Engineering mechanics definition:

Engineering mechanics: It is the physical science that describes the state of
motion of bodies ( rest or motion ) under the action of the forces exerted on them. It
Is divided into two branches, as shown in the figure below.
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Fluid mechanics:

Is concerned with the behaviour of fluid at rest ( fluid static ) and in motion ( fluid
dynamic ) and the interaction of fluid with other fluids or solids at the boundaries.

Fluid:

Is a substance, might be liquid or gas, that deforms continuously ( flow ) when
subjected to a shear stress.

Solids & Liquids & Gases:
From Microscopic point of view

Solids: They are substances in which the forces of attraction between molecules are
large and the separation between the molecules is small.

Liquids: These are substances in which the forces of attraction between molecules
are smaller than the forces of attraction between molecules in solids, with
greater spacing between molecules.

Gases: They are substances in which the forces of attraction between molecules are
smaller than the forces of attraction between molecules in solids and
liquids, with greater spacing between the molecules in the solid and liquid
states.

From Fluid Mechanics Perspective
When shear stress is subjected to a substance:

e |f the substance deforms continuously ( flow ), it is a fluid.
e |f the substance experiences a small deformation ( 61 ) (strain), it is a solid.
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Fluid mechanics departments:

Fluid mechanics is divided into several categories:

Hydrodynamics:
Deals with the flow of incompressible fluids ( especially water ) at low speed
such as hydro power plants ( Dams ).

Aerodynamics:
Deals with the flow of compressible fluids ( especially air ) over bodies such
as aircrafts, rockets and cars.

Gas dynamics:

Deals with the flow of fluids ( especially gases ) that undergoes significant
density change such as the flow of natural gas through nozzles at high speed, for
example the flow of natural gases in to the combustion chamber of gas turbine.
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Property of Fluids:

Density (p ):

The ratio of the mass of a fluid to its volume ( kg/m?®). It characterizes a mass of
the fluid system.

_ Mass of fluid
P= Volume of fluid

The density of the water is 1000 kg/m3.

The variations in pressure and temperature generally have only a small effect on
the value of ( p ) for liquid. In contrast to liquid, the density of a gas is strongly
influenced by both pressure and temperature.
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Specific weight (y ):

The ratio of the weight of a fluid to its volume ( N/m?®). It characterizes the
weight of a fluid system.

weight of fluid

Volume of fluid
mxg pxXvXg

Y= =pxg

\% v

The specific weight of the water iS Yyater = Pwater X g = 1000 x 9.81 = 9810 N/m®,

Specific Gravity ( SG):

The specific gravity of a fluid is the ratio of fluid density to the density of
standard fluid ( Water for liquids & air for gases ).

_ density of fluid _ Pliquid _ Yliquid

density of water B Pwater  Ywater
This give us an indication about the heaviness of the Liquids

e |f SG > 1, The liquid is heavier than the water.
o |f SG <1, The liquid is lighter than the water.

Specific volume (v ):

Is defined as the volume of a fluid occupied by a unit mass. Thus, it is the
reciprocal of the density.
_ Volume of fluid 1 1

V- Mass of fluid density - p

Example (1) :

You have two liquids, Liquid ( A ) with a density of ( 0.9 g/ml ) and Liquid ( B)
with a density of ( 1.2 g/ml ). Which liquid is denser, and by how much?

Solution:
Liquid ( B ) is denser. The density difference is:
Density of Liquid ( B) - Density of Liquid (A )
=1.2-0.9=03g/ml



Example (2):

Calculate the specific weight of water at standard conditions ( p = 1000 kg/m?, g =
9.81 m/s?).

Solution:
Use the formula for specific weight:
vy=p *xg=(1000 kg/m3) x (9.81 m/s?) =9810 N/m3

So, the specific weight of water at standard conditions is ( 9810 N/m?3).

Example (3):
Calculate the specific gravity of a liquid with a density of ( 0.85 g/cm?®).
Solution:
Using the formula for specific gravity:
SG = ( Density of the Substance ) / ( Density of Water )

0.85
SG = T =0.85

So, the specific gravity of the liquid is (0.85).

Example (4):

If the specific gravity of a liquid is ( 1.2 ), what is its density in ( kg/m3 ) if the
density of water at ( 4°C ) is ( 1000 kg/m?)?

Solution:
Using the formula for specific gravity:
SG = ( Density of the Substance ) / ( Density of Water )
1.2 = ( Density of the Substance ) / 1000 kg/m?3
Density of the Substance = 1.2 x 1000 kg/m?3 = 1200 kg/m?3



Example (5):

( 200 ) litres of a certain oil weights ( 180 kg ). Calculate the specific weight,
specific gravity and specific volume of it. Is the liquid lighter or heavier than the
water? Why?

Solution:
v =200 litres m =180 kg
~m 180 3
P=Y =02 =900 kg/m

Y =pg=900 x 9.81 = 8829 N/m?

_ Pliquia _ 900 _
Pwater 1000 .

SG

v 200x1073
v —=—77 T—
m 180

The liquid is lighter than the water because SG < 1

=1.11 x 10° m? kg

Example (6):

Calculate the density, specific weight and weight of one liter of petrol of specific
gravity equals to (0.7 ).

Solution:
SG = Pliquid
Pwater
0.7 = Pliquid
1000

Pliquid = 0.7 x 1000 = 700 kg/m?
y=pxg=700 x 9.81 = 6867 N/m®

w

Y=3
W='\[V=6867><1><1O'3=6.867N



Compressibility and bulk modulus

Compressibility ( C ) shows how easily can the volume of a fluid change when the
pressure changes.

Bulk Modulus K:
A property that is commonly used to characterize compressibility. It is defined as
the ratio of pressure change to volumetric strain.

_ Pressure change AP
" Volumetric strain AV/V

The negative sign means that the increase in pressure will cause a decrease in
volume.
Compressibility is reciprocal of bulk modulus.

cC=2
K

For most purposes, liquids can be considered as incompressible fluids. For
example, it would require a pressure of ( 220 ) bar to compress a unit volume of
water by (1% ).

Example (7):

Determine the bulk modulus of elasticity of a fluid which is compressed in a cylinder
from a volume of ( 0.009 m?®) at ( 70 N/cm?) pressure to a volume of (0.0085 m?) at
(270 N/cm?) pressure. [Ans. 3.6 x 10° N/cm?]

Solution:

‘o AP
~ AV)V

AP =P —P,=270—-70 =200 N/cm?
AV =V -V, = 8500 — 9000 = — 500 cm?®
AV _ =500

vV 9000 =-0.055
= ar 200 _ 3600 N/cm?
~ AV/V  -0.055 cm



Ideal Gas Law

Gases are highly compressible in comparison to liquids, changes in gas volume
( and hence density ) can be directly related to changes in pressure and temperature
through the ideal gas equation:

PV =mRT or P =pRT ... (Ideal Gas Law)

P: Absolute pressure ( Pgauge + Patm )

T: Absolute temperature (T (K) =T (°C) + 273)
m: Mass

p: Density

R: Gas constant, (Air: 287 L)
Kg.K

Example (8):

A compressed air tank has a volume of ( 0.3 m*®). When the tank is filled with air
at a gage pressure of ( 0.2 MPa ), determine the density of the air and the weight of
air in the tank. Assume the temperature is ( 30 °C ) and the atmospheric pressure is
(101.3 kPa).

Solution:

P=pRT
(0.2 x 10°) + (101.3 x 10%) = p x 287 x (30 +273)
301300 = 86961 p
p = 3.46 kg/m?
m

p=

m=pv =346 x0.3=1.04 kg
w=mg=1.04x981=10.2N



Example (9):

A tire having a volume of ( 0.08 m?) contains air at a gage pressure of (2 ) bar and a
temperature of ( 30°C ). Determine the density, specific weight, specific volume and
the weight of the air contained in the tire.

Solution:
P=pRT
P : 3
_ P _ (200+101.3)x10 — 346 kg/m3
RT 287 X (30+273)
= o= p X g=346 x 9.81 = 33.94 N/m’
y= 3 o W=y x V=3394x0.08=27N
1 1
=—=——=0.289 m¥kg
p 3.46
Problems:

1- If a liquid has a specific gravity of ( 0.75), what is its density in g/cm3?

2- The density of a certain liquid is measured to be ( 0.8 g/cm?3 ). Calculate its
specific gravity with respect to water ( density of water = 1 g/cm?3).

3- The density of a certain liquid is measured to be ( 850 kg/m3 ). Calculate its
specific gravity with respect to water.

