Thomas Calculus

DIFFERENTIATION RULES

General Formulas

Assume « and v are differentiable functions of x.
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Trigonometry Formulas

1. Definitions and Fundamental Identities

¥

Sine: sinf = J; = csl:ﬂ

. _x 1
Cosine: costl = 7 = Py
Tangent: tanf = ; = %

2. Identities

sin (—0) = —sinf, cos(—0) = cosf
sin® @ + cos’@ = 1,
sin 26 = 2 sin 6 cos A,

cos’ 8 = M, sin @ = I

2 2

sin (4 + B) = sind cos B + cosAsinB
sin(4 — B) = sindcosB — cosAsinB
cos (4 + B) = cosAcosB — sinAsinB

cos (A — B) = cosAcos B + sinAdsin B

Trigonometric Functions

sec’ = 1 + tan’ 4,

— cos 26

=

csc?f = 1 + cot’d

cos26 = cos’ 6 — sin’ @

Radian Measure

Degrees Radians
45 =
I s 4
V2 | V2
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80° = 7 radians.

The angles of two common triangles, in
degrees and radians.

_ tan4 + tan B

tan (4 + B) = | — tanA tan B
tand — tan B

tan (4 = B) = T o d@n B

sin( —
sin(A +

[SIE]

[SIE]

) = —cos 4,
) = cos A,

cos( - E) = sin4
cos( ) —sin A

3]

M\:]

sindsinB = %cos( — B) ——cos (4 + B)
cosAcosB = %cos (4 —B)+ 1cos (4 + B)
sind cos B = %sm (4 —B) += sm (4 + B)

sind + sinB = 25in%(A + B) cosl(A - B)

sind — sinB = 2cos~

2

(A + B)sin% (A - B)

cosA + cos B = 2cos%(A + B)cos%(/i - B)

cosd — cosB = =2 sinl(A + B) sin%(A - B)

v
¥ =sinx
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Domain: (-, =)
Range: [-1, 1]
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Domain: All real numbers except odd
integer multiples of /2

Range: (-, =)
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AT

Domain: All real numbers except odd
integer multiples of 7/2
Range: (—w=, -11U[L, =)

y=cotx
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Applications of Definite Integrals

Areas Between Curves
There are two methods to fine the area between two curves:
A. When the rectangle is moving along the x- axis

We choose a rectangle and find the area of this rectangle, then we find the total area by
integrating the area of the rectangle with respect to x-axis over a given period.

area of rectangle = AxAy )\
Ax = dx y=flx)
Ay = upper curve — lower curve
Ay =f(x) —gx)
b 5 Ay
A= J area of rectangle | i
a 1 Lo b .
When A is the total area between two curves gtV

y=g(x) Ax

b
A= [ 176 - g@lax

DEFINITION Area Between Curves

If f and g are continuous with f(x) = g(x) throughout [a. b], then the area of
the region between the curves y = f{x) and y = g(x) from a to b is the inte-
gral of (f — g) from a to b

b
A= / [f(x) — g(x)] dx.
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EXAMPLE 4  Area Between Intersecting Curves

Find the area of the region enclosed by the parabola y = 2 — x? and the line y = —x.

Solution  First we sketch the two curves (Figure 5.30). The limits of integration are found

by solving y = 2 — x?and y = —x simultaneously for x.
2 —x2=—x Equate f(x) and g(x).
—x—2=0 Rewrite.
(x+ Dx—2)=0 Factor.
x = —1, x = 2. Solve.
The region runs from x = —1 to x = 2. The limits of integrationarea = —1,b = 2.

The area between the curves is

b
4= f [f(x) — gx)]dx = [ [(2 = %) = (—x)]dx

2
2/(2+xx2)dx=
-1

_ 4_8)_ (L, 1, 1)_9
(4+2 3) (2+2+3>2 m

x y=2-x —-X
-2 -2 2
-1 1 1
0 2 0
1 1 -1
2 -2 -2

FIGURE 5.30 The region in
Example 4 with a typical

approximating rectangle.
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If the formula for a bounding curve changes at one or more points, we subdivide the re-
gion into subregions that correspond to the formula changes and apply the formula for the
area between curves to each subregion.

EXAMPLE 5  Changing the Integral to Match a Boundary Change

Find the area of the region in the first quadrant that is bounded above by y = Vx and be-
low by the x-axis and the line y = x — 2.

Solution  The sketch (Figure 5.31) shows that the region’s upper boundary is the graph of
f(x) = V. The lower boundary changes from g(x) = 0 for0 = x = 2tog(x) = x — 2
for 2 = x = 4 (there is agreement at x = 2). We subdivide the region at x = 2 into subre-
gions A and B, shown in Figure 5.31.

The limits of integration for region 4 are @ = 0 and b = 2. The left-hand limit for re-
gion B is @ = 2. To find the right-hand limit, we solve the equations y = Vx and
v = x — 2 simultaneously for x:

Vi=x-2 Equate f(x) and g(x).
y=(x—2P=x—4r + 4 Square both sides.
X2 —=5x+4=0 Rewrite.
(x - l)(x —4)=0 Factor.
x =1, x =4. Solve.
Only the value x = 4 satisfies the equation Vx = x — 2. The value x = [ is an extrane-

ous root introduced by squaring. The right-hand limitis b = 4.

For0 = x = 2: flx) — glx) = Vo — 0 = Vix
For2=x=4  fx)—gx)=Vx—-(x—-2)=Vx—x+2

We add the area of subregions 4 and B to find the total area:

2 4
/\/Ea’x+ /(\/f—x—f—ﬂdx
0 2

Total area =
area of A area of B
2 2 4
= zxi”f2 + 2).'3’}2 — L 4o
37,73 2 ,

2 2 2
=3 @7 -0+ (§ (4032 — 8 + 8) - (j(z)ﬂ2 -2+ 4)

10
i



5 Mathematics: Applications of Definite Integrals

4
Area =/(\f’§ —x+2)dx
AN

y _ \

2 1-\ y="Vax
21 Area=[Vxdx \ (x, fx) N 4.2
0 \ 3 .2) FIGURE 5.31 When the formula for a
(x, f(x)) _\_ .o bounding curve changes, the area integral
- . changes to become the sum of integrals to
A (x. g)) match, one integral for each of the shaded
. | . regions shown here for Example 5.
0 / y=0"72 4
(x, g(x))
B. When the rectangle is moving along the y-axis:
area of rectangle = AxAy y
A
Ay =dy
Ax = right curve — left curve
d
Ax =f(y)—g()
a x=fy)
A= f area of rectangle
c
When A is the total area between two curves x = g(y) ——
d l C
A= [ e - goay
c
0

dr x = f(y)

x=g(y)
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EXAMPLE 6 by integrating with respect to y

Find the area of the region in the first quadrant that is bounded above by y = V/x and be-
low by the x-axis and the line y = x — 2.

x y=vJx y=x-2 Y

0 0 -2

1 1 -1 20 _ 2 4.2)

2 1.4 0 (8. y) -

4 2 2 \ x=y+2
FIGURE 5.32 It takes two On Ay S(f.y)
integrations to find the area of this lf(y) — g(v)—|
region if we integrate with respect to o o é {_'L > X

x. It takes only one if we integrate
with respect to y (Example 6).

Solution ~ We first sketch the region and a typical horizontal rectangle based on a parti-
tion of an interval of y-values (Figure 5.32). The region’s right-hand boundary is the line
x =y + 2,s0 f(y) =y + 2. The left-hand boundary is the curve x = y%, so g(y) = y2.
The lower limit of integration is y = 0. We find the upper limit by solving x = y + 2 and
x = y? simultaneously for y:
Equate f(y) = v + 2
. — 2 1 JWwi=.
y+2=) and g(y) = v*.
.\)2 —y—2=0 Rewrite.
(y+D(y—-2)=0 Factor.

y=—1, y =2 Solve.

The upper limit of integration is b = 2. (The value y = —1 gives a point of intersection
below the x-axis.)
The area of the region is

‘b 2
4= / [f(») — gldy = A [v +2 — yidy

2
= / 2 +y—¥dy
0
372

. 2.+},’2 _},‘
I A T I A

10
T

_ 4_8_
=4t 573

This is the result of Example 5, found with less work.
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Combining Integrals with Formulas from Geometry

The fastest way to find an area may be to combine calculus and geometry.

EXAMPLE 7 The Area of the Region in Example 5 Found the Fastest Way

Find the area of the region in Example 5.

Solution  The area we want is the area between the curve y = Vx, 0 = x = 4, and the
x-axis, minus the area of a triangle with base 2 and height 2 (Figure 5.33):

4
Areaz/ Vrdx - 2(2)(2)
[i]
_ 2 3,*2]4
==x -2
3 0
2@ -0-2=2. -
¥
il 4.2)
y=Vax [
1 y=x—2 2
Area=2
|
o y=0 2 VR

FIGURE 5.33 The area of the blue region
is the area under the parabola y = Vx
minus the area of the triangle (Example 7).

Conclusion from Examples 5-7 It is sometimes easier to find the area between
two curves by integrating with respect to y instead of x. Also, it may help to combine
geometry and calculus. After sketching the region, take a moment to think about the best
way to proceed.
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Volumes of Solids of Revolution

DEFINITION  Volume

The volume of a solid of known integrable cross-sectional area A(x) from x = a
to x = b is the integral of 4 from «a to b,

b
V= / A(x) dx.

Calculating the Volume of a Solid

1. Sketch the solid and a typical cross-section.
2. Find a formula for A(x), the area of a typical cross-section.
3. Find the limits of integration.

4. Integrate A(x) using the Fundamental Theorem.

EXAMPLE1  Volume of a Pyramid

A pyramid 3 m high has a square base that is 3 m on a side. The cross-section of the pyra-
mid perpendicular to the altitude x m down from the vertex is a square x m on a side. Find
the volume of the pyramid.

Solution

1. A skefch. We draw the pyramid with its altitude along the x-axis and its vertex at the
origin and include a typical cross-section (Figure 6.5).

2. A formula for A(x). The cross-section at x is a square x meters on a side, so its area is
A(x) = x2.
3. The limits of integration. The squares lie on the planes from x = O tox = 3.

4. Integrate to find the volume.

3 3 B3P )
V= / Alx) dx = f xldx = —] =0m’ [
0 0 3 o

Typical cross-section

X .
3
\x (m) FIGURE 6.5 The cross-sections of the

pyramid in Example 1 are squares.
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EXAMPLE 3 Volume of a Wedge

A curved wedge is cut from a cylinder of radius 3 by two planes. One plane is perpendicu-
lar to the axis of the cylinder. The second plane crosses the first plane at a 45° angle at the
center of the cylinder. Find the volume of the wedge.

Solution ~ We draw the wedge and sketch a typical cross-section perpendicular to the
x-axis (Figure 6.7). The cross-section at x is a rectangle of area

A(x) = (height)(width) = (,1‘)(2 V9 — xz)
PNV

The rectangles run from x = 0 to x = 3, so we have

b .3
V= / A(x) dx = / 22V9 — x2dx
0
¢ Letu =9 — x2,

3 .
_ _;(9 B rz)g/z du = —2x dx, integrate,
3 ’ 0 and substitute back.

=0+ 29"
= 18. [ |

FIGURE 6.7 The wedge of Example 3,
sliced perpendicular to the x-axis. The
cross-sections are rectangles.
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Solids of Revolution: The Disk Method

The solid generated by rotating a plane region about an axis in its plane is called a solid of
revolution. To find the volume of a solid like the one shown in Figure 6.8, we need only
observe that the cross-sectional area A(x) is the area of a disk of radius R(x), the distance
of the planar region’s boundary from the axis of revolution. The area is then

A(x) = m(radius)? = 7[R(x)]*.

So the definition of volume gives

b b
V:/ A(x) dx:/':r[R(x)]za'x.
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EXAMPLE 4 A Solid of Revolution (Rotation About the x-Axis)

The region between the curve y = \/;c, 0 = x = 4, and the x-axis is revolved about the
x-axis to generate a solid. Find its volume.

Solution =~ We draw figures showing the region, a typical radius, and the generated solid
(Figure 6.8). The volume 1is

b
V= / m[R(x)]* dx

- /4W[\@]z dx R(x) = Vx
0

}.‘

b,
y=Vx
Rx) = Vx
fm "
S N
0 e TR
(a) (b)

FIGURE 6.8 The region (a) and solid of
revolution (b) in Example 4.
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EXAMPLE 5  Volume of a Sphere

The circle
24yt = g2
is rotated about the x-axis to generate a sphere. Find its volume.
Solution ~ We imagine the sphere cut into thin slices by planes perpendicular to the x-axis
(Figure 6.9). The cross-sectional area at a typical point x between —a and a is

Ax) = m? = w(a? — x?).

Therefore, the volume 1s

a a 3 Ja

a

—da

(x.y)

Ax) = m(a? — x?)

FIGURE 6.9 The sphere generated by rotating the circle
x? + y? = 4% about the x-axis. The radius is

R(x) = y = Va? — x* (Example 5).
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EXAMPLE 6 A Solid of Revolution (Rotation About the Line y = 1)

Find the volume of the solid generated by revolving the region bounded by y = Vx and
the lines y = 1,x = 4 about the line y = 1.

Solution  We draw figures showing the region, a typical radius, and the generated solid
(Figure 6.10). The volume is

4
Vo= / w[R(x)]* dx
|
4
zfﬂW—ﬁﬁ
1

:W[ﬁrgv§+qﬁ

2 4
X 2 3/2 7T
=q|l= -2 >x7" +x| =—.
l2 3 ) 6
"v
Rx)=Vx—1
y
/ y=\/)_c
Rx)=Vx—1
W=l )
I T ¢ VT
Vs | |
7 | | |
| |
| | -
0 1 X 4

(b)

(a)

FIGURE 6.10 The region (a) and solid of revolution (b) in Example 6. )
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EXAMPLE 7  Rotation About the y-Axis

Find the volume of the solid generated by revolving the region between the y-axis and the
curve x = 2/y. 1 = y = 4, about the y-axis.

Solution ~ We draw figures showing the region, a typical radius, and the generated solid
(Figure 6.11). The volume 1s

4
V= [ m[R(y)]* dy

4 2
_ 2\
[

(a)

FIGURE 6.11 The region (a) and part of
the solid of revolution (b) in Example 7.
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EXAMPLE 8 Rotation About a Vertical Axis

Find the volume of the solid generated by revolving the region between the parabola

x = y* + 1 and the line x = 3 about the line x = 3.

Solution

We draw figures showing the region, a typical radius, and the generated solid

(Figure 6.12). Note that the cross-sections are perpendicular to the line x = 3. The volume is

.\/.E
VZ] 7[R(»)] dv

-2

/2
= / w2 = v dy

-2

V2
= w/ - 42
-2

57V2
_ 4 5 )
= qr [4J 3 v+ 3 }—\/’E
64\ 2
15
RO =Imoi D L Ry =2-y
=2-y @>@ x =3
V2T (3.V2) V2 I
Y- Y-
L L
0 I 3 5% 0 507
_ 2
otk =y +1 (3.-V2) N2 -
(a) (b)
FIGURE 6.12 The region (a) and solid of revolution (b) in Example 8. [ |
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Solids of Revolution: The Washer Method

If the region we revolve to generate a solid does not border on or cross the axis of revolu-
tion, the solid has a hole in it (Figure 6.13). The cross-sections perpendicular to the axis of
revolution are washers (the purplish circular surface in Figure 6.13) instead of disks. The
dimensions of a typical washer are

Outer radius: R(x)

Inner radius: r(x)
The washer’s area 1s
A(x) = w[R()? — 7[r(0)]? = 7([R(x)]* — [(x)]D).

Consequently, the definition of volume gives

b b
p= [ = [ ar@R - P é

This method for calculating the volume of a solid of revolution is called the washer
method because a slab is a circular washer of outer radius R(x) and inner radius 7(x).

