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Course Description

This course introduces fundamental concepts in the theory, analysis

and design of discrete control systems.
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Course ODbjectives:
Knowledge and understanding (opllg ad,20Jl)

A Model and analyze discrete control systems dlasinll pS=ill dnkil Jud=ig d>io
A Evaluate the performance of discrete control systems — alasioll pS=il aalail slsl oy

Professional and practical skills (Aaland) 5 dnigal) &l Hlgall)

A Design and simulate industrial and practical systems aidesll s dueliall dadaill) slSas 5 aranas
A Improve performances of discrete control systems Alaiiall aSaill dadail el (ppusns

General and transferable skills (Jasaill Ablall g dalall Dl lgall)
A Understand the requirements and operations of discrete control
systems (Alatiall Saill dalail cllee 5 illlia agd)

A Design and tuning techniques for performance improvement
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UNIT - I: Syllabus:

Introduction

Introduction to analog and digital control systems — Advantages of digital systems — Typical
examples — why digital control- A/D converter and D/A converter—-Sampling theorem.

UNIT-II:

Z-transformations
Z-Transforms — Theorems — Finding inverse z-transforms — Formulation of difference
equations and solving.

UNIT-III:
Block diagram representation — Pulse transfer functions and finding open loop and

closed loop responses -Zero Order Hold transfer function —Time response .

UNIT -1V

System Response Characteristics: Time Domain Specifications; Mapping s-domain to
z-domain -Primary strips and Complementary Strips

UNIT - V:

Stability analysis: Factorization Method -Modified Routh's stability criterion and jury’s
stability test- steady state error.

UNIT - VI:

Design of sampled data control systems
Root locus technique in the z—plane- Controller design using root locus-Root locus based
controller design using MATLAB .
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Classical Control Systems

mechanical, optical, or electronic device, or set of devices, that manages,
commands, directs or regulates the behavior of other devices or systems to
maintain a desired output.

In Feedback Control Systems, we learned how to make an analog controller
D(s) to control a linear-time-invariant (LTI) plant G(s).

reference error control input

() el u(f)

System (plant) to be
Controller > y (p )
+ controlled

1-Small steady-state error
2- Closed-loop stable

3- Good transient response
4- Disturbance rejection

Objective:

» Analog controllers difficult to modify or redesign once implemented in
hardware.




Digital control

A digital control system model can be viewed from different perspectives including
control algorithm, computer program, conversion between analog and digital
domains, system performance etc. One of the most important aspects is the sampling
process level.
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A digital control system consists of an A/D conversion for converting analog input
to digital format for the machine, D/A conversion for converting digital output to a
form that can be the input for a plant, and a digital controller in the form of a

computer, microcontroller or a microprocessor. Such devices are light, fast and
economical.

Reference Controlled

Input Variable
—» Computer >

T

Digital Control System

Actuator
and Process




* The difference between the continuous and digital systems is that
the digital system operates on samples of the sensed plant rather
than the continuous signal and that the control provided by the
digital controller D(s) must be generated by algebraic equations.

In this regard, we will consider the action of the analog-to-digital
(A/D) converter on the signal. This device samples a physical signal,
mostly voltage, and convert it to binary number that usually consists
of 10 to 16 bits.

«Conversion from the analog signal y(t) to the samples y(kt), occurs
repeatedly at instants of time T seconds apart.

*A system having both discrete and continuous signals is called
sampled data system.

*The sample rate required depends on the closed-loop bandwidth of
the system. Generally, sample rates should be about 20 times the
bandwidth or faster in order to assure that the digital controller will
match the performance of the continuous controller




V\ Continuous vs Discrete Control

. . . Continuous controller Plant
1-Continuous-time signals
e(t) u(t)

(1) : G(s)

2-Analog signals

Sensor

3- Controller :Operation Amplifie

|

xiel

Digital controller

Difference D/A and
equations ZOH hold

h

1-Samp|ed Signals Samp_lgrﬁ Sensor
T

2-Digital signals . R I

3-Digital Controller:

microcontroller, or microprocessors




Sampled Data System

Sampled Data System

u(t)

(1) uk] ‘




(ADC Model)

Samples analog signal (typically a voltage) and then converts these samples into
an integer number (quantization) suitable for processing by digital computer

T

u(t) >< u*(t)

| [[1]

0 )

Modulation modulating modulated
signal pulse(carrier) wave

u (t) = iu(t)é(t —kT)

It converts a voltage level into a corresponding (binary) number representation at
a particular instant of time.




DAC Model

Converts the digital (integer) number calculated by the computer into a voltage so

as to drive the output of the plant as des(ikr)ed.
u
A U(t)

UR(t)

ZOH g 1
u(k) — up(t) T{u(t)} = -
: kT <t < (k+ 1T s

~Ts
T I{—u(t—-T)} = — ©

S

kT Zero-Order KT (k+DT
Hold i

Positive Step G 70H ( S) —

Negative Step




ADVANTAGES

-Digital control offers distinct advantages over analog
control that explain its popularity.

-Accuracy: Digital signals are more accurate than their
analogue counterparts.

-Implementation Errors: Implementation errors are
negligible.

-Flexibility: Modification of a digital controller is possible
without complete replacement.

-Speed: Digital computers may vyield superior
performance at very fast speeds

-Cost: Digital controllers are more economical than
analogue controllers.




DISADVANTAGES

Sampling and quantization process will degrade system performance
allaill gl i ) dpasll g i) 340 dlae (505

Software errors zeal ) ¢lasl]

Lose information during conversions due to technical problems.
Aid JSLER sy O el oL (e glaall 2aa

From the tracking performance side, the analog control system
exhibits good performances than digital control system.

Digital control system will introduce a delay in the loop.




APPLICATIONS

1-Closed-loop drug delivery system
Several chronic diseases require the regulation of the patient’s blood
levels of a specific drug or hormone. For example, some diseases
iInvolve the failure of the body’s natural closed-loop control of blood
levels of nutrients. Most prominent among these is the disease
diabetes, where the production of the hormone insulin that controls
blood glucose levels is impaired




2-Computer control of an aircraft turbojet

_ _ engine _
To achieve the high performance required for today’s aircraft,
turbojet engines employ sophisticated computer control strategies




3-Control of a robotic manipulator

Robotic manipulators are capable of performing repetitive tasks at
speeds and accuracies that far exceed those of human operators. They
are now widely used In manufacturing processes such as spot

welding and painting.
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Sampled-Data Systems

Ideal sampling

= |deal sampling of a continuous signal can be considered as a multiplication of
the signal, x(t), with an impulse train P(t)

= an impulse train P(t) is defined as: P(t) =) _4(t — nT)

Thus, the sampled signal x*(s‘) is:

x () = ix(nT)c‘)‘(r —nT)

A X(t) A i 8t — k1)
L T~ o =0

e

0 T 2T 3T 4T 5T 0 T 2T 3T 4T 5T

here is a unit impulse at 6(r) att=0 and &6(+ — »7) isa unit impulse at t=nT.




The Laplace transform of the sampled signal Is

Y s) =Ll )] =27 0) + x (T)e™ + " (2T)e ™ + .

:ix(nT)e_"TS (2)
n=0

The Z Transform

The simple substitution Z = els

Convert the Laplace transform to the z transform. Making this substitution in Eq(2)

gives

oo

z[xx(t)] = X(E) = Z x(n'r)z—-n

n=0

( power series representation of discrete —
time seqguence

Where X(z) designates the
z transform of x*(t).Because
only values of the signal at the
sampling Instant are
considered, the z transform of
X(t) is the same as that of x*(t).




1. Z Transform by Definition

Ex. 1: Determine the z transform for a unit step function u(nT):JL

1 n=0
0 n<0

Sol: for this function u(nT) =1 for n=1,2,3,...., thus application of Eq (3) gives

oo

X(z) = Z x(nT)z™

n=0

1 1 1 z
Zuwl=14+-+—=+—+ =
[w’] z z¢ z? z—1

Ex2: Determine the z transform of the exponential e~ %, thus

Sol: for this function x(nT) — p—anT

E—ZGT E—SaT

“.ar - -1 0 T o ¥ -

Z(e™*) = 1+




EX.3: obtain the z transform of x(t) where  X(t) = sin wt for t>0

since Z[e 9]

We obtain  Z[sin wt] = Z 2]

_l'z z]

2j lz—eJ@T  z_g—jwT

1 z(eJ@T — g—J@T)
2j 22— z(eJ9T4 e—J@T )41

z sin wT

z2—-2zcoswT+1




Ex .4: Find z transform of x(t) = a*, Where a Isa constant.

X(z) =Z[a™] = iﬁ:(ﬂf)z'” —

n=0

1 z
=1+4+az '+ a’z%+a%z73+ .= T— = —

1—az~1 zZ—a
Ex.5:Find z transform of unit impulse function is defined as
n==0

otherwise

w© 1
7 {5(HT) }:Zﬂl(”T) - :{}:1 5(”?):{0
n=0




Ex.6:Find z transform of unit ramp function is defined as x(n7) = {ET

X(:):iHT:_" :Tir?:_” e
— = al
(: - ) then

T




Table (1) z transforms

Disoete Time
function

&(nT)
u(nl)

nl

(nT)*
2

E:.n _-E_ﬂr:ll

-

(a>0)

ol ¢ |
zsm{@T)
=t —2zeos(@T)+1

. —zcos(@T)
z? —dzeos(@T)+1




2-Z Transform Using Partial Fraction

When the Laplace transform of a function is known, the
corresponding z transform may be obtained by the partial fraction

Ex.1 : Determine the z transform for the function whose Laplace

transform Is | 11

s (s+1) :S s+1

From Table (1), the z transform corresponding to 1/s is -/- -1
and that corresponding to 1/s+1is z/z—e 7.
z - z(-eh)

F(:) B z-1 - z —dg_T - (: —1)(: —€_T)




Ex.2: Determine the z transform of cos(w ).

L {m s I}} > }/ }/

st 1o (s+Jw) (s-— JW) (S+JW) (s— jw)

1 4 1 4
Z(coswt)=F(z)== 4 — .
( )=F(2) 27— M 2z-eM

1 z
2l z—e ™ 7z

2% —zcos(wT)
z° —2zcos(WT) +1




3.Z Transform Using Residue Method

This I1s a powerful technique for obtaining z transforms. The z
transform of f *(t) may be expressed in the form

F(:)=Z[f (D] :Z residiues of F(s) . _;s:r at poles of F(s)

When the denominator of F(s) contains a linear factor of the form s-r
such that F(s) has a first-order pole at s = r , the corresponding
residue R Is

R =lim (s —7) [F(s) :ﬂ,}

S -—€

When F(s) contains a repeated pole of order ¢, the residue R is

g-1

d
" (a- 1)' im e 1{(S_r)q L




Ex 1. Determine the z transform of a unit step function u(t).

For F(s)=1/s, there is but one pole at s=0. The corresponding residue is

R=lm (s—r) {F(S) - } Simple Pole at s=0

_ sT
S -—€

Ex 2: Determine the z transform of e .

For this function 7(s) =1/(s + a) , which has but one pole at s=-a. Thus,

L |
R= lm (S+a){(s+a) ;

F—»—a




Ex.3 : Determine the z transform of for the function whose Laplace
transform is

The poles of F(s) occur at s=0 and s=-1.

The residue due to the pole at s=0 is

——
s—0

: [ | z
Ry =lm s =

S (S-l-l) :—EST

The residue due to the pole at s=-1is

51 s(s+1) z—e*

R2=Hm@+D{ 1 }:_

Adding these two residues results in

2
R=>R =R +R,=—"
‘1 =




Ex.4: Determine the z transform of cos(w t) .

The Laplace transform is

Fs) - s _ 5
O = T S jee ™

The polesareats =jwand s = - jw . Thus,

R, = lim (s — jw) > z_ |1 2
1 S T I S T W jw) z—e | 2z2—e™

R, = lim (s+jw){ > ‘ } 12
(s—

T 07—

S——jw

jw)(s+ jw) z—e°"

Adding these verify the previous result

2 2
A I
R=YR =R +R, = ~<oT)
-1 7 —2zcos(@) +1




Ex.5: Determine the z transform corresponding to the function f (t) =t .

