Vector Functions
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Vectors functions

Definition:

Scalars: are quantities having only a magnitude. Length, mass, temperature etc

Vectors: are quantities having both a magnitude and a direction. Force,
velocity, acceleration etc

Vectors in Cartesian Coordinate System:

. : z 4
A=A+ Ay + Ask
(A1, A2, A3)
i, J, and k are unit vectors pointing in the positive x, y, and z directions A A
3
A1, Az and As are called x, y, and z component of vector A
: A Az y
Magnitude of A: |A|=A= A%+ A2+ A? 'V ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
) . ~ A i+Aj+Ak
Direction of A: a=—= A - A212 A -
A A AT A
Dot Product: A.B=|A||B| cos@
If two nonzero vectors A.B=0, then cos©=0, ©=90, Perpendicular
A
Oap B
'

Cross Product: AxB =|A||B|siné

If two nonzero vectors A x B = 0, then

sinO=0, © =0°r 180° Parallel
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Lines and Planes in Space

In the plane, a line is determined by a point and a number giving the slope of
the line.
In space a line is determined by a point and a vector giving the direction of
the line.

Equation for a line

Suppose that L is a line in space passing through a point B, (x,, Y,, Z,) parallel to a

vector v=V,i+V, j+V;k. Then L is the set of all points P(x,y,z) for which ﬁ is parallel

to v.

The standard parameterization equation of the line through P,(x,,Y,.Zz,) parallel to
V=Vi+V,i+V,K is:
X=X, +tvl , y=y,+tv2 , z=7,+t3 , -o=<t=<oo

and (X, y,2)=(X, +tv , Y, +tv , z, +1v)

Ex.:
Find the parametric equations for the line through (—2,0,4) parallel to v=2i+4j—2k.

Solution :
With B, (X,, Y, Z,) equal to (-2,0,4) and v=v,i+V,j+V,K equal to v=2i+4j—2k
X=—2+2t , y =4t , z2=4-2t
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Ex.: Find the equations for the line through P(-3,2,—-3) and Q(1,—-14) .
Solution:
The vector P_(j =4i—3j+ 7k is parallel to the line and equation with

(Xo» Vo1 Zo) = (-3,2,-3) give

X=-3+4t y=2-3t z=-3+T7t
We could have choose Q(1,—1,4)
x=1+4t y=-1-3t z2=4+Tt

Vector Equation for a Line
A vector equation for the line L through Py(xg. yy. 2p) parallel to v is

rit) = ry + tv, —o0 < < 00,

where r is the position vector of a point P(x, y, z) on L and ry is the position
vector of Pylxg, o, 2o)-

The vector form Equation abovefor a line in space is more revealing if we think of a
line as the path of a particle starting at position Pylxg, vg, zp) and moving in the direction
of vector v.

r(t) =rg + tv

‘.‘
= rp + !|"i| m
Initial Time Speed Direction

position

In other words, the position of the particle at time ¢ is its initial position plus its distance
moved (speed X time) in the direction v/ |v| of its straight-line motion.
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EXAMPLE

Ahelicopter 15 to fly directly from a helipad at the ongm m the direction of the pomt (1, 1, 1)
at a speed of 60 ft /sec. What 15 the position of the helicopter after 10 sec?

Solution W place the ongin at the startmg position (helipad) of the helicopter. Then
the unit vector

gives the flight direction of the helicopter. From Equation (4), the position of the helicop-
ter at any time {15

rit) = ry + t{speedju

=l]-r[ﬁﬂ}( Li+ L+ ]_k}
ViV V3

= 20V34i + j + k).

When ¢ = 10 sec,

r(10) = 200V3(i + j+ k)

—_
-

- <znnv’§, 200V/3, znnﬁ).

Atter 10 sec of flight from the ongin toward (1, 1, 1), the helicopter 1s located at the point

(2007 3, Eﬂ{'.l"'x@, Eﬂﬂ‘v@} m space. It has traveled a distance of (60 f/sec)( 10 sec) =
600 ft, which 1s the length of the vector r(10).



el g S andd / il g S Aaia 43S AGN Al pall /7 Apwdigl) cdigtalf

The distance from
Sto the line through P parallel to v is Distance from a Point S to a Line Through P Parallel to v

|P_‘.S'| sin @, where 6 is the angle between

PSandv.

EXAMPLE

Solution

The Distance from a Point to a Line in Space

Tofind the distance from a point Sto a line that passes through a point P parallel to a vec-
tor v, we find the absolute value of the scalar component of PS in the direction of a vector
normal to the line (Figure ). In the notation of the figure, the absolute value of the

|PS X v|

M

scalar component is, |PS| sin 8, which is

_[PSxv]
M

Find the distance from the point S(1, 1, 5) to the line
L: x=1+1t y=3-—-1

We see from the equations for L that L passes through P(1, 3, 0) parallel to

v=i—j+ 2k With

and

PS=(1—-1i+(1—-3)j+(5-0k=—2j+ 5k

Equation (5) gives

i i k
PYS xv= |0 =2 5| =1 +35j+ 2k,
1 -1 2
_ |PS x| :v’1+35+4:vﬁ=v§
V] V1i+ 1+ 4 V6
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An eqguation for a Plane in space

A plane in space is determined by knowing a point on the plane and its “tilt” or
orientation. This “tilt” is defined by specifying a vector that is perpendicular or normal to the
plane.

Suppose that plane M passes through a point P,(X,,Y,,Z,) and is normal to the

nonzero vector N = Ai + Bj + Ck. Then M is the set of all points P(x,y, z) for which ﬁ IS

orthogonal to N. N

Po

Thus, the plane through P,(X,, ¥,,2,) normal to N = Ai + Bj + Ck has equation:

N - PRP=0 = A(Xx—X)+B(y—Y,)+C(z-2,)=0

or Ax+By+Cz=D , where D = Ax, + By, +Cz,

Ex.:
Find an equation for the plane through B, (-3,0,7) perpendicular to
N=5+2j-k.
Solution
A(X_Xo)+ B(y- y0)+C(Z_ Zo) =0
S(x—(=3))+2(y-0)+(-D(z-7)=0
5X+15+2y—-z+7=0
SX+2y—z2=-22

Notice in this example how the components of n=5i+2j—k become the coefficients of
X,y and z inequation 5x+2y—z=-22. The vector n= Ai + Bj + Ck is normal to the

plane Ax+By+Cz=D.
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Example :
Find an equation for the plane through A(0,0,) , B(2,0,0) and C(0,3,0) .
Solution :
We find a vector normal to the plane and use it with one of the point to write

an equation for the plane.
AB = (2-0) i + (0-0) j + (0-1) K
AC= (0-0) i+ (3-0) j+(0-1) K

The cross product: between the vectors AB and AC is

I
ABxAC =2 0 -1 =3i +2j+6k isnormal to the plane.
0 3

3(x-0)+2(y-0)+6(z-1) =0
3X+2y+62=06

Lines of intersection

- Two lines are parallel if and only if they have the same direction.
- Two planes are parallel if and only if their normal's are parallel.

- The planes that are not parallel intersect in a line.

=z
Ay Xy

-~

e

Example :

Find a vector parallel to the line of intersection of the planes 3x-6y-2z=15
and 2x+y-2z=5.
Solution

The line of intersection of two planes is perpendicular to both planes’ normal
vectors n, and n, and therefore parallel to n,xn,.i.e. n,xn, isa vector parallel
to the planes' line of intersection.

I T ¢
nxn,=3 -6 -2/ =14i +2j+15k
2 1 -2
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EXAMPLE Find parametric equations for the line in which the planes 3x — 6y — 2z = 15 and
2x + y — 2z = 5 intersect.

Solution We find a vector parallel to the line and a point on the line

i j ok

mxm =3 —6 -1

1 -2

To find point on the line, we can take any point common to the two planes. Substituting z = 0 in

the plane equations and solving for x and y simultaneously identifies one of these points as
(3, —1,0). The line is

=14 +2j+15k . vector parallel to the line

Xx=xpt by, ¥y=ypt tva, z =2zt tvs,
x=3+ 14, y=-1+2 z= 151
The choice z = 0 is arbitrary and we could have chosen z = 1 or z = —1 just as well. Or

we could have let x = 0 and solved for y and z. The different choices would simply give
different parametrizations of the same line.

(8]

EXAMPLE Find the point where the line

x=%+2!, y = —2, z=1+1t

intersects the plane 3x + 2y + 6z = 6.

Solution  The point

8
=+ 2,211 +
(3 2, =2t 1 s)

lies in the plane if its coordinates satisfy the equation of the plane, that is, if

3(%+2:)+2{—2:)+5{1+;]=6
B+t —dt+H6+06r=06
8t = —8

t=—1.
The point of intersection is

8 2
(%, 9, 2) [j=m1 = (g— 2,2,1 — 1) = (? 2, D).
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The Distance from a Point to a Plane

If P i1sa point on a plane with normal n, then the distance from any point 5 to the plane 1s
the length of the vector projection of PS onto n. That 15, the distance from S o the plane 15

d= ‘E‘SL
|

where n = 4i + Bj + Ck 15 normal to the plane.

EXAMPLE Fmd the distance from 8(1, 1, 3) to the plane 3x + 2y + 6z = 6.

Solution We find a point P in the plane and calculate the length of the vector projection

of PS onto a vector n normal to the plane (Figure 12.41). The coefficients in the equation
Ix +2y + 6z = bpve

n=3i+2 + 6k

z

n=3i+2j+ 6k
50, 1,3)
B
M e
M
, S
Ix+2Iy+hz=6hH &(0, 0, 1) K\‘x -
[ ,
(I M,
"ﬁ-.}_’_ ™, Distance from
P . M Sto the plane
2 -

/‘{2, 0,0) P, 3,0 Y

The distance from § to the plane is the length of the vector projection of F§ onto n

The pomts on the plane easiest to find from the plane’s equation are the intercepts. If
we take P to be the y-intercept (0, 3, 0), then

PS=(1-0i+(1-3)j+(3-0k

=i-2j+ 3k,

n| = VE3F+ 27+ (67 =Vas =7,

The distance from 5 to the plane is

d= E.S' . — length of projp Py
n|
= [(i — 2j + 3k) (é'+%_,l+£k)|
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angles between planes
The angle between two intersecting planes is defined to be the angle determined

‘nl“nz‘

by their normal vectors. N, -n, =|n,|n,|cosd ,e—cos-l[ nl.n2 J

Example:
Find the angle between the planes 3x—-6y—-2z=15 and 2x+y-2z=5

Solution
The vectors n, =3i-6j-2k and n,=2i+ j—2k are normals to the planes.

The angle between them is
0= cos‘l(—nl ' an
Iy |

= cos‘l(i)
21

10
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Vector -valued functions and motion in space

When a particle moves through space during a time interval [, we think of the particle's
coordinates as finctions defined on [

x = fit), y = glt), z = k), tel, (1)

The points (x, .z} = (fit), glz), kir)), t =1, make up the curve in space that we call the
particle’s path. The equations and interval in Equation (1) parametrize the curve. A curve
m space can also be represented in vector form. The vector

rir) = OP = f(t)i + ginj + hlo)k (2)

from the origin to the particle’s position P (1), g(7), k() at time 1 1s the particle's position Thfr%;:tu:n x-'ec'tq.:rrl i th W
vector (Figure ). The functions f, g, and /& are the component functions (components) r= ; ura ;;a..m-:: -errtr.mx g Hroug
of the position vector. We think of the particle’s path as the curve traced by r during the Fpace s & function ot trme.

time interval [, Figure displays several space curves

Equation (2} defines r as a vector function of the real variable ¢ on the interval /. More
generally, a vector function or vector=valued function on a domain set D is a rule that
assigns a vector in space to each element in D,

Derivative of the vector —valued function:

DEFINITION Derivative
The vector function r(t) = f(r)i + glt)j + kir)k has a derivative (is differen-
tiable) at 7 1f f, g.and & have derrvatives at . The dervative 15 the vector function

TR | rit + At)—rit)  df  dg.  dh
A= T A At ' dr dr

Then, a vector function r(t) is differentiable if it is differentiable at every point
of its domain. The curve traced by r is smooth if ( dr /dt ) is continuous and never
0, that is, if f, g, and h, have continuous first derivatives that are not

simultaneously 0.

DEFIMITIONS Velocity, Direction, Speed, Acceleration
If r 15 the position vector of a particle moving along a smooth curve in space, then

."ri —ﬂ
¥y = At

is the particle’ velocity vector, tangent to the curve. At any time ¢, the direction of
v 15 the direction of motion, the magnitude of v is the particles speed, and the
derivative a = dv/dr, when it exists, is the particle’s acceleration vector. In

SLITUTIATY,

1. Welocity is the denvative of position: v = %

2. Speed is the magnitude of velocity:  Speed = | v,

3. Aprceleration is the dervative of weloeity: qa = fj_: = j’:
2

4. The unit vector v/|v |is the direction of motion at time r.
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We can express the wvelocity of a moving particle as the product of its speed and
direction: £ o)
Velocity = |v|| vl | = (speed)(direction).
W, F)

Example:

Find the position, velocity, speed, acceleration and scalar acceleration for the
given value of t.

a) r(t)=t%i-t*j at t=2,t=0.

Position: r(2)=4i-8j
velocity: V() =2ti —3t%j > V(2) = 4i —12]

speed: V(2)|=+/4% + (-12)? =160 = 4410

acceleration: a(t) =2i—-6tf »a(2) =2i—-12j
Scalar acceleration [d(2)| =+/2% +(-12)* =148 =2/37

b) Att=0, H.W.

DEFINITION Length of a Smooth Curve

The length of a smooth curve r(f) = x(¢)i + wi)j + zirdk,a = r = b, that 1s
traced exactly once as f mereases from f = ato f = b, 1s

- [NE - &) - &)

Are Length Formula

b
L= [ |v|dt

a

12
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Example :
1.In example 1 part a. Find the distance along the curve from t=2 to t=5
Solution: distance is arc length :

2
d= ?\/(dxj (3—{) dt:?\/(Zt)z +(—3t2)2dt:?\/4t2 +9t4dt:?t\/4+9t2dt
2 2 2 2

229 32 229

Let u=4+09t?, du=18tdt—>d— ju“z -
18 3/2|,

229./229 —80+/10
27

~118.978393

Example :
The velocity of a particle moving in space is  V(t) =1+ 2tj + 2k .
Find the particle's position as a function of t, if r=1i-j at t=0.

vi)=i+2tj+2k
2

i t° .
r(t)=IV(t)dt= t|+251+2tk+c
(0)=c=i-]j
rt)=ti+t?+2tk+1-j
r)=(t+1)i+(t?=1)j+2tk

HW. :

A particle move through 3-space in such away that it's velocity is
v(t)=i+tj+tk

Find the coordinates of the particle at time t = 1, given that the particle

is at the point (-1,2,4) at time t = 0.

13
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Tangent Lines to Smooth Curves :
The tangent line to a smooth curve  r (t) =f(t) i + g(t) j+ h(t) k,att=1t; is
the line that passes through the point ( f(ty) , g(to) , h(ty) ) parallel to V(to) ,
V(to) is the curve’s velocity vector .

Example :

Find parametric equations for the line that is tangent to the given curve at the
given parameter value att =t ,

r(t) = (sine)i + (1* = cost)] + €'k, =0

Solution :
rit) = (sint)i+ (t* —cost)j + ek
= vit) = (cos tli+ (2t + sint)j + e'k;
th=0 = ¥(ty) =i+ k and

ritg) =Py = (0, -1, 1) =
x=0+t=t,y=—l,andz =1 +t.
are parametnc equations of the tangent line

H.W.