(x, R(x))

Washer

FIGURE 6.13 The cross-sections of the solid of revolution generated here are washers, not disks, so the integral
f ab A(x) dx leads to a slightly different formula.
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EXAMPLE 9 A Washer Cross-Section (Rotation About the x-Axis)

The region bounded by the curve y = x? + 1 and the line y = —x + 3 is revolved about
the x-axis to generate a solid. Find the volume of the solid.

Solution

1. Draw the region and sketch a line segment across it perpendicular to the axis of revo-
lution (the red segment in Figure 6.14).

2. Find the outer and inner radii of the washer that would be swept out by the line seg-
ment if it were revolved about the x-axis along with the region.

These radii are the distances of the ends of the line segment from the axis of revolu-
tion (Figure 6.14).

Outer radius: R(x) = —x + 3

Inner radius: 7 (x) = x2 + 1

T

r(x) = x4+ 1

L

— Washer cross section

Interval of I w/
integration

(a)

Outer radius: R(x) = —x + 3
Inner radius: r(x) = x2 + 1

(b)

FIGURE 6.14 (a) The region in Example 9
spanned by a line segment perpendicular to
the axis of revolution. (b) When the region
is revolved about the x-axis, the line
segment generates a washer.
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3. Find the limits of integration by finding the x-coordinates of the intersection points of
the curve and line in Figure 6.14a.

24+ 1=—-x+3
4 x—2=0
x+2)x—=1)=0

x=—-2, x=1

4. Evaluate the volume integral.

b
V=/wmmf[mmm

'l 5 5 2 Values from Steps 2
= m((—x + 3)" — (x= + 1)7) dx and 3

-2

d
2/ (8 — 6x — x* — x¥) dx

-2

3 5

S O W S ol A 0
= 77[8:& 3x 3 51, 5 [ |

To find the volume of a solid formed by revolving a region about the y-axis, we use
the same procedure as in Example 9, but integrate with respect to y instead of x. In this sit-
uation the line segment sweeping out a typical washer is perpendicular to the y-axis (the
axis of revolution), and the outer and inner radii of the washer are functions of y.
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EXAMPLE 10 A Washer Cross-Section (Rotation About the y-Axis)

The region bounded by the parabola y = x? and the line y = 2x in the first quadrant is re-
volved about the y-axis to generate a solid. Find the volume of the solid.

Solution  First we sketch the region and draw a line segment across it perpendicular to
the axis of revolution (the y-axis). See Figure 6.15a. _

The radii of the washer swept out by the line seement are R(v) = Vo, r(y) = /2
(Figure 6.15).

The line and parabola intersect at y = 0 and y = 4, so the limits of integration are
¢ = 0and d = 4. We integrate to find the volume:

d
V_/ ﬂm@W—wmwﬁdv
4 12 2
- [ (0s] -] )

S (R PR Nl L | .
A 4)Y " 12, 3™

=
r(y) == A R(y) =

o

(§]

(2,4)

Interval of integration

(b)

FIGURE 6.15 (a) The region being
rotated about the y-axis, the washer radii,
and limits of integration in Example 10.
(b) The washer swept out by the line
segment in part (a).
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GEOMETRY FORMULAS

A = area, B = area of base, C = circumference, S = lateral area or surface area,
V' = volume

Triangle Similar Triangles Pythagorean Theorem

b
a
a’> + b*=¢?
Parallelogram Trapezoid Circle
I a
h !
|
I h s
| | A =Tr-,
b | C =2xr
b
A =Dbh I
A= i(c.’ + b)h
Any Cylinder or Prism with Parallel Bases Right Circular Cylinder
C 07 £ D <
| | — !
‘ h
J V= Bh "‘_"H‘\L
B/ N
V = arih

S = 27rh = Area of side

Any Cone or Pyramid Right Circular Cone Sphere

N

B V= %’m"lh V= ‘% a3, S = 4ar?

S = mrrs = Area of side
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Differentiation

Differentiation Rules:

RULE 1 Derivative of a Constant Function
If f has the constant value f(x) = ¢, then

df _d , . _
E—E(C)—O.

EXAMPLE 1
If f has the constant value f(x) = 8, then
df _ d o _
i g(S) = 0.
Similarly.

%(-%) -0 and %(\@) - 0.

RULE 2 Power Rule for Positive Integers

If n is a positive integer, then

d
—x" = nx

dx

n—1

EXAMPLE 2  Interpreting Rule 2

f X x? x? x4

ol 2x | 3x | 4




RULE 3 Constant Multiple Rule

If u is a differentiable function of x, and ¢ is a constant, then

_ du
o (cu) = C o

In particular, if n is a positive integer, then

a% (ex™) = enx" L.

EXAMPLE 3

(a) The derivative formula

d 3x2) = 3-2x = 6
dx

RULE 4 Derivative Sum Rule

If « and v are differentiable functions of x, then their sum « + v is differentiable
at every point where « and v are both differentiable. At such points,
du dv

d _— R
dx(quv)_dx * dax’

EXAMPLE 4  Derivative of a Sum
V= x4 12x
dy _d
dx  dx
=4x° + 12
EXAMPLE 5  Derivative of a Polynomial

d
(x') + < (120)

y:x3+ix2f5x+l

3

dv d 5, d (4, d .., d

dx  dx +dx 37t _dx(5l)+dx(1)
=+ =540

=3x2+§x5



RULE 5 Derivative Product Rule
[f © and v are differentiable at x, then so is their product zv. and

d_odv du
a(uv) = U +vdx.

EXAMPLE 7  Using the Product Rule

bk —%(xz +%)

Solution ~ We apply the Product Rule with u = 1/xand v = x? + (1/x):

AEG D] ) (o 0()

Find the derivative of

=2-—=-1-=
X3 X3
2
=1-%.
x3

EXAMPLE 9  Differentiating a Product in Two Ways

Find the derivative of y = (x> + 1)(x* + 3).

Solution
(a) From the Product Rule with # = x*> + landv = x* + 3, we find

;i[(xz +1)(x +3)] = 62+ DGR + (& + 3)(20)

= 3x* + 3x2 + 2x* + 6x
= 5x% + 3x2 + 6x.

(b) This particular product can be differentiated as well (perhaps better) by multiplying
out the original expression for y and differentiating the resulting polynomial:

y=@*+ D +3)=x"+x+3%x>+3
dv

— = 5x* 4+ 3x% + é6x.
dx

This is in agreement with our first calculation. [



RULE 6 Derivative Quotient Rule

If 2 and v are differentiable at x and if v(x) # 0, then the quotient u/v is differ-
entiable at x, and

du dv

! ()t
dx v vZ )

EXAMPLE 10  Using the Quotient Rule

Find the derivative of

2 —1
241

y:

Solution
We apply the Quotient Rule withu = > — landv = #* + 1:

dt (> + 1) dt
284+ 20208 + 2
(12 + 1)
M
(1> + 1)*°

dy . (fz + 1)+ 2t — (fz —1)-2t d (”) B v(du/dt) — u(dv/dr)

) 2
v v

RULE 7 Power Rule for Negative Integers
If n 1s a negative integer and x # 0, then

EXAMPLE 11

@ (%) = 6 = (et

(b) % (j_3> = 4%(;{_3) — 43t = _)lc_%



Second- and Higher-Order Derivatives

If y = f(x) is a differentiable function, then its derivative f'(x) is also a function. If " is
also differentiable, then we can differentiate f' to get a new function of x denoted by f”.
So f” = (f'")". The function f” is called the second derivative of f because it is the deriv-
ative of the first derivative. Notationally,

" d 2']’} d Lf'V d'} / r n 2 2
fe == (d) =S =" = DAf)x) = D f(x).

The symbol D? means the operation of differentiation is performed twice.

If y = x°, then y’ = 6x° and we have
"o__ dy’ _ d 5\ _ 4
Vs T L (6x ) = 30x".

If y" is differentiable, its derivative, " = dv"/dx = d’y/dx* is the third derivative
of'y with respect to x. The names continue as you imagine, with

d"y
w4 -y _ 2V _
Y dx} dx" D’y

denoting the nth derivative of y with respect to x for any positive integer n.

EXAMPLE 14  Finding Higher Derivatives

The first four derivatives of y = x* — 3x? + 2 are
First derivative: y' = 3x? — 6x
Second derivative: " = 6x — 6

Third derivative: " =6

Fourth derivative:  y* = 0.

The function has derivatives of all orders, the fifth and later derivatives all being zero.



Derivatives of Trigonometric Functions

The derivative of the sine function is the cosine function:

i{sinx} = COSx.

dx

EXAMPLE 1  Denivatives Involving the Sine

2

(a) y =x" — sinx:
dy d .
E = 2x — E (smx) Difference Rule
= 2x — cosx.
(b) y = x*sinx:
dy

_ 2d (. - i
I X I (smx) + 2xsinx Product Rule

= x2cosx + 2xsinx.
sin x

(€) y=—~—:

d . )
dy x-a(smx)—smx-l
— = Quotient Rule
dx X2

XCOSx — Sinx

x2




The derivative of the cosine function is the negative of the sine function:

d L
dx(cosx}— sin x

Figure 3.23 shows a way to visualize this result.

EXAMPLE 2 Derivatives Involving the Cosine

(a) vy = 5x + cosx:

Ey = C%{Sx) + % (COSI) Sum Rule
=5 — sinx.
(b) ¥y = sinxcosx:
dv . d d ;.
aEx = SIIIIE(COSJC) + CO0S xa [smx) Product Rule
= sinx(—sinx) + cosx(cosx)
= cos’x — sin’x.
_ COoSx
© y= 1 — sinx’

dy (1 — sinx)a%(cos,r) — cos.r%(l — sinx)

Quotient Rule

de - (1 — sinx)?
(1 = sinx)(—sinx) — cosx(0 — cosx)
- (1 — sinx)?
_ 1 —sinx B
B m sin”x + cos

__ 1
|l — sinx’



Derivatives of the Other Trigonometric Functions

% (tanx) = sec’x

d
a(secx) = secxtanx

%{cotx} = —cscix
d
E(csc.x) = —cscxcotx

To show a typical calculation, we derive the derivative of the tangent function. The
other derivations are left to Exercise 50.

EXAMPLE 5
Find d(tan x)/dx.

Solution

cos.xi(sinx) — sinxi(cos.x)
i(t )_i sinx ) _ " dx dx et Rule
e anx) = e \Cosx | = cox Quotient Rule
_ cosxcosx — sinx(—sinx)
cos® x
_ cos’x + sin’x
cos® x
1
= ;= sec’ x [
COS™ x
EXAMPLE 6
Find y" if y = secx.
Solution
¥ = secx

y = secxtanx

V' = %(sec.xtanx)
e d d |
= sec xa(tan x) + tanxa(secx) Product Rule

= secx(sec?x) + tanx(secx tanx)

= sec’x + secxtan’x [ |
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3.5 The Chain Rule and Parametric Equations

We know how to differentiate y = f(u) = sinu and u = g(x) = x> — 4, but how do we

differentiate a composite like F(x) = f(g(x)) = sin (x> — 4)? The differentiation formu-
las we have studied so far do not tell us how to calculate £'(x). So how do we find the de-
rivative of FF = f o g?

The answer is, with the Chain Rule, which says that the derivative of the composite of

two differentiable functions is the product of their derivatives evaluated at appropriate
points.

THEOREM 3 The Chain Rule

If f(u) is differentiable at the point # = g(x) and g(x) is differentiable at x, then
the composite function (f o g)(x) = f(g(x)) is differentiable at x, and

(f o 2)(x) = f'lgx))-g'(x).
In Leibniz’s notation, if y = f(u) and # = g(x), then

dy 4y du

dx  du dx

where dy/du is evaluated at u = g(x).

EXAMPLE 1  Relating Derivatives

The function y = %x = %(Bx) is the composite of the functions y = %u and u = 3x.

How are the derivatives of these functions related?

Solution  We have

3 b1 du
dx 2’ du 2’ dx '
Sinceé = l°3 we see that
2 2 7
dy dv gy

dx du.dx'
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C:yturns  B: u turns A x turns

FIGURE 3.26 When gear A makes x

turns, gear B makes « turns and gear C
makes y turns. By comparing circumferences
or counting teeth, we see that y = u/2

(C turns one-half turn for each B turn)

and u = 3x (B turns three times for A’s

one), so y = 3x/2. Thus, dy/dx = 3/2 =
(1/2)(3) = (dv/du)(du/dx).

Composite f'- g

Rate of change at
xis f(gx)) - g'x).

g Tt
Rate of change i Rate of chanh
atxis g'(x). at g(x) is f'(g(x)). ————

X u = g(x) y = flu) = f(gx))

FIGURE 3.27 Rates of change multiply: The derivative of f o g at x is the
derivative of f at g(x) times the derivative of g at x.
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EXAMPLE 2

The function
y=9x%+ 6x2 + 1 = (3x2 + 1)

is the composite of y = u? and u = 3x% + 1. Calculating derivatives, we see that

Ay du
@.E = 2u-6x

=2(3x% + 1)-6x
= 36x° + 12x.

Calculating the derivative from the expanded formula, we get

R 2
= (ot F o 1)
= 36x> + 12x.
Once again,
& du_ v _
du dx  dx’

The derivative of the composite function f(g(x)) at x is the derivative of f at g(x)
times the derivative of g at x. This is known as the Chain Rule (Figure 3.27).

EXAMPLE 3  Applying the Chain Rule

An object moves along the x-axis so that its position at any time f = 0 is given by
x(f) = cos(* + 1). Find the velocity of the object as a function of 7.

Solution ~ We know that the velocity is dx/dr. In this instance, x is a composite function:
x = cos(u)and u = 1> + 1. We have

dx
du

du
dt

= —sin(u) x = cos(u)
= 2t. u=1+1

By the Chain Rule,
ds _ ds du
dt  du dt
= —sin(u) 2t :j—; evaluated at u
= —sin(#? + 1) 2¢
= —2tsin(#? + 1). n
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Repeated Use of the Chain Rule

We sometimes have to use the Chain Rule two or more times to find a derivative. Here is
an example.

EXAMPLE 5 A Three-Link “Chain”
Find the derivative of g(7) = tan(5 — sin 27).

Solution  Notice here that the tangent is a function of 5 — sin 27, whereas the sine is a
function of 2¢, which 1s itself a function of 7. Therefore, by the Chain Rule,

g'(1) = %(tan (5 — sin2r))

Derivative of tan u with

. d .
I . _
= sec” (5 — sin 21) T (5 sin ZI)

u=15—sin2¢
Derivative of 5 — sinu
= sec?(5 — sin27)- (0 — cos 21‘-%(21‘)) with u = 2t
= sec?(5 — sin2¢)*(—cos 2f)+2
= —2(cos 2f) sec? (5 — sin2¢). |

The Chain Rule with Powers of a Function

iu” = nu”_lﬂ
dx dx’

Where n is any real number and f(u)=u"

EXAMPLE 6  Applying the Power Chain Rule

(a) %(5}63 - .’C4)7 = 7(5,\‘3 - ,\‘4)6% (5,\‘3 - ,\‘4) !I:o:c:\.L;hi[n\.J'Ruflcz\\'ijrh
= 7(5x° — xM8(53x% — 4x%)

= 7(5x° — xM)8(15x% — 4x?)

by L (3,\, - 2) = Lay - oy

= —1(3x — 2)_2%(3,\‘ - 2) Power Chain Rule with
* u=3x—2,n=—1
= —1(3x — 2)7%(3)
-3
(3x — 2)°

In part (b) we could also have found the derivative with the Quotient Rule. [ |
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EXAMPLE 7  Finding Tangent Slopes

a) Find the slope of the line tangent to the curve y = sin’ x at the point where x = /3.
p g y p

(b) Show that the slope of every line tangent to the curve y = 1/(1 — 2x)? is positive.

