
1

 Ninevah University

 Collage of Electronics Engineering

 System and Control Department

 Lecture No.: 1

 Lecture title: Programmable Logic Devices

 Submitted by: Dr. Hussein Aideen

2

Programmable Logic Devices

 Digital Electronic systems consist of:

Memory,

Microprocessor,

Logic Devices:

 Fixed Function Logic Devices.

 Programmable Logic Devices.

A programmable logic device (PLD) is an electronic component

used to build reconfigurable digital circuits.

Unlike a logic gate, a PLD has an undefined function at the time of

manufacture.

There are two types of PLDs based on design architecture:

1- Simple PLDs.

2- Complex PLDs.

Software Programing:

 Run on: Microprocessor

 Architecture: Serial

 Depend on: Instructions

 Languages: C, C++, JAVA, Visual BASIC, Python, etc…

3

Hardware Programing:

 Run on: PLDs

 Architecture: Parallel

 Depend on: Hardware components

 Languages: VHDL, Verilog, SystemC.

How PLDs be programed?

In this simple PLD we can implement the following logic

functions: F = AE + ĀE

 F = AE + ĀĒ

 F = AĒ + ĀE ……..

4

Advantages Programmable Logic Devices:

 Less board space.

 Easy to change with rewiring.

 High speed.

 Less cost.

PLDs types:

5

1- Programmable Array Logic (PAL):

• Consists of a programmable array of AND gates, followed by a

fixed array of OR gates.

• The main limitation: allowed only the implementation of

combinational functions and Look-Up Table (LUT).

6

2- Programmable Logic Array (PLA):

 Programmable array of AND gates, followed by a

programmable array of OR gates.

 Advantage: has greater flexibility than PAL.

 Disadvantage: Higher time constants at the internal nodes

lowered the circuit speed.

7

3- Generic PAL (GAL):

• Introduced by Lattice in 1980s.

• A more sophisticated output cell (Macrocell):

o Included besides the flip-flop, several gates and

multiplexers.

o Macrocell itself was programmable.

o A ‘return’ signal from the output of the Macrocell to the

programmable array.

• EEPROM was employed instead of PROM or EPROM.

8

9

4- Complex PLD (CPLD):

• Several PLDs (in general of GAL type) fabricated on a single

chip. With programmable switch matrix.

• Altera, Xilinx, Lattice, Atmel, Cypress, etc.

 Applications:

 Decoders

 Encoders

 Multiplexers

 De-Multiplexers

10

11

Tutorial sheet:

1- For the following Figure:

• Specify the device type: _______ (PAL, PLA, GAL)

• Find Boolean expression for each of the functions F0 – F3.

Answer:

12

2- For the following truth table, find a PLA realization.

Answer:

13

5- Field Programmable Gate Array (FPGA):

Introduced by Xilinx in the mid-1980s. Its differs from CPLDs in

architecture, storage technology, number of built-in features, and cost.

Aimed at the implementation of high performance, large-size circuits.

 Applications:

 Aerospace and Defense.

 Medical Electronics.

 Wired Communications.

 Wireless Communications.

 High performance computing.

It consists of a programmable matrix of:

• Configurable Logic Blocks (CLBs),

• interconnected by an array of switch matrices.

• Array Input/output Blocks.

• Clock Circuitry.

14

15

5.1 Configurable Logic Blocks (CLBs),

A CLB is the fundamental component of an FPGA, allowing the

user to implement virtually any logical functionality within the chip. This

is achieved by the usage of two sets of similar components within a

block, known as slices.

There are two different types of slices:

• SLICEM: ability to act as distributed memory in addition to its

normal logic functionality.

• SLICEL: in addition to its normal logic functionality only.

These slices contain four look-up-tables (LUTs), eight flip-flops

(FF), a network of carry logic, and three types of multiplexers.

CLB = 2 slices,

one slice = 4 LUTs + 8 FF.

Therefore, one CLB = 8 LUTs + 16FF.

CLB

16

17

Lookup Table. Figure 2.3.2a shows a four-input lookup table (abbreviated LUn or

function generator, a basic unit of configurable logic. A lookup table implements

combinational logic as a 2n x 1 memory composed of configuration memory cells.

