Ninevah University
Collage of Electronics Engineering

System and Control Department

Lecture No.: 1

Lecture title: Programmable Logic Devices

Submitted by: Dr. Hussein Aideen

Programmable Logic Devices
Digital Electronic systems consist of:

Memory,

Microprocessor,

Logic Devices:
* Fixed Function Logic Devices.
* Programmable Logic Devices.

A programmable logic device (PLD) is an electronic component
used to build reconfigurable digital circuits.

Unlike a logic gate, a PLD has an undefined function at the time of
manufacture.

There are two types of PLDs based on design architecture:

1- Simple PLDs.
2- Complex PLDs.

Software Programing:

Run on: Microprocessor
Architecture: Serial

Depend on: Instructions
Languages: C, C++, JAVA, Visual BASIC, Python, etc...

Hardware Programing:

Run on: PLDs

Architecture: Parallel

Depend on: Hardware components
Languages: VHDL, Verilog, SystemC.

How PLDs be programed?

In this simple PLD we can implement the following logic
functions: F=AE + AE

F=AE + AE

Advantages Programmable Logic Devices:
* Less board space.
* Easy to change with rewiring.
* High speed.

* |Less cost.

PLDs types:

l PLDs F
Simple PLD ‘ Complex
[(SPLD) } [PLD (CPLD) Xl i \
1

1

]] 1 1
| . . . \
Registered \
PAL j ' PLA J l PAL/PLA l GAL J
\ ' J

1- Programmable Array Logic (PAL):
e Consists of a programmable array of AND gates, followed by a
fixed array of OR gates.

e The main limitation: allowed only the implementation of
combinational functions and Look-Up Table (LUT).

inputs
A

WL

[

[

| e

}—_ :f} N

—
3¢
e
% ™
e
/'L &) —
> outputs
Programmable mey —
interconnects
—
- —_—
T
:’_._ _‘_>7
= — — J
— I
—

L1
J\

et

=5

pe
,J

E{[)

Figure Al

Mustration of PAL architecture.

2- Programmable Logic Array (PLA):
* Programmable array of AND gates, followed by a
programmable array of OR gates.
* Advantage: has greater flexibility than PAL.

* Disadvantage: Higher time constants at the internal nodes
lowered the circuit speed.

inputs
AL

UL

J
L

)

TS

programmable
O s interconnects

5

© O © | O—
R

programmable ‘:CE{
interconnects r Ju—

L1

\A LA s (1] h
[
) U U UL

outputs

Figure A2
[Hustration of PLA architecture.

3- Generic PAL (GAL):
e Introduced by Lattice in 1980s.
e A more sophisticated output cell (Macrocell):
o Included besides the flip-flop, several gates and
multiplexers.
o Macrocell itself was programmable.
o A ‘return’ signal from the output of the Macrocell to the
programmable array.
e EEPROM was employed instead of PROM or EPROM.

DIP
vek [] 1 U20:|Vcc
i | vora
i B 7 R s
‘0 16vs P"°
1[5] o
¢k 15 [] vora
Al | vora
KL] vora
i] vora
GND [] 10 11 [] voE

1 —

CLK

oot

ey

L
-

Output
Macrocell

LfJ

[T N]

3z

e Qe G Qe Qe ety

Dutput
Macrocell

LY'J

4 1z

Qutput
Macracell

B O . .

el

B B R s
O3 DD g

Eq‘" o R R

5 {3

QOutput
Macrocell

Gt g
R

Output
Macrocell

[R e
-

L R
9o g oD oG

Sthgdh

Qutput
Macrocell

D A
BogR oG O OO

Output
Macracell

9 .

Figure A3
GAL 16VE chip.

ER - I = - =

Output
Macracell

S A R L S §

—
—

/OE

-
-l

—
=]

[
wn

—
.

-
£

-
P

4- Complex PLD (CPLD):
e Several PLDs (in general of GAL type) fabricated on a single
chip. With programmable switch matrix.
e Altera, Xilinx, Lattice, Atmel, Cypress, etc.

-
- S | f— PLD 1
w
B |
T
“ c
/O [—t | — PLD 2
e B M
A
- T
- |
- X
-+ PLD n
-~
Figure A4

CPLD architecture.

* Applications:

* Decoders
Encoders
Multiplexers
De-Multiplexers

*

*

*

Table Al
Altera CPLDs.

Family Max7000 (B, AE, §) MAX3000 (A) MAXII (G)
Macrocells/ 32-512 macrocells 32-512 macrocells | 240-2,210 LUTs
LUTs (192-1,700 equiv. macrocells)
System gates 600-10,000 600-10,000
I/O pins 32-512 34-208 80-272
Max. internal 303 MHz 227 MHz 304 MHz
clock freq. (I/O limited)
Supply voltage | 25V (B),3.3 V(AE), 5V (S) | 33V 1.8V(G),25V, 33V
Interconnects EEPROM EEPROM Flash + SRAM
Static current 9 mA-450 mA 9 mA—-150 mA 2 mA-50 mA
Technology (.22 u CMOS EEPROM 0.3 u, 0.18 u, 6-layer metal
4-layer metal (7000 B) 4-layer metal
Table A2

Xilinx CPLDs.

Family XCo500 (XV, XL, —) Cool Runner XPLA3 Cool Runner Il

Macrocells 36-288 32-512 32-512

System gates 800-6,400 750-12,000 750-12,000

I/O pins 34-192 36-260 33-270

Max. internal clock | 222 MHz 213 MHz 385 MHz

frequency

Building block GAL 54V18 (XV,XL) | PLA block PLA block
GAL 36V18 (—)

Supply voltage 25V (XV), 33V 33V 1.8V
(XL),5V

Interconnects Flash EEPROM

Technology 0.35 u CMOS 0.35 u CMOS 0.18 u CMOS

Static current 11-500 mA <0.1 mA 22 uA-1 mA

10

Tutorial sheet:

1- For the following Figure:
e Specify the device type: (PAL, PLA, GAL)
e Find Boolean expression for each of the functions FO — F3.

A B C

2 [y

o
i

X
9

o)
aQ
3

S
'

UUUUU

s lviviviy

Answer:

11

2- For the following truth table, find a PLA realization.

a b ¢ d f £ £
0 | - | 1 0
1 | - | | 0 1
1 0 0 - 1 0 1
- 0 1 - 1 0 0
- - 1 - 0 1 0
- | | - 0 0 1
Answer:
a b ¢ d
STy Fbhd |
,nf&\ N

12

5- Field Programmable Gate Array (FPGA):

Introduced by Xilinx in the mid-1980s. Its differs from CPLDs in
architecture, storage technology, number of built-in features, and cost.
Aimed at the implementation of high performance, large-size circuits.

* Applications:
* Aerospace and Defense.

Medical Electronics.

*

Wired Communications.

*

*

Wireless Communications.

*

High performance computing.

It consists of a programmable matrix of:

Configurable Logic Blocks (CLBs),
interconnected by an array of switch matrices.
Array Input/output Blocks.

Clock Circuitry.

13

_ Interconnection
Logic Block Resources 1/0 Block

T T T T}
B el ol ol ol 2

Ol EEEEER
1 [EEEEER

] 3
¥ /0 Blocks ok e
RAM Units

Programmable
Interconnect {

14

5.1 Configurable Logic Blocks (CLBS),

A CLB is the fundamental component of an FPGA, allowing the
user to implement virtually any logical functionality within the chip. This
Is achieved by the usage of two sets of similar components within a
block, known as slices.

There are two different types of slices:

e SLICEM: ability to act as distributed memory in addition to its
normal logic functionality.

e SLICEL.: in addition to its normal logic functionality only.

These slices contain four look-up-tables (LUTS), eight flip-flops
(FF), a network of carry logic, and three types of multiplexers.

CLB = 2 slices,
one slice =4 LUTs + 8 FF.
Therefore, one CLB =8 LUTSs + 16FF.

s

CLB

15

=X

7/

QUTPUTS

=Y

COMB.
LOGIC

INPUTS

oO0m»
m
w

K X258

CLOCK

Figure 2.3.8. The XC2000 CLB.

e e e e A A A A A A e e i e e e e

i
LT,
oo
F
[u] 7]
— —
[—)
'} —J
L o a
1
P n—)
9 5o

DATA N

e

e R ey e

(ORI TROM AL
FLINGTHN

i
o]

SRR AR Ry

ay

-
—]

E
;
1

17 (ENARLE)

CLOCK

AESET DIRECT

EIERTTTEY EXTRTEne TErTrrrrree
e

L (INHIEMT)

5
:IE
b
H
1
]
3
;
S
=
S
>
T
H
=
2
-

(GELOERA RESET)

S S e e A A e ot it e

&

Figure 2.3.15. The XC3000 CLB.

16

HEEN

o
|

I 1_]
a b C

Figure 2.3.2. Three Important Pieces. a) Lookup Table. b) Pip. c) Multiplexer
Controlled by a Configuration Memory Cell.

Lookup Table. Figure 2.3.2a shows a four-input lookup table (abbreviated LUn or
function generator, a basic unit of configurable logic. A lookup table implements
combinational logic as a 2" x 1 memory composed of configuration memory cells.
The memory is used as a lookup table, addressed by the n inputs. A lookup table

can implement any of the 22" functions of its inputs.

Programmable Interconnect Point. The second building block is called a
programmable interconnect point, (Pip). Some authors use the term "configurable
interconnect point™ (cip). Pips control the connection of wiring segments in the
programmable interconnect.

Multiplexer. The third building block is a multiplexer controlled by a configuration
memory cell (figure 2.3.2c). The multiplexer is a special-case, one-directional
routing structure. It may be of any width, with more configuration bits for wider
multiplexers. Switches built with multiplexers reduce the number of memory cells
required for controlling the switch, giving an area savings for large switches.

17

5.2 interconnection matrix (switch matrices):
There are long lines that can be used to connect critical CLBs that are

physically far from each other on the chip without inducing much delay.
Theses long lines can also be used as buses within the chip.

There are also short lines that are used to connect individual CLBs that
are located physically close to each other.

Transistors are used to turn on or off connections between different
lines.

& A
>
CLB CLB
Y
CLB CLB

Switch matrix

18

Ay Y B

- N
CLB

ala a alle

» X - el
- N .
alls el

” -
ks ¥ S

W4001

Figure 2.3.25. XC4000 Interconnect.

LLILLLLY | I LLLLLLLL
JswitcH = SWITCH
JMATRIX 3 MATRIX f_
= -
a1 4 2 a F4 54 Gd-
o1 o
kK CLB s L k CLB
F1 F3 el 1
F F
Q1 _F2 C2 G2 Q1 F2 C2
=] 1 I —9
swiTcH SWITCH[
E MATRIX MATRIX
TITTTTT TTTTTTTT
—+— PROGRAMMABLE INTERCOMNEST POINT .:{1145

19

Figure 2.3.26. The XC40(00 Switchbox Connections.

[&]
st
[s][a]

b A—‘?W—-;—'Mr— B
Re VCs R, ve

p 5

Figure 2.3.6. Interconnect Segment Detail. a) Architecture-Level. b) Electrical
Equivalent,

20

MATRHIX
Al |
B—| _
c—| o I as |-
K_“_ + u— _—
Y
— Dl L [| —
SWITCH
MATRIX
|

[

X4291
Figure 2.3.10. XC2000 Interconnect Structure.

5.3 Configurable 1/0 Blocks:

A Configurable input/output (1/0) Block is used to bring signals onto the
chip and send them back off again. It consists of an input buffer and an
output buffer with three-state and open collector output controls.

21

Bus Open Slew
Collector Rate

Express Bus

LocalBus
Express Bus

Express Bus «

Express Bus <

Local
Bus

1/0O Block

22

SLEW PASSIVE
RATE PULL-UPY

CONTROL PULL-DOWN | Voo
““@ | l—4I:%
D> o e
ouT :) FLIP- BUFFER
FLOP
PAD
QUTPUT K
CLOCK

n-$ I:P‘dT
t BUFFER |§

P WO

Figure 2.3.24. The XC4000 IOB.

5.4 Clock Circuitry:

Special I/O blocks with special high drive clock buffers, known as clock
drivers , are distributed around the chip. These buffers connect to clock
input pads and drive the clock signals onto the global clock lines
described above. These clock lines are designed for low skew times and
fast propagation times. Note that synchronous design is a must with
FPGAs, since absolute skew and delay cannot be guaranteed anywhere
but on the global clock lines.

23

5.5 Technologies for programming FPGAs:

e SRAM programming: involves a small static RAM bit for each
programming element.
e flash EPROM bits for each programming element.

24

Five Transistor RAM Cell

) WORD LINE R
f 1
[Lo
. Ves y ¥ec
i 1 ' I

1]
a awl |°—|— — !
p—r ' .
I 1 r 1
1]
e
ol I
BIT . : | !
UNE | e cee-
4L A B X3713

Four Transistor RAM Cell

. WORD LINE)
1 1
e | -1
: Vee " W |
1 ! i !