Solution

dy d
(a) dx = Ssintx- dx S x Power Chain Rule withu = sinx,n =5

= 5sin*xcosx

The tangent line has slope

dy
dx

map 5(%)4 G) - %'

dv  d 5
(b) a—a(l *Zx)

= —3(1 — 2.3:)‘4-651_ (1 — 2x) Power Chain Rule with « = (1 — 2x),n = =3
= —3(1 — 2x)*-(-2)
-6
(1 —2x)*
At any point (x, v) on the curve, x # 1/2 and the slope of the tangent line is
dy 6
dx (1 — 20"
the quotient of two positive numbers. [

EXAMPLE 9  Moving Counterclockwise on a Circle

Graph the parametric curves

(a) x = cost, Vv = sinf, 0=t=27w.

(b) x = acost, y = asint, 0=t=2m.

Solution

a) Since x? + _1«-‘2 = cos’t + sin’t = 1, the parametric curve lies along the unit circle
. p g

x2 + ‘_1'-‘2 = 1. As ¢ increases from 0 to 277, the point (x,y) = (cost, sinf) starts at
(1, 0) and traces the entire circle once counterclockwise (Figure 3.30).
2

2 2

(b)y Forx =acost,y =asint,0 =1 = 271',“’61]&\’6)62 +_1-’2 = a’cos’t + a’sin’t = a*.
The parametrization describes a motion that begins at the point (a, 0) and traverses the
circle x> + y? = a? once counterclockwise, returning to (a, 0) at t = 2. [ |
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0 (1,0)

37
2

t=20

FIGURE 3.30 The equations x = cost
and y = sin t describe motion on the circle
x> + y? = 1. The arrow shows the
direction of increasing t (Example 9).

Implicit Differentiation

Most of the functions we have dealt with so far have been described by an equation of the
form that expresses y=f(x) explicitly in terms of the variable x. Now if we have equations like the

following forms:
x?+ '-,;2 — 25 =0, ".:2 —x =0, or x>+ _v?' — 9xy = 0.

These equations define an implicit relation between the variables x and y.

When we cannot put an equation F(x,y)=0 in the form y=f(x) to differentiate it in the usual way,
we may still be able to find dy/dx by implicit differentiation.

Implicit Differentiation

1. Differentiate both sides of the equation with respect to x, treating y as a differ-
entiable function of x.

2. Collect the terms with dy/dx on one side of the equation.

3. Solve for dy/dx.
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EXAMPLE 2  Slope of a Circle at a Point

Find the slope of circle x* + y? = 25 at the point (3, —4).

Solution  The circle is not the graph of a single function of x. Rather it is the combined
graphs of two differentiable functions, y; = V25 — x? and y, = —\/25 — x? (Figure
3.36). The point (3, —4) lies on the graph of y,, so we can find the slope by calculating
explicitly:

. _ -2 | __ -6 _3
deli=s 2V25 — 32l 2V25 -9 4

But we can also solve the problem more easily by differentiating the given equation of the
circle implicitly with respect to x:

() + 507 = (29)

dx dx dx
2x + 2 dy =0
X Vo=
dy _x
dx Ve
. 3 3
The slo eat(3,—4)1s—i, = —— ==
P Y (3, —4) —4 4
{F
5 y :Jfl(x)

Xp 5

|
|
|
|
|
|
:
|
(xg- }’3]‘ y=f(0)

FIGURE 3.38 The curve

x* + 33 — 9xy = 0 is not the graph

of any one function of x. The curve can,
however, be divided into separate arcs that
are the graphs of functions of x. This
particular curve, called a folium, dates to
Descartes in 1638.
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EXAMPLE 3  Differentiating Implicitly
Find dy/dx if y* = x* + sinxy (Figure 3.39).

Solution
y2 =x% + sinxy
d (,2) _ i( 2) . d ( ) ) Differentiate both sides with
dx Y de ¥ dy \SIAY respect to x . . .
d}" d : 1|'cullin}__r yasa I‘llmclinn of
2y e 2x + (cosxy) E(xy) x and using the Chain Rule.
&y &y
2y o= 2+ (cosxy)|y + X Treat xy as a product.
dy dy
2y T (cosxy) o) = 2x + (cosxy)y Collect terms with dy/dx . ..
dy
(2y — xcosxy) o 2x + ycosxy ... and factor out dy/dx.
dy  2x + ycosxy \ o
% = 2y — xcosxp Solve for dy/dx by dividing.

Notice that the formula for dy/dx applies everywhere that the implicitly defined curve has
a slope. Notice again that the derivative involves both variables x and y, not just the inde-

pendent variable x. u

y
A

ne ¥ = x? + sinxy
2 —

| | | L 5 x
4 2 2 4

.
_4

FIGURE 3.39 The graph of

y? = x? + sinxy in Example 3. The
example shows how to find slopes on this
implicitly defined curve.
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Derivatives of Higher Order

Implicit differentiation can also be used to find higher derivatives. Here is an example.

EXAMPLE 5  Finding a Second Derivative Implicitly
Find d?y/dx? if 2x* — 3% = 8.

Solution  To start, we differentiate both sides of the equation with respect to x in order to
find y' = dy/dx.

L (2 = 3?) = L(s)

6x2 — 6yy’ =0 Treat y as a function of x.
2=y =0
\:2
v =5 wheny # 0 Solve for y'.

We now apply the Quotient Rule to find y".

" d [x* 2xy — f‘fz,"'” 2x xZ
vV v e - —2-y

dx \ Y e v
Finally, we substitute ' = x?/y to express " in terms of x and y.
s 2x x?[x? 2x  x*
=-S5 =S Ty when y # 0
S (y y3 J "
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2 Integrals and Transcendental Functions

Ch7: Integrals and Transcendental Functions
One-to-One Functions

A function is a rule that assigns a value from its range to each element in its domain. Some
functions assign the same range value to more than one element in the domain. The func-
tion f(x) = x* assigns the same value, 1, to both of the numbers —1 and +1; the sines of
/3 and 27/3 are both \V/3/2. Other functions assume each value in their range no more
than once. The square roots and cubes of different numbers are always different. A func-
tion that has distinct values at distinct elements in its domain is called one-to-one. These
functions take on any one value in their range exactly once.

DEFINITION One-to-One Function

A function f(x) is one-to-one on a domain D if f(x;) # f(x;) whenever x; # x»
inD.

The Horizontal Line Test for One-to-One Functions
A function y = f(x) is one-to-one if and only if its graph intersects each hori-
zontal line at most once.

L

One-to-one: Graph meets each
horizontal line at most once.

FIGURE 7.1 Using the horizontal line test, we

Yooy =2x2 see that y = x* and y = V/x are one-to-one on
their domains (—00, 00) and [0, 00), but y = x?
Same y-value . .
I v and y = sinx are not one-to-one on their
/ \ Y domains (—00, 00).
Same y-value
N / 0s| L—
| | '
| | x i N
-1 o] 1 ™ S5\
6 6 /
y = sinx

Not one-to-one: Graph meets one or
more horizontal lines more than once.
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Inverse Functions

Since each output of a one-to-one function comes from just one input, the effect of the
function can be inverted to send an output back to the input from which it came.

DEFINITION Inverse Function

Suppose that f is a one-to-one function on a domain D with range R. The inverse
function /' is defined by

fNa) =10 if f(b) =a.
The domain of f~!is R and the range of f ! is D.

The process of passing from f to f~' can be summarized as a two-step process.
1. Solve the equation y = f(x) for x. This gives a formula x = f~!(y) where x is
expressed as a function of y.

2. Interchange x and y, obtaining a formula y = f~'(x) where f~' is expressed in the
conventional format with x as the independent variable and y as the dependent variable.

EXAMPLE 2  Finding an Inverse Function

. . 1 .
Find the inverse of y = < x + 1, expressed as a function of x.

2
Solution
1. Solve for x in terms of y: v = %x + 1
2y =x+2
x =2y — 2.

2. [Interchange x and y: y = 2x — 2.

The inverse of the function f(x) = (1/2)x + 1 is the function f '(x) = 2x — 2. To
check, we verify that both composites give the identity function:

) = 2(%); + 1) —2=x+2-2=x

f(fF () = %(2)6 - 2)+1=x—-1+1=ux.

See Figure 7.3. [ |
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FIGURE 7.3  Graphing

f(x) = (1/2)x + land f'(x) = 2x — 2
together shows the graphs’ symmetry with
respect to the line y = x. The slopes are
reciprocals of each other (Example 2).

EXAMPLE 3  Finding an Inverse Function

2

Find the inverse of the function y = x“, x = 0, expressed as a function of x.

Solution We first solve for x in terms of y:

y=x

\/; =V = |x| = x x| = x because x = 0
We then interchange x and y, obtaining

v = V.
2

The inverse of the function y = x?,x = 0, is the function y = Vx (Figure 7.4).

Notice that, unlike the restricted function y = x?, x = 0, the unrestricted function

y = x? is not one-to-one and therefore has no inverse. [
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Derivatives of Inverses of Differentiable Functions

If we calculate the derivatives of f(x) = (1/2)x + 1 and its inverse f '(x) = 2x — 2
from Example 2, we see that

! !
20 = g (2“”1):2
d . d
! '(x) = (20— 2) =2,

The derivatives are reciprocals of one another. The graph of f is the line y = (1/2)x + 1,
and the graph of 7' is the line y = 2x — 2 (Figure 7.3). Their slopes are reciprocals of

one another.
If we set b = f(a), then

1
f (a) fU )

If y = f(x) has a horizontal tangent line at (a, f(a)) then the inverse function f~! has a
vertical tangent line at (f(a), a), and this infinite slope implies that f~! is not differentiable

(f ') =

at f(a). Theorem 1 gives the conditions under which 7! is differentiable in its domain,
which is the same as the range of f.

THEOREM 1 The Derivative Rule for Inverses

If f has an interval / as domain and f'(x) exists and is never zero on 7, then ! is
differentiable at every point in its domain. The value of (f~!)" at a point b in the
domain of 7! is the reciprocal of the value of f' at the point a = f~'(b):

—1y b _
(f7)(b) = f(f )
or
df ! 1
dx b - g (1)
dx | =)
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EXAMPLE 4  Applying Theorem 1

The function f(x) = x%,x = 0 and its inverse f~'(x) = Vx have derivatives f'(x) =
and (F71)'(x) = l/(2\/,_).

Theorem 1 predicts that the derivative of f~!(x) is

_] I; r — 1
AR [ H(x))

1
D)
1

- 2(VA)'

Theorem 1 gives a derivative that agrees with our calculation using the Power Rule for the
derivative of the square root function.

Let’s examine Theorem 1 at a specific point. We pick x = 2 (the number a) and
f(2) = 4 (the value b). Theorem 1 says that the derivative of f at 2, f'(2) = 4, and the
derivative of f ! at £(2), (f !)'(4), are reciprocals. It states that

gy I _ 11 _1
A VA I CI It N

See Figure 7.7. [

41~ Slope4¢(2.4)

|
|
3T ' Sloel
S
2r @) y="Va
: |
|
| |
L | | .y
0 [ 2 3 4

FIGURE 7.7 The derivative of

f7'(x) = Vo at the point (4, 2) is the
reciprocal of the derivative of f(x) = x?at
(2, 4) (Example 4).
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Equation (1) sometimes enables us to find specific values of df '/dx without knowing a

formula for f .

EXAMPLE 5

Finding a Value of the Inverse Derivative

Let f(x) = x* — 2. Find the value of df !/dx at x = 6 = f(2) without finding a formula

for f_l(x).

Solution

See Figure 7.8.

EXERCISES 7.1

df )
Ir . 3x . =12
df_] = 1 - Eq. (1)
= = (.
dx x=£(2) df 12
dx x=2
|
v
A V= x3 -2
6F (2.6)¢ Slope3x?=3(2)%= 12
/ Reciprocal slope: %
— (6.2
/ :
| Ly
-2 0 6
-2

FIGURE 7.8 The derivative of
flx) = x> — 2atx = 2 tells us the
derivative of ! at x = 6 (Example 5).
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The Logarithm Defined as an Integral

Definition of the Natural Logarithm Function

The natural logarithm of a positive number x, written as In x, is the value of an integral.

DEFINITION  The natural logarithm is the function given by

lan[%dt, x>0
1

The function is not defined for x = 0. From the Zero Width Interval Rule for definite

integrals, we also have
1
Inl = / Ldr =0,
1

TABLE 7.1 Typical 2-place
values of [n x
X In x
0 undefined
0.05 —3.00
0.5 —0.69
1 0
2 0.69
3 1.10
4 1.39
10 2.30
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x 1
HO<x<lJMnmx=jﬂ%ﬂ=i/gdt
1 X

gives the negative of this area.

Ifx>1,thenlnx =

gives this area. y=Inx

1\ X
1
Hx=meMXi/%m=Q
|

v=Inx

FIGURE 7.1 The graph of y = Inx and its
relation to the function y = 1/x,x > 0. The
graph of the logarithm rises above the x-axis as x
moves from 1 to the right, and it falls below the
axis as x moves from 1 to the left.

DEFINITION  The number e is that number in the domain of the natural
logarithm satisfying

Interpreted geometrically, the number e corresponds to the point on the x-axis for
which the area under the graph of y = 1/¢ and above the interval [1, e] equals the area of
the unit square. That 1s, the area of the region shaded blue in Figure 7.1 is 1 sq unit when
x = e. We will see further on that this is the same number e ~ 2.718281828 we have en-
countered before.
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The Derivative of y = Inx

d, _ ldu

U= u > 0. (2)

The Integral [(1/u) du

If u 1s a differentiable function that is never zero,

/ledu=1n|u| + C. (4)

The Integrals of tan x, cot x, sec x, and csc x

Integrals of the tangent, cotangent, secant, and cosecant functions

ftanudu = In|secu| + C /sec udu = In|secu + tanu| + C

fCOtlldM = In|sinu| + C / cscudu = —In|cscu + cotu| + C

EXAMPLE 1  Here we recognize an integral of the form %
™2y COSQ 0 = S%du u = 3/+ isin 0, u’z/z :E fosH db),
—m/2 3+ 2smnf 1 u(—=m/2) =1, u(w/2) =75

5

=2ln|u|}
I

=2In|5| — 2In|l]| =2In5

Note thatu = 3 + 2 sin 0 is always positive on [—77/2, /2], so Equation (4) applics. ®
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Equation (4) tells us how to integrate these trigonometric functions.

— ﬂ — ldll u=-cosx > Qon(—m/2,7/2),
/tanx dx = / cosx dx = i ‘ -
du = —sinx dx
= —In|u| + C = —In|cosx| + C
|
=1 + C = ln\sec x| + C Reciprocal Rule

n
|cos x|

For the cotangent,

de = cosxdx _ [ du u = sinx,
cotx dy = sinx u du = cos x dx

= In|u| + C = In|sinx| + C = —In|cscx| + C.

To integrate sec x, we multiply and divide by (sec x + tan x).

B (secx +tanx) [ sec’x + secxtanx
secx dx = sec x dx = dx

(secx + tanx) secx + tanx

u = secx + tanwx,
2
du = (secxtanx + sec”x)dx

= %:1n|lt|+C=1n|secx+tanx|+C

For csc x, we multiply and divide by (csc x + cot x).

B (cscx +cotx) [ cse?x + cscx cotx
cscx dx = CSC X dx = dx

(cscx + cotx) cscx + cotx

—du u = cscx + cotux,
= [ —— = —"In|u|+ C = —Infescx + cotx| + C = (s x cotr — csc 1) di
du = (—csc x cot x csc” x) dx
Properties of Logarithms:
I. Inhbx = Inbh + Inx 2. In [—3 =Inb — Inx
3. In % = —Inx 4. Inx" =rilnx
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y=Inx

0 (1,0

The graph of the natural logarithm.

