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This course introduces fundamental concepts in the theory, analysis 
and design of discrete control systems. 

Knowledge and understanding  والفھمالمعرفة                      ( )
◮ Model and analyze discrete control systems وتحلیل أنظمة التحكم المنفصلة              نمذجة
◮ Evaluate the performance of discrete control systems المنفصلةتقییم أداء أنظمة التحكم 

Professional and practical skills )                    والعملیةالمھنیة المھارات (
◮ Design and simulate industrial and practical systems والعملیة   ومحاكاة الأنظمة الصناعیة تصمیم 
◮ Improve performances of discrete control systems المنفصلةتحسین أداء أنظمة التحكم 

General and transferable skills )               للتحویلالعامة والقابلة المھارات (
◮ Understand the requirements and operations of discrete control 
systems )المنفصلة متطلبات وعملیات أنظمة التحكم فھم (

◮ Design and tuning techniques for performance improvement
تقنیات التصمیم والضبط لتحسین الأداء

Course Description

.  م المنفصلةالتحكالمقرر المفاھیم الأساسیة في نظریة وتحلیل وتصمیم أنظمة ھذا یقدم
Course Objectives: 



UNIT – I:
Introduction
Introduction to analog and digital control systems – Advantages of digital systems – Typical
examples – why digital control- A/D converter and D/A converter–Sampling theorem.

Syllabus:

UNIT–II:
Z–transformations
Z–Transforms – Theorems – Finding inverse z–transforms – Formulation of difference
equations and solving.
UNIT–III:
Block diagram representation – Pulse transfer functions and finding open loop and
closed loop responses -Zero Order Hold transfer function –Time response .
UNIT – IV
System Response Characteristics: Time Domain Specifications; Mapping s-domain to
z-domain -Primary strips and Complementary Strips
UNIT – V:
Stability analysis: Factorization Method -Modified Routh's stability criterion and jury’s
stability test- steady state error.
UNIT – VI:
Design of sampled data control systems
Root locus technique in the z–plane- Controller design using root locus-Root locus based
controller design using MATLAB .
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Classical Control Systems 

In Feedback Control Systems, we learned how to make an analog controller
D(s) to control a linear-time-invariant (LTI) plant G(s).

1-Small steady-state error
2- Closed-loop stable 
3- Good transient response 
4- Disturbance rejection

Objective: 

mechanical, optical, or electronic device, or set of devices, that manages,
commands, directs or regulates the behavior of other devices or systems to
maintain a desired output.

• Analog controllers difficult to modify or redesign  once implemented in 
hardware.



A digital control system model can be viewed from different perspectives including
control algorithm, computer program, conversion between analog and digital
domains, system performance etc. One of the most important aspects is the sampling
process level.

،وترالكمبیوبرنامج،التحكمخوارزمیةذلكفيبمامختلفةنظروجھاتمنالرقميالتحكمنظامنموذجعرضیمكن
.العیناتأخذعملیةمستوىھوالجوانبأھمأحد.إلخ،النظاموأداء،والرقمیةالتناظریةالمجالاتبینوالتحویل

A digital control system consists of an A/D conversion for converting analog input
to digital format for the machine, D/A conversion for converting digital output to a
form that can be the input for a plant, and a digital controller in the form of a
computer, microcontroller or a microprocessor. Such devices are light, fast and
economical.

Digital control 

Digital Control System



• The difference between the continuous and digital systems is that
the digital system operates on samples of the sensed plant rather
than the continuous signal and that the control provided by the
digital controller D(s) must be generated by algebraic equations.
•In this regard, we will consider the action of the analog-to-digital
(A/D) converter on the signal. This device samples a physical signal,
mostly voltage, and convert it to binary number that usually consists
of 10 to 16 bits.
•Conversion from the analog signal y(t) to the samples y(kt), occurs
repeatedly at instants of time T seconds apart.
•A system having both discrete and continuous signals is called
sampled data system.
•The sample rate required depends on the closed-loop bandwidth of
the system. Generally, sample rates should be about 20 times the
bandwidth or faster in order to assure that the digital controller will
match the performance of the continuous controller



Continuous vs Discrete Control 

1-Continuous-time signals 

2-Analog signals 

3- Controller :Operation Amplifier 

1-Sampled signals 
2-Digital signals 
3-Digital Controller:

microcontroller, or microprocessors



Sampled Data System
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Samples analog signal (typically a voltage) and then converts these samples into
an integer number (quantization) suitable for processing by digital computer

(ADC Model)

It converts a voltage level into a corresponding (binary) number representation at 
a particular instant of time.



DAC Model

𝑢𝑢 𝑘𝑘
𝑍𝑍𝑂𝑂𝑂𝑂

𝑢𝑢ℎ 𝑡𝑡
, 𝑘𝑘𝑘𝑘 ≤ 𝑡𝑡 ≤ 𝑘𝑘 + 1 𝑇𝑇

u(k)
u(t)

uh(t)

L 𝑢𝑢(𝑡𝑡) =
1
𝑠𝑠

L −𝑢𝑢(𝑡𝑡 − 𝑇𝑇) = −
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𝑠𝑠

𝐺𝐺𝑍𝑍𝑍𝑍𝑍𝑍(𝑠𝑠) =
1 − 𝑒𝑒−𝑇𝑇𝑇𝑇

𝑠𝑠

Converts the digital (integer) number calculated by the computer into a voltage so 
as to drive the output of the plant as desired.



ADVANTAGES
•Digital control offers distinct advantages over analog
control that explain its popularity.
•Accuracy: Digital signals are more accurate than their
analogue counterparts.
•Implementation Errors: Implementation errors are
negligible.
•Flexibility: Modification of a digital controller is possible
without complete replacement.
•Speed: Digital computers may yield superior
performance at very fast speeds
•Cost: Digital controllers are more economical than
analogue controllers.



DISADVANTAGES 

•  Sampling and quantization process will degrade system performance
النظامعملیة أخذ العینات والكمیة إلى تدھور أداء ستؤدي 

• Software errors                                                             أخطاء البرامج

• Lose information during conversions due to technical problems.
.فنیةتفقد المعلومات أثناء التحویلات بسبب مشاكل 

• From the tracking performance side, the analog control system 
exhibits good performances than digital control system. 

• Digital control system will introduce a delay in the loop. 



1-Closed-loop drug delivery system
Several chronic diseases require the regulation of the patient’s blood
levels of a specific drug or hormone. For example, some diseases
involve the failure of the body’s natural closed-loop control of blood
levels of nutrients. Most prominent among these is the disease
diabetes, where the production of the hormone insulin that controls
blood glucose levels is impaired

APPLICATIONS 



To achieve the high performance required for today’s aircraft,
turbojet engines employ sophisticated computer control strategies

2-Computer control of an aircraft turbojet 
engine



3-Control of a robotic manipulator
Robotic manipulators are capable of performing repetitive tasks at
speeds and accuracies that far exceed those of human operators. They
are now widely used in manufacturing processes such as spot
welding and painting.
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Sampled-Data Systems 

 Ideal sampling of a continuous signal can be considered as a multiplication of
the signal, x(t), with an impulse train P(t)

 an impulse train P(t) is defined as:

Thus, the sampled signal is:

Ideal sampling

Where is a unit impulse at at t=0  and                   is a unit impulse at t= nT.

x(t)

x(t) 
P(t) 



The Laplace transform of the sampled signal is 

The simple substitution 
Convert the Laplace transform to the z transform. Making this substitution in Eq(2) 
gives 

…..(2) 

…..( 3 ) 

Where X(z) designates the
z transform of x*(t).Because
only values of the signal at the
sampling instant are
considered, the z transform of
x(t) is the same as that of x*(t).

The Z Transform

(  power series representation of discrete –
time sequence )



Ex. 1: Determine the z transform for a unit step function 

Sol: for this function u(nT) = 1 for n= 1,2,3,…., thus application of Eq (3) gives 

Ex2: Determine the z transform of the exponential 

Sol: for this function 

, thus 

1. Z Transform by Definition



Ex.3: obtain the z transform of x(t) where 

since 

We obtain 



Ex .4: Find z transform of where a  is a constant. 

Ex.5:Find z transform of unit impulse function is defined as



Ex.6:Find z transform of unit ramp function is defined as
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2-Z Transform Using Partial Fraction

When the Laplace transform of a function is known, the
corresponding z transform may be obtained by the partial fraction

Ex.1 : Determine the z transform for the function whose Laplace 
transform is

From Table (1), the z transform corresponding to 1/s  is
and that corresponding to



Ex.2: Determine the z transform of.
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3.Z Transform Using Residue Method

This is a powerful technique for obtaining z transforms. The z
transform of f *(t) may be expressed in the form

at poles of F(s)

When the denominator of F(s) contains a linear factor of the form s-r
such that F(s) has a first-order pole at s = r , the corresponding
residue R is

When F(s) contains a repeated pole of order q , the residue R is
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Ex 1: Determine the z transform of a unit step function u(t).

For  F(s)=1/s , there is but one pole at s=0. The corresponding residue is

Simple Pole  at s=0

Ex 2: Determine the z transform of

For this function, which has but one pole at s=-a. Thus,



Ex.3 : Determine the z transform of for the function whose Laplace 
transform is

The poles of F(s) occur at s=0 and s=-1. 

The residue due to the pole at s=0 is
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The residue due to the pole at s=-1 is

Adding these two residues results in



Ex.4: Determine the z transform of cos(w t) .

The Laplace transform is

The poles are at s = jw and s = - jw . Thus,
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Adding these verify the previous result



Ex.5: Determine the z transform corresponding to the function f (t) = t .

The Laplace transform is

This has a second-order pole at s=0. Thus, the residue becomes









−

−
−

= −

−

→ )(
)()(

)!1(
1

1

1

lim sT
q

q

q

rs ez
zsFrs

ds
d

q
R

22
2

0 )1()(
1

!1
1 lim −

=







−

=
→ z

zT
ez
z

s
s

ds
dR sT

s



Digital Control Systems 

LECTURE 3
Properties of z Transform   

Prepared by: Mr. Abdullah I. Abdullah



Properties of z-Transform

1- Linearity of z-transform 

Example: Find the z-transform for the signal nnnTx 3*42*3)( −=

2- Time Delay:

Example: If Find F(z)

F(z)

𝒵𝒵 𝛼𝛼𝑓𝑓1 𝑛𝑛 + 𝛽𝛽𝑓𝑓2 𝑛𝑛 = 𝛼𝛼𝐹𝐹1 𝑧𝑧 + 𝛽𝛽𝐹𝐹2 𝑧𝑧

𝒵𝒵 𝑓𝑓 𝑘𝑘 − 𝑛𝑛 = 𝑧𝑧−𝑛𝑛𝐹𝐹 𝑧𝑧



3-Time Advance:

[ ] )0()()( zfzFzTkTfZ −=+ Shifting one sampling  period 

[ ] )1()0()()2( 22 zffzzFzTkTfZ −−=+ Shifting two sampling  period 

Shifting n sampling  period 

4.Multiplication by k

Example : Find G(z) for nnkg 2)( =

𝒵𝒵 𝑓𝑓 𝑘𝑘 + 𝑛𝑛 = 𝑧𝑧𝑛𝑛𝐹𝐹 𝑧𝑧 − 𝑧𝑧𝑛𝑛𝑓𝑓 0 − 𝑧𝑧𝑛𝑛−1𝑓𝑓 1 −⋯− 𝑧𝑧𝑧𝑧(𝑛𝑛 − 1)



5-Final value of the time response:

Example
Find the final value of g(n), if



6-Initial value theorem

Suppose f (nT) has z transform F(z) and exist, then the initial value f (0) of

f (nT) is given by

Example 2: For a discrete data system with transfer function

and a unit step input for which the z transform is

find the final value of the response sequence y(nT ) .
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Inverse z-Transform

Given the z-transform, Y (z), of a function, it is required to find the
time-domain function y(n).
There are three methods: power series (long division) ,partial
fractions and Residue Method .