1 ! i !
b I N 1
ot . ! N
b : - l -
I ! 1 !
I [|
i ! i !
i ! I ! —
BIT I _: 1 I BIT
_———— P |
LINE L A B 1 LINE
Six Transistor RAM Cell
. WORD LINE ,
I_ i | |_ =-==1
. Yoo y Yoo
i | 1 !
]]
: |]] I !
' +] !
. P SE . S
|]
[~ . i . '
' .' =L
Ir - ; ' __
BT | _:] : BIT
LINE 1 = i - - -B- - 1 LINE
X4011

Figure 2.2.1. a) Xilinx Five-Transistor Configuration Memory Cell. b) Four-
Transistor Memory Cell. ¢) Six-Transistor Memory Cell.

25

Example FPGA families

« Altera Stratix IT and Cyclone II families

« Atmel AT6000 and AT40K families

« Lattice LatticeEC and LatticeECP families
« Xilinx Spartan-3 and Virtex-4 families.

Table A3
Xilinx FPGAs.
Virtex 1l Spartan Spartan Spartan
Family Fro(X) Virtex 1f Virtex E Virtex 3 ITE 1
Logic blocks 352- (- 34— 384 192— 384 96—
{CLBs) 11,024 11,648 16,224 6,144 8,320 3456 1,176
Logic cells 3,168 576— 1,728~ 1,728~ 1,728~ 1,728~ 432-
125,136 104,882 73,008 27.648 74,880 15,552 5,292
System gates 40 k- 72 k- S8 k- 50 k- 23 k- 15 k—
8 M 4 M L1 M SM 600 k 200 k
I/O pins 204 BR-1108 176804 180-512 124-784 182-514 | B6-284
1,200
Flip-flops 2.816—- 512- 1,392- 1,392- 1,536- 1,536- 384
28,192 93,184 64,896 24,576 66,560 13,824 4,704
Max. internal | 547 420 240 200 326 200 200
frequency MHz MHz MHz MHz MHz MHz MHz
Supply L5V 1.5V 1LEV 25V 1.2V L8V 25V
voltage

Interconnects SRAM SRAM SRAM SRAM SRAM SRAM SRAM

Technology 0.13u 0.15u 0.18 u 0.22u 0.09 u

O-layer 8-layer O-layer S-layer 8-layer

copper metal metal metal metal

CMOS CMOS CMOS CMOS CMOS
SRAM bits 216 k- 72 k- 64 k— 32 k- 72 k- 2 k- 16 k-
iBlock RAM) | 8 M iM 32k 128 k 1.8 M 288k 56k

26

Performance vs. Flexibility

-___-_-_-_-_-_'_‘—'—-—._
2
-

Flexibility

'.*ll »

Performance
ASIC = Application Specific

Integrated Circuit

Goal: the performance of ASIC's with the
flexibility of programmable processors.

27

(" T {1114 I
W sy (S AU dzala

Ninevah Universjty

Gl g STV dsaia 4408

2 1
=k
/ﬁé@”@\g

College of Electronic Engi

HDL Programming
-VHDL -

Textbook: Volnei A. Pedroni, “Circuit Design with
VHDL", MIT Press London, England, 2004.

Submitted By: Hussein M. H. Aideen

: VHDL> Introduction

e VHDL stands for VHSIC Hardware Description
Language.

 VHSIC is itself an abbreviation for Very High Speed
Integrated Circuits.

e Describes the behavior of an electronic circuit or
system, from which the physical circuit or system
can then be implemented.

e first HDL standardized, IEEE 1076 standard.

-

: VHDL> Introduction

e Once the VHDL code has been written:

e used either to implement the circuit in a
programmable device (from Altera, Xilinx, Atmel, etc.)

e Or can be submitted to a foundry for fabrication of an
ASIC chip.

e Currently, many complex commercial chips
(microcontrollers, for example) are designed using
such an approach.

e |ts statements are concurrent (parallel).

- VHDL> Design

Flow

VHDL entry <

(RTL level) <

lCumpi]atiﬂn

Netlist
(Gate level)

Synthesis -<

i Optimization

Optimized netlist
(Gate level)

Simulation

N\
Place & Route
i =
Physical &€ ==
device = =

Simulation

- VHDL> Design Flow

ENTITY full adder IS
PORT (a, b, cin: IN BIT;
g, cout: OUT BIT);

END full adder;
ARCHITECTURE dataflow OF full adder IS
EEGIN

8 <= a XOR b XOR cin;

cout <= (a AND b) OR (a AND cin) OR

(b AND cin) ;

END dataflow:

- VHDL> Design Flow

a __ o
5, I
(a)
o | P
c:n :}} cout
| P~
()
Figure 1.4

b

Examples of possible circuits obtained from the full-adder VHDL code of figure 1.3.

: VHDL> Code Structure

LIBRARY -\’
declarations
Basic
ENTITY VHDL code
ARCHITECTURE
_

Figure 2.1
Fundamental sections of a basic VHDL code.

: VHDL> Code Structure

LIBRARY declarations:

A LIBRARY is a collection of commonly used pieces of code.
Placing such pieces inside a library allows them to be reused
or shared by other designs.

LIBRARY library name;
USE library name.package name.package parts;

LIERARY 1esee; —— A semi—-colon (;) indicates
USE ieee.std logic 1lé4.all; -- the end of a statement or
LIBERARY std; —— declaration, while a double
USE std.standard.all; —— dash (——) i1ndicates a comment.

LIBEARY work;
USE work.all;

library UNISIM;
use UNISIM.VComponents.all;

-

: VHDL> Code Structure

LIBRARY
PACKAGE
FUNCTIONS
PROCEDURES
COMPONENTS
CONSTANTS
TYPES

: VHDL> Code Structure

An ENTITY is a list with specifications of all input and output
pins (PORTS) of the circuit. Its syntax is shown below.

ENTITY entity name IS
PORT (

port name : signal mode signal type;
port name : signal mode signal type;
A

END entity name;

ENTITY nand gate IS entity fulladderl is
PORT (a, b : IN BIT; Port (a : in STD LOGIC;

cin : in STD LOGIC;

s : out STD LOGIC;

cout : out ETD LOGIC);
end fulladderl;

END nand gate;

VHDL> Code Structure

-

ENTITY entity name IS
PORT (
port name : signal mode signal type;
port name : signal mode signal type;
ea)i

END entity name;

 The mode of the signal can be:

e IN, OUT, INOUT, or BUFFER.
e IN and OUT are truly unidirectional pins,
e INOUT is bidirectional.

e BUFFER, output signal must read internally.

IN —| Circuit

— OUT

4> INOUT

;IFBUﬁﬁR

* The type of the signal can be BIT, STD_LOGIC,
INTEGER, etc. (discussed later).

e Finally, the name any name, except VHDL reserved

words

VHDL> Code Structure

e The ARCHITECTURE is a description of how the circuit
should behave (function). Its syntax is the following:

ARCHITECTURE architecture name OF entity name IS
[declarations] B B

BEGIN
(code)

END architecture name;

e declarative part (optional), where signals and
constants are declared.

» the code part (from BEGIN down)

-

VHDL> Introductory Examples

* DFF with Asynchronous Reset

e Exam: Q1) Write a VHDL code to synthesis the
following circuit (DFF with Asynchronous Reset)
shown In figure below:

d »— >
DFF

clk »—>

st —p——

VHDL> Introductory Examples

* DFF with Asynchronous Reset

e VHDL is inherently concurrent (contrary to regular
computer programs, which are sequential),

e so to iImplement any clocked circuit (flip-flops, for
example) we have to “force” VHDL to be sequential.

PROCESS |)

BEGIN

(sequential code)

END PROCESS

VHDL> Introductory Examples

L

o =1 oy N

11
12
13
14
15
16
17
18
15
20

LIBRARY ieces;
USE ieee.std logic 1164.all;

—»— (

ENTITY dff IS

PORET (d, clk, rst: IN STD LOGIC;
g: OUT STD LOGIC):; d »—
END dff; DFE
ARCHITECTURE behavior OF dff IS clk »—>
BEGIN

PROCESS (rst, clk) st —p——|
BEGIN

IF (rst='1l") THEN

g <= "'0";

ELSIF (clk'EVENT AND clk='1l') THEN

q <= d;

END IF:

END PEOCESS;
END behavior;

VHDL> Introductory Examples

e DFF plus NAND Gate

 Exam: Q2) Write a VHDL code to synthesis the
following circuit (DFF plus NAND Gate) shown in
figure below:

d
O— —q
b DEF

clk >

VHDL> Introductory Examples

1 _______________________________________

2 LIBRARY ieee;

3 TUSE ieee.std logic 1164.all;

2 —

5 ENTITY DFFwNANDgate IS })7 —q
6§ ©PORT (a, b, clk: IN BIT; b— DFF
1 g: OUT BIT):;

§ END DFFwNANDgate; ol P

9 _______________________________________

10 ARCHITECTURE behavior OF DFFwNANDgate IS

11 SIGNAL temp : BIT;

12 BEGIN

13 temp <= a NAND b;

14 PROCESS (clk)

15 BEGIN

16 IF (clk'EVENT AND clk='1') THEN g<=temp;
17 END IF;

18 END PROCESS:?

19 END behavioxy;

VHDL> Introductory Examples

e Home work 1

e Q3) Write a VHDL code for the circuit of figure P2.2.
Notice that it is purely combinational, so a PROCESS is

not necessary. Write an expression for d using only
logical operators (AND, OR, NAND, NOT, etc.).

e

I

-1 o nou L P

O R e e
R BT U R SR R Yoo

-]

Lo

fud ==
= o

|55 I U T % I % (R L B L B L
-l o Lnods L R

library ieee ;
use ieee.std logic lle4.all;
use ieee.=std logic unsigned.all:;

entity counter i=

port(clk: in =td logic:
rezet: in =td logic:
enable: in =td logic:
count : out =td logic vector (3 downto 0)

) :

end counter;

architecture behav of counter is
signal pre count: =std logic vector (3 downto 0);

begin
process (clk, enable, reset)
begin
if reset = '1l' then
pre count <= "0000";
el=zif (clk='l' and clk'ewvent) then
if enable = '1' then
pre count <= pre count + "1";
end if;
end if:;

end process;
count <= pre count;
end behawv;

Counter Test Bench

e Any digital circuit, no matter how complex, needs
to be tested. For the counter logic, we need to
provide a clock and reset logic. Once the counter
IS out of reset, we toggle the enable input to the
counter, and check the waveform to see Iif the

counter Is counting correctly. The same is done in
VHDL

Counter Test Bench

Monitor/Checker

counter out

Testbench file

1 library ieee ;

2 wuse ieee.std logic 1l64.2ll;

3 use ieee.std logic unsigned.all;

4 wuse ieee.std logic textioc.all;

5 use std.textioc.all;

B

7 entity counter thb is

g8 end;

g

10 brchitecture counter tbh of counter th is
11

12 COMPONENT counter

13 PORT (count : OUI =std logic wvector (3 downto 0);
14 clk : IN =td logic:

15 enable: IN std logic:

16 reset : IN std logic):

17 END CCOHMPCHENT !

18

12 SIGHAL clk : std logic := '0';

20 SIGHAL reset : std logic := '0';

21 SIGHAL enable : std logic := '0°';

22 SIGHAL count : std logic wector (3 downto 0):
23

24 begin

E
1

25
26
27
28
29
30
31
32
=]
34
=
36
37
38
39
40
41
42
43
44

Fal =

dut :!: counter
FORT MAFP |
count => count,
clk =» clk,

enable=> enable,
reset => reset);

clock : PROCESS
begin

walit for 1 ns; clk <= not clk;
end PROCESS clock:

stimulus : PROCESS

begin
walilt for 5 n=; reset «<= '1';
walt for 4 n=; reset <<= '0';
walt for 4 ns; enable <= '1';
walit;

end PROCESS stimunlus;

VHDL> Data Types

* Pre-Defined Data Types:
- BIT (and BIT_VECTOR): 2-level logic ('0°, ‘1").

SIGNAL x: BIT;?

—-— X 15 declared as a one-digit signal of type BIT.

SIGNAL y: BIT VECTOR (3 DOWNTO 0);

-—— y 15 a 4-bit wvector, with the leftmost bit being the MSB.
SIGNAL w: BIT VECTOR (0 TO 7);

-—— W 1s an 8-bit wvector, with the rightmost bit being the MSB.

-

VHDL> Data Types

X <= "']1";

|-- x is a single-bit signal (as specified above), whose wvalue 1is
-— '"1', Notice that single gquotes (' ') are used for a single bit.

y <= "0111";

-—— v 15 a 4-bit signal (as specified above), whose value 1s "0111"
—— (MSB='0"). Notice that double quotes (" ") are used for

-— vectors.

w <= "01110001";

-—— W 15 an 8-bit signal, whose wvalue is "01110001™ (MSB='1").

VHDL> Data Types

» STD LOGIC (and STD LOGIC VECTOR):

8-valued logic system introduced in the IEEE
1164 standard.

- ‘X" Forcing Unknown (synthesizable unknown)

> ‘0’ Forcing Low (synthesizable logic ‘1)

‘1’ Forcing High (synthesizable logic ‘0)

'Z' High impedance (synthesizable tri-state buffer)

(0]

(0]

VHDL> Data Types

. SIGNAL xX: 5TD LOGIC?
- —— X 1s declared as a one-digit (scalar) signal of type STD LOGIC.
SIGNAL y: STD LOGIC VECTOR (3 DOWNTO 0) := "OO0O01";
-— y 1s declared as a 4-bit wvector, with the leftmost bit being

-— the MSB. The initial wvalue (optional) of y is "0001"™. Notice
—— that the ":=" operator 1s used to establish the initial wvalue.