The Inverse of ln x and the Number e

y
A
8- y=Inlx
or
TH x=lIny
6 —

FIGURE 7.3 The graphs of y = In.x and
vy = In"'x = expx. The number e is
In"'1 = exp (1).
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Inverse Equations for ¢* and In x

en* = x (allx > 0)

In(e*) = x (all x)

The Derivative and Integral of e*

If u is any differentiable function of x, then

ae =@ a

/e“du =e" 4+ C.

THEOREM 1—Laws of Exponents for e*

1. Xy, X1+x2 1

e =e

e 2. e " =
3 L 4 X1V — XX (L, X2\X
s om=e . (@) = 2 = (M)

For all numbers x, xq, and x,, the natural exponential ¢* obeys the following laws:

The General Exponential Function a”

DEFINITION
a 1s given by

a* = e* ]na.

For any numbers ¢ > 0 and x, the exponential function with base
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If @« > 0 and u is a differentiable function of x, then ¢“ is a differentiable function
of x and

du
¥ =g%lna —.

a“ dx

/a”du: a + C.
Ina

Logarithms with Base a

DEFINITION  For any positive number a # 1, the logarithm of x with base a,
denoted by log, x, is the inverse function of a*.

FIGURE 7.4 The graph of 2" and its
inverse, log, x.
The graph of v = log, x can be obtained by reflecting the graph of y = a* across the 45°

line y = x (Figure 7.4). When a = e, we have log, x = inverse of ¢* = Inx. Since log, x
and a” are inverses of one another, composing them in either order gives the identity function.



15 Integrals and Transcendental Functions

Inverse Equations for «* and log, x

a'°s* = x (x > 0)
log,(a¥) = x (all x)

TABLE 7.2 Rules for base a
logarithms

For any numbers x > 0 and
v >0,

1. Product Rule:
log, xy = log,x + log,y

2. Quotient Rule:

loga% = log,x — log, v

3. Reciprocal Rule:

1
loga }_, = _loga Yy

4. Power Rule:
log, x¥ = ylog, x

Derivatives and Integrals Involving log, x

To find derivatives or integrals involving base a logarithms, we convert them to natural
logarithms. If « 1s a positive differentiable function of x, then

d _d () _ 1 d 1l
e (log, u) = dx( ) Inu) .

Ina/  Inadx :lna u dx

1 du

Ina u dx
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EXAMPLE 2  We illustrate the derivative and integral results.

(@) %log”’(i" 1) = 111110 " 3x 1+ 1%(3"‘ 1) = (In 10)(3;,\' +1)
(b) / | o2 e = = '“fodx logy x = 12
= ﬁ/u du u=1Inx, du= %d\-
1 u? 1 (ln-’f)z (ln-’C)z

In2 2 +C_1n2 2 +C_21n2
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Complex Numbers



Argand Diagrams
There are two geometric representations of the complex number z = x + iy:

1. as the point P(x, y) in the xy-plane

2. as the vector OP from the origin to P.

In each representation, the x-axis 1s called the real axis and the y-axis 1s the imaginary
axis. Both representations are Argand diagrams for x + iy (Figurc A.4).
In terms of the polar coordinates of x and y, we have

X = rcos 6, y =rsinf, o -

\9

0] X

FIGURE A.4 This Argand diagram
represents z = x + iy both as a point

College of Electronics | EE 1203 | Source: Thomas Calculus P(xa y) and as a vector OP .



z=x+ iy =r(cosf + isinf). (10)

We define the absolute value of a complex number x + iy to be the length r of a vector
OP from the origin to P(x, y). We denote the absolute value by vertical bars; thus,

x + iy| = Vx? + 2.
If we always choose the polar coordinates 7 and 6 so that » 1s nonnegative, then
r=|x+ iyl

The polar angle 6 1s called the argument of z and 1s written 6 = arg z. Of course, any
integer multiple of 277 may be added to 6 to produce another appropriate angle.

The following equation gives a useful formula connecting a complex number z, its
conjugate z, and its absolute value |z|, namely,

z+z = |z]%.
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Euler’s Formula

The 1dentity
e = cos® + isiné,
called Euler’s formula, enables us to rewrite Equation (10) as
z = re®.

This formula, in turn, leads to the following rules for calculating products, quotients, powers,
and roots of complex numbers. It also leads to Argand diagrams for e”. Since
cos 0 + isin0 is what we get from Equation (10) by taking » = 1, we can say that e” is
represented by a unit vector that makes an angle 6 with the positive x-axis, as shown in
Figure A.S.

College of Electronics | EE 1203 | Source: Thomas Calculus



y

: v o
r ¢ = cos @ + isin@ A e = cos @ + isin@
\ (cos 0, sin 0)
10 -
0
(a) (b)

FIGURE A.5 Argand diagrams fore” = cos# + isinf (a) as a
vector and (b) as a point.
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Equality

a+ib=c+id Two complex numbers (a, b)

if and only if and (c, d) are equal if and only

a=candb = d. ifa =cand b = d.

Addition

(a + ib) + (¢ + id) The sum of the two complex

=(a+c¢)+ilb+d numbers (a, b) and (c, d) is the
complex number (a + ¢, b + d).

Multiplication

(a + ib)(c + id) The product of two complex

= (ac — bd) + i(ad + bc) numbers (a, b) and (¢, d) is the
complex number (ac — bd, ad + bc).

cla + ib) = ac + i(bc) The product of a real number ¢
and the complex number (a, b) is
the complex number (ac, bc).
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c+id (c+id)a—ib) (ac + bd) + i(ad — bc)
a+ib (a+ ib)a — ib) a’ + b? '

The result 1s a complex number x + iy with

ac + bd )= ad — bc
a* + b*’ a’ + b’
and a> + b> # 0,sincea + ib = (a,b) # (0,0).
The number a — ib that 1s used as multiplier to clear the i from the denominator is

called the complex conjugate of ¢ + ib. It is customary to use z (read “z bar”) to denote
the complex conjugate of z; thus

z = a + ib, z=a — ib.

Multiplying the numerator and denominator of the fraction (¢ + id)/(a + ib) by the com-
plex conjugate of the denominator will always replace the denominator by a real number.
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EXAMPLE 1  Arithmetic Operations with Complex Numbers

(a) 2+3)+(6—-2)=(2+6)+(3—2)i=8+i
(b) 2+3i)—(6—-2))=(2—-6)+3—(=2))i=—-4+5i
(©) (2 + 3i)6 — 2i) = (2)(6) + (2)(—2i) + (3i)(6) + (31)(—2i)
=12 —4i + 18i — 6i° = 12 + 14i + 6 = 18 + 14i
Y a6 4 o
@ 5 = a6
_ 12+ 4i + 18i + 6i°
36 + 12i — 12i — 47

_6+28 3 11,
40 20 " 20

College of Electronics | EE 1203 | Source: Thomas Calculus



Products

To multiply two complex numbers, we multiply their absolute values and add their angles. Let

zZ|] = },18161’ Zy = 7‘28192, (11)
¥
so that
21| = 71, argz; = 0y; |z2| = 12, arg z; = 0.
Then
lez — iﬂl elQ] .r2ef92 — rl ]ﬂ2ef(9]+92)
and hence FIGURE A.6 When z; and z; are
multiplied, |z1z2| = 71 -2 and
|2122| = nMry = |Zl|'|22| arg (z1z2) = 01 + 6.
(12)

arg (z1z2) = 01 + 0, = arg z; + arg z;.

Thus, the product of two complex numbers is represented by a vector whose length 1s the
product of the lengths of the two factors and whose argument 1s the sum of their arguments
(Figure A.6). In particular, from Equation (12) a vector may be rotated counterclockwise
through an angle # by multiplying it by e”. Multiplication by 7 rotates 90°, by —1 rotates
180°, by —i rotates 270°, and so on.
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A
{142
0
— |
22
nr 7
r2 I/.1
6,
> X

O

FIGURE A.6 When z; and z; are
multiplied, |z, z2| = 7+ and
arg (lez) =0, + 6>.
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EXAMPLE 2  Finding a Product of Complex Numbers

Letzy =1+ i,z = V3 — i We plot these complex numbers 1in an Argand diagram

(Figure A.7) from which we read off the polar representations
Z1 = \[26”7/4, Zy — 2671‘17/6.

Then

Z1Zy = 2\/5 exp(%r — %) = 2\/5 exp(%)

_ e T :
= 2\5 (cos B + isin 12) 2.73 + 0.73i.

The notation exp (4) stands fore”.

1t =V3 i

FIGURE A.7  To multiply two complex
numbers, multiply their absolute values
and add their arguments.
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Zl=1+i

1 =V3 —i

FIGURE A.7  To multiply two complex
numbers, multiply their absolute values
and add their arguments.
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Quotients

Suppose 7, # 0 in Equation (11). Then
6,

ol i [+
2L _ne T o6,
) ,,.28192 )
Hence
Z] _?"1_|Zl| d Z] A 0, —

That 1s, we divide lengths and subtract angles for the quotient of complex numbers.

EXAMPLE 3  Letz; =1 +iandz = V3 — i,asin Example 2. Then

1 + i . \/Et?m-/4 . \/5 Smif/12 S . .S
= e — 5 e ~ 0.707( cos 5= + isin—=
\/g — De i/ 2 12 12

~ 0.183 + 0.683i.
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Powers

If n 1s a positive integer, we may apply the product formulas in Equation (12) to find

zh = zeze o oz, n factors
With z = re®, we obtain
7' = (i"em)n — i‘nei(9+9+m+9) n summands
= e, (13)

The length » = |z|is raised to the nth power and the angle § = arg z is multiplied by n.
If we take » = 1 in Equation (13), we obtain De Moivre’s Theorem.

De Moivre’s Theorem

(cos@ + isinB)" = cosnb + isinnd. (14)

If we expand the left side of De Moivre’s equation above by the Binomial Theorem
and reduce it to the form a + ib, we obtain formulas for cos nf and sin n6 as polynomials

of degree n in cos # and sin 6.
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EXAMPLE 4 Ifn = 3 in Equation (14), we have
(cos @ + isin6)’ = cos36 + isin36.
The left side of this equation expands to
cos® 0 + 3icos’fsinf — 3cosfsin’h — isin’ 6.
The real part of this must equal cos 36 and the imaginary part must equal sin 36 . Therefore,
cos 30 = cos® 6 — 3 cos 0 sin® 6,

sin 30 = 3 cos*fsinh — sin’ H. O
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Roots

If z = re® is a complex number different from zero and # is a positive integer, then there

arc precisely n different complex numbers wy, wy, ..., w,—1, that are nth roots of z. To sece
why, let w = pe™ be an nth root of z = re™, so that

w' =z

or
pneffza — },eiﬁ
Then
p=\r
1s the real, positive nth root of r. For the argument, although we cannot say that na and

f must be equal, we can say that they may differ only by an integer multiple of 27 . That
1S,

noe = 0 + 2k, k=0,=+1,£2,....
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Theretore,

azg-l-kz%.

0

Hence, all the nth roots of z = re™ are given by

/re® = \Vrexp i Q+k2_7r : k=0,=+I1,£2,.... (15)
P\ % n

There might appear to be infinitely many different answers corresponding to the
infinitely many possible values of &k, but k = n + m gives the same answer as k = m in
Equation (15). Thus, we need only take n consecutive values for k& to obtain all the
different nth roots of z. For convenience, we take

k=20,1,2,....,n — 1.

All the nth roots of re™ lie on a circle centered at the origin and having radius equal to
the real, positive nth root of . One of them has argument « = 6/n. The others are uni-
formly spaced around the circle, each being separated from its neighbors by an angle equal
to 27r/n. Figure A.8 illustrates the placement of the three cube roots, wy, wy, w,, of the
complex number z = re®
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Wi / 2 \Wo
/!
T 2
P ™
| \4
—l > X
-16 }
a
2
2 T W
w %h/ 2
2
FIGURE A.8 The three cube roots of FIGURE A.9 The four fourth roots of
if
z=re". —16.
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EXAMPLE 5 Finding Fourth Roots

Find the four fourth roots of —16.

Solution As our first step, we plot the number —16 in an Argand diagram (Figure A.9)
and determine its polar representation re’. Here, z = —16, 7 = +16, and § = 7. One of
the fourth roots of 16e™™ is 2e'™*. We obtain others by successive additions of

27/4 = 1r/2 to the argument of this first one. Hence,

4 — (m 37 Sm Tw
\/16expm—2expz(4, 4 4 4>,

and the four roots are
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and the four roots are

cos = + jsinZ | = \/2(1 + )

4 4

3T . . 31
COS 4 + 1 SIn 4

S5 .. S
COS 4 + 7 SIn 4

T .. T
CcOS 4 + 1 SIn 4

College of Electronics | EE 1203 | Source: Thomas Calculus

— \/5(—1 + i)
= \V2(=1 — i)

= V201 - ).

>'<

/ 2

o[y
N

—_l

3
I
~16 \

FIGURE A.9 The four fourth roots of
—16.
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EXERCISES

Operations with Complex Numbers

1. How computers multiply complex numbers Find (a, b) - (¢, d)
= (ac — bd,ad + bc).

a. (2,3)-(4,-2) b. (2,-1)-(=2,3)
c. (=1,-2)-(2,1)
(This 1s how complex numbers are multiplied by computers.)

2. Solve the following equations for the real numbers, x and y.

a. (3 +4i)° —2(x —iy) =x+ iy

1+ i) 1
b. (1—1’) +x+z’y_l+l

c. 3 —2i)x +iy)=2(x—2y)+2i—1
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Graphing and Geometry

3. How may the following complex numbers be obtained from
z = x + iy geometrically? Sketch.

a. z b. (—z)
C. —z d. 1/z

4. Show that the distance between the two points z; and z; in an
Argand diagram is |z; — z»|.
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In Exercises 5—10, graph the points z = x + iy that satisfy the given
conditions.

5. a. |z]| =2 b. |z| <2 c. |z| > 2

6. |z—1|=2 7.z + 1] =1

8. |z+ 1|=|z — 1] 9. |z+i|=|z— 1|

10. |z + 1| = |z|

Express the complex numbers in Exercises 11-14 in the form re”,
with » = 0 and —7 < 6 = 7. Draw an Argand diagram for each

calculation.

1. (1+V-3) 12
1 +iV3

13 14. (2 + 3i)(1 — 2i)

1 -iV3
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Powers and Roots

Use De Moivre’s Theorem to express the trigonometric functions in
Exercises 15 and 16 in terms of cos € and sin 6.

15.
17.

18.
19.
20.
21.
22,
23.
24.

cos 46 16. sin 46

Find the three cube roots of 1.

Find the two square roots of i.

Find the three cube roots of —8&i.

Find the six sixth roots of 64.

Find the four solutions of the equation z* — 2z* + 4 = 0.
Find the six solutions of the equation z® + 2z° + 2 = 0.
Find all solutions of the equation x* + 4x? + 16 = 0.

Solve the equation x* + 1 = 0.

College of Electronics | EE 1203 | Source: Thomas Calculus
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Matrices and Determinants
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Matrices and Vectors

Matrices, which are rectangular arrays of numbers or functions, and vectors are the
main tools of linear algebra. Matrices are important because they let us express large
amounts of data and functions in an organized and concise form. Furthermore, since
matrices are single objects, we denote them by single letters and calculate with them
directly. All these features have made matrices and vectors very popular for expressing
scientific and mathematical ideas.