4- The density of water at standard conditions { usually ( 4°C or 39.2°F ) } is
approximately (1000 kg/m2 or 1 g/cm?3).

5- The specific weight of a certain liquid is ( 13 x 10° N/m?). Determine its
density and specific gravity.

6- A tire having a volume of ( 0.1 m®) contains air at a gage pressure of ( 4 bar )
and a temperature of ( 30 °C ) Determine the density of the air and the weight
of the air contained in the tire. Assume the atmospheric pressure is
(101.3 kPa).



Viscosity:

The properties of density and specific weight are measures of the “heaviness” of a
fluid. However, these properties are not enough to describe the behavior of the fluid.
For example, two fluids such as water and oil can have approximately the same value
of density but they behave differently when they flow. This is because they have
different viscosity values.

Viscosity: is the property of a fluid which offers resistance to shear of one layer of
fluid over another adjacent layer. Simply, it is fluid's resistance to flow.

To determine the viscosity, consider a hypothetical experiment in which a fluid is
placed between two very wide parallel plates as show below:

Vv
1 - / —
e A
———
(]
L
{ | /
2 L Fixad plate

Assumptions:

1. The bottom plate is rigidly fixed while the upper plate is free to move.
2. no-slip condition, i.e. fluid “sticks” to the solid boundaries.

A fluid at rest has no shearing forces. When the force ( P ) is applied to the upper
plate. Shear stresses are developed and the fluid is now in motion. Thus, the particles
of the fluid move relative to each other at different velocities and as follow:

e The fluid in contact with the bottom fixed plate has a zero velocity.
e The fluid in contact with the upper plate moves with the plate velocity (v ).

This means that the fluid between the two plates moves with velocity that vary
linearly as follow:

<le
1
o I<
c
1
<
I

v: plate velocity.
u: Fluid velocity.
b: Film Thickness.
y: distance between fluid layers.
Thus, the velocity gradient ( Rate of shearing stress )

du v

dy b
1



From the figure, we can conclude that the higher shear stress is on the point of the

du
higher fluid velocity. Thus the shear stress ( T ) and the velocity gradient ( d_y ) can be

related with a relationship:

du

‘C(xd—y
B du \Y4
“Hay THy

Newton Law of Viscosity

L : The viscosity of the liquid and it is highly affected by the temperature.

K water = 0.001 N—; =0.001 Pa.s =1 mPas
m

Viscosity varies from fluid to fluid and for a given fluid it varies with temperature.

Crude oil (60 °F)

Shearing stress, t

Water (60 °F)

Water (100 °F)

e ———

Rate of shearing strain, %



Example — 1 : —_—
As shown in the figure, certain oil I - : >

(u= 1.5 N.s/m?) is used for lubrication B,
purposes. The distance ( b ) between the [ [
plates is (6 mm ). what is the minimum force Y |,
(p) required to move the plate at ( 5.5 m/s).
knowing that the area of the upper plate is Y= { Fixed plate
(0.01 m?).
Solution:
_, du
T=H dy
v-0 5.5
T=pu——=15x — = 1375 N/m?
-0 6X10
P
=2 = P=tA=1375x0.01=13.75N

Example — 2 :
As shown in the figure, certain oil (p=0.8 }

N. S/m?) is used for lubrication purposes. The [

distance ( b ) between the plates is (3 mm ). An b

external force (p ) of ( 18 N ) is applied to the |

plate. Calculate the plate velocity knowing that

the area of the upper plate is (0.02 m?).

Vv
——
u
——
—
b
b

{ Fixed plate

Solution:
P 18 5
T = K=m=9OON/m
du
T = [,ld—y
u-—20
T=u - —>900=0.8X3X10_3
u=3375m/s



Example — 3 :

A moving plate of ( 0.05 mm ) distant
from a fixed plate moves at ( 1.2 m/s ) and
requires a shear stress of ( 2.2 N/m? ) to
maintain this speed. Find the viscosity of the ¥ _ss==ss=ccaaaaaaaaaae:
fluid between the plates. T e plate

Solution:

\% TXy 22Xx0.05%x1073
T=U— — = =
le H \% 1.2

=0.16 x 10° N.s/m?

Example — 4 :

The dynamic viscosity of an oil, used for
lubrication between a shaft and sleeve is ( 0.6 Pa.s).
The shaft is of diameter (0.4 m ) and rotates at ( 190
r.p.m ). Calculate the power lost due to shear stress

knowing that the sleeve length is ( 90 mm ) and Ewrrmm?mf:rj f
thickness of the oil film is ( 1.5 mm). 7% 90 mm SHAFT
SLEEVE
Solution:
e Y
TRy THY
rev 2w
Vo xr=N(——)x—xr
min°~ 60

27
v=190 x—x0.2=3.97 m/s
60

A% .97
= -_= -_— 88 2
TEpy 0.6 x Tex10-3 1588 N/m

Fot=TA=TtnDL
Fios = 1588 X (7t x 0.4 x 0.09) = 179.5 N
P|05t = F|05t XV = 1795 X 397 = 712 W
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Example - 5:

Lt !..r,r.ﬂ:&g
The dynamic viscosity of an oil, used for o - - 4§
lubrication between a shaft and sleeve is ( 0.7 Pa.s). "ﬂ

The sleeve inner diameter is ( 0.55 m ) and the shaft grerrarrarraTieTizg §
is of diameter ( 0.5 m ) and rotates at ( 200 r.p.m ). Rl 4 SHAFT

Calculate the power lost due to shear stress knowing srrgvE
that the sleeve length is ( 100 mm).

Solution:
du \Y
T = _— = _
Hay “Hp
rev 27
V:(,)xr:N( . )><—><r
min 60

2
v = 200 x £ x 0.25 = 5.24 m/s

0.025
Foss=TA=1tn DL

Fiost = 146.6 X (1 x 0.5 x 0.1) = 23.03 N
Plost = Flost X Vv =23.03 x 5.24 =120.67 W

T=U % =0.7 x = 146.6 N/m?

Example — 6 :

Calculate the dynamic viscosity of an oil, which
is used for lubrication between a square plate of size
(0.8 m x 0.8 m) and an inclined plane with angle of
inclination ( 30° ) as shown in the figure. The wight
of the square plate is ( 300 N ) and it slides down the
inclined plane with a uniform velocity of (0.3 m/s).
The thickness of the oil filmis ( 1.5 mm).

Solution:

F 300cos30
T=—=————=234.375 N/m?
A 0.8 X 0.8

\%
Ty

234.375 = 1 m

=200 pn

234.375
200

w= =1.18 Pa.s



Example — 7 :

A (15 cm) diameter vertical cylinder rotates concentrically inside another cylinder
of diameter ( 15.1 cm ). Both cylinders are ( 25 cm ) high. The space between the
cylinders is filled with a liquid whose viscosity is unknown. If a torque of ( 12 N.m)
Is required to rotate the inner cylinder at ( 100 r.p.m. ), determine the viscosity of the
fluid.

Solution:
T= u % — u% T Diameter = 15.1 cm
y Diameter = 15 cm
rev 2T
Vo Xr=N(——)x—xr _ |
) min 60
T
v =100 x 5 x 0.075=0.785 m/s K
T=Fxr -

T 12
=— = =160 N
r 0.075
F F 160
T=—= = = 1359 N/m2
A mDL 1X0.15%0.25
v _Txb _ 1359%0.0005 _ o,
TRy - BT T T gy Y



Viscosity & Temperature:

The viscosity of liquids decreases with the increase of temperature while the
viscosity of gases increases with the temperature increase.

This difference in the effect of temperature on the viscosity of liquids and gases can
again be traced back to the difference in molecular Structure.

The liquid molecules are closely spaced, with
strong cohesive forces between molecules. The PR
resistance to relative motion between adjacent =@ } &
layers of fluid ( viscosity ) is related to these o
intermolecular forces. As the temperature ?i@
increases, these cohesive forces are reduced and i
hence result in reduction in viscosity.

In gases, the molecules are widely spaced and
intermolecular forces negligible. In this case
resistance to relative motion arises due to the

exchange of momentum of gas molecules between ’ ’ ¢ | A
adjacent layers. With the increase in temperature, ! Moleuls
molecular momentum transfer increases and hence f } T } T } /

Viscosity increases.
Molecular momentum transfer: is the drag forces
between the molecules.



Newtonian and non-Newtonian fluids:

e Newtonian Fluids:

The shearing stress is linearly related to the t
velocity gradient. Fortunately, most common
fluids, both liquids and gases are Newtonian.

e Non-Newtonian Fluids:

The shearing stress is not linearly related to
the velocity gradient.