Find parametric equations for the line that is tangent to the given curve at the
given parameter value at t = t,

1. rit) = (2sine)i + (2cos )] + 5tk, 1, = 4
2. rit) = (asint)l + (acost)] + bk, f = 2=
3. r() = (cost)i + (sinr)j + (sin 20k, 1y =

ra) =l

14
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The unit tangent vector T is a differentiable function of t whenever v is a
differentiable function of t. T is one of three unit vectors in a traveling
reference frame that is used to describe the motion of space vehicles and other
bodies traveling in three dimensions.

H.W.
Find the unit tangent vector to the curve att =2 , r(t) = 4ti - 3t}
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Curvature and the Unit Normal Vector N :

In this section we will study how a curve turns or bends. We look first at
curves in the coordinate plane, and then at curves in space.

Curvature of a Plane Curve :
As a particle moves along a smooth curve in the plane, T =dr/ds, turns

as the curve bends. Since T is a unit vector, its length remains constant and
only its direction changes as the particle moves along the curve. The rate at
which T turns per unit of length along the curve is called the curvature (Figure
below). The traditional symbol for the curvature function is the Greek letter
(“kappa”), K .

=

5
—| _"_'__n-_'—','_.—"_-_-l'_—"'_"
Fg

=

0

As P mowves along the
curve in the divection of increasing arc
length, the unit tangant vector turns. The
value of |d T/ds |at P is called the
curvalure of tThe curve at /2.

If |dT/ds|is large, T turns sharply as the particle passes through P, and the curvature at
P15 large. If |d T/ ds [is close to zero, T turns more slowly and the curvature at P 1s smaller,

Formula for Calculating Curvature
If r(t) 15 a smooth curve, then the curvature 15
1

K=——
M

dl

dt

]

where T = v/|v|is the unit tangent vector.

16
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Example :
Find the curvature of the vector function given below :

rit) =(acos(t)) i+ (asin(t))j

Solution :

17
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Unit Normal Vector :

Among the vectors orthogonal to the unit tangent vector T is one of
particular significance because it points in the direction in which the curve is
turning. Since T has constant length (namely, 1), the derivative (dT/ ds) is
orthogonal to T . Therefore, if we divide (dT /ds) by its length we obtain a
unit vector N orthogonal to T,

_ 14T
Py N=xas
The vector o T /dls,

normal o the curve, always points in the
direction in which T is turning. The unit
normal vector N is the direction of aT/ds.

DEFINITION Principal Unit Normal

At a point where & # 0, the principal unit normal vector for a smooth curve in
the plane 1s

14T

[‘{=de_

From the definition above, the principal normal vector N will point toward the
concave side of the curve, The formula that enables us to find N without
having to find sand Kis:

Formula for Calculating N
If r(1) 15 a smooth curve, then the pnncipal unit normal 15

N dT/dt
T |dT/de|

where T = v/|v|is the unit tangent vector.

18
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Example :

T = s+ (in

Notice that N. T = 0, verifying that N is orthogonal to T.

H.W.
Find the unit normal vector to the curve at t = 2, r(t) = 4t i — 3 t%j.




Multiple Integrals
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( Multiple integrals )
Introduction :

In multiple integral we consider the integral of a function of two variables f(x, y)
over a region in the plane and the integral of a function of three variables f(x, y, z) over a
region in space.

Basic Integration Rules

%[C]:O _'de=C
%[kx]:k [kdx=kx+C
%[kf(x)]:kf,(x) [k (x)dx=Kk] £ (x)dx+C

%[f (X)£g(x)]=f'(x)£9'(x) j[f (x)ig(x)]dx:j f (x)dxijg(x)dx+C

d n n—1 . Xn+1

—| X [=NX XndX: +C, n«—1
dx[ ] . n+1

i[sin x]zcosx [ cos xdx =sinx+C

dx '

i[COSX]:—sinx [sin xdx = —cosx+C
dx '

i[tan x] —gec? X .secz xdx =tan x+C

dx '

i[sec X] —=sec Xtan X .Secxtan xdx =secx+C
dx '

i[cot X] =—csc® x [ csc? xdx = —cot x+C
dx '

d [ —_
—[csc x] _ _cscxcot X | csc xcot xdx =—cscx+C

dx

- 149 -
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Double( Iterated, repeated ) integrals over a rectangle regions :

Definition of Double Integrals in rectangular region:

In the previous (in class one) we defined the definite integral of a continuous function
f(x) over an interval [a, b] as a limit of Riemann sums. In this section we extend this idea to
define the double integral of a continuous function of two variables f(x, y) over a
bounded rectangle region R in the plane. In both cases the integrals are limits of
approximating Riemann sums. The Riemann sums for the integral of a single-variable
function f(x) are obtained by partitioning a finite interval into thin subintervals,
multiplying the width of each subinterval by the value of f at a point Cy inside that
subinterval, and then adding together all the products. A similar method of partitioning,
multiplying, and summing is used to construct double integrals.

o -

Ave | 7o (xp, vi)

) o h

Fectangular grnd
partitioning the region R into small
rectangles of area AAd; = Ax; Ay

S, = z Flxe, vi) Adg.
=1

When a limit of the sums §,, exists, giving the same limiting value no matter what
choices are made, then the function f is said to be integrable and the limit is called the
double integral of f over &, written as

/ / flx,y) d4 or / / flx, v) dxdy.

R R

- 150 -
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Double Integrals as Volumes :
When f(x, ¥) is a positive function over a rectangular region R in the xy-plane, we may in-
terpret the double integral of f over R as the volume of the 3-dimensional solid region over
the xy-plane bounded below by R and above by the surface z = f(x, y) (Figure 15.2). Each
term f(xg, ¥:)AA, inthe sum 8, = X f(x, y:)AA, is the volume of a vertical rectangular
box that approximates the volume of the portion of the solid that stands directly above the

base AA;. The sum §, thus approximates what we want to call the total volume of the
solid. We define this volume to be

Volume = lim §, = [/f{x: ¥) dA,
H =00
R

where Ad,— Oasn — 00,

™
a | .

(-tks _\'k)/‘~ ===

Fig. M. Approximating solids with
rectangular boxes leads us to define the
volumes of more general solids as double
integrals. The volume of the solid shown
here is the double integral of f(x, y) over
the base region R.

(ajn =16 (bin =064 (chm =256

FIGURE 15.2 As » increases, the Riemann sum approximations approach the total
volume of the solid shown in Fig. M

- 151 -
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THEOREM 1—Fubini's Theorem (First Form)  If f(x, ¥) is continuous throughout

the rectangular region Ria=x=b,c =y =d,then

d b b pd
/f{x-.y]ﬂ’ﬂ=// f{.r;._}f']dmﬁf':// flx,y) dy dx.

R

Example :

Suppose that we wish to calculate the volume under the plane z = 4 — x — y over the rec-
tangular region R: 0 = x = 2,0 = y = 1 in the xy-plane.

Solution :
If we apply the method of slicing , with slices perpendicular to the x-axis then the volume is

=2
/ Alx) dx, 1
o T .

where A(x) is the cross-sectional area at x. For each value of x,
we may calculate A(x) as the integral

y=1
Alx) = / (4 — x — y)dy, e 2

=0

which is the area under the curve z = 4 — x — y in the plane
of the cross-section at x. In calculating A({x). x is held fixed and

R _1.

the integration takes place with respect to y. 5
.1:/ Alx) = | 4 —x — yidy

Combining Equations (1) and (2), we see that
the volume of the entire solid is 1.t

=2 =2 v=1
Volume = / Alx) dx = / (/ (4 —x - }".]ﬂf‘") dx To obtain the cross-
T =0 =1

sectional area A(x), we hold x fixed and

=0 —
=2 2 v=1 x=2 : . .
¥ integrate with respect to y.
= / |}:].}: — Xy — 7:[ dy = / (% - _t') dx . e g
x=0 w=0 =0
272
[1e-2-s
1]

If we just wanted to write a formula for the volume, without carrying out any of the

2 p
Volume = f f (4 —x — y) dvdx.
0 Jo
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What meaning of iterated(repeated) integrals?

The expression on the right, called an iterated or repeated integral, says that the volume
is obtained by integrating 4 — x — y with respect to v from ¥ = 0 to y = 1, holding x
fixed, and then integrating the resulting expression in x with respect to x from x = 0 to
x = 2.The limits of integration 0 and 1 are associated with v, so they are placed on the in-
tegral closest to dyv. The other limits of integration, 0 and 2, are associated with the vari-
able x, so they are placed on the outside integral symbol that is paired with x.

H.W :
calculated the volume in the previous example by slicing with planes perpendicular to the
y-axis(Solve with draw).

EXAMPLE Caleulate [[} f(x, v) dA for

flx,y) = 100 — 6x% and R 0=x=2 -1l=y=1

Solution  Fig.a  displays the volume beneath the surface. By Fubini’s Theorem,

=06
h ]/j{x._y] dA =// (100 — 6x%) dx dy =/ 100x - lrt le=0 d_=
. -1J0 .

+] ) ]
= / (200 = 16y) dy = | 200y — 8&* 1] = 400,
_] - 4

Reversing the order of integration gives the same answer:

2 7l 2
] ] (100 - 6x%)dydx = / 100y - 3x%277
0 J-1 0 -

Fig.-a  The double integral ') N N
/5 f(x, y) dA gives the volume under this -, [(100 = 3x7) = (—100 - 3x7)] dx

surface over the rectangular region R

2
(Example 1). = ] 200 dx = 400.

HW. Find the volume of the region bounded above by the ellipitical paraboloid
z =10 + x> + 3y? and below by therectangle R: 0 = x = 1,0 = y = 2,

Z

I= 1L1+.1:3+3-_1|.'3
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Double Integrals over General Regions :

In this section we define and evaluate double integrals over bounded regions in the
plane which are more general than rectangles. These double integrals are also evaluated as
iterated integrals, with the main practical problem being that of determining the limits of
integration. Since the region of integration may have boundaries other than line segments
parallel to the coordinate axes, the limits of integration often involve variables, not just
constants.

Double Integrals over Bounded, Nonrectangular Regions :
To define the double integral of a function f(x, y) over a bounded, nonrectangular region
R, such as the one in Figure.

— =
-~ N
=] 24k N\
Aye| 7 (e ¥ ]
||I .':'I.I_,;: Jll
!
[ /]
+ s
H"""—-.. ______._.-'
FIGURE A rectangular grid

partitioning a bounded nonrectangular
region Into rectangular cells.

Once we have a partition of R, we number the rectangles in some order from 1 to n
and let A4, be the area of the kth rectangle. We then choose a point {x;, y;) in the kth rec-
tangle and form the Riemann sum

Sa= > flaw ) Ady.
i=1

As the norm of the partition forming S, goes to zero, |P| — 0, the width and height of
each enclosed rectangle goes to zero and their number goes to infinity. If f(x, v) is a con-
tinuous function, then these Riemann sums converge to a limiting value, not dependent on
any of the choices we made. This limit is called the double integral of f(x, v) over R:

lim E flaxe, vi) Ady = ]/ fix, v) dA.
Pll—0 =17 ' J o
R

—_
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Volumes :

THEOREM 2—Fubini's Theorem (Stronger Form)  Let f(x, y) be continuous on a
region K.

1. If Risdefinedby ¢ = x = b, gi(x) = y = g(x), with g, and g» continuous

on [a, b], then
' b rgalx)
/ flx,y)dd = ] j flx, v) dy dx.
) a Jgilx)

2, IfRisdefinedby ¢ = y = d, hyly) = x = hy(y), with 4, and h; continuous

on [c, d], then
ha ()
//f{r; y) dA —// flx, v) dx dy.
Byl )

Z
-~

x = hs(y)

The volume of the solid
shown here is

The area of the vertical dA(' Ny = Y e U A A dv
slice shown here is A(x). To calculate the L \PLEaY = ey rere J(xy) dx dy.

(1)
volume of the solid we integrate this area

For a given solid, Theorem 2 says we can
fromx =atox =

calculate the volume as in Figure =, or
g in the way shown here. Both calculations
/ Alx)dx = // flx,y)dy dx. have the same result.
a g:lx)

hzl ¥
b Exlxl r — h J
V‘] A{*J‘i’i‘]] flx, ¥) dy dx. Volume /ﬁm flx, y) dxdy.
& S-I

(2]
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Finding Limits of Integration

We now give a procedure for finding limits of integration that applies for many regions in
the plane. Regions that are more complicated, and for which this procedure fails, can often
be split up into pieces on which the procedure works.

Using Vertical Cross-sections When faced with evaluating ffR f(x, y)dA, integrating
first with respect to y and then with respect to x, do the following three steps:

1. Sketch. Sketch the region of integration and label the bounding curves (Figure ‘).

2. Find the y-limits of integration. Imagine a vertical line L cutting through R in the di-
rection of increasing y. Mark the y-values where L enters and leaves. These are the
y-limits of integration and are usually functions of x (instead of constants) (Figure

tb).

3. [Find the x-limits of integration. Choose x-limits that include all the vertical lines
through R. The integral shown here (see Figure c) Is

' x=1 ‘_}»'=*v'w
ffﬂx:y] dA :j ] flx, y) dy dx.
¥ =0 Jy=1-x

y Leaves at

& b

¥ y = V1 = x2
" Leaves at I
¥ . 1 / y=VI-x ? Enters at
R Enters at y=1-x
y=1-x

el
=

L
L
| X
P x /’]
* X o
0 * : Smallest x Largest x
isx=0 isx=1
(a) (h)
(c)
FIGURE Finding the limits of

integration when integrating first with
respect to y and then with respect to x.
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Using Horizontal Cross-sections To evaluate the same double integral as an iterated in-
tegral with the order of integration reversed, use horizontal lines instead of vertical lines in

Steps 2 and 3 (see Figure ). The integral is
o 0NV
jj flx,yv)dAd = / / flx, v) dx dvy.
1] l—y
R

Largest v ¥
- .
Enters at

isy =1

~ x=1—1y

v
Smallest v \ Lr:zn-r:s;__ at _
isw =10 x = NV1 — y°

- A
0 1

FIGURE Finding the limits of

mtegration when integrating first with
resnaect to x and then with respect to .
Reverse Order of Integration

EXAMPLE Sketch the region of integration for the integral

2 2x
j (4x + 2) dv dx
0 Jx

Solution ~ The region of integration is given by the inequalities x* = y = 2x and
0 = x = 2. It is therefore the region bounded by the curves y = x?and y = 2x between
x = Oand x = 2 (Figure a).

To find limits for integrating in the reverse order, we imagine a horizontal line passing
from left to right through the region. It enters at x = y/2 and leaves at x = Vy. To
include all such lines, we let y run from y = Oto y = 4 (Figure b). The mntegral 1s

4 Vy
/ / (4x + 2) dx dy.
0 Jy2

The common value of these integrals is 8.
v

1 4 "
o $2,4) F Sl

=
Il
pa
-

- 157 -
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If fix, v)and g(x, v) are continuous on the bounded region R, then the following
properties hold.

1. Constant Multiple: j-fcf[x,y}dd = j-ff[x,y}d.d (any number ¢}
R R

2. Sum and Difference:
/fﬂfﬂm}‘]‘ + glx, y)hdd = [fﬁ:x,}']‘dﬂ + [fsfxy}']'dﬂ
R R i

3. Domination:

(a) [_/_}LLI"}} dad = 1) if _;lrlzx,_}-'} = 0on Rk
R

(b) [fﬁ:x,_}'}dﬂ = ffg{x,y]ld.d if flx,v) = glx,ylon R
R R

4. Additivity: ff flx,¥)dd = ff flx,yhdd + [ f flx, ¥} dd
R o Ra

if £ 1s the umon of two nonoverlapping regions &) and R

Property 4 assumes that the region of mtegration £ 15 decomposed into nonoverlap-
ping regions £ and Rs with boundanes consisting of a finite number of line segments or
smooth curves. Figure 1llustrates an example of this property.