Advanced Engineering Mathmatics by Erwin Kresyzic - Ch 7



General Concepts and Notations

Let us formalize what we just have discussed. We shall denote matrices by capital boldface
letters A, B, C,---, or by writing the general entry in brackets; thus A = [a;], and so
on. By an m X n matrix (read m by n matrix) we mean a matrix with m rows and n
columns—rows always come first! m X n is called the size of the matrix. Thus anm X n
matrix is of the form

a1l a2 d1n
da1 doo, Aoy,
(2) A = [ajk] =
_aml Am2 amn_

Each entry in (2) has two subscripts. The first is the row number and the second is the
column number. Thus asq is the entry in Row 2 and Column 1.

If m = n, we call A an n X n square matrix. Then its diagonal containing the entries
ai1, o9, ***, Ay 1S called the main diagonal of A. Thus the main diagonals of the two
square matrices in (1) are aq1, aa9, ass and e~ ", 4x, respectively.

Square matrices are particularly important, as we shall see. A matrix of any size m X n

is called a rectangular matrix; this includes square matrices as a special case.
Advanced Engineering Mathmatics by Erwin Kresyzic - Ch 7



Vectors

A vector is a matrix with only one row or column. Its entries are called the components
of the vector. We shall denote vectors by lowercase boldface letters a, b,--- or by its
general component in brackets, a = [«;], and so on. Our special vectors in (1) suggest
that a (general) row vector is of the form

a=\|a as -  ayl. For instance, a=[—-2 5 08 0 1].

A column vector is of the form

by _
4
bo
b= | For instance, b = 0 |.
‘ —7
bm -

Advanced Engineering Mathmatics by Erwin Kresyzic - Ch 7



Equality of Matrices

Two matrices A = |a;] and B = [b; ] are equal, written A = B, if and only if
they have the same size and the corresponding entries are equal, that is, a;1 = b11,
a12 = b9, and so on. Matrices that are not equal are called different. Thus, matrices
of different sizes are always different.

The following matrices are all different. Explain!

P O I N B v B FOA

Advanced Engineering Mathmatics by Erwin Kresyzic - Ch 7



Addition of Matrices

The sum of two matrices A = |a;] and B = [bj;] of the same size is written
A + B and has the entries aj; + bj; obtained by adding the corresponding entries
of A and B. Matrices of different sizes cannot be added.

5 -1 0
31 0

1 5 3
, then A+ B = .
3 2 2

If a=[5 7 2] and b=[-6 2 0], then a+b=[-1 9 2]
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Scalar Multiplication (Multiplication by a Number)

The product of any m X n matrix A = [a;; | and any scalar ¢ (number c) is written
cA and is the m X n matrix cA = [ca;] obtained by multiplying each entry of A

by c.

Here (—1)A is simply written —A and is called the negative of A. Similarly, (—k)A is
written —kA. Also, A + (—B) is written A — B and is called the difference of A and B

(which must have the same size!).

Scalar Multiplication

(27 —18 27 18 3 -2 0 0

10
If A=|0 09|, then —-A=| 0 —09] EA= 0 1| 0A=|0 o0
190 —45) |90 45| 10 -5 0 0]
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Rules for Matrix Addition and Scalar Multiplication. From the familiar laws for the
addition of numbers we obtain similar laws for the addition of matrices of the same size
m X n, namely,

(a) A+B=B+A

b) A+B)+C=A+ B+ O (written A + B + C)
3)

(¢) A+0=A

(d) A+ (—A) =0.

Here 0 denotes the zero matrix (of size m X n), that is, the m X »n matrix with all entries
zero. If m = 1 or n = 1, this is a vector, called a zero vector.

Advanced Engineering Mathmatics by Erwin Kresyzic - Ch 7



Hence matrix addition is commutative and associative [by (3a) and (3b)].
Similarly, for scalar multiplication we obtain the rules

(4)

(a) c(A+B)=cA + B
(b) (c + kA =cA + kA
(c) c(kA) = (ck)A
(d) 1A = A.

Advanced Engineering Mathmatics by Erwin Kresyzic - Ch 7
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PROBLEM SET 7.1

Let

Advanced Engineering Mathmatics by Erwin Kresyzic - Ch 7

-5

—30 |.

10

Find the following expressions, indicating which of the
rules in (3) or (4) they illustrate, or give reasons why they
are not defined.
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PROBLEM SET 7.1

Find the following expressions, indicating which of the 14, (5u + 5v) — %w, —20(u + v) + 2w,
rules in (3) or (4) they illustrate, or give reasons why they E—(u+v), 10u+v) +w
are not defined.

15.(u+v)—w, u+(v—w), C+ Ow,
OE +u-—v

8. 2A +4B, 4B + 2A, OA + B, 04B —4.2A

9. 3A, 0.5B, 3A +05B, 3A +0.5B + C
10.
11.

12.

13.

16. 15v — 3w — Ou, —3w + 15v, D — u + 3C,

85w — 11.1u + 0.4v

(4-3)A, 4GA), 14B — 3B, 11B 17. Resultant of forces. If the above vectors u, v, w

§C + 10D, 2(5D + 4C), 0.6C — 0.6D, represent forces in space, their sum is called their
0.6(C — D) resultant. Calculate it.

C+D)+E, DOD+E)+C, 0C-—-E)+ 4D,

A — 0C 18. Equilibrium. By definition, forces are in equilibrium
2-7)C, 2(7C), -D+0E. E—D+C +u if their resultant is the zero vector. Find a force p such

that the above u, v, w, and p are in equilibrium.
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Multiplication of a Matrix by a Matrix

The product C = AB (in this order) of an m X n matrix A = |aj, | times an r X p
matrix B = [bj;] is defined if and only if r = n and is then the m X p matrix
C = [cj ] with entries

n j=1,---,m
(1) Cjk = 2 Clﬂbm = ajlblk + ajzbzk + et ajnbnk =1
P =1,-,p.

The condition r = n means that the second factor, B, must have as many rows as the first

factor has columns, namely n. A diagram of sizes that shows when matrix multiplication
is possible is as follows:

A B = C
[m X n][n X p] =[mXp].

Advanced Engineering Mathmatics by Erwin Kresyzic - Ch 7
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The entry cj, in (1) is obtained by multiplying each entry in the jth row of A by the
corresponding entry in the kth column of B and then adding these n products. For instance,
Co1 = d91by1 + assbsy + -+ + as,b,,1, and so on. One calls this briefly a multiplication
of rows into columns. For n = 3, this is illustrated by

n=3 p=2 p=2
A A
s N\ 7 N T
~ ] — B
@1 Gy Qg3 b, b, €11 1
4 < Qyp Aoy Qo3 21 Y22 | =] €1 C22 e 4
m = m =
Ayp A3y Qg3 by, b3 C31 €32
a a a C C
L L% %a2 s | ‘a1 Caz |

Notations in a product AB = C
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Matrix Multiplication

3 5 —1]l[2 -2 3 1] [22 -2 43 4]
AB=| 4 0 21||5 o 7 8|=|26 -16 14 6
-6 -3 2]|9 -4 1 1| |-9 4 —37 -28]

Herec;1 =32+ 55+ (—1) -9 = 22,and soon. The entry in the boxiscog =4 -3 +0-7+ 2 -1 =14,
The product BA is not defined. =

Multiplication of a Matrix and a Vector
4 21[3 4-3+2-5 22 3[4 2
= = whereas is undefined. H
1 8|15 1-3+8-5

43 5 1 8
Products of Row and Column Vectors

1 1 36 1
3 6 1]|2|=[19], 21[3 6 1]=|6 12 2| =
| 4 | 4| 12 24 4
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CAUTION! Matrix Multiplication Is Not Commutative, AB # BA in General

This is illustrated by Examples 1 and 2, where one of the two products is not even defined, and by Example 3,
where the two products have different sizes. But it also holds for square matrices. For instance,

1 -1 1 0 O —1 1 | 1 99 99
= but = .
100 100 I -1 0 O I —1]]100 100 —99 —-99
It is interesting that this also shows that AB = 0 does not necessarily imply BA = 0or A =0or B = 0. We
shall discuss this further in Sec. 7.8, along with reasons when this happens. [
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(a) (kA)B = k(AB) = A(kB) written kKAB or AkB
(b) ABC) = (AB)C written ABC

(c) (A+B)XC=AC+ BC

(2)

d CA+B)=CA+ CB

provided A, B, and C are such that the expressions on the left are defined; here, k is any
scalar. (2b) is called the associative law. (2¢) and (2d) are called the distributive laws.
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Transposition

We obtain the transpose of a matrix by writing its rows as columns (or equivalently its
columns as rows). This also applies to the transpose of vectors. Thus, a row vector becomes
a column vector and vice versa. In addition, for square matrices, we can also “‘reflect”
the elements along the main diagonal, that is, interchange entries that are symmetrically
positioned with respect to the main diagonal to obtain the transpose. Hence aqo becomes
as1, az1 becomes a;3, and so forth. Example 7 illustrates these ideas. Also note that, if A
is the given matrix, then we denote its transpose by AT,

Transposition of Matrices and Vectors

5 4
5 -8 1

If A = ., then A'=]|-8 0
4 0 0

1 0

Advanced Engineering Mathmatics by Erwin Kresyzic - Ch 7
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Transposition of Matrices and Vectors

The transpose of an m X n matrix A = [a;,] is the n X m matrix AT (read A
transpose) that has the first row of A as its first column, the second row of A as its
second column, and so on. Thus the transpose of A in (2) is A’ = [ay;], written out

dijp d21 "t dmi
- di2 d22 Am2

9) A = |ag) =
_aln dan T am'n_

As a special case, transposition converts row vectors to column vectors and conversely.
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Rules for transposition are

(a) AH" = A
T AT T
(10) b)) A+B) =A +B
(c) (cA)T = cAT

(d) (AB)" = B'A".

CAUTION! Note that in (10d) the transposed matrices are in reversed order.
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If

A little more compactly, we can write

E

5 4 30
—8 1|7
=|-8 0|, |8 -1
0 0
1 0 1 -9

6 2 3]"=|2]- Conversely,

8 0l

7 3 8 1
-lo -1 -9

17 5 4

T

=[6 2 3]

Advanced Engineering Mathmatics by Erwin Kresyzic - Ch 7
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Special Matrices

Certain kinds of matrices will occur quite frequently in our work, and we now list the
most important ones of them.

Symmetric and Skew-Symmetric Matrices. Transposition gives rise to two useful
classes of matrices. Symmetric matrices are square matrices whose transpose equals the

matrix itself. Skew-symmetric matrices are square matrices whose transpose equals
minus the matrix. Both cases are defined in (11) and illustrated by Example 8.

(11) Al = A (thus Ay = ajk)a Al = —A (thus dx; = —djk, hence aj; = 0).

Symmetric Matrix Skew-Symmetric Matrix

Advanced Engineering Mathmatics by Erwin Kresyzic - Ch 7
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Special Matrices

Symmetric and Skew-Symmetric Matrices

20 120 200] 0 1 -3
A =120 10 150 is symmetric, and B=|—-1 0 -2 is skew-symmetric.
| 200 150 30 3 2 0|

For instance, if a company has three building supply centers Cy, Cy, C3, then A could show costs, say, a;; for
handling 1000 bags of cement at center Cj, and a3, (j # k) the cost of shipping 1000 bags from C; to Cy,. Clearly,
aj. = ay; if we assume shipping in the opposite direction will cost the same.

Symmetric matrices have several general properties which make them important. This will be seen as we

proceed. H
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Special Matrices

Triangular Matrices. Upper triangular matrices are square matrices that can have nonzero
entries only on and above the main diagonal, whereas any entry below the diagonal must be
zero. Similarly, lower triangular matrices can have nonzero entries only on and below the
main diagonal. Any entry on the main diagonal of a triangular matrix may be zero or not.

Upper and Lower Triangular Matrices

_ _ _ _ |3 0 0 0
1 4 2 2 0 0
1 3 9 -3 0 0
.10 3 2, g8 —1 01, . N
0 2 1 0 2 0
0 0 6 7 6 8
- - - - 1 9 3 6

Upper triangular Lower triangular
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Special Matrices

Diagonal Matrices. These are square matrices that can have nonzero entries only on
the main diagonal. Any entry above or below the main diagonal must be zero.

If all the diagonal entries of a diagonal matrix S are equal, say, ¢, we call S a scalar
matrix because multiplication of any square matrix A of the same size by S has the same
effect as the multiplication by a scalar, that is,

(12) AS = SA = CA.

In particular, a scalar matrix, whose entries on the main diagonal are all 1, is called a unit
matrix (or identity matrix) and is denoted by I, or simply by L. For I, formula (12) becomes

(13) Al =1A = A.
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Special Matrices

Diagonal Matrix D. Scalar Matrix S. Unit Matrix |

(2 0 0] (¢ 0 0] i
D=|0 -3 0|, Ss=|0 ¢ 0o 1=
0 0 0] 0 0 ¢ i
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PROBLEM SET 7.2

P. 270
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Determinants
With each square matrix A we associate a number det(A) or |a;| called the
determinant of A, calculated from the entries of A as follows:

For n=1, det(a)=a,

dyp Ay

-

Forn =2, det{

= d; Ay, —dyda,
a, dj

Minors

To each element of a 3x3 matrix there corresponds a 2x2 matrix that 1s
obtained by deleting the row and column of that element. The determinant of the
2 x 2 matrix 1s called the minor of that element.
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For a matrix of dimension 3%3, we define

all all al‘ all all al‘
Uy, dyg Ay Ay
det| a, a,, a, |=|a, a, ay|=a, —d,
sy, ds; ay Ay
_a’-l a‘l a’-*_ a31 a%: ag,
a, a,|. , a, a,,|. ,
where | =  “|istheminorofa, | ° “~|is the minor of a ,,
a;, Ay, a;, 4a;
21 a'!l'! . R
and | ~ | is the minor of a ;.
a, a,,
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Ex.4:

a>[
b){

Find the determinant of each matrix Ex.5: Find the determinant of A where:

13 1 3 =5
-2 5 A=|-2 4 6
3 0O -7 9
=1(5)-3(-2)=5+6=11 .
-2 5 Sol.: By choosing the first column we get
1 3 =5
4 6
2 4 det(4A)=|-2 4 6|=1- ; 9—(—2)-
6 12 o -7 of I
‘ ‘=2(12)—4(6):0 =1-[36-(-42)]+2-(27-35)
6 12 =78-16=62
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Ex.6: Evaluate the determinant of A 1f:

1 3 =5]
A=|-2 4 6
0 -7 9
Solution:
By choosing the second row we get
1 3 =5
3 - 1 -5 1 3
det(4)=-2 4 6|=—(=2) +4 —6-
-7 9 0 9 0 -7
0O -7 9

=2(27-35)+4(9-0) - 6(-7-0)

=-164+36+42=062
Note that 62 1s the same value that was obtained for this determinant in Example
above.

Note:
If a matrix A 1s triangular (either upper or lower), 1ts determinant is just the
product of the diagonal elements:
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Solving a system of linear equations
Let A be a matrix, X a column vector, B a column vector then the system of
linear equations is denoted by AX=B.

The augmented matrix

The solution to a system of linear equations such as
x—=2y=-5

3x+y=6

Depends on the coefficients of x and y and the constants on the right-hand side
of the equation. The matrix of coefficients for this system 1s the 2 x 2 matrix

1 -2
3 1
If we insert the constants from the right-hand side of the system into the matrix
of coefficients, we get the 2 x 3 matrix

1 -2|-5
3 116
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We use a vertical line between the coefficients and the constants to represent the
equal signs. This matrix is the augmented matrix of the system also it can be written

LM

Note:

Two systems of linear equations are equivalent 1f they have the same solution
set. Two augmented matrices are equivalent 1f the systems they represent are
equivalent.