The Laplace transform is

F(.s):SL2

This has a second-order pole at s=0. Thus, the residue becomes

1 dot

R= |imdsq-1[<s—r>“F<s> : }

(q_l)! S (Z_eST)

2-1
1 lim d

T (2= g ds?

[@—ﬂzF@) ;ﬂ}

-

R—£|' d 2 1 Z il
Ml s =) | z-1)
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Properties of z-Transform

1- Linearity of z-transform
Ziafi(n) + Bf(n)} = aF,(2) + BF,(2)

Example: Find the z-transform for the signal x(nT)=3%2" —4*3"

3z 4z

Zx(nT) = 322" — 473" =— — —

z—2 z—3

2- Time Delay:

Zif(k —n)} =z7"F(z)

2k=1 k>0,
k<0

Example: If Find F(z)

F) = 71— 2
zZ—2




3-Time Advance: Shifting n sampling period

Z{f(k+n)} =2z"F(z) —z"f(0) —z" ' f(1) — -+ —zf(n — 1)

Z[f (kT -|-T)] —7F (z) — 7f (()) Shifting one sampling period

Z[f (KT +2T)]=22F(z2)-2°f(0)—zf (1) Shifting two sampling period

4.Multiplication by k
Z{k™f(k)} = (—zZ)" F(z)

Example : Find G(z) for  g(k) =n2"

Z

f(n):2"<:}wF(z):z_2

G(z)——z— (Z)_(z 2)




5-Final value of the time response:

f(o0) = ,,Ii,mm f(n)= Elri_n}'ll(l —z7HYF(z)
Example

Find the final value of g(n), if ¢(,) = ] O’nglzﬁ 0.208)
z 72 _ (. Z 1+ U. ’

m(l1—z"1)G(2)

i
—1

8o = lim g(n) =1
M—r oo £

im(1— 21 0.7927
Cz—1 (z — ].)(.Fi’2 —0.416z + 0208) ’

. 0.792
= |lim

— 1.
z—1 {EE —0.416z + 0.203)




6-Initial value theorem

Suppose f (nT) has z transform F(z) and 1im F(z) exist, then the initial value f (0) of

f(nT)isgivenby  {(0)=lim F(z)

Z—C

Example 1: If F(z):i1 Find f(0) » f(0) = limF (2) = lim = lim

wz-1 =z(l- 1/2)

Example 2: For a discrete data system with transfer function

H(z)= rG) _ : i and a unit step input for which the z transform is
U(z) z7-14z+0.48

find the final value of the response sequence y(nT) .

r@=—— ) gy y()

(22 —14z+048)(z-1)




~ Properties of the z transforms
J(nT) Z[f(nT)]
a f(nT) 7 F(2)
Hh(T)+ f,(nT) Fi(2)+F,(2)
f(kT —nT) - F(2)
JT +T) zF(z)—z f(0)
ST +21) 22 F2)=2* F0) -z f()

J (KT +nT) 2" F(2)-2" fO)-z"" f(D) ==z f[(n-DT]
nl f(nT) —:T%(F(:))

e D _f(uT)
a™ f(nT)

@ :
= f(nT,a)
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Inverse z-Transform

Given the z-transform, Y (z), of a function, it is required to find the
time-domain function y(n).

There are three methods: power series (long division) ,partial
fractions and Residue Method .

1-power series: long division.

A This method involves dividing the denominator of Y (z) into the
numerator to obtain a power series of the form:

Y(z2)=w+yiz Tz it yzz 4

A values of y(n) are, directly, the coefficients in the power series.




2-partial fractions:
A a partial fraction expansion of Y (z) is found, and then tables of z-
transform can be used to determine the inverse z-transform.

3-Residue Method:The third method of finding the inverse z transfor
IS to use the inversion integral.

Method 1: Power Series (long division)
Example 1:

use power series method to find the inverse z-transform for:

224 | 44771 48772 48773
Y(2) == 22 —3z+4|2 +2
2°-32+4 2=3z+4
4z —4
4z —12+ 162!
g — 16z}
8 — 24z~ + 32772

The required sequence: 8z~ — 3272

o-=1 " 2472 4+ 327~
y(t) =6(t)+46(t—T)+86(t—2T)+85(t—3T)+---

Dividing the denominator into the numerator gives:

from coefficients of power serie Yk = {1,4.8,8,---}




Example-2: Obtain the inverse z-transform of the function

z+1

F —
(2) z2 4+ 0.2z+0.1

Long Division z'+08z7% -
22402z + 0.1)z+ 1

z+0.2+0.1z71
0.8-0.10z7"
0.84+0.16z '+ 0.08z°
—0.26z7"'—...

Thus

F(z) =0+2z"1408272—-0.262"3+ -
Inverse z-transform

fmy={, 1, 08  —0.26




In MATLAB, you can use the following commands:

%%%%%%%%%%% Long Divition
method

clc

Delta =[1 zeros(1,4)] ;

num=[0 1 1],

den=[1 0.2 0.1];

yk = filter (num, den , Delta)

0 1.0000 0.8000 -0.2600 -0.0280

disadvantage of power series method: it does not give a closed form
of the resulting sequence.




Method 2: Partial Fractions

Looking at z-transform table,

= there is usually a z term in numerator.

= It is therefore more convenient to find the partial fractions of Y(z)/z

= then multiply the partial fractions by z to obtain a z term in the
numerator.

B 7% +32-2
 (z+5)(z2-0.8)(z-2)*

Example 1 :Find the inverse z-transform of Y(z)

Y(z) z2+3z-2

z  z(z+5)(z—0.8)(z—2)

A B C D E

Z+Z+5+Z—O.8+(Z—2)+(2_2)2

z24+3z-2

A=z 5
z(z+5)(z—-0.8)(z—2)

= 0.125,
z=0




z243z-2
z(z +5)(z = 0.8)(z — 2)°

B=(z+5) — 0.0056,

z=—"5

z24+3z-2
z(z +5)(z — 0.8)(z — 2)°

C=(z-08) = 0.16,

z=0.8

E=(z-2) 2322 | gy
z(z+5)(z—0.8)(z —2)

z=2

D

[d  zZ2+3z-2
- |dzz(z+5)(z—0.8)

Zz=2

_ (22+3)z(z+5)(z—0.8) — (z2 +3z — 2)(3z2 + 8.4z — 4)

_ — —0.29
[z(z +5)(z — 0.8)]

z=2




0.0056z N 0.016z 0.29z n 0.48z
+5 z—08 (z—-2) (z-2)

Y(2) =0.125 + —

y(n) = 0.1255(n) + 0.0056 (—5)" + 0.016 (0.8)" — 0.29 (2)" + 0.24 n (2)"

Note: for last term, we used the multiplication by k property which is equivalent
to a z-differentiation.

Example-2: Obtain the inverse z-transform of the function
z+1
z%2 4+ 0.3z + 0.02

F(z) =

Solution

F(z) z+1
z  2z(z2+ 0.3z + 0.02)
F(z) z+1
Zz  2(z2+ 0.1z + 0.2z + 0.02)




F(z) z+1
z  z(z+0.1)(z+0.2)

_+B+C
Tz z4+01 z+0.2

L _ 1 50
0.1x0.2  0.02

= F(0) =

z+1 B -0.1+1 B
(-0.1)(-0.1+0.2)

B-z+0) @ _(zi0p2
Z |, o1 z(z+0.1)(z+0.2)| _,

1

z+1 B -0.2+1 B
(-0.2)(-0.2+0.1)

c=z+02) XT3 _zi02l
Z |00 2 (z+0.1)(z+0.2)|,_,

2

9




F(z) 50 90 40

Z Z_Z+0.1+Z+0.2

90z 40z

F(z) =50 = =3+ 7702

e Taking inverse z-transform (using z-transform table)

f(n) =506(n) —90(—0.1)" + 40(—0.2)"




In MATLAB, you can find the partial fraction expansion of a ratio of
two polynomials F(z) with:

Example :Find the inverse z-transform of F(z) =

num=[2 1 0 O]
den =1 0 1 1] residue returns the complex roots and

[r,p,K] = residue (num ,den) poles, and a constant term in k,
r= representing the partial fraction expansion

0.5354 +1.0390 i

273 4 72
24741

0.5354 -1.0390 i Flz 0.5354 + 1.0390 0.5354 — 1.0390/

-0.0708 + 0.0000 i ~ z—(0.3412 + 1.1615)) i z —(0.3412 — 1.1615j)

P= _ —0.0708
0.3412 + 1.1615 i t 20683 T2

0.3412 - 1.1615 1
-0.6823 + 0.0000 1
k =

2




Method 3: Residue Method:

The third method of finding the inverse z transform is to use the inversion integral.
Note that

x(nl)= ziyij(:) =Fds

x(nT) = Z[residues of X(2)z"" at polesof X(2)]
In particular, the residue due to a first order poleatz =r is

R= ELE(:_ r) [F(z)z"]

Similarly, the residue due to a repeated pole of order g is

g1
1 lim d

"D B E T FE T




Examplel : Using residue method, find f (nT) if F(z) is given by

(1- E_T) z
(z-D-e )

(1 e_T)Z n—l
(-Dz-e)

=T
R2 — IImT (Z_e—T)|: (1 e )Z n—1:|:_e—nT

F(o)=

R~ lim 23

(z-D(z-eT)

f(nT)y=1-e" n=0,12.3, ...

T.-

Example 2: Determine the inverse z transform for the function  7(- )_( 7
z-1

Tz 1 |
T (2= 1)I|!£pdz [( =l (z—1)22 }_nT

For f (nT) =nT , the corresponding time functionis f (t) =t.




z-Transform solution of difference equations

Linear difference equations may be solved by constructing the Z-
Transform of both sides of the equation. The method will be
Illustrated with linear difference equations of the first and second
orders (with constant coefficients).

Example 1:Solve the linear difference equation 1,4+ — 2u,, = (3)™", given that ug = 2/5.

Z{tp 1} = 2.Z{u,} —z.g. » Z|f (KT +T)]=zF(2)-1zf (0)

5
9 second shifting theorem

2. Z{u,} — P 27{u,} =




Example 2 :Solve the linear difference equation 1,15 — 7t,+1 + 10u,, = 16n,

giventhat uy =6 and u; = 2.

second shifting theorem

Z{ups1} = 2. Z{u,} — 62
‘ Z[f (KT +T)]=2F(z2)-zf (0)
Z{Upyo} = 2°. Z{u,} — 62° — 22. Z[f (KT +2T)|=2*F(2) - 22 (0) - zf (1)

162
(z—1)%

22 Z{u,} — 622 — 22 —T[2.Z{u,} — 62] +10Z{u, } =

16z
(z—1)%
162 622 — 402
C_12:-50:-2 " z_8(E-2

Z{un}[z* — Tz +10] — 62* + 402 =

Z{un} =

5
z—1|




Home Work

«Find the inverse transforms of the following functions

a)F(z)=1+3z71+4z72

b)F(z) =5z71 +4z7°

c) F(z) =

zz+032+002

z—0.1
Z240.04z+0.25

d)F(z) =

e) F(z) = ~

(z+0.1)(z+0.2)(z+0.3)
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Discrete-time Block Diagrams

 Derive the pulse transfer function of a continuous-time system driven
by discrete input.

« Manipulate block diagrams of open and closed-loop discrete-time
systems.

« All linear difference equations are composed of delays, multiplies,
and adds, and we can represent these operations in block diagrams.

 block diagrams are often helpful in system visualization.

Example
Consider the difference equation for trapezoidal integration:

T
U =Uy, +E(eK +eK—1)
This difference equation is represented by the block diagram shown.

+
ey €r_1 T =+ by
= > E

+ +

g




The ZOH transfer function

» Azero-order hold as a way to reconstruct ik
continuous signal from discrete samples  f(t)

The ZOH remembers the last information
until a new sample is obtained, i.e. it takes the
value r(kT) and holds it constant for
kT<t<(k+ 1)T.