¥

il '
|ﬂ|ﬂ fle, ¥ dA = |ﬂ|ﬂ flz, ¥ dA + |ﬂ|ﬂ flx, ¥) dA

R R R,

FIGURE The Additivity Property
for rectangular regions holds for regions - 158 -
bounded by smooth curves.
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H.W :
Find the volume of the wedgelike solid that lies beneath the surface z =

16 — x> — y* and above the region R bounded by the curve y = 2Vx the line
v = dx — 2, and the x«axis.

z
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“Area” by Double Integration :
In this section we show how to use double integrals to calculate the areas of bounded
regions in the plane.

Areas of Bounded Regions in the Plane:
If we take f (X, y) =1 in the definition of the double integral over a region R in the
preceding section, the Riemann sums reduce to :

&, = 121 flxp, i) Ady = ; LY

This is simply the sum of the areas of the small rectangles in the partition of R, and
approximates what we would like to call the area of R.

DEFINITION The area of a closed, bounded plane region & 15

4 =j£/'.ﬂ.

To evaluate the integral in the definition of area, we integrate the constant function
f(x,y)=1 over the Region“R”,

EXAMPLE Find the area of the region R bounded by y = xand y = x% in the first
guadrant.
Solution  We sketch the region (Figure ), noting where the two curves intersect at

the ongin and (1, 1), and calculate the area as

1 x 1 x
A= /‘ /‘ dydx = f [}'] dx 1
0 Jxt i e
| 3 371
= | (v — 52 (2 _x (1
jj‘ (x — x°) dx [2 p L 3

- '|—|_._-.I = y*
P L T
0 I
FIGURE The region 1n Example
H W Find the area of the region R enclosed by the parabola y = x* and the line

y=x+ 2.
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Double Integrals in Polar Form :
Integrals are sometimes easier to evaluate if we change to polar coordinates. This

section shows how to accomplish the change and how to evaluate integrals over regions
whose boundaries are given by polar equations.

Integrals in Polar Coordinates :

When we defined the double integral of a function over a region R in the x-y plane,
we began by cutting R into rectangles whose sides were parallel to the coordinate axes.
These were the natural shapes to use because their sides have either constant x-values or
constant y-values. In polar coordinates, the natural shape is a “polar rectangle” whose

sides have constant r- and @ -values.

=
Il
1

FIGURE Theregion B g8 ) = F = mlf ), = § = F, is containad in the fan-
shaped region Ot 0 = F = g, o = § = F. The partition of O by circular arcs and ravs
inducas a partiton of &

A version of Fubini’s Theorem says that the limit approached by these sums can be
evaluated by repeated single integrations with respect to r and as 6.

=B [r=g(6)
//f(?‘, 0)dA = / f(r,0)rdrade.
% B=a Jr=g#)

- 161 -
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Finding Limits of Integration

( Multiple Integrals )

AGl Al jpall / Apwdigl) cdigtaslf

The procedure for finding limits of integration in rectangular coordinates also works for
polar coordinates. To evaluate [, p fUr,8) d4 over aregion R in polar coordinates, integrat-
ing first with respect to r and then with respect to 8, take the following steps.

1.
2,

Sketch. Sketch the region and label the bounding curves (Figure

a).

Find the r-limits of integration. Imagine a ray L from the origin cutting through R in

the direction of increasing ». Mark the r-values where L enters and leaves R. These are
the rdimits of integration. They usually depend on the angle # that L makes with the

positive x-axis (Figure

b).

These are the #-limits of integration (Figure

Find the 8-limits of integration. Find the smallest and largest #-values that bound A.
c). The polar iterated integral is

: ‘=2 f
//f{r.ﬂ]d,q =/ /
¥ I=w/4 Jr=

r=2
_ flr.6)rdrds.
V2 esed

e
)
+
-
Il
e

<

r-a]
; W
5

L

ral

<

.1‘

I

rsinfl = y= W2
o
F="%2csed

B
I

\H

Leaves atr= 2

Entersat r = V2 csc 8

(b

v

;__, Largest fis %

L
- f'x'l.‘ = X
V2 B
I
ra
r
—A, " Smallest 0is
malles 15 —,
N :
= X
0
ic)

Finding the limits of integration in polar coordinates.
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EXAMPLE Find the limits of integration for integrating f(r, 8) over the region R that
lies inside the cardioid » = 1 + cos f and outside the circle r = 1.

Solution

1. We first sketch the region and label the bounding curves (Figure
2. Next we find the r-limits of integration. A typical ray from the origin enters R where

( Multiple Integrals )

¥ = 1 and leaves where » = 1 + cosé.

3. Finally we find the 8-[imits of integration. The rays from the origin that intersect R run

from 8 = —w/2tof = 7 /2. The integral is

w2 I+cosd
/ f fir,8)rdrdb.
—mf2 J1

.11

==
2 r=1+cosf
N ) b,
L

g=-X Enters Leaves at

2 at r=1+cosd
r= 1
FIGURE Finding the limits of

integration in polar coordinates for the
region in Example
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“Area “ in Polar Coordinates :
If f(r, ) is the constant function whose value is 1, then the integral of f over R is the
area of R.

Area in Polar Coordinates
The area of a closed and bounded region R in the polar coordinate plane is

A= ]/ra’rdﬂ.
R

EXAMPLE Find the area enclosed by the lemniscate #? = 4 cos 26.

Solution ~ We graph the lemniscate to determine the limits of integration { Figure )and
see from the symmetry of the region that the total area is 4 times the first-quadrant portion.

w4 V4 eos 29 w4 ]"2 r="%4 cos 26
A= 4] ] rdrdd = 4] [?i| dae

0 0 0 r={

Y4

w4
=4] 2cos28d0 = 45ir12|5'} = 4, u
0 0
¥ Leaves at
i r= Vdcos 26

/ = X
Enters at - Pt =4 cos28
r=I) _1
FIGURE To integrate over the

shaded region, we run » from 0 to

%4 cos 26 and ¢ from 0 to 7 /4
(Example ).
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Changing Cartesian Inteqgrals into Polar Inteqrals coordinates:

The procedure for changing a Cartesian integral _,lf]lrp fix, ¥} dx dy mto a polar integral has b steps.

» First substtute x = reosfand y = rFan d, and replace dy gy by » gdr @8 i the Cartesian integral
m=p Then supply polar limits of integration for the boundary of R.

The Cartesian integral then becomes

I/f[-‘f,}'} dx dy =I/ flroosd, rsin ) r dr af,
i

R

EXAMPLE Evaluate

[/ Exi-ﬁ dy dx,
R

where R is the semicircular region bounded by the x-axis and the curve y = V1 — x?
(Figure 1.

Solution  In Cartesian coordinates, the mtegral in queston 15 a nonelementary integral
and there 15 no direct way to mtegrate ¢* ™' with respect to either x or y. Yet this integral
and others like it are important in mathematics—in statistics, for example—and we need
to find a way to evaluate it. Polar coordinates save the day. Substituting x = reosé,y =
rsinf and replacing 4y dx by r dr af enables us to evaluate the mtegral as

" T 1 o 1
[/ e dy dx = f [ e rdrdd = [ EE’J] e
i 0 Jo i i

I S P _m
_jj‘ 5 le l}a'E-ELE 1}

The » in the » dr J7 was just what we needed o Integrate " . Without it we would have

been unable to find an antidenvative for the first (Innermost) iterated integral.

y=\V1—-x*°
1
R —— r= 1
\//
"' ‘.“\
O = w} 8 =0
J £ ]
=1 0 *
FIGURE The semucircular region
in Example is the region
O=r =1, O = 0 = .
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EXAMPLE Evaluate the integral

Y
f f (x* + y?) dydx.
o Jo

Solution Integraton with respect to y gives

| 1 — ; 2'33_."2
f (xz""-,fl —x? o+ ETTJH_Y,
]

an integral difficult to evaluate without tables.

Things go better if we change the onginal integral to polar coordinates. The region of
integration in Cartesian coordinates is given by the inequalites 0 = y = V1 — x7 and
0 = x = 1, which correspond to the interior of the unit quartercircle x* + y? = linthe
first quadrant. (See Figure , first quadrant.) Substituting the polar coordinates
x=rcosf,y=ranf,0=8=x/2and0 = r = |, and replacing dx dy by r dr 48 in
the double integral, we get

| ey s =2 ri
ff (x> + v%) dv dx =f f (r?) r dr d6
g Jao i 0
a2 [ 4 ]r- I f:l:r_-ﬂ 1
F ™
= —_— gb = —gf = —,
j:l‘ [4 r=i i 4 8

Why 15 the polar coordinate transformation so effective here? One reason is that Xt + }'2
amplifies to 2. Another is that the limits of integration become constants.

X

g = T:'I"
-0

FIGURE Ths semucircular region
in Exampls 15 the region
0= r = 1, 0= g = .

HW : Evaluate the integral

L=
f f (x* + ¥?) dy dx.
i i

- 166 -
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Triple Integrals in Rectangular Coordinates :
We use triple integrals to calculate the volumes of three-dimensional shapes. Triple
integrals also arise in the study of vector fields and fluid flow in three dimensions.

Triple Integrals :

If F{x, v, z)is a function defined on a closed, bounded region D in space, such as the re-
gion occupied by a solid ball or a lump of clay, then the integral of F over D may be de-
fined in the following way. We partition a rectangular boxlike region containing D into
rectangular cells by planes parallel to the coordinate axes (Figure ). We number the
cells that lie completely inside 2 from 1 to n in some order, the &th cell having dimensions
Ax, by Ay, by Az, and volume AV, = Ax Ay, Az, We choose a point (x;, y;, z;) in each
cell and form the sum

R
‘S-H = 2’ ‘F‘l:\xi- :l-!_k-_ Zil] j. l(’k‘ {1:]
k=]
‘ (xg. yk’,'zk)
/ A
] -~
é i
‘ Axy
Ave
X /
s
FIGURE Partitioning a solid with

rectangular cells of volume AV .

Volume of a Region in Space

If F is the constant function whose value is 1, then the sums in Equation (1) reduce to
Se= 2 Flxyez) AV = 2 1AV, = > AV,

As Axg, Ay, and Az, approach zero, the cells A}, become smaller and more numerous and
fill up more and more of D. We therefore define the volume of D to be the triple integral

i, 3 a0 = fIf
D

DEFINITION The volume of a closed, bounded region D in space is

y = ]D[f av.
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Finding Limits of Integration in the Order dz dy dx

We evaluate a triple integral by applying a three-dimensional version of Fubini's Theorem
' to evaluate it by three repeated single integrations. As with double integrals,
there is a geometric procedure for finding the limits of integration for these single integrals.

To evaluate
[[/F{x, v, z)dV
D

over a region [, integrate first with respect to z, then with respect to y, and finally with
respect to x. |

1. Sketch. Sketch the region D along with its “shadow™ R (vertical projection) in the

xy-plane. Label the upper and lower bounding surfaces of D and the upper and lower
bounding curves of R.

2. Find the z-limits of integration. Draw a line M passing through a typical point (x, ¥) in
R parallel to the z-axis. As z increases, M enters D at z = f(x, v) and leaves at
z = f3(x,y). These are the z-limits of integration.

3. Find the y-limits of integration. Draw a line L through (x, y) parallel to the y-axis. As y

increases, L enters R at v = gi(x) and leaves at v = gi(x). These are the y-limits of
integration.

4.  Find the x-limits of integration. Choose x-imits that include all lines through R paral-

lel to the y-axis (x = g and x = b in the preceding figure). These are the x-limits of
integration. The integral is

r=h pw=gaxl pz=fiix.vl
f f Flx,v,z)dz dy dx.
=g Jy=glxl Jz=flx, v

T )

(2]

J‘!

Enters at
y =g,

Leaves at
- 4- vy = gi(x)

1RQ._
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EXAMPLE Find the volume of the region D enclosed by the surfaces z = x? + 37

andz = 8 — x% — 3
=f/]dzd}'dx,

the integral of Fix, v.z) = Lover D.To find the limits of integration ihrmluaﬁngthein- HtEmL we ﬁrst sketch the region.
The surfaces (Figure = J) intersect on the elliptical cylinder 1‘: i 3L =8 — x? - L'z orx? + 212 =4, =10
The I:l-uundarj.-' of the region R, the projection of D onto the 'n-ulane* 15 an ellpse with the same equation:

x__+ .'J_'Lf_ =4, The * Ll]'r'l_pi_.!f I:buundarv of B s the curve vy = V(4 — x7)/2. ThE: lower

Solution The volume s

boundary 15 the curve y = —%I(4 — :r:zjlf 2
Now we find the zJimits of integration. The line M passing through a typical pomt (x, )
in R parallel to the zaxis enters Datz = x° + 3y md leavesat z = 8 — x* — 3%,

M z

Leaves at =
Z2=8—x"—y°

(2,0.4)
E.mcrs at
z=x%+ 3yt —_
Enters at
y=-V{4-x?y2 —
2 ¢
X
Leaves at
y= Vi@ —x=y2
FIGURE The volume of the region enclosed by two paraboloids,

calculated in Example

Next we find the y-limits of mtegration. The line Lﬂjmugh (x, ¥) parallel to the y-axis
enters Rat y = —Hde—r}Eandlam'EbatL "'h,fL-ﬂl-—tJ-E

Finally we find the x-limits of integration. As L sweeps across R, the value of x vanes
fromx= —2at(—2,0,0)tox = 2 at (2, 0,0). The volume of D is
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. /]/.im dx

( Multiple Integrals )

A" "-ﬂ-.:} ¥ By
f f dz dy dx
VT (2 S w3yt
"-ﬂ-.: 2
[ [ (8 —2x% — 4y?) dy dx
W ’d-:} 2

4 Y Iy
= f [LE — %y — —}'3} dx
- 3 .-_‘l,._"" T Q

B L

2 fqa _ .2 A
=f (2[3—2_1:?—} A= x —E(ﬂ' 3 j j.:fx
- VT 2 3\ 2

After integration with the substitution x = 2 sinu

= 8mV/2.
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Triple Integrals in Cylindrical and Spherical Coordinates :

When a calculation in physics, engineering, or geometry involves a cylinder, cone, or
sphere, we can often simplify our work by using cylindrical or spherical coordinates, which
are introduced in this section.

Integration in Cylindrical Coordinates :

We obtain cylindrical coordinates for space by combining polar coordinates in the xy-plane
with the usual z-axis. This assigns to every point in space one or more coordinate triples of
the form (r, 8, z), as shown in Figure

*

FIGURE The cylindrical
coordinates of a point in space are ». &,
and =.

DEFINITION  Cylindrical coordinates represent a point P in space by ordered
triples (7, 8, z) in which

1. » and 6 are polar coordinates for the vertical projection of P on the xy-plane

2. z1s the rectangular vertical coordinate.

The values of x, y, r, and @ in rectangular and cylindrical coordinates are related by the
usual equations.