Ex.1:
Write the augmented matrix for each system of equations.
xX+y—z=5
y et 3 x+y=1
2 Irtas: b) y+z=6
2x—y+4z=0 _0
1 1 1|5 11 ol
2 01 01 1|6
2 -1 410 0 0 15
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We'll take two methods to solve the system AX=B

1) Cramer's rule
The solution to the system

ax+by=c

a,x+by=c,

D,
Is given by x = % and y=—  where
p=" % p % b g p 2|
a, b, "o e, b, " a,

Provided that D =0
Notes:

1. Cramer's rule works on systems that have exactly one solution.
2. Cramer's rule gives us a precise formula for finding the solution to an

independent system.

3. Note that D is the determinant made up of the original coefficients of
x and y. D 1s used in the denominator for both x and y. D_ is obtained by

replacing the first (or x ) column of D by the constants ¢, and c,. D,

found by replacing the second (or y) column of D by the constants ¢, and c, .
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Ex.1: Use Cramer's rule to solve the system:

3Ix-2y=4
2x+y=-3
Sol.:
First find the determinants D, D,, and D, :
= =3-(-4=7
N
4 =2 4
D = =4-6=-2 D = =-9-8=-17
X _3 1 ] _3
By Cramer's rule, we have
D, 2 D, 17
x=—*=-——=  and y=—=-——
D 7 D 7

Check 1n the original equations. The solution set 1s {(—%,— %)1
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Ex.2: Solve the system:

2x+3y=9
—2x-=3y=5
Sol.:
Cramer's rule does not work because
=, 3 =—6—-(—6)=0
Because Cramer's rule fails to solve the system, we apply the addition method:
2x+3y=9
—2x-3y=5
0=14

Because this last statement 1s false, the solution set 1s empty. The original equations
are inconsistent.
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Ex.3: Solve the system:

3x=5y=7
6x—10y =14
Sol.: Cramer's rule does not apply because
=k _10 =-30-(-30)=0
Multiply Eq.(1) by -2 and add it to Eq.(2)
—6x+10y=-14
6x—10y =14
0=0

Because the last statement 1s an 1dentity, the equations are dependent. The
solution set 1s {(x_, y)|3x — Sy = 7}.
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Ex.4: Use Cramer's rule to solve the system:
2x=3(y+1)=-3

2y=3x-5
Sol.:  First write the equations in standard form, Ax+ By=C
2x=3y=0

—3x+2y=-5
Find D,D,, and D, :

2 =3

D= =4-9=-5
-3 2

—: 2 0
= =0-15=-15, D, = =-10-0=-10
“ 2 -3 =5

Using Cramer's rule, we get

— D, -
D‘Y = 15 =3 and V= . = 10=2
D =5 D =5

Because (3,2) satisfies both of the original equations, the solution se 1s {(3,2)}.
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Cramer’s Rule for Linear Systems of Three Equations
a;1X1 + ajpxe + aizxs = by

&) dg1X1 t dgoXo T do3X3 = by
az1X1 + azeXe + azzxz = b3

is

D, Do D3
6 — _, — _,
(©) 1 D 2 D D

with the determinant D of the system given by (4) and

by a2 ais a1 b1 ais a11  dio

Dy =|bs a9a as3|, Do =|asy by as3|, D3z =|as1 dag2

bs ass ass asy bz ass a1 dss

Note that D;, Dy, D3 are obtained by replacing Columns 1, 2, 3, respectively, by the

column of the right sides of (5).
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Example:

Solve the linear system of the following equations:
2x1 — 6x, +x3 = 2

X, +x3 =1

x1 - XZ - X3 — O

By using the Cramer's rule.

Solution:



PROBLEM SET 7.7

Solve by Cramer’s rule.

21. 3x — S5y =155
6x + 16y = 5.0

22. 2x — 4y = =24

5¢+2y= 0

23. d3y—4d4z= 16 24. 3x—2y+ z= 13

2x — 5y + Tz = =27
—X —92= 9

25. 4w+ x+ vy
w — 4x + z
w —4y+ z

x+ y—4z

—2x+ v+4z= 11
X +4y —5z= —31
—10

10
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/.8 Inverse of a Matrix.

In this section we consider square matrices exclusively.
The inverse of an n X n matrix A = [a;] is denoted by A™" and is an n X n matrix

such that
1) AATT=ATTA =1

where I is the n X n unit matrix (see Sec. 7.2).
If A has an inverse, then A is called a nonsingular matrix. If A has no inverse, then

A is called a singular matrix.
If A has an inverse, the inverse is unique.
Indeed, if both B and C are inverses of A, then AB = I and CA = 1, so that we obtain

the uniqueness from

B=1B = (CA)B =C(AB) = CI = C.
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Inverse of a Matrix by Determinants

The inverse of a nonsingular n X n matrix A = [a;;,] is given by

Ci1 Co1 Cna
| | Cis Coo = Cpo
4 1o LT =— "=
det A det A . . .
_Cln C2n Cnn_

where Cji is the cofactor of aj in det A
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In particular, the inverse of

di1  di12 _q 1 a22
(4%) A= IS A =

d21 d22 —ds1

EXAMPLE 2
Inverse of a 2 X 2 Matrix by Determinants

o1 4 - 0.4
A= ., ATl = — =
10 -2 3 -0.2

Advanced Engineering Mathmatics by Erwin Kresyzic -
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EXAMPLE 3

find the inverse of

-1 1
Ci1 = =
3 4
3 1
Cia = —
-1 4
3 -1
Ciz =
—1 3
[ 0.7
ATl=]-13 -
| 08

0.2
0.2
0.2

-1 1 2
30—1 1
-1 3 4]

1 2 1 2
Co1 = — = 2, C31 =
3 4 -1 1
-1 2 -1 2
—13, C(Coo = = -2, C39 = —
-1 4 3 1
-1 1 —1 1
Coz = — =2, (33=
-1 3 3 -1
0.3 |
0.7 |.
—0.2
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2 TECHNIQUES OF INTEGRATION

TECHNIQUES OF INTEGRATION

OVERVIEW The Fundamental Theorem connects antiderivatives and the definite integral.
Evaluating the indefinite integral
/ f(x) dx

is equivalent to finding a function F such that F'(x) = f(x), and then adding an
arbitrary constant C:

/f(vc) dx = F(x) + C.
Basic Integration Formulas

[ stetng@ras = [ s

where u = g(x) is a differentiable function whose range is an interval / and f is continuous
on /. Success In integration often hinges on the ability to spot what part of the integrand
should be called « in order that one will also have du, so that a known formula can be

applied. This means that the first requirement for skill in integration is a thorough mastery of
the formulas for differentiation.



2x — 9

x + 1

du

Vu

/u_l/z du

(—1/2)+1
—1/2) + 1
wl’? + ¢

+ C

=2VxP— 9%+ 1+ C

3 TECHNIQUES OF INTEGRATION
TABLE 8.1 Basic integration formulas
1. /d11:1t+C 13. /cotztdu:1n|sinu\ +C
= -1 + C
2. /kdu =hku+ C (any number k) i n feseu]
14. /e”du ="+ C
3/dzt+a’v) fa‘u+ja'v i
15. /a“a‘u = lﬁa +C (a>0a#1)
4'/lld11:fz+l+c (n#—1) )
du 16. / sinhudu = coshu + C
5./—,:]11|u|+C i
J 17. / coshudu = sinhu + C
6. / sinudu = —cosu + C .
g 18. /L = sin ! (%) +C
7. / cosudu = sinu + C a? —u?
. " du 1. (I()
19. 4 tan =+ C
8. / sec?udu = tanu + C / a’ + 112 a
. . du 1 g |u
20. ——————=—_sec || TC
9. / esc?udu = —cotu + C / Nt — a2 4 a
. . du o fu
| m—= =)+ >
10. /sec utanudu = secu + C 21 / Va2 + = sinh (") ¢ (a>0)
. ' du - (u)
_ 22. ————=cosh (7| +C (> a>0)
11. /cscucotuduf cscu + C /m a
12. / tanudu = —In |cosu| + C
=1In|secu| + C
EXAMPLE 1  Making a Simplifying Substitution
Evaluate
2x — 9
X
x + 1
Solution

u=x>— 9 + 1,
du = (2x — 9) dx.

Table 8.1 Formula 4,
with n = —1/2




4 TECHNIQUES OF INTEGRATION

EXAMPLE 2  Completing the Square

Evaluate

dx
f V8 — x? .

Solution We complete the square to simplify the denominator:
v — x> = —(x* — 8x) = —(x* — 8 + 16 — 16)
= —(x* =8 + 16) + 16 = 16 — (x — 4)*.
Then

dx B dx
f V8 — &? / V16 — (x — 4)°

_ du a=4u=(x—4),
\/ﬂ du = dx

.| u

= sin i C Table 8.1, Formula 18

= sin ! (x ; 4) + C. ]

EXAMPLE 3  Expanding a Power and Using a Trigonometric Identity

Evaluate

f(secx + tan x)* dx.

Solution We expand the integrand and get
(secx + tanx)® = sec’x + 2 secxtanx + tan®x.

The first two terms on the right-hand side of this equation are familiar; we can integrate
them at once. How about tan” x? There is an identity that connects it with sec? x:

2

tan>x + 1 = sec’x, tan’ x = sec’

x — 1.



5 TECHNIQUES OF INTEGRATION

We replace tan” x by sec” x — 1 and get

/(sec x + tanx)?dx = /(sec2 x + 2secxtanx + sec’x — 1)dx

= 2/ sec” x dx + 2/ secxtanx dx — / 1 dx

= 2tanx + 2secx — x + C.

EXAMPLE 4  Eliminating a Square Root

Evaluate
/4
f V1 + cos4dxdx.
0

Solution We use the identity

_ 1+ cos 260

> \ or 1 + cos20 = 2cos’ 0.

cos> 0

With 8 = 2x, this identity becomes

1 + cosdx = 2cos” 2x.

Hence,

/4 /4
/ V1 + cosdxdx = / \/E \/ cos” 2x dx
0 0
/4 5
= \/E/ |cos 2x| dx Ve = Jul
0

On [0, /4], cos 2x = 0,

/4
= \/E cos 2x dx s0 |cos 2x| = cos 2x.
0

/4 Table 8.1, Formula 7, with

_ \f sin 2x
= 2 T u = 2xand du = 2 dx

0

=\f2[10}=\§5.

2



6 TECHNIQUES OF INTEGRATION

EXAMPLE 5  Reducing an Improper Fraction

3x2 — Tx
.
/ x+2
Solution The integrand is an improper fraction (degree of numerator greater than or

equal to degree of denominator). To integrate it, we divide first, getting a quotient plus a
remainder that is a proper fraction:

32— Tx 6
wt+2 Y3 T so

Evaluate

Therefore,

3x% — Tx 6 Xt
f3x+2 d.—f(x 3+3r+2>d[_2 3x+2In|3x+ 2|+ C. =

EXAMPLE 6  Separating a Fraction

Evaluate

3x + 2

\/l—r

Solution We first separate the integrand to get

x+2 X dx
dx = 3

dx
—_— t+ 2| Y.
V1 — x? V1 — x? /\/lx2

In the first of these new integrals, we substitute

u=1—x2% du = —2xdx, and xdx = *ldu.

2
3/ \/rdt (71/2 ) :*; u 2 du
1 — x? 2

yl/2
SN T T AV ey C)

2712

The second of the new integrals is a standard form,

dx .
2/72s1n Iy + G,
V1 — x?

Combining these results and renaming C; + C; as C gives

3x + 2
vy = —3V1 — x>+ 2sin ' x + C. [ |
\/l—r



7 TECHNIQUES OF INTEGRATION

The final example of this section calculates an important integral by the algebraic
technique of multiplying the integrand by a form of 1 to change the integrand into one we
can integrate.

EXAMPLE 7  Integral of y = secx—Multiplying by a Form of 1

/ sec x dx.
Solution

_ _ secx + tanx
/secxdx = /(secx)(l)dx —/secx secx + tanxdx

Evaluate

o sec’x + sec xtan.x
= dx
secx + tan.x
. @ # = tanx + secx,
u du = (sec®x + sec.xtanx) dx
=In|u| + C =In|secx + tanx| + C. ]

TABLE 8.2 The secant and cosecant integrals

1. fsecz;dz; = In|secu + tanu| + C

2. /cscudu = —In|cscu + cotu| + C




TECHNIQUES OF INTEGRATION

Procedures for Matching Integrals to Basic Formulas

PROCEDURE EXAMPLE

Making a simplifying j_)c - dx = j/u_
substitution x° = 9x + 1 "
Completing the square V8x — x? = V16 — (x — 4)?

Using a trigonometric (secx + tanx)? = sec’x + 2secxtanx + tanx
identity = sec’x + 2secxtanx

+ (sec’x — 1)

= 2sec’x + 2secxtanx — 1

Eliminating a square root V1 + cosdx = V2cos?2x = V2 |cos 2x|

. . 3x2 — Tx 6
I‘{edqcmg an improper T 3 + i
fraction
Separating a fraction x+ 2 _ 3x + 2
Multiplying by a form of | SeCX = Secxt

sec’ x + secxtanx
secx + tanx
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2 Techniques of Integration

The integral of a product is generally not the product of the individual integrals

| [ f(¥)g() d is not equal to / f)dv - / g(x) dx.

Integration by parts is a technique for simplifying integrals of the form

/ f(x)glx) dx.

Integration by Parts Formula

/udv = uv — /vdu (2)

With a proper choice of u and y, the second integral may be easier to evaluate than the first.

In using the formula, various choices may be available for u and dy. The next examples illustrate
the technique.

EXAMPLE 1  Using Integration by Parts

Find
/ X Ccos x dx.

Solution We use the formula / udv = uv — /vdu with

u = x, dv = cosx dx,
du = dx, v = sinx. Simplest antiderivative of cos x
Then
/xcosxdx = xsinx — / sinxdx = xsinx + cosx + C. [ ]

Let us examine the choices available for # and dv in Example 1.



3 Techniques of Integration

EXAMPLE 3  Integral of the Natural Logarithm

Find
/ In x dx.

Solution  Since [ Inxdyx can be written as [ Inx-1dx, we use the formula
Judv = uv — [ vduwith

u=Inx Simplifies when differentiated dv = dx Easy to integrate

_ 1 _ o
du = ?dx, v = X, Simplest antiderivative
Then

/lnxdxlenx/,vc-}cdxlen.vc/dxlenxxwL C. ]

Sometimes we have to use integration by parts more than once.
EXAMPLE 4  Repeated Use of Integration by Parts

Evaluate

Solution Withu = x%, dv = e dx, du = 2x dx, and v = ¥, we have

/,rzcex dyx = x’e* — 2/ xe'dx.

The new integral is less complicated than the original because the exponent on x is
reduced by one. To evaluate the integral on the right, we integrate by parts again with
u=x,dv =e dx. Thendu = dx,v = ¢*, and

/xe"' dx = xe" — /ex dx = xe® —e* + C.
/xzex dx = x%e* — 2/ xe¥dx

= x2e* — 2xe* + 2e° + C. ]

The technique of Example 4 works for any integral j " x"e™ dx in which n is a positive
integer, because differentiating x" will eventually lead to zero and integrating e” is easy.

Hence,
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EXAMPLE 5  Solving for the Unknown Integral

/ e’ cosxdx.

Solution Letu = e*and dv = cosxdx. Then du = e dx, v = sinx, and

/e"r cosxdyx = e'sinx — /e"r sin.x dx.

The second integral is like the first except that it has sin x in place of cos x. To evaluate it,
we use integration by parts with

Evaluate

u=e", dv = sin x dx, U = —COS.X, du = e dx.

/e'” cosxdyx = e*sinx — (—e"' cosx — /(—cosx)(e"‘ dx))

= e’sinx + e*cosx — ]e'x coSs x dx.

Then

The unknown integral now appears on both sides of the equation. Adding the integral to
both sides and adding the constant of integration gives

2/ e*cosxdyx = e'sinx + e’ cosx + (.