Ezon (1) =u(t) —u(t —1I,)

1 et 1-—e75

Grop(s) =—— —
AY h) hY

]-_P_SI; — -+

S Gpon(2) = 2] G(s)]

sampling period
s pling p

— -1 G(s) This is exactly the behavior of a DAC in
=(1-z7)Z] ] converting a sampled signal r*(t)into
continuous r(t).

5




Pulse Transfer Function

The transfer function for the continuous-time system relate the Laplace transform
of the continuous-time output to that of the continuous time input, while the pulse
transfer function relate the z transform of the output at the sampling instant to that
of the sampled input.

Consider the two different cases below:

Case 1: Case 2:
X)) X X O X(t) (1)

> G(s) > G(s) ———

X(s) X' (s) Y(s) X(s) Y(s)
The Laplace transform of the output
Y(s) = G(s)X*(5) v(t) Is

Y(s) = G(s)X(s)

Yi(s) = [G(s)X(5)]" = [6X(s)]
Or in term z transform
Y(z) = Z[6()X(s)] =Z[6X(s)]
Y(2) = GX(=z)
GX(z) = G(z)X(2)

Yi(s) = [6(s)X"(s)]" = G (s)X"(s)

Y(z) =G(z)X(2)




Pulse Transfer Function of Cascade Element

o
&is) His)

U(s)=G(s)X (s). Y(s)=H(s)U (s)
U (s)=G ()X (). Y (s)=H (U (5)
= Y ()=H (U (s5)=H (5)G (5)X (5)

= ¥(:)=GEHE)X(E) = % - G()H(2)

.'h':.” x‘{ﬂ' &
e Gls) ————  His) A ‘5/{ e
T

by

Y(s)=G(s)H ()X (5)=GH(s)X (s)
Y (s) =[GH(s)] X" (s) Note that

Y(z)=GH(z)X(=z)

Y(2) _ s (5 =Z[6H()] G(2)H (=) = GH(=)

X(z)



Example: obtain the pulse transfer function of the system shown in
figure below:

) M (s) C(s)

Zero-Order
hold

-y = (1— =1 G(s) for T. =1
G(z)=( )Z{ } " (.5'4—1)} o1

G(z’)—z_IZ K K
z s7(s+1) S (S+l)

G(z) = 22 1{ T.Kz Kz Kz }
(z-1)° (z—l) z—e
K(0.368z +0.264)

T -2 _1368-+0.368




Pulse Transfer Function of
Closed-Loop System

Consider the closed loop system shown below. In this system, the actuating error is
sampled.

R(s) gE(S) )g' E'(s) 6(s) C(E)
Or

T .~ R(s)
—E (=) = 1 +GH(s)

incec*(s) = G*(s)E*(s)

in cr(s) = S DR

E(s) = R(s)— H(s)C(s) 1+ GH(s)
ter z-transform C(z) is given by

C(s).=_6(s)5*(s) clz) = G(2)R(2)
Sub.:2in1l z) = 1+ GH(2)
E(s) = R(s)— H(s)G(s)E"(s) : The pulse transfer function is

E*(s) = R*(s) — GH'(S)E*(s) :((2= 1 fé?{z)




Typical configuration of closed loop discrete-time systems and the corresponding
outputs ¢(z) are listed below:

Case 1

R(s) >$‘ C(s) >{ C(z2)
G(z)R(z)

O = TTe0rG

C(s) >$’ C(z)

C(z)

_ G()RE)
1+ GH(z)




G2(z)RGI(z)
1+ GIG2H(z)

C(z) =




C(s)

PC(Z) =

GlG2(2)R(2)
1 + H(z)G1G2(z)




Example 1: find the discrete system response C(z) to a unit step input
for the system shown below:

1
—=E(s) 1 Als) A4 S s
> S+05 T/—'ls . oD

G1(s) Y /
C(s) =G(s)A™(s) G(s)

3 (1-e"T5

C(z) = G(2)A(z) Gls) = (5+1)(5+2)

A(s) = G1(s)E(s) A(z) =72 {G1(s)E(s)

G1l(s) = - =L {s+1{).5 i} . £ {5(5*1?}.5)}

5+0.5

z (l—e'o'ST)
(z—1)(z—e 03T

= 2




1

(s+1)(s+2) (

G(s) = — (1—eT5) =3

P
(s+1)(s+2) 1-e )

(e T—e2T)z 2 1 (et —e?)z
—e M)z Tz (z—eN)(z—e7?)

G(z) =3(1-z71H G

_ 3(z—1)(et —e7%)

(z—e1)(z—e?)

C(z)=6G(z)A(z)

3(z—1)(e 1-e"%) 2z (1-e799)
(z—e 1)(z—e™2) z-1 z-e 93

s~ C(z) =




Example 2

Find the pulse transfer function of the system given by

Y(KT)+3y(KT -T)+4y(kT - 2T)+5y(kT - 3T) = r(kT)-3r(kT -T)+ 2r(kT - 2T)
with zero initial condition.

Solution :
Z transform of the system s given by

Y(2)+3Y(2)z' +4Y(2)z* +5Y(2)z° = R(2)-3R(2)z™* + 2R(2)z**
The pulse transfer function of the system can be obtained as

Y@  1-3z%+2z7° 2°-32°+2z2

CR(@) 1+3z%'+4z%+52° 7°+3722+42+5

G(2)




Example 3

Find the difference equation of the system whose transfer function is

7 +32°+272° +7+1

G(2)=
@) 2% +47° +52° +32+2

-1 ) 3 4
Solution :G(z):@_ 1+327+22°+727 +2

RGZ) 1+4z'+52%+32°%+27

SO We have

Y@2)(1+4z* +52°+32° +22°)=R(2)(1+32" +2z° +2° + ™)
The difference equation of the system can be obtained by the
Inverse z transform

Y(KT)+4y(kKT-T)+5y(kT-2T)+ 3y(kT-3T) + 2y(kT-4T) =
r(KT)+3r(kT-T)+ 2r(kT-2T) + r(kT-3T) + r(kT-4T)
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Time Response

In this chapter the time response of the sampled data system of
Fig.(1) to unit step input will be determined. Three methods will be
explained: long division , difference equations and partial fraction

expansion.

Figure (1) Sampled data system

kA B _kl4 k4 kz(z-e™*)-z(z-1)
G(S)_s(s+4)_s+(s+4)_s (s+4) G(Z)_Z (z-1)(z—-e™T)

k z k Z

G(z)=— ——
(2) 4(z-1) 4(z-e*) 6(=) = 2(K/4)1-e)
(z-D(z—e)




Z(K/4) (1-e)
(z-D(z-e*)

G(z) =
Letting K =1 and T =0.25 sec, then

0.158z
(z—D(z-0.36%)

C(z)

The pulse transfer function
R(2)

IS
CG)_ 6()
R(z) 1+G(2)

- 0.158: )
=)= [(z—1)(z—0.368)+ 0.158-] k()

0.158:=
(z—0.61)




1- Long division method:

-
-

For unit step input, R(z) = 7~ Then

—

-

0.158=
C(:) = S R(:)
(z—0.61)*

0.158="
(z—0.6D)%(z-1)

C(z)=

Using the long-division method to determine the inverse gives

0.158-71 +0.349-77 +0.522=7" + -
=3 -221-% +1.58--0.368 )0.158:2
0.158z° —0.3497 +0.249642 - 0.058144 7™

0.3497—-0.249642 +0.058144 7




C(z) = ic(nT) 2" =c(0)+c(T)z " +c(2T) 2% +

c(z)=0.185z"+0.34927° +0.522z2° +
then c(0=0. «T)=0.158., ¢(2T)=0.349, and c(3T)=0.522

A plot of the response c¢(nT ) at the sampling instants is shown in Fig.(2).The long
division method becomes quite cumbersome for computing c(nT) for larger values

of n. A more convenient procedure results from expressing the solution in the form
of a difference equation. c(nT)
&

Figure (2) Sampled data system




2-Difference Equations:

To determine the INVEI'SE z transform by this method, one can write the equation for C(z)
in the form

0.158:z
(z—D(z—-0.368)

—— From previous example
C(2) _ G(2)
R(z) 1+G(2)

The pulse transfer function

_

0.158:z
C(z)= 5 R(2)
[z —1.21z+0.368]

Thus C(2)—1.21z"'C(2) + 0.368z""C(z) = 0.158z"'R(2)

Application of right shifting property  Z[ f(nT —kT)=z""F(z)
Then the preceding expression yields directly the difference equation

cnT)=121c(nT —-T)—0.368 c(nT —2T7)+0.138 r(nT —T)




This difference equation gives the value c(nT) at the nth sampling
Instants In terms of values at the preceding sampling instants.
Application of this result to obtain the values at the sampling instants
gives

c(nT)=121c(nT —T)—0368 c(nT —27T)+ 0.158 ¥(nT —T)

c(0)=0,

c(T)=0.158 »(0)=0.158
c(2T)=121e(T)+ 0.158 »(T)=0.349
c(37)=121¢(2T)—-0.368 c(T)+0.158 »(27T)=0.522

Such recurrence relationships lend themselves very well to solution
by a digital computer.




3-Partial-fraction expansion:

The response ¢(nT) at the sampling instants may be also be obtained
by performing a partial fraction expansion and then inverting. Thus

0.158z° .
C(z)= From previous example

(z—0.61)"(z-1)

(=)= - 0.8z ::{ 4, B B }
(z=1)(z—0.61)" (z—=1) (z-0.6)" (=-0.61)

The partial-fraction expansion constants are A=1, B1 =-0.24,and B2 =-1.0.
Thus, C(z) becomes

z 0.61:z z
C(z)= —0.39 _—
(z=0.61)" (z-0.61)

(=)




By noting that

Note B=0.24
0.24=0.61*0.39

C(z)=———-039
() 1)

(-—0.61)> (z—0.61)

The inverse is found to be
c(nT)=1-0.39nT(0.61)"" —(0.61)"
With this method, the value ¢(nT) at any sampling instants may be

calculated directly without the need to compute the value at all the
preceding instants




Figure 3. should just be a reminder of how we can characterize a
transient response. It shows five measurements, the delay time, the
rise time, time to the first peak, the peak value, and the settling

time

Y(t) (in percent of steady state value)

Settling time

System tolerance

step
response !

Figure 3.13: Transient response
characteristics




Delay time: time to reach 50% of SSV

Rise time: time to go from 10% to 90% of SSV,or 0-100%,
ldepending on situation.

Time at which first peak occurs - if any (peak time)

Maximum overshoot as % of SSV

f Settling time: time for output to stabilise within a given tolerancej
s |band (usually 2%)

SSV = Steady State Value

_ E—CGS_I(‘?) w,=w1-°

(0 — 100%)

M, =100e o=

(to 2%)
caw,
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Mapping of s-plane to z-plane

It Is possible to map from the s plane to the z plane using the
relationship 7 = ST

Where s = 0 + jw.
7 = e(a+ja))T

Then z In polar coordinates is given by

7 = 0T oJWT

|z| = €97 27z = T

We will discuss following cases to map given points on s-plane to

Z-plane.

|

= Case-1: Real pole in s-plane (s = o)

= Case-2: Imaginary Pole in s-plane (s = jw)

= Case-3: Complex Poles (s = 0 + jw)




Case-1: Real pole in s-plane (s = o) Ve Know
|z| =e%T + £z=0 |z| = e°T 27 = T

When s =0
1z| =0T =1

2z =0T =0

L

When s = —o

z| = ™" =

ZZ =0

h

0

Consider s = —a
z| = e™"
ZZ =0




Case-2: Imaginary pole in s-plane (s = +jw)

|z| = e9T 2z = wT

Consider s = jw

1z| =e%T =1
27 = wT

When s = —jw

OT=1

1zl = e




« Anything in the Alias/Overlay region in the S-Plane will be
overlaid on the Z-Plane along with the contents of the strip

between +j —.

Z-Plane

Im (z)

Alias {overlay) Region

Alias Boundary

LSRR

Alias (overlay) Region




= |n order to avoid aliasing, there must be nothing in this region, i.e. there must be
no signals present with radian frequencies higher than w = p/T, or cyclic
frequencies higher than f = 1/2T

= Stated another way, the sampling frequency must be at least twice the highest
frequency present (Nyquist rate).