VHDL> Data Types

BOOLEAN: True, False.

INTEGER: 32-bit integers
(from -2,147,483,648 to +2,147,483,647).

NATURAL: Non-negative integers
(from O to +2,147,483,647).

SIGNED and UNSIGNED: data types defined in the

std logic_arith package of the ieee library. They have the
appearance of STD LOGIC VECTOR, but accept
arithmetic operations, which are typlcal of INTEGER data

types.
REAL: Real numbers ranging
from -1.0E38 to +1.0E38. Not synthesizable.

Physical literals: Used to inform physical quantities, like
time, voltage, etc. Useful in simulations. Not synthesizable.

VHDL> Data Types

=0

®x1

0

X3

Examples:

<= '0'; -- bit, std logic, or std ulogic wvalue 'O

<= "00011111"; -- bit vector, std logic vector,
-— s5td ulogic wvector, signed, or unsigned

<= "0001 1111"™; -- underscore allowed to ease visualization

<= "101111" -- binary representation of decimal 47

VHDL> Data Types

» Examples:
' x4 <= B"101111" -- binary representation of decimal 47
x5 <= 0"57" -- octal representation of decimal 47
X6 <= X"2F" —-- hexadecimal representation of decimal 47
n <= 1200; —-- integer
m <=1 200; —- 1nteger, underscore allowed
IF ready THEN... —— Boolean, executed if ready=TRUE
y <= 1.2E-5; -- real, not synthesizable

q <= d after 10 ns; -- physical, not synthesizable

VHDL> Data Types

SIGNAL

a: BIT;
'SIGNAL b: BIT VECTOR(7 DOWNTO 0):;
SIGNAL c: STD LOGIC;
' SIGNAL d: STD LOGIC VECTOR (7 DOWNTOC 0):
SIGNAL e: INTEGER RANGE 0 TO 255;
a <= b(3); ——- legal (same scalar type: BIT)
b(0) <= a7 —-—- legal (same scalar type: BIT)
c <= d(5); —— legal (same scalar type: STD LOGIC)
d(0) <= ¢c; —— legal (same scalar type: STD LOGIC)
a <= c; -—- 1llegal (type mismatch: BIT x STD LOGIC)
b <= d; -— 1llegal (type mismatch: BIT VECTOR X

—-— S5TD LOGIC VECTOR)

e <= b; -- 1llegal (type mismatch: INTEGER X BIT VECTCR)

e <= d; —— 1llegal (type mismatch: INTEGER X
—-— STD LOGIC VECTOR)

Ex: Write VHDL code to design 8-3 encoder (use if statement)

(¥ B« IS B VI BT iy L % B

[D % B B L% T % B L% % R S I S B L e e e T e Y o e
[Me D = RS s R Y O L T T S e O ¥ S s VI g Y < L Y % I S o |

library ieee;
uge ieee.std logic 1164.all;

entity encoder using if is
port |
enable :in =std logic:

encoder in :in =td logic vector (7 downto 0)2

binary out :out =std logic wvector (2 downto 0)

) :

end entity;

architecture behavior of encoder using if is

begin
process (enable, encoder in} begin
binary out <= "00";
if (enable = '1'}) then
if (encoder in = X"02") then binary out <=
if (encoder in = X"04") then binary out <

if (encoder in

if (encoder in = X"10") then binary out <

if (encoder in = X"Z0") then binary out <=

if (encoder in = X"40") then binary out <

if (encoder in = X"20") then binary out <=
end if;

end process;
end architecture;

X"0E2") then binary out <

Enakle for the encoder
le-bit Inmput
4 bit binary Cutput

s end
s end
s end
s end
s end
s end
s end

if;
if;
if:
if;
if;
if;
if;

VHDL> Data Types

» User-Defined Data Types:

» VHDL also allows the user to define his/her
own data types.

TYPE integer IS RANGE -2147483647 TO +2147483¢47;
—— This 15 1ndeed the pre-defined type INTEGER.

TYPE natural IS RANGE 0 TO +2147483647;
—— This 1s 1ndeed the pre-defined type NATURAL.

TYPE my integer IS RANGE -32 TO 32;
-— A user-defined subset of integers.

TYPE student grade IS RANGE 0 TO 100;
-— A user-defined subset of integers or naturals.

VHDL> Data Types

TYPE bit IS ('0', "1");
—— This 15 1ndeed the pre-defined type BIT

TYPE my logic IS ('O', '1', 'Z2'):
—— A user-defined subset of std_logic.

TYPE state IS (idle, forward,
backward, stop):

—— An enumerated data type, typical of

—— finite state machines.

TYPE color IS (red, green, blue, white);
—— Another enumerated data type.

VHDL> Data Types

e Sub-Types:

» The main reason for using a subtype rather than specifying a new type is
that, though operations between data of different types are not allowed,
they are allowed between a subtype and its corresponding base type.

SUBTYPE natural IS INTEGER RANGE (0 TO INTEGER'HIGH;
—— As expected, NATURAL 15 a subtype (subset) of INTEGER.

SUBTYPE m}r_lr::gic IS STD LOGIC RANGE '0O' TO 'Z';
-— Recall that STD LOGIC=('X','O','1','Z','W','L','H','-").
—— Therefore, my logic=('0',"'1"','Z").

SUBTYPE my color IS color RANGE red TO blue;
—— Since color=(red, green, blue, white), then
-— my color=(red, green, blue).

SUBTYPE small integer IS INTEGER RANGE -32 TO 32;
—— A subtype of INTEGER.

VHDL> Data Types

 Signed and Unsigned Data Types:
> defined in the std_logic_arith package of the ieee library.

LIBRARY ieee:
USE ieee.std logic 1l64.all;

USE ieee.std logic arith.all; -- extra package necessary

SIGNAL a: IN SIGNED (7 DOWNTO 0);
SIGNAL b: IN SIGNED (7 DOWNTO 0);
SIGNAL x: OUT SIGNED (7 DOWNTO 0);

v <= a + b; -- legal (arithmetic operation OK)
w <= a AND b; -- illegal (logical operation not OK)

VHDL> Data Types

Example: Legal and illegal operations with std_logic_vector.

LIBRARY ieee:

USE ieee.std logic 1164.all; -- no extra package required
SIGNAL a: IN STD LOGIC_VECTOR (7 DOWNTO 0);

SIGNAL b: IN STD LOGIC_VECTOR (7 DOWNTO 0);

SIGNAL x: OUT STD LOGIC VECTOR (7 DOWNTO 0);

v <= a + b; -- 1llegal (arithmetic operation not OK)

w <= a AND b; -- legal (logical operation OK)

LIBRARY ieee:
USE ieee.std logic 1164.all;
USE ieee.std_logic_unsigned.all; -- extra package included

SIGNAL a: IN STD LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL b: IN STD LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL x: OUT STD_LOGIC_VECTOR (7 DOWNTO 0);

v <= a + b; -=- legal (arithmetic operation OK), unsigned

w <= a AND b; -- legal (logical operation OK)

e

™~

VHDL> Data Conversion

 VHDL does not allow direct operations between data of
different types.

e it IS necessary to convert data from one type to another.

e |f the data are closely related: std_logic 1164 of the
leee library provides straightforward conversion
functions.

TYPE long IS INTEGER RANGE -100 TO 100;
TYPE short IS INTEGER RANGE -10 TO 10;
SIGNAL x : short;
SIGNAL vy : long;

y <= 2*x + 5; -- error, type mismatch

y <= long(2*x + 5); -- OK, result converted into type long

/

e

VHDL> Data Conversion

e Data conversion functions: std_logic_arith package of

the ieee library.

keyword

conv_integer(p)

conv_unsigned(p, b)

conv_signed(p, b):

conv_std_logic_vector(p, b)

Input data type

INTEGER, UNSIGNED,
SIGNED, or
STD _ULOGIC

INTEGER, UNSIGNED,
SIGNED, or
STD _ULOGIC

INTEGER, UNSIGNED,
SIGNED, or
STD _ULOGIC

INTEGER, UNSIGNED,
SIGNED, or
STD _ULOGIC

Output data type

INTEGER

UNSIGNED
* Where b is number of bits.

SIGNED

STD_LOGIC_VECTOR

: VHDL> Data Conversion

e Data conversion functions: std_logic_signed or
std_logic_unsigned package of the ieee library.

keyword Input data type Output data type
unsigned(p) STD LOGIC VECTOR UNSIGNED
signed(p): STD LOGIC _VECTOR | SIGNED

: VHDL> Data Conversion

e Example:

LIBRARY ieee:;

USE ieee.std logic 1llé64.all;

USE ieee.std logic arith.all;

SIGNAL a: IN UNSIGNED (7 DOWNTO 0);

SIGNAL b: IN UNSIGNED (7 DOWNTO 0);

SIGNAL y: OUT STD LOGIC VECTOR (7 DOWNTO 0);

y <= CONV_STD LOGIC VECTOR ((a+b), 8);

-- Legal operation: a+b is converted from UNSIGNED to an
-= 8=bit STD LOGIC VECTOR value, then assigned to y.

- VHDL> Examples:

e A 4-bit adder:

a(3:0)

b (3:0) =

B sum (4:0)

- VHDL> Examples:

e A 4-bit adder:

————— solution 1: in/out=SIGNED ----- ———— Scolution 2: out=INTEGER --—-———
LIBRARY leee; LIBRARY ieee;

USE leee.std logic 1l64.all; USE ieee.std logic 11l64.all;

USE leee.std logic arith.all; USE ieee.std logic arith.all:
ENTITY adderl IS ENTITY adder2 IS

PORT (a, b : IN SIGNED (3 DOWNTO 0); poRT (a, b : IN SIGNED (3 DOWNTO O
sum : OUT SIGNED (4 DOWNTO 0)); sum : OUT INTEGER RANGE -16 TO 15);
END adderl; END adder2;

ARCHITECTURE adderl OF adderl IS ARCHITECTURE adder2 OF adder2 IS
BEGIN BEGIN

sum <= a + b:

sum <= CONV INTEGER(a + b):
END adderl; o

END adder?;

: VHDL>Static and non-static data

e CONSTANT:
e establish default values

e can be declared in a PACKAGE, ENTITY, or
ARCHITECTURE.

CONSTANT name : type := value;
CONSTANT set bit : BIT := '1';
CONSTANT datamemory : memory := (('0','0','0','0"),

{IDIIIDIIIDIII:LI}I
{lDlIlDlIllljllf}};

: VHDL>Static and non-static data

» GENERIC:

e specifying a generic parameter (that is, a static
parameter).

e code more flexibility and reusability.
e must be declared in the ENTITY.

GENERIC (parameter name : parameter type := parameter value);

ENTITY adderZ IS

GENERIC (n : INTEGER := 8);
PORT (a, b : IN SIGNED (3 D
c1m + ATIT TNTERFR RANCE |-1&

: VHDL>Static and non-static data

o SIGNAL:

e pass values in and out the circuit, as well as between its
Internal units.

e circuit interconnects (wires).

SIGNAL name : type [range] [:= initial value];

SIGNAL control: BIT := '0';
SIGNAL count: INTEGEE BANGE 0O TO 100;
SIGNAL Vy: ETJ_LDGIC_?ECTGR (7 DOWNTO 0) ;

: VHDL>Static and non-static data

* VARIABLE:
e represents only local information.

e |t can only be used inside a sequential code (PROCESS
for example).

VARIABLE name : type [range] [:= init value];

varliable control: BIT := '0';
varliable count: INTEGEE EANGE 0O TO 100;
variable Vo ET:_LDGIC_’*JECTDR (7 DOWNTO Q) ;

: VHDL>Static and non-static data

Table 7.1
Comparison between SIGNAL and VARIABLE.
SIGNAL VARIABLE
Assignment | <= =
Utility Represents circuit interconnects (wires) Represents local mformation
Scope Can be global (seen by entire code) Local (visible only inside the
corresponding PROCESS, FUNCTION,
or PROCEDURE)
Behavior Update is not immediate in sequential Updated immediately (new value can be
code (new value generally only available used in the next line of code)
at the conclusion of the PROCESS,
FUNCTION, or PROCEDURE)
Usage In a PACKAGE, ENTITY, or Only in sequential code, that is, in a
ARCHITECTURE. In an ENTITY, all PROCESS, FUNCTION, or
PORTS are SIGNALS by default PROCEDURE

- VHDL> Operators

 VHDL provides several kinds of pre-defined
operators:
e Assignment operators
e Logical operators
e Arithmetic operators
e Relational operators
e Shift operators
e Concatenation operators

- VHDL> Operators

* Assignment operators

<= SIGNAL.

= VARIABLE, CONSTANT,
GENERIC,
initial values.

=> vector elements or with
OTHERS.

- VHDL> Operators

* Assignment operators

SIGNAL x @ STD LOGIC:

VARIABLE y : STD LOGIC VECTOR (3 DOWNTO 0); —- Leftmost bit 1s MSB
SIGNAL w: STD LOGIC VECTOE(OD TO 7); —— Rightmost bit is —- MSB

X <= "1'"; —— '1'" is assigned to SIGNAL X using "<="

y := "0000™p; -- "0000™ is assigned to VARIABLE y using ":="

w <= "10000000"; —— LSB is '1l', the others are '0°

w <= (0 =>'1'", OTHEERS =>'0"); —- LSB 15 '"1', the others are '0'

- VHDL> Operators

. NOT
AND
OR
NAND
NOR
XOR
XNOR

 Logical operators:
e perform logical operations.