1-power series: long division.

◮ This method involves dividing the denominator of Y (z) into the
numerator to obtain a power series of the form:

◮ values of y(n) are, directly, the coefficients in the power series.



2-partial fractions:
◮ a partial fraction expansion of Y (z) is found, and then tables of z-
transform can be used to determine the inverse z-transform.

Example 1:
use power series method to find the inverse z-transform for:

43
)( 2

2

+−
+

=
zz

zzzY

Dividing the denominator into the numerator gives: 

from coefficients of power series:

The required sequence:

Method 1: Power Series (long division)

3-Residue Method: The third method of finding the inverse z transform 
is to use the inversion integral.



Example-2: Obtain the inverse z-transform of the function

𝐹𝐹 𝑧𝑧 =
𝑧𝑧 + 1

𝑧𝑧2 + 0.2𝑧𝑧 + 0.1

Thus

Long Division

𝐹𝐹 𝑧𝑧 = 0 + 𝑧𝑧−1 + 0.8𝑧𝑧−2 − 0.26𝑧𝑧−3 + ⋯
Inverse z-transform

𝑓𝑓 𝑛𝑛 = 0, 1, 0.8, −0.26, …



in MATLAB, you can use the following commands:

disadvantage of power series method: it does not give a closed form 
of the resulting sequence.

%%%%%%%%%%% Long Divition
method
clc
Delta =[1 zeros(1,4)] ;
num = [0    1    1];
den = [1    0.2    0.1];
yk = filter (num , den , Delta )

yk =

0    1.0000    0.8000   -0.2600   -0.0280



Method 2: Partial Fractions

Looking at z-transform table,
 there is usually a z term in numerator.
 It is therefore more convenient to find the partial fractions of Y(z)/z
 then multiply the partial fractions by z to obtain a z term in the

numerator.

Example 1 :Find the inverse z-transform of 2

2
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Note: for last term, we used the multiplication by k property which is equivalent 
to a z-differentiation.

Example-2: Obtain the inverse z-transform of the function

𝐹𝐹 𝑧𝑧 =
𝑧𝑧 + 1

𝑧𝑧2 + 0.3𝑧𝑧 + 0.02
𝐹𝐹 𝑧𝑧
𝑧𝑧

=
𝑧𝑧 + 1

𝑧𝑧(𝑧𝑧2 + 0.3𝑧𝑧 + 0.02)
𝐹𝐹 𝑧𝑧
𝑧𝑧

=
𝑧𝑧 + 1

𝑧𝑧(𝑧𝑧2 + 0.1𝑧𝑧 + 0.2𝑧𝑧 + 0.02)

Solution



𝐹𝐹 𝑧𝑧
𝑧𝑧

=
𝑧𝑧 + 1

𝑧𝑧(𝑧𝑧 + 0.1)(𝑧𝑧 + 0.2)

𝐹𝐹 𝑧𝑧
𝑧𝑧

=
𝐴𝐴
𝑧𝑧

+
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+
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𝐹𝐹 𝑧𝑧
𝑧𝑧

=
50
𝑧𝑧
−

90
𝑧𝑧 + 0.1

+
40

𝑧𝑧 + 0.2

𝐹𝐹 𝑧𝑧 = 50 −
90𝑧𝑧

𝑧𝑧 + 0.1
+

40𝑧𝑧
𝑧𝑧 + 0.2

• Taking inverse z-transform (using z-transform table)

𝑓𝑓 𝑛𝑛 = 50𝛿𝛿 𝑛𝑛 − 90 −0.1 𝑛𝑛 + 40 −0.2 𝑛𝑛



num = [2 1    0      0];
den  = [1     0 1      1];
[r,p,k] = residue (num ,den)
r =
0.5354 + 1.0390 i
0.5354 - 1.0390 i
-0.0708 + 0.0000 i
p =
0.3412 + 1.1615 i
0.3412 - 1.1615 i
-0.6823 + 0.0000 i
k =
2

residue returns the complex roots and
poles, and a constant term in k,

representing the partial fraction expansion

In MATLAB, you can find the partial fraction expansion of a ratio of 
two polynomials F(z) with:

Example :Find the inverse z-transform of



Method 3: Residue Method:
The third method of finding the inverse z transform is to use the inversion integral. 
Note that

In particular, the residue due to a first order pole at z = r is

Similarly, the residue due to a repeated pole of order q is



Example1 : Using residue method, find f (nT) if F(z) is given by
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Example 2: Determine the inverse z transform for the function

nTz
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For f (nT) =nT , the corresponding time function is f (t) = t .



z-Transform solution of difference equations 
Linear difference equations may be solved by constructing the Z-
Transform of both sides of the equation. The method will be
illustrated with linear difference equations of the first and second
orders (with constant coefficients).

Example 1:Solve the linear difference equation given that

[ ] )0()()( zfzFzTkTfZ −=+

second shifting theorem



Example 2 :Solve the linear difference equation

given that

[ ] )0()()( zfzFzTkTfZ −=+

second shifting theorem

[ ] )1()0()()2( 22 zffzzFzTkTfZ −−=+



Home Work
•Find the inverse transforms of the following functions

16

e) 𝐹𝐹 𝑧𝑧 = 𝑧𝑧
(𝑧𝑧+0.1)(𝑧𝑧+0.2)(𝑧𝑧+0.3)

a) 𝐹𝐹 𝑧𝑧 = 1 + 3𝑧𝑧−1 + 4𝑧𝑧−2

b) 𝐹𝐹 𝑧𝑧 = 5𝑧𝑧−1 + 4𝑧𝑧−5

c) 𝐹𝐹 𝑧𝑧 = 𝑧𝑧
𝑧𝑧2+0.3𝑧𝑧+0.02

d)𝐹𝐹 𝑧𝑧 = 𝑧𝑧−0.1
𝑧𝑧2+0.04𝑧𝑧+0.25



Digital Control Systems 

LECTURE 5
Modeling of Digital Control Systems

Prepared by: Mr. Abdullah I. Abdullah



• Derive the pulse transfer function of a continuous-time system driven
by discrete input.

• Manipulate block diagrams of open and closed-loop discrete-time
systems.

Discrete-time Block Diagrams

• All linear difference equations are composed of delays, multiplies,
and adds, and we can represent these operations in block diagrams.

• block diagrams are often helpful in system visualization.
Example
Consider the difference equation for trapezoidal integration:

)(
2 11 −− ++= KKKK eeTUU

This difference equation is represented by the block diagram shown.



The ZOH transfer function

• A zero-order hold as a way to reconstruct 
continuous signal from discrete samples

• The ZOH remembers the last information
until a new sample is obtained, i.e. it takes the
value r(kT) and holds it constant for
kT ≤ t < (k + 1)T.

This is exactly the behavior of a DAC in
converting a sampled signal into
continuous r(t).



Pulse Transfer Function

The transfer function for the continuous-time system relate the Laplace transform
of the continuous-time output to that of the continuous time input, while the pulse
transfer function relate the z transform of the output at the sampling instant to that
of the sampled input.

The Laplace transform of the output 
is 

Or in term z transform 

Case 1: Case 2:

Consider the two different cases below:

x(t)

X(s)

Y(z)



Pulse Transfer Function of Cascade Element 

Note that 



Example: obtain the pulse transfer function of the system shown in 
figure below: 

K



Pulse Transfer Function of 
Closed-Loop System 

Consider the closed loop system shown below. In this system, the actuating error is 
sampled. 

In term of z-transform C(z) is given by 

The pulse transfer function is 

----- 1

----- 2
Sub. :2 in 1

----- 3

Since 

We obtain 

--- 4

--- 5



Typical configuration of closed loop discrete-time systems and the corresponding 
outputs         are listed below: 

Case 1

Case 2



Case 3

Case 4



Case 5



Example 1: find the discrete system response to a unit step input 
for the system shown below: 

G(s)

G1(s)

=

C(z)





Example 4.2:
Find the pulse transfer function of the system given by

3 4 2 5 3 3 2 2
with zero initial condition. 
y(kT) y(kT -T) y(kT - T) y(kT - T) r(kT)- r(kT -T) r(kT - T)+ + + = +
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23

5431
231

as obtained becan  system  theoffunction  transfer pulse The
23543

bygiven  is system  theof  transformz
:Solution
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R(z)zR(z)zR(z)-Y(z)zY(z)zY(z)zY(z)

---
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-----

Example 2
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:4.3 Example
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T)y(kT-T)y(kT-T)y(kT-y(kT-T)y(kT)
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zzzz
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R(z)
Y(z)G(z)

--------

----
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43223
4233254

 transformz inverse
 by the obtained becan  system  theofequation  difference The

)231)(()23541(
have  weso

23541
231 :Solution

43214321
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Example 3
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Time Response
In this chapter the time response of the sampled data system of
Fig.(1) to unit step input will be determined. Three methods will be
explained: long division , difference equations and partial fraction
expansion.

Figure (1) Sampled data system

)4(
44
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ss
ksG

)(4)1(4
)( 4Tez

zk
z

zkzG −−
−

−
=

))(1(
)1()(

4
)( 4

4

T

T

ezz
zzezzkzG −

−
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−−−

=



Letting K = 1 and T =0.25 sec, then

The pulse transfer function is



1- Long division method:

For unit step input, Then

Using the long-division method to determine the inverse gives

12 058144.0224964.0349.0158.0 −−+− zzz

1058144.0249642.0349.0 −+− zz

بالطرح



−−−−−−−+++== −
∞

=

−−∑ 2

0

1 )2()()0()()( zTczTccznTczC
n

n

−−−−−+++= −−− 321 522.0349.0185.0)( zzzzc

then

A plot of the response c(nT ) at the sampling instants is shown in Fig.(2).The long
division method becomes quite cumbersome for computing c(nT) for larger values
of n. A more convenient procedure results from expressing the solution in the form
of a difference equation.