Equations Relating Rectangular (x, y, z) and Cylindrical (r, 8, ) Coordinates
X = rcosf, y = rsinf, I =z,

r2=x2 42 tan = y/x
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The triple integral of a function f over D is obtained by taking a limit of such Riemann

sums with partitions whose norms approach zero:

// .dez // .fdzrdrdﬂ.
ol 0

How to Integrate in Cylindrical Coordinates

To evaluate s
D

over a region £ in space in eylindneal coordinates, mtegrating first with respect to z, then
with respect to r, and hinally with respect to 8, take the following steps.
1. Sketch. Sketch the region D along with 1ts projection R on the xy-plane. Label the sur-

faces and curves that bound £ and R.
Find the z-limits of integration. Draw a hne M through a typical point (r, 8) of R

= parallel to the z-axis. As z mcreases, M enters [} at z = gir, #) and leaves at
z = galr, @). These are the zdimits of integration.

3. Find the r-limits of integration. Draw a ray L through (r, #) from the ongin. The ray
enters & at » = hy(0) and leaves at r = ha(6). These are the r-limits of integration.

4. Find the B-Emiis of integration. As L sveeps across R, the angle & it makes with the posi-

trve x-ax1s runs from & = atof = B. These are the 8<4imits of integrabon. The mtegral 15

=i rrmby (8] roeede 8
//j flr,8,z) dF = / / / _,f'lfr', B, z) dz rdrdb.
.--.1 :.l =z .- .l

“a

r= (f)

\\r = ha(f :
-2- -3,4- I
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EXAMPLE Find the limits of integration in cylindrical coordinates for integrating a
function f(r, @, z) over the region D bounded below by the plane z = 0, laterally by the
circular cylinder x2 + (y — 1)*> = 1, and above by the paraboloidz = x? + 2.

Solution ~ The base of D is also the region’s projection R on the xy-plane. The boundary
of R is the circle x> + (y — 1)? = 1. Its polar coordinate equation is

<

Top
xz —|— (y — lJz = l CaI’T:ESia:nZ z = .l'_': -+ ,\‘2
5 5 Cylindrical: z = »~
x*+y —=2y+1=1 e
2 — 2rsinf =0
" .\'\
r = 2sinf M[« #
o e
(r. 0)
Cartesian: x> + (y — 1> = 1
x Polar: r=2sinf
FIGURE Finding the limits of

integration for evaluating an integral in
cylindrical coordinates (Example 1).

We find the limits of in?legratiun, starting with the z-limits. A line M through a typical
point (r, 8) in R parallel to the z-axis enters D at z = 0 and leaves at z = x? + 3> = 2,
Next we find the r-limits of integration. A ray L through (r, 8) from the origin enters

Ratr = Oand leaves at » = 2siné.
Finally we find the #-limits of integration. As L sweeps across R, the angle 6 it makes

with the positive x-axis runs from 6 = 0 to # = 7. The integral is

. m f2sing R
///f{r, A,z)dV = j / / flr,0,z) dz rdrdf.
' o Jo 0
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Spherical Coordinates and Integration

Spherical coordinates locate points in space with two angles and one distance, as shown
in Figure below The first coordinate, p = |OP|, is the point’s distance from the origin.
Unlike , the variable p is never negative. The second coordinate, ¢, is the angle OP makes
with the positive z-axis. It is required to lie in the interval [0, 7]. The third coordinate is
the angle 6 as measured in cylindrical coordinates.

z
Pilp, &, )
z = poosd
?7\\\ ¥
~
d
X
FIGURE The spherical coordinates

p, &, and & and their relation to x, ., =z, and r.

DEFINITION  Spherical coordinates represent a point P in space by ordered
triples (p, &, 8) in which

1. p is the distance from P to the origin.

2. ¢ is the angle OP makes with the positive z-axis (0 = & = 7).

3. 6 is the angle from cylindrical coordinates (0 = # = 27).

// f{p..:b.ﬂmr:]/ flp, &, 8) p*sin & dp dd db.
D D

In spherical coordinates, we have

dV = p*sin o dp deb db.

To evaluate integrals in spherical coordinates, we usually integrate first with respect to p.
The procedure for finding the limits of integration is as follows. We restrict our attention
to integrating over domains that are solids of revolution about the z-axis (or portions
thereof) and for which the limits for # and ¢ are constant.
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Equations Relating Spherical Coordinates to Cartesian
and Cylindrical Coordinates

= psin o, ¥ = rcost = psindcosf,
z = pcosd, ¥ = rsinf = psindsinb, (1)
""».fx:z + L = Vp? 4+

EXAMPLE Find a spherical coordinate equation for the sphere x* + 2 +(z — 1)* = 1.

Solution  'We use Equations (1) to substitute for x, y, and z:

XEyIE -1 =1
pz sin’ b cos” 6 + p"‘ sin’ b sin® B + (pcosd — 1_‘J2 = ] Egs. (1)
;12 sin’ cb{cnszﬂ - sinzﬁ_] — ;12 cosdh — 2pcosd + 1 =1
]

,mz{sin2 d + cos’ d) = 2pcosd
]

p> =2pcosd
p =2cosd. p >0

The angle & wvaries from 0 at the north pole of the sphere to #/2 at the south pole; the
angle 6 does not appear in the expression for p, reflecting the symmetry about the z-axis
(see Figure ).

z

X+yi+(z-1)?=1
p=2cosd

3

e
\\&
T e

.

S

N
|

»

FIGURE The sphere in Example
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How to Integrate in Spherical Coordinates

[/ flp.d,8)dV
0D

over a region D in space in spherical coordinates, integrating first with respect to p, then
with respect to ¢, and finally with respect to 8, take the following steps.

To evaluate

1. Skeich. Sketch the region D along with its projection R on the xy-plane. Label the sur-
faces that bound D.

2. Find the p-limits of integration. Draw a ray M from the origin through D making an
angle ¢ with the positive z-axis. Also draw the projection of M on the xy-plane (call
the projection L). The ray L makes an angle # with the positive x-axis. As p increases,
M enters D at p = gi(d, f) and leaves at p = gi(db, #). These are the p-limits of
integration.

3. Find the d-limits of integration. For any given 6, the angle ¢ that M makes with the
z-axis runs from & = dpint0 @ = Pmay. These are the ¢ -limits of integration.

4. Find the 0-limits of integration. The ray L sweeps over R as 6 runs from « to 8. These
are the #-limits of integration. The integral is

=8 prd=d, rp=gild, 0
ﬂ flp.d.8)dV = f / 1, :ﬁ,ﬂ]pzsin:ﬁdpd:ﬁdﬂ.
fy I=a Jd=dngy Jp=gld, 9

>

z
<

p = g5, 0)
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EXAMPLE Find the volume of the “ice cream cone™ D cut from the solid sphere
p = 1 by thecone ¢ = /3.

Solution  The volume is ¥ = [[[ p*sind dp dd db, the integral of f(p, b, 8) =
over [,

To find the limits of integration for evaluating the integral, we begin by sketching D
and its projection R on the xy-plane (Figure ).

The p-limits of integration. We draw a ray M from the origin through D making an an-

gle ¢ with the positive z-axis. We also draw L, the projection of M on the xy-plane, along

with the angle # that L makes with the positive x-axis. Ray M enters D at p = 0 and leaves
atp = 1.

The d-limits of integration. The cone ¢ = 7 /3 makes an angle of 7 /3 with the posi-

tive z-axis. For any given #, the angle ¢ canrun from¢ = Oto & = #/3.

The B-limits DJI': integration. The ray L sweeps over R as f runs from 0 to 2. The

volume is
27 a3 ol
V=M;;25in¢d;1d¢dﬁ =f f f p*sind dp dd db
0 1] 0

f / {—} sin o ddv 460 —f / 351r1q‘m’¢5 Fels,
— _l b ”"Jar[;_ i _l _lu ]_E
= ; 3 cos , 5 =g 27 =7.

l M
D_ = —_"““7!"\\ Sphere p = 1

FIGURE The ice cream cone In
Example
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Coordinate Conversion Formulas

CYLINDRICAL TO SPHERICAL TO SPHERICAL TO
RECTANGULAR RECTANGULAR CYLINDRICAL
X =rcosf ¥ = psingcosf © = psing
¥ = rsinf y = psingsind z=pcosd
z=z z=pcosd =8
Corresponding formulas for 4V in triple integrals:
dV = dx dy dz @——————— ( Cartizain)
= dz r drdf &———————> ( Polar )

= p?sind dp db ) @—— ( Spher )
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Practices

Double integrals :

Example

13
Evaluate HXZ +y* dy dx

-10 ¥

Solution : .
13 1 3 1 Nt )
[]x¢+ytdydx= [([x*+y* dy)dx= | X2y+y? dX=Il3x2+9dx A

-10 -10 -1 0

= 3x%+9x ‘1_1 =20

Example 2

712 cosé

Evaluate I jrz sin” @ dr d9/ Note: cos36ys6}
0 O

Solution: {c0s°6 sin’0d 6 = (1-sin“0)sin®Od(sin®)=(1-u?)u’du}

712 cosf
j jrzsinzedr do= Ly (s> y=sinO)
0 0

712 re cos¢ 171'/2

_[— sin?@ do == jcos3esin29 dé

0 3 0 3 0

2

E(sin3 6 sin® 49)”/ 2
3 3 5 45

0

wl2 /2

1 ) P02 ; 1 2y,,2
== | (l-sin“@)sin“@ d(sin@) == |(1l-u“)u-du=
35( ) (sin®) 3£< )
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Evaluate  [[x°y* dA where R is the region bounded by y = x; y = 1 and x=0, integrate
R

in order (dxdy) and then in order of (dydx) .

Solution :

First integrated with respect to order (dxdy) as in(figure.1)

1

Y 1 7
1 y
dy=—|y'dy="o =
0 4'([ 280

1Xx= 1
: jij3y2 dA :I Iyxsyzdxdy :'([yZXT: 5

0 x=0

Second integrated with respect to order (dydx) as in (figure.2)

ﬂ x*y? dA=
R

' 1t 4 . 1 x4 X[
dx==|x’1l-x)dx==(——-—
3! (L-x*)dx=( )

11 s s 1 3y3
!!xydxdyzlx? 3 7

X

dy

(1)

dx

Example
Evaluate [[x+ydxdy where R is the region bounded by V2 =X;

R
x+2y =3 and y=0in the first quadrant.

Solution

”x + v dxdy=

R

13-2y 1 2 3-2y 1 N2 282

{ [(x + y)dxdy :r? el dy = {{(3 - 2}')2 S MG-27)-57 ]}dy

9
- j(E ~3y—y' —y")dy = 2.55
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Example
Evaluate
1 Tils r!loos
j _rr:ﬁs(a sin x) dydy= j jca:-s(a sin X ) dydx u
0 oo™ y
¥ cos{:sinx){ dy= _Ft:a:-sl: cosfasiny) dx
Q a ]
Tl ) ) ]. ) ) -
= j cos@siny) -::E[smx)=—5m@15mx)"
0 a 0
1 .
= —:ina | ]
a

Example:
Jx=x? 2

Evaluate j dy dx, change from Cartesian to polar coordinate then evaluate.
0

O Sy

yZ + X

Solution4

x—x? 2 7 12cos6
dy dx = j jrzsinze dr do
0

y
z[ Jy? +x° 0

y

O ey

y:‘/x_ X2

dx

712cosd
j jrzsin2 @ dr dé
0 0

712 .3 cosé

sin@ dr d@ =

l2
J'cos3 dsin? @ do=
0

0 0

e 12
I (1-sin®0)sin® @ d(sin o) _1(Sln 9 sm5 9) 2
0

W|H wIH
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Example
Find the area enclosed by one loop of the curve r = cos 26.

Boundaries:

T ;
0 < r < cos2f ; —E£E£+

Solution : the Area is :
+7 /4 cos2
A= Hld{ -
D

j j 17 dr dé
+E/AT 2 cos 6 ‘ '
- 11zl

—x/4

_[sin49+a}‘” (o x)

16 41_
Therefore A =

(' Multiple Integrals

)

AGl Al jpall / Apwdigl) cdigtaslf

Evaluate :
[[yV1+x3dA  where R is the triangle with vertices (0, 0), (3, 0) and (3, 2)
R

Solution

[fyvi+ x3dA = f
R 0

X

%3 3,2
| y\/1+x3dydx=jy7
0 0

Zy
3 3)2 23 5 3)72
+X dx=§jx +X dx

0 0
3 32 ’
_ 2 X - 2 2828 - 1]~ 7267262885
21 3 81
2 0
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Triple integrals

Example : Use a triple integral to find the volume of the solid bounded by the graphs of
z=x2+y? and the plane z=4.

Solution: The following graph shows a plot of the paraboloid z = X2 + y2 (in blue), the plane z=4 (in
red), and its projection onto the x-y plane (in green).

The triple integral _[H dV will evaluate the volume of this surface. In the z direction, the surface E is
E

bounded between the graphs of the paraboloid z = X2 + y2 and the plane z =4. This will make up the limits
of integration in terms of z. The limits for y and x are determined by looking at the projection D given on the

x-y plane, which is the graph of the circle X2 + y2 =4 given as follows:

3 E] E] o 1 2 3

2

3]

Taking the equation X2 + y2 = 4 and solving for y gives y =+v4- x2 . Thus the limits of integration of y

will range from y = —/4 - x2 to y=v4- x? . The integration limits in terms of x hence range from x = -2
to x = 2. Thus the volume of the region E can be found by evaluating the following triple integral:

2 Ja-x* 4
Volumeof E=[fav= [ [ [ dzdydx . If we evaluate the innermost integral we get the
E —2 _\J4-x2 P+y?

following:
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2 m 4 2 Jax?
I I .[ dz dy dx = I I [2]] i2+y2 dy dx
=2 _\J4-x2 XP+y? 22 _[a 2
2 Va-x?
= I I [4—(X2 +y2)]dy dx
22_Ja 2

AGl Al jpall / Apwdigl) cdigtaslf

Since the limits involving y involve two radicals, integrating the rest of this result in
rectangular coordinates is a tedious task. However, since the region D on the x-y plane given

by x% +y? =4 is circular, it is natural to represent this region in polar coordinates.
Using the fact that the radius r ranges from r=0 to r=2 and that ¢ ranges from =0 to
6 =27 and also that in polar coordinates, the conversion equation is r? = x> + y2, the iterated

integral becomes

i_ Va—x2 27 2
— 2 0

Evaluating this integral in polar coordinates, we obtain

27 2 2 2

I J- (4_r2)rdrd0=f J‘ (4r-r3)drde (Distribute r)
00 00
6=2x 1 r=2
- J‘ @r2==r% do (Integrate)
4
6=0 r=0
0=2

= _[” [(2(2)%- %(2)4) -0]do (Sub in limits of integration)
=0

0=2r7

= J’ 4do (Simplify)
6=0
= 49\?:2” (Integrate)
= 4(27) — 4(0) (Sub in limits of integration)
=8r

Thus, the volume of E is 8r
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Example :

_ 4,3
Verify the formula V=37a for the volume of a sphere of radius a.

2

V:J.;,[ldvz-([z

_ @rz drj@sin 0 dej[zfl d¢]

- {r_;}:[—cose]gw]iﬁ = (%S—Oj(ﬂﬂ)(%—o)

r’sin@drdoddg¢

Oty

_ 4 .3
Therefore : ¥ ~ 372

Evaluate the following integrals :

1- Find the volume of the solid bounded by y=x and y = x?, z=0 and z=x+y

1 x x+y
V=] [ [dedydx=0.15
0 x> 0
6-3x
2 2 6-3x-2y
2- I j I x dzdydx =3
0 0 0

3- 4} I I 1/x + y?dzdxdy =9.4248
0 0 0

1x2y 1x*y 1x? y X2 1X4 X5
4- [ [ [ @dzdydx = [ [dzdydx = [ [ ydydx = j - j7dxzﬁ
000 000 00 0 o ]
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Homework

1-
Evaluate [[xe’ dA where R is the region bounded by y=x* x=0 and y= 4
R

Solution : (13.4)

2-
Evaluate in order of dxdy and dydx

2 4 2 4
Hx e’ dA =”x e” dydx
0 x2 0 x2

3-

1
Evaluatej j Zy — dy dx
0 0

4-
V8-x?