0 dwidy

Viscosity Grade ( Multi — Grade Oil ):

In most vehicles, the temperature range the oil is exposed to can be wide, ranging
from cold temperatures in the winter before the vehicle is started up to hot operating
temperatures when the vehicle is fully warmed up. Thus, the oil will have high
viscosity when cold and a lower viscosity at the engine's operating temperature.

The difference in viscosities is too large between the extremes of temperature. To
bring the difference in viscosities closer together, special polymer additives called
viscosity index improvers ( VIIs ) are added to the oil. These additives are used to
make the oil a multi-grade oil.

The Society of Automotive Engineering ( SAE ) designation for multi-grade oils
includes two viscosity grades. For example, ( 10W - 40 ) designates a common multi-
grade oil. The first number ( 10 W) represents oil's viscosity at cold temperature and
the second number ( 40 ) describes its viscosity at ( 100 °C ). Note that both numbers
are grades and not viscosity values. The viscosity value equivalent to each grade is as
follow:

SAE 10 = 65 m Pa. sec
SAE 40 = 320 m Pa. sec



Fluid Static:

The fluid is either at rest or moving in such a manner so that there is no relative
motion between adjacent particles. In both cases, there will be no shearing stress in
the fluid and the only forces that develop on the surfaces of the particles will be due to
the pressure.

Pascal’s Law ( Pressure at a Point ):

‘The pressure acting on a point in a fluid at rest is the same in all directions’.
To prove that, consider a small triangular slice of fluid within a fluid mass.

Since the fluid at rest ( there are no shearing stresses ), the only external forces
acting on the slice are due to the pressure ( Py, P; and Ps ) and the weight (W ).

Applying Newton’s 2" law of motion (F =m.a ) in the (y ) and ( z ) directions
respectively:

>Fy=may = Pydxd;—Psdxdssind =pvay
_ 8x 8y 8
PySXSZ—PSBXéSssmH:pTay
0z = ds Sin@
8y Ox 65 sind
2

Py 6)( 65 Slne— Ps 8X 85 Slne - p



ZFz:m.az — P26x6y—Ps6x85C089—YV:pvaz
8y 8y 8,
2

P28x8y—Ps6x6sC039 :(paz""}/)

dy = 0s COSH
6, 64 65 cosd

PZ SXSS coSH— Ps 8)( 83 cosé@ :(paz+y)

Since we are really interested in what is happening at a point, therefore
(0x Oy 6, ) are really small and can be considered zero.

Eq. (1) becomes: Py—Ps=0 = Py = Ps
Eq. (2) becomes: P,—Ps=0 = P, =Ps
Then Py=P;=Ps

The angle was arbitrarily chosen so we can conclude that the pressure at a point in
a fluid at rest is independent of direction as long as there are no shearing stresses
present.



Hydrostatic Pressure Law:

To answer the question of how the pressure changes from point to point, consider
a rectangular element of fluid as follow:

Op 8z
[p +522]5 6
Z
Op 8y !
[pa_y?]ﬁxgz* i " 6z 5
K Op 8y
A pr g Y18,
S AL v8.8,8
By
apﬁz
k [ 7@?]6x6y
] y

The pressure at the center of the element is ( P ), then the average pressure on the
various faces can be expressed in Taylor series expansion as shown above.

The resultant surface force in the (y ) direction is:

8p 6p

Fy=[p- ]5x oz—[p ]3x32

op 8y op Sy

DSXSZ__Y_SXSZ_ 6)(82—_ 6)(62

op
Fy = — g 5x By 62
Similarly, for the ( x ) and ( z ) directions the resultant surface forces are:

op op
sz—a_xﬁxsySZ ) Fz=—58x8y82



The resultant surface force acting on the element can be expressed in vector form as
Fr=Fxi + Fyj + Fzk

0 . 0 i 0
FR=_[8_§6x6y62]|—[£8x8y82]j—[ 8_:6x6y62]k

__ %, b, 0P
FR——[aX |+ayj+azk]8x8y82
Also, the weight of the element can be expressed in vector form as:
W =— Y 8x 8y 62

Newton’s second law, applied to the fluid element, can be expressed as:
> F=m.a

op. Op. O
—[a_z|+£J+a_l:z)k]6x6y62—ygx8y82k:p6x6y82a
op. op. 9P _ : _
—[axl+ayj+azk]—yk—pa For a fluid at rest,a =0
P, 0P B L
_[8X +6yj+8zk]_ky
P, 0P B
[8X|+6yj+8zk]__ky
[8X|+ay1+azk]—0|+01—ky
P _ P _ P _
8x_0 ’ 8y_0 ’ 82__y

These equations show that the pressure does not depend on ( x ) or (y ) directions.
Thus, when we move from point to point in a horizontal plane, the pressure does not
change and it depends only on ( z) direction.



Since (p) depends only on ( z) direction, the equation can be written as an ordinary
differential equation.

dp
i Y  This is the fundamental equation for fluids at rest that can be used to
determine how pressure changes with elevation:
dp= —vydz
P1 71
Jpo dp = =V [, dz Pa
B I — L —
b= P=-vZ — Zy)
Pp=PF-y(=h—-0) )
Pl - PO + Yh
P, can be taken as zero (open to atmosphere) 3P,
P, = yh= pgh
Example:

Calculate the pressure due to a column of (0.3) of :

a) A water.
b) An oil of specific gravity (0.8).
c) A mercury of specific gravity (13.6).

Take density of water (1000 kg/m?).

Solution:
a) Forwater: p =1000 kg/m?

P = pgh = 1000 x 9.81 x 0.3 = 2943 N/m?
b) For oil of specific gravity (0.8) :

Example:



Example:

I
An open tank contains water upto a depthof (2 m) — Em=m=== ——

and above it an oil of specific gravity of (0.9) foradepth 1.0 EZEZGEEZEZ
of (1 m). Find the pressure intensity: T [ mA--
a) At the interface of the two liquids. | F33zzzzzo:-
b) The bottom of the tank. 20 L= WATERZZZ-
| EIEEEEE
Solution:
SG = Poil

Pwater

Poil = SG X Puater = 0.9 x 1000 = 900 kg/m?

a) At the interface of the two liquids.
P1 = poit ghy =900 x 9.81 x 1 = 8892 N/m?
b) The bottom of the tank.

P2 = P1 + pwater gh2 = 8892 + (1000 x 9.81 x 2) = 28500 Pa

Example:

Because of a leak in a buried gasoline Open
storage tank, water has seeped in to the
depth. If the specific gravity of the

AV
gasolineis (0.68). Determine the gauge
pressure at the gasoline-water interface
(1) and at the bottom of the tank (2).

Gasoline

(1) — B==mm——hs e
Solution: @ —= e
SG = Ygasoline
Ywater

'Ygasoline = 068 X9810 = 66708 N/m3
P]_ = 'Ygaso“ne h]_ = 6670.8 X 6 = 40024.8 Pa.
P2 = P1 + Ywater N2 = 40024.8 + (9810 x 1) = 49834.8 Pa

‘

| 3 ‘
— -
3



Application on Hydrostatic Pressure Law:

The equality of pressures at same elevations throughout a system is important for
the operation of hydraulic jacks, lifts and presses.

F-_:p,ﬁ,._ F?:pf‘.?

Plunger 1 Ram

The pressure ( p ) acting on the faces of both pistons is the same. Therefore, the
Ram area ( A, ) can be made much larger than Plunger area ( A; ) and hence a large
mechanical advantage can be developed.

P1=P2
F, B
Ay A

That is, a small force applied at the smaller piston can be used to develop a large
force at the larger piston.

Example:

A hydraulic press has a ram of ( 20 cm ) diameter and a plunger of ( 3 cm ) diameter.
It is used for lifting a weight of ( 10 KN ). Find the force required at the plunger.

Solution:
D,.2 0.2)2
Ar:TcTr:n( ) = 0.0314 m?
D,2 0.03)2
Ap=TC%=TE( )"~ 0.0007 m?
_ A _Ap
F2—A1 F]_ y Fp—Ar Fr
0.0007
0= 0.0314 x 10000 =225 N



Example:

A hydraulic press has a ram of ( 30 cm ) 7
diameter and a plunger of ( 4.5 cm ) diameter.
Find the wight lifted by the hydraulic press when

the force applied at the plunger is ( 500 N ).