Figure (2) Sampled data system



2-Difference Equations:

To determine the inverse z transform by this method, one can write the equation for C(z) 
in the form

The pulse transfer function
From previous example 

Thus

Application of right shifting property

Then the preceding expression yields directly the difference equation



This difference equation gives the value c(nT) at the nth sampling
instants in terms of values at the preceding sampling instants.
Application of this result to obtain the values at the sampling instants
gives

Such recurrence relationships lend themselves very well to solution
by a digital computer.



3-Partial-fraction expansion:

The response c(nT) at the sampling instants may be also be obtained
by performing a partial fraction expansion and then inverting. Thus

From previous example 

The partial-fraction expansion constants are A = 1, B1 = -0.24, and B2 = -1.0 .
Thus, C(z) becomes



By noting that

and

The inverse is found to be

2

−−−−−−−=−−= ,3,2,1,0)61.0()61.0(39.01)( nnTnTc nTnT

Note B=0.24
0.24=0.61*0.39

With this method, the value c(nT) at any sampling instants may be
calculated directly without the need to compute the value at all the
preceding instants



Figure 3. should just be a reminder of how we can characterize a
transient response. It shows five measurements, the delay time, the
rise time, time to the first peak, the peak value, and the settling
time

Figure 3.13: Transient response 
characteristics



SSV = Steady State Value
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It is possible to map from the s plane to the z plane using the
relationship

Mapping of s-plane to z-plane

𝑧𝑧 = 𝑒𝑒𝑠𝑠𝑠𝑠
Where 𝑠𝑠 = 𝜎𝜎 + 𝑗𝑗𝑗𝑗.

𝑧𝑧 = 𝑒𝑒(𝜎𝜎+𝑗𝑗𝑗𝑗)𝑇𝑇

Then 𝑧𝑧 in polar coordinates is given by

𝑧𝑧 = 𝑒𝑒𝜎𝜎𝑇𝑇𝑒𝑒𝑗𝑗𝑗𝑗𝑇𝑇

∠𝑧𝑧 = 𝜔𝜔𝑇𝑇𝑧𝑧 = 𝑒𝑒𝜎𝜎𝑇𝑇

We will discuss following cases to map given points on s-plane to
z-plane.
 Case-1: Real pole in s-plane (𝑠𝑠 = 𝜎𝜎)

 Case-2: Imaginary Pole in s-plane (𝑠𝑠 = 𝑗𝑗𝜔𝜔)

 Case-3: Complex Poles (𝑠𝑠 = 𝜎𝜎 + 𝑗𝑗𝜔𝜔)



When  𝑠𝑠 = −∞

𝑧𝑧 = 𝑒𝑒−∞𝑇𝑇 = 0
∠𝑧𝑧 = 0

When  𝑠𝑠 = 0

𝑧𝑧 = 𝑒𝑒0𝑇𝑇 = 1

∠𝑧𝑧 = 0𝑇𝑇 = 0

𝑧𝑧 = 𝑒𝑒𝜎𝜎𝑇𝑇 ∠𝑧𝑧 = 0,

Consider  𝑠𝑠 = −𝑎𝑎

𝑧𝑧 = 𝑒𝑒−𝑎𝑎𝑇𝑇
∠𝑧𝑧 = 0

Case-1: Real pole in s-plane (𝑠𝑠 = 𝜎𝜎)
∠𝑧𝑧 = 𝜔𝜔𝑇𝑇𝑧𝑧 = 𝑒𝑒𝜎𝜎𝑇𝑇

We know



Case-2: Imaginary pole in s-plane (𝑠𝑠 = ±𝑗𝑗𝑗𝑗)

∠𝑧𝑧 = 𝜔𝜔𝑇𝑇𝑧𝑧 = 𝑒𝑒𝜎𝜎𝑇𝑇

Consider  𝑠𝑠 = 𝑗𝑗𝑗𝑗

𝑧𝑧 = 𝑒𝑒0𝑇𝑇 = 1
∠𝑧𝑧 = 𝜔𝜔𝑇𝑇

When  𝑠𝑠 = −𝑗𝑗𝑗𝑗

𝑧𝑧 = 𝑒𝑒0𝑇𝑇 = 1
∠𝑧𝑧 = −𝜔𝜔𝑇𝑇

When  𝑠𝑠 = ±𝑗𝑗 𝜋𝜋
𝑇𝑇

𝑧𝑧 = 𝑒𝑒0𝑇𝑇 = 1
∠𝑧𝑧 = ±

𝜋𝜋
𝑇𝑇
𝑇𝑇 = ±𝜋𝜋



• Anything in the Alias/Overlay region in the S-Plane will be
overlaid on the Z-Plane along with the contents of the strip
between ±𝑗𝑗 𝜋𝜋

𝑇𝑇
.



 In order to avoid aliasing, there must be nothing in this region, i.e. there must be
no signals present with radian frequencies higher than w = p/T, or cyclic
frequencies higher than f = 1/2T

 Stated another way, the sampling frequency must be at least twice the highest
frequency present (Nyquist rate).



Case-3: Complex pole in s-plane (𝑠𝑠 = 𝜎𝜎 ± 𝑗𝑗𝑗𝑗)

𝑧𝑧 = 𝑒𝑒𝜎𝜎𝑇𝑇 ∠𝑧𝑧 = ±𝜔𝜔𝑇𝑇



Mapping regions of  the s-plane onto the 
z-plane
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Mapping regions of  the s-plane onto the        
z-plane

|z| < 1 



1-Factorization

Stability of Discrete Systems

Suppose that we have the following transfer function of a closed-loop 
discrete-time system:

The system is stable if all poles* lie inside the unit circle in z-plane.
The direct method to check system stability is to factorize the
characteristic equation,
◮ determine its roots, and check if their magnitudes are all less than 1.

There are several methods to check the stability of a discrete-time
system such as:

1-Factorizing D(z) and finding its roots.
2-Jury Test.

3-Routh–Hurwitz 
criterion .

= 0

|z| < 1 



Check the stability of the following closed-loop discrete system.
Assume that T = 1 s

The transfer function of the closed-loop system is:

Where

Example 1



The characteristic equation is thus:

In the previous example, find the value of T for which the system is stable.
Example 2

From the previous example, we found:

The characteristic equation is:



For stability, the condition  |z| < 1  must be satisfied;

Thus the system is stable as long as T < 0.549.
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Stability of Digital Control Systems

• Jury stability test is similar to Routh–Hurwitz stability criterion
used for continuous systems.

• In Jury test, the characteristic equation of a discrete system of
order n is expressed as:

Jury Test

where

• Stability test method presented by Eliahu Ibraham Jury.

• The difference between the stability of the continuous system and
digital system is the effect of sampling rate on the transient response.

• Changes in sampling rate not only change the nature of the response
from overdamped to underdamped, but also can turn the system to
an unstable.



The elements of this array are defined as follows:
• Elements of even-numbered row are the elements of the preceding 

row, in reverse order.
• Elements of the odd–numbered rows are defined as given by bk , ck

, ...

𝑟𝑟𝑜𝑜 =
𝑠𝑠𝑜𝑜 𝑠𝑠3
𝑠𝑠3 𝑠𝑠𝑜𝑜 , 𝑟𝑟1 =

𝑠𝑠𝑜𝑜 𝑠𝑠2
𝑠𝑠3 𝑠𝑠1 , 𝑟𝑟2 =

𝑠𝑠𝑜𝑜 𝑠𝑠1
𝑠𝑠3 𝑠𝑠2

𝑏𝑏𝑘𝑘 =
𝑎𝑎𝑜𝑜 𝑎𝑎𝑛𝑛−𝑘𝑘
𝑎𝑎𝑛𝑛 𝑎𝑎𝑘𝑘 ,

𝒌𝒌 = 𝟎𝟎,𝟏𝟏, … ,𝒏𝒏 − 𝟏𝟏

𝑐𝑐𝑘𝑘 = 𝑏𝑏𝑜𝑜 𝑏𝑏𝑛𝑛−𝑘𝑘
𝑏𝑏𝑛𝑛 𝑏𝑏𝑘𝑘

, 𝒌𝒌 = 𝟎𝟎,𝟏𝟏, … ,𝒏𝒏 − 𝟐𝟐

• The table has 2n − 3 rows 
(always odd)

• Row of the Jury table is a listing of 
F(z) coefficients in order of 

increasing power of z.

Jury table



The necessary and sufficient conditions for the characteristic equation
to have all roots inside the unit circle are given as:

Jury Test is applied as follows:
• Check the three conditions (I) and stop if any of them is not

satisfied.
• Construct Jury array and check the conditions (II) . Stop if any

condition is not satisfied.

Necessary conditions 
Sufficient conditions



Example-1
•Test the stability of the polynomial.

•Develop Jury’s Table [(2n-3) rows].

5

𝐹𝐹 𝑧𝑧 = 𝑧𝑧5 + 2.6𝑧𝑧4 − 0.56𝑧𝑧3 − 2.05𝑧𝑧2 + 0.0775𝑧𝑧 + 0.35
Solution

Row 𝒛𝒛𝟎𝟎 𝒛𝒛𝟏𝟏 𝒛𝒛𝟐𝟐 𝒛𝒛𝟑𝟑 𝒛𝒛𝟒𝟒 𝒛𝒛𝟓𝟓

1 0.35 0.0775 -2.05 -0.56 2.6 1

2 1 2.6 -0.56 -2.05 0.0775 0.35

3 𝑏𝑏𝑜𝑜 𝑏𝑏1 𝑏𝑏2 𝑏𝑏3 𝑏𝑏4
4 𝑏𝑏4 𝑏𝑏3 𝑏𝑏2 𝑏𝑏1 𝑏𝑏𝑜𝑜
5 𝑐𝑐𝑜𝑜 𝑐𝑐1 𝑐𝑐2 𝑐𝑐3
6 𝑐𝑐3 𝑐𝑐2 𝑐𝑐1 𝑐𝑐𝑜𝑜
7 𝑑𝑑𝑜𝑜 𝑑𝑑1 𝑑𝑑2