Evaluate

O e N

| 5oy

5- Evaluate | = [[(6x+2y*)dA
R
where R is the region enclosed by the parabola x =y* and the line x +y = 2.

6-

Find ﬂ%dA where R is the region in the first quadrant bounded by the

R (x2 + y2 +1)

circle x?+y?=9 x=0,and y=x

7-

Evaluate the integral [[ (x+y)dA where R is the region bounded by xy = 4 and x+y =5
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( Differential Equations )

Differential Equations :
A differential equation is an equation that involves one or more derivatives, or
differentials. Differential equations are classified by:

1. Type: Ordinary or partial.

2. Order: The order of differential equation is the highest order derivative that occurs
in the equation.

3. Degree: The exponent of the highest power of the highest order derivative.

Ordinary D.Egs : is a differential equation that the unknown function depends on only
one independent variable.

Partial D.Egs : is a differential equation that the unknown function depends on two or
more independent variable

Example for a partial D.Egs.. is :
Ox? ox?

Example for ordinary D.Eqgs.. is :

Ex1:
dy
™ =5x+3 1st order-1st degree
X
Ex2:
d’y * (d 2y i
— | | 3rd order-2nd degree
dx dx
Ex3:
d’y . d?y
4F +5sin x o +5xy =0 3rd order-1st degree

Exercise: Find the order and degree of these differential equations.

1. % +cosx=0 ans:lst order-1st degree
X

2. 3dx+4y’dy =0 ans:dst order-1st degree

2

d°y
3.

dx?
4. (Y +2y =x° (H. W)
5. y"+2(y")=xy (H. W)

+y=y?, (H.-W)
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Solution of the differential equation :

The solution of the differential equation in the unknown function y and the
independent variable x is a function y(x) that satisfies the differential equation.
Ordinary Differential Equations:

Ordinary Differential Equations are equations involve derivatives.

Initial Condition(s) :
Initial Condition(s) are a condition, or set of conditions, on the solution that will
allow us to determine which solution that we are after. Initial conditions are of the form,

_J-'L{'In} —_ J_.I] ﬂI]di_‘jr J.J.-'.-l (In } —_ _J.'L_..'_

So, in other words, initial conditions are values of the solution and/or its derivative(s) at
specific points. The number of initial conditions that are required for a given differential
equation will depend upon the order of the differential equation as we will see.

Initial Value Problem:
An Initial Value Problem (or IVP) is a differential equation alongwithan
appropriate number of initial conditions.

Example  The following is an IVP.

4x7y"+12x0"+ 3y =0 )-‘(4}=§, V(4)=—-—

Interval of Validity:
The interval of validity for an IVP with initial condition(s) is the largest possible

interval on which the solution is valid and contains t,.

()=, and/or  y'*! (,)=»,

General Solution :
The general solution to a differential equation is the most general form that the
solution can take and doesn’t take any initial conditions into account.

Actual Solution

The actual solution to a differential equation is the specific solution that not only
satisfies the differential equation, but also satisfies the given initial condition(s).
Explicitsolution :

An explicit solution is any solution that is given in the form y = y(t) . In other
words, the only place that “y” actually shows up is once on the left side and only raised
to the first power.
implicit solution :

An implicit solution is any solution that isn’t in explicit form. Note that it is
possible to have either general implicit/explicit solutions and actual implicit/explicit
solutions.
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Methods to solve Ordinary First Order D.E.s.

1- Linear Differential Equations

2- Separable Equations.

3- Homogeneous.

4- Linear equation of first order differential equations.
5- Exact differential equations.

6- Bernoulli differential equation

1- Linear Differential Equations:
A linear differential equation is any differential equation that can be written in the
following form:
a,(1)y" (1) +a, ()3 1)+ +a (1) (1) +a, (1) y(1) = (2) (1)

Example:
4x°y"+12xy" + 3y =0

The important thing to note about linear differential equations is that there are no
products of the function, y(t), and its derivatives(y*y) and neither the function or its
derivatives occur to any power other than the first power( (y)%, (y)* ).

The coefficients ag( t) .......... a(t) and g(t) can be zero or non-zero functions,
constant or non-constant functions, linear or non-linear functions. Only the function,
y (t) and its derivatives are used in determining if a differential equation is linear.

If a differential equation cannot be written in the form, (1) then it is called a non-linear
differential equation. Forexample of non- linear differential equation is in equation (2)

that given below :

Example of non- linear differential equation :
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fat

Example  Show that yl{x}: x

"

i5 a solution to 4x3}J”+ [2xp"+3y =0 for x> 0.

Solution We'll need the first and second derivative to do this.

, 3 3 ] 15 =
yl{x}:-;x- y (x}z:x-
Plug these as well as the function into the differental equation.
,f" 7 i 5 o3y
215 -3 | { -5 | |
4" —x ¢ I+|11:I X .+3. x ? |:D
N A A A
_3 -2 -
15x *=18x * +3x * =0
0=0
|
S0, y(x} =x * does satisfy the differential equation and hence 1s a solution. Why then did [

include the condition that x > 07 1 did not use this condition anywhere in the work showing that
the function would satisfy the differential equation.

To see why recall that

In this form it is clear that we'll need to avoid x =0 at the least as this would give division by
ZErO0.

Also, there i1s a general rule of thumb that we're going to run with in this class. This rule of
thumb 1s : Start with real numbers, end with real numbers. In other words, if our differential

equation only contains real numbers then we don’t want solutions that give complex numbers.
S0, 1n order to avold complex numbers we will also need to avoid neeative values of x.
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Iulw

Example 2 y(x)=x ? isasolutionto 4x”y" +120"'+3y =0, y(4)= %, and

- 3
e )==—.
Y=g
Solution As we saw In previous example the function is a solution and we can then note that
o2
L'[i‘}:#—: '.3=_
(Va) 8
L3 =3 3
|5 |I4}=— _}4 2 =—;—5——a
)
and so this solution also meets the imitial conditions of J.'H] =+ and J'"H]' =—2. In fact,
3
v r} =x ? is the only solution to this differential equation that satisfies these two initial
conditions.
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2 - Separable Equations:
A separable differential equation is any differential equation that we can write in the
following form.

V()2 -

_ M ll.T} ................... ( 1)
dx '

Note that in order for a differential equation to be separable all the y's in the differential
equation must be multiplied by the derivative and all the x's in the differential equation

must be on the other side of the equal sign.

Solving separable differential equation is fairly easy. We first rewrite the differential
equation as the following

Niy } dy=M|(x } dx

Then vou integrate both sides.

[N(p)dy=[M(x)dr e ()

So, after doing the integrations in (2) you will have an implicit solution that you
can hopefully solve for the explicit solution, y(x). Note that it won't always be possible
to solve for an explicit solution.

Recall from the Definitions section that an implicit solution is a solution that is not
in the formy = y( x ) while an explicit solution has been written in that form.
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Ll g ASY) Al i / byl g SV Aasia A4S ( Differential Equations )

Example 1 :

Solve: d_ e’

dx

Sol.:

ﬂ:e&ey = = d—y:ede = =

dx e’

== —_[e‘y -(—dy) =_|.exdx = -e’'=e"+c
Ex.2:
. dy 2
Solve : Q+x)—=x(y" +1)
dx

Sol.:

dy ¢ X
I(yz +1) _Ix+1dx
wWJyzjdx—I;%de

tanty =x—Injx+1+c

Ex.3: Solve %:(y—x)z (D)
X
dy _,_du dy _du 4

Sol.: put = =
dx dx dx dx

y—X=uU,

3—‘;+1=u2 = jufilzjdx

1/2 -1/2
J.{EJF qu1}du =_[dx

i[|n (u-1)-Inu+1)]=x+c

1- o= (1 + pPe=,

- 26-
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Example : Solve the following differential equation and determine the interval of
validity for the solution.

Solution :

v dy = 6xdx

[ v ody = ‘[ fx dx

—~—=3x"+c¢
¥

So, we now have an implicit solution. This solution is easy enough to get an explicit
solution, however before getting that it is usually easier to find the value of the constant
at this point. So apply the initial condition and find the value of c.

=3(1 +¢c  ¢=-28

I
r

Plug this into the general solution and then solve to get an explicit solution.

-l =3x" =28
.1'.

y(x) =

T28-3x

Now, as far as solutions go we’ve got the solution. We do need to start worrying about
intervals of validity however.

Recall that there are two conditions that define an interval of validity. First, it must be a

continuous interval with no breaks or holes in it. Second it must contain the value
of the independent variable in the initial condition, X = 1 in this case.

So, for our case we've got to avoid two values of x. Namely, x = £,/2 = £3.05505 since these

will give us division by zero. This gives us three possible intervals of validity.

||28 ||28 ||28 f28
— 0 e X —, [ —— — | x| — —— X< 00
3 3 3 3

Howewver, only one of these will contain the value of x from the initial condition and sowe can

see that
’28 (28
- |— = x =, |—
3 3

must be the interval of validity for this solution.
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Example 2 Solve the following IVP , and find explicit solution
L 3xT+4x-4
Yy =——"7" y(1)=3
2y=4
Solution

This differential equation 1s clearly separable, so let's put it in the proper form and then integrate
both sides.

(2y—4)dy =(3x" +4x -4 )dx
J[E}J-ﬁl}dy =J-[;3_r3 +4x —4)dx

yl =4y = X +2x —dx+c

We now have our implicit solution, so as with the first example let’s apply the initial condition at
this point to determine the value of ¢.

(3 =4(3)=(1) +2(1) =4(1)+¢  e==2

The implicit solution is then
yi=dy=x"+2x" —4x-2

We now need to find the explicit solution. This is actually easier than it might look and you
already know how to do it. Firstwe need to rewrite the solution a little

2 (.3 2
yi=dy—(x"+2x" -4x-2)=0
To solve this all we need to recognize 1s that this 1s quadratic in y and so we can use the quadratic
formula to solve it. However, unlike quadratics vou are used to, at least some of the “constants™

will not actually be constant, but will in fact involve ¥'s.

S0, upon using the quadratic formula on this we gf:[

[ O+ 25 - f-h:-u})

- 4+.Jlfi —4(1

—b+ /B — dac » yix)=

a 2a -
4+ f16+4(x + 227~ 4x-2)

-

Fa

Next, notice that we can factor a 4 out from under the square root (it will come out as a 2...) and
then simplify a little.

4224+ (2" +2x7 —4x-2)
[_r}: - -

=2+ +2x  —dx+2

We are almost there. Notice that we've actually got two solutions here (the *“ £ ™) and we only
want a single solution. In fact, only one of the signs can be correct. So, to figure out which one is
correct we can reapply the initial condition to this. Only one of the signs will give the correct
value sowe can use this to figure out which one of the signs is correct. Plugging x = | into the
solution gives.

3=y(l)=2+/1+2-4+2=2+1=3,1

In this case it looks like the *+" is the correct sign for our solution. Note that it is completely
possible that the *-" could be the solution so don't always expect it to be one or the other.

The explicit solution for our differential equation is. _].’[_r} =7+ v"_rj +2x —dx+?
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Example : Solve the following VP :
y=e?(2x-4)  y(5)=0

Solution
This differential equation is easy enough to separate, so let's do that and then integrate both sides.
e’ dy=(2x- 4} dx

[erdy=[(2x-4)dx
e’ =x"—4dx+c¢

Applying the initial condition gives
1=25-20+¢ c=—4

This then gives an implicit solution of.
v 2
¢ =x —4x-4

We can easily find the explicit solution to this differential equation by simply taking the natural
log of both sides.

y(x)=In(x -4x-4)

H.W. : Solve the following 1\VP

1- idr

dr _r”
d8 @8
dy

o X
dt

—esee(y)(1+8)  p(0)=0

-29.
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3-Homogeneous differential equations:

Sometimes a D.Eq. which variables can't be separated can be transformed by a change
of variables into an equation which variables can be separated. This is the case with any

equation that can be put into form:

d
Y_ i (D)
o dx X
Suchan equation is called homogenous.
Pt Y-u = y = Uux ,ﬂzujtx-d—u and (1) becomes
X dx dx

x-d—u+u= f(u)
dx

Example 1:
2 2
Sol\/e d_y:u
dx Xy
Sol.:
y2
1+~
B X ohomo, Pt You = W My
dx y X dx dx
X
du 1+u? du 1+u?-u?
X-—4U= Xo—m=——
dx u dx u
X.d_UZE , j.u.du: %
dx u X

2
u
Y ohxre = L cinx+c

Ex.2: Solve the homogenous D.Eq  xdy — 2ydx =0

Sol.: xdy:2ydx:ﬂ:ﬂ put v = ﬂ:x.d_quu
dx X X dx dx
2

x- 34 u=2u In|x|-Injulrc = =c=> =¢
dx u y
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Example , Solve the following IVP |
_rr],Jr],J'+4_‘r:3+ }_13:[:' }J[Z}:—-?’ =0

Solution
Let's first divide both sides by x° o rewrite the differential equation as follows,

: 2 \2
l'1-r=—4—'1: =—4 :

(y
X X Lx

v=(yv/x)and (dydx) =v+xv’

So, let’s plug the substitution into this form of the differential equation to get,
2
viv+a')=-4-v

MNext, rewrite the differential equation to get everyihing separated out.

.l
rxy ==—4 =2

. 4420
TV ==
'L.l
3
1—,dv=-lair
44 20 x

Integrating both sides gives,
1In [4 +2v* |==In(x)+c

We need to do a little rewriting using basic logarithm properties in order to be able to easily solve
this for v.

In [4 + 217 .}*‘ = ]n[_ﬁc}_I +c

Now exponentiate both sides and do a little rewriting

] . ,
(4+207 ) =™ =™ = £
N X

Note that because ¢ is an unknown constant then so is % and so we may as well just call this ¢ as
we did abowve.

Finally, let’s solve for v and then plug the substitution back in and we'll play a little fast and loose
with constants again.
4

C f
4+ 31‘3=—4=—4
x x
s ™
[ ¢
2 _ 10 - _
v EL S 4,}'
&
v e—4xt \"|
T 2 a
X Lox )
s o c—4x"| c—-4x*
y =3% a |_ a2
Lox ) 2x

At this point it would probably be best to go ahead and apply the initial condition. Doing that
oives,
c—4(16
40 = _(} = c=456
2(4)
-31-
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Finally, plug in ¢ and solve for v to get,

2R =257 IR =257
el v . O Favay o
¥ = = y(x)==+ | —/——

X X

The initial condition tells us that the *~" must be the correct sign and so the actual solution is,
- 228-2x"
yix)==|—

X

H.W.: Solve the following I\VP :

xy' =y(Inx-lny) y(1)=4, £>0

Special case:
When we have the differential equation as the form below or its possibleto put it like :

v'=G(ax+ by)

In these cases, we'll use the substitution,
v=ax+hy = vi=za+ by

Plugging this into the differential equation gives,

5(v-a)=G(v)

viza+bG|( 1} —
So. as this form below we made the equation like separable :

dv
—
a +|"JG|{1-'_}

S0, with this substitution we'll be able to rewrite the original differential equation as a new
separable differential equation that we can solve.
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Example  Solve the following IVP

V' =(dx=y+1y =0 y(0)=2
Solution
In this case we'll use the substitution.
v=4x—-y vi=4-—y'

So, plugging this into the differential equation gives,
4= =(v+1)" =0
Vi=d4=(v+ I]I3
qv
A
(v+ I}'— 4

Using Partial fraction to find the integration

dv dv
= = —,[i
u[v%rzp-?, J‘(v+3]|:v-|} f-e

l[L_ ' dv = [ ~dx
4 v=1 v+3

Lin(v=1)=In(v+3))==-x+c

In| =c—4x
\v+3)
v—1 c=dx —4x
2’= =ce
v+

v—l=ce™* [1,+3}

v[l-ce™ ) =1+3ce™

5o, let’s solve for v and then go ahead and go back into terms of y.

o 1+3ce™™
v l—ce™
4_r-}!:ﬂ
l—ce™
—4x
}’(I}=‘4I-H3£—E_u
l—ce

The last step is to then apply the initial condition and solve forc.