Solution:

Diameter of ram, D=30cm=0.3m
Diameter of plunger, d=4.5cm =0.045m
Force on plunger, F=500N

nD2 7 (0.3)32

A = = = 0.07068 m?
4 4
n Dp? 0.045)2
Ap= — = z(0045)” - 0.00159 m?
A A A
Fo=—F , F=—Zw =  Ww=f—*
0.07068
W =500 x = 22226 N = 22.2 kN
0.00159



Pressure (Gauge, Absolute and Atmospheric):
Pressure:
Is defined as the normal force per unit area. The ( SI) unit is ( N/m?) or Pascal

(Pa).

Force

" Area over which the force is applied

Gauge pressure:
Is the pressure measured by a manometer relative to the atmospheric pressure.

Atmospheric pressure:
Is the pressure caused by the weight of the atmosphere ( air).

Absolute pressure:
Is the pressure obtained relative to a perfect vacuum condition.

P, absolute
@ Positive pressure
Pagaugs (positive) ' Negative pressure|
Slandard atmosphere

Py gauge {negalive)
101.3 k Pa; {vacuum)
760 ram Hg; @ — M
1.013 bar

Py absoluie

Zero
absolute pressure P = 0 absolute (Perfect vacuum)

(PA)absolute = Patm + (PA)gauge

(PB)absolute = Patm — (PB)Vacuum



Perfect

The measurement of the Atmospheric Pressure is usually y,cum
accomplished with a mercury barometer. A tube is initially filled
with mercury and then turned upside down in a container of
mercury. The column of mercury will come to an equilibrium
position ( @ 760 mm ) where the weight of the fluid balances :
the force due to the atmospheric pressure.

> )

Paim

lHEHJ, HH

Mercury

Measurement of Pressure:

Manometers:

Is a standard technique for measuring pressure which involves the use of liquid
columns in vertical or inclined tubes. The common types of manometers are:
Piezometer tube.

U-tube manometer.
Differential manometer.
Inclined-tube manometer.

Piezometer Tube Manometer:

Open
The simplest type of manometer. It consists of a F

vertical tube opened at the top and attached to the _T

container in which the pressure is desired to be i

measured. i '
/
Pa=Pi=yih; ( N,

\ A4 S (1)

AN

Advantages and Disadvantages:
1. Very simple and accurate.
2. Measure liquid pressure only.
3. Only suitable if the pressure in the container is greater than atmospheric
pressure.
4. Pressure must be relatively small so that the height of the column is reasonable.



U-Tube Manometer:

To overcome the difficulties in piezometer tube, Cpen
U-tube manometer is used which includes an
additional liquid ( gauge fluid ).

T
” i
Pa+yih1—1v2h2=0 (See the note below) CJF} — @ i,
Iy
Pa =2z =yih - L e i @

T2 .
(gage
fluid)
| N—
e vy

F

Note: Pressure increases ( + ) as we move downward and decreases ( - ) as we move
upward.

Advantages:

e Measure gas and liquid pressures.

e Adjustable column height for different pressure ranges.
How do we adjust the measurement range?

If the pressure ( Pa ) is large, then a heavy gauge fluid ( such as mercury ) can be
used and a reasonable column height ( not too long ) can still be maintained.
Alternatively, if the pressure ( Pa ) is small, a lighter gage fluid ( such as water ) can
be used so that a relatively large column height ( readable ) can be achieved.

Differential manometer:

It is basically a U-type manometer connected
from Dboth sides with a gauge liquid in
between.

i

Pa+ y1h1—y2ho— y3hs = Pg —F

Pa—Pg = y2h2+ y3hz—yih;



Inclined-tube manometer

The inclined-tube manometer is often used to measure small differences in gas
pressures.

Pa+ Ylhl— Y2 L,sin@—- Y3h3 = Pg

PA— PB =72 L2 sin@+ ’thg— Ylhl

The contributions of the gas columns (y:h; & yshs) can be neglected which gives:

Pp—Pp
L2=

Y>Siné

For a given pressure difference, the sensitivity can be changed by adjusting the
manometer’s angle. Thus, for relatively small angles the differential reading along the
inclined tube (L, ) can be large even for small pressure differences.



Example:

The pressure at point ( B ) is ( 20 kPa ) greater than
at point ( A ). Determine the specific weight of the
manometer fluid.

Solution:
Pa—(vax2)+(ymx2)+(ysx2)=Pg
Pe—Pa=—(yax2)+(Ym*x2)+(yex2)
Pe—Pa=27vm+2(Y8—7Ya)

Ya

SGA =
Ywater
Ya= SGa . Ywater = 1.2 x 9810 = 11772 N/m?®

YB = ps X g = 1500 x 9.81 = 14715 N/m?
Pe—PAa=2Vm+2(Yy8—7A)

20000 = 2 v + 2( 14715 - 11772)
20000 = 2 vy, + 5886

2 Ym = 20000 — 5886 = 14114

Ym = 7057 N/m3

Manometer fluid -,
—

i

A2



. Pressure
Example: _ _ _ s Poi
A closed tank contains compressed air and oil y,

( SG = 0.9 ). A U-tube manometer using mercury ”’//
( SG = 13.6) is connected to the tank. For column ' 1
heights:
( h, =140 cm ), ol
(hy=24cm),
(hs3=36cm),

determine the pressure reading of the gage.

Solution:
Pair + Yoit h1 + Yoitho— Yme h3= 0

Pair = Yme N3 — Yoit 1 — Yoir 2

Yoil = SGoil . Ywater = 0.9 x 9810 = 8829 N/m?

Yme = SGme . Ywater = 13.6 x 9810 = 133416 N/m?

Pair = (133416 x 0.36 ) — (8829 x 1.4 ) — (8829 x 0.24)

= 48029.76 — 12360.6 — 2118.96 = 33550 Pa = 33.55 kPa



Example:

Determine the value of the pressure
drop ( AP ) created by the nozzle shown.
For:

(y1=9.8 KN/m?),

(v2 = 15.6 KN/m?),

(hi=1m) %j ! - Y
(h,=0.5m). ™S )
Flow nozzle
Solution:

Pa—vy1hi—vy2ha+v1(hi+hy)=Pg
Pa—vy1hi—vy2ha+vyihi+y1h, =Pg
Pa—7v2h2+y1hy =Pg

Pat ho(y1—7v2)=Ps
Pa—Ps=ha(y1—-72)

AP=05(15.6-9.8 )=2.9kPa



Pressure Sensor:

Although manometers are widely used, they have some disadvantages:

e They are not well suited for measuring very high pressures.

¢ Not suitable for pressures that are changing rapidly with time.

e They require the measurement of one or more column heights which can be
time consuming.

To overcome these problems, other types of Elastic Structure
pressure measuring instruments have been (sensing elemeny) ~ 11ansducer
developed. Most of these instruments make use
of the idea that when a pressure acts on an _/ ¥

elastic structure, the structure will deform and
this deformation can be related to the magnitude
of the pressure.

Pressure

The most familiar device is the
Bourdon Tube Pressure Sensor. The  ourdon Cube
essential mechanical element in this
devise is the hollow, elastic curved
tube Bourdon tube which is connected
to the pressure source. As the pressure
within the tube increases the tube
tends to straighten. This deformation  Fressuetine
can be translated into an electrical
output using linear variable differential
transformer (LVDT). Sm{g et

LVDT Qutput

Core

Mounting

block \L

[

A A



Because of the relatively high stiffness of
the Bourdon tube, it cannot respond to rapid
changes in pressure. To overcome this
difficulty, the sensing element is replaced by a
thin, elastic diaphragm. Also, a strain gauge is
attached on the surface of the diaphragm. As
the pressure changes, the diaphragm deflects
and this deflection can be sensed by strain gage
and converted into electrical signal.

R;
R[_ _R~3
R

Cross-
Section

Front-
Section



Hydrostatic Force on Submerged Surfaces:

When a surface is submerged ( L) in a fluid, forces develop perpendicularly to
the surface of contact. The calculations of these forces are important in the design of

storage tanks, dams, gates, etc.

Force on Horizontal Surfaces:

In horizontal surfaces, the pressure is constant and uniformly distributed.
Therefore, the magnitude of the resultant force is simply equal to:

Fr=P.A=vh.A

Location:

It acts through the centroid of the surface area.