S-Plane

jo

Alias (overlay) Region

Alias Boundary

LSRR

Alias {overlay) Region




Case-3: Complex pole ins-plane (s = 0 + jw)

27 = +wT




Mapping regions of the s-plane onto the
z-plane

Im Im

A







Mapping regions of the s-plane onto the
z-plane

.Oﬂmg 5
/2

Unit Cirele




Stability of Discrete Systems

There are several methods to check the stability of a discrete-time
system such as:

1-Factorizing D(z) and finding its roots. 3-Routh—Hurwitz

2-Jury Test. criterion .

1-Factorization

Suppose that we have the following transfer function of a closed-loop
discrete-time system:

Y(z)  G(z) N2
R(z) 1+GH(z) D(z)

The system is stable if all poles™ lie inside the unit circle in z-plane.

The direct method to check system stability is to factorize th

characteristic equation, 1 + GH(z)=0

A determine its roots, and check if their magnitudes are all less than 1.
z| <1




Example 1

Check the stability of the following closed-loop discrete system.
Assumethat T=1s

es)_~ X3 ’ y(s) e Y*(i)

+ —

Y(z) _ G(2)
R(z) 1+G(2)

The transfer function of the closed-loop system is:

_ a—Is
Where G(z) = 32*‘{ 1-e 1 }
S S+ 2

2z(1—e?")  2(1-e7%)

== e~ ee ) |,

=1 sec

1729
~ 2z-0135




The characteristic equation is thus:

1+G(z)=0
z+1.594=0
z=-1.594

|z| >1 = system is unstable

Example 2

In the previous example, find the value of T for which the system is stable.

From the previous example, we found:

The characteristic equation is:

1+G(z)=0
z—3e 2T 1+2=0

z=3e2T_2




For stability, the condition |z| <1 must be satisfied; , _—

z| =3e7%" —2| <1
—1<3e T —2<1

1

—0.51n (%) >T>0

0<T<0.549

Thus the system is stable as long as T < 0.549.
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Stability of Digital Control Systems

The difference between the stability of the continuous system and
digital system is the effect of sampling rate on the transient response.
Changes in sampling rate not only change the nature of the response

from overdamped to underdamped, but also can turn the system to
an unstable.

Jury Test
 Stability test method presented by Eliahu Ibraham Jury.

o Jury stability test is similar to Routh—Hurwitz stability criterion
used for continuous systems.

e In Jury test, the characteristic equation of a discrete system of
order n is expressed as:

F(z)=anZ"+an12" ' +---+az°+a1z+ap =0,

where i 50




Jury table

* Row of the Jury table is a listing of
F(z) coefficients in order of
increasing power of z.

e The table has 2n — 3 rows
(always odd)

2n—3
The elements of this array are defined as follows:

* Elements of even-numbered row are the elements of the preceding
row, in reverse order.
Elements of the odd-numbered rows are defined as given by bk , ck

1=t bo bn—k‘

Ci, =
b, = |% an_k‘ “ b, by
K an ag 1’

k=01,..,n—-2

So SZ‘ So S1
)

k=0,1,...,n—1 - rl_ 53 Sl TZ_ 53 SZ




The necessary and sufficient conditions for the characteristic equation
to have all roots inside the unit circle are given as:

(I1) Sufficient conditions
(I) Necessary conditions

lbo| > |bn—1|

F(1) >0, Co| > [€n—2|

(—1)"F(-1) > 0, do| > |dn—3]
IaDI < an,

Jury Test is applied as follows:

e Check the three conditions (I) and stop if any of them is not
satisfied.
Construct Jury array and check the conditions (I1) . Stop If any
condition is not satisfied.




Example-1
- Test the stability of the polynomial.

F(z) =z>+ 2.62z* —0.5623 — 2.05z% + 0.0775z + 0.35

Solution

- Develop Jury’s Table [(2n-3) rows].

EAERFEEEEE RS
0.35 0.0775 -2.05 -0.56 2.6 1
2.6 -0.566 -2.05 0.0775 0.35

by

1
2
3
4 bo
5
6
7




0.35 0.0775 -2.05 -0.56 2.6 1

3" row is calculated using

b, — Ao an—k‘ 1 2.6 .0.56  -2.05 0.0775  0.35
k™ la, ay —0.8775-2.5728—0.1575 1.854 0.8352

n-1




e 4™ row issame as 3™ row in reverse order

0.35 0.0775 -2.05 -0.56 2.6
1 2.6 -0.56 -2.05 0.0775 0.35
—0.8775 —2.5728 —0.1575 1.854 0.8352
0.8352 1.854 -—0.1575 —2.5728 —0.8775




« 5™ rowis calculated using

k=0,1,2,....n-2

0.35 0.0775 -2.05 -0.56 2.6
1 2.6 -0.56 -2.05 0.0775 0.35
—0.8775 —2.5728 —0.1575 1.854 0.8352
0.8352 1.854 —-0.1575 —2.5728 —0.8775
0.077 0.7143 0.2693 0.5151




6! row is same as 5% row in reverse order

0.35 0.0775 -2.05 -0.56 2.6

1 2.6 -0.56 -2.05 0.0775 0.35
—0.8775 —2.5728 —0.1575 1.854 0.8352
0.8352 1.854 -—0.1575 —2.5728 —0.8775
0.077 0.7143 0.2693 0.5151
0.5151 0.2693 0.7143 0.077
d, dq d,




e 7™ row is calculated using

k=0,1,2,....n-3

0.35 0.0775 -2.05 -0.56 2.6
1 2.6 -0.56 -2.05 0.0775 0.35
—0.8775 —2.5728 —0.1575 1.854 0.8352
0.8352 1.854 —-0.1575 —2.5728 —0.8775
0.077 0.7143 0.2693 0.5151
0.5151 0.2693 0.7143 0.077
—0.2593 —0.0837 —0.3472




* Now we need to evaluate following conditions

5th order System

(1). F(1)>0

(2). (=1)5F(=1) > 0
(3).
(4).

(5). leol > |esl
(6). |do| > |d,]

The first two conditions require the evaluation of F(z) at z = +1.

F(z) = z> + 2.6z* — 0.562z3 — 2.052z% + 0.0775z + 0.35

F(1) =1+ 2.6 —0.56 — 2.05 + 0.0775 + 0.351 = 1.4175
F(—1) = =1+ 2.6 + 0.56 — 2.05 — 0.0775 + 0.35 = 0.3825

(1). F(1) > 0 v satisfied (2). (=1)°F(=1) > 0 x Not Satisfied




e Next four conditions require Jury’s table

0.35 0.0775 -2.05 -0.56 2.6
1 2.6 -0.56 -2.05 0.0775 0.35
—0.8775 —2.5728 —0.1575 1.854 0.8352
0.8352 1.854 —0.1575 —-2.5728 —-0.8775
0.077  0.7143 0.2693 0.5151
0.5151 0.2693 0.7143  0.077
—0.2593 —0.0837 —0.3472

(3). lapl < as  satisfied (5). |col > |c3| NotSatisfied

(4). |bol > |bgl satisfied (6). |dg| > |d,| NotSatisfied

 Thesystemis unstable ,because the roots on or outside the unit circle. .
The polynomial can be factored as F(z) = (z—0.7)(z—0.5)(z+ 0.5)(z+ 0.8)(z+ 2.5) =

and has a root at —2.5 outside the unit circle.




Example-2
Test the stability of the polynomial.

F(z) = z% — 0.25

Solution

Develop Jury’s Table [(2n-3) rows]. m---
-0.25

F(1)=1-0.25=0.75
F(—-1)=1-0.25=0.75
(1). F(1) >0 Satisfied
(2). (—1)?F(—1) > 0 Satisfied

(3). |a,| < a, Satisfied

 Since all the conditions are satisfied, the system is stable.




Example 3

G(z)

1+6(2)’ where

The closed-loop transfer function of a system is given by

G(z) = 0.2z+0.5 _ 3 _ |
22 _12-102 Determine the stability of this system using Jury Test.

The characteristic equationis 1+G(z) =0

0.2z +0.5

Yt T 5,00

Z2_z40.7=0

Applying Jury Test:

F(1)=0.7 >0, F(-1)=2.7>0,
|an| =0.7<1= d>

All conditions are satisfied, so the system is stable.




Example 4

Determine the stability of a system having the following characteristic equation:
F(z)=2>—-22°4+142z—-0.1=0

Applying Jury test:
d3 = 135‘2 = —2351 = 1.435‘(} =-0.1

F(1)=03>0, F(-1)=-45<0, |ag]=01<1=a3

The first conditions are satisfied. Applying the other condition:

—-0.1 14
1 —2

1

o1 ‘ =12

‘:—0.99 and ‘

since | — 0.99| < | — 1.2/, the system is stable




Example 5

The block diagram of a sampled data system is shown below. Use Jury Test to
determine the value of K for which the system is stable. Assume that K> 0 and T

=1s.

The characteristic equation is:
1+G(z)=0

G(z) = S’Z‘{ - _;_Tss(si 1)} =(1 —z—l)f{sz(5k+ 1)}

~ K(0.368z +0.264)
~ (z—-1)(z—-0.368)
z* —2(1.368 — 0.368K) + 0.368 4 0.264K = 0




Apply Jury test for 2..order equation:

F(z) = azz* +ai1z+ao =0, where a; >0
z* —2(1.368 — 0.368K) + 0.368 + 0.264K = 0
F(1) >0, F(=1)>0, lao| < az
F(1)=0.632K >0 = K>0
F(—1) =2.736 —0.104K >0 = K <26.3

The third condition is;

lao| < a2

0.368 + 0.264K| < 1

—1 < 0.368 +0.264K <1
—518<K <24

Combining all inequalities together, the system is stable forO < K< 2.4




Example 6

Determine the stability of the system having the following characteristic equation:

F(z)=2"4+2°+2224+224+05=0

0 2

z zt z
0.5 2 2
1
0

1 2
—0.75 -1 —-1.5
—1.5 —1 0 —0.75
—1.6875 —-15 0.75

F(1)=6.5>0,/
(-1)*F(-1)=1-14+2-2+05>0,/
lag| =05 <1=ayv
b0| =0.75 > |b3| = 1.5X
c0| = 1.6875 > |c2| =0.75V

System is unstable
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Routh—-Hurwitz Criterion

The stability of a sampled data system can be analyzed by
transforming the system characteristic equation into the s-plane and
then applying the well-known Routh—Hurwitz criterion.

o Abilinear transformation is usually used to transform the interior of
the unit circle in the z-plane into the left-hand s-plane (w-plane).

T

z+1 b
1 52

resulting operation as “w” transform”

P 1> (1 + S%) Some engineers replace s by “w” and call the
7 =

For this transformation, z is replaced by:|, — 1w S W = 1tz

1—w 1—z

F(z) =b,z" +b,_1z" 1+ -+ b,

Routh—Hurwitz criterion

Number of roots of the characteristic equation in the right hand s-plane is equal to the
number of sign changes of the coefficients in the first column of the array.




Routh-Hurwitz array is formed as:

First two rows are obtained
from the equation directly and
the other rows are calculated as:

Thus, for a stable system all coefficients in first column must have
the same sign.




Example 1

he characteristic equation of a sampled data system is given by

2272 +7224+7z+1=0
Determine the stability of the system using the Routh—Hurwitz criterion

3 2
1+ w 1+w 1+ w
2 1=0

2l+wP+1-w)(1l+w)+1-w)f(1l+w)+(1-w)’=0

WAL Tw +3w+5=0

Now, we form Routh array: 1

7*3-5*1 16 _16/7*5-0*5 _ -
C, = = D, = 167 =5 ﬁ‘»
7 7 @l

No sign change in the first 5
column, so the system is stable.




Roots of the characteristic equation:

can be found using MATLAB

roots(2 1 1 1))

0.1195+,0.8138
0.1195—-,0.8138
—0.7390

all roots are less than one, i.e. the

roots lie inside unit circle. Hence,

we can conclude that the system is
stable.

