 4 6 8 10 12 14
method). Time (sec)
17
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Unit-Step Response

Kp=18 /\
1

a=0.65

o
o
i

Amplitude
o
(=2

Figure 8-9

Unit-step response of
the system shown in
Figure 8-6 with PID 02 F : ; ]
controller having
parameters K, = 18, b : . . : j ‘
7; = 3.077, and 0 1 2 3 4 5 6 7
T, = 0.7692. Time (sec)

I
i
L

18

the maximum overshoot in the unit-step response can be reduced to approximately 18% (see
Figure 8-9). If the proportional gain K, is increased to 39.42, without changing the location of
the double zero (s = —0.65), that is, using the PID controller

Gy(s) = 39 42(1 4 +0.7692 > _ 3030 8 08 82
o(s) = 39, 30775 A ) TR s (8-2)
Unit-Step Response
1.4 T T T T T T r T .

Kp=39.42

a=0.65 2 /\ | -
1 :

S 08 1
E
. s
Figure 8-10 5 0.6 | i
Unit-step response of
the system shown in 04l i
Figure 8-6 with PID ’
controller having
02 1
parameters
K, = 39.42, 0
T; = 3.077, and 0 05 1 15 2 25 3 35 4 45 5
T, = 0.7692. Time (sec)

19
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Figure 8-11
Root-locus diagram
of system when PID

controller has double

zero at s = —1.4235.

o+ 142357 1 |
5 s(s+ 1)(s+5) I

20

Figure 8-12
Root-locus diagram
of system when PID
controller has double
zero at s = —{.65.

K = 13.846
corresponds to G(s)

given by Equation (8-1)

and K = 30.322
corresponds to G,(s)

given by Equation (8-2).

jar
L s
K =60
C D 5 Ot 0.65)° 1
5 s(s + 1)(s +5) | - I j6
1 K=30322 / r
- ja
K=13.846
2
| - i
=00 ] |
T T T T T T u T T T * T T
-10 -8 -6 —4 _] 0 2 o
K=13.846]
- —i2
K=13846
- —i4
K=30322 L
- —i6
K =60
- =8

the values of K and a are
K =29, =025

with the maximum overshoot equal to 9.52% and settling time equal to 1.78 sec. Another possible
solution obtained there is that
K =127, a=02

with the 5.5% maximum overshoot and 2.89 sec of settling time. See Problem A-8-12 for details.

4/15/2024
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Summary

Two things to take away from this review of
Ziegler-Nichols tuning:

1. Relationships between Kp, K; and Kp and important
response characteristics, of which these three are most
useful:

» Use Kp to decrease the rise time.

» Use Kp to reduce the overshoot and settling time.
» Use K to eliminate the steady-state error.

2. The Ziegler-Nichols tuning rule (reaction curve method)
for good initial estimate of parameters.

22
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