Dividing by 2 and renaming the constant of integration gives

P X
; e sinx + e cosx
fe" cosx dx = > + C. [ ]

Integration by Parts Formula for Definite Integrals

b b
f0)g' () dx = f0e)]) — [/ (Delx) dx 3)

In applying Equation (3), we normally use the «# and v notation from Equation (2)
because it 1s easier to remember. Here is an example.
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EXAMPLE 6  Finding Area

Find the area of the region bounded by the curve y = xe " and the x-axis from x = 0 to
x = 4.

Solution The region is shaded in Figure 8.1. Its area is

4
/ xe “dx.
0

Letu = x,dv =e “dx,v= —e ", and du = dx. Then,

4 4
/ xe “dx = —xe_“"]g — / (—e™)dx
0 0
4
=[—4e ™ — (0)] + / e Vdx
0

= det —e = (=) =1-5¢* = 0091. u
EXAMPLE 6  Finding Area
Find the area of the region bounded by the curve y = xe™™ and the x-axis from x = 0 to
x=4.

Solution The region is shaded in Figure 8.1. Its area is

4
/ xe " dx. 0.5} y=xe™
0

Letu = x,dv = e “dx,v= —¢*,and du = dx. Then, a 1 2 3 4
4 —/s}-
f xe “dx = —xe f (—e™)dx
0 1k
= [—4e™* — (0)] e_'x dx
0 FIGURE 8.1 The region in Example 6.
— A, 4 _ 4
= —4e e ]D

= —det—et— (=) =1—-5¢*~0091. n
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Tabular Integration

We have seen that integrals of the form | f(x)g(x) dx, in which f can be differentiated
repeatedly to become zero and g can be integrated repeatedly without difficulty, are
natural candidates for integration by parts. However, if many repetitions are required,
the calculations can be cumbersome. In situations like this, there is a way to organize
the calculations that saves a great deal of work.

EXAMPLE 7  Using Tabular Integration

f xZe dx.

Solution With f(x) = x? and g(x) = €%, we list:

Evaluate

X) and its derivatives x) and its integrals
g t4

2 X

We combine the products of the functions connected by the arrows according to the opera-
tion signs above the arrows to obtain

/ x2e¥dx = x%e* — 2xe* + 2 + C.

Compare this with the result in Example 4. n

The tabular integration can be used when neither function f nor g can be differentiated
repeatedly to become zero.
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EXAMPLE 8  Using Tabular Integration

Evaluate
3 .
/‘x sinx dx.

Solution With f(x) = x% and g(x) = sinx, we list:

f(x) and its derivatives 2(x) and its integrals

x? (+) sin x

3x? &.‘ —COS X
6x %—sinx

6 (—) Cos x

0 \L sin x

Again we combine the products of the functions connected by the arrows according to the
operation signs above the arrows to obtain

/x3 sinx dx = —x?cosx + 3x’sinx + 6rxcosx — 6sinx + C. u

Summary

When substitution doesn’t work, try integration by parts. Start with an integral in which
the integrand is the product of two functions,

/ f(x)glx) dx.

(Remember that g may be the constant function 1, as in Example 3.) Match the integral

with the form
f udv

by choosing dv to be part of the integrand including dx and either f(x) or g(x). Remember that
we must be able to readily integrate dv to get v in order to obtain the right side of the formula

/udvuv—/vdu.

If the new integral on the right side is more complex than the original one, try a different
choice for « and dv.
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EXAMPLE 9 A Reduction Formula

Obtain a “reduction” formula that expresses the integral

f cos” x dx

in terms of an integral of a lower power of cos x.

1

Solution We may think of cos” x as cos” ' x * cos x. Then we let

u = cos" lx and dv = cosxdyx,

so that
du = (n — 1) cos" 2 x (—sin x dx) and v = sinx.

Hence

/cos”x dx = cos" 'xsinx + (n — l)f sin® x cos” 2 x dx
= cos" 'xsinx + (n — l)f (1 — cos’x) cos" 2 x dx,

= cos" 'xsinx + (n — l)f cos" Zxdx — (n — 1)] cos” x dx.

(n — l)f cos” x dx

to both sides of this equation, we obtain

If we add

n/ cos"xdx = cos" ! xsinx + (n — 1)/ cos" % x dx.

We then divide through by n, and the final result is

n—1 .
cos” "xsinx n—1 _
/cos“x dx = 7 + — fcos” 2xdx.

This allows us to reduce the exponent on cos x by 2 and is a very useful formula. When »
is a positive integer, we may apply the formula repeatedly until the remaining integral is

either
/cosxdx = sinx + C or /cosoxdx = fdx =x+ C. m
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EXAMPLE 10  Using a Reduction Formula

Evaluate
3
/ cos’x dx.

Solution From the result in Example 9,

2 .
fcosSx dx = w + :32/ cos x dx

| . 2 .
= —cos’xsinx + =sinx + C.

3 3
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Techniques of Integration

Integration of Rational Functions by Partial Fractions

How to express a rational function (a quotient of polynomials) as a sum of simpler fractions,
called partial fractions, which are easily integrated.

50— 3 __2 + 3
x2 =2y —3 x + 1 x =3

General Description of the Method

Success in writing a rational function f(x)/g(x) as a sum of partial fractions depends on

two things:

® The degree of f(x) must be less than the degree of g(x). That is, the fraction must be
proper. If it isn’t, divide f(x) by g(x) and work with the remainder term. See Example 3

of this section.

®  We must know the factors of g(x). In theory, any polynomial with real coefficients can
be written as a product of real linear factors and real quadratic factors. In practice, the

factors may be hard to find.

1.

Method of Partial Fractions (f(x)/g(x) Proper)

Let x — r be a linear factor of g(x). Suppose that (x — »)" is the highest
power of x — r that divides g(x). Then, to this factor, assign the sum of the

m partial fractions:
Al A2 Am
— + ot
X / ()C _ },)2 ()C _ },)m

Do this for each distinct linear factor of g(x).

Let x> + px + ¢ be a quadratic factor of g(x). Suppose that (x> + px + ¢)"
is the highest power of this factor that divides g(x). Then, to this factor,
assign the sum of the » partial fractions:
Bix + C) 4+ Brx + (& 4 B,x + C,
x4+ px+q  (x2+px+ ) (x* + px + q)"

Do this for each distinct quadratic factor of g(x) that cannot be factored into
linear factors with real coefficients.

Set the original fraction f(x)/g(x) equal to the sum of all these partial
fractions. Clear the resulting equation of fractions and arrange the terms in
decreasing powers of x.

Equate the coefficients of corresponding powers of x and solve the resulting
equations for the undetermined coefficients.
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EXAMPLE 1 Distinct Linear Factors

Evaluate

/ X2+ 4x + 1 dc
(x =D+ D(x+3)

using partial fractions.

Solution The partial fraction decomposition has the form

Xt 4 4x + 1 _.4 . B _ C
x—Dx+Dx+3) x—1 x+1 x+3°

To find the values of the undetermined coefficients A, B, and C we clear fractions and get

FAax+1l=A + Dx+3)+Blx— Dx+3)+Clx— Dx+1)
=(4+ B+ Ox*+ (44 + 2B)x + (34 — 3B — O).

The polynomials on both sides of the above equation are identical, so we equate coefficients
of like powers of x obtaining

Coefficient of x?: A+ B+C=1
Coefficient of x': 44 + 2B =4
Coefficientof x": 34 — 3B — C =1
There are several ways for solving such a system of linear equations for the unknowns A,

B, and C, including elimination of variables, or the use of a calculator or computer. What-
ever method is used, the solutionis 4 = 3/4, B = 1/2,and C = —1/4. Hence we have

X+ 4+ 1 e — I SN SR SR S B P
(x — D(x + D(x +3) 4x—1 2x+1 4x+3|7

3 1 1
=4 lx — 1| +§1n|x+ 1| — 4 |x + 3| + K,

where K is the arbitrary constant of integration (to avoid confusion with the undetermined
coefficient we labeled as C). [ ]
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EXAMPLE 2 A Repeated Linear Factor

Evaluate

6x + 7

ot T
(x + 227

Solution First we express the integrand as a sum of partial fractions with undetermined
coefTicients.

ox+7 _ A4 n B
(x+2)P x+t2 (x+2)
6x +7 =A(x +2) + B Multiply both sides by (x + 2)*.
= Ax + (24 + B)

Equating coefficients of corresponding powers of x gives

A=606 and 2A+B =12+ B =17, or A=6 and B = —5.

6x+7dr:/(6 5 )dr
(x +2)* x+2 (x+2)72) 7

— de -2
—6/x+2 5/(x+2) dx

=6Iln|x+2| +5x+2)"+cC u

Therefore,

EXAMPLE 3  Integrating an Improper Fraction

R 2 _ _
/ 2x . dx X 3 dx.
x“—=—2x—-3

Solution  First we divide the denominator into the numerator to get a polynomial plus a
proper fraction.

Evaluate

2x
x2 —2x — 3)2)63 — 4= x =3
2% — 4x? — 6x

S5/ — 3
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Then we write the improper fraction as a polynomial plus a proper fraction.

26 —4x? —x -3 50— 3
5 =+ 5
xX°—2x — 3 xX°—=2x— 3
We found the partial fraction decomposition of the fraction on the right in the opening
example, so

R 2 o o
/ 2 2 4 x -3 dx = / 2x dx + / 25)6—3 dx
X —2x—3 X —=2x—3
_ 2 3
—/2xdx+/x+ldx+]x_3dx

=¥ +2In|x+ 1| +3In|x - 3| + C. m

A quadratic polynomial is irreducible if it cannot be written as the product of two linear
factors with real coefficients.

EXAMPLE 4  Integrating with an Irreducible Quadratic Factor in the Denominator

—2x + 4
f TEr

Solution The denominator has an irreducible quadratic factor as well as a repeated
linear factor, so we write

Evaluate

using partial fractions.

—2x + 4 Ax + B C D
= + + : 2
G2+ Dx—1DF 2+ 1 x—1 (x—1)3 @)

Clearing the equation of fractions gives
“2x+4=(Ax + B)(x — 1)+ Clx — DEE+ 1) + D>+ 1)
=4+ Ox+ (=24 +B— C+ DN

+(A4—-2B+COx+(B—C+ D).
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Equating coefficients of like terms gives

Coefficients of x°: 0=4+C
Coefficients of x*: 0= -24+B—-C+ D
Coefficients of x —2=4—-2B+C
Coefficients of x: 4=B—-C+D
We solve these equations simultaneously to find the values of 4, B, C, and D:
—4 = =24, A=2 Subtract fourth equation from second.
C=-A4=-2 From the first equation
B =1 A = 2and C = —2 in third equation.
D=4—-B+C=1. From the fourth equation

We substitute these values into Equation (2), obtaining

—2x + 4 >+l 2 ]
K+ Dr—-1)% 2+1 x—1  (x=1)7"

Finally, using the expansion above we can integrate:

—2x + 4 2x + 1 2 |
dx = — + b7k
2+ Dix— 127 / (xz 1 o1 (x— 1)2) '
2x 1 2 |
= + — + dx
/ (x2 +1 x*4+1 x—1 (x — 1)2)

=In(x?+ 1)+ tan'x — 2In|x — 1| — vci [tC =
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EXAMPLE 5 A Repeated Irreducible Quadratic Factor

/ dx
x(x? + 1)

Solution The form of the partial fraction decomposition is

Evaluate

1 A, B +C, Dy+E
xx2+ 12 Y xr+ (x2 + 1)

Multiplying by x(x* + 1), we have
1 =A%+ 12+ (Bx + O)x(x* + 1) + (Dx + E)x
= A+ 22+ 1) + BGH + 20 + OF + x) + DY+ Ex
=UA+Br*+ P+ Q24 +B+D+ (C+ E)x+ 4

If we equate coefficients, we get the system

A+ B=0, C =0, 24+ B+ D =0, C+E=0, A=1.
Solving this system gives 4 = 1, —1. C=10, D= —1,and £ = 0.Thus,
1 X
= - dx
/x(x + /L‘ 2+1 (x? +1)Z}
_ /d_ / x dx / xdx
X R (x> + 1)
d\ du _ dur u=x>+1,
du = 2x dx

= In |x]| —%ln|u| +——|—K

_ L2 1
= In |x]| 2ln(nc +l)+2(x2+1)+K
Xl

Va2 +1 262 +1)

= In
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The Heaviside “Cover-up” Method for Linear Factors

When the degree of the polynomial f(x) is less than the degree of g(x) and
glx) = (x —r)lx — 1)~ (x = 1)

is a product of n distinct linear factors, each raised to the first power, there is a quick way
to expand f(x)/g(x) by partial fractions.

Heaviside Method
1.  Write the quotient with g(x) factored.:

) _ /)
g G =) =)

2. Cover the factors (x — r;) of g(x) one at a time, each time replacing all the
uncovered x’s by the number 7;. This gives a number A; for each root r;:

B f(r)
A= il —

- f(r2)
S R T
. ¥

B (l‘,, - rl)("n - ”2) = (I’,, - rn—l) .
3. Write the partial-fraction expansion of f(x)/g(x) as

f(X) o Al A2 An
gr) G-r) G=r) T =—r)
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EXAMPLE 6  Using the Heaviside Method

Find 4, B, and C in the partial-fraction expansion

X2+ 1 A B C
G- —-2)r—-3) x-1 x-2 " x-3 (3)

Solution  If we multiply both sides of Equation (3) by (x — 1) to get

G4, Ba-1) -1
G-a—3 AT 2 T3

and set x = 1, the resulting equation gives the value of 4:
(1) + 1

(1 —2)(1 —3)

A4=1.

=A4+0+0,

Thus, the value of A 1s the number we would have obtained if we had covered the factor
(x — 1) in the denominator of the original fraction

X2+ 1
(x = Dlx = 2)(x = 3) (4)
and evaluated the restat x = 1:
(1) + 1 )
4= = = 1.
o) (=20 -3 (DhE=2)

f

Cover

Similarly, we find the value of B in Equation (3) by covering the factor (x — 2) in Equa-
tion (4) and evaluating the rest at x = 2:

5 (2 + 1 _ 5 _
Q-1 (-2 (=3 W=D ’

N

Cover

Finally, C is found by covering the (x — 3) in Equation (4) and evaluating the rest at
x =3:
(32 +1 10
- = — 5‘ -
B-DG-2) (-3 @)
)

Cover

C:
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EXAMPLE 7  Integrating with the Heaviside Method

d/q x + 4 d
X3+ 3x2 - 10x

Solution The degree of f(x) = x + 4 is less than the degree of g(x) = x* + 3x°
— 10x, and, with g(x) factored,
x + 4 _ x + 4
43— 10 xly = 2)(x £+ 5)°

Evaluate

The roots of g(x)are r; = 0,7, = 2,and r; = —5. We find

1 = T = —
=20 +s 2GS
a
Cover
_ 2+ 4 6 3
Sy TQm 7
22 f@+s @O
Bl
Cover
3= — = S
(=55 -2 (x+5| D
R
Cover
Therefore,
x + 4 ::__;;_+_ 3 B 1
x(x — 2)(x +5) 5 7(x —2) 35(x+5)°
and

x + 4 2 3 1
x=—=2Inl|x| + =1In|x — — Ll + v C
fx(xz)(er S)d’c 51n|’c| 71ﬂ|’C 2| 351n|r 5| +C -
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Trigonometric Integrals

Trigonometric integrals involve algebraic combinations of the six basic trigonometric functions.

Products of Powers of Sines and Cosines

We begin with integrals of the form:

[ sin” x cos” x dx,

where m and »n are nonnegative integers (positive or zero). We can divide the work into
three cases.