222 1221472141 =0

abs(roots([2

11 1))




Example 2

By using Routh-Hurwitz stability criterion, determine the
stability of the following digital systems whose characteristic are
given as.

Solution 42 _ 025 =0 r1,2 = 0.500 , -0.5000

Transforming the characteristic equation z% — 0.25 = 0 ilrlto
w

w —domain by using the bilinear transformation z=_—

gives:

0.75w2 + 25w+ 0.75=0

Since there are no sign 0.75
changes in the first column 25
of the Routh array therefore

the system is stable. 0.75




Example-3

By using Routh-Hurwitz stability criterion, determine the stability of
the following digital systems whose characteristic are given as.

_ z3 —1.22z2—-1.3752—-0.25=0
Solution

Transforming the characteristic equation into w — domain by using

 y- . 1+ .
the bilinear transformation z = ﬁ gives:

—1.875w3 + 3.875w? + 4.875w + 1.125 =0

From the table above, since there is (31.875 4.875

one sign change in the first column
above equation has one root in the 3.875 1.125

right-half of the w-plane. 5.419 0

e This, in turn, implies that there will
be one root of the characteristic
equation outside of the unit circle in
the z-plane.

1125




clc

clear

P=[1-1.2 -1.375 -0.25];
r=roots(P)

d=abs(r)

r =
1.9646
-0.5199




Example-4

By using Routh-Hurwitz stability criterion, determine K for the stable digital systems whose
feed forward G(z) are given as.
0.632K z

G(z) =
(2) 7> -1.3682z+0.368

0.632K z

The characteristic equation 1+G(z) =1+

22 -1.3682+0.368

N 0.632K z
z*—1.3682+0.368

—0= 0.632K WA+1.264w+(2.736—0.362K) =0

In terms of Routh criterion 0.632K .- 2.736—-0.362K

1622 0

2.736 - 0.362K

We have 0< K <7.558




Example 5

Determine the stability of the following system (with T = 1 sec) using
Routh’s criterion:
Yiz) =+0.9672

Fi{z)=00484
Ri=z) (z—1)=—0.9045)

Solution:
Tustin's (bilinear) transformation leads to

F[zjbﬂ = F'(5)=0.0484
-3




Fli:ﬂ':] - (]in"F].;[':r—l:]
slommes +1)

The characteristic polynomial becomes

A'(s)=10.015" +5+0

10.01 )
All first-column coefficients are

bigger than zero = system is
(marginally) stable.
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Steady State Error

e An Important characteristic of a control system is its ability to
follow, or track, certain inputs with a minimum of error. The control
system designer attempts to minimize the system error to certain
anticipated inputs.

Consider the  unity e
feedback block diagram 'i?_ ~—1 G(s)

shown in  following
figure.

« The error ratio can be calculated as

R(z)G(z)  R(z)
1+G6(z) 1+G(2)

* Applying the final value theorem yields the steady-state error.
z—-1 R(2)

E(z) =R(z)—C(z) =R(z) —

lim2 = E(2) = lim
1 7 -1 7 1+ G(2)

eS

S




for unit step input

(1) = 1)< R(z fome 1' K, =lim G(2)

() =1 < R(:z)= = —: K, =lim(z=—1)G(z)
(__]) z—1

T-'{_+1)

for unit ramp input

for unit Parabolic input

)=t ©R()=

=hm(z— z
1) K _}1( 1) G(z)

where
K; , Position Error Constant

K, , Velocity Error Constant

K, , Parabolic Error Constant




Example
For the unity feedback control system with the transfer functions c(s)=—*_ and T =1sec

5(5+5)
L?_e /. @@ cr

1) Determine K for the stable system.
2) If r(t) = 1+t , determine eg

5 s(s+5)

K
= (1-e7)Z| —
sT(s+35)
z2 —2.2067 z+0.2135

=(1- eTE)z{/ Iy K/q} i | (z—1)Xz—0.0067)

G(E)=Z{1_€_TE- K } 1[”/ K% s

(z-1)* —1 P s

S+5




. . K z*-2.2067:+0.2135
1+G(z)=1-— =0
The characteristics equation IS 1+G(z)=1-~ = 1)(=—0.0067)

(5-K)z2 +(2.2067 K —5.0335)z +(0.0335 —0.2135K) = 0

2
0.9932 1'%+ (9.993 —1.573 K)w+(10.067 —2.4202 K) = 0

0<K <416

(M) =1+t 1P

=D

K e O _:‘—2 2067 z+0.2135
z—1 z—=1 5 {:‘—l}l:.. —[10067)
K —2.2067 z+0.2135

K =lm(z=1)G(z) = 11111—— Sk
z—1 5 (:_{]mﬁT}

1 T
_|_

€ E ®
1+K, K,

Iy -




Steady State Error and System Type

System

Steady-state errors in response to

Step input
r(t) =1

Ramp input
r(t) =t

Acceleration
input
r(t) = ir?

Type 0 system
Type 1 system

Type 2 system

1+ K,
0

0

L o0

oo
1
Ka




Example:2 for the unit feedback system find the steady state error.

R(s) >§4
T

The open-loop transfer function is

1—e"7* g

s s(s+1)

G(s)

5(1— ™)
si(s+1)

1 1 1
=5 l—E'_TS _— - ]
( ) - s s=+1

Tz
(z—1)2

G(z) =5(1—-z71) [




. . ® o0 =
For step input: e () 1+

= lim G(z) = lim 5(1—2_1)

K
B z—1 z—1

= lim5(z—1)

==1




For a unit ramp input: e (0) = —

v

1
K, = T Ll_l}lil(z- 1)G(z)

11'( 1)5(1 _1[1‘: - 4 z]
T z1v (-2 )(2-1)2 z—1 z-—e7 7

—hm(z—l](z—l)[( —1) - + - ]

z—1 z—eT

;hm[T (z—l)+z_e)‘

=z—=1




For parabolic input

1 1. 2
e () = — where K_ = = Ll__l’lil(i-’_ 1)°6G(z)

[ird

1 Tz z z
Kﬂ — 1 — 2 - | —
Tzlzl—rﬂ(z D75(=2 )[(z— 1) z—1+z—e'T]

_ 2 11_:3%[1'(2—1)—(3—1)%&_—1)3]:0

T

-
-

z—e




H.W.:
For the discrete control system shown below, Find the steady state
error of unit step, ramp and parabolic input

G1(s)

R(s) ~—~ E6) ~q E'G)

1
s+ 2
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Root-L.ocus
Definition:
he root-locus method iIs a plot of the roots of the characteristic

quation of the closed-loop system as a function of the open-loop gain
onstant K which is varied from 0 to infinity 0 <K <.

In many LTI discrete time control systems, the characteristics equation
may have either of the following two forms.

1+ KG(z)H(z) =0 | Where, G(z)H(z) or GH(z) as known open loop

or 1+ KGH(z) = 0 pulse transfer function is equal to L(z)

L(2) = G@H@) = — | | or L(2)=GH() =~

he characteristics equation should be rearranged in the following form

K(z—2))..(z—2z) ...(z — zp)

(z—=p1) ...z =) . (2= D)
The closed-loop system will remain stable providing the loci remain
within the unit circle

1+ KL(z) =




Since L(z) 1s a complex quantity it can be split into two equations by
equating angles and magnitudes of two sides.
This gives us the angle and magnitude criteria as

Magnitude condition:
IL(z)| =1
Angle condition:
2L(z) = ¥180°(2n + 1) Where n =0,1,2,3,.....

Rules for Drawing Root Locus

1. The root locus is symmetric about real axis. (Number of root locus
branches equals the number of open loop poles).

2-The root locus starts at the open-loop poles and terminates at the
open-loop zeros or at infinity.




3-The angles of the asymptotes of the root locus that end at infinity are

determined by
(1+2n)180°

no.of poles (n)]—[no.of zeros (m)]

n=0,1,....(n-mM-1)

V=[

4. The real-axis intercept of the asymptotes is

5 = Z?=1 Re(Pc)_Z?il Re(z;)
n—-m

5-Breakaway (Break in) points or the points of multiple roots are the

dK

solution of the following equation o= 0|, where K Is expressed as a

function of z from the characteristic equation.

6. The unit circle crossing of the root locus can be determined by
setting up the Jury’s array from closed-loop characteristic equation.
Determine the range of values that K must have to satisfy the
necessary and sufficient conditions for a stable system.




7-The angle of departure from a complex open loop pole is given by

@, =180 + @

Where @ Is the net angle contribution of all other open loop poles
and zeros to that pole.

¥ Q= z Pi — Z Vi

[ J#p

@, are the angles contributed by zeros and y; are the angles contributec

by the poles.

8-The angle of arrival at a complex zero is given by | ¢, =180 —¢
where Is same as in the above rule.

l_[;'l=1|20"'pj|

H?;1|Zo+zi|

9-The gain at any point z, on the root locus is given by K=




1. Root Locus without Zero Order Hold

Example 1 : Sketch the root locus for the diagram shown in Fig.(1)

R{S] L{'F\E(S) /EE*(S) (K 4) > C(5)
N~ s(s+

Figure (1) Sample-data system

G(z)
1+G(2)
The z-transformed characteristic equationis 1+ G(z) =0

B — (K/4 _ K4 ) G(S)ZK(IL—L
(s+4) s (s+4) ! 4\s s+4

The z-transform for the output C(z) is C(z)= R(z)

K

G (S) - s(s+4)

A
_§-|-

The corresponding z transform is

4 z—l_z—e

K( z z K) z(1-e™) 0.158 z _
G(z)=— —| — = , For T=0.25 sec.
@ [ A ] [ 4 ] (z-1)(z-e*T) «

(z—-1)(z—-0.368)




Open-loop poles and zeros: G(x) =K 0.158 z
Poles: z =1 and z = 0.368 2 = 2 (2= 0368)
Zeros: z=0

Number of branches: Number of branches equals No. of poles=2.
Root locus locations on the real axis: The root locus on the real
axis lies between poles (z =1 and z = 0.368 ) and to the left of zero
(z=0).

 Break away and in points:

The characteristic equation is ~ 1+6(z)=1+K—>%Z

(z-1)(z—0368)

 27-1.3682+0.368+0.158k 7 _
72 -1.3682+0.368

0 m) 2> -1.3682+0368+0.158Kz=0

~ 1 7%-1.368z+0.368
0.158 Z
dk__[ 1 j[z(22—1.368)—(22—1.3682+O.368)]

dz 10158 7

~72+0.368=0 M) 22 — 0.368 = 0 B (z — 0.606)(z + 0.606) = 0 W) “1 = 0(.)62(?6
Zz = —VU.

=0 = [z(22-1.368) - (z* ~1.3682 +0.368)] = 0




To find the value of K at break away and in points, we use the
magnitude condition:
The gain K at breakaway point:  z= 0.606 -,

og [078

N 0158 kz
(z—-1)(z—-0.368)

04 | ¢ : o ;

5 4
U 0

(z-1)(z-0.368)

08 g4

k 0.1582 1 U

(z—1)(z-0.368) :p(z—l)\\(z—o.e,ﬁs)q - 0.979
z=0.6006

0.158z 10.158z |

z=0.606

The gain K at break in point: z=-0.606

(z—1)(z—0.368)|
0.158z

= 16.337

K =
‘z=—0.6[!6




Crossing points of z-plane imaginary axis:

In general z = a + jb, and when the root locus crosses the imaginary
axis of the z-plane, then the real part becomes zero, or z = jb .
Substitute this value in the characteristic equation one can obtain:

1.