The memory is used as a lookup table, addressed by the n inputs. A lookup table

can implement any of the 22
𝑛
 functions of its inputs.

Programmable Interconnect Point. The second building block is called a

programmable interconnect point, (Pip). Some authors use the term "configurable

interconnect point" (cip). Pips control the connection of wiring segments in the

programmable interconnect.

Multiplexer. The third building block is a multiplexer controlled by a configuration

memory cell (figure 2.3.2c). The multiplexer is a special-case, one-directional

routing structure. It may be of any width, with more configuration bits for wider

multiplexers. Switches built with multiplexers reduce the number of memory cells

required for controlling the switch, giving an area savings for large switches.

18

5.2 interconnection matrix (switch matrices):

There are long lines that can be used to connect critical CLBs that are

physically far from each other on the chip without inducing much delay.

Theses long lines can also be used as buses within the chip.

There are also short lines that are used to connect individual CLBs that

are located physically close to each other.

Transistors are used to turn on or off connections between different

lines.

Switch matrix

19

20

21

5.3 Configurable I/O Blocks:

A Configurable input/output (I/O) Block is used to bring signals onto the

chip and send them back off again. It consists of an input buffer and an

output buffer with three-state and open collector output controls.

22

I/O Block

23

5.4 Clock Circuitry:

 Special I/O blocks with special high drive clock buffers, known as clock

drivers , are distributed around the chip. These buffers connect to clock

input pads and drive the clock signals onto the global clock lines

described above. These clock lines are designed for low skew times and

fast propagation times. Note that synchronous design is a must with

FPGAs, since absolute skew and delay cannot be guaranteed anywhere

but on the global clock lines.

24

5.5 Technologies for programming FPGAs:

• SRAM programming: involves a small static RAM bit for each

programming element.

• flash EPROM bits for each programming element.

25

26

Example FPGA families

• Altera Stratix II and Cyclone II families
• Atmel AT6000 and AT40K families
• Lattice LatticeEC and LatticeECP families
• Xilinx Spartan-3 and Virtex-4 families.

27

 جامعة نينوى

 كلية هندسة الإلكترونيات

HDL Programming

-VHDL-

Submitted By: Hussein M. H. Aideen

Textbook: Volnei A. Pedroni, “Circuit Design with

VHDL”, MIT Press London, England, 2004.

VHDL> Introduction

 VHDL stands for VHSIC Hardware Description

Language.

 VHSIC is itself an abbreviation for Very High Speed

Integrated Circuits.

 Describes the behavior of an electronic circuit or

system, from which the physical circuit or system

can then be implemented.

 first HDL standardized, IEEE 1076 standard.

VHDL> Introduction

 Once the VHDL code has been written:

 used either to implement the circuit in a

programmable device (from Altera, Xilinx, Atmel, etc.)

 or can be submitted to a foundry for fabrication of an

ASIC chip.

 Currently, many complex commercial chips

(microcontrollers, for example) are designed using

such an approach.

 its statements are concurrent (parallel).

VHDL> Design Flow

VHDL> Design Flow

VHDL> Design Flow

VHDL> Code Structure

VHDL> Code Structure

LIBRARY declarations:

A LIBRARY is a collection of commonly used pieces of code.

Placing such pieces inside a library allows them to be reused

or shared by other designs.

VHDL> Code Structure

VHDL> Code Structure

An ENTITY is a list with specifications of all input and output

pins (PORTS) of the circuit. Its syntax is shown below.

VHDL> Code Structure

 The mode of the signal can be:

 IN, OUT, INOUT, or BUFFER.

 IN and OUT are truly unidirectional pins,

 INOUT is bidirectional.

 BUFFER, output signal must read internally.

 The type of the signal can be BIT, STD_LOGIC,
INTEGER, etc. (discussed later).