6

𝑏𝑏𝑜𝑜 =
𝑎𝑎𝑜𝑜 𝑎𝑎5
𝑎𝑎5 𝑎𝑎𝑜𝑜 = 0.35 1

1 0.35 = −0.8775

𝑏𝑏1 =
𝑎𝑎𝑜𝑜 𝑎𝑎4
𝑎𝑎𝟓𝟓 𝑎𝑎1 = 0.35 2.6

1 0.0775 = −2.5728

𝑏𝑏2 =
𝑎𝑎𝑜𝑜 𝑎𝑎3
𝑎𝑎𝟓𝟓 𝑎𝑎2 = 0.35 −0.56

1 −2.05 = −0.1575

𝑏𝑏4 =
𝑎𝑎𝑜𝑜 𝑎𝑎1
𝑎𝑎𝟓𝟓 𝑎𝑎4 = 0.35 0.0775

1 2.6 = 0.8352

𝑏𝑏3 =
𝑎𝑎𝑜𝑜 𝑎𝑎2
𝑎𝑎𝟓𝟓 𝑎𝑎3 = 0.35 −2.05

1 −0.56 = 1.854

𝑏𝑏𝑘𝑘 =
𝑎𝑎𝑜𝑜 𝑎𝑎𝑛𝑛−𝑘𝑘
𝑎𝑎𝑛𝑛 𝑎𝑎𝑘𝑘

• 3rd row is calculated using
Row 𝒛𝒛𝟎𝟎 𝒛𝒛𝟏𝟏 𝒛𝒛𝟐𝟐 𝒛𝒛𝟑𝟑 𝒛𝒛𝟒𝟒 𝒛𝒛𝟓𝟓

1 0.35 0.0775 -2.05 -0.56 2.6 1

2 1 2.6 -0.56 -2.05 0.0775 0.35

3 −0.8775−2.5728−0.1575 1.854 0.8352
4 𝑏𝑏4 𝑏𝑏3 𝑏𝑏2 𝑏𝑏1 𝑏𝑏𝑜𝑜
5 𝑐𝑐𝑜𝑜 𝑐𝑐1 𝑐𝑐2 𝑐𝑐3
6 𝑐𝑐3 𝑐𝑐2 𝑐𝑐1 𝑐𝑐𝑜𝑜
7 𝑑𝑑𝑜𝑜 𝑑𝑑1 𝑑𝑑2

k=0,1,2,3,….n-1



7

• 4rth row is same as 3rd row in reverse order

Row 𝒛𝒛𝟎𝟎 𝒛𝒛𝟏𝟏 𝒛𝒛𝟐𝟐 𝒛𝒛𝟑𝟑 𝒛𝒛𝟒𝟒 𝒛𝒛𝟓𝟓

1 0.35 0.0775 -2.05 -0.56 2.6 1

2 1 2.6 -0.56 -2.05 0.0775 0.35

3 −0.8775 −2.5728 −0.1575 1.854 0.8352

4 0.8352 1.854 −0.1575 −2.5728 −0.8775

5 𝑐𝑐𝑜𝑜 𝑐𝑐1 𝑐𝑐2 𝑐𝑐3
6 𝑐𝑐3 𝑐𝑐2 𝑐𝑐1 𝑐𝑐𝑜𝑜
7 𝑑𝑑𝑜𝑜 𝑑𝑑1 𝑑𝑑2



8

𝑐𝑐𝑘𝑘 = 𝑏𝑏𝑜𝑜 𝑏𝑏𝑛𝑛−𝑘𝑘
𝑏𝑏𝑛𝑛 𝑏𝑏𝑘𝑘

• 5th row is calculated using

Row 𝒛𝒛𝟎𝟎 𝒛𝒛𝟏𝟏 𝒛𝒛𝟐𝟐 𝒛𝒛𝟑𝟑 𝒛𝒛𝟒𝟒 𝒛𝒛𝟓𝟓

1 0.35 0.0775 -2.05 -0.56 2.6 1

2 1 2.6 -0.56 -2.05 0.0775 0.35

3 −0.8775 −2.5728 −0.1575 1.854 0.8352

4 0.8352 1.854 −0.1575 −2.5728 −0.8775

5 0.077 0.7143 0.2693 0.5151

6 𝑐𝑐3 𝑐𝑐2 𝑐𝑐1 𝑐𝑐𝑜𝑜
7 𝑑𝑑𝑜𝑜 𝑑𝑑1 𝑑𝑑2

k=0,1,2,….n-2



9

• 6th row is same as 5th row in reverse order

Row 𝒛𝒛𝟎𝟎 𝒛𝒛𝟏𝟏 𝒛𝒛𝟐𝟐 𝒛𝒛𝟑𝟑 𝒛𝒛𝟒𝟒 𝒛𝒛𝟓𝟓

1 0.35 0.0775 -2.05 -0.56 2.6 1

2 1 2.6 -0.56 -2.05 0.0775 0.35

3 −0.8775 −2.5728 −0.1575 1.854 0.8352

4 0.8352 1.854 −0.1575 −2.5728 −0.8775

5 0.077 0.7143 0.2693 0.5151

6 0.5151 0.2693 0.7143 0.077

7 𝑑𝑑𝑜𝑜 𝑑𝑑1 𝑑𝑑2



10

𝑑𝑑𝑘𝑘 = 𝑑𝑑𝑜𝑜 𝑑𝑑𝑛𝑛−𝑘𝑘
𝑑𝑑𝑛𝑛 𝑑𝑑𝑘𝑘

• 7th row is calculated using

Row 𝒛𝒛𝟎𝟎 𝒛𝒛𝟏𝟏 𝒛𝒛𝟐𝟐 𝒛𝒛𝟑𝟑 𝒛𝒛𝟒𝟒 𝒛𝒛𝟓𝟓

1 0.35 0.0775 -2.05 -0.56 2.6 1

2 1 2.6 -0.56 -2.05 0.0775 0.35

3 −0.8775 −2.5728 −0.1575 1.854 0.8352

4 0.8352 1.854 −0.1575 −2.5728 −0.8775

5 0.077 0.7143 0.2693 0.5151

6 0.5151 0.2693 0.7143 0.077

7 −0.2593 −0.0837 −0.3472

k=0,1,2,….n-3



5th order System

• Now we need to evaluate following conditions

𝟏𝟏 . 𝐹𝐹 1 > 0
𝟐𝟐 . (−1)5𝐹𝐹 −1 > 0
𝟑𝟑 . 𝑎𝑎𝑜𝑜 < 𝑎𝑎5
𝟒𝟒 . 𝑏𝑏0 > 𝑏𝑏4
𝟓𝟓 . 𝑐𝑐0 > 𝑐𝑐3
𝟔𝟔 . 𝑑𝑑0 > 𝑑𝑑2

• The first two conditions require the evaluation of F(z) at z = ±1.

𝐹𝐹 𝑧𝑧 = 𝑧𝑧5 + 2.6𝑧𝑧4 − 0.56𝑧𝑧3 − 2.05𝑧𝑧2 + 0.0775𝑧𝑧 + 0.35
𝐹𝐹 1 = 1 + 2.6 − 0.56 − 2.05 + 0.0775 + 0.351 = 1.4175
𝐹𝐹 −1 = −1 + 2.6 + 0.56 − 2.05 − 0.0775 + 0.35 = 0.3825

𝟏𝟏 . 𝐹𝐹 1 > 0 Satisfied 𝟐𝟐 . (−1)5𝐹𝐹 −1 > 0 Not Satisfied✓ ✗
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• Next four conditions require Jury’s table

𝟑𝟑 . 𝑎𝑎𝑜𝑜 < 𝑎𝑎5

𝟒𝟒 . 𝑏𝑏0 > 𝑏𝑏4

𝟓𝟓 . 𝑐𝑐0 > 𝑐𝑐3
𝟔𝟔 . 𝑑𝑑0 > 𝑑𝑑2

Row 𝒛𝒛𝟎𝟎 𝒛𝒛𝟏𝟏 𝒛𝒛𝟐𝟐 𝒛𝒛𝟑𝟑 𝒛𝒛𝟒𝟒 𝒛𝒛𝟓𝟓

1 0.35 0.0775 -2.05 -0.56 2.6 1

2 1 2.6 -0.56 -2.05 0.0775 0.35

3 −0.8775 −2.5728 −0.1575 1.854 0.8352

4 0.8352 1.854 −0.1575 −2.5728 −0.8775

5 0.077 0.7143 0.2693 0.5151

6 0.5151 0.2693 0.7143 0.077

7 −0.2593 −0.0837 −0.3472

Satisfied

Satisfied

Not Satisfied

Not Satisfied

• The system is  unstable ,because the roots on or outside the unit circle. .

and has a root at −2.5 outside the unit circle.

The polynomial can be factored as



Example-2
•Test the stability of the polynomial.

•Develop Jury’s Table [(2n-3) rows].

13

𝐹𝐹 𝑧𝑧 = 𝑧𝑧2 − 0.25
Solution

Row 𝒛𝒛𝟎𝟎 𝒛𝒛𝟏𝟏 𝒛𝒛𝟐𝟐

1 -0.25 0 1

𝐹𝐹 1 = 1 − 0.25 = 0.75

𝐹𝐹 −1 = 1 − 0.25 = 0.75

𝟏𝟏 . 𝐹𝐹 1 > 0

𝟐𝟐 . (−1)2𝐹𝐹 −1 > 0

Satisfied

Satisfied

𝟑𝟑 . 𝑎𝑎𝑜𝑜 < 𝑎𝑎2 Satisfied

• Since all the conditions are satisfied, the system is stable.



Example 3
The closed-loop transfer function of a system is given by where

Determine the stability of this system using Jury Test.

The characteristic equation is

Applying Jury Test:

All conditions are satisfied, so the system is stable.



Determine the stability of a system having the following characteristic equation:

Example 4

The first conditions are satisfied. Applying the other condition:

Applying Jury test:

since | − 0.99| < | − 1.2|, the system is stable



The block diagram of a sampled data system is shown below. Use Jury Test to
determine the value of K for which the system is stable. Assume that K > 0 and T
= 1 s.

The characteristic equation is:

Example 5



Apply Jury test for 2nd order equation:

The third condition is:

Combining all inequalities together, the system is stable for 0 < K < 2.4
Mohammed



Determine the stability of the system having the following characteristic equation:

System is unstable

Example 6



Digital Control Systems 

LECTURE 9
Stability of Digital Control Systems

Routh–Hurwitz Criterion
Prepared by: Mr. Abdullah I. Abdullah



• The stability of a sampled data system can be analyzed by
transforming the system characteristic equation into the s-plane and
then applying the well-known Routh–Hurwitz criterion.

Routh–Hurwitz Criterion

• A bilinear transformation is usually used to transform the interior of 
the unit circle in the z-plane into the left-hand s-plane (w-plane). 

For this transformation, z is replaced by:

Routh–Hurwitz criterion
Number of roots of the characteristic equation in the right hand s-plane is equal to the 
number of sign changes of the coefficients in the first column of the array.

𝐹𝐹 𝑤𝑤 = 𝑏𝑏𝑛𝑛(
1 + 𝑤𝑤
1 −𝑤𝑤)𝑛𝑛+𝑏𝑏𝑛𝑛−1(

1 + 𝑤𝑤
1 −𝑤𝑤)𝑛𝑛−1+⋯+ 𝑏𝑏𝑜𝑜

𝐹𝐹 𝑧𝑧 = 𝑏𝑏𝑛𝑛𝑧𝑧𝑛𝑛 + 𝑏𝑏𝑛𝑛−1𝑧𝑧𝑛𝑛−1 + ⋯+ 𝑏𝑏𝑜𝑜

𝑧𝑧 = 1+𝑤𝑤
1−𝑤𝑤

⇔ 𝑤𝑤 = 1+𝑧𝑧
1−𝑧𝑧

𝑠𝑠 =
2
𝑇𝑇

𝑧𝑧 − 1
𝑧𝑧 + 1

𝑧𝑧 =
1 + 𝑠𝑠 𝑇𝑇2
1 − 𝑠𝑠 𝑇𝑇2

Some engineers replace s by “w” and call the 

resulting operation as “w” transform”



Routh-Hurwitz array is formed as:

First two rows are obtained
from the equation directly and
the other rows are calculated as:

Thus, for a stable system all coefficients in first column must have 
the same sign.