Force on Vertical Surfaces:

Free surface

| PPN v
| seecfcwemtey
h Fp
eI RN NET
P = Patm AN

In horizontal surfaces, the pressure will vary linearly with depth Therefore, the
magnitude of the resultant force can be calculated from the average pressure:

P - Pwi
FR - Pav-A - Max.2 Min. A
P h
Fr = Max. A= Y_A
2 2
Location:

It acts through the centroid of the area
formed by the pressure on the surface
( Center of Pressure )

Free surface

Specific weight =y

P = Paim



Force on Inclined Surfaces:

In more general case where the surface is inclined, the pressure will also vary
linearly with depth. To calculate the magnitude and location of the resultant force,
we follow the following procedure:

Free surface \q 0

Location of
resultant force
. (center of pressure, CP)

e The x-y coordinate system is defined in the origin ( O ) and y is directed along
the surface passing through the centroid.
e The entire surface is divided into a number of small parallel strips ( dA ). The
force on small strip ( dF ) is calculated as follow:
dF =yh dA

e The magnitude of the resultant force can be found by summing these small
forces over the entire surface:
Fr=J, YhdA=[, yysind dA
Where: (h =y sind) For constant (y) and ( 8).
Fr=ysind [, ydA



e The integral Part is the first moment of the area and it is equal to ( A.y.).
Thus, the resultant force can be written as:
FrR=7AYycsind
hc =y sind
FR = 'Y hc A

h. : the vertical distance from the fluid surface to the centroid of the area.

The location ( Cp ) of the resultant force can be determined by taking moments
around the origin (O) in the X and Y directions:

FRyR:fA y dF
dF =yhdA
h=ysing
dF =yysingdA

yAYycsing yr= [, v sind y* dA

Jy Y?dA
YR= T A
yc A

The integral part is the second moment of area (lx) with respect to the free surface
(x —axis).

Yr =

Ix

ycA

The parallel axis theorem can be used to determine (l).

Ix = Ixc + Ay02

Where (lx) is the second moment of area with respect to the centroid axis.

Ix
= =+
YR ycA Ye

The ( x ) coordinate (xg) can be determined in a similar manner by summing
moments about the (y ) axis.

|
e = Xyc
ycA

+ X



The geometric properties ( area, Centroid & moment of area ) of some common
shapes are given below:

b y b A =ba Y R
1 =T

a IXC = b&3 4
! : . 12 3 X el %

: IyC_Eab |xyc= 0

Ixye =0
T A= Y A= nR?
| l X bza3 - T2

L “l 4 IXC = _: iR Ixc = 01098R4
oed ‘F P2 o8 R==R={ 5& 1. =0.3927R*

3 b | Ixyczg(b—Zd) Ixyc:()




Example 1:
A ( 4 m ) diameter circular gate is

located in the inclined ( 60°) wall of a
large reservoir containing water. The gate
IS mounted on a shaft along its horizontal
diameter. For a water depth of ( 10 m )
above the shaft determine:

1. The magnitude and location of the
resultant force exerted on the gate
by the water.

2. The moment that would have to be
applied to the shaft to open the gate.

Solution: Center of
pressure
FR =y hc A . ,UT
FR:9810><10><(Z><42) -/
=1.23 MN
To locate the point ( Cp ) through which
(Fr) acts
_ Ixc
YR = YCf Y. .
e = o =2 = 15 566 m
o "
Yo=———=1155m
A=nr2=n(2)?=12.566 m?
- Jxe o 12566 +11.55=11.64 m
YR=5 A T YT (11.55)(12.566) YT

Mec = Fr % (Yr—Ye) = 1.23 x (11.64 — 11.55) = 0.11 MN.m



Example 2:

An inclined rectangular gate ( AB )
( 1.2 m ) height and ( 3.5 m ) width is
installed to control the discharge of water.
The end ( A ) is hinged. Determine the
force ( P ) normal to the gate applied at
(B) to open it.

Solution:
FR =y hc A
A=12x35=42m?
Fr=9810 x 3 x 4.2 =123606 N

Ixc
= +
YR ycA Ye

= i 3= i 3 - 4
e = —ba® = — (3.5)(1.2)* = 0.504 m

3
= =bm
Ye sin 30 6

Ixc 0.504

Ye =

+
Yc A (6)(4.2)

YR = +6=6.02m
YMa=0
Px12=Fgrxd
Px1.2=123606 %[ (Yyr—Y:)+0.6]
Px1.2=123606 x[(6.02—-6)+0.6]
P=63863 N

1.2m



Elementary Fluid Dynamics

As was discussed earlier, Fluid Static is the situations where the fluid is considered to be
stationary (Rest). In contrast, Fluid Dynamics studies and analyses fluid in motion (Flow)
along a streamline.

Flow Classification

The flow of the fluid particles can be classified as follow:

— Viscous:. is a flow with a considerable amount of viscosity (Real Flow p # 0).

Flow —
— Non-viscous. is a flow of inviscid fluid (Ideal Flow p = 0).
— Laminar Flow. each particle of the fluid follows a smooth path, usually at low
Flow — velocities, which never interfere with one another.
| Turbulent Flow. Turbulent .
Uniform: at a given instant, the fluid particles have the same velocity at every
Flow point along the streamline.
Non-uniform. at a given instant, velocity is not the same at every point along
the streamline.
Steaay. at a given point, the velocity may differ from other points along the
streamline but DO NOT change with time.
Flow

Unsteady. at a given point along the streamline, the conditions change with time.

Combining the last two types above, we can classify any flow as:

e Steady uniform flow.
e Steady non-uniform flow.
e Unsteady uniform flow.

e Unsteady non-uniform flow.



Equations of motion

As a fluid particle moves from one location to another along the streamline, it usually
experiences acceleration and deceleration. This dynamic behaviour of the fluid flow is
analysed using several equations of motion such as:

1. Newton 2" [aw of motion

According to Newton's second law of motion, the net force Fsacting on a fluid element in
the streamline direction (S) is equal to mass m of the fluid element multiplied by the
acceleration in the S-direction. Mathematically:

FS= m. ag

In fluid flow, the following forces are present: r----""S';;am\'me
fr__.--"'-'. -.--.______.--"-_ -

. Fs
e Fg, gravity force. a (2)
G, gravity torce A P
o Fp, pressure force. A T—Fluid particle
|+~ m
T

e Fv, force due to viscosity. VD

e Fc, force due to compressibility.

e Fg, force due to turbulence.

Thus, Fs = Fc+Fp+Fv+Fct+Fr
2. Euler equation of motion
The following assumptions are made in the derivation of Euler’s equation:

e The flow is ideal, i.e., viscosity is zero (Fv=0).
e The flow is steady, i.e., velocity change is zero.
e The flow is incompressible (Fc =0).

e The flow is non-rotational (Fr=0).
Therefore, only forces due to gravity and pressure are taken into consideration.

Fs=Fc+Fp



Consider a fluid element of cross-section .
&ndu and length 8S along the streamline (S). & kS
500> e
(1Y gs\ ose?
’d

aw
The forces acting on the element are:

1. Pressure force ( p 8ndu ) in the direction of flow.
2. Pressure force (P + g—fds) Sdndu opposite to the direction of flow.

3. Weight of element dW = specific weight x volume = pg dnéuds.
2. Fs=
Pénéu — (P + Z—IS)SS) dndu - pg &nduds SinO = p Snduds . ag
The acceleration ( ay) is the rate change of velocity V(s) in the (S) direction, Therefore

dv(s)
AT Th

The velocity may change from point to point, Thus

_ avds wher E _
A= Gsar eV
ag=vZ
S 7 os
P : av L
— ?8n8u85 - pg 6nduds SinO@ = p 6ndusbs. Vs dividing by ( p dnduds )
JopP . av . _ dz
o T g Sin® = P sin® = " as "
oP dz ov _ ... ) ©
E+g£ +V£—O dividing by (g)
1 oP V ov dz . .
2 o5 s o5 Tas 0 Euler equation of motion.



3. Bernoulli equation

Bernoulli equations can be obtained by rearranging and integrating Euler equation derived

above and as follow:

1 dP V dv dz Multiplying by (ds)

—=0
pg ds * g ds + ds
dp + vV dv +dz=0 By integration
P8 8
P \'& .
+ + Z = constant along the streamline
Pg 28

Therefore, for any two points (1&2) on a streamline in steady, inviscid and incompressible

flow the Bernoulli equation can be applied in the form:

P, \'4 P, \'4 . . .
+ +Z,= + + Z, |Bernoulli equation of motion where:

Pg 2g Pg 2g

P
E Is the pressure energy per unit weight of the fluid or pressure head

2

28 Is the kinetic energy per unit weight of the fluid or kinetic head

Z Isthe potential energy of the fluid or potential head



Example:

A large tank, opened to the atmosphere, is filled
with water to a height of ( 5m ). A tab near to the
bottom is opened and water flows from the smooth
and rounded outlet. Determine the water velocity at
the outlet.