 Finally, the name any name, except VHDL reserved
words

VHDL> Code Structure

 The ARCHITECTURE is a description of how the circuit

should behave (function). Its syntax is the following:

 declarative part (optional), where signals and

constants are declared.

 the code part (from BEGIN down)

VHDL> Introductory Examples

 DFF with Asynchronous Reset

 Exam: Q1) Write a VHDL code to synthesis the

following circuit (DFF with Asynchronous Reset)

shown in figure below:

VHDL> Introductory Examples

 DFF with Asynchronous Reset

 VHDL is inherently concurrent (contrary to regular

computer programs, which are sequential),

 so to implement any clocked circuit (flip-flops, for

example) we have to „„force‟‟ VHDL to be sequential.

VHDL> Introductory Examples

VHDL> Introductory Examples

 DFF plus NAND Gate

 Exam: Q2) Write a VHDL code to synthesis the

following circuit (DFF plus NAND Gate) shown in

figure below:

VHDL> Introductory Examples

VHDL> Introductory Examples

 Home work 1

 Q3) Write a VHDL code for the circuit of figure P2.2.

Notice that it is purely combinational, so a PROCESS is

not necessary. Write an expression for d using only

logical operators (AND, OR, NAND, NOT, etc.).

Counter Test Bench
 Any digital circuit, no matter how complex, needs

to be tested. For the counter logic, we need to

provide a clock and reset logic. Once the counter

is out of reset, we toggle the enable input to the

counter, and check the waveform to see if the

counter is counting correctly. The same is done in

VHDL

Counter Test Bench

Testbench file

VHDL> Data Types

 Pre-Defined Data Types:

◦ BIT (and BIT_VECTOR): 2-level logic („0‟, „1‟).

VHDL> Data Types

VHDL> Data Types

 STD_LOGIC (and STD_LOGIC_VECTOR):

8-valued logic system introduced in the IEEE
1164 standard.

◦ „X‟ Forcing Unknown (synthesizable unknown)

◦ „0‟ Forcing Low (synthesizable logic „1‟)

◦ „1‟ Forcing High (synthesizable logic „0‟)

◦ „Z‟ High impedance (synthesizable tri-state buffer)

◦ „W‟ Weak unknown

◦ „L‟ Weak low

◦ „H‟ Weak high

◦ „–‟ Don‟t care

VHDL> Data Types

VHDL> Data Types

 BOOLEAN: True, False.

 INTEGER: 32-bit integers
(from -2,147,483,648 to +2,147,483,647).

 NATURAL: Non-negative integers
(from 0 to +2,147,483,647).

 SIGNED and UNSIGNED: data types defined in the
std_logic_arith package of the ieee library. They have the
appearance of STD_LOGIC_VECTOR, but accept
arithmetic operations, which are typical of INTEGER data
types.

 REAL: Real numbers ranging
from -1.0E38 to +1.0E38. Not synthesizable.

 Physical literals: Used to inform physical quantities, like
time, voltage, etc. Useful in simulations. Not synthesizable.

VHDL> Data Types

 Examples:

VHDL> Data Types

 Examples:

VHDL> Data Types

Ex: Write VHDL code to design 8-3 encoder (use if statement)

VHDL> Data Types
 User-Defined Data Types:

 VHDL also allows the user to define his/her

own data types.

VHDL> Data Types

VHDL> Data Types
 Sub-Types:

 The main reason for using a subtype rather than specifying a new type is

that, though operations between data of different types are not allowed,

they are allowed between a subtype and its corresponding base type.

VHDL> Data Types

 Signed and Unsigned Data Types:

◦ defined in the std_logic_arith package of the ieee library.

VHDL> Data Types

VHDL> Data Conversion

 VHDL does not allow direct operations between data of

different types.

 it is necessary to convert data from one type to another.

 If the data are closely related: std_logic_1164 of the

ieee library provides straightforward conversion

functions.

VHDL> Data Conversion

 Data conversion functions: std_logic_arith package of

the ieee library.

 Output data type Input data type keyword

INTEGER INTEGER, UNSIGNED,

SIGNED, or

STD_ULOGIC

conv_integer(p)

UNSIGNED

* Where b is number of bits.