The characteristic equation of a sampled data system is given by

Example 1

Determine the stability of the system using the Routh–Hurwitz criterion.

Now, we form Routh array: -

0
-

7
16

7
1*53*7

1 =
−

=C 5
716

5*05*716
1 =

−
=D

No sign change in the first 
column, so the system is stable.



Roots of the characteristic equation:

can be found using MATLAB

all roots are less than one, i.e. the 
roots lie inside unit circle. Hence, 
we can conclude that the system is 

stable.

abs(roots([2     1    1    1]))roots([2     1     1 1])



Example 2

•By using Routh-Hurwitz stability criterion, determine the
stability of the following digital systems whose characteristic are
given as.

𝑧𝑧2 − 0.25 = 0

•Transforming the characteristic equation 𝑧𝑧2 − 0.25 = 0 into
𝑤𝑤 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 by using the bilinear transformation 𝑧𝑧 = 1+𝑤𝑤

1−𝑤𝑤gives:

6

Solution

0.75𝑤𝑤2 + 2.5𝑤𝑤 + 0.75 = 0

𝑤𝑤2 0.75 0.75
𝑤𝑤1 2.5 0
𝑤𝑤0 0.75

Since there are no sign
changes in the first column
of the Routh array therefore
the system is stable.

r1,2 = 0.500  , -0.5000



Example-3

•By using Routh-Hurwitz stability criterion, determine the stability of
the following digital systems whose characteristic are given as.

𝑧𝑧3 − 1.2𝑧𝑧2 − 1.375𝑧𝑧 − 0.25 = 0

•Transforming the characteristic equation into 𝑤𝑤 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 by using

the bilinear transformation 𝑧𝑧 = 1+𝑤𝑤
1−𝑤𝑤

gives:

7

Solution

−1.875𝑤𝑤3 + 3.875𝑤𝑤2 + 4.875𝑤𝑤 + 1.125 = 0

𝑤𝑤3 -1.875 4.875
𝑤𝑤2 3.875 1.125
𝑤𝑤1 5.419 0
𝑤𝑤0 1125

• From the table above, since there is
one sign change in the first column
above equation has one root in the
right-half of the w-plane.

• This, in turn, implies that there will
be one root of the characteristic
equation outside of the unit circle in
the z-plane.



clc
clear
P=[1 -1.2 -1.375 -0.25];
r=roots(P)
d=abs(r)

r =
1.9646

-0.5199
-0.2448

d =
1.9646
0.5199
0.2448



By using Routh-Hurwitz stability criterion, determine K for the stable digital  systems  whose 
feed forward G(z) are given as.

Example-4

The characteristic equation 

0)362.0736.2(264.1632.00
368.0368.1

632.01 2 =−++⇒=
+−

+ KwwK
zz

zK

In terms of Routh criterion 

368.0368.1
632.0)( 2 +−

=
zz

zKzG

0
368.0368.1

632.01)(1 2 =
+−

+=+
zz

zKzG

K

KK

362.0736.2
0624.1

362.0736.2632.0

−

−-

w
wz

−
+

=
1
1

We have          0 <   K  < 7.558

2



𝑧𝑧 =
1 + 𝑠𝑠 𝑇𝑇2
1 − 𝑠𝑠 𝑇𝑇2

=
1 + 𝑠𝑠 1

2
1 − 𝑠𝑠 1

2

Example  5





Digital Control Systems 

LECTURE 10

Steady State Error 

Prepared by: Mr. Abdullah I. Abdullah



• Consider the unity
feedback block diagram
shown in following
figure.

Steady State Error

• The error ratio can be calculated as

• Applying the final value theorem yields the steady-state error.

𝐸𝐸 𝑧𝑧 = 𝑅𝑅 𝑧𝑧 − 𝐶𝐶 𝑧𝑧 = 𝑅𝑅 𝑧𝑧 −
𝑅𝑅 𝑧𝑧 𝐺𝐺 𝑧𝑧
1 + 𝐺𝐺 𝑧𝑧

=
𝑅𝑅(𝑧𝑧)

1 + 𝐺𝐺(𝑧𝑧)

)(1
)(1lim)(1lim

11 zG
zR

z
zzE

z
ze

zzss +
−

=
−

=
→→

• An important characteristic of a control system is its ability to
follow, or track, certain inputs with a minimum of error. The control
system designer attempts to minimize the system error to certain
anticipated inputs.



𝐾𝐾𝑣𝑣∗ , Velocity Error Constant

𝐾𝐾𝑝𝑝∗ , Position Error Constant

𝐾𝐾𝑎𝑎∗ , Parabolic  Error Constant

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

)(1
)(1lim

1 zG
zR

z
ze

zss +
−

=
→

for unit step input 

for unit  ramp input 

for unit Parabolic  input 



Example 
For the unity feedback control system with the transfer functions sec1

)5(
)( =

+
= Tand

ss
KsG

1) Determine K for the stable system. 
2) If r(t) = 1+t , determine 𝒆𝒆𝒔𝒔𝒔𝒔 .



The characteristics equation is

w
wz

−
+

=
1
1

2- r(t) = 1+ t    I/P

2



Steady State Error and System Type 



Example:2 for the unit feedback system find the steady state error. 

The open-loop transfer function is 



For step input: 



For a unit ramp input: 



For parabolic input 



H.W.: 
For the discrete control system shown below, Find the steady state 
error of unit step, ramp and parabolic input 



Digital Control Systems 

LECTURE 11

Root Locus in the z-plane
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Root-Locus

The root-locus method is a plot of the roots of the characteristic
equation of the closed-loop system as a function of the open-loop gain
constant K which is varied from 0 to infinity .

Definition:

or

The closed-loop system will remain stable providing the loci remain
within the unit circle

1 + 𝐾𝐾𝐾𝐾 𝑧𝑧 =
𝐾𝐾 𝑧𝑧 − 𝑧𝑧1 … 𝑧𝑧 − 𝑧𝑧𝑖𝑖 … (𝑧𝑧 − 𝑧𝑧𝑚𝑚)
𝑧𝑧 − 𝑝𝑝1 … 𝑧𝑧 − 𝑝𝑝𝑐𝑐 … (𝑧𝑧 − 𝑝𝑝𝑛𝑛)

In many LTI discrete time control systems, the characteristics equation
may have either of the following two forms.

1 + 𝐾𝐾𝐾𝐾 𝑧𝑧 𝐻𝐻 𝑧𝑧 = 0
1 + 𝐾𝐾𝐾𝐾𝐾𝐾 𝑧𝑧 = 0

Where , 𝐺𝐺 𝑧𝑧 𝐻𝐻 𝑧𝑧 or 𝐺𝐺𝐻𝐻 𝑧𝑧 as known open loop
pulse transfer function is equal to L(z)

The characteristics equation should be rearranged in the following form 
𝐿𝐿 𝑧𝑧 = 𝐺𝐺 𝑧𝑧 𝐻𝐻 𝑧𝑧 = −

1
𝐾𝐾 𝑜𝑜𝑜𝑜 𝐿𝐿 𝑧𝑧 = 𝐺𝐺𝐺𝐺 𝑧𝑧 = −

1
𝐾𝐾

∞<≤ K0



Magnitude condition: 
𝐿𝐿(𝑧𝑧) = 1

Angle condition:
∠𝐿𝐿 𝑧𝑧 = ∓180°(2𝑛𝑛 + 1) Where n =0,1,2,3,…..

Since L(z) is a complex quantity it can be split into two equations by
equating angles and magnitudes of two sides.
This gives us the angle and magnitude criteria as

Rules for Drawing Root Locus
1. The root locus is symmetric about real axis. (Number of root locus
branches equals the number of open loop poles).

2-The root locus starts at the open-loop poles and terminates at the
open-loop zeros or at infinity.



3-The angles of the asymptotes of the root locus that end at infinity are
determined by
𝛾𝛾 = (1+2𝑛𝑛)1800

𝑛𝑛𝑛𝑛.𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (𝑛𝑛) −[𝑛𝑛𝑛𝑛.𝑜𝑜𝑜𝑜 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 𝑚𝑚 ]
n=0,1,….(n-m-1)

4. The real-axis intercept of the asymptotes is

𝛿𝛿 = ∑𝑐𝑐=1𝑛𝑛 𝑅𝑅𝑅𝑅 𝑃𝑃𝑐𝑐 −∑𝑖𝑖=1
𝑚𝑚 𝑅𝑅𝑅𝑅(𝑧𝑧𝑖𝑖)

𝑛𝑛−𝑚𝑚

5-Breakaway (Break in) points or the points of multiple roots are the
solution of the following equation 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 0 , where K is expressed as a

function of z from the characteristic equation.

6. The unit circle crossing of the root locus can be determined by
setting up the Jury’s array from closed-loop characteristic equation.
Determine the range of values that K must have to satisfy the
necessary and sufficient conditions for a stable system.



7-The angle of departure from a complex open loop pole is given by

∅𝑝𝑝 = 180° + ∅

Where ∅ is the net angle contribution of all other open loop poles 
and zeros to that pole.

∅ = �
𝑖𝑖

𝜑𝜑𝑖𝑖 −�
𝑗𝑗≠𝑝𝑝

𝛾𝛾𝑗𝑗

𝜑𝜑𝑖𝑖 are the angles contributed by zeros and 𝛾𝛾𝑗𝑗 are the angles contributed 
by the poles.

8-The angle of arrival at a complex zero is given by ∅𝑧𝑧 = 180° − ∅

where  is same as in the above rule.

9-The gain at any point 𝑧𝑧𝑜𝑜 on the root locus is given by  K=
∏𝑗𝑗=1
𝑛𝑛 𝑧𝑧𝑜𝑜+𝑝𝑝𝑗𝑗

∏𝑖𝑖=1
𝑚𝑚 𝑧𝑧𝑜𝑜+𝑧𝑧𝑖𝑖



1. Root Locus without Zero Order Hold

Example 1 : Sketch the root locus for the diagram shown in Fig.(1)

The z-transform for the output C(z) is

The z-transformed characteristic equation is

The corresponding z transform is

,   For T=0.25 sec.=

𝐺𝐺 𝑠𝑠 = 𝐾𝐾
𝑠𝑠(𝑠𝑠+4)

= 𝐴𝐴
𝑆𝑆

+ 𝐵𝐵
𝑠𝑠+4

= ( ⁄𝐾𝐾 4
𝑠𝑠
− ⁄𝐾𝐾 4

(𝑠𝑠+4)
)    ,



Open-loop poles and zeros:
Poles: z =1 and z = 0.368
Zeros: z = 0

• Number of branches: Number of branches equals No. of poles=2.
• Root locus locations on the real axis: The root locus on the real 

axis lies between poles ( z =1 and z = 0.368 ) and to the left of zero 
(z=0).