Case 1 If m is odd, we write m as 2k + 1 and use the identity sin>x = 1 — cos’x to
obtain

2k+1 k

sin” x = sin?" 1y = (sin®x)¥ sinx = (1 — cos®x)sin.x. (1)

Then we combine the single sin x with dx in the integral and set sin x dx equal to —d (cos x).

Case 2 Ifmisevenand nis odd in j sin™ x cos” x dx, we write n as 2k + 1 and use the
identity cos>x = 1 — sin’ x to obtain

2k+1

cos” x = cos? ! x = (cos’x) cosx = (1 — sin®x)*cosx.

We then combine the single cos x with dx and set cos x dx equal to d(sin x).

Case 3 If both m and n are even in j “sin” x cos” x dx, we substitute

sin? x = 1 — gos 2x, costx = 1 + gos 2x 2)

to reduce the integrand to one in lower powers of cos 2x.
Here are some examples illustrating each case.
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EXAMPLE 1  mis Odd

Evaluate

/ sin’® x cos” x dx.
] sin’ x cos® x dx = / sin’ x cos® x sin x dx

Solution

- /(1 — cos’x) cos” x (—d (cos.x))

= /(l — 1?) () (—du)
2/(11 — u?) du

:?‘?+C

5 3
_cos"x  cos’x
=5 3 + C.

EXAMPLE 2  mis Even and n is Odd
Evaluate
/cossxdx.
Solution
/cossxdx = /cos“xcosxdx = /(l — sin® x)? d(sin x)

= /(l — ) du
= /(l — 2u* + u*) du

1 2 |
Zu**u + -’ + C=sinx — —sin’x + -sin’x + C.

3 5 3

U = Cosx

m =0

i = sinx

5



13 Techniques of Integration

EXAMPLE 3 m and n are Both Even

/sinzxcos“xdx.
2
/sinz,rcos4,rd,r = f (1 goslr)(l ha ;oslr) dx

= %/ (1 — cos2x)(1 + 2cos2x + cos” 2x) dx

Evaluate

Solution

= é/ (1 + cos2x — cos?2x — cos’ 2x) dx

= %[r + %sin 2x — /(cosz2x + cos’ 2x) dx],

For the term involving cos” 2x we use

/cos2 2xdx = %f (1 + cos4x)dx

1 1 . Omitting the constant of
— o\ + 4 Sm 4 |. integration until the final result

For the cos® 2x term we have

/0053 2xdx = / (1 — sin® 2x) cos 2x dx u = sin 2x,

du = 2 cos 2x dx

Again
= %/ (1 —u?)du = % (sin 2x — %sin3 2x>. (,,{]i:ﬁmg c

Combining everything and simplifying we get

.2 4 _L B l . l .3
/sm xcos xdx = 6 (x A sin4x + 3 sin 2x) + C. ]
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EXAMPLE 4 Evaluate

/4
/ V1 + cosdxdx.
0

Solution To eliminate the square root we use the identity

_ 1 + cos260

7 , or 1 + cos26 = 2cos’ 6.

cos’ 6

With & = 2x, this becomes
1 + cos4dx = 2 cos? 2x.

Therefore,

/4 /4 /4
/ V1 + cosdxdx = / V2 cos? 2x dx = / \/5 \/ cos” 2x dx
0 0 0

/4 /4 _
= \/2/ |cos 2x| dx = \/E/ cos 2x dx cos 2x =0
0 0 on [0, 7/4]

A lsin 2XT/4 B V2 V2

2 |, T2 o= "
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Integrals of Powers of tan x and sec x

We know how to integrate the tangent and secant and their squares. To integrate higher
powers we use the identities tan’ x = sec’x — | and sec’x = tan’x + 1, and integrate
by parts when necessary to reduce the higher powers to lower powers.

EXAMPLE 5 Evaluate
f tan® x dx.

tan® x - tan® x dx = f tan® x - (sec’x — 1) dx

Solution

/ tan* x dv =

tan® x sec? x dx — / tan® x dx

I
— — — —

tan” x sec® x dx — / (sec’x — 1) dx

tan” x sec” x dx — / sec’ xdx + f dx.

u = tanwx, du = sec’ x dx

/uzdu = %1{3 + (.

The remaining integrals are standard forms, so

In the first integral, we let

and have

ftan4.rd.r = %tan‘?’x — tanx + x + C.
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EXAMPLE 6 Evaluate

/ sec’ x dx.

Solution We integrate by parts, using
1 = secux, dv = sec? x dx, v = tanx, du = secxtanx dx.

Then

/ sec’ x dx = secxtanx — / (tan x)(sec x tan x dx)

= secxtanx — / (sec’x — 1) sec x dx tan?x = sec?x — 1

= secxtanx + /secxdx /sec3xdx.

Combining the two secant-cubed integrals gives

2 / sec’ xdx = sec xtanx + / sec x dx

/sec*‘x dx = Lsecxtanx + L1n |secx + tanx| + C. |

and

2 2
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Products of Sines and Cosines

The integrals

/ sin mx sin nx dx, / SIn mx cos nx dx, and / COS MX COS Ax dx

arise in many places where trigonometric functions are applied to problems in mathemat-
ics and science. We can evaluate these integrals through integration by parts, but two such
integrations are required in each case. It is simpler to use the identities

sin mx sin nx = %[cos (m — n)x — cos(m + n)x], (3)

sin mx cos nx = %[sin (m — n)x + sin(m + n)x], (4)
1

COS MX COS NX = E[cos (m — n)x + cos(m + n)x]. (5)

These come from the angle sum formulas for the sine and cosine functions (Section 1.6).
They give functions whose antiderivatives are easily found.

/ sin 3x cos Sx dx.

Solution From Equation (4) withm = 3 and n = 5 we get

EXAMPLE 7 Evaluate

/ sin 3x cos Sxdx = %/ [sin (—2x) + sin 8x]dx

= ;/ (sin 8x — sin2x) dx

_ cos8x | cos2x
= 6 4 + C. |
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Trigonometric Substitutions

Trigonometric substitutions can be effective in transforming integrals involving Va? — x2,

Va? + x?,and Vx? — a? into integrals we can evaluate directly.

SF

o=

H = tan!

=)
o=

SIE

e

X
-1 |0 1 a

FIGURE 8.3 The arctangent, arcsine, and
arcsecant of x/a, graphed as functions of
x/a.
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Three Basic Substitutions

The most common substitutions are x = atanf,x = asinf, and x = a sec . They come
from the reference right triangles in Figure 8.2.

Withx = atan 6,

a* + x> =a* + a*tan’0 = o*(1 + tan’ ) = a*sec? 6.

Withx = asiné,

a* — x> =d* — a*sin” 0 = &*(1 — sin® ) = o® cos’ 0.
Withx = asec@,

X —a*=a’sec’d — o® = a*(sec’® — 1) = a*tan’ 4.

a at — x? a
x=atan# x=asinf x=asecH

Va* +x% =alsec]  Va*—x* = alcos 0 Vx? — a® = altan 6

FIGURE 8.2 Reference triangles for the three basic substitutions
identifying the sides labeled x and « for each substitution.

We want any substitution we use in an integration to be reversible so that we can change
back to the original variable afterward. For example, if x = a tan 6, we want to be able to
set@ = tan~' (x/a) after the integration takes place. If x = a sin #, we want to be able to set
6 = sin”' (x/a) when we’re done, and similarly for x = a sec 6.

As we know from Section 7.7, the functions in these substitutions have inverses only
for selected values of 6 (Figure 8.3). For reversibility,

x =atané requires 6 = tan ! (g) with —g <0< g

. . . X . aa m
x = asinf@ requires 6 = sin (a) with 5 =0 = 5

0=0<T if ;=1
x = asec® requires O = sec | (%) with
T<o=m it g=-1

To simplify calculations with the substitution x = a sec 6, we will restrict its use to inte-
grals in which x/a = 1. This will place 6 in [0, 7r/2) and make tan & = 0. We will then have
Vil —a® = Va tan’ g = |atan | = atan @, free of absolute values, provided a > 0.




20 Techniques of Integration

EXAMPLE 1  Using the Substitution x = a tan 6

Evaluate
/ dx
\/4 + x?
Solution We set
_E < 9 < E

2 27
4+ x? =4+ 4tan’0 = 4(1 + tan’ 9) = 4sec’ 0.

x = 2tan#, dx = 2 sec” 0 db,

Then

2sec’Odl sec” 0 d Visec? 6 = [sec |

_odx / 2sec’fdf
vl v e
sech > 0 for —
= / sec 0 dO

= 1In|sec® + tan@| + C

1‘V4+ﬁ ;
n| U+

ST
rq\q

From Fig. 8.4
+ C

b | =

Taking " = C — In2
=In|V4+2+x| +C. e !

Notice how we expressed In |sec # + tan 8| in terms of x: We drew a reference triangle for
the original substitution x = 2 tan # (Figure 8.4) and read the ratios from the triangle. m

FIGURE 8.4 Reference triangle for
x = 2tan 6 (Example 1):
X

tan9=§

and

4 + x?
5

sec =



21 Techniques of Integration

EXAMPLE 2  Using the Substitution x = asin 6

Evaluate

x2 dx
V9 — x?
Solution We set
x =3sinf, dx = 3cosbdb, —g <@ < g
9 —x?> =9 —9sin’f = 9(1 — sin’O) = 9cos’H.

Then
dx [ 9sin®6-3cosfdb
V9 — 2 |3 cosd|
= 9/ sin” 0 d6 cos @ > 0 for —g <9<

|
o

1 — cos 260
/2d9
sin 20
(9 ) )+c

(9 — Sin @ cos 9) +C sin 268 = 2 sinf cos

2
coxox V9 —xo Fig. 8.5
(sm 33 3 ) +C

V9 — X2 + C.

._..

M|\o RO O o

-1x_ X
3 2

//‘ i V25xr — 4

FIGURE 8.5 Reference triangle for
x = 3 sin 8 (Example 2):

sing = X FIGURE 8.6 Ifx = (2/5)sec#,
3 0 < 0 < m/2,then § = sec ' (5x/2), and
and we can read the values of the other
cosf — 9 — x? trigonometric functions of 8 from this right

3 ' triangle (Example 3).

ra |3



22 Techniques of Integration

EXAMPLE 3  Using the Substitution x = asec#

Evaluate
f __dx , X = %
\V25x2 — 4
Solution We first rewrite the radical as

N/re 2 _ 4 — S
25x 4 \/25()6 25)

to put the radicand in the form x> — @?. We then substitute

xz%sec@, de%seCQtanﬂdQ, 0<p<Z

2
2
2 (2> _ 4 e 4

5 25 25
_ 42y 40
—25(sec 0 1)—25tan )
2 2\ 2 2 tan® > 0 for
x=\5) =3 |tanf| = gtan(-). 0<6<m2

With these substitutions, we have
(2/5) sec O tan 6 d

[ = [t i

= 1/ sec B df = %ln |secd + tan@| + C

5
Sx \/25x% — 4
S+ +C

2

In Fig. 8.6

1
5
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2 Hyperbolic Functions

Hyperbolic Functions

The hyperbolic functions are formed by taking combinations of the two exponential functions e*
and e

Definitions and Identities

The hyperbolic sine and hyperbolic cosine functions are defined by the equations

X —X X 4
. e — e e’ + e
sinhx = —5 and coshx = —

We pronounce sinhx as “cinchx,” rhyming with “pinchx,” and coshx as “koshux,”
rhyming with “gosh x.” From this basic pair, we define the hyperbolic tangent, cotangent,
secant, and cosecant functions. The defining equations and graphs of these functions are
shown in Table 7.3. We will see that the hyperbolic functions bear many similarities to the
trigonometric functions after which they are named.

TABLE 7.3 The six basic hyperbolic functions
y y
N A
_eF 3 v = coth x
y=75 2 Jy=sinhx — 2
\‘ 1 =4 I S N
eV L, L |}’|_taf;h"
3-2-1/11 2 3 2 — 1 2
- e x = _|___ = _
2pY=TT L y=T
-3 y = cothx
W (b) (©)
Hyperbolic sine: Hyperbolic cosine: Hyperbolic tangent:
: et —e™ er+ et sinhx " — ™
sinhx = ————— = X = =
2 cosh.x 2 tanh x coshx "+ ¢™
Hyperbolic cotangent:
coshx e+ e™
y cothx = — = =
Y A YT Sinhx & — e
2 2r
IR Ak -
N, X — T
=210 |1 2 1_/
y = sechx ;/y =cschx
() (e)
Hyperbolic secant: Hyperbolic cosecant:
_ 2 12
sechx = coshr ~ o+ o* cschx = snhr - o — o F




Hyperbolic Functions

TABLE 7.4 Identities for
hyperbolic functions

cosh’x — sinh?x = 1
sinh 2x = 2 sinh x cosh x

cosh 2x = cosh?x + sinh?x

cosh?x = cosh 22x + 1
sinh?x = cosh 22x — 1

tanh?x = 1 — sech®x
coth’x = 1 + csch?x

TABLE 7.5 Derivatives of

TABLE 7.6 Integral formulas for

hyperbolic functions

d (sinhu) = coshu du

dx dx

d L du

i (cosh ) = sinhu i

d — coch?,, du

o (tanh ) = sech” u I

d L eh2, du

i (cothu) = —csch”u I

d - du
o (sechu) = —sechutanhu o

d - du
i (cschu) = —cschu coth u I

hyperbolic functions

fsinh udu = coshu + C
coshu du = sinhu + C
sech® udu = tanhu + C

esch’udu = —cothu + C

— — S —

sech u tanh v du = —sechu + C

cschucothu du = —cschu + C




Hyperbolic Functions

Inverse Hyperbolic Functions

y y = cosh x.
Y y=sinhx y=x x=0 y=ux
e 8+ Vs
B S s -
i L/ y=sinh™ x 6~ .
B (x = sinh y) 5h .
ok ar -
1 -7 3ir ///
T R | [ [ = -
S i 5 T . X 2= // y—COSh X
2 - (x =coshyv.y=0)
- L T B X
L - ol 123450678
P L
- B (b)
i (—
s
v
(a)

FIGURE 7.5 The graphs of the inverse hyperbolic sine, cosine, and secant of x. Notice the symmetries about the

line y = x.

|
x =cothy I
|
y = coth™!x

(a)

|
|
|
|
|
1 -1] 0
:
|
|
|
|

(b)

y=sech ' x
(x = sech y. y
y=0) ’

x =cschy
y =csch'x

(c)

FIGURE 7.6 The graphs of the inverse hyperbolic tangent. cotangent, and cosecant of .x.

TABLE 7.7 Identities for inverse
hyperbolic functions

_ 1
sech™'x = cosh 1?
_ N |
csch™!x = sinh 1}
_ 11
coth™' x = tanh 1}




Hyperbolic Functions

Derivatives of Inverse Hyperbolic Functions

TABLE 7.8 Derivatives of inverse hyperbolic functions

d(sinh™! ) B 1 du

dx N+ 2
d(cosh™ u) 1 du

dx B \/y? — 1 dx’
d(tanh™ u) 1 du

dx o = y2dx
d(coth™! ) 1 du

dx 1 = y2dxe
d(sech™ u) o 1 du

dx B w1 — 2 dx’
d(csch™ ) 1 du

dx V1 + u? dx’

u > 1

lu| <1

lu| > 1

0 <u<1

u#0

TABLE 7.9 Integrals leading to inverse hyperbolic functions

du C (u)
1. /7 = sinh — |+ C,
\ a’ + u? “

[

5

-

/ du
. a
u \/a2 + u?

du 1 (u)
. —————=cosh ' (| + C,
/ Vu? — a? a

1 1 (u
" 4 tanh (a) + C,
— u? - 1 1 (u

7 coth ) T C.

du _ 1 1 (u
' /\/7‘ asech (a)“*

= —lcsch_1 ‘%‘ + C,

a >0

u>=>a=20

0<u<a

u#0anda > 0
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