INTEGER, UNSIGNED,

SIGNED, or

STD_ULOGIC

conv_unsigned(p, b)

SIGNED INTEGER, UNSIGNED,

SIGNED, or

STD_ULOGIC

conv_signed(p, b):

STD_LOGIC_VECTOR INTEGER, UNSIGNED,

SIGNED, or

STD_ULOGIC

conv_std_logic_vector(p, b)

VHDL> Data Conversion

 Data conversion functions: std_logic_signed or

std_logic_unsigned package of the ieee library.

Output data type Input data type keyword

UNSIGNED STD_LOGIC_VECTOR

unsigned(p)

SIGNED STD_LOGIC_VECTOR

signed(p):

VHDL> Data Conversion

 Example:

VHDL> Examples:

 A 4-bit adder:

VHDL> Examples:

 A 4-bit adder:

VHDL>Static and non-static data

 CONSTANT:
 establish default values
 can be declared in a PACKAGE, ENTITY, or

ARCHITECTURE.

VHDL>Static and non-static data

 GENERIC:

 specifying a generic parameter (that is, a static

parameter).

 code more flexibility and reusability.

 must be declared in the ENTITY.

VHDL>Static and non-static data

 SIGNAL:

 pass values in and out the circuit, as well as between its

internal units.

 circuit interconnects (wires).

VHDL>Static and non-static data

 VARIABLE:

 represents only local information.

 It can only be used inside a sequential code (PROCESS

for example).

VHDL>Static and non-static data

VHDL> Operators

 VHDL provides several kinds of pre-defined
operators:

 Assignment operators

 Logical operators

 Arithmetic operators

 Relational operators

 Shift operators

 Concatenation operators

VHDL> Operators

 Assignment operators

using Operator

SIGNAL. <=

VARIABLE, CONSTANT,
GENERIC,
initial values.

:=

vector elements or with
OTHERS.

=>

VHDL> Operators

 Assignment operators

VHDL> Operators

 Logical operators:

 perform logical operations.

 Data types: BIT, STD_LOGIC, STD_ULOGIC,
BIT_VECTOR, STD_LOGIC_VECTOR, or
STD_ULOGIC_VECTOR

 NOT
 AND

 OR

 NAND

 NOR

 XOR

 XNOR

VHDL> Operators

 Arithmetic Operators:

 perform arithmetic operations

 data types: INTEGER, SIGNED, UNSIGNED, or
REAL

 With std_logic_signed or std_logic_unsigned
package: STD_LOGIC_VECTOR.

VHDL> Operators

 N bit adder circuit:

VHDL> Operators

 N bit adder circuit:

VHDL> Operators

 Comparison Operators:

 Used for making comparisons.

 Data types: any.

VHDL> Operators

N bit comparator:

VHDL> Operators

VHDL> Operators

 Shift Operators:

 Syntax:

VHDL> Data Attributes

 The pre-defined, synthesizable data attributes are the

following:

 d‟LOW: Returns lower array index

 d‟HIGH: Returns upper array index

 d‟LEFT: Returns leftmost array index

 d‟RIGHT: Returns rightmost array index

 d‟LENGTH: Returns vector size

 d‟RANGE: Returns vector range

 d‟REVERSE_RANGE: Returns vector range in

reverse order

VHDL> Data Attributes

VHDL> Signal Attributes

 Let us consider a signal s. Then:

 s‟EVENT: Returns true when an event occurs on s.

 s‟STABLE: Returns true if no event has occurred on s.

VHDL> User-Defined Attributes

 VHDL also allows the construction of user defined

attributes.

VHDL> Examples

 Generic Parity Detector:

 The circuit must provide output = „0‟ when the number

of „1‟s in the input vector is odd, or output = „1‟

otherwise.

VHDL> Examples

 Generic Parity Detector:

1

0

1

1

0

1

1

0

0

1
XOR

temp input

VHDL> Examples

 Generic Parity Generator:

 The circuit must add one bit to the input vector (on its

left).

 Such bit must be a „0‟ if the number of „1‟s in the input

vector is even, or a „1‟ if it is odd, such that the resulting

vector will always contain an even number of „1‟s (even

parity).

VHDL> Examples

 Generic Parity Generator:

1

0

1

1

0

1

1

0

temp2

1

0

1

1

0

1

1

0

temp1

input

VHDL> Examples

 Generic Decoder:

 If ena = „0‟, then all bits of x should be high; otherwise,

the output bit selected by sel should be low.