• Break away and in points:
The characteristic equation is

0368.0

0)]368.0368.1()368.12([0)]368.0368.1()368.12([
158.0
1

368.0368.1
158.0
1

0
368.0368.1
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𝑧𝑧2 − 0.368 = 0 𝑧𝑧 − 0.606 𝑧𝑧 + 0.606 = 0 𝑧𝑧1 = 0.606
𝑧𝑧2 = −0.606

𝐺𝐺 𝑧𝑧 =
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To find the value of K at break away and in points, we use the
magnitude condition:
The gain K at breakaway point:

The gain K at break in point:

1
)368.0)(1(

158.0

0
)368.0)(1(

158.01

−=
−−

=
−−

+

zz
zk

zz
zk

=  0.979

=  16.337

z= 0.606

𝑧𝑧 = −0.606
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Crossing points of z-plane imaginary axis:
In general z = a + jb , and when the root locus crosses the imaginary
axis of the z-plane, then the real part becomes zero, or z = jb .
Substitute this value in the characteristic equation one can obtain:

Two equations will be obtained:
From the first equation one can obtain the point of interception of root 
locus with the imaginary axis

 The characteristic equation is
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Substitute the value of b at the second equation, the value of gain K 
at the imaginary axis becomes

K for marginal stability: Using Routh-Hurwitz criterion (or Jury
test), the value of K as the root locus crosses the unit circle into the
unstable region is

316.17
0158.0736.20368.0)1)(158.0368.1(21(21)1()1(

00368.01*)158.0368.1(21)1(

0368.0)158.0368.1(2

=⇒
=−⇒=+−−−−−=−−

>⇒=+−−=

=+−−

k
kkFn

kkF

zkz

Is the characteristic equation 



Unit circle crossover: Inserting K =17.316 into the characteristic
equation

Angle of asymptotes

where p=number of poles and z is the number of zeros. Thus 
becomes      =180

The real axis interception of the asymptotes is



The complete root-locus plot may now be constructed as
shown in the following figure



Example 2: Draw the root locus for the characteristic equation 



4) Break-in and break-away points 

5) Find the crossing point on the unit circle … 

6) Sketch the root locus, check with Matlab
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The proportional–integral–derivative (PID), also called three-term, is 
the most widely used controller in process industry.

PID controller

The output u(t) of the PID controller shown in figure 1  is the sum of 
three terms:

where
◮ e(t) = r (t) − y(t), is the error (controller input)
◮ r (t) is the reference input
◮ y(t) is the plant output.
◮ Ti is known as the integral time.
◮ Td is known as the derivative time. Figure 1 :PID controller 

--- (1)

u(t)
e(t) 𝑦𝑦(𝑡𝑡)

𝑟𝑟(𝑡𝑡)



PID controller actions
• Proportional: the error is multiplied by a gain. The higher is the

gain, the faster is the response. However, very high gain may cause
instability.

• Integral: is used to remove steady-state error. However, integral
action increases the overshoot and reduces system stability.

• Derivative: is used to improve the transient response by reducing
overshoot.

By taking Laplace transform of equation (1) :

𝐾𝐾𝑖𝑖 =
𝐾𝐾𝑝𝑝
𝑇𝑇𝑖𝑖= 𝐾𝐾𝑝𝑝 +

𝐾𝐾𝑖𝑖
𝑠𝑠 + 𝐾𝐾𝑑𝑑𝑠𝑠 --- (2)

𝐾𝐾𝑑𝑑 = 𝐾𝐾𝑝𝑝𝑇𝑇𝑑𝑑

With 



To implement PID control using a digital computer we convert the
following continuous-time equation into a discrete form:

To do this, a simple method is to approximate integral and derivative
using trapezoidal approximation for the integral and the backward
difference approximation for the derivative :

Discrete PID Controller

Using finite difference approximations, we can write:

--- (3)

--- (4)

--- (5)



Using subscripts instead of arguments, then eq. (5) become 

This is called the position form of discrete PID controller. The drawback
of this form is that: to calculate the controller output we need error
values

From the position form equation 6 we can write :

--- (6)

--- (7)

Subtracting these two equations (eq. (7) from eq.(6) , we obtain:

where 𝑢𝑢𝑛𝑛 = 𝑢𝑢(𝑛𝑛𝑛𝑛) , 𝑒𝑒𝑛𝑛 = 𝑒𝑒 𝑛𝑛𝑛𝑛 and 𝑒𝑒𝑛𝑛−1 = 𝑒𝑒 𝑛𝑛𝑛𝑛 − 𝑇𝑇 .

𝑢𝑢𝑛𝑛 − 𝑢𝑢𝑛𝑛−1



Here the current control signal un is an update of the previous value
un−1. This is called the velocity form.
The velocity form of discrete PID controller is:

--- (9)

--- (8)

Taking z-transform of both sides of eq.(10), we get the transfer function 
of discrete PID controller:

--- (10)

--- (11)

where 𝑢𝑢𝑛𝑛 = 𝑢𝑢(𝑛𝑛𝑛𝑛) , 𝑢𝑢𝑛𝑛−1 = 𝑢𝑢 𝑛𝑛𝑛𝑛 − 𝑇𝑇 , 𝑒𝑒𝑛𝑛 = 𝑒𝑒 𝑛𝑛𝑛𝑛 ,𝑒𝑒𝑛𝑛−1 = 𝑒𝑒 𝑛𝑛𝑛𝑛 − 𝑇𝑇
and 𝑒𝑒𝑛𝑛−2 = 𝑒𝑒 𝑛𝑛𝑛𝑛 − 2𝑇𝑇 .



Transfer function of discrete PID controller is:

where:

Note :
PID controllers are implemented in discrete time but tuned using a
continuous formulation.
PID tuning involves the selection of the best values of 𝐾𝐾𝑝𝑝 , 𝐾𝐾𝑖𝑖 and 𝐾𝐾𝑑𝑑
(or 𝑇𝑇𝑝𝑝, 𝑇𝑇𝑖𝑖 and 𝑇𝑇𝑑𝑑). It depends on the process.



Block diagram of a digital PID controller.

The Transfer function of discrete PID controller  can be written :



Digital Control Systems 

LECTURE 13

Discrete PID Controller Tuning

Prepared by: Mr. Abdullah I. Abdullah



PID Tuning
•Tuning the controller involves adjusting the parameters Kp ,Td and Ti
in order to obtain a satisfactory response.
•There are many techniques for tuning a controller, ranging from the
first techniques described by J.G. Ziegler and N.B. Nichols (known
as the Ziegler–Nichols tuning algorithm), to recent auto-tuning
controllers.
•In this section we shall look at the tuning of PID controllers using
the Ziegler–Nichols tuning algorithm.

•Ziegler and Nichols suggested values for the PID parameters of a
plant based on open-loop or closed-loop tests of the plant.
•According to Ziegler and Nichols, the open-loop transfer function of a
system can be approximated with a time delay and a single-order system,
i.e.

•where TD is the system time delay (i.e. transportation delay), and T1 is the
time constant of the system.



•For open-loop tuning, we first find the plant parameters by
applying a step input to the open loop system.
•The plant parameters K ,TD and TI are then found from the result of 
the step test as shown in figure 2.

2:



•Ziegler and Nichols then suggest using the PID controller settings
given in the Table 1 when the loop is closed.
•These parameters are based on the concept of minimizing the
integral of the absolute error after applying a step change to the set-
point.



Example
The open-loop unit step response of a thermal system is shown.
Obtain the transfer function of this system and use the Ziegler–
Nichols tuning algorithm to design:
(a) a proportional controller, 
(b) a proportional plus integral (PI) controller, and 
(c) a PID controller.
Draw the block diagram of the system in each case.

Solution :From Figure 2, the 
system parameters are obtained 
as K = 40◦C, TD = 5 s and T1 = 20 
s, and, hence, the transfer 
function of the plant is
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(a) Proportional controller

•According to the Table of ZN settings for a proportional controller 
are:

• Thus,

The transfer function of the controller is then

and the block diagram of the closed-loop system with the controller 
is shown below.

Y(s)R(s)

U(s)
E(s)
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Figure 4

Y(s)R(s)
E(s)

U(s)

(b) PI controller
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5

Y(s)R(s)
E(s)

U(s)

(c) PID controller



%%Comparison between analog and digital P controller
clc
clear
T=0.5;
s=tf('s');
Gp=(40*exp(-5*s))/(1+20*s)
ncomp=[0  0.1];%%%%%   compensator TF num P
dcomp=[0   1];    %%%%   den-comp  P
% ncomp=[3   1.2  0.12];   %%%%%   compensator TF num PID
% dcomp=[10  0];    %%%%   den-comp  PID
% ncomp=[1.485  0.09];% comp.TF num PI
% dcomp=[16.5   0];    %  den-comp  PI
Gc=tf(ncomp,dcomp)
OLc=Gc*Gp
CLc=feedback(OLc,1)
plant=Gp;
plantd=c2d(plant,T,'zoh');
OLd=c2d(OLc,T,'zoh')
CLd=feedback(OLd,1)
subplot(211),step(CLc);
subplot(212),step(CLd);
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%%Comparison between analog and digital PI controller
clc
clear
T=0.5; ];  
s=tf('s');
Gp=(40*exp(-5*s))/(1+20*s)
ncomp=[1.485  0.09];%%%%%   compensator TF num PI
dcomp=[16.5   0];    %%%%   den-comp  PI
Gc=tf(ncomp,dcomp)
OLc=Gc*Gp
CLc=feedback(OLc,1)
plant=Gp;
plantd=c2d(plant,T,'zoh');
OLd=c2d(OLc,T,'zoh')
CLd=feedback(OLd,1)
subplot(211),step(CLc);
subplot(212),step(CLd);