. Data types: BIT, STD_LOGIC, STD_ULOGIC,
BIT VECTOR, STD_LOGIC_VECTOR, or

STD_ULOGIC_VECTOR

Examples:

y <= NOT a AND b; -- (a'.b)
y <= NOT (a AND b); -- (a.b)'
y <= a NAND b; -- (a.b)'

- VHDL> Operators

e Arithmetic Operators:
e perform arithmetic operations

o data types: INTEGER, SIGNED, UNSIGNED, or
REAL

» With std _logic_signed or std_logic_unsigned
package: STD LOGIC VECTOR.

+ Addition

— Subtraction

* Multiplication

/ Division only power of two dividers

ok Exponentiatinn only static values of base and exponent are accepted

- VHDL> Operators

e N bit adder circuit:

library ieee;

use ieee.std logic 1lle4.all:

use ieee.std logic arith.all:
use ieee.std logic unsigned.all;

entity ADDER 1is=

generic(n: natural :=2);

port(A: in =std logic vector(n-1 downto 0);
B: in =td logic vector(n-1 downto 0);
cCarry: out =std logic:
Sum: out std logic wvector (n-1 downto 0)

) :

end ADDER:

- VHDL> Operators

e N bit adder circuit:

architecture behv of ADDER 1=
—— define a temparary =2ignal to store the result
signal result: =std logic vector(n downto 0);
begin

—— the 3rd bit =should be carry

result <= ('0"' & A)+('0" & B):

sum <= result(n-1 downto Q);

carry <= result(n):

end behw;

- VHDL> Operators

e Comparison Operators:
e Used for making comparisons.
e Data types: any.

= Equal to
/= Not equal to
< Less than

> QGreater than
<= Less than or equal to
>= Qreater than or equal to

- VHDL> Operators

N bit comparator:

library ieee;
use ieee.std logic 1l64.all;

entity Comparator 1s

generic(n: natural :=2):

port{ A: in std logic vector(n-1 downto 0);
B: in =td logic vector(n-1 downto 0);
le==s: out std logic;
equal: out =std loglc:
greater: out =std logic

) ;

end Comparator;

- VHDL> Operators

architecture behv of Comparator 1is

begin

process (LA, B)
begin
if (A<EBE) then
lesz <= '1"';
equal <= '0°';
greater <= '0';
el=if (A=B) then
les=z <= '0';
equal <= '1"';
greater <= '0';
else
les=z <= '0';
equal <= '0';
greater <= '1"';
end if:
end process;

end behvw;

- VHDL> Operators

e Shift Operators:

* sll Shift left logic — positions on the right are filled with ‘0’s
+ srl Shift right logic — positions on the left are filled with ‘0’s
e Syntax:

(left operand) {shift operation) {right operand>

/ \

BIT_VECTOR INTEGER

sll, srl, sla, sra, rol, ror

: VHDL> Data Attributes

* The pre-defined, synthesizable data attributes are the
following:

o d’LOW: Returns lower array index

HIGH: Returns upper array index

_EFT. Returns leftmost array index

d
d
o d’RIGHT: Returns rightmost array index
d
d

'LENGTH: Returns vector size

'RANGE: Returns vector range

« dREVERSE_ RANGE: Returns vector range in
reverse order

: VHDL> Data Attributes

Example: Consider the following signal:

SIGNAL d : STD LOGIC VECTOR (7 DOWNTO 0);

Then: D7 | D6 | D5 | D4 | D3 | D2 | D1 | DO
d'LOW=0, d'HIGH=7, d'LEFT=7, d'RIGHT=0, d'LENGTH=8,
d'RANGE=(7 downto 0), d'REVERSE RANGE=(0 to 7).

Example: Consider the following signal:

SIGNAL x: STD_LOGIC _VECTOR (0 TO 7);

Then all four LOOP statements below are synthesizable and equivalent.

FOR i IN RANGE (0 TO 7) LOOP ... Do | D1 | D2 | D3| D4 | D5 | D6 | D7

FOR 1
FOR 1i
FOR 1

-

IN x'RANGE LOOP ...

IN RANGE (x'LOW TO x'HIGH) LOOP ...
IN RANGE (0 TO x'LENGTH-1) LOOP ...

e
VHDL> Signal Attributes

e Let us consider a signal s. Then:
e SSEVENT: Returns true when an event occurs on s.
e S'STABLE: Returns true if no event has occurred on s.

IF (clk'EVENT AND clk='l")... -- EVENT attribute used
-- with IF

IF (NOT clk'STABLE AND clk='1l')... -- STABLE attribute used
-=- with IF

WAIT UNTIL (clk'EVENT AND clk='1l"'); -- EVENT attribute used
-= with WAIT

IF RISING EDGE(clk)... -- call to a function

e
VHDL> User-Defined Attributes

e VHDL also allows the construction of user defined
attributes.

ATTRIBUTE attribute name: attribute type;

ATTRIBUTE attribute name OF target name: class IS value;

—— declaration
ATTRIBUTE number of inputs: INTEGER;
-— specification
ATTRIBUTE number of Inputs OF nand3: SIGNAL IS 3;

—-— attribute call, returns 3
inputs <= nand3'number of pins;

e
VHDL> Examples

e Generic Parity Detector:

e The circuit must provide output = ‘O’ when the number
of "1’s in the input vector is odd, or output =1’

otherwise.

input (n:0) e

PARITY
DETECTOR

—» output

e
VHDL> Examples

» Generic Parity Detector:

LIBRARY leee;
USE leee.std logic 1l64.all;

ENTITY parity det IS
GENERIC (n : INTEGER := 7);

PORT (input: IN Std loglic VECTOR (n DOWNTC 0);

output: out sStd logic);
END parity det;

ARCHITECTURE parity OF parity det IS

BEGIN
PROCESS (1nput)

VARIABLE temp: Std logics
BEGIN

temp := '0';

FOR 1 IN input'RANGE LOOCP
temp := temp XOR input(i);
END LOOE;

output <= not temp:;

END PROCESS?

END parity;

temp

XOR

input

Ok |k ORIk |O

e
VHDL> Examples

* Generic Parity Generator:

e The circuit must add one bit to the input vector (on its
left).

e Such bit must be a ‘0O’ if the number of ‘1’s in the input
vector is even, or a ‘1" if it is odd, such that the resulting
vector will always contain an even number of ‘1’s (even

parity).

. PARITY
input (n-1:0) sy GENERATOR [output (n:0)

e
VHDL> Examples

e Generic Parity Generator:

library IEEE;)

use IEEE.STD LOGIC 1164.ALL; Input temp2
T T T T 1 1
ENTITY parity gen IS

GENERIC (n : INTEGER := 7); 0 0
PORT (input: IN STD LOGIC VECTOR (n-1 DOWNTO 0); 1 1
output: OUT STD LOGIC VECTOR (n DOWNTO 0)); 1 — 1
P mEmtSeM 0 > 0
ARCHITECTURE parity OF parity gen IS 1 1
BEGIN 1 1
PROCESS (input) 0

VARIABLE templ: S5TD LOGIC;
VARIABLE tempZ: STD LOGIC VECTOR (output'RANGE) ;

BEGIN templ
templ := '0";

FOR 1 IN input' RANGE LOOP 0
templ := templ XOR input(i);

temp2 (1) := input(i):

END LOOP;

temp? (output'HIGH) := templ:;

output <= temp2;
END PROCESS;

END parity; ///

e
VHDL> Examples

e Generic Decoder:

e If ena = ‘0’, then all bits of x should be high; otherwise,
the output bit selected by sel should be low.

X(n-1
sel (m-1:0) = _: KEH_Z;
Im X 11
DECODER
—» X(1)
ena —p > x(0)

m = logn

cna

sel

1111

01
10
11

1110
1101
1011
0111

e
VHDL> Examples

e Generic Decoder:

LIBRARY ieee;

USE leee.std logic 1le4.all:

ENTITY decoder IS

PORT (ena : IN STD LOGIC;

sel ¢ IN STD LOGIC VECTOR (2 DOWNTO O0);
X ¢ OUT STD LOGIC VECTOR (7 DOWNTO 0)):
END decoder;

ARCHITECTURE generic decoder OF decoder IS
BEGIN

PROCESS (ena, sel)

VARIABLE templ : STD LOGIC VECTOR (X'HIGH DOWNTO O0);
VARIABLE tempZ : INTEGER RANGE 0 TO x'HIGH;
BEGIN

templ := (OTHERS => '1');

IF (ena="1") THEN
temp2:=conv integer (signed(sel)):;

templ (temp2) :='0";

END IF;

X <= templ:;

END PROCESS;

END generic_decoder;

(" T {1114 I
W sy (S AU dzala

Ninevah Universjty

Gl g STV dsaia 4408

2 1
=k
/ﬁé@”@\g

College of Electronic Engi

HDL Programming
-VHDL- 2

Textbook: Volnei A. Pedroni, “Circuit Design with
VHDL", MIT Press London, England, 2004.

Submitted By: Hussein M. H. Aideen

- VHDL> Concurrent & sequential Code

e Concurrent Code:
o WHEN,
e GENERATE,

e Assignments using only operators (AND, NOT, +, *, sll,
etc.),

e A special kind of assignment, called BLOCK.

e Sequential Code:
e PROCESSES, FUNCTIONS, PROCEDURES.
 IF, WAIT, CASE, and LOOP.
* VARIABLES.

e

VHDL>Combinational vs Sequential Logic?

e Combinational Logic: output depends solely on the

current inputs.

INPUL mpp

Combinational
Logic

== Output

» sequential logic: output depend on previous

iInputs.

INput spp

present
state Storage

Combinational
Logic

output

Elements

next
state

4 .
VHDL> Concurrent versus Seguential

 VHDL code is inherently concurrent (parallel).

e Only statements placed inside a PROCESS,
FUNCTION, or PROCEDURE are sequential.

e the block, as a whole, is concurrent with any other
(external) statements.

e Concurrent code Is also called dataflow code.

e Concurrent: The order does not matter.

-

: VHDL> Concurrent Code

e In summary, in concurrent code the following can be
used:
e Operators;

e The WHEN statement (WHEN/ELSE or
WITH/SELECT/WHEN);

e The GENERATE statement;
e The BLOCK statement.

: VHDL> Concurrent Code

e Operators: Operators are type of Concurrent code.

Table 5.1
Operators.
Operator type Operators Data types
Logical NOT, AND, NAND, BIT, BIT_VECTOR,
OR, NOR, XOR, XNOR STD_LOGIC, STD_LOGIC_VECTOR,
STD_ULOGIC, STD_ULOGIC_VECTOR
Arithmetic =, k], INTEGER, SIGNED, UNSIGNED
(mod, rem, abs)
Comparison =, /= <, >, <= >= All above
Shaft sll, srl, sla, sra, rol, ror BIT_ VECTOR
Concatenation &, (,,,) Same as for logical operators, plus SIGNED and

UNSIGNED

e

VHDL> Concurrent Code Examples

™

. g —
e Multiplexer #1
b —
- | MUX
2 LIBRARY 1leee; C —
3 USE leee.std logic 1l64.all; d
N _ _
5 ENTITY mux IS s1 sO
o PORT (a, b, ¢, d, s0, sl: IN STD LOGIC;
7 y: OUT S5TD LOGIC):
8 END mux;

Lo

10 ARCHITECTURE pure logic OF mux IS

11 BEGIN

12 y <= (a AND NOT sl1 AND NOT s0) OR

13 (b AND NOT s1 AND s0) OR

14 (c AND 51 AND NOT s0) OR

15 (d AND 51 AND s0);

16 END pure logic;

O

: VHDL> Concurrent Code

* WHEN (Simple and Selected)

WHEN | ELSE:

assignment WHEN condition ELSE
assignment WHEN condition ELSE

-
- = F

WITH |/ SELECT /| WHEN:

WITH identifier SELECT
assignment WHEN value,
assignment WHEN value,

.
- & F

: VHDL> Concurrent Code

e Whenever WITH / SELECT / WHEN Is used:

 all permutations must be tested,
e keyword OTHERS is often useful.

» keyword UNAFFECTED,
e which should be used when no action is to take place.

 "WHEN value” can indeed take up three forms:

WHEN value -- single value

WHEN valuel to value2 -- range, for enumerated data types
-- only

WHEN valuel | value2 |... -- valuel or value2 or ...