VHDL> Examples

 Generic Decoder:

 جامعة نينوى

 كلية هندسة الإلكترونيات

HDL Programming

-VHDL- 2

Submitted By: Hussein M. H. Aideen

Textbook: Volnei A. Pedroni, “Circuit Design with

VHDL”, MIT Press London, England, 2004.

VHDL> Concurrent & sequential Code

 Concurrent Code:

 WHEN,

 GENERATE,

 Assignments using only operators (AND, NOT, +, *, sll,

etc.),

 A special kind of assignment, called BLOCK.

 Sequential Code:

 PROCESSES, FUNCTIONS, PROCEDURES.

 IF, WAIT, CASE, and LOOP.

 VARIABLES.

VHDL>Combinational vs Sequential Logic

 Combinational Logic: output depends solely on the

current inputs.

 sequential logic: output depend on previous
inputs.

VHDL> Concurrent versus Sequential

 VHDL code is inherently concurrent (parallel).

 Only statements placed inside a PROCESS,

FUNCTION, or PROCEDURE are sequential.

 the block, as a whole, is concurrent with any other

(external) statements.

 Concurrent code is also called dataflow code.

 Concurrent: The order does not matter.

VHDL> Concurrent Code

 In summary, in concurrent code the following can be

used:

 Operators;

 The WHEN statement (WHEN/ELSE or

WITH/SELECT/WHEN);

 The GENERATE statement;

 The BLOCK statement.

VHDL> Concurrent Code

 Operators: Operators are type of Concurrent code.

 VHDL> Concurrent Code Examples

 Multiplexer #1

VHDL> Concurrent Code

 WHEN (Simple and Selected)

VHDL> Concurrent Code

 Whenever WITH / SELECT / WHEN is used:

 all permutations must be tested,

 keyword OTHERS is often useful.

 keyword UNAFFECTED,

 which should be used when no action is to take place.

 „„WHEN value‟‟ can indeed take up three forms:

VHDL> Concurrent Code

 Examples:

VHDL> Concurrent Code

 Multiplexer #2: when/else

VHDL> Concurrent Code

 Multiplexer #2: with/select/when

VHDL> Concurrent Code

 Tri-state Buffer:

VHDL> Concurrent Code

 Home Works: Encoder: page 73:

VHDL> Concurrent Code

 Home Works: ALU: page 75

VHDL> Concurrent Code

 The GENERATE statement:

 allows a section of code to be repeated a number of

times (loop).

 GENERATE must be labeled.

 limits of the range must be static.

VHDL> Concurrent Code

 IF/GENERATE: (ELSE is not allowed).

 IF/GENERATE can be nested inside FOR/GENERATE,

the opposite can also be done.

VHDL> Concurrent Code

 Example:

VHDL> Concurrent Code

 Vector Shifter:

 the output vector must be a shifted version of the input

vector, with twice its width and an amount of shift

specified by another input.

VHDL> Concurrent Code

 Vector Shifter:

VHDL> Concurrent Code

 Vector Shifter:

VHDL> Concurrent Code

 BLOCK:

 Simple BLOCK
 locally partitioning the code.

 turning the overall code more readable (long
codes).

 can be nested inside another BLOCK.

VHDL> Concurrent Code

 Simple BLOCK:

VHDL> Concurrent Code

 Nested BLOCK:

VHDL> Concurrent Code

 Guarded BLOCK:

 includes an additional expression, called

guard expression.

 A guarded statement executed only when

the guard expression is TRUE.

 sequential circuits can be constructed.

 VHDL> Concurrent Code Example

 DFF with Guarded BLOCK:

VHDL> Concurrent Code Example

 Problem 5.2: Priority Encoder

Binary

110

dout din

First

Second

Third

Fourth

Fifth

Sixth

Seventh

VHDL> Concurrent Code

 Problem 5.2: Priority Encoder

VHDL> Concurrent Code

 Problem 5.2: Priority Encoder

VHDL> Sequential Code

VHDL> Sequential Code

 PROCESSES, FUNCTIONS, and PROCEDURES

are executed sequentially.

 any of these blocks is still concurrent with any other

statements placed outside it.

 with it we can build sequential circuits as well as

combinational circuits.