» The characteristic equation is o™
z°~13682+0.368+0.158Kz=0 oo "

-1

(jb)* ~1.368(jb) +0.368+0.158K (jb) =0

—b?—j1.368b+0.368+ j0.158Kb=0

%)
k]
c
<}
o
o}
2
&L
L
X
<
e
I
£
5]
[
E

(—b* +0.368) + j(—1.368 b+ 0.158Kb) =0
Real [magfnar}r

057034 016

. . L i L L L L
-0.6 -0.4 -0.2 10 0.2 0.4 0.6 0.8 1

Real Axis (seconds . )

Two equations will be obtained: -5*+0368=0 and —1.3685+0.158Kh =0

From the first equation one can obtain the point of interception of root
locus with the imaginary axis -»?+0368=0 = b=+0.606 — z =+,0.606




Substitute the value of b at the second equation, the value of gain K
at the imaginary axis becomes

—1.368b+0.158Kb=0 = —-1.368x0.606+0.158K 0.606=0

K =8.658

K for marginal stability: Using Routh-Hurwitz criterion (or Jury

test), the value of K as the root locus crosses the unit circle into the
unstable region is

7- —1.3682z+0368+0.158Kz=0 Isthe characteristic equation
22—(1.368 — 0.158 k)z+0.368=0
F(1)=1%—(1.368-0.158 k)*1+0.368=0 =k >0

(<) F(-1) = ~14(~1% — (1.368 - 0.158 k)(~1)+ 0.368=0 = 2.736-0.158 k =0
— k=17316




Unit circle crossover: Inserting K =17.316 into the characteristic
equation

15 |
14+6(z) =1+ K— 21382 o L 17316x— 21082

(z—1)(z-0.368) (z-1)(z—0368)

— 7> +1367z+0.368 = Theroots are z = +1

Angle of asymptotes ; _ (21 + D180 h=0.123
p—z

where p=number of poles and z is the number of zeros. Thus x
becomes 4 =180 Pz
Zzp -7
0 0

p—2z
~1+0.368-0
o 2-1

The real axis interception of the asymptotes is

=1.368




The complete root-locus plot may now be constructed as
shown in the following figure

Imaginary

K=16.337
Zz=-0.6065

K=16337 \

Z=-1




Example 2: Draw the root locus for the characteristic equation

. 0.368K(z+0.717) 0
(z—1)(z—-0.368)

1) Starting point (K=0) — > -=1andz=0.368

Ending point (K =0 )—» z=-0.717 andz=»
2) The number of asymptote = 2-1=1

Angle of asymptote = 7180 /(2—-1)=180". r =£1.£3....
3) Root loci on real axis (Right-hand-side rule...)

M




4) Break-in and break-away points

d( 2+0.717 jzu—; 22 4+14342-0717=0

dz\ (z=1)(z—-0.368) / K’
z=-208(k=15) z=0.65(k=0.196)

Break-in Break-away

5) Find the crossing point on the unit circle ...

Jury’s test —— stable when 0</kA <2.39

If t=2397""z"-0488z+1=0 —> z=0.244+ j0.970

6) Sketch the root locus, check with Matlab

n=[0 0.368 2.464];
d=[1-1.368 0.368];
rlocus(n,d)
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PID controller

The proportional-integral—derivative (PID), also called three-term, is
the most widely used controller in process industry.

The output u(t) of the PID controller shown in figure 1 is the sum of
three terms:

u(t) =K, |:e(t) + % f e(t)dt + Ty de(t):| -- (1)

dt

I
0

e(t)

where +

A e(t) =1 (t) — y(t), 1s the error (controller input)r(t) -._ B
A 1 (1) is the reference input

A y(1) 1s the plant output.

A Tii1s known as the integral time.

A Td is known as the derivative time. Figure 1 :PID controller




PID controller actions

* Proportional: the error i1s multiplied by a gain. The higher is the
gain, the faster Is the response. However, very high gain may cause
Instability.

Integral: Is used to remove steady-state error. However, integral
action increases the overshoot and reduces system stability.

Derivative: Is used to improve the transient response by reducing
overshoot.

By taking Laplace transform of equation (1) :

u(t) =K, |:e(l‘) + % / e(t)dt + Ty dz(tt):|
0

1 K, |
T — — -—- (2 With

20 _ K (1+




Discrete PID Controller

To implement PID control using a digital computer we convert the
following continuous-time equation into a discrete form:

t
d
_fe(ﬂd*r—l— T4 Z(:)
0
To do this, a simple method is to approximate integral and derivative

using trapezoidal approximation for the integral and the backward
difference approximation for the derivative :

t

/ e(r)dr =Y Te(kT), —-(3)
k=1

0
de(t) e(nT)—e(nT —T) -~ (4)

S

dt T
Using finite difference approximations, we can write:

e(nT)—e(nT =T)| —(5)
T

1 n
' k=1




Using subscripts instead of arguments, then eq. (5) become

= Kp en+—2 Tep+ Ty—"% | —®
" k=1

where u,, = u(nT) ,e,, = e(nT)ande,_; = e(nT —T).

his is called the position form of discrete PID controller. The drawbac
f this form is that: to calculate the controller output v, we need erro
alues e,. k=1 — n.

From the position form equation 6 we can write :

T

n—1
e — Epn_
Un— l—Kp €n— 1‘|‘_ZTEk‘|‘Td n- . 2] ---(7)

"' k=1

Subtracting these two equations (eq. (7) from eq.(6) , we obtain:

Up —Up—1




K;}_T . KP,T T4
where u,, = u(nT) ,u,_; =unT —T),e, =e(nT) ,e,_1 =e(nT —T)

and e,,_, = e(nT — 2T).

Here the current control signal un Is an update of the previous value
Un-1. This Is called the velocity form.

The velocity form of discrete PID controller is:

KpT KpTd

T T[En —2ep_1 + EI41'1—2] ---(9)
i

Up = Up_1 + Kp[en - En—l] + [En —2ep_1 + En—2] --- (8)

Up = Up_1 + Kp[en — EIJl'r—l] + en +

Up — Up—1 — Kp (1 + % + %) €n T+ Kp (_1 — 2%) €p—1 T Kp (%) €p—2. " (1
Taking z-transform of both sides of eq.(10), we get the transfer function
of discrete PID controller:

U(z) Ko+ Kiz7!l+ Koz ™2
E(z) 1—2z1 —- (11)




Transfer function of discrete PID controller is:

Note :
PID controllers are implemented in discrete time but tuned using a

continuous formulation.

PID tuning involves the selection of the best values of K, , K; and K,
(or T,, T; and T). It depends on the process.




The Transfer function of discrete PID controller can be written :

U(Z) —K T,
Eiz)y 7

+=(1-z)

1
A== T

Block diagram of a digital PID controller.
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PID Tuning
- Tuning the controller involves adjusting the parameters K, , T, and T,
In order to obtain a satisfactory response.

- There are many techniques for tuning a controller, ranging from the
first techniques described by J.G. Ziegler and N.B. Nichols (known
as the Ziegler—Nichols tuning algorithm), to recent auto-tuning
controllers.

- In this section we shall look at the tuning of PID controllers using
the Ziegler—Nichols tuning algorithm.

- Ziegler and Nichols suggested values for the PID parameters of a
plant based on open-loop or closed-loop tests of the plant.

- According to Ziegler and Nichols, the open-loop transfer function of a
system can be approximated with a time delay and a single-order system,
l.e. Ke—s1p

G(s) = ,
T15+ l

-where T, is the system time delay (i.e. transportation delay), and T, is the
time constant of the system.




«For open-loop tuning, we first find the plant parameters by
applying a step input to the open loop system.

- The plant parameters K T and T, are then found from the result of
the step test as shown in figure 2.

Unit step
response

Figure 2:  Finding plant parameters K, Tpand T,




- Zlegler and Nichols then suggest using the PID controller settings
given in the Table 1 when the loop is closed.

- These parameters are based on the concept of minimizing the
Integral of the absolute error after applying a step change to the set-

point.

Table 1 Open-loop Ziegler—Nichols settings

Controller T T,

Proportional
PI et 3.3Tp
PID




Example

The open-loop unit step response of a thermal system is shown.
Obtain the transfer function of this system and use the Ziegler—
Nichols tuning algorithm to design:

(a) a proportional controller,

(b) a proportional plus integral (PI) controller, and

(c) a PID controller.

Draw the block diagram of the system in each case.

A

Solution :From Figure 2, the
system parameters are obtained
as K=40-C, Tp,=5sand T, = 20
s, and, hence, the transfer

A0°C function of the plant is

Y(s) Ke™™ oo A0

G(s) = = , G(s) =
U(s) T;s+1 1+ 20s

r

> 1




(a) Proportional controller

- According to the Table of ZN settings for a proportional controller
are: -
1

P KTp
20

K

0.1,

 Thus, K= 20x35 "

The transfer function of the controller is then ZES; = 0.1,
A

and the block diagram of the closed-loop system with the controller

IS shown below. U(s)
E(s)

R(s) —+r?—f 1 > Y(s)




(b) PI controller

PI controller. According to Table 1, the Ziegler—Nichols settings for a PI controller are

0.9T
09 T, =33Tp.
KT,

K,=

~09%20
P40 x5

The transfer function of the controller 1s then

U(s)

=0.09 and T; =33 x5=165.

Eo) = 0.09 [1 +

and the block diagram of the closed-loop system with the controller is shown in Figure 4 .

1] 0.09(16.5s +1)
16.5s | 16.5s

U(s)

E(s)

0.09(16.55 +1) . . Y(5)

R(s
( ) 16.55

Figure 4




P 1D controller
PID controller. According to Table |, the Ziegler—Nichols settings for a PID controller are

1.27T;

K,=—"".
P KTp

T, =2Tp. T;=0.5Tp.

1.2 x 20
szm:[}.ll i =2x5=10, T3=05x5=25.

The transter function of the required PID controller is
U(s)

1 |
=K,|l+——+Tds|=0.12|14+—425
Foy = Ko |14 7+ Tds | =012 14 14255

T:s 10s

Uls) B 3574+ 1.25s +0.12
E(s) 10s '

The block diagram of the system. together with the controller, is shown in Figure 5
E(s)

R(s) + . 352+ 1.25+0.12 40¢75 . Y(5)
- 10s (1+20s)
Figure 5

U(s)




%%Comparison between analog and digital P controller

clc

clear

T=0.5;

s=tf('s");

Gp=(40*exp(-5*s))/(1+20%*s)

ncomp=[0 0.1];%%%%% compensator TF num P

dcomp=[0 1]; %%%% den-comp P

% ncomp=[3 1.2 0.12]; %%%%% compensator TF num PID

% dcomp=[10 0]; %%%% den-comp PID tep Response

% ncomp=[1.485 0.09];% comp.TF num Pl .[
% dcomp=[16.5 0]; % den-comp PI
Gce=tf(hcomp,dcomp)

OLc=Gc*Gp

Amplitude
o
[62)

o

| | |
10 20 30 40 50

o

CLc=feedback(OLc,1) e (socond)
plant:Gp, Step Response

60

plantd=c2d(plant,T,'zoh’);
OLd=c2d(OLc,T,'zoh")
CLd=feedback(OLd,1)
subplot(211),step(CLc);

subplot(212),step(CLd); T ey

70 80

90




%%Comparison between analog and digital Pl controller

clc

clear

T=0.5; |;

s=tf('s");
Gp=(40*exp(-5*s))/(1+20%*s)

ncomp=[1.485 0.09];%%%%% compensator TF num Pl

dcomp=[16.5 0]; %%%% den-comp
Gce=tf(hcomp,dcomp)

OLc=Gc*Gp

CLc=feedback(OLc,1)

plant=Gp;

plantd=c2d(plant, T,'zoh");
OLd=c2d(OLc,T,'zoh")
CLd=feedback(OLd,1)
subplot(211),step(CLc);
subplot(212),step(CLd);

Pl

Step Response




%%Comparison between analog and digital PID controller
clc

clear

T=0.5;

s=tf('s');

Gp=(40*exp(-5*s))/(1+20*s)

ncomp=[3 1.2 0.12]; %%%%% compensator TF num
dcomp=[10 0]; %%%% den-comp
Gce=tf(hcomp,dcomp)

OLc=Gc*Gp

CLc=feedback(OLc,1)

plant=Gp;

plantd=c2d(plant, T, zoh");
OLd=c2d(OLc,T,'zoh")
CLd=feedback(OLd,1)
subplot(211),step(CLc);
subplot(212),step(CLd);

Step Response




%%%%%%%%% discrete PID controller for Z_N second method

clc

Ts=0.2;

ncomp=[0 6.3223 17.999 12.8089]; %%%% comp. TF

dcomp= [O O 1 0O];

num= [0 O O 1]; %%%% plant TF

den= [1 6 5 0];