-

: VHDL> Concurrent Code

 Examples:

------ With WHEN/ELSE —-=--eemmm e
outp <= "000" WHEN (inp='0' OR reset='1l') ELSE
"001" WHEN ctl='l' ELSE

||ﬂ1D|| &

r

—=== With WITH/SELECT/WHEN
WITH control SELECT

output <= "000" WHEN reset,
"111l" WHEN set,
UNAFFECTED WHEN OTHERS;

: VHDL> Concurrent Code

(= PV]

H W 0 < o N

11
12
13
14
15
16
17

Multiplexer #2: when/else

------- Solution 1: with WHEN/ELSE —-=————=-=
LIBRARY ieee:

USE ieee.std_logic_1164.all;

ENTITY mux IS
PORT (a, b, ¢, d: IN STD LOGIC;
sel: IN STD LOGIC_VECTOR (1 DOWNTO 0);
y: OUT STD LOGIC);

ARCHITECTURE muxl OF mux IS
BEGIN
y <= a WHEN sel="00" ELSE
b WHEN sel="01" ELSE
c WHEN sel="10" ELSE
d;
END muxl;

q —1
b —
MUX
C_
d —
sel (1:0)

: VHDL> Concurrent Code

o Multiplexer #2: with/select/when

1 --- Solution 2: with WITH/SELECT/WHEN —-----
2 LIBRARY ieee:
3 USE ieee.std logic 1164.all;

ENTITY mux IS
PORT (a, b, ¢, d: IN STD LOGIC;

5
6
7
8 y: OUT STD LOGIC);
9
1
11 ARCHITECTURE mux2 OF mux IS

12 BEGIN
13 WITH sel SELECT

\\\ 18 END mux2;

sel: IN STD_LOGIC_VECTOR (1 DOWNTO 0);

" |
—- (e (B (] (& ()

q —
b —

MUX y
C_
d —

sel (1:0)

whnen

14 y <= a WHEN "00", -- notice "," instead of ":;"
15 b WHEN "O1",
16 c WHEN "10",
17 d WHEN OTHERS; -- cannot be "d WHEN "11" "

: VHDL> Concurrent Code

cna

e Tri-state Buffer:

input (7:0) output (7:0)
1 LIBRARY ieee:;

2 USE ieee.std logic 11l64.all;
S
4 ENTITY tri state IS

5 PORT (ena: IN STD_LOGIC;

6 input: IN STD LOGIC VECTOR (7 DOWNTO 0);
7 output: OUT STD LOGIC VECTOR (7 DOWNTO 0));
8 END tri state;

L

10 ARCHITECTURE tri state OF tri state IS

11 BEGIN

12 output <= input WHEN (ena='0') ELSE

13 (OTHERS => 'Z');

14 END tri state;

: VHDL> Concurrent Code

* Home Works: Encoder: page 73:

ARCHITECTURE encoderl OF encoder IS
BEGIN
y <= "000" WHEN x="00000001" ELSE

"001l" WHEN x="00000010" ELSE
"01l0" WHEN x="00000100" ELSE
"01ll" WHEN x="00001000" ELSE
"100" WHEN x="00010000" ELSE
"101" WHEN x="00100000" ELSE
"110" WHEN x="01000000" ELSE
"111" WHEN x="10000000" ELSE
"ZZZ";

X(n-1) —p
X(n-2) —p

X(1) —»
X(0) —»

nxm
ENCODER

= (m-1:0)

: VHDL> Concurrent Code

e Home Works: ALU: page 75

a (7:0)
b (7:0)

cin

sel (3:0)

I Logic
Mux
_- : Arithmetic
Unit sel (3)
|

y (7:0)
sel Operation Function Unit
0000 y<=a Transfer a
0001 y <=a+l Increment a
0010 y <=a-1 Decrement a
0011 y<=b Transfer b Arithmetic
0100 y <=b+l Increment b
0101 y <=b-1 Decrement b
0110 y <=a+b Addaand b
0111 y <= a+b+cin Add a and b with carry
1000 y<=NOTa Complement a
1001 y<=NOTb Complement b
1010 | y<=a ANDD AND
1011 y<=aORb OR Logic
1100 | y<=aNANDb NAND
1101 | y<=aNORDb NOR
1110 | y<=aXORb XOR
1111 | y<=a XNOR b XNOR

: VHDL> Concurrent Code

e The GENERATE statement:

e allows a section of code to be repeated a number of
times (loop).
e GENERATE must be labeled.

e limits of the range must be static.

label: FOR identifier IN range GENERATE
(concurrent assignments)

END GENERATE;

: VHDL> Concurrent Code

* |[F/GENERATE: (ELSE is not allowed).

e |[F/GENERATE can be nested inside FOR/GENERATE,
the opposite can also be done.

labell: FOR identifier IN range GENERATE
label2: IF condition GENERATE
(concurrent assignments)

END GENERATE;

END GENERATE;

: VHDL> Concurrent Code

e Example:

SIGNAL x: BIT VECTOR (7 DOWNTO 0);
SIGNAL y: BIT VECTOR (15 DOWNTO 0);
SIGNAL z: BIT VECTOR (7 DOWNTO 0);

Gl: FOR 1 IN x'RANGE GENERATE
z(i) <= x(i) AND y(i+8);
END GENERATE:;

: VHDL> Concurrent Code

e Vector Shifter:

e the output vector must be a shifted version of the input
vector, with twice its width and an amount of shift
specified by another input.

row(0): 00 0 O{MJ Input vector
row(1):00011110
row(2):00111100
row(3):01111000
row(4): 11110000

: VHDL> Concurrent Code

e Vector Shifter:

2 LIBRARY leee;

3 USE ieee.std logic 1le4.all;

4 __
5 ENTITY shifter IS

& PORT (inp: IN STD LOGIC VECTOR (3 DOWNTO 0):

7 sel: IN INTEGER RANGE 0 TO 4;

g8 outp: OUT STD LOGIC VECTOR (7 DOWNTO 0)):

9 END shifter;

14— " =TT

: VHDL> Concurrent Code

11
12
13
14

15
16
17
18
15
20
21
22

e Vector Shifter:

ARCHITECTURE shifter OF shifter IS

SUBTYPE wector IS STD LOGIC VECTOR (7 DOWNTO Q) ;
TYPE matrix IS ARRAY (4 DOWNTO 0) OF vector;
SIGNAL row: matrix;

BEGIN

row(0) <= "0000"™ & 1inp;

Gl: FOER 1 IN 1 TO 4 GENEEATE

row(l) <= row(i-1) (&€ DOWNTO 0) & '0';

END GENERATE:;

outp <= row(sel); rﬂwﬂ”ﬂ}ﬂﬂ{#]lli

END shifter; row(1): 00011110
_______________________ row(2):00111100
row(3):01111000
row(4):11110000

/

: VHDL> Concurrent Code

 BLOCK:

e Simple BLOCK

e |ocally partitioning the code.

e turning the overall code more readable (long
codes).

e can be nested inside another BLOCK.

label: BLOCK

[declarative part]
BEGIN

(concurrent statements)
END BLOCE label:

: VHDL> Concurrent Code

o Simple BLOCK: ARCHITECTURE example ...

BEGIN

blockl: BLOCEK
BEGIN

END BLOCEK blockl

blockZ: BLOCEK
BEGIN

END BLOCE blockZ;

END example;

: VHDL> Concurrent Code

e Nested BLOCK:
nesited

labell: BLOCK
[declarative part of top block]
BEGIN
[concurrent statements of top block]
labelZ: BLOCK
[declarative part nested block]
BEGIN
(concurrent statements of nested block)
END BLOCEKE label?l;
[more concurrent statements of top block]
END BLOCE labell;

: VHDL> Concurrent Code

e Guarded BLOCK:

e Includes an additional expression, called
guard expression.

* A guarded statement executed only when
the guard expression iIs TRUE.

e sequential circuits can be constructed.

label: BLOCK (guard expression)
[declarative part]
BEGIN

(concurrent guarded and unguarded statements)
END BLOCK label:;

- VHDL> Concurrent Code Example

e DFF with Guarded BLOCK:

LIBRARY leee;

USE 1eee.std logic 1164.all;
ENTITY dffwGBlock IS

PORT (d, clk, rst: IN STD LOGIC;
q: OUT STD LOGIC):;

END dffwGBlock:

ARCHITECTURE dff OF dffwGBlock IS
BEGIN

pbl: BLOCK (clk'EVENT AND clk='1")
BEGIN

q <= GUARDED '0' WHEN rst='1l' ELSE d;
END BLOCEK bl;

END dff;

- VHDL> Concurrent Code Example

e Problem 5.2: Priority Encoder

First

Second
Third

Fourth
Fifth
Sixth
Seventh

din dout

‘0’ —»{ 7 PRIORITY Binary
‘1" & 6 ENCODER 110
‘0" —» 5

;01 — _1_ 2 _» ;11

1 | 3 | > 1

> 2 0 [O

‘0 ¢ 1

aﬂut <= " " when din(7)="1"'" else

" when din(e)="1"'" else
" when din(5)="1" else

re (RS, L L d —_——

: VHDL> Concurrent Code

e Problem 5.2: Priority Encoder

1 library IEEE;

2 use IEEE.STD LOGIC 1164.all;

3 use leee.numeric std.all;

4 ___
5 entity pri encoder 8 3 1s

© port(

7 din : in STD LOGIC VECTOR (7 downto 0):

8 dout : out STD LOGIC VECTOR(Z downto 0)

9)i

10 end pri encoder 8 3;

: VHDL> Concurrent Code

12

13 begin

14 dout <= "000" when din(7)="1"
15 "001"™ when din(e)="1"
16 "010"™ when din(5)="1"
17 "011" when din(4)="'1"
18 "100"™ when din(3)='"1"
19 "101"™ when din(2)="1"
20 "110"™ when din(l)='"1"
21 "111" when din(0)='1";
22 end pril enc arc;

e Problem 5.2: Priority Encoder

architecture pri enc arc of pri encoder 8 3 1s

else
else
else
else
else
else

e]lse

VHDL> Sequential Codee

- VHDL> Sequential Code

e PROCESSES, FUNCTIONS, and PROCEDURES
are executed sequentially.

e any of these blocks is still concurrent with any other
statements placed outside it.

e with it we can build sequential circuits as well as
combinational circuits.

- VHDL> Sequential Code

e |F, WAIT, CASE, and LOOP.
 VARIABLES restricted to be used in sequential code.

" VHDL> PROCESS

e A PROCESS must be installed in the main code.

e executed every time a signal in the sensitivity list
changes.

[label:] PROCESS (sensitivity list)

[VARIAELE name type [range] [:= initial value;]]
BEGIN

(sequential code)
END PROCESS [label]:

" VHDL> PROCESS

e Initial value Is not synthesizable.

e monitoring a signal (clock, for example) is necessary.
A common way of detecting a signal change is by
means of the EVENT attribute.

e Forinstance, if clk is a signal to be monitored, then
clkEVENT returns TRUE when a change on clk
occurs (rising or falling edge).

" VHDL> PROCESS

e |F statement:

IF conditions THEN assignments;
ELSIF conditions THEN assignments;

ELSE assignments;
END IF:

IF (x<y) THEN temp:="11111111";
ELSIF (x=y AND w='0"') THEN temp:="11110000";
ELSE temp:=(0OTHERS =>'0");
end 1f

: VHDL> |IF statement

1 P

CoO -] &y N

e One-digit Counter #1

e 1-digit decimal counter (0 - 9 - 0).

LIBRARY leee;
USE leee.std logic 1le4.all;

clk —

AM=EZ2cC 00

M digit (3:0)

ENTITY counter IS

PORT (clk : IN STD LOGIC;

digit : OUT INTEGER RANGE 0 TO 9);
END counter;

: VHDL> |F statement

e One-digit Counter #1

C
e 1-digit decimal counter (0 - 9 - 0). 0
clk — N = digit (3:0)
10 ARCHITECTURE counter OF counter IS E
11 BEGIN R
12 count: PROCESS (clk)
13 VARIABLE temp : INTEGER RANGE 0 TO 10;
14 BEGIN
15 IF (clk'EVENT AND clk='1l'"') THEN
le temp := temp + 1;
17 IF (temp=10) THEN temp := 0;
18 END IF;
19 END IF;
20 digilt <= temp:
21 END PROCESS count;
22 END counter;
23 e

: VHDL> |F statement

e 4 bit Shift Register:

d
DFF DFF DFF DFF
I‘) [—> I—> [—>

clk l

rst i & 5
1 ___
P LIBRARY leee;
3 USE leee.std logic 1164.all;
4 ___
5 ENTITY shiftreg IS
(3 GENERIC (n: INTEGER := 4); —— # of stages
7 PORT (d, clk, rst: IN STD LOGIC;
8 q: OUT STD LOGIC):;
9 END shiftreq:;

: VHDL> |F statement

11
12
13
14
15
16
17
18
19
20
21
22
23
24

-

e 4 bit Shift Register:

ARCHITECTURE behavior OF shiftreqg IS

SIGNAL internal: STD LOGIC VECTOR (n—-1 DOWNTO 0);
BEGIN

PROCESS (clk, rst)

BEGIN

IF (rst="1") THEN

internal <= (OTHERS => '0');

ELSTF (clk'EVENT AND clk='1'") THEN

internal <= d & 1internal (internal'LEFT DOWNTO 1) ;
END IF;

END PROCESS;

q <= 1nternal (0):
END behavior;

d

—q

: VHDL> WAIT statement

o WAIT statement:

e the PROCESS cannot have a sensitivity list when
WAIT Is employed.

WAIT UNTIL signal condition;

WAIT ON signall [, signal2, ...];

WAIT FOR time; Simulation only

: VHDL> WAIT statement

o WAIT statement:

e the PROCESS cannot have a sensitivity list when
WAIT Is employed.