1+3c
Ez}iil:l}z— - = c==3
The solution is then,
1-9e™
Nrx)=4x—-——m

-33-

AU Al el / Aswaigh) el



Al g A Atin and / iyl g ASIY) Auuia 435 ( Differential Equations ) AN Ala el [ Awigh cdldasl)

H.W: Solve the following VP

r]..'r: E?}'—I }'(D}

Il
=

4 — Linear equations

In order to solve a linear first order differential equation we MUST start with the differential
equation in the form shown below. If the differential equation is not in this form then the process
we're going to use will not work.

dy
—_— x] ' =
o pix)y =glx)

: ay .
The equation of the form ? +p(x)-y=g(X) ,wherepandg are functions of only %™ or constant
X

is called linear in v and ﬂ
dx

Find integrating factor (J ) =up(x)= ol 7 . then the general solutionis :

y-p(x) =_[u(‘x) g(x).dx

Solution Process
The solution process for a first order linear differential equation is as follows.

. Put the differential equation in the correct initial form,
2. Find the integrating factor, g(X |,

u(x)= PO

3. Multiply everything in the differential equation by (X } and verify that the left side

becomes the product rule [,u[x }_L'[X_}}' and write it as such.

4. Integrate both sides, make sure you properly deal with the constant of integration.
5. Solve for the solution y(x) =

- 34-



Ll g ASY) Al i / byl g SV Aasia A4S ( Differential Equations )

Ex.1: Solve: Y Yy
PO =—, Q) =xe’

-1
uj)zmonxﬁzemxzi
Solution is

-%zj&-xex-dx

=e"+cC

x < <

Ex.2:
Sove 9. Xy = X
dx
P=x, Q=x

(f)=el™_e2

Solution is
e
y-e? =J'e2 - X - dx
y-e2 =e?2 +c= y=1+ce 2 is thesolution
H.W:

Find the solution to the following differential equation.

1- Z—l =9.8-0.19wv ans: v(t)=50+ce™™
I!l 4

2- % +2y=e" ans: y=e”+ce™
X

3- x W3y SNX ans: xdy=c-cosx
dx X

- 35-
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4- Exactdifferential equations:
The next type of first order differential equations that we’ll be looking at is Exact

differential equations.

The conditions for this method are :
1- The differential equation must be in the following form :
M (X, y)dx+ N(x,y)dy =0
The “ + “ should be between M and N, and equal the equation to “zero”
2- The equation M (x,y)dx+ N(x,y)dy =0 is said to be exact if :
oM oN
oy ox
Then the general solution is :

c= j Mdx + j (terms in N do not contains x)dy

Where “¢ “ is constant of the integration.

Ex.1:
Show that the following D.Eq. are exact D.Eq.

a) (3x%y +2xy)dx + (x> + x* +2y)dy =0

oM oN

——=3"+2x , —=3x"+2x
OX

M _oN

oy OX

. The D.Eq. Is exact.

b) [xcos(x+ y) +sin(x+ y)]dx + (xcos(x + y)dy =0

% =—XSin(X+ y) + cos(X +Y)

‘Z_N =—XSin(X+ y) + cos(X +y)
X

. the D.Eq. is exact.

2 2
Ex.2: Is the D.Eq. @y exact or not?
dx 2Xy

Sol.
2xydy = —(x* + y*)dx
oM oN
—=2 , —=2
Py y ox y
™M = 6—N .. theD.Eq.is exact
oy OX
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Ex.3:

AU Al el / Aswaigh) el

Solve the exact D.Egs. in Ex.1(a) above (3x*y + 2xy)dx + (x* + x> + 2y)dy =0

Sol.
c= I(3x2y+ 2xy)dx+j2ydy

3 2 2
sy gy X Y

2 3
thesolutionis X3y +X y+Yy®=c

Ex.4:
Solve (x+ y)dx+(x+y*)dy=0

Sol.
M_, Ny
oy OX
.. theD.Eq.is exact
c= _[ Mdx + j (terms in N do not contains X)dy

= (X + y)dx + j y?dy
2 3
X y
=— 4+ Xy +—
2 a 3
2 3
.o X
thesolutionis — +xy + y c
2 3
H.W:
1- Solve the following differential equation.
. . dy
2xy=9x +(2y+x 1)1 —o
2- Solve the following IVP and find the interval of validity for the solution.

2x_1'-9x:+{'2_1'+x:+]}%:U._ ¥(0)==3
: X
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6- Bernoulli differential equation
In this section we are going to take a look at differential equations in the form,

y+p(x)y=qlx)y

Where p(x) and q(x) are continuous functions on the interval we’re working on and n is
areal number. Differential equations in this form are called Bernoulli Equations.

First notice that if n =0 or n =1, then the equation is linear and we already
know how to solve it in these cases. Therefore, in this section we’re going to be looking
at solutions for values of n other than these two.

In order to solve these we’ll first divide the differential equation by y" to get,

T _! v l-n !
v ¥ +plx)y T =glx)
. - - - - - - - 2 3 s
We are now going to use the substitution v =y to convert this into a differential equation in
terms of v. As we’ll see this will lead to a differential equation that we can solve.

So, taking the derivative gives us,
vi=(l=-n)y"y'

Now, plugeing this as well as our substitution into the differential equation gives,

]

l—n

v+ p(x)v=g(x)

This 1s a linear differential equation that we can solve for v and once we have this in hand we can

also get the solution to the original differential equation by plugging v back into our substitution
and solving for y.
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Example I Solve the following [VP

4 2
}Jr+¥}.l:_r3}1_ I}J[E:}:—I! _T}D

Solution
So, the first thing that we need to do is get this into the “proper™ form and that means dividing

everything by yz_ Doing this gives,

4
Yoy =y =x
X

The substitution and derivative that we'll need here 1s,

V= }.l pr _ -.-]"I__.-]"J

With this substitution the differential equation becomes,

3
' +—v=x

x
Here's the solution to this differential equation.
1 4 ‘__"ir n
1.1—-—1.1:_._:(‘3 ) _,Lf[.r}=el| x =e—-ﬂ||x|=_.r—4
x
r[':c'dv} dx =j-_r_' dx
v =-]n|_r|+c = vix)=cx'-x"Inx

v =x"(c-Inx)

At this point we can solve for y and then apply the initial condition or apply the initial condition
and then solve fory. We'll generally do this with the later approach so let’s apply the initial
condition to get,

(-1) =e2*=2%In2 = c=n2-L

16

Plugging in for ¢ and solving for y gives,
1 -16 -16

"Nx )= - = = -
»(x) ' (In2-Lt-=Inx) x'(I+16lnx-16In2) x'(1+16InL)
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Solve the following IVP

Example
6y =2y =xy’ y(0)=-2

Solution
First get the differential equation in the proper form and then write down the substitution,
— sz-l V.r:_:}y--}yr

6y~y' -2y =x

Plugging the substitution nto the differential equation gives,

= V+v=—1x u(x)=e

1od | o=

=V =2v=x

Again, we've rearranged a little and given the integrating factor needed to solve the linear

differential equation. Upon solving the linear differential equation we have,
v(x)==4(x=1)+ce™

Now back substitute to get back into y’s.
X

=3

Yo =—t(x=1)+ce

Fod |

Now we need to apply the initial condition and solve for ¢.
=Ll= % + ¢ p—

g
Plugging in ¢ and solving for y gives,
-

y(x}=- l
(4x—4+5e7 )

HW. :

Solve the following IVP
. -
YTy =0 y(1)=0
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Second Order Differential Equations:

The most general linear second order differential equation is in the form.

p(t)¥ +q(t)y'+r(t)y=glt)
In fact, we will rarely look at non-constant coefficient( p(t), q(t) ,r(t) ) linear second
order differential equations.

In the case where we assume constant coefficients we will use the following
differential equation form:
ay” +by’ +Cy =F(X)  ceverecnneennns (1)
where a, b and c are constants coefficients.
If F(x)=0 then (1) is called homogenous.

If F(x)=0 then (1) is called non homogenous.

EXx:
1) y"'-x%y' +sinxy =0 is linear, 2" order, homo.

2) y'-(y')*+y =sinx is nonlinear, 2™ order, non homo.

Then, we have two type of the second order linear D.E.s
1- The second order, constants coefficients, linear , Homogeneous D.E.s, is:
The method that solve the second order, constants coefficients, linear , Homogeneous D.Es, is :

characteristic equation.

2- The second order, constants coefficients, linear , Non-Homogeneous D.E.s, is:
The method that solve the second order, constants coefficients, linear , Non-Homogeneous
D.Es, is:
a. Un determined coefficients.

b. Variation of parameters.
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1) The Second order linear homogenous D.Eq. with constant coefficient:
The general form is
ay"+by'+cy=0 ...(2)

where a, b and ¢ are constants.

The general solution

Put y'=Dy and y"'=D%y in eq. (2) (D is an operator)
— a D’y+bDy+cy=0
= (aD* +bD+c)y =0 (using D-operator)

now substitute D by r and leave y then ar’ +br+c=0
Is called characteristic equation of the differential equation and the solution of this

equation (the roots r) give the solution of the differential equation where

_ —bF+b*-4ac

2a

r

There are three values of r:

1- real ry #r, (notequal root)
2- real ry =1, (equal root) or (repeated roots)
3- complex root (o £ Bi )

Case 1: If ( b?—4ac > 0 ), then ryand r, are distinct (r,# r,) and real roots, and the

general solution is

y — Clel’lx + CZeI'ZX

Case 2: If (b*—4ac = 0),thenr, =r,=r, and the general solution is:

y= (Cl + sz)erx

Case 3: If (b —4ac < 0) then the roots are two complex conjugate roots r=a+ig,

i =+/~1, and the general solution is:

y =e”(c, cos S +C, Sin /)
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Ex.1: Solve

y'—2y'-3y=0
Solution:
y'=2y'=3y=0
r2—2r-3=0 ,y=1,y'=r , y'=r?
(r+1(r-3)=0 ( Not equal roots)
r+1=0 = rl=-1

r-3=0 = r2=3
the general solution is

—X 3x
y=ce*+c,e

Ex.2: Solve y"—6y"'+9y =0
Solution:
y"—6y'+9y =0
rf-6r+9=0 ( Equal roots)
(r-3%=0 = r=r,=3
y = (c, +c,x)e*
Ex.3:

Solvey"+y +y=0
Solution:

y'+y'+y=0

r’+r+1=0 a=1b=1c=1

r_—bJ_r\/l—4.1.l
2.1
_-1+4/-3 -1+ /3
2 2
r:_—zligi a:'—zl : ﬂz% , (Complex roots)

y—e?' (6 oo xac,sin Y3
. y=e (clcoszx+czsm X)

- 43-



eyl g S Auutin audd / iyl g ) duia A1 ( Differential Equations ) A0 A jal) [ dpaigl colasl)

2) The Second order linear non homogenous D.Eg. with constant coefficient:
The general formis: ay”+by’ +cy =F(X) veververeenannnn. (3)

where a, b and ¢ are constants coefficient.

The general solution
If y, is the solution of the homo. D.Eq. ay”+by’+cy =0, then the general solution of eq.

(3) is:

y=YatY¥, y, (homogeneous function)
y, (particular integral)
Where :
i) y, ISy homogenous.
i)y, (use the table)

In this section we will take a look at the method that can be used to find a particular
solution( y, ) to a nonhomogeneous differential equation.

Methods of finding vy, :

There are two methods:
1- Undetermined coefficients.

2- Variation of parameters.
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1- Undetermined coefficients:

In this method y, depends on the roots ry, and r, of characteristic equation and on

the form of F(x) ineq. (3) as follows:

F(x) Choice of y, M.R.
kx" k X" +k X"tk X"t kg 0
nth degree polynomial
keP* ceP* p
(ksinpx) or c, cos X +c, sin S Fip
(k cos px)

Note: For repeated term (root), multiply by x.

Ex.1: Use the table to write vy,
1) F(x)=3x* , k=3 , n=2

Y, = kX +kx+k,

2) F(x)=_—1e'3x ,k='—1 = andp=-3
2 2
ypzce—SX
3) F(x)=2cos3x , k=2 , p=3,kxci=¢cy, kKX =0y

Y, =C, C0S 3X +C, sin 3x

4)  F(x)=3x"-3x+5 - 2e* ,

Y, = koX* + kX + kg +ce®
5  F(x)=2cos x—%sin x , hote, for angle(e) of sin and cos are equal then :

Y, =€, COS X +C, Sin X
6) F(x)=sinx-cos2x note, for angle (e) of sin and cos are not equal then :

Y, =G, COS X +C, Sin X + A €0s 2X + Bssin 2x
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Ex.2: Solve y"—y'-2y=4x> .......... (1)
Solution:
Y=Y tY,
First we will find y, :
y'—y-2y =0
the char. Eq. - r-2=0

(r+)(r-2)=0
r=-1Lr,=2

rl and r2 are not equal roots. then :

y, =ce " +c,e”

Second we will find y,, :
F(x) = 4x* , is polynomial of second degree then
Y, =KX +kx+K,
Now, we are going to find k,, ki, ko.
Y, =K X2 +kx+k,

differentiate the y, first and second derivative.

=y, =2k x+k , y) =2k,

Substitution y,, ¥, , Y, in (1)
2k, — (2k,x +Kk,) — 2(k, x* + kX + Kk, ) = 4x*
Then, find ks, ki, Ko.

coeff .of x*: -2k, =4 = k,=-2
coeff .of x: -2k, -2k, =0 =k, =2
const: 2k, -k, -2k, =0 = k,=-3

Now, they, s,

Y, =—2x" +2x-3

Then the solution of the equation (1) is :

Y =Y, +Y, =(Ce +c,e”)-2x" +2x -3
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Ex.3: y" -y —-2y=e*
Solution:
y' -y —2y=e* (D)

y'-y'=2y=0

r’-r—-2=0
r-2)(r+)=0=n=2,r,=-1

y, = (ce* +c,e™), Put

y, =ce* ...(2)
y, =3ce™ , yr =9ce™

Substitute In (1)
9ce*-3ce¥ 2ce¥=e¥

9c-3c-2c=1=4c-1 — C:%

In (2): yp :%83)(

~ 1
yzyh+yp =C]-e2x_’_Cze X+Ze3x

Modification rule Jaail 3ac1d

X Ay Gy 0= Al Al g da ) Sy F(x) =k S (1

Q2
X Ay G p= bl ddlaal g da aa/ Sy F(x)=ke™ SN -a

X By s p= Ll Al gds OSy F(x)=ke™ O8I - b

3 . . i . k cos e it
XA E ) Qe r=7Fig , a=0 {Ss F(X):{ksingxx g @3
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Ex.4:  Solve y" +y = sinx
Solution:
y' +y=0

P+1=0, r’=-1 =r =i, @=0, p=1

Yh = C1 COSX + C,SINX

Yp = X(C3C08X+C,SiNX),
Y'p=X(-C3SINX+C4C0SX)+(C3COSX+C4SINX)

Y =X(-C3C0SX-C4SINX)+(-C3SINX+C4COSX)+(-C3SINX+C4COSX)

Substitution y, v, ¥"'p.