%%Comparison between analog and digital PID controller
clc
clear
T=0.5;
s=tf('s');
Gp=(40*exp(-5*s))/(1+20*s)
ncomp=[3   1.2  0.12];   %%%%%   compensator TF num
dcomp=[10  0];    %%%%   den-comp
Gc=tf(ncomp,dcomp)
OLc=Gc*Gp
CLc=feedback(OLc,1)
plant=Gp;

plantd=c2d(plant,T,'zoh');
OLd=c2d(OLc,T,'zoh')
CLd=feedback(OLd,1)

subplot(211),step(CLc);
subplot(212),step(CLd);
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%%%%%%%%% discrete PID controller for Z.N second method 
clc
Ts=0.2;
ncomp=[0 6.3223 17.999 12.8089];  %%%% comp. TF 
dcomp= [0 0 1 0];
num= [0 0 0 1];                   %%%% plant TF
den= [1 6 5 0];
[nol, dol]=series (ncomp, dcomp, num, den);%%%%contin.OL
[ncl,dcl]=cloop(nol,dol);   %%%%%%%%% Closed loop contin.
printsys(nol,dol,'s')   %%%%   OL.C
[numd,dend]=c2dm(num,den,Ts,'tustin');  %%%% discrete Plant
[ncomd,dcomd]=c2dm(ncomp,dcomp,Ts,'tustin'); %%%% Discrete Comp.
printsys(numd,dend,'z') %%%% T.F. discrete Plant
printsys(ncomd,dcomd,'z') %%%% T.F. discrete comp
%%%%%%%%%%%%%%% discrete 
[nold,dold]=series(ncomd,dcomd,numd,dend); %%%%% OL. discrete
[ncld,dcld]=cloop(nold,dold); %%%%%%%%% CL. discrete
subplot(211),step(ncl,dcl);
subplot(212),dstep(ncld,dcld);
G=tf(ncl,dcl);
figure(3)
bode(G)
w=1.5; %%%%from  bodeplot
Bw=(w)/(2*pi)
samplingtime=1/(20*(Bw))



%%%%%%%% discrete second Method ZN optimized PID controller
clc
Ts=0.206;
ncomp=[0 30.332 39.4316 12.8153];  %%%% comp. TF 
dcomp= [0 0 1 0];
num= [0 0 0 1];                   %%%% plant TF
den= [1 6 5 0];
[nol, dol]=series (ncomp, dcomp, num, den);%%%%contin.OL
[ncl,dcl]=cloop(nol,dol);   %%%%%%%%% Closed loop contin.
printsys(nol,dol,'s')   %%%%   OL.C
[numd,dend]=c2dm(num,den,Ts,'tustin');  %%%% discrete Plant
[ncomd,dcomd]=c2dm(ncomp,dcomp,Ts,'tustin'); %%%% Discrete Comp.
printsys(numd,dend,'z') %%%% T.F. discrete Plant
printsys(ncomd,dcomd,'z') %%%% T.F. discrete comp
%%%%%%%%%%%%%%% discrete 
[nold,dold]=series(ncomd,dcomd,numd,dend); %%%%% OL. discrete
[ncld,dcld]=cloop(nold,dold); %%%%%%%%% CL. discrete
subplot(211),step(ncl,dcl);
subplot(212),dstep(ncld,dcld);
G=tf(ncl,dcl);
figure(3)
bode(G)
w=6.1; %%%%from  bodeplot
Bw=(w)/(2*pi)
samplingtime=1/(5*(Bw))
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Design of Digital Control Systems 
with the Deadbeat Response

The design objectives of control systems can be classified as follows:
• A large number of control systems are designed with the objective

that the responses of the systems should reach respective desired
values as quickly as possible. This class of control systems is
called minimum-time control systems, or time-optimal control
systems.

• With reference to the previous design methods, one of the design
objectives is to have a small maximum overshoot and a fast rise
time in the step response.

In digital control system we may design the digital compensator
Gc(z) to obtain a response (output) with a finite settling time. The
output response c(kT) which reaches the desired steady-state value in
a finite number of sampling intervals is called a deadbeat response.



Its aim is to bring the output to steady state in smallest number of 
time steps
◮ assuming, for simplicity, that the set point is a step input.

Deadbeat Controller



Therefore, the desired closed-loop transfer function is

and the controller achieving this response is given by:

It is interesting to note that deadbeat control is equivalent to placing all closed-
loop poles at z = 0.

These poles correspond to the fastest response possible.

Usually such requirement will come at the expense of large control signal.

Example 1:
The open-loop transfer function of a plant is given by:

Design a dead-beat digital controller for the system. Assume that T = 1 s.

The transfer function of the system with a ZOH is given by



From the z-transform tables

Hence, the dead-beat controller is given by:

For realizability, we must choose 

Choosing k = 3, we obtain the controller:

With this controller, the block diagram of the closed-loop is:
To analyze the designed
system performance, we
simulate the closed-loop
step response and the
control signal.



% Deadbeat control : D(z) = (z^3 - 0.904 z ^2) / (0.095 (z^3 - 1))
clear 
clc
Gp = tf (1 ,[10 1],'iodelay',2);
Gpd = c2d (Gp ,1);
Gc = tf ([1 -0.904 0 0] ,[0.095 0 0 -0.095] ,1) ;
Gcl =Gc* Gpd /(1+ Gc* Gpd );
t =0:1:10;
y= step (Gcl ,t)
figure(1) ; plot (t,y,'o'); hold on;
stairs (t,y); hold off
xlabel ('time , t'),
ylabel ('output , y'), 
axis ([0 10 0 1.2]) ,
title ('Step response ')
Gru =Gc /(1+ Gc* Gpd );
u= step (Gru ,t)
figure(2) ; plot (t,u,'o'); hold on; 
stairs (t,u); hold off
xlabel ('time , sec '), 
ylabel ('control signal , u'),
axis ([0 10 0 15]) ,
title (' Control signal ')
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As desired, the step response is unity after 3 seconds.
It is, however, important to realize that the response is correct only at the sampling
instants and the response can have an oscillatory behavior between samples.
We realize that the magnitude of the control signal is very large at the beginning ( 11).

The main drawback of dead-beat control is that it requires excessive (large) control 
efforts which may not be acceptable in practice.

) كبیرة(العیب الرئیسي للسیطرة على الضربات المیتة ھو أنھا تتطلب جھود تحكم مفرطة 
.والتي قد لا تكون مقبولة في الممارسة

نحن ندرك أن حجم إشارة التحكم كبیر جدًا في البداية
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Example 2: The block diagram of a digital control system, shown in Fig.(1), is
revisited. Again, the controlled process is represented by the transfer function

Try to find a controller with the objective to cancel all poles and the zeros of the 
process and then add a pole at z =1.

The pulse transfer function of the suggested digital controller be

The open-loop transfer function of the
compensated system now simply
becomes



The corresponding closed-loop transfer function is

Thus, for a unit step input, the output transform is

The output response c(kT) reaches the desired steady-state value in one sampling
period and stays at that value thereafter.

In reality, however, it must be kept in mind that the true judgement on the
performance should be based on the behavior of c(t) . In general, although c(kT)
may exhibit little or no overshoot, the actual response c(t) may have oscillations
between the sampling instants.
For the present system, since the sampling period T = 0.1sec is much smaller than
the time constants of the controlled process, it is expected that c(kT) gives a fairly
accurate description c(t) .

Thus, it is expected that the digital controller will produce a unit-step response that
reaches its steady-state value of 0.1 sec, and there should be little or no ripple in
between the sampling instants.
This type of response is referred to deadbeat response.
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Dahlin Controller

Dahlin controller is a modification of the deadbeat controller which produces an
exponential response that is smoother than deadbeat response.

The desired closed-loop response for step input looks like:

Hence, the desired closed-loop transfer function is:

As step input is assumed (which is constant
between samples), the desired closed-loop
transfer function in the z-domain will be:



Example
The open-loop transfer function of a plant is given by:

Design a Dahlin digital controller for the system to achieve a closed-loop time
constant of 5 s. Assume that T = 1 s.

From the previous example, this is found to be

The desired closed-loop transfer function, T(z).

As the desired closed-loop time constant, is 5 sec,

Therefore,



The Dahlin controller is thus given by:

For the controller to be realizable: degree of numerator must be degree of denominator

Choosing k = 2, the controller is, then, given by:



Using the designed controller, the closed-loop step response and control signal 
are simulated next.
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the response is exponential as designed but slower than deadbeat control.

What is the time delay? time constant?

the maximum control signal magnitude ( 1.9) is much smaller than the control signal 
obtained using a deadbeat controller ( 11). This is more acceptable in practice.
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Root Locus Based Controller 
Design Using MATLAB

In this lecture we will show how the MATLAB platform can be utilized to design a
controller using root locus technique.
Consider the closed loop discrete control system as shown in Figure 1. Design a
digital controller such that the closed loop system has zero steady state error to step
input with a reasonable dynamic performance. Velocity error constant kv of the
system should at least be 5.

Figure 1: A discrete time control system



The MATLAB script to find out Gh0Gp(z) is as follows.
>> s=tf(’s’);
>> Gp=10/((s+1)*(s+2));
>> GhGp=c2d(Gp,0.1,’zoh’);

Figure 2: Root locus of the uncompensated system

The root locus of the uncompensated system (without controller) is shown in Figure 2 for 
which the MATLAB command is

>> rlocus(GhGp)



Pole zero map of the uncompensated system is shown in Figure 3 which can be 
generated using the MATLAB command

>> pzplot(GhGp)

Figure 3: Pole zero map of the uncompensated 
system



The PI controller transfer function in z-domain when backward rectangular
integration is used.

The parameter Ki can be designed using the velocity error constant requirement.

Above condition will be satisfied if

Let us take Ki = 1. With Ki = 1, the characteristic equation becomes

or,



Now, we can plot the root locus of the compensated system with Kp as the variable 
parameter.

The MATLAB script to plot the root locus is as follows.

>> z=tf(’z’,0.1);
>> Gcomp=0.04528*(z-1)*(z+0.9048)/(z^3 - 2.724*z^2 + 2.469*z - 0.7367);
>> zero(Gcomp);
>> pole(Gcomp);
>> rlocus(Gcomp)

The zeros of the system are 1 and −0.9048 and the poles of the system are
1.0114±0.1663i and 0.7013 respectively. The root locus plot is shown in
Figure 4. It is clear from the figure that the system is stable for a very small
range of Kp.

Figure 4: Root locus of the system 
with PI controller



The stable portion of the root locus is zoomed in Figure 5. The figure shows that the 
stable range of Kp is 0.239 < Kp < 6.31. The best achievable overshoot is 45.5%, for 
Kp = 1, which is very high for any practical system.

Figure 5: Root locus of the system with PI controller



To improve the relative stability, we need to introduce D action.
Let us modify the controller to a PID controller for which the transfer function in
z-domain is given as below.

To satisfy velocity error constant,

If we assume 15% overshoot (corresponding to

and 2 sec settling time (corresponding to

the desired dominant poles can be calculated as,

Thus the closed loop poles in z-plane



The pole zero map including the poles of the PID controller is shown in Figure 6
where the red cross denotes the desired poles.

Figure 6: Pole zero map including poles of 
the PID controller



Let us denote the angle contribution starting from the zero to the right most pole as

respectively. The angles can be calculated as

Net angle contribution is

Angle deficiency is

Thus the two zeros of PID controller must provide an angle of 175.5o. 
Let us place the two zeros at the same location, zpid.

Since the required angle by individual zero is 87.75o, we can easily say that the 
zeros must lie on the left of the desired closed loop pole.



The controller is then written as

The root locus of the compensated system (with PID controller) is shown in Figure 7.

This figure shows that the desired closed loop pole corresponds to K = 4.33

Thus the required controller is

Figure 7: Root locus of 
compensated system



If we compare the above transfer function with the general PID controller
, Kp and Kd can be computed as follows.