Example: 8-bit register with synchronous reset.
PROCESS -- no sensitivity list
BEGIN
WAIT UNTIL (clk'EVENT AND clk='1"):
IF (rst="1") THEN
output <= "00000000";
ELSIF (clk'"EVENT AND clk="1"') THEN
output <= input;
END IFE;
END PEOCESS;

e

VHDL> WAIT statement

o WAIT ON:

Example: 8-bit register with asynchronous reset.
PROCESS

BEGIN
WAIT ON clk, rst;
IF (rst='1'") THEN

ELSIF (clk'EVENT AND clk='1")
output <= input;
END I1E;
END PROCESS?

THEN

e WAIT FOR is intended for simulation only (waveform
generation for testbenches). Example: WAIT FOR 5ns;

-

/

: VHDL> WAIT statement

e Home Works:
e DFF with Asynchronous Reset #2, P99.
e One-digit Counter #2, P99-100.

: VHDL> CASE statement

o CASE statement:
CASE identifier IS
WHEN value => assignments;

WHEN value => assignments:

END CASE:

CASE control IS

WHEN "00" => x<=a; y<=b;

WHEN "01" => x<=b; y<=C;

WHEN OTHERS => x<="0000"; y<="ZZZZ";
END CASE;

e

VHDL> CASE statement

-

e CASE statement:

 CASE statement (sequential) is very similar to WHEN
(combinational)

» keyword OTHERS is often helpful.

e Another important keyword is NULL (the counterpart
of UNAFFECTED), which should be used when no
action is to take place.

e CASE allows multiple assignments for each test
condition.

: VHDL> CASE statement

e Two-digit Counter with SSD Output:

digit]

Input: “xabcdefg™

- VHDL> Two-digit Counter with SSD

™

CO =] &y N = L M

I e R e e e e e e e
O W0 - MU WO W

LIBRARY leee;

USE leee.std logic 1led.all;

ENTITY counter2digit IS

PORT (clk, reset : IN STD LOGIC;

digitl, digit2 : OUT STD LOGIC VECTOR (& DOWNTOC 0));
END counter2digit;

ARCHITECTURE counter OF counter2digit IS

BEGIN

PROCESS (clk, reset)

VARIABLE templ: INTEGER RANGE 0 TO 10;
VARTIABLE tempZ: INTEGER RANGE 0 TO 10;
BEGIN

-—--—- counter: -----————"-—-—"—-—"—--—-—-
IF (reset='1"') THEN

templ := 0;

temp2 := 0;

ELSIF (clk'EVENT AND clk='1l'"') THEN

- VHDL> Two-digit Counter with SSD

™

20
21
22
23
24
23
26
27
28
29
30

ELSIF (clk'EVENT AND clk='1l"') THEN
templ := templ + 1;
IF (templ=10) THEN
templ = 0;

tenpZ = tempZ + 1;
IF (tempZ=10) THEN
temp2 = 0;

END IF;

END IF;

END IF;

-——— BCD to SSD conversion: ———————-—

N
—_ mmeHZEcConN

- VHDL> Two-digit Counter with SSD

™

30
31
32
33
34
35
36
37
38
39
40
41
42
43

BCD to SSD conversion:

- =

CASE templ IS
WHEN 0 => digitl
WHEN 1 => digitl
WHEN 2 => digitl
WHEN 3 => digitl
WHEN 4 => digitl
WHEN 5 => digitl
WHEN & => digitl
WHEN 7 => digitl
WHEN 8 => digitl
WHEN 9 => digitl
WHEN OTHERS => NULL;
END CASE;

= "1111110%;

"0110000%;
"1101101%;
"1111001"%;
"0110011%;
"1011011";
"1011111"%;
"1110000";

= "1111111"%;

"1111011";

——7E
—-30
~—6D
—-79
--33
——5B
—-5F
——70
——7F
——7B

- VHDL> Two-digit Counter with SSD

™

44 CASE tempZ IS

45 TWHEN 0 => digit2 <= "1111110"; --7E
46 WHEN 1 => digit2 <= "0110000"; --30
47 TWHEN 2 => digit2 <= "1101101"; —-6D
48 TWHEN 3 => digit2 <= "1111001"; —-79
49 TWHEN 4 => digit2 <= "0110011"; --33
50 WHEN 5 => digit2 <= "1011011"; —--5B
51 WHEN 6 => digit2 <= "1011111"; --5F
52 WHEN 7 => digit2 <= "1110000"; --70
53 WHEN 8 => digit2 <= "1111111"; —--7F
9

54 WHEN => digit2 <= "1111011"; —-7B

55 WHEN OTHEES => NULL;

56 END CASE:;

57 END PROCESS;

58 END counter;

5% —--—-—--""M"""""-—--""—"——---"——\———-

(" T {1114 I
W sy (S AU dzala

Ninevah Universjty

Gl g STV dsaia 4408

2 1
=k
/ﬁé@”@\g

College of Electronic Engi

HDL Programming
-VHDL- 3

Textbook: Volnei A. Pedroni, “Circuit Design with
VHDL", MIT Press London, England, 2004.

Submitted By: Hussein M. H. Aideen

- VHDL> Loop statement

e LOORP is useful when a piece of code must be
Instantiated several times.

 Inside a PROCESS, FUNCTION, or PROCEDURE.

e FOR / LOOP: repeated a fixed number of times.

[label:] FOR identifier IN range LOOP

(sequential statements)
END LOOP [label];

- VHDL> Loop statement

* WHILE / LOOP: repeated until a condition no longer
holds.

[label:] WHILE condition LOOP

(sequential statements)
END LOOP [label];

- VHDL> Loop statement

o EXIT: Used for ending the loop.

[label:] EXIT [label] [WHEN condition];

 NEXT: Used for skipping loop steps.

[label:] NEXT [loop label] [WHEN condition];

- VHDL> Loop statement

e Example of FOR / LOOP:

FOR 1 IN O TO 5 LOOF
¥ (1) <= enable AND w(1i+2):;
v(0, 1) <= w(i);

END LOOP;

e Example of WHILE / LOOP:

WHILE (1 < 10) LOQOP
WAIT UNTIL clk'EVENT AND clk='1"';
(other statements)

END LOOQOP;

- VHDL> Loop statement

e Simple Barrel Shifter:

e The circuit must shift the input vector (of size 8) either
O or 1 position to the left. When actually shifted (shift
= 1), the LSB bit must be filled with ‘0’ (shown in the
botton left corner of the diagram).

e |f shift = 0, then outp = Inp;

e If shift = 1, then outp(0) = 'O’ and outp(i) = inp(i - 1),
for 1<1<7.

- VHDL> Loop statement

e |f shift = 0, then outp = Inp;

e If shift = 1, then outp(0) = ‘0’
and outp(i) = inp(i - 1), for 1<
<7.

inp(7)

MUX

Inp(é) — |

MUX

Inp(s) — |

A

MUX

AY

outp(7)

| outp(6)

| outp(5)

inpi4) —

A

MUX

inp(3) —

A

MUX

np(2) —

A

MUX

| outpi4)

L outp(3)

| outpi(2)

inp(ly —

A

MUX

Inp(0) —]

shift

A

MUX

L outp(l)

| outpi(0)

K'

- VHDL> Simple Barrel Shifter

LIBRARY leeeg;

USE 1leee.std logic 116é4.all;

ENTITY barrel IS

GENERIC (n: INTEGER := 8):

PORT illp: IN STD LOGIC VECTOR (n-1 DOWNTO 0);
shift: IN INTEGER FANGE 0 TO 1;
outp: OUT STD LOGIC VECTOR (n—-1 DOWNTC 0));

END barrel;

- VHDL> Simple Barrel Shifter

12 ARCHITECTUERE RTL OF barrel IS
13 BEGIN

14 PROCESS (inp, shift)

15 BEGIN

16 IF (shift=0) THEN

17 outp <= 1np;

18 ELSE

19 outp (0) <= '0';

20 FOR 1 IN 1 TO 1np'HIGH LOOP
21 outp(i) <= inp(i-1);
22 END LOOP;

23 END IF;

24 END PROCESS;

25 END RTL;

inpi7)

np(6) —

inp(3) —]

inp(4) —

inp(3) —]

inp(2) —

inp(l) —

inp(0) —

MUX

A

MUX

A

MUX

A

MUX

A

MUX

A

outp(T)

outp(6)

L outp(s)

L outpid)

| outp(3)

L outp(2)

L outp(l)

L outp(0)

PGl ——.

/
VHDL> Arrays in VHDL

e Arrays are collections of objects of the
same type.

» one-dimensional (1D), 010060
e two-dimensional (2D),
» one-dimensional-by-one- Of{1]10
dimensional (1Dx1D). 1[{0]]0
1{[1]]0
01000

1 0010
1 1 0 0 1

/
VHDL> Arrays in VHDL

e First the new TYPE must be defined,

e Then the new SIGNAL, VARIABLE, or
CONSTANT can be declared using that
data type.

TYPE type_name IS ARRAY (specification) OF data_type;

\

SIGNAL signal_name: type_name [:= initial_valuej;

/
VHDL> Arrays in VHDL
e 1D-1D Array

TYPE row IS ARRAY (7 DOWNTO 0) OF STD LOGIC; -- 1D array
TYPE matrix IS ARRAY (0 TO 3) OF row; -- 1Dx1D array
SIGNAL x: matrix; -- 1Dx1D signal

TYPE matrix IS ARRAY (0 TO 3) OF STD LOGIC VECTOR(7 DOWNTO 0);

/
VHDL> Arrays in VHDL

e 2D Array
TYPE matrix2D IS ARRAY (0 TO 3, 7 DOWNTO 0) OF STD_LDGIC;
--— 2D array
Initial value
. :="0001"; -- for 1D array
. t=('0','0"','0","'1") -- for 1D array
. s=(('0','1',*1',*1")[, ('1','1','1','0")); =-- for 1Dx1D or

-- 2D array

/
VHDL> Arrays in VHDL

e Arrays assignments

x(0) <= y(1)(2); -- notice two pairs of parenthesis

-- (y is 1Dx1D)
X(1) <= v(2)(3); -- two pairs of parenthesis (v is 1Dx1D)
X(2) <= w(2,1); -- a single pair of parenthesis (w is 2D)

VHDL> Examples

1
2
3
4

i

" VHDL> Examples
e Signed and Unsigned Comparators

—-——- Signed Comparator: —-——————ceceeeee——-
LIBRARY ieee:
USE ieee.std logic 1164.all;
USE ieee.std logic_arith.all; -- necessary!
ENTITY comparator IS

GENERIC (n: INTEGER := 7);

PORT (a, b: IN SIGNED (n DOWNTO 0);

x1l, x2, x3: OUT STD LOGIC);

END comparator;
ARCHITECTURE signed OF comparator IS
BEGIN

xl <= '1l' WHEN a > b ELSE '0';

x2 <= '1l' WHEN a b ELSE '0';

x3 <= '1' WHEN a < b ELSE '0':
END signed;

" VHDL> Examples
e Parallel-to-Serial Converter

d(0) d(1) d(2) d(3)

d(4) d(5) d(e) d(7)

clk —»
load —p

b4

v v vy

CE

[
L]

3 dout

" VHDL> Examples
e Parallel-to-Serial Converter

LIBRARY 1leee:
USE ieee.std logic 1l1l64.all;
ENTITY serial converter IS
PORT (d: IN STD LOGIC VECTOR (7 DOWNTO 0);
clk, load: IN STD LOGIC;
dout: OUT STD_LOGIC);

END serial converter;

O o <1 oo e W N

12
13
14
15
16
17
18
19
20
21
22

24

-

" VHDL> Examples
e Parallel-to-Serial Converter

11 ARCHITECTURE serial_cnnverter OF serial_cnnverter IS

SIGNAL reg: STD LOGIC VECTOR (7 DOWNTO 0);
BEGIN
PROCESS (clk)
BEGIN
IF (clk'EVENT AND clk='1l') THEN
IF (load='1l') THEN reg <= d;
ELSE reg <= reg(6 DOWNTO 0) & '0';
END IF;
END IF;
END PROCESS;
dout <= reg(7);

23 END serial converter;

™~

" VHDL> Examples
e Signal Generators

|
|
wave |

clk [
e
M,

| period

" VHDL> Examples
e Signal Generators

VAN I

] e —————
2 LIBRARY 1leee:

3 USE ieee.std logic 1164.all;

d @ e
5 ENTITY signal genl IS

6 PORT (clk: IN BIT;

7 wave: OUT BIT);

8 END signal genl;

0 @ e ———————

N 29

" VHDL> Examples
e Signal Generators

10 ARCHITECTURE archl OF signal genl IS

INTEGER RANGE 0 TO 7;

WAIT UNTIL (clk'EVENT AND clk='1"');

WHEN 7 => wave <=

28 END archl;

wave
wave
wave
wave
wave
wave

wave

11 BEGIN

12 PROCESS

13 VARIABLE count:
14 BEGIN

15

16 CASE count IS
17 WHEN 0 =>

18 WHEN 1 =>

19 WHEN 2 =>
20 WHEN 3 =>
21 WHEN 4 =>
22 WHEN 5 =>
23 WHEN 6 =>
24

25 END CASE:

26 count := count + 1;
27 END PROCESS:

IUI
Ill
IDI
Ill
Ill
Ill
IDI

L1] b 1] - - 1] 1] b 1]

r

| period

" VHDL> Examples)
e ROM (Read Only Memory)

2 LIBRARY ieee;
3 USE ieee.std logic 11l64.all;

B o o o o o o o e e e e B e
5 ENTITY rom IS

6 GENERIC (bits: INTEGER := 8; --— # of bits per word

7 words: INTEGER := 8); =-- # of words in the memory
8 PORT (addr: IN INTEGER RANGE 0 TO words-1;

9 data: OUT STD LOGIC VECTOR (bits-1 DOWNTO 0));

10 END rom;

" VHDL> Examples
e ROM (Read Only Memory)

1] e e —————————————————
12 ARCHITECTURE rom OF rom IS

13 TYPE vector array IS ARRAY (0 TO words-1) OF

14 STD LOGIC VECTOR (bits-1 DOWNTO 0);

15 CONSTANT memory: vector array := ("00000000",
16 "00000010",
17 "00000100",
18 "00001000",
19 "00010000",
20 "00100000",
21 "01000000",
22 "10000000");
23 BEGIN

24 data <= memory(addr);

25 END rom;

20 mm

The End. Thanks for listen

(" T {1114 I
W sy (S AU dzala

Ninevah Universjty

Gl g STV dsaia 4408

2 1
=k
/ﬁé@”@\g

College of Electronic Engi

HDL Programming
-VHDL- 3

Textbook: Volnei A. Pedroni, “Circuit Design with
VHDL", MIT Press London, England, 2004.