-2C3SINX+2C,4C0SX=SInNX
‘203: 1= C3='1/2,
2C4=0:>C4=0

: X
Y =€,C08X+C,SiNX—Z cosX
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2 - Variation of parameters.
To solve ay”+by’'+cy =F(x) using Variation of parameters method,
Let y,=ciu;+CyU, , bethe homogenous solution of ay”+ by’ +cy = F(x)
and
The particular solution has the form:
Y, =U;Vy +U,V,

where v; and v, are unknown functions of x which must be determined.

First solve the following linear equations for v'; and v',:
Vllul + V'2U2 =0
ViU + ViU’ = F(X)

which can be solved with respect to v'; and v', by Grammar rule as follows

u, u, 0 u, u 0
D= ' Ak Dl: |’ 2=
u; u F(x) u, u;  F(x)
D D
and v; ==, v,=—2%
D D

by integration of v'; and v', with respect to x we can find v, and v..
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Ex.1:
Solve y"—y' —2y=e>* ... (1)
To find yy ,

y' -y —2y=e™

rF-r-2=0

(r+1)(r-2)=0
Then,r,=-1,r,=2.
The y, is then :

Y —cet+c e —

Then, u; = e and, U,= e*

Now, to solve with variation of parameters method,

!
=X —X

u=e* = u =-e
!

u,=e>* = u, =2
Suppose, Y,= ViU +V,U,
v,u +v,u,=0

! !/ !’ !
v,u, +Vv,u, =F(x)

v, (€7)+v, (%) =0

1 !
v, (-e7¥)+v, (2e¥) =e*

Solving this system by Cramer rule gives

e x ¥ 0
°= —e™*  2e* =3, D,= 3
5x
, —e 1
Vi=——=—e"=v =[—e"
3e 3
1 2 1 X 1 X
V,=——=-e"=Vv,=|-e"="¢
e* 3 3
yp :_leélxe—x _'_leerx :£e3x
2 3 4

L 1
The general solutionis:y =c,e™ +c2e2X +Ze3X
y= Yp * Yn
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Ex.2: solve
y'" +y = secx
Solution:
y" +y=0
P+1=0 =>rP=-1=r=*| a=0, p=1

Yh = C1COSX + C,SINX, U;= COSX, U, = sinX, f(X)=secx

Yp= ViU11VoU,
= V;C0SX +V,sinx, then

vl’ (cosx) + v2’ (sinx)=0

! !
Vv, (—sinx)+ Vv, (cosx) =secx

COSX  sinXx ) .
= . =C0S” X+sin“ x =1,
—sinX CcosX
0 sinx _ ) 1
D, = =—sinX SecX = —sinX—— = —tanx,
SeCX COSX COS X
COS X 0
, = . =cosxsecx =1
—sinX secx
, —tanx —-sinx
V| = =—tanx=v, = | dx = In | cosx |
1 COS X

v'2=1:>v2=Idx=x

Y, = In|cosx| cosx + x sinx

Yy = C1C0OSX + C,SinX + In |cosx| cosx + X sinx
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C. Higher order Differential Equations:
Higher order linear Differential Equations:

The general form with constant coefficient is:
y® +ray"P+. . +a yray=F(X) ... )

If F(x)=0 then (1) is called homogenous, otherwise (1) is called nonhomogenous.

The general solution

The methods of solving second order homogenous D.Egs. with constant coefficients can be

extended to solve higher order homogenous and nonhomogenous D.Eq. with constant coefficients.

a) Homogenous: the characteristic equation of nth order homogenous D. Eq.:
y" +ay"P + . +a y+ay=0is:
r"+ar"t+...+a,,r+a,=0
Let r, r,,r,,..,r bethe roots of characteristic equation then:

n

HIf r,,r,,..,r areall distinct then the solution is:

y, =ce™ +c,e” +...+ce"

2) If r, repeated m times, then y, will contain the terms:

-1,nX

ce™ +cxe +...+c X" e

3) If some of roots are complex (r =a Fi) then y, will contain
(c,cos px+c,sin px)e”

Note : the general solution for ordinary differential equations is in the form of :

Y=YntYp

Then, finding the roots just to find y;,.
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Now, we are going to find the roots and solve D.Eq. of higher order :
There are two methods to factorize f(x): long division & fast division.

1- First method: Fast division
2- Second method: long division

Ex.: Find all roots of the given differential equation and solve it.
y +4y -3y —18y=0, using fast and long division.
Solution:
V' +4y"—3y-18=0
P+4r—-3r —-18=0
First method: Fast division
Find all roots of r*+4r°—3r —18=0,
r: ¥1,¥2,¥3,¥6,¥9,¥18
f(2)=8+16-6-18=0,
“r =2 is the root that make the equation above is zero, then :

P+6r+9=0

1 4 (-3 |-1E
(r—=2)(rf+6r+9)=0 2 |4 |2 |12 |18
1 6 |9 0

r-2)(r++3)(r+3)=0
Then the roots that we got it using fast division are :
n=2,r=-3,=-3
then the solution of the given Differential Equation is :

y=C,e*+Cye ¥+ Cyxe™

Second method: long division
P+4rP—3r —18=0 ,%“r =2 “ is the root that make the equation is zero, then :
(r-2)(r+6r+9)=0
r-=2)(r+3)(r+3)=0

ri+ 6r + 9
Then the roots r; = 2, r,5= -3, using long division. (r=2))r+4r*-3r-18
Trix2y?
then the solution of the given Differential Equation is : 6r° — 37
TOr-£12 r
9y — 18
- 53- T 07 =18
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y=CieZ+Cre ¥+ Cyxe™
Ex.. y —3y"-2y"+2y'+12y=0

r*—3r®-2r’+2r+12=0
r=2 isaroot = (r-2) isafactor

= r*—r’-4r-6=0 1 [-3]-2]2 12
=(r-2)(r*-r’-4r-6)=0 , r=3 root = (r-3) isafactor 2| V|2 |-2|-8]-12
11-11-4]1-6|0
= r’+2r+2=0
(r=2)(r=3)(r*+2r+2)=0
n=2, rn=3 r=-1Fi a=-1, =1 1 [-1]1-41-6
o o 3[1 (366
= =ce? +c,e* +(c,cos x+c,sin x)e
Yh =€ 2 (Cq 4 ) 1172 12 10

H.W : Solve the above Example using long division.
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b) Nonhomogeneous: the general form of nth order nonhomogeneous differential
equation is:
yO +ay®P 4. +a y+ay=F() ... )

The general solutionis y, =y, +y,

Methods of finding Vp:

1) Undetermined coefficients
We can extend the methods of solving second order non homogenous D.Egs. with constant

coefficients to solve higher order non-homogenous D.Eq. with constant coefficients.

Ex.1: y¥-8y"+16y=-18sinx
Solution:
Ye=YntY,
y4-8y"+16y=0
r*-8r’+16=0 = (*-4)*=0 = r’=4 = r=+2
yh=C1e2+Coxe +cae X+c xe ™
Now, we will find y,
let yp= A cosx + B sinx, Yyp=-Asinx +Bcosx, y',= - A cosx — B sinx
y"'p= A sinx — B cosx, y*p= A cosx + B sinx

A cosx + B sinx + 8A cosx + 8B sinx + 16A cosx+16B sinx = -18 sinx
25Ac0osx+25Bsinx=-18sinx

25A=0 =A=0

25B =-18 = B =-18/25

y = Yh W

. } 18 .
y =ce”+c,xe” +ce®+e,xe™ - sinx
25

2) Variation of parameters
In this method, the particular solution yp has the form y,=viUi+Volo+... +valy
Where uy, U, ..., uy are taken from yh,=ciy+Colp+... +cpln.
To find i, Vo, ..., vo, We must solve the following linear egs. For v'y, Vo, ..., Vi
Vi, +Vou, +...+Vviu, =0

vViu; + VLU, +...+viu =0

(n-2) (n-2)

12 (n—2)_
+...+ViU, =0
+.+viu Y = f(x)

ViU
(n-1)

!
+V,u,

(n-1)

viu, + VLU,
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Ex2: solve y'"' +y' =secx

Solution:

Let y"'+y'=0

P+r=0 = r(r*+1)=0 = r=0, r’=-1 = r1=0, r=i
Yh=C1+C,COSX+C3SINX

U;=1, U,=C0SX, Us=sinx, f(x)=secx

V] + V,COSX + V5sinX =0
V1 (0) + V5 (—sin x) + v, (cosx) =0
Vv (0) + V), (—cos x) — v (sin X) = sec x

1 cosx sin x
D=0 -sinx cosx|=sin?x+cos’x=1
0 —cosx -—sinx

0 COSX  sinX
D,=| 0 —sinx cosx |=secx(sin®X+cos” X) = secx
seCX —CoSX —sinx

1 O sin X
0 COS X
D,=/0 O COSX | = . |=—cosxsecx =-1
_ secCX —sinx
0 secx -sinx
1 cosx 0 )
_ -sinx O .
D,=/0 -sinx 0 |= =-sInX secX = —tanx
—COSX Secx
0 —cosx secx
D
Vv, =31=secx:>vl =Isecxdx = In(secx + tan x)
D
Vv, :—2:—1:>VZ:I—1dx:—x
D
D
_ s _ - —
v, _3_—tanx:>v3_—J'tanxdx—lncosx

Yp= In (secx+tanx)-x cosx-In cosx sinx

Y= C1+C,COSX+C5SinX+ In (secx+tanx)-x cosx - In cosxsinx
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( Partial Differential Equations )
Introduction :
Much of modern science, engineering, and mathematics is based on the study of
partial differential equations, where a partial differential equation is an equation involving
partial derivatives which implicitly defines a function of two or more variables.

For example, if u (X, t) is the temperature of a metal bar at a distance x from the initial end
of the bar,

o

then under suitable conditions u (X, t) is a solution to the heat equation, where “ k ” is a
constant. : e 924

gt T ox?

As another example, consider that if u (x; t) is the displacement of a string atimet ;
then the vibration of the string is likely to satisfy the one dimensional wave equation for a
2 Fu

constant, which is : .
i u "
_— (1)
2 2 -

When a partial differential equation occurs in an application, our goal is usually that
of solving the equation, where a given function is a solution of a partial differential
equation if it is implicitly defined by that equation. That is, a solution is a function that

satisfies the equation.

EXAMPLE Show that if @ is a constant, then w (x, y) = sin (at) cos (x)
is a solution to R R

J° u o O U ‘o

—_— == (2)

Itz a2 '

Solution: Since a is constant, the partials with respect to ¢ are

2
I oo o = u - D LR fop
— = acos (at)cos(x). —— = —a sin|at)sin(x) [3)
e ' ' = ' ' :
Moreover, wy = —sin(at)sin(z) and vz = —sin(at)cos(z). so
that .
o T oa F o ¢ A
1" ——= = —a” sin (at) cos (x) (4)
=
Since (3) and (4) are the same, u (x.¢) = sin (at)cos (x) is a solution
to (2)
Home Work : o g SPIR ; .
Show that w (x,¢) = e¥ sin (x) is a solution to Laplace 's
Eguation,

R A%

a2 iy 2

=10
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1) Direct Partial integration:

As explained in the previous class, the integration is the reverse process of
differentiation. The partial integration is the same as ordinary integration when its
required the integrate of the function.

1- a) Direct Partial integration without boundary conditions:

Example: Integrate the partial differential equation given below with respect to t.
odu/ot= 5cosx sin t

Solution :

The (5 cosx) term is considered as a constant.

and u = /Scm;_r sinrdr = (5cosx) / sin 1 dr

& &

= (5cosx)—cost)+c
=-=5cosxcost+fix)

Example: Integrate the partial differential equation given below with respect to v,
then with respect x. *( Integrate the partial differential equation ).

8 u
axay
Solution : Integrate with respectto y :

= 6x° cos 2y

ou

- = / 6x° cos 3,\'d,\~=(6.r:) / cos 2y dy
ox 4 o

) | '
= (6x°) (; sin 2y ) + f(x)

= 3x% sin 2y + f(x)
: . ou x 3 §
integrating 6_ partially with respect to x gives:
X

H= / [3x” sin 2y + f(x)] dx

= x’sin 2y + / flx)dx+g(y)

f(x) and g(y) are functions that may be determinedgif extra information, called boundary conditions or
initial conditions, are known,
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1-b) Solution of partial differential equations by direct partial integration with
boundary conditions:

The simplest form of partial differential equations occurs when a solution can be
determined by direct partial integration. This is demonstrated in the following worked
problems.

-

- : : a-u . :
Example : Solve the differential equation e =6x2(2y — 1) given the boundary condi-
, ol , ax< ' - ’
ions that at x =0, oo =sin 2y and u=rcosy.
x

Solution :

s

Since L 6x2(2y — 1) then integrating partially with respect to x gives:

ox?
9
" f6x2(2y— Ddx = (2y — l)/6x2dx

ax
6x3 )
=Q2y—1) 3 +f(y)

=202y = D)+ ()

where f(v) is an arbitrary function, From the boundary conditions, when x =0,

du ,
— =sin 2y.
ax
Hence, sin2y =2(0)°(2y — 1) + f(y) from which, f(y) = sin 2y
i : .
Now — = 25 (2y — 1) +sin 2y
ax

Integrating partially with respect to x gives;

§ = j 2632y — 1)+ sin 2y]dx

2
= T (2y — 1)+ x(sin 2y) + a(y)
From the boundary conditions, when x =0, « = cos y, hence

(0)* o
cosy = —(2y — 1) + (O)sin 2y + a(y)
from which., . g(y)=cos y
a2 " . " .
Hence, the solution of —f =6x"(2y — 1) for the given boundary conditions is;
2
o
U= — (Zy — 1) + x sin2y + cosy

(H.W. ) Solve the differential equation;

A u o due "
=cos(x+y) given that — =2 when y =0, and u =y~ when x =0,
dxdy dx
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Some important engineering partial differential equations :
There are many types of partial differential equations. Some typically found in

engineering and science include:
(@) The wave equation, where the equation of motion is given by:

Au | 8u

axz o2 a2

. T
where ¢~ = —.with T beingthetensioninastring

and p being the mass/unit length of the string.
(b) The heat conduction equation is of the form:

A u _ 1 Au
axl ¢ a

. .
where ¢= = —, with i being the thermal conduc-

ap
tivity of the material, o the specific heat of the

material, and p the mass/unit length of material.

(c) Laplace’s equation, used extensively with electrostatic fields is of the form:

Au Fu 9u
ax? ot a8z

(d) The transmission equation, where the potential u in a transmission cable is of the

form;
A u 1&']'24{ Bﬂu Cu wi A B and C

— = — + B— + Cu where A, B an are
w? ez e M i

constants.
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Separating the variables :
Solutions to many (but not all') partial differential equations can be obtained using
the technique known as separation of variables.

In separation of variables, we first assume that the solution is of the separated form :

ulz t) =X (z)T(t)

We then substitute the separated form into the equation, and if possible, move the x-
terms to one side and the t-terms to the other. If not possible, then this method will not
work; and correspondingly, we say that the partial differential equation is not separable.