[nol, dol]=series (ncomp, dcomp, num, den);%%%%contin.OL
[ncl,dcl]=cloop(nol,dol); %%%%%%%%% Closed loop contin.
printsys(nol,dol,"s") %%%%  OL.C
[numd,dend]=c2dm(num,den,Ts, "tustin®); %%%% discrete Plant
[hcomd,dcomd]=c2dm(ncomp,dcomp,Ts, “tustin®); %%%% Discrete Comp.
printsys(numd,dend, "z") %%%% T.F. discrete Plant
printsys(ncomd,dcomd, "z") %%%% T.F. discrete comp
06%%%%%%%%%%%%%% discrete
[nold,dold]=series(ncomd,dcomd,numd,dend); %%%%% OL. discrete
[ncld,dcld]=cloop(nold,dold); %%%%%%%%% CL. discrete
subplot(21l1),step(ncl,dcl);

subplot(212),dstep(ncld,dcld);

G=tf(ncl,dcl);

Tigure(3l)

bode(G)

w=1.5; %%%%From bodeplot

Bw=(w)/(2*p1)

samplingtime=1/(20*(Bw))




%%%%%%%% discrete second Method ZN optimized PID controller
clc

Ts=0.206;

ncomp=[0 30.332 39.4316 12.8153]; %%%% comp. TF

dcomp= [O O 1 0O];

num= [O O O 1]; %%%% plant TF

den= [1 6 5 0];

[hol, dol]=series (nhcomp, dcomp, num, den);%%%%contin.OL
[ncl,dcl]=cloop(nol,dol); %%%%%%%%% Closed loop contin.
printsys(nol,dol,"s") %%%%  OL.C
[humd,dend]=c2dm(num,den,Ts, "tustin®); %%%% discrete Plant
[ hcomd,dcomd]=c2dm(ncomp,dcomp,Ts, "tustin®); %%%% Discrete Comp.
printsys(numd,dend, "z") %%%% T.F. discrete Plant
printsys(ncomd,dcomd, "z") %%%% T.F. discrete comp
%%%%%%%%%%%%%%% discrete
[nold,dold]=series(ncomd,dcomd,numd,dend); %%%%% OL. discrete
[ncld,dcld]=cloop(nhold,dold); %%%%%%%%% CL. discrete
subplot(21l1),step(ncl,dcl);

subplot(212) ,dstep(ncld,dcld);

G=tf(ncl,dcl);

figure(3l)

bode(G)

w=6.1; %%%%fFrom bodeplot

Bw=(w)/(2*p1)

samplingtime=1/(5*(Bw))




Digital Control Systems

& i W3
12780
oege of Pt Pugrerin
gl aip s

LECTURE 13

Deadbeat Controller

Prepared by: Mr. Abdullah I. Abdullah




Design of Digital Control Systems
with the Deadbeat Response

The design objectives of control systems can be classified as follows:

« A large number of control systems are designed with the objective
that the responses of the systems should reach respective desired
values as quickly as possible. This class of control systems is
called minimum-time control systems, or time-optimal control
systems.
With reference to the previous design methods, one of the design
objectives is to have a small maximum overshoot and a fast rise
time In the step response.

In digital control system we may design the digital compensator
Gce(z) to obtain a response (output) with a finite settling time. The
output response c(kT) which reaches the desired steady-state value in
a finite number of sampling intervals is called a deadbeat response.




Deadbeat Controller

Its aim Is to bring the output to steady state in smallest number of
time steps
A assuming, for simplicity, that the set point is a step input.

15




Therefore, the desired closed-loop transfer function is

and the controller achieving this response is given by:

Dlz) = GHl(z) 1 - (;()z) - G;(z) (1 i_zk—“) ) G;(Z) (Z"l— 1)

It is interesting to note that deadbeat control is equivalent to placing all closed-
loop poles at z = 0.

These poles correspond to the fastest response possible.

Usually such requirement will come at the expense of large control signal.

Example 1: e
The open-loop transfer function of a plant is given by: G(s) = 10s + 1

Design a dead-beat digital controller for the system. Assume that T =1 s.

The transfer function of the system with a ZOH is given by
]. - E_Ts e_zs

GH(z) :g’{ - G(S)} = (1—2‘1)&"’{5(105“




0.1
s+0.1)f

Hence, the dead-beat controller is given by:

N L T(2) 2090422 [ 1
PO =Gz 1= T 0.095 (zk—l)

For realizability, we must choose k > 3.

z3-0.904z2 1 73 —0.90422

0.095 23—1 0.095(z3—1)
With this controller, the block diagram of the closed-loop is:

Choosing k = 3, we obtain the controller D(z) =

Y(z)

22090422 |Uz)
>

0.095(z"-1)

system performance, we
simulate the closed-loop
step response and the D(z)
control signal.

To analyze the designed Rz E{z:{
-+




% Deadbeat control - D(z) = (z"3 - 0.904 z ~2) / (0.095 ("3 - 1))
clear

clc

Gp = tf (1 ,[10 1], "1odelay”,2);

Gpd = c2d (Gp ,1);

Gc = tf ([1 -0.904 0 0] ,[0.095 0 O -0.095] ,1) ;
Gel =Gc* Gpd /7(1+ Gc* Gpd );

t =0:1:10;

y= step (Gcl ,t)

figure(l) ; plot (t,y,"0"); hold on;
stairs (t,y); hold off

xlabel ("time , t%),

ylabel (Coutput , vy"),

axis (JO 10 0 1.2]) ,

title ("Step response °)

Gru =Gc /(1+ Gc* Gpd );

u= step (Gru ,t)

figure(2) ; plot (t,u,"0"); hold on;
stairs (t,u); hold off

xlabel ("time , sec "),

ylabel (“control signal , u®),

axis ([0 10 O 15]) ,

title (°C Control signal ©)




Step response Control signal

1 1
control signal , u

ol

D) Yoy Yoy Yoy O

2 3 4 5 6

time , t time , sec

As desired, the step response is unity after 3 seconds.

It is, however, important to realize that the response is correct only at the sampling
iInstants and the response can have an oscillatory behavior between samples.

We realize that the magnitude of the control signal is very large at the beginning ( 11)

il 58 13 508 pSill 85La] px> Ol &y o
The main drawback of dead-beat control is that it requires excessive (large) control
efforts which may not be acceptable in practice.

(8505) &b yan pSx 39> walhis il 98 aiell wlyall (sle 8 yaud) (s )l sl
Lol (s @guso wSH V 28 sllg




Step response

Control signal

,control signal , u

20

time , sec




Example 2: The block diagram of a digital control system, shown in Fig.(1), is
revisited. Again, the controlled process is represented by the transfer function

10
s+ D(s+2)

G,(s)

Try to find a controller with the objective to cancel all poles and the zeros of the
process and then add a pole at z =1.

r(f) e(r) )i "'Gc(ﬁ‘}_x N
- T '

«—G.(z) —>|

process

G,,G,(2)=(1-7) Z {

10 ~0.0453(z+0.904)
s(s+1)(s+2) (z—0.905)(z—-0.819)

The pulse transfer function of the suggested digital controller be
G —_(5-0.905)(=-0.819)
¢ 0.0453(z—1)(z+0.904)

The open-loop transfer function of the G (:)G..G ()= 1
compensated system now simply R s |




The corresponding closed-loop transfer function is

Thus, for a unit step input, the output transform is

The output response c(kT) reaches the desired steady-state value in one sampling
period and stays at that value thereafter.

In reality, however, it must be kept in mind that the true judgement on the
performance should be based on the behavior of c(t) . In general, although c(kT)

may exhibit little or no overshoot, the actual response c(t) may have oscillations
between the sampling instants.

For the present system, since the sampling period T = 0.1sec is much smaller than
the time constants of the controlled process, it is expected that c(kT) gives a fairly
accurate description c(t) .

Thus, it is expected that the digital controller will produce a unit-step response that
reaches its steady-state value of 0.1 sec, and there should be little or no ripple in
between the sampling instants.

This type of response is referred to deadbeat response.




Step response Control signal

control signal , u

time , sec

Control signal

T T

o

control signal , u
&

time , sec




Dahlin Controller

Dahlin controller is a modification of the deadbeat controller which produces an
exponential response that is smoother than deadbeat response.

The desired closed-loop response for step input looks like:

ik

Hence, the desired closed-loop transfer function is:

E—Ls

GC;(S) =

TS T - Time

- constant T

As step input is assumed (which is constant
between samples), the desired -closed-loop
transfer function in the z-domain will be:

1 — E_Ts E—Ls
T(z) = Z{Gzon(s) Gei(s)} = f{ s T1s+1




Example e=2s
The open-loop transfer function of a plant is given by:  G(s) = 10s + 1

Design a Dahlin digital controller for the system to achieve a closed-loop time

constant of 5 s. Assumethat T=1 s.
0.095

z3 — 0.904z2

From the previous example, this is found to be GH(z) =

The desired closed-loop transfer function, T(z). o—Ls
) 7(s)

S]] =
: : : bs +1
As the desired closed-loop time constant, 7, is 5 sec,

—sT _—lIs

—e e
S bs+1

Therefore, T(z)

(0.181)
(z - 0.819)




The Dahlin controller is thus given by:

_k (0.181
1 T 3-000422  ZMZo%im

D(z) = G(z)1-T(z) ~ 0.095 (1—z—k (0.181) )

(z—0.819)

73 — 0.90422 0.181z7k
0.005 z—0.819—0.181z"k

~0.181Z2% %K —0.1642%F
~0.095z — 0.078 — 0.017z k"

or the controller to be realizable: degree of numerator must be degree of denominato

3—k<1 = k=>2
Choosing k = 2, the controller is, then, given by:

0.181z — 0.164 0.181z3 — 0.164z2

D(2) = 50957 —0.076 —0.01722  0.0052% — 0.07822 — 0.017




Using the designed controller, the closed-loop step response and control signal
are simulated next.

Step response

Control signal

1.2

,control signal , u

time , t time , sec

the response is exponential as designed but slower than deadbeat control.

What is the time delay? time constant?

the maximum control signal magnitude ( 1.9) is much smaller than the control signal
obtained using a deadbeat controller ( 11). This is more acceptable in practice.




Step response Control signal

controrstgia—u

15

time , sec
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Root Locus Based Controller
Design Using MATLAB

In this lecture we will show how the MATLAB platform can be utilized to design a

controller using root locus technique.

Consider the closed loop discrete control system as shown in Figure 1. Design a
digital controller such that the closed loop system has zero steady state error to step
Input with a reasonable dynamic performance. \elocity error constant kv of the

system should at least be 5.

) Covel) X o
T

Controller

Figure 1: A discrete time control system

10
Go(s) = GrDG12) T = 0.1 sec

1 — ¢ 01s 10 4 10
GnoGp(z) = Z S (3+1)(3+2J = (1=27)2 [S(SH)(SHJ




0.04528(z 4 0.9048)
(z — 0.9048)(z — 0.8187)

The MATLAB script to find out GhOGp(z) is as follows.

>> s=tf(’s’);

>> Gp=10/((s+1)*(s+2));

>> GhGp=c2d(Gp,0.1,’zoh’);

The root locus of the uncompensated system (without controller) is shown in Figure 2 for
which the MATLAB command is

GroGp(z) =

>>rlocus(GhGp) e

Imaginary Axis

—4 -3 —2 -1 0 1 2
Real Axis

Figure 2: Root locus of the uncompensated system




Pole zero map of the uncompensated system is shown in Figure 3 which can be
generated using the MATLAB command

>> pzplot(GhGp)

Pole-Zero Map

o
<
=
]
k=
o
m
E

—DI_E —Dl_fj —DI_4 —DIZ ILll IDIE ID_I4 [l_lﬁ D_IS
Real Axis
Figure 3: Pole zero map of the uncompensated

system




The PI controller transfer function in z-domain when backward rectangular
Integration is used.

n K, T _ K,z — (Kp—KiT)
z—1 z—1

The parameter Ki can be designed using the velocity error constant requirement.

by = = Tim(z — 1)Cp(2)GroGyl2) = 5K: > 5

z—1

Above condition will be satisfied if A; > 1.