Submitted By: Hussein M. H. Aideen

{ 1)

: VHDL> State Machines

* Finite state machines (FSM) constitute a special
modeling technique for sequential logic circuits.

* helpful in the design of certain types of systems,
(digital controllers, for example).

- VHDL> State Machines o
e Types of Machine modeling: - e
» Mealy machine: the output of DH
the machine depends not only 110
on the present state but also on o
the current input.

e Moore machine: the output
depends only on the current
state.

@

: VHDL> State Machines

Combinational
logic

nx_state

Sequential
logic

Figure 8.1
Mealy (Moore) state machine diagram.

: VHDL> State Machines

FSM type definition:

LIBRARY ieee;

USE ieee.std logic_1164.all;

ENTITY <entity name> IS
PORT (input: IN <data type>;

reset, clock: IN STD_LOGIC;
output: OUT <data_ type>);

END <entity name>;

ARCHITECTURE <arch_name> OF <entity name> IS
TYPE state IS (statel, statel, state2, state3, ...):
SIGNAL pr state, nx state: state;

BEGIN

: VHDL> State Machines

FSM Design Styles:
Design Style #1.:

e The design of the lower section is completely
separated from that of the upper section.

Logic gates

input = :‘ﬁ_ mPp OUutput

—

Flip-flops

¥

: VHDL> State Machines

Design of the Lower (Sequential) Section:

PROCESS (reset, clock)
BEGIN
IF (reset='1l') THEN
pr_state <= statel;
ELSIF (clock'EVENT AND clock='1l') THEN
pr_state <= nx state;
END IF;
END PROCESS;

pr_state nx_state

Sequential
logic

('

: VHDL> State Machines

Design of the Upper (Combinational) Section:

PROCESS (input, pr_state)
BEGIN
CASE pr_state IS
WHEN statel =>
IF (input = ...) THEN

INPUL e— - OULPUL

Combinational
logic

output <= <value>; pr_state nx_state
nx_state <= statel;

ELSE ...

END IF;

WHEN statel =>
IF (input = ...) THEN
output <= <value>;
nx_state <= statel;

@ S

: VHDL> State Machines

Design Style #2 (Stored Output):

(asynchronous output).

* To make Mealy machines synchronous.

input e

Logic gates

FD g

(-

t

Flip-flops

B

Flip-flops

e In Design style #1: Notice that in this case, If it is a Mealy
machine (one whose output is dependent on the current
iInput), the output might change when the input changes

= OULPUL

<

: VHDL> State Machines

State Machine Template for Design Style #2

ENTITY <ent name> IS
PORT (input: IN <data type>;
reset, clock: IN STD LOGIC;
output: OUT <data type>);
END <ent name>;
ARCHITECTURE ﬂarch_pamE} OF <ent name> IS
TYPE states IS (statel, statel, state2, state3, ...);
SIGNAL pr state, nx state: states;
SIGNAL temp: <data type>;
BEGIN B
—————————— Lower section: —-———————mmmmmmm e
PROCESS (reset, clock)
BEGIN
IF (reset='1"') THEN
pr state <= statel;
ELSIF_[chck‘EVENT AND clock='1") THEN
output <= temp;
pr state <= nx state;
END IF; -

‘ END PROCESS;

pr_state nx_state

Sequential
logic

: VHDL> State Machines

State Machine Template for Design Style #2 — cont.

—————————— Upper section: --—-———————————————————————
PROCESS (pr state)
BEGIN -
CASE pr state IS
WHEN state0l =>
temp <= <value>;
IF (condition) THEN nx state <= statel;
END IF;
WHEN statel =>
temp <= <value>;
IF (condition) THEN nx state <= statel;
END IF;
WHEN state2 =>
temp <= <value>;
IF (condition) THEN nx state <= state3;

END IF;

- OULPUL

Combinational
logic

END CASE;
END PROCESS;

GND <arch name>; pr_state

nx_state

/

: VHDL> State Machines

Example: Simple FSM #1

a —p =1
b —»
FSM —p X stateB
d —»
d=1
o ¢ rst

clk rst

: VHDL> State Machines

Example: Simple FSM #1

d —p
—>
] e ——- b FSM
2 ENTITY simple fsm IS
d —»
3 PORT (a, b, d, clk, rst: IN BIT; + +
x: OUT BIT); clk rst

5 END simple fsm;

: VHDL> State Machines

Example: Simple FSM #1

7 ARCHITECTURE simple fsm OF simple fsm IS

8 TYPE state IS (stateA, stateB);

9 SIGNAL pr state, nx state: state;

10 BEGIN

11 ————- Lower section: ————ecemmmmmmm e
12 PROCESS (rst, clk)

13 BEGIN

14 IF (rst='1l') THEN

15 pr state <= stateA;

16 ELSIF (clk'EVENT AND clk='1l'") THEN
17 pr state <= nx state;

18 END IF;

19 END PROCESS;

(-

: VHDL> State Machines

Example: Simple FSM #1

20 @ e Upper section: ———————eemme
21 PROCESS (a, b, d, pr state)

22 BEGIN

23 CASE pr state IS

24 WHEN stateA =>

25 X <= a;

26 IF (d='l') THEN nx state <= stateB;
27 ELSE nx state <= stateA;

28 END IF;

29 WHEN stateB =>

30 X <= b;

31 IF (d='1"') THEN nx state <= stateA;
32 ELSE nx state <= stateB;

33 END IF;

34 END CASE;

35 END PROCESS;

6 END simple fsm;

: VHDL> State Machines

Example: Simple FSM #2

d —p
—>
] e ——- b FSM
2 ENTITY simple fsm IS
d —»
3 PORT (a, b, d, clk, rst: IN BIT; + +
x: OUT BIT); clk rst

5 END simple fsm;

: VHDL> State Machines

Example: Simple FSM #2

7 ARCHITECTURE simple fsm OF simple fsm IS

8 TYPE state IS (statelA, stateB);

9 SIGNAL pr state, nx state: state;

10 SIGNAL temp: BIT;

11 BEGIN

12 ———e- Lower section: ——————mmmmmmmm
13 PROCESS (rst, clk)

14 BEGIN

15 IF (rst='1') THEN

16 pr_state <= stateA;

17 ELSIF (clk'EVENT AND clk='1l') THEN
18 X <= temp;

19 pr state <= nx state;

20 END IF;

21 END PROCESS;

o

: VHDL> State Machines

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Example: Simple FSM #2

—————————— Upper section: —————————meee——
PROCESS (a, b, d, pr state)
BEGIN
CASE pr state IS
WHEN stateA =>
temp <= a;
IF (d='1l"'") THEN nx state <= stateB;
ELSE nx state <= stateh;
END IF;
WHEN stateB =>
temp <= b;
IF (d='1"') THEN nx state <= statel;
ELSE nx state <= stateB;
END IF;
END CASE;
END PROCESS;

: VHDL> State Machines

Example: String Detector

* We want to design a circuit that takes as input a serial
bit stream and outputs a "1’ whenever the sequence
“111” occurs. Overlaps must also be considered, that
IS, If .. .0111110 . . . occurs, than the output should
remain active for three consecutive clock cycles.

st

: VHDL> State Machines

Example: String Detector

l] ——————
2 LIBRARY ieee;

3 USE ieee.std logic 1164.all;

d @
5 ENTITY string detector IS

6 PORT (d, clk, rst: IN BIT;

7 g: OUT BIT);

8 END string detector;

) e e
10 ARCHITECTURE my arch OF string detector IS
11 TYPE state IS (zero, one, two, three);

12 SIGNAL pr state, nx state: state;

@

: VHDL> State Machines

Example: String Detector

13 BEGIN

14 ————- Lower section: —-——————————ee———
15 PROCESS (rst, clk)

16 BEGIN

17 IF (rst='1') THEN

18 pr_state <= zero;

19 ELSIF (clk'EVENT AND clk='1l') THEN

20 pr state <= nx state;

21 END IF;

22 END PROCESS;

(-

: VHDL> State Machines

Example: String Detector

23 Upper section: ——————————————-
24 PROCESS (d, pr state)

25 BEGIN

26 CASE pr state IS

27 WHEN zero =>

28 q <= '0"';

29 IF (d='1') THEN nx state <= one;
30 ELSE nx state <= zero;

31 END IF;

32 WHEN one =>

33 q <= '0"';

34 IF (d='1l') THEN nx state <= two;
35 ELSE nx state <= zero;

36 END IF;

37 WHEN two =>

38 q <= '0"';

39 IF (d='1l') THEN nx state <= three;

\

: VHDL> State Machines

Example: String Detector

40 ELSE nx state <= zero;

41 END IF;

42 WHEN three =>

43 q <= '1l';

44 IF (d='0"') THEN nx state <= zero;
45 ELSE nx state <= three;

46 END IF;

47 END CASE;

48 END PROCESS;

49 END my arch;

50 = -

@ y

: VHDL> State Machines

\ Example: Traffic Light Controller (TLC)

 Three modes of operation: Regular, Test, and
Standby.

» Test mode: allows all pre-programmed times to be
overwritten (by a manual switch) with a small value,
such that the system can be easily tested during
maintenance (1 second per state).

o Standby mode: the system should activate the yellow
lights in both directions and remain so while the
standby signal is active.

e Assume that a 60 Hz clock (obtained from the power
line itself) is available.

@

: VHDL> State Machines

(0 ()
() ()
() ()

Example: Traffic Light Controller (TLC)

Operation Mode
State REGULAR TEST STANDBY
Time Time Time

RG timeRG (30s) | timeTEST (1s) -

RY timeRY (5s) | timeTEST (1s) -

GR timeGR (45s) | timeTEST (1s) -

YR timeYR (5s) | timeTEST (1s) -

YY -—-- -—- Indefinite
CONSTANT timeMAX : INTEGER := 2700; 45 * 60
CONSTANT timeRG : INTEGER := 1800; 30 * 60
CONSTANT timeRY : INTEGER := 300: 5*60
CONSTANT timeGR : INTEGER := 2700; 45 * 60
CONSTANT timeYR : INTEGER := 300; 5 * 60
CONSTANT timeTEST INTEGER := 60; 1 * 60

: VHDL> State Machines

Example: Traffic Light Controller (TLC)

timeGR

timeRY timeGR

timeY R

timeY R

STANDBY
Time
Indefinite

Time

timeRG (30s) | timeTEST (1s)
timeTEST (1s)

timeTEST (1s)

Operation Mode
TEST
timeGR (45s) | timeTEST (1s)

timeRY (5s)
timeYR (35s)

REGULAR
Time

State
RG
RY
GR
YR
YY

000
0100

: VHDL> State Machines

Example: Traffic Light Controller (TLC)

] e ———————_—————
2 LIBRARY 1leee;

3 USE ieee.std logic 1164.all;
R
5 ENTITY tlc IS

6 PORT (clk, stby, test: IN STD LOGIC;

7 rl, r2, yl, y2, gl, g2: OUT STD LOGIC);
8 END tlc;

D e ————_—————

.
=P =
Ak g5
alle E
m]
% p— -
gl | 12222
%F (] (S
—Uj: I
= = :
EEPEEEE
O s [t (s i |
D:U:}-Eﬁm
ENHEF
| |EEE &
L
I [Pl P
S |2 e 0=

000
0100

: VHDL> State Machines

Example: Traffic Light Controller (TLC)

10 ARCHITECTURE behavior OF tlc IS

timeYR

11 CONSTANT timeMAX : INTEGER := 2700; &

12 CONSTANT timeRG : INTEGER := 1800; g %
13 CONSTANT timeRY : INTEGER := 300; =
14 CONSTANT timeGR : INTEGER := 2700;

15 CONSTANT timeYR : INTEGER := 300; ‘%

16 CONSTANT timeTEST : INTEGER := 60; e %

17 TYPE state IS (RG, RY, GR, YR, YY); s °
18 SIGNAL pr state, nx state: state; . g
19 SIGNAL time : INTEGER RANGE 0 TO timeMAX; é