Solution;
P V2 P \'Z
Ly = —— ——+ 7,
pg 2g pPg 2g

Both (1&2) are in contact with the atmosphere,
P1=P;=0 Also, Z;=5m and Z,=0.
The tank is large, ( v1) is approximately zero.

v3
2g

1=

VZ
5= 2; - V,= . /10g=9.9m/s




Flow Rate:
It is @ measure at which fluid is flowing per unit time.

Flow Rate

)
| \

Mass flow rate ( ) is the Volume flow rate ( Q ) is the
mass of fluid flowing per unit volume of fluid flowing per
time unit time
. _ mass volume
= _ 3
ime L K&/s) Q=——"7 (m's)

For example, an empty bucket weighs ( 2 kg ). After ( 7 ) seconds of collecting water
the bucket weighs ( 8 kg ), then:

mass of fluid in bucket 8

-2
= \ = = = . k
Mass flow rate = m time taken to collect the fluid 7 0.857 g/s

Continuity Equation:

According to the conservation of mass, matter cannot be created or destroyed
but it can change to different forms. Thus:

Mass entering per unit time = Mass leaving per unit time

dSl ds 2
I’hout
l’h'
n Y Flow Vo
Qin _1" _— -_— Qout
A
A,




p1A1Vi = p2A,V,

For incompressible fluid, p1 = P2
A1Vi=AV,=Q volume flow rate
Qin = Qout
m = pQ

Similarly, in the case of junctions or flow dividers, as shown below:

Qi=Q2+Qs

A1V =AV, + AsV; \
3




Example (1):

The pipe has a diameter of (1.2m)at(A),(1.5m) at
(B)and (0.8 m)at ( C). The discharge at (C ) is (Qa/3)
and the velocities at (A ) & ( D ) are ( 3.5 m /s ) and
(2.5m/s)respectively. If the flow 1s steady incompressible,
Determine the:

1. Discharge at ( A).
2. The velocityat (B) & (C).
3. The diameter at (D).

Solution:

QA=AAVA=(§x1.22)x3.5

Qa =3.95m%s
Qa=Qs=As Vs

Ve = 2_: = gi'iz =223 m/s
Qe=2=22=13m
Ve = %Z = gilz.zsz = 2.62m/s

Qp=Qg—Qc=3.95-132=2.63m%s

A

\




Application on Bernoulli Equation:

a- Free jets:

Bernoulli’s equation can be applied to the flow of a liquid from large tanks, as is
shown:

Applying Bernoulli’s equation between point (1 & 2 ):

P \'&; P V2
1 + 1 + Zl — 2 + 2 + 22
pPg 2g pg 2g

Both streamlines ( 1 & 2 ) in contact with the atmosphere, ( P, =P,=0). Also
(Zi=h)and (Z,=0).

The reservoir is large, ( V1) is approximately equal to zero. Thus,

2
h=—2 V= 2gh

2g
The stream continues to fall as a free jet with zero pressure,
Applying Bernoulli’s equation between point (1 & 5):

P \'%&; P V2
1 + 1 + Zl — 5 + 5 + 25
pPg 2g pg 2g
VZ
h+H==2

28



The Speed increases accordingto  Vs=,/2g(h + H)

The pressure at point ( 3) can be obtained by:
Applying Bernoulli’s equation between poi
2

nt(1&3):
2
Pr (Vb +7;= Ps Y5 + 73
pPg 2g pg 2g
P.=0. Also, Z;=h-¢ ,and Z3=0.

The reservoir is large, (V1) and ( V3) is approximately equal to zero. Thus,

N

pg
Ps=pg(h-¢)
P3:y(h—€)

Or by simply applying the hydrostatic field pressure law,

Ps—y(h-¢)=0
P3:’Y(h—é)

b- Flow in pipes:

As the fluid flows within a pipe of variable dimeter, the velocity changes because

the flow area is different from one section to another. In these situations, we use the
continuity equation along with the Bernoulli equation.

Inlet ]

A1,Q1
Vi

R (2)
Q1=Q:
Al V1 = Az Vz



Example (2):

The water is flowing through a pipe
having diameters (20 cm ) and ( 10 cm)
at sections (1) and ( 2) respectively. The
rate of flow through pipe is ( 35 liters/s).
If the pressure at section (1) is ( 39.24
N/cm? ), find the intensity of the pressure
at section ( 2).

20 cm

Solution:

[a—

Applying the continuity equation:

Q=A1Vi=AV; Ng
V== %0;(03_522 = 1.11 m/s E
V=2 =203 456 mis 3

Ay

T A, 1f7><0.12_

Applying Bernoulli's equation:

P \'; P \';
1 + 1 + Zl — 2 + 2 + 22
Pg 2g P8 2g
39.24 x 10* 1.112 P, 4.4562
+ +0= +
9810 2x9.81 9810  2x9.81

P, = 38.3 x 10* N/m?= 38.3 N/cm?

P
10 cm



Example (3): 4
A stream of water of diameter ( 0.1 m ) flows
steadily from a tank of diameter ( D =1 m) as shown.
Determine the flowrate ( Q ) needed from the inflow
pipe so that the depth remains constant, (h=2m).

Solution:
Applying Bernoulli’s equation between point (1 & 2)
P, \'; P, V3
+ +2;= + + 2,
pg 2g pPg 2g

Both streamlines ( 1 & 2 ) in contact with the atmosphere,
(P.=P,=0). Also, (Zi=h) and (Z,=0)

h = x 20

In order to keep the depth constant, ( Qin, = Qout )

A1V1:A2V2
A
V1:(A—2)Vz

1
d
Vl—(B)ZVZ

() vz +2gh = Vi
Zgh =V22—(%)4 sz
20h=[1-(5)"] V7

2gh 2X9.81%x2
V, = = |=—51— =6.26m/s
e ey

Q=A1Vi=AV;

Q= (% x0.1%) x 6.26 = 0.0492 m*s

=

(1)

D=10m

h=2.0m

/)

d=0.10m



Practical Applications of Bernoulli’s Equation

Flow Rate Measurement:

An effective way to measure the flowrate through a pipe is to place some type of
restriction within the pipe and to measure the pressure difference between the high-
pressure and low-pressure sections. Several measuring devices use Bernoulli
principle to measure fluid velocities and flowrates.

Continuity Equation:
AVI=AV,

v, =22y
l_Al 2

Bernoulli’s equation:
P, V2 P, V,?

P8 282 pPg 282
P Vv P Vv
1oV 2 V2
P 2 P 2
V,> Py Vi° Py

2 Y 2 Y

P, 1° P
Vyi2=2[—+—_—
> IEp 5 Pp]
2 2
V, _2-1 Vlz__z
o A g P
2P,
V2=—D 4 (2 pyr_—2
2 (A1) Pz S
2 2
2 222 _41 22
V>, (A1)V2 0
A, 2
1-( =2 2]V2==(P,-P
[ (A1)]V2 p(l 2)
2(P1—P3)

2 - - a7 el

pl1-GD)?]

Q=AV, —

xg




1. Venturimeter:
Is a device used for measuring the rate of a flow of a fluid flowing through

a pipe. It consists of three parts:

a- Short converging part
b- Throat
c- Diverging part

INLET THROAT OUTLET

Ym : Specific weight of the Manometer’s liquid.
v : Specific weight of the liquid flowing in the pipe.

Applying Bernoulli's equation at sections (1) and (2), we get:

P, V.2 P 2
Ly g =242 g

Pg 28 Pg 28

The pipe is horizontal, thus Z; = Z,
P, V2 P, V)2
1,11 ‘2 Y2
Pg Zgz Pg Zgz
P V P \Y
1,71 ‘2 72
Y 28 vy 28
V,? Py Py N 2%
2g Yy Y 28
V,? _P1—Py N 2%
28 Y 2g




To find ( P1 — P2 ), we apply the hydrostatic pressure law:
Pi—y(h+X)+ymnX+yh=P;
Pi—yh—yX+ymnX+yh=P;
Pl—YX+YmX:P2
Pi—Py=yX—vmX
Pi—P2=x(y-vm)

Apply in (1)
2 _ 2
Vo' _x(r=¥m) Vu “2e
2g Y 2g
V22=2gx(1—y7m)+V12 ......................... 2)

To find ( V1), we apply the continuity equation:
A1 Vi=A V;
\Y% _d2 \Y%
1= A1 2
Apply in (2):

2 _Y_m +ﬁz 2
Vo' =2gx (1 y) (A1)V2

A
V- (R VE =g (1-12)
1

A m
[1—<A—j>2]v22=2gx(1—y7>

A22 2 _ Ym
(1527 1V =2gx (1-72)

2
A12—A2 Ym
———— 1 V2=20x(1-——

[ A12 V2 gx ( Y )

A%

A{%-A,

V22=2gx<1—y;“>[

Vz\/28x(1-y—m)[z—

A
V= ——— \/ng(1-y7m)



A A
_A1fla \/ng(l_YTm)
/A12—A22

The above formula is correct when the Manometer liquid is lighter than the liquid

Q=A2V2:

flowing in the pipe (Y, < V). Therefore, the term (1 — %) is positive. If the

Manometer liquid is heavier than the liquid flowing through the pipe, the formula
can be written as:

Aq Ay

Q=\/ﬁ \/ZgX(YTm—l)

Example (1):

An oil of ( SG = 0.8 ) is flowing through a Venturimeter having inlet diameter
(2 cm ) and throat diameter ( 1 cm ). The oil-mercury differential manometer shows
a reading of ( x = 12 cm ). Calculate the theoretical discharge of oil through the
horizontal Venturimeter given that ( SG ) of mercury is ( 13.6).