Let us take Ki= 1. With Ki= 1, the characteristic equation becomes

(z —1)(z — 0.9048)(z — 0.8187) + 0.004528(z 4 0.9048) + 0.04528 K,(z — 1)(z + 0.9048) = 0

| 0.04528K,(z — 1)(= +0.9048) _
23 — 272422 + 2469z — 0.7367




Now, we can plot the root locus of the compensated system with K, as the variable
parameter.

The MATLAB script to plot the root locus is as follows.

>> z=tf(’z’,0.1);

>> Gcomp=0.04528*(z-1)*(z+0.9048)/(z"3 - 2.724*z"2 + 2.469*z - 0.7367);
>> zero(Gcomp);

>> pole(Gcomp);

>> rlocus(Gcomp)

The zeros of the system are 1 and —0.9048 and the poles of the system are
1.0114+0.1663i and 0.7013 respectively. The root locus plot is shown in
Figure 4. It is clear from the figure that the system is stable for a very small
range of Kp.

Root Locus

Figure 4: Root locus of the system
with Pl controller




The stable portion of the root locus is zoomed in Figure 5. The figure shows that the
stable range of Kp is 0.239 < Kp < 6.31. The best achievable overshoot is 45.5%, for
Kp = 1, which is very high for any practical system.

Root Locus

TR
System: Geomp
Gain: 5.31
Pole: 0.721 + 0.692i
Damping: 0.0007B1
Owershoot (%) 99.8
Frequency (radfsec): 7.65

&~
=)

System: Geoomp

.| Gain: 0.239
Pole: D.983 + 0.181i
Damping: 0.00369
Cwvershoot (%) 98.8
Frequency (rad/zec): 1.82

=
T

et
2

Pole: 0.8B8 - 0.271i

Damping: 0.243

Overshoot (%) 45.5 o
Frequency (radisec): 3.05 — :

|

.
<
-
@©
c
O
©
=

| | | | |
0.75 0.8 0.85 09 0.95
Real Axis

Figure 5: Root locus of the system with PI controller




To improve the relative stability, we need to introduce D action.
Let us modify the controller to a PID controller for which the transfer function in
z-domain is given as below.

K, T+ K22+ (K;T? — K,T —2K;)z + Kd
p P
Tz(z—1)

GD(Z) — (

To satisfy velocity error constant, i, > 1.

If we assume 15% overshoot (corresponding to ¢ = 0.5)

and 2 sec settling time (corresponding to wn = 4),

the desired dominant poles can be calculated as,

Thus the closed loop poles in z-plane

212 exp(T(—2 4 73.46))
0.77 £ 70.28




The pole zero map including the poles of the PID controller is shown in Figure 6
where the red cross denotes the desired poles.

Pole-Zero Map

.sa
=
<
>
m
c
&
E

05

Real Axis

Figure 6: Pole zero map including poles of
the PID controller




Let us denote the angle contribution starting from the zero to the right most pole as

6., 65, 85, 8, and @ respectively. The angles can be calculated as

0.5°, By = 20°, 03 = 99.9°, 64 = 115.7° and #5 = 129.4°.
Net angle contributionis A = 9.5° — 20° — 99.9° — 115.7° — 129.4° = —355.5°.

Angle deficiency is —355.5° + 180% = —175.5°

Thus the two zeros of PID controller must provide an angle of 175.50.
Let us place the two zeros at the same location, zpid.

Since the required angle by individual zero is 87.750, we can easily say that the

zeros must lie on the left of the desired closed loop pole.
_, 028

0.77 — Zpid
0.28

or, o - tan(87.757) = 25.45

87.75°

tan

-

—— = 0.011
25.45
OT, Zpid 0.77 — 0.011 = 0.759

or, 0.77 — zpiq




(z — 0.759)?
2(z—1)

The controller is then written as G'p(z) = K

The root locus of the compensated system (with PID controller) is shown in Figure 7
This figure shows that the desired closed loop pole corresponds to K = 4.33

22 — 1.518z + 0.5761

Thus the required controlleris Gp(z) = 4.33 2z 1)

Root Locus

Figure 7: Root locus of
compensated system

Imaginary Axis

Real Axis




If we compare the above transfer function with the general PID controll
, Kp and Kd can be computed as follows.

Ki/T = 05761 %433 = K,;=0.2495
K,+ Kq/T=433 = K,=1835
KT —K,—2K,;/T =—-1518%4.33 = K, =2521

Note that the above Ki satisfies the constraint x; > 1. hould keep In
mind that the design is based on second order dominant pole pair
approximation. But, in practice, there will be other poles and zeros of
the closed loop system which might not be insignificant compared to
the desired poles. Thus the actual overshoot of the system may differ
from the designed one.




% The MATLAB script to find out GhOGp(z2) is as follows.

s=tf('s");

Gp=10/((s+1)*(s+2));

GhGp=c2d(Gp,0.1,'zoh")

% The root locus of the uncompensated system (without controller) is in fig(1)
figure(1)

rlocus(GhGp)

title("(Uncompensated system ');

%%Pole zero map of the uncompensated system is shown in Figure 2
figure(2)

pzplot(GhGp)

%%%% The MATLAB script to plot the root locus is as follows.
z=tf('z',0.1);

Gcomp=0.04528*(z-1)*(z+0.9048)/(z"3 - 2.724*z"2 + 2.469*z - 0.7367);
zero(Gcomp);

pole(Gcomp);

figure(3)

rlocus(Gcomp)

figure(4)

rlocus(Gcomp)

axis([0.71 1.01 -0.8 0.78));

title('Root locus of the system with PI controller")

figure(5)

pzplot(Gcomp)
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Discrete Lead Compensator Design
based on Root locus

The lead compensator has the same purpose as the PD compensator:
to improve the transient response of the closed-loop system by
reshaping the root locus. The lead compensator consists of a zero
and a pole with the zero closer to the origin of the s plane than the
pole. The zero reshapes a portion of the root locus to achieve the
desired transient response. The pole is placed far enough to the left
that it does not have much influence of the portion influenced by the
zero. Generally Lead compensators are represented by following
transfer function

GC(S) _ Kca Ts+1

aTs+1"!

0<a<l)

S+
Gc(s)=KCS <a<l)




Electronic Lead Compensator

-Following figure shows an electronic lead compensator using
operational amplifiers.

Eo(s) RyR4 RiCis +1
E;(s) R{R; R,C,s+1




Eo(s) RyR4 RiCis+1
E;(S) R{R3; R,Cys+1

- This can be represented as

Eo(s) RyC ST

Pole-zero Configuration of Lead‘Cokmpensat
Jjw

F g

% O
1 1 1
Rl Cl R,y RiC

Ei(s) RsCp o, 1

_|_

R, (>

al = RzCz

_ R4y

Ke

 R3G

- Then,
G (s) = K.

S+—
a

1
S+?

*Notice that




Lead Compensation Techniques
Based on the Root-Locus Approach

-From the performance specifications, determine the desired
location for the dominant closed-loop poles.

-By drawing the root-locus plot of the uncompensated system
ascertain whether or not the gain adjustment alone can yield the
desired closed-loop poles. If not calculate the angle deficiency.
This angle must be contributed by the lead compensator.

- If the compensator is required, place the zero of the phase lead
network directly below the desired root location.

- Determine the pole location so that the total angle at the desired
root location is 180° and therefore is in the compensated root
locus.

- Assume the transfer function of the lead compensator.

- Determine the open-loop gain of the compensated system from
the magnitude conditions.

5




Example
- Consider the position control system shown in following figure.

R(s)

C(s)

- It Is desired to design an Electronic lead compensator G.(s) so that
the dominant closed poles have the damping ratio 0.5 and

undamped natural frequency 3 rad/sec.
Step-1
Draw the root Locus plot of the given system. G(s)H(s) =

 The closed loop transfer function of the given
system is:
C(s) 10
R(s) s2+s+10

o Theclosed loop polesare S =-0.5+% J3.1225

10
s(s+1)

jw




Step-1

-Determine the characteristics of given system using root loci

C(s) 10
R(s) s°+s+10

e The damping ratio of the closed-loop
poles is 0.158. C'”S;‘lf“p

e The undamped natural frequency of
the closed-loop poles Is 3.1623
rad/sec.

» Because the damping ratio is small,
this system will have a large
overshoot In the step response and
IS not desirable.




Step-2

-From the performance specifications, determine the desired
location for the dominant closed-loop poles.

- Desired performance Specifications are:

=1t Is desired to have damping ratio 0.5 and undamped natural
frequency 3 rad/sec.

C(s) o’ 9

n

R(S) S2+2(ws+@’ S°+35+0

s=-15+ j2.5981




Step-2
- Alternatively desired location of closed loop poles can
also be determined graphically

Desired o= 3 rad/sec

= Desired damping ratio= 0.5 Desired
Closed Loop

Pole

0=cos ¢

0 = cos *(0.5) = 60°




Step-3
«From the root-locus plot of the uncompensated system

ascertain whether or not the gain adjustment alone can yield
the desired closed loop poles.

Desired

Closed I Y

Loop Pole




Step-3

- If not, calculate the angle deficiency.

- To calculate the angle of deficiency apply Angle Condition at desired
closed loop pole.

6, =180°-120°-100.8° Desired Closed Loop Pole

s=-1.5+ j2.5981
0, = —40.89°




Step-3

- Alternatively angle of deficiency can be calculated as.

10
s(s+1)

0, =180°+ £

s=—1.5+ j 2.5981

Where s=-1.5+ j2.5981 are desired closed loop poles

6, =180°+ £10— L3

— Z(s+1)

s=-1.5+)2.5981 s=-1.5+)2.5981

0, =180°-120°—100.8°
0, = —40.89°




Step-4

« This angle must be contributed by the lead compensator if the
new root locus Is to pass through the desired locations for the

dominant closed-loop poles.

s
C(S) (& TS I 1 C

s+ —

- Note that the solution to such a problem is not unique. There
are infinitely many solutions.




Step-5

Solution-1

- Solution-1 Desired

closed-loop pole

- If we choose the zero
of the lead
compensator at s = -1
so that it will cancel
the plant pole at s =-1,
then the compensator

pole must be located
at s =-3. Compensator

ZEro

Compensator




Step-5 Solution-1

-If static error constants are not specified, determine the
location of the pole and zero of the lead compensator so that
the lead compensator will contribute the necessary angle.

Desired

closed-loop pole 1@ )

Compensator

Compensator
Zero




Step-5 Solution-1
- The pole and zero of compensator are determined as

Desired
closed-loop pole

e The Value of a can be
determined as

1—1
=

Compensator
Zero




Step-6

« The Value of K, can be determined
using magnitude condition.

(s+1)

1

0
K
“s+3 S(S+1)L

" 10
“s(s+3)

=—1.5+;2.5981

s=—1.54/2.5981

Desired
closed-loop pole

Compensator
pole

Solution-1

Compensator
Zero




Final Design Check solution-t

-The open loop transfer function of the designed system
then becomes

G.(s)G(s) = s(s + 3)

- The closed loop transfer function of compensated system
becomes.

C(s) 9
R(s) s2+3s+9




Root Locus Root Locus

uncompensated ———— compensated

Imaginary Axis (seconds
Imaginary Axis (seconds

-2 -2

Real Axis (seconds i Real Axis (seconds

Step Response

T T

uncompensated

compensated

Gc($)G(s) =

alpha=0.333

Amplitude




Final Design Check

Solution-1

- The static velocity error constant for original system is
obtained as follows.

K, = limsG(s)

S—0

K, =i 0 - 10
v T s00° s(s+1)|

- The steady state error is then calculated as




-The static velocity error constant for the compensated
system can be calculated as

K, = £1_r)1(1) sG.(s)G(s)

K, =lims
s—0




Step Response Step Response

uncompensated uncompensated
compensated

compensated

alpha=0.2 alpha=0.25

Amplitude

Time (seconds)

Time (seconds)
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