20 BEGIN i

@

timeRG

: VHDL> State Machines

Example: Traffic Light Controller (TLC)

21 emmmeeee Lower section of state machine: ---- E
22 PROCESS (clk, stby) g 2
23 VARIABLE count : INTEGER RANGE (0 TO timeMAX; - :
24 BEGIN

25 IF (stby='1') THEN ‘e

26 pr_state <= YY; i

27 count := 0; %
28 ELSIF (clk'EVENT AND clk='1l') THEN % i
29 count := count + 1;]

30 IF (count = time) THEN

31 pr state <= nx state;

32 count := 0;

33 END IF;

34 END IF;

35 END PROCESS;

timeRG

: VHDL> State Machines

36
37
38
39
40
41
42
43
44
45

Example: Traffic Light Controller (TLC)

———————— Upper section of state machine: ----

PROCESS (pr_state, test)

BEGIN

CASE pr_state IS
WHEN RG =>

rl<='1'; r2<='0'; yl<='0'; y2<='0'; gl<='0'; g2<='1l"';
nx state <= RY;
IF (test='0') THEN time <= timeRG;
ELSE time <= timeTEST;
END IF;

: VHDL> State Machines

Example: Traffic Light Controller (TLC)

46
47
48
49
50
51

WHEN RY =>
rl<='1"'"; r2<='0'; yl<='0'; y2<='1"'; gl<='0'; g2<='0"';
nx state <= GR;
IF (test='0') THEN time <= timeRY;
ELSE time <= timeTEST;
END IF;

tumeGR

: VHDL> State Machines

Example: Traffic Light Controller (TLC)
52 WHEN GR =>
53 rl<='0'; r2<='1l'; yl<='0'; y2<='0'; gl<='1l'; g2<='0";
54 nx state <= YR;
55 IF (test='0') THEN time <= timeGR;
56 ELSE time <= timeTEST;
57 END IF;
58 WHEN YR =>
59 ri<='0'; r2<='l'; yl<='1l'; y2<='0'; gl<='0'; g2<='0"';
60 nx _state <= RG;
61 IF (test='0') THEN time <= timeYR;
62 ELSE time <= timeTEST;
63 END IF;
64 WHEN YY =>
65 rl<='0'; r2<='0'; yl<='1l'; y2<='1l'; gl<='0'; g2<='0";
66 nx state <= RY;
67 END CASE;
68 END PROCESS;
69 END behavior;

: VHDL> State Machines

FSM Encoding Style:

e To encode the states of a state machine, we can
select one among several available styles.

e The default style Is binary.
e requires the least number of flip-flops.
e with n flip-flops (n bits), up to 2*n states can be encoded

e requires more logic and is slower than the others.

e One-hot encoding style,

e which uses one flip-flop per state. Therefore, it demands
the largest number of flip-flops.

e with n flip-flops (n bits), only n states can be encoded.

e requires the least amount of extra logic and is the
fastest.

@

: VHDL> State Machines

FSM Encoding Style:

e Two-hot encoding scheme:
e An style that is inbetween the two styles above.
e which presents two bits active per state.

e Therefore, with n flip-flops (n bits), up to n(n-1)/2 states
can be encoded.

Encoding Style

STATE BINARY TWOHOT ONEHOT
state() 000 00011 00000001
statel 001 00101 00000010
state2 010 01001 00000100
state3 011 10001 00001000
stated 100 00110 00010000
states 101 01010 00100000
state6 110 10010 01000000

state7 111 01100 10000000

(" T {1114 I
W sy (S AU dzala

Ninevah Universjty

Gl g STV dsaia 4408

2 1
=k
/ﬁé@”@\g

College of Electronic Engi

HDL Programming
-VHDL- 5

Textbook: Volnei A. Pedroni, “Circuit Design with
VHDL", MIT Press London, England, 2004.

Submitted By: Hussein M. H. Aideen

{ 1)

- VHDL> Additional System Design

 FUNCTION
e AFUNCTION is a section of sequential code.

e [ts purpose is to create new functions to deal with
commonly encountered problems, like data type
conversions, logical operations, arithmetic
computations, and new operators and attributes.

e By writing such code as a FUNCTION, it can be shared
and reused, also propitiating the main code to be
shorter and easier to understand.

- VHDL> Additional System Design

e FUNCTION

FUNCTION function name [<parameter list>] RETURN data type IS
[declarations]

BEGIN
(sequential statements)

END function name;

* Example

FUNCTION f1 (a, b: INTEGER; SIGNAL c: STD_LDGIC_VECTDR}
RETURN BOOLEAN IS

BEGIN
(sequential statements)

END f1:

@

- VHDL> Additional System Design

 Digital Filters

e Digital signal processing (DSP) finds innumerable
applications in the fields of audio, video, and
communications, among others. Such

applications are generally based on LTI (linear
time invariant) systems, which can be
Implemented with digital circuitry.

e Any LTI system be represented by the following
equation:

N

M
Z agy[ln—k| = Z brx[n — k]
k=0

g

N
1 1
yinl == bexfn— k] =— > ayln — k]
ap e ag

k=1

(-

- VHDL> Additional System Design

 Digital Filters
e FIR Filter:

4-tap FIR Filter

C3

ol ——P>—)
Co
ol >0
C
D>
C2
x[n-3] b

y[n]

N
Y(n) = bgx(n — k)

RTL Representation

— reg(2) — reg(1) —_— reg(0)
X
DFF DFF DFF
> > >
X coef(2)

coef(0) X) cocf{]j—EB
+
N

—8(2 coef(3) X
*/ + DEF

- VHDL> Additional System Design

 Digital Filters
e VHDL code for FIR Filter:

LIBRARY ieee;
USE ieee.std logic_1164.all;
USE ieee.std logic arith.all; -- package needed for SIGNED

ENTITY fir2 IS

GENERIC (n: INTEGER := 4; m: INTEGER := 4);
-—— n = # of coef., m = # of bits of input and coef.
-- Besides n and m, CONSTANT (line 19) also need adjust
PORT (x: IN SIGNED(m-1 DOWNTO 0);
clk, rst: IN STD_LOGIC;
y: OUT SIGNED(2*m-1 DOWNTO 0));

- VHDL> Additional System Design

 Digital Filters
e VHDL code for FIR Filter: (continued)

1 e e e e e e e e e e
15 ARCHITECTURE rtl OF fir2 IS

16 TYPE registers IS ARRAY (n-2 DOWNTO 0) OF

17 SIGNED(m-1 DOWNTO 0);

18 TYPE coefficients IS ARRAY (n-1 DOWNTO 0) OF

19 SIGNED(m-1 DOWNTO 0);

20 SIGNAL reg: registers;

21 CONSTANT coef: coefficients := ("00O1", "O0O1lO", "001l1",
22 "0100");

('

- VHDL> Additional System Design

 Digital Filters
e VHDL code for FIR Filter: (continued)

23 BEGIN

24 PROCESS (clk, rst)

25 VARIABLE acc, prod:

26 SIGNED(2*m-1 DOWNTO 0) := (OTHERS=>'0"');
27 VARIABLE sign: STD_LOGIC;

28 BEGIN

29 —eee- reset: —————mmmmmm e
30 IF (rst='1') THEN

31 FOR i IN n-2 DOWNTO 0 LOOP

32 FOR j IN m-1 DOWNTO 0 LOOP

33 reg(i)(3j) <= '0';

34 END LOOP;

35 END LOOP;

- VHDL> Additional System Design

e Digital Filters SN
e VHDL code for FIR Filter: (continued) —®7
36 00 ——==e register inference + MAC: —====-- % 3
37 ELSIF (clk'EVENT AND clk='1l') THEN CE*(E*“'%
38 acc := coef(0)*x; '
39 FOR i IN 1 TO n-1 LOOP
40 sign := acc(2*m-1);
41 prod := coef(i)*reg(n-1-i);
42 acc := acc + prod;
43 --=-= overflow check: -=—==ceecee—e--
44 IF (sign=prod(prod'left)) AND
45 (acc(acc'left) /= sign)
46 THEN
47 acc := (acc'LEFT => sign, OTHERS => NOT sign);
48 END IF;
49 END LOOP;
50 reg <= X & reg(n-2 DOWNTO 1);
51 END IF;
52 y <= acc;

° 53 END PROCESS;
NS 54 END rtl; _

- VHDL> Additional System Design

e Neural Networks

e Neural Networks (NN) are highly parallel, highly
Interconnected systems. Such characteristics make their
Implementation very challenging, and also very costly,

due to the large amount of hardware required.
o 3 laver network laver details

x1 :

x2

Input Hidden layers Output layer

- VHDL> Additional System Design

e Neural Networks

e A“ring” architecture for the NN is presented in figure,
which implements one layer of the NN.

e Each box represents one neuron.

e There are several circular shift registers, one for
each neuron (vertical shifters) plus one for the whole
set (horizontal shifter).

e The vertical shifters hold the weights, while the
horizontal one holds the inputs (shift registers with
‘data_load’ capability).

e At the output of a vertical shifter there is a MAC circuit,

which accumulates the product between the weights and
the inputs.

o

- VHDL> Additional System Design

e Neural Networks

¥l y2 y3

; LuUT ; LUT ; LUT
L . >

P b : @@»l N

1 + X2 X3

s st [

K 3 3

- VHDL> Additional System Design

e Neural Networks

e For Small Neural Networks The solution below
has the advantage of being simple, easily
understandable, and self-contained in the main
code. Its only limitation is that the inputs (x) and
outputs (y) are specified one by one rather than
using some kind of two-dimensional array, thus
making it inappropriate for large NNs. Everything
else is generic.

2 LIBRARY ieee;
3 USE ieee.std logic 1164.all;
4 USE ieee.std logic arith.all; -- package needed for SIGNED

@ 5 @ mmmm—m————e e e e e

/

- VHDL> Additional System Design

ENTITY

9
10 PORT (
11
12
13
14
15
16
17
18
19 END nn;

(-

6
7 GENERIC (n: INTEGER :=
8

e Neural Networks

nn IS

3
INTEGER := 3
INTEGER := 4
x1: IN SIGNED(b-1 DOWNTO 0);
x2: IN SIGNED(b-1 DOWNTO 0);
x3: IN SIGNED(b-1 DOWNTO 0);
w: IN SIGNED(b-1 DOWNTO 0);

clk: IN STD LOGIC;

test: OUT SIGNED(b-1 DOWNTO

yl: OUT SIGNED(2*b-1 DOWNTO

y2: OUT SIGNED(2*b-1 DOWNTO

y3: OUT SIGNED(2*b-1 DOWNTO

o B

0);
0);
0);
0));:

: =—-- # of neurons
-- # of inputs or weights per neuron

); —— # of bits per input or weight

-- register test output

will

x1

X2

X3

- VHDL> Additional System Design

e Neural Networks

20 mm e ———————_——_——————
21 ARCHITECTURE neural OF nn IS

22 TYPE weights IS ARRAY (1 TO n*m) OF SIGNED(b-1 DOWNTO 0);
23 TYPE inputs IS ARRAY (1 TO m) OF SIGNED(b-1 DOWNTO 0);

24 TYPE outputs IS ARRAY (1 TO m) OF SIGNED(2*b-1 DOWNTO 0);

X1

X2

- VHDL> Additional System Design

e Neural Networks

25 BEGIN

26 PROCESS (clk, w, x1, x2, x=3)

27 VARIABLE weight: weights;

28 VARIABLE input: inputs; X
29 VARIABLE output: outputs;

30 VARIABLE prod, acc: SIGNED(2*b-1 DOWNTO 0);

31 VARIABLE sign: STD LOGIC; X2
32 BEGIN

33 = === shift register inference: ——————cee---.

34 IF (clk'EVENT AND clk='1l') THEN -
35 weight := w & weight(l TO n*m-1);

36 END IF;

37 = ememmmme——- initialization: =—=———-cecemmcmceae———-

38 input(l) := x1;

39 input(2) := x2;

40 input(3) := x3;

(-

- VHDL> Additional System Design

41
42
43

44
45
46
47
48
49
50
51
52
53
54
55

o

e Neural Networks

—————— multiply-accumulate: —————cccceccaaa-- X1
Ll: FOR i IN 1 TO n LOOP
acc := (OTHERS => '0');
L2: FOR j IN 1 TO m LOOP «
prod := input(j)*weigth(m*(i-1)+7j);

sign := acc(acc'LEFT);

acc := acc + prod;

X3
-=== overflow check: e

IF (sign=prod(prod'left)) AND
(acc(acc'left) /= sign) THEN

acc := (acc'LEFT => sign, OTHERS => NOT sign);
END IF; I
END LOOP L2; >;—>[vj

output(i) := acc; L.

[Lg
[

£Im

£Tm
CEM

3
ek

LT

- VHDL> Additional System Design

e Neural Networks

56 2@ mmm————— outputs: === e
57 test <= weight(n*m);

58 vyl <= output(1l);

59 y2 <= output(2);

60 y3 <= output(3);

61 END PROCESS;

62 END neural;

X3

- VHDL> Additional System Design

e Neural Networks

	Programmable Logic Devices
	vhdl 1 - Copy
	vhdl 2 - Copy
	vhdl 3 - copy
	vhdl 4 - copy
	vhdl 5 - copy