Solution:

SG=136

T

A= e 22 =3.14 cm?

A, = % x 12 = 0.785 cm?

A A
Q=== [ (- 1)
\/Alz_AZZ INLET THROAT
OUTLET
3.14x0.785
= \/2x981x12(ﬁ—1)
J(3.14)2—(0.785)2 0.8

Q =497 cm®/s= 0.497 L/s



Example (2):

An oil of ( SG = 0.8 ) is flowing through a Venturimeter having inlet diameter
( 20 cm ) and throat diameter ( 10 cm ). The oil-mercury differential manometer
shows a reading of ( x = 15 cm ). Calculate the theoretical discharge of oil through
the horizontal Venturimeter given that ( SG ) of mercury is ( 13.6).

Solution:
T

A= 2 202 = 314.16 cm?

A, = % x 102 = 78.54 cm?

A A
Q=—7"— \/ng(YTm— 1)
/Alz—AZ2
314.16X78.54 13.6
- \/2><981><15(——1)
J(314.16)2—(78.54)2 08

Q =55634 cm®/s=55.634 L/s



2. Static Pitot tube:

It is a device used for measuring the velocity of flow at any point in a pipe or a
channel. It is based on the principle that the velocity of flow at the stagnation point
becomes zero.

4) -

P, V,? P, V,?
2Lz ==2+2 47
Pg 28 Pg 28
The pipe is horizontal, hence Z, = Z, V,=0
P, V,% P
1,71 _Z2
Pg 28 P8
Vit_P2 Pp
282 Pg P8
\% P,—P P, —P
1 _T17 %2 R V1=\/2g( 2 1)
28 Pg Y

To find ( P2 — P1), we apply the hydrostatic pressure law:
Po—y(h+Xx)+ynX+yh=P;
Po—yh—yX+ymXx+yh=P;

Po—yX+ymX=P;
P,—P1=yX—ymX — P,—P1=X(y—7vm)

V]:\/ng(y_yym) Z\/ng(l— % )

Q=A1V1=A1\/2gx(1— % )




Example (3):

A pitot tube is inserted in a pipe of ( 10 cm ) diameter. The pressure difference
measured by a mercury ( SG = 13.6 ) differential manometer gives a reading of ( 18
cm ) of mercury. Find the velocity and the flowrate of the flow of an oil of ( SG =
0.7).

Solution:

V1=\/2gx($—1)

:\/2x981x18(%—1)
= 806 cm/s

Q=A,Vi=A, \/ng(%— 1)

i
=2 x10% x 806 = 63330 cm’/s

[

=63.33 L/s



Pneumatic & Hydraulic Systems:

Fluid Power: Power generated by an effective pumped or compressed fluids to provide
force and motion to mechanisms. This force may be in the form of pushing,
pulling, lifting or cutting. Fluid power includes hydraulics, which involves
liquids, and pneumatics which uses air.

Advantages of Fluid Power:
Hydraulics and pneumatics systems have a number of favorable characteristics:

 Very high power to weight ratio.

« Self-lubricating and cooling.

« Low Initial cost, especially Pneumatic System.

« Motion can be transmitted via fluid without the need for complicated systems of
gears, cams, and levers.

» The forces generated are transmitted over large distances with small loss.

« It can provide smooth, flexible and uniform action without vibration.

« It provides variable motions in both rotary and straight-line.

 Fluid power systems are economical to operate.

Disadvantages of Fluid Power:

 Leaks must be prevented. This is a serious problem with the high pressure obtained
in many fluid power installations.

* Movement of the fluid within the lines and components can cause friction against
the containing surfaces which can lead to serious losses in efficiency.

 Fluid must be kept clean, clogging can cause series damages.



Pneumatic or Hydraulic?

* In general, when the application requires a low amount of power and only fairly
accurate control, a pneumatic system may be used.

« If the application requires a great amount of pressure and/or extremely accurate
control, a hydraulic system should be used.

Pneumatic Hydraulic

Power to weight ratio is lower than the

Hydraulic System Very High Power to weight ratio

Relatively cheap More expensive than pneumatic
Can exhaust to atmosphere Mess from oil leaks
Temperature has less effect Oil property changes with temperatures
Safe in potentially explosive environment Danger from oil leaks

Pneumatic systems components:
The Pneumatic system consists of:

e Air compressors.

e Air filter, dryer and separator.

e Air reservoir ( tanks ).

e Reqgulator, relief, check and control valves.
e Actuation cylinders.

Air compressors:

Rises the air pressure from atmospheric value to the desired level. Pneumatic
components are designed for a maximum operating pressure of ( 800 to 1000 Kpa )
( 8-10 bar).

Air Compressor

|
| |

Reciprocating Rotary
Piston Piston
Compressor Compressor




Reciprocating piston compressors:

Single acting piston Produces up to ( 400 Kpa ) ( 4 bar).

How does an Air Compressor work? (Compressor Types) - Tutorial Pneumatics

S

F -

|

~

The inlet valve also called suction valve allows atmospherlc air to enter the cylinder. &

How does an Air Compressor work? (Compressor Types) - Tutonal Pneumatics

-l[%r

essure during the compression strike.

we @ & It




Double acting piston produces up to ( 800 Kpa ) ( 8 bar).

il ? -
How does an Air Compressor work? (Compressor Types) Tuninil Pneumatics - 'n‘" Coalim

~<

" The large piston builds the first stage. The air leaving the first stage can now be
cooled before it enters into the second stage.

How does an Air Compressor work? (Compressor Types) - Tutorial Pneumatics
=<3
RZ aa <3

How does an Air Compressor work? (Compressor Types) - Tutorial Pneumatics
-—~

gl

;N7 lll.\-“

OFF

With a two-stage compressor you achieve pressures over 20 bars or 290 psi.

b W% and e




Rotary Vane Compressor:

y: Casing

Inlet

- Discharge

" Slidine Vane



Screw Compressor:

Mechanical Seal

Suction Rotors

Y Coupling Location

Balance Piston

Slide Valve

Thrust Bearings




Suction

Female Rotor

Housing

Compression

' Oil Injection

Discharge
Male Rotor Shaft



Air preparation: involves the following:

1- A pneumatic filter: is a device which removes contaminants from a compressed
airstream. One characteristic of compressed-air filters is the size. The size of the
filter element indicates the minimum particle size which can be filtered out of the
compressed air. Typical (5 ) microns.

Bafle

Filter

Condensate

Filter bowl

Drain screw

Deflector

| ]
- N
. -
RO A
[



2- Water separators: separate out the mist of water droplets which are sometimes
suspended in air by centrifugal means.

4- Reservoirs: store the compressed air from the compressor.



Pneumatic Valves:

Pressure regulator valve: is a control valve that reduces the input pressure of a fluid to
a desired value at its output keeping the operating pressure constant, regardless of pressure
fluctuations or air consumption in the system as long as the input pressure at the pressure
regulator is higher than the output pressure.

[lJ]/ SETPOINT

DIAPHRAGM

STEM FEEDBACK
MECHANISM

10



Pressure relief valve: When the set maximum pressure is reached, the pressure-relief
valve opens and the air is exhausted to atmosphere.

Spring

Adjustment {M

1 Tank port

11



Pressure check valve: on-return valve or one-way valve is a valve that normally allows
fluid (liquid or gas) to flow through it in only one direction.

O

Check valve

12



Directional control valves:

Directional control valves are devices that control the direction of fluid flow in the
system as well as stopping it, thus determining the direction of movement of actuators,
whether cylinders or hydraulic motors.