VHDL> Sequential Code

 IF, WAIT, CASE, and LOOP.

 VARIABLES restricted to be used in sequential code.

VHDL> PROCESS

 A PROCESS must be installed in the main code.

 executed every time a signal in the sensitivity list

changes.

VHDL> PROCESS

 initial value is not synthesizable.

 monitoring a signal (clock, for example) is necessary.

A common way of detecting a signal change is by

means of the EVENT attribute.

 For instance, if clk is a signal to be monitored, then

clk‟EVENT returns TRUE when a change on clk

occurs (rising or falling edge).

VHDL> PROCESS

 IF statement:

VHDL> IF statement

 One-digit Counter #1

 1-digit decimal counter (0  9  0).

VHDL> IF statement

 One-digit Counter #1

 1-digit decimal counter (0  9  0).

VHDL> IF statement

 4 bit Shift Register:

VHDL> IF statement

 4 bit Shift Register:

VHDL> WAIT statement

 WAIT statement:

 the PROCESS cannot have a sensitivity list when

WAIT is employed.

VHDL> WAIT statement

 WAIT statement:

 the PROCESS cannot have a sensitivity list when

WAIT is employed.

VHDL> WAIT statement

 WAIT ON:

 WAIT FOR is intended for simulation only (waveform
generation for testbenches). Example: WAIT FOR 5ns;

VHDL> WAIT statement

 Home Works:

 DFF with Asynchronous Reset #2, P99.

 One-digit Counter #2, P99-100.

VHDL> CASE statement

 CASE statement:

VHDL> CASE statement

 CASE statement:

 CASE statement (sequential) is very similar to WHEN

(combinational)

 keyword OTHERS is often helpful.

 Another important keyword is NULL (the counterpart

of UNAFFECTED), which should be used when no

action is to take place.

 CASE allows multiple assignments for each test

condition.

VHDL> CASE statement

 Two-digit Counter with SSD Output:

VHDL> Two-digit Counter with SSD

VHDL> Two-digit Counter with SSD

VHDL> Two-digit Counter with SSD

VHDL> Two-digit Counter with SSD

 جامعة نينوى

 كلية هندسة الإلكترونيات

HDL Programming

-VHDL- 3

Submitted By: Hussein M. H. Aideen

Textbook: Volnei A. Pedroni, “Circuit Design with

VHDL”, MIT Press London, England, 2004.

VHDL> Loop statement

 LOOP is useful when a piece of code must be

instantiated several times.

 inside a PROCESS, FUNCTION, or PROCEDURE.

 FOR / LOOP: repeated a fixed number of times.

VHDL> Loop statement

 WHILE / LOOP: repeated until a condition no longer

holds.

VHDL> Loop statement

 EXIT: Used for ending the loop.

 NEXT: Used for skipping loop steps.

VHDL> Loop statement

 Example of FOR / LOOP:

 Example of WHILE / LOOP:

VHDL> Loop statement

 Simple Barrel Shifter:

 The circuit must shift the input vector (of size 8) either

0 or 1 position to the left. When actually shifted (shift

= 1), the LSB bit must be filled with „0‟ (shown in the

botton left corner of the diagram).

 If shift = 0, then outp = inp;

 if shift = 1, then outp(0) = „0‟ and outp(i) = inp(i - 1),

for 1≤ i ≤7.

VHDL> Loop statement

 If shift = 0, then outp = inp;

 if shift = 1, then outp(0) = „0‟

and outp(i) = inp(i - 1), for 1≤ i

≤7.

VHDL> Simple Barrel Shifter

VHDL> Simple Barrel Shifter

VHDL> Arrays in VHDL

 Arrays are collections of objects of the

same type.

 one-dimensional (1D),

 two-dimensional (2D),

 one-dimensional-by-one-

dimensional (1Dx1D).

VHDL> Arrays in VHDL

 First the new TYPE must be defined,

 Then the new SIGNAL, VARIABLE, or

CONSTANT can be declared using that

data type.