Note that the above Ki satisfies the constraint One should keep in
mind that the design is based on second order dominant pole pair
approximation. But, in practice, there will be other poles and zeros of
the closed loop system which might not be insignificant compared to
the desired poles. Thus the actual overshoot of the system may differ
from the designed one.



% The MATLAB script to find out Gh0Gp(z) is as follows.
s=tf('s');
Gp=10/((s+1)*(s+2));
GhGp=c2d(Gp,0.1,'zoh')
% The root locus of the uncompensated system (without controller) is in fig(1)
figure(1)
rlocus(GhGp)
title('Uncompensated system ');
%%Pole zero map of the uncompensated system is shown in Figure 2
figure(2)
pzplot(GhGp)
%%%% The MATLAB script to plot the root locus is as follows.
z=tf('z',0.1);
Gcomp=0.04528*(z-1)*(z+0.9048)/(z^3 - 2.724*z^2 + 2.469*z - 0.7367);
zero(Gcomp);
pole(Gcomp);
figure(3)
rlocus(Gcomp)
figure(4)
rlocus(Gcomp)
axis([0.71   1.01   -0.8  0.78]);  
title('Root locus of the system with PI controller')
figure(5)
pzplot(Gcomp)
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Discrete Lead Compensator Design 
based on Root locus 

The lead compensator has the same purpose as the PD compensator:
to improve the transient response of the closed-loop system by
reshaping the root locus. The lead compensator consists of a zero
and a pole with the zero closer to the origin of the s plane than the
pole. The zero reshapes a portion of the root locus to achieve the
desired transient response. The pole is placed far enough to the left
that it does not have much influence of the portion influenced by the
zero. Generally Lead compensators are represented by following
transfer function

𝐺𝐺𝑐𝑐 𝑠𝑠 = 𝐾𝐾𝑐𝑐𝛼𝛼
𝑇𝑇𝑇𝑇+1
𝛼𝛼𝛼𝛼𝛼𝛼+1

,      (0 < 𝛼𝛼 < 1)

𝐺𝐺𝑐𝑐 𝑠𝑠 = 𝐾𝐾𝑐𝑐
𝑠𝑠+1𝑇𝑇
𝑠𝑠+ 1

𝛼𝛼𝛼𝛼
,      (0 < 𝛼𝛼 < 1)

or



Electronic Lead Compensator

•Following figure shows an electronic lead compensator using
operational amplifiers.

𝐸𝐸𝑜𝑜(𝑠𝑠)
𝐸𝐸𝑖𝑖(𝑠𝑠)

=
𝑅𝑅2𝑅𝑅4
𝑅𝑅1𝑅𝑅3

𝑅𝑅1𝐶𝐶1𝑠𝑠 + 1
𝑅𝑅2𝐶𝐶2𝑠𝑠 + 1



•This can be represented as

•Where,

•Then,

•Notice that

𝐸𝐸𝑜𝑜(𝑠𝑠)
𝐸𝐸𝑖𝑖(𝑠𝑠)

=
𝑅𝑅2𝑅𝑅4
𝑅𝑅1𝑅𝑅3

𝑅𝑅1𝐶𝐶1𝑠𝑠 + 1
𝑅𝑅2𝐶𝐶2𝑠𝑠 + 1

𝐸𝐸𝑜𝑜(𝑠𝑠)
𝐸𝐸𝑖𝑖(𝑠𝑠)

=
𝑅𝑅4𝐶𝐶1
𝑅𝑅3𝐶𝐶2

𝑠𝑠 + 1
𝑅𝑅1𝐶𝐶1

𝑠𝑠 + 1
𝑅𝑅2𝐶𝐶2

𝑇𝑇 = 𝑅𝑅1𝐶𝐶1 𝑎𝑎𝑎𝑎 = 𝑅𝑅2𝐶𝐶2 𝐾𝐾𝑐𝑐 =
𝑅𝑅4𝐶𝐶1
𝑅𝑅3𝐶𝐶2

𝐺𝐺𝑐𝑐 𝑠𝑠 = 𝐾𝐾𝑐𝑐
𝑠𝑠+1𝑇𝑇
𝑠𝑠+ 1

𝛼𝛼𝛼𝛼
,      (0 < 𝛼𝛼 < 1)

𝑅𝑅1𝐶𝐶1 > 𝑅𝑅2𝐶𝐶2

Pole-zero Configuration of Lead Compensator

𝑅𝑅1𝐶𝐶1 > 𝑅𝑅2𝐶𝐶2



5

Lead Compensation Techniques 
Based on the Root-Locus Approach

•From the performance specifications, determine the desired 
location for the dominant closed-loop poles.
•By drawing the root-locus plot of the uncompensated system 
ascertain whether or not the gain adjustment alone can yield the 
desired closed-loop poles. If not calculate the angle deficiency. 
This angle must be contributed by the lead compensator.
•If the compensator is required, place the zero of the phase lead 
network directly below the desired root location.
•Determine the pole location so that the total angle at the desired 
root location is 180o and therefore is in the compensated root 
locus.
•Assume the transfer function of the lead compensator.
•Determine the open-loop gain of the compensated system from 
the magnitude conditions.



Example
•Consider the position control system shown in following figure.

•It is desired to design an Electronic lead compensator Gc(s) so that
the dominant closed poles have the damping ratio 0.5 and
undamped natural frequency 3 rad/sec.

Draw the root Locus plot of the given system.
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• The closed loop transfer function of the given
system is:

• The closed loop poles are
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Step-1



Step-1

•Determine the characteristics of given system using root loci.

• The damping ratio of the closed-loop
poles is 0.158.

• The undamped natural frequency of
the closed-loop poles is 3.1623
rad/sec.

• Because the damping ratio is small,
this system will have a large
overshoot in the step response and
is not desirable.
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Step-2

• From the performance specifications, determine the desired
location for the dominant closed-loop poles.

• Desired performance Specifications are:
It is desired to have damping ratio 0.5 and undamped natural
frequency 3 rad/sec.
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Step-2

• Alternatively desired location of closed loop poles can
also be determined graphically
 Desired ωn= 3 rad/sec

 Desired damping ratio= 0.5

ζθ 1cos−=

°== − 60)5.0(cos 1θ

Desired 
Closed Loop 

Pole

°60



Step-3
•From the root-locus plot of the uncompensated system
ascertain whether or not the gain adjustment alone can yield
the desired closed loop poles.

Desired 
Closed 

Loop Pole



Step-3
•If not, calculate the angle deficiency.
•To calculate the angle of deficiency apply Angle Condition at desired
closed loop pole.

-1

5981.25.1 js ±−=
Desired Closed Loop Pole

-1

-2

-2

120o100.8o

°−°−°= 8.100120180dθ

°−= 89.40dθ



Step-3

•Alternatively angle of deficiency can be calculated as.

5981.25.1 js ±−=Where are desired closed loop poles

5981.25.1)1(
10180

js
d ss +−=+

∠+°=θ

5981.25.15981.25.1
)1(10180

jsjsd ss
+−=+−=

+∠−∠−∠+°=θ

°−°−°= 8.100120180dθ

°−= 89.40dθ



Step-4

• This angle must be contributed by the lead compensator if the
new root locus is to pass through the desired locations for the
dominant closed-loop poles.

• Note that the solution to such a problem is not unique. There
are infinitely many solutions.



Step-5

• Solution-1

• If we choose the zero
of the lead
compensator at s = -1
so that it will cancel
the plant pole at s =-1,
then the compensator
pole must be located
at s =-3.

°89.40

Solution-1



Step-5
•If static error constants are not specified, determine the
location of the pole and zero of the lead compensator so that
the lead compensator will contribute the necessary angle.

°89.40

Solution-1



Step-5
•The pole and zero of compensator are determined as

°89.40

𝐺𝐺𝑐𝑐 𝑠𝑠 = 𝐾𝐾𝑐𝑐
𝑠𝑠+1𝑇𝑇
𝑠𝑠+ 1

𝛼𝛼𝛼𝛼
= 𝐾𝐾𝑐𝑐

𝑠𝑠+1
𝑠𝑠+3

1
𝑇𝑇

= 1
yields

𝑇𝑇 = 1

1
𝛼𝛼𝛼𝛼

= 3
yields

𝛼𝛼 = 0.333

• The Value of 𝛼𝛼 can be
determined as

Solution-1



Step-6

°89.40

• The Value of Kc can be determined
using magnitude condition.

𝐺𝐺𝑐𝑐 𝑠𝑠 = 0.9
𝑠𝑠 + 1
𝑠𝑠 + 3

𝐾𝐾𝑐𝑐
(𝑠𝑠 + 1)
𝑠𝑠 + 3

10
𝑠𝑠(𝑠𝑠 + 1) 𝑠𝑠=−1.5+𝑗𝑗𝑗.5981

= 1

𝐾𝐾𝑐𝑐
10

𝑠𝑠(𝑠𝑠 + 3) 𝑠𝑠=−1.5+𝑗𝑗𝑗.5981
= 1

𝐾𝐾𝑐𝑐 =
𝑠𝑠(𝑠𝑠 + 3)

10 𝑠𝑠=−1.5+𝑗𝑗𝑗.5981
= 0.9

Solution-1



Final Design Check

•The open loop transfer function of the designed system
then becomes

•The closed loop transfer function of compensated system
becomes.

𝐺𝐺𝑐𝑐 𝑠𝑠 𝐺𝐺(𝑠𝑠) =
9

𝑠𝑠(𝑠𝑠 + 3)

𝐶𝐶(𝑠𝑠)
𝑅𝑅(𝑠𝑠)

=
9

𝑠𝑠2 + 3𝑠𝑠 + 9

Solution-1
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Final Design Check

•The static velocity error constant for original system is
obtained as follows.

•The steady state error is then calculated as

𝑒𝑒𝑠𝑠𝑠𝑠 =
1
𝐾𝐾𝑣𝑣

=
1

10
= 0.1

𝐾𝐾𝑣𝑣 = lim
𝑠𝑠→0

𝑠𝑠𝑠𝑠(𝑠𝑠)

𝐾𝐾𝑣𝑣 = lim
𝑠𝑠→0

𝑠𝑠
10

𝑠𝑠(𝑠𝑠 + 1)
= 10

Solution-1



•The static velocity error constant for the compensated
system can be calculated as

•The steady state error is then calculated as

𝑒𝑒𝑠𝑠𝑠𝑠 =
1
𝐾𝐾𝑣𝑣

=
1
3

= 0.333

𝐾𝐾𝑣𝑣 = lim
𝑠𝑠→0

𝑠𝑠𝐺𝐺𝑐𝑐 𝑠𝑠 𝐺𝐺(𝑠𝑠)

𝐾𝐾𝑣𝑣 = lim
𝑠𝑠→0

𝑠𝑠
9

𝑠𝑠(𝑠𝑠 + 3)
= 3
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