Directional control valves are named according to the number of ports in the valve and
the number of switching positions. They are named by two numbers separated by a sign
(/). Example: Directional control valve (3/4), is a directional control valve with four ports
and three switching positions.

The directional control valve is characterized according to:

- Number of switching positions & Ports (2-way, 3-way, etc.).
- Method of actuation (Manual, mechanical, electrical).

Number of ports liall 22e ,
1 B
2/2 — Way directional control valve, normally open.
T !
! 11
Number of positions & gall 22c
|2
3/2 — Way directional control valve, normally closed. t \
TiT
11 13
|2
3/2 — Way directional control valve, normally open. \ t
T T
HIE!
o 4] |2
3/2 — Way directional control valve
Flow from 1 — 2 and from4 — 3 T !
11 13
4| |2
5/2 — Way directional control valve
Flow from1 — 2 and von4 — 5 . T
5013
1
a] |2
5/3 — Way directional control valve \ I L1 l /
Mid position clpsed Y — -
513
1
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Awuator
—}-Moving valve stem l 2A)
4 \
Tl
TE
InstrumentationTools.com
Ay B
Zero contact LX 37y
Low leakage B mx d m
High duty ':' ¥
Long life P T

T P T

ARABIC 2. Sliding pool *\ JS& SEQ Js&
dircctional control valve (4/3)

4/3 way Rotary Spool
Directional Control Valve

InstrumentationForum.com
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2/2 —Way directional control valve:

g pasl Gliall g5l
Open position Close position
e e il Joas ot el
5 1 /
/ AN
T

bl ) Jiads alal) a8 (3lha s 5 pSaT plaa
DCV 2/2, Normally closed, Push button actuation
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1
(Jan) o 3Ly U il
Solenoid energized

1
(B2 ) Jang ¥ 35S0 il
Solenoid€nergized

AT L
AN W b

2 292
Gandl gy (o i gl 3 3
Compensator De-stroke Pum) i gia Sy gl O el
Y 0 GlP M Hyd. motor is stopping
4
Qo0
i

1
(Sas) a2 3 p6SH b
Solenoid energized

AN

wal Y
P
2 3
Gandi by ¥ gyl plaa 239 S5 %) e
Compensator is Off Hyd. motor is working
30GFM
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3/2 —Way directional control valve:

iy alec fam dasaai 1 2/3 e sl oSadll Glaa
3/2 Directional Control Valves: Design, Operation
and Applications

A D

2
Wyt B Gy
Oil flows to cylinder \.‘“ .\.'-.Ja‘ﬂ..-.i"'u

T /ARY=)
P
P: Pump
T: Tank
A: Actuator
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A Y
*~—1
! pressure
1008 P;' :
LI~ — —
- 2 \ "
e ¥ Jily T gl g1 5 U s
: Cylinder retracts by spring Cylinder extends
1
L 8 ) G AN gy 1
Valve De-activated Flow return to tank i D,;c!; \,;s;ﬂ\u‘,t..‘;dm ‘/
—_ actival
\ a : T o
"RV "’ :
sl Y =
F‘; » 1
4
Ll s plaa
> PRV opens sa b e
Ul gl i) iy
A q \ / Oil flows to cylinder e SESCT I
A PRV closed
- } - —q /
_; Pressure |
relief valve -
[3.00
Psi

3 - Way, 2 Position Valve 3 - Way, 2 Position Valve
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4/2 — Way directional control valve:

ey dlac fan daeaiz 2/4 ea il e Gl

4/2 Directional Control Valve: Design, Operation
and Applications

Ll gail aal 5
Cylinder retracts
s kil 32 das
PRV closed Jatal c—d;,,! .,ﬁ-),ﬂl aleall
DCV is actuated o580 LD s

Oil returns to tank

D oty olasly B iy
Oil flows to cylinder

Retraction Position
LigaIgl 3¢ sy
A B

X

P T

aill 4B L Jaal
Double Acting Cylinder Load

Linicl.
Pressure Gauge S \ \

PRV

Pump

S e ° ||
Electric Motor - I

aa) M ha

Return Line Filter
b i Lah
A Return Line
I
Tank
waud ha R
wd i@ Suction Line Baffie

Suction Filter
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4/2 — Sliding Spool valve:
- It has a spring — loaded spool inside the valve body.
- In spool position as shown in Fig. (a), there is connection from (P) to (A) and from (B)

to (T). working fluid flows to cap end port of cylinder, and comes out from rod end port.
Hence the double acting cylinder extends.

. // A&P B%T %
%

(2)

- When the palm button is pressed, the spool position is as shown in Fig. (b), there is
connection from (P) to (B) and from (A) to (T). working fluid flows to rod end port of
cylinder, and comes out from cap end port. Hence the double acting cylinder retracts.

AR B AT
%)

(b)
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4/2 — Rotary Spool valve:

- It has a rotary spool inside the valve body. The spool is rotated through ( 90° ) to operate
the valve.

- In spool position as shown in Fig. (a), there is connection from (P) to (A) and from (B)
to (T). working fluid flows to cap end port of cylinder, and comes out from rod end port.
Hence the double acting cylinder extends.

- When the spool is rotated through ( 90° ) as shown in Fig. (b), there is connection from
(P) to (B) and from (A) to (T). working fluid flows to rod end port of cylinder, and
comes out from cap end port. Hence the double acting cylinder retracts.

21



4/3 — Way directional control valve:

- This valve is used to operate double acting cylinder and bidirectional motor.

- It has four ports namely.

- Pump port or inlet port (P).

- Cylinder port (A).

- Cylinder port (B).

- Tank port (T).

- It has three positions of its spool.

- In first position, there is connection from (P) to (A) and from (B) to (T), hence the
cylinder / motor moves in one direction.

- In the other position of spool, there is connection from (P) to (B) and from (A) to
(T), hence the cylinder / motor runs in opposite direction.

- In middle position of spool, the cylinder or motor stops, it will not move in any

direction.
A B
E Lr L
Lever T l T T >< Detent
operated P T type
Closed centre
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4/3 — Sliding Spool valve ( Closed Center Mid-Position ):

In first position of spool position as shown in Fig. (a), there is connection from (P) to
(B) and from (A) to (T). working fluid flows to cap end port of cylinder, and comes out
from rod end port. Hence the double acting cylinder extends.

) BB :)
/
% 7] |\

(@

In second position of spool position as shown in Fig. (b), there is connection from (P)
to (A) and from (B) to (T). working fluid flows to rod end port of cylinder, and comes
out from cap end port. Hence the double acting cylinder retracts.

miZizie)
e

When the spool is kept in the middle position, as shown in Fig. (c), all ports are closed,
and hence the actuator stops. This is closed center middle position.

P B T

//////// | 7

(c)
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4/3 — Rotary Spool valve ( Closed Center Mid-Position ):

In spool position as shown in Fig. (a), there is connection from (P) to (A) and from (B)
to (T). working fluid flows to cap end port of cylinder, and comes out from rod end
port. Hence the double acting cylinder extends.

When the spool is rotated through ( 90°) as shown in Fig. (b), there is connection from
(P) to (B) and from (A) to (T). working fluid flows to rod end port of cylinder, and
comes out from cap end port. Hence the double acting cylinder retracts.

Middle position is shown in Fig. (c), all ports are closed, and hence the actuator stops.
This is closed center middle position.
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5/3 — Way directional control valve:

CYLINDER STOPPED

RELIEF
VALVE

@29

Neutral Position
gkl aa gl

A B

R
T T
P T

CYLINDER RETRACTING
-—

RELIEF
VALVE

pump € @2 ®

Retraction Position
M\,h—?!&t)bt,.;)t.h,
A B

X

P T
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CYLINDER EXTENDING

RELIEF
VALVE

@2d

Extension Position
Ll gl 1,0 2305 auag
A B




Neutral Position

gl gag
A B
P

sl b e il alacall
S XA

DCV in central position
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20t A gyl

sl b e sl plasall

Alasll Ll (i

Cylinder is extending \

‘é)" )M‘
DCV in parallel position \

Oil flows to system \

el A sl

Cylinder is retracting

«.l.“.uaﬁ‘ cm)]\ QA ‘;H;}ﬂ\ ?Lu.a“

DCV in cross position

?Ua.‘;u Jilad) saay
Oil flows to system
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Extension Position
Ll ghoy) ¢ 3 35 auaag
A B

Glie bzl aa alea
PRV closed

Retraction Position
W) ) 2 ¢ s aads

Gl izl s dlaa
PRV closed
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