TYPE type_name IS ARRAY (specification) OF data_type;

SIGNAL signal_name: type_name [:= initial_value];

VHDL> Arrays in VHDL

 1D-1D Array

VHDL> Arrays in VHDL

 2D Array

Initial value

VHDL> Arrays in VHDL

 Arrays assignments

VHDL> Examples

VHDL> Examples

 Signed and Unsigned Comparators

VHDL> Examples

 Parallel-to-Serial Converter

VHDL> Examples

 Parallel-to-Serial Converter

VHDL> Examples

 Parallel-to-Serial Converter

VHDL> Examples

 Signal Generators

VHDL> Examples

 Signal Generators

VHDL> Examples

 Signal Generators

VHDL> Examples

 ROM (Read Only Memory)

VHDL> Examples

 ROM (Read Only Memory)

The End. Thanks for listen

 جامعة نينوى

 كلية هندسة الإلكترونيات

HDL Programming

-VHDL- 3

Submitted By: Hussein M. H. Aideen

Textbook: Volnei A. Pedroni, “Circuit Design with

VHDL”, MIT Press London, England, 2004.

1

VHDL> State Machines

 Finite state machines (FSM) constitute a special

modeling technique for sequential logic circuits.

 helpful in the design of certain types of systems,

(digital controllers, for example).

2

VHDL> State Machines

 Types of Machine modeling:

 Mealy machine: the output of

the machine depends not only

on the present state but also on

the current input.

 Moore machine: the output

depends only on the current

state.

3

VHDL> State Machines

4

VHDL> State Machines

FSM type definition:

5

VHDL> State Machines

FSM Design Styles:

Design Style #1:

 The design of the lower section is completely

separated from that of the upper section.

6

VHDL> State Machines

Design of the Lower (Sequential) Section:

7

VHDL> State Machines

Design of the Upper (Combinational) Section:

8

VHDL> State Machines

Design Style #2 (Stored Output):

 In Design style #1: Notice that in this case, if it is a Mealy
machine (one whose output is dependent on the current
input), the output might change when the input changes
(asynchronous output).

 To make Mealy machines synchronous.

9

VHDL> State Machines

State Machine Template for Design Style #2

10

VHDL> State Machines

State Machine Template for Design Style #2 – cont.

11

VHDL> State Machines

Example: Simple FSM #1

12

VHDL> State Machines

Example: Simple FSM #1

13

VHDL> State Machines

Example: Simple FSM #1

14

VHDL> State Machines

Example: Simple FSM #1

15

VHDL> State Machines

Example: Simple FSM #2

16

VHDL> State Machines

Example: Simple FSM #2

17

VHDL> State Machines

Example: Simple FSM #2

18

VHDL> State Machines

Example: String Detector

 We want to design a circuit that takes as input a serial
bit stream and outputs a „1‟ whenever the sequence
„„111‟‟ occurs. Overlaps must also be considered, that
is, if . . .0111110 . . . occurs, than the output should
remain active for three consecutive clock cycles.

19

VHDL> State Machines

Example: String Detector

20

VHDL> State Machines

Example: String Detector

21

VHDL> State Machines

Example: String Detector

22

VHDL> State Machines

Example: String Detector

23

VHDL> State Machines

Example: Traffic Light Controller (TLC)

 Three modes of operation: Regular, Test, and
Standby.

 Test mode: allows all pre-programmed times to be
overwritten (by a manual switch) with a small value,
such that the system can be easily tested during
maintenance (1 second per state).

 Standby mode: the system should activate the yellow
lights in both directions and remain so while the
standby signal is active.

 Assume that a 60 Hz clock (obtained from the power
line itself) is available.

24

VHDL> State Machines

Example: Traffic Light Controller (TLC)

25

VHDL> State Machines

Example: Traffic Light Controller (TLC)

26

VHDL> State Machines

Example: Traffic Light Controller (TLC)

27

VHDL> State Machines

Example: Traffic Light Controller (TLC)

28

VHDL> State Machines

Example: Traffic Light Controller (TLC)

29

VHDL> State Machines

Example: Traffic Light Controller (TLC)

30

VHDL> State Machines

Example: Traffic Light Controller (TLC)

31

VHDL> State Machines

Example: Traffic Light Controller (TLC)

32

VHDL> State Machines

FSM Encoding Style:

 To encode the states of a state machine, we can
select one among several available styles.

 The default style is binary.
 requires the least number of flip-flops.

 with n flip-flops (n bits), up to 2^n states can be encoded

 requires more logic and is slower than the others.

 One-hot encoding style,
 which uses one flip-flop per state. Therefore, it demands

the largest number of flip-flops.

 with n flip-flops (n bits), only n states can be encoded.

 requires the least amount of extra logic and is the
fastest.

33

VHDL> State Machines

FSM Encoding Style:

 Two-hot encoding scheme:

 An style that is inbetween the two styles above.

 which presents two bits active per state.

 Therefore, with n flip-flops (n bits), up to n(n-1)/2 states

can be encoded.

34

 جامعة نينوى

 كلية هندسة الإلكترونيات

HDL Programming

-VHDL- 5

Submitted By: Hussein M. H. Aideen

Textbook: Volnei A. Pedroni, “Circuit Design with

VHDL”, MIT Press London, England, 2004.

1

VHDL> Additional System Design

 FUNCTION

 A FUNCTION is a section of sequential code.

 Its purpose is to create new functions to deal with

commonly encountered problems, like data type

conversions, logical operations, arithmetic

computations, and new operators and attributes.

 By writing such code as a FUNCTION, it can be shared

and reused, also propitiating the main code to be

shorter and easier to understand.

2

VHDL> Additional System Design

 FUNCTION

 Example

3

VHDL> Additional System Design

 Digital Filters

 Digital signal processing (DSP) finds innumerable

applications in the fields of audio, video, and

communications, among others. Such

applications are generally based on LTI (linear

time invariant) systems, which can be

implemented with digital circuitry.

 Any LTI system be represented by the following

equation:

4

VHDL> Additional System Design

 Digital Filters

 FIR Filter:

4-tap FIR Filter RTL Representation

5

VHDL> Additional System Design

 Digital Filters

 VHDL code for FIR Filter:

6

VHDL> Additional System Design

 Digital Filters

 VHDL code for FIR Filter: (continued)

7

VHDL> Additional System Design

 Digital Filters

 VHDL code for FIR Filter: (continued)

8

VHDL> Additional System Design

 Digital Filters

 VHDL code for FIR Filter: (continued)

9

VHDL> Additional System Design

 Neural Networks

 Neural Networks (NN) are highly parallel, highly

interconnected systems. Such characteristics make their

implementation very challenging, and also very costly,

due to the large amount of hardware required.

 3 layer network layer details

10

VHDL> Additional System Design

 Neural Networks

 A „„ring‟‟ architecture for the NN is presented in figure,
which implements one layer of the NN.

 Each box represents one neuron.

 There are several circular shift registers, one for
each neuron (vertical shifters) plus one for the whole
set (horizontal shifter).

 The vertical shifters hold the weights, while the
horizontal one holds the inputs (shift registers with
„data_load‟ capability).

 At the output of a vertical shifter there is a MAC circuit,
which accumulates the product between the weights and
the inputs.

11

VHDL> Additional System Design

 Neural Networks

12

VHDL> Additional System Design

 Neural Networks

 For Small Neural Networks The solution below

has the advantage of being simple, easily

understandable, and self-contained in the main

code. Its only limitation is that the inputs (x) and

outputs (y) are specified one by one rather than

using some kind of two-dimensional array, thus

making it inappropriate for large NNs. Everything

else is generic.

13

VHDL> Additional System Design

 Neural Networks

14

VHDL> Additional System Design

 Neural Networks

15

VHDL> Additional System Design

 Neural Networks

16

VHDL> Additional System Design

 Neural Networks

17

VHDL> Additional System Design

 Neural Networks

18

VHDL> Additional System Design

 Neural Networks

19

	Programmable Logic Devices
	vhdl 1 - Copy
	vhdl 2 - Copy
	vhdl 3 - copy
	vhdl 4 - copy
	vhdl 5 - copy