Once separated, the two sides of the equation must be constant, thus requiring the
solutions to ordinary deferential equations. A table of solutions to common deferential
equations is given below :

Equation General Solution
Y +wiy =10 ylz) = Acos(we) + Bsin (wr)
y' = ky y(t) = Pe™

The product of X (x) and T (t) is the separated solution of the partial deferential equation.

Example :
Use separation of variables to find the productsolution of :
ou ou
—t — =
ox oy
Solution :
Let : U=XY , ¥ =xvad ¥ =vx,
OX oy
Then XY +YX =XY, e, (1/xy)
X"y’
+—=1
X Y
L :1_Y_ — Cl
X Y
X' Y'
X =C and 7:1_01
X!
For X: X =C, X'=C1X , =C ,X202erx * X:CZeclx
Y, =1 ' ry
ForY : v —C , Y'=Q-c)Y and r=(1-cy), Y=Cse
Then Y=c,e® Y
Now : Uu=XY

U=( C, eClX )* (C3e(l-C1 )Y)
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Example .
2
Find the productsolution of Pl 0
Solution :
o°u N
U=X Y and = XY
Ox?
2 2
0 l; —-u=0 |, 0 IZJ =u
OX OX
X"Y = XY .......................... (1 /XY)
X 14
ha—
X

X"-X=0, F-1=0, r=7%1
U = Ae"+Be”

Ux,y) = X *Y

U(x,y) =(Ae*+ Be™) *Y

Example : Use separation of variables to find the product solution of :

A 3N,

OX oy

Solution. Here the dependent variables are xandy, so we substitute U = XY in the given differential
equation where X depends ononly x and Y depends ononlyy .

N 3NV 5 or XY =_3xy’

OX oy
X' Y’
3X Y
X! ‘&
XY
X' —3cX =0 Y +cY =0

From our knowledge of ordinary differential equations, have solutions
X =be’*, Y =he®

Thus
U = XY =bb,e’®Y =Be*® Y where B =D,
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Solving wave equation using separating the variables :

Let wulx.t)=X{x)T(1), where X(x) is a function of
x only and T(r) is a function of ¢t only, be a trial

, . Pu | &u
solution to the wave equation — = ———_ If the
dx= = o=
. . . . - I
trial solution is simplified to w = XT, then rw =X'T
ax
#u o Fu
and — =X"T, Also — =XT"and — =XT",
dx- ot ar =
Substituting into the partial differential equation
A u | &*u
dx= ¢ o
XHT _ ]' XTH
Separating the variables gives:
X”’ 1 TH'
X 2T
X.'.' 1 T.'.'
Let 1 = — = — — where |L is a constant,
X T

fr

Thus, since L. =

(a function of x only), it must be
o

independent of /: and, since L. = —

(a function
of ¢ only), it must be independent of x.

If ju is independent of x and . it can only be a con-

L

stant, If jL = e then X" =pX or X" — pnX =0and

L

ift=— —then 7" =c¢*nT or T" — cIpnT =0,
c= T

Such ordinary differential equations are of the form
found ) and their solutions will depend
on whether ju >0, w=0or <0,

The next example will be a reminder of solving ordinary differential equations of this type.
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Example : Application to Wave Equation

o%u .2 o%u
dt? dx?

Let U(x,t) = X(X) T(t), then

0 vy 0 ;
%:m@Tmﬂﬁcm@Tm

ou , 82U_ "
&ZX(X) T(t) ’ax_z_x () T (1)

Putting these values in the equation we get
X(X) () =c®X"(x) T(t)

r 1T - X' _K
AT  X(x)

Case One: k=0
T =0 ,X"(X) =0
T(t)=at+b and X(X)=px+r

Case Two: k>0
T"(t) =ke*T(t)
and
X"(x) =kX(x)

X (x) = AeV* + Be Y~ T(t) = EeV* + Fe Yk
Case Three: k<0
T"(t) = —kc®T(t)

and
X" (x) = —kX(x)

X (x) = Acos(vkx) + Bsin(vkx) , T (t) = E cos(vket) + F sin(v/kct)
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Example :  Find the general solution of the
following differential equations;

(a) X" —4X =0 (b) T"+4T =0,

Solution

(a) If X" —4X =0 then the auxiliary equation
is:

m-—4=01.e. m-=4from which.
m=+2orm=-2

Thus, the general solution is;
X =Ae® +Be™
(b) If T" +4T =0 then the auxiliary equation is;

m-+4=01i.e m-=—4from which.,

m=+—4d==+;2
Thus, the general solution is:

T =¢"{A cos 2t + Bsin 21} =A cos 2t + B sin 2t

(H.W. )

1- SolveT”"—¢’uT=0givenc=3andp=—1

2 - Solve X"=pX given L= 1

- 120 -
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The wave equation :

An elastic string is a string with elastic properties, i.e. the string satisfies Hooke’s
law. Figure below shows a flexible elastic string stretched between two points at x =0 and x
=L with uniform tension T. The string will vibrate if the string is displace slightly from its
initial position of rest and released, the end points remaining fixed. The position of any
point P on the string depends on its distance from one end, and on the instant in time. Its
displacement u at any time t can be expressed as u = f (x, t), where x is its distance from O.

u=f(x, t)
o

L u(x, )

The equation of motion is :
atu | 8

axt  er ot
The boundary and initial conditions are;

(i) The string is fixed at both ends, i.e. x=0 and
x =1 tfor all values of time r.

Hence, wix, 1) becomes:

w0,y =10

w(l,t)=0 } for all values of r= 0

(ii) If the initial deflection of P at r = 0 is denoted
by f(x) then uix,0)=fix)

{iii}) Let the initial velocity of P be g(x). then

T )
—_— = iy
ﬁ{ Jdr=0 g .

Initially a trial solution of the formuix, 1) = X(x )T (1)
is assumed, where X(x) is a function of x only and
T'(r)isatunction of ¢t only. The trial solution may be
simplified to = XT and the variables separated as
explained in the previous section to give:

XH 1 TH

X 2T
When both sides are equated to a constant ju this
results in two ordinary differential equations:
T"—e*nT=0 and X" —pnX=0

Three cases are possible, depending on the
value of ju.

Casel: =10

For convenience, let ju=p-, where p is a real
constant, Then the equations
" 2 " T2
X —pX=0 and T —cpT=0

have solutions: X =Ae™ + Be™P* and
T'=Ce™"" + De=P" where A, B. C and D are
constants, -121-
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ButX=0atx=0,hence0=A+Fie. B =—Aand
X=0atx=L,hence

0=Aelt + Be Pl = A(ePt — e7Ph).

Assuming (eP" — e7PF) is not zero, then A =0 and
since B=—A, then B=0 also,

This corresponds to the string being stationary: since
itis non-oscillatory, this solution will be disregarded.

Case2: p=10

In this case, since jL=p> =0, T” =0 and X" =0.
We will assume that 7(r) # 0, Since X" =0, X' =a
and X =ax + b where a and b are constants, But
X=0at x=0, hence h=0and X =ax and X =0
at x =L, hence a=0, Thus, again, the solution is
non-oscillatory and is also disregarded.

Case3: L <0

For comcnﬁience, R
let ).=—p~ then X" +p°X =0 from which,

X = Acospx + Bsinpx (1)
and 77 + ¢?p?T =0  from which,

T = Ccosept + Dsinept (2)

Thus, the suggested solution u =XT now becomes:

u = {Acospx + Bsinpx}{C cos cpt + Dsincpr}

(3)
Applying the boundary conditions:
(i) u=0 when x=0 for all values of z,
thus 0 = {Acos 0 + Bsin 0}{C cos cpt
+ D sin¢pr}

ie, 0 =A{Ccoscpt + Dsincpt}

from which, A =0, (since {C coscpt

+ Dsinept} # 0)
u = {Bsinpx}{C cos cpt

+ D sincpt} (4)
(ii) u=0 when x=L for all values of r
0 = {BsinpL}{C coscpt + Dsincpr}
Now B # 0 or u(x,r) would be identically zero,

Thus sinpL=0 i.e. pL=n7 or p:? for

Hence,

Hence,

integer values of n,

Partial Differential Equations )

Substituting in equation (4) gives:
nmx cnt . chmt
u= IBsm {Ccos 7 + Dsin 7 }

nirx cnmt ) C'?‘I:‘TT}

7 {A” cos I + By, sin

l.e., u= sin

(where constant A, =BC and B,, = BD). There
will be many solutions, depending on the value
of n. Thus, more generally,

oo
n cnmt
Uy(x, 1) = Z [sin? (A,, cos LH

n=1
. cnml
+ B, smT)}
(5)
To find A,, and B,, we put in the initial conditions
not yet taken into account,

(1) Atr=0, u(x,0)=f(x)for0 <x <L

Hence, from equation (35),

Z A sinE (6)
" L

n=1

ulx,0) =fx) =

5
(i) Also atr =0, a—ﬂ —g(x) for0<x<L
0

Differentiating equation (5) with respect to
gives:

Hu > _enm . cnmt
Z S]I'I — 81N
L L

Cnmw cnmt
+ B, T cos 7

C?’I"T

and when r =0,

glx) = Z {sm

n=1

Z {B,;n sinnﬂl (7)

=

Le. glx) =

From Fourier series
that:

. . . . O RITX
A, is twice the mean value of f(x) sin T between
x=0andx=L

it may be shown

: A Zfo( Jsi nnxdx
L. = — sin ——
i =7 x)si 7

forn=1,2,3,... (8)
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i CIH:T - - -
and B, (T) is twice the mean value of

. NTX
g{x)sin 7 betweenx =0and x=L

i.e, B, = ( )f g(ﬂ%m—dx
CRIT

2 ni
or B, = g(x)sin — dx
cnw Jy L

For stretched string problems as in next example below, the main parts of the procedure are:

1. Determine A, from eguation (8).

>
MNote that E f J(x)sin TTE dx is alwayvs equal
0

2 . T
10 —— sin
F1=IT= 2
2. Determine B, from equation (9}
3. Substitute in equation (3) to determine u(x,7)
_— y=1f{x)
i L x
2

oo
n cnmt in cnt
1-  Uplx, 1) =Z‘5in§(ﬁ1" cniTH + B, si 7 )}

-

~ i
2 . nmx Bd . nm
2- An=—[ fh]‘SIH —f dry = —_— S0 —
0 .

L n=mw= P
3- 2 L . mmx
CHIT p
oo
c . nmx
4-  glx) = A |B,, n sin——
n_l
due
— = 0 = g(x) thus, B, =0
or
B;: =0

nmx cnit . cnml
Mylx, r}_ZI'ﬂll ( n COS 7 + B, sin I )}

n=Il
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Example : Figure below shows a stretched string of length 50 cm which is set oscillating by
displacing its mid-point a distance of 2 cm from its rest position and releasing it with zero
velocity where ¢® =1, to determine the resulting motion u(x, t). . Solve the wave equation:
ﬁzu 1 A u

Solution : ot

oo
nmrxx cnmi . cnml
Uplx,t) = Z[sinT(Aﬂ Cos 3 + B, sin 3 )

n=1 ""'~-.‘Iu=r(x]
HTX 2I5 50 x(cm)
f f(x)sin — dx
The boundary and initial conditions given are;
u(0,t) =0

u(50,1) = o} i.e. fixed end points

2
ulx,0) =f(x) = EI D<x<?25

X0 2 L4 100 —2x e 50
— =——x+4d=—— 25<y<
u(50,1) = f(x) 75~ 25 S<x<35
16 nir
A, = —— sin Always
" 22 2 ( y )
2 L . nmx
cenm Jo oo L
CTT . nmIx
glx) = Z IBHH sin—— 7 ]
H—
it
[—} = () = g(x) thus, B,, =0
ar |._ i
.Ifjl;;l — D
, . RmXx nt . hmt
(X, 1) = | sin — A, cos E + By sin S0
Fi—
o
: nx 16 ni nt nt
uplx,t) = §in —— { ——= §in — cos — —+ (0) sin —
? ; 50 |2ty OS5y T 50 }
Hence,
o0
) 16 1 . nmx . nm nt
uix.t) = — — §in —— §in — 0§ —

Tl nt 20 2 20

n=
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( HW.)

1. An elastic string 15 stretched between two points 40 cm apart. Its centre point is displaced 1.5 em
from its position of rest at right angles to the original direction of the string and then released

with zero velocity. Determine the subsequent motion u(x, t) by applying the wave equation
: I & .. .
=—— with ¢ =0.
2

L1

=

L1

2
“

X C

[ E]
(]
L1

2. The centre point of an elastic string between two points P and Q, 80 cm apart, is deflected a

distance of | em from its position of rest perpendicular to PQ and released initially with zero

¥,

u

2

. . Fu
velocity. Apply the wave equation — =—
ox” ¢

where ¢ = §, to determine the motion of a

S K]

t

point distance x from P at time .
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Classifications of PDESs :
A general second order linear partial differential equation in two Cartesian variables

can be written as :

2 2 2
o'u o'u Cau+Da—u+Ea—u+Fu:G
ox oy

A + +
ox>  oxoy oy?
Three main types arise, based on the value of D = B?—4AC (a discriminant):

1.  Hyperbolic, wherever (X, y) is suchthat D > 0;
2.  Parabolic, wherever (X, y) is suchthat D =0;

3. Elliptic, wherever (X, y) is such that D<O0.

Example : Classify the partial differential equation

o°u o’u o%u

> — 3 +2—;
0X ox oy oy
u(x, 0) = —x°
ux,0) =0

=0

Solution :
Compare this PDE to the standard form

2 2 2
Aa—L:+Bau +Cali:O
O0X oX oy oy

A=1,  B=-3, C=2 == D=9-4x2=1>0

Therefore the PDE is hyperbolic everywhere.
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Revision of the matrices

In mathematics, a matrix is a rectangular table of elements (or entries), which may be
numbers or, more generally, any abstract quantities that can be added and multiplied.
Matrices are used to describe linear equations, keep track of the coefficients of linear
transformations and to record data that depend on multiple parameters. Matrices are
described by the field of matrix theory. Matrices can be added, multiplied, and decomposed
in various ways, which also makes them a key concept in the field of linear algebra.

In this material, the entries of a matrix are real or complex numbers unless otherwise noted.

m-by-n matrix

a; ncolumns EINESE)

m — —
rows
di1 gz dis ...

=ER = F R (= T3

a3, ds,z diz ...

Basic operations :
Sum :

Two or more matrices of identical dimensions m and n can be added. Given m-by-n

matrices A and B, their sum A+B is the m-by-n matrix computed by adding corresponding
elements:

A+ B = (aij)1<icm1<jen + (bij)1<icm:1<j<n

= (Qij + bi j)1<icmii<j<n-

I 31 0 0 5 1+0 340 1+5 I 3 6

L 00+ (7 5 0f=114+7 0+5 04+0 =1[8 5 0

1 2 2 2 11 1+2 241 241 3 3 3
Scalar multiplication:

Given a matrix A and a scalar number c, the scalar multiplication cA is computed by
multiplying every element of A by the scalar c (i.e. (cA)ij=c- 7). For example:

5 [1 8 =3] _
‘EL —2 5]_

2-1 2-8 2--3] [2 16 -6
2.4 2.-2 2.5 |8 —4 10}/
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Matrix multiplication:

Multiplication of two matrices is well-defined only if the number of columns of the
left matrix is the same as the number of rows of the right matrix. If A is an m-by-n matrix
and B is an n-by-p matrix, then their matrix product AB is the m-by-p matrix given by:

(AB)‘!,_} - '511',lbl,j + '511'12'52,_}' +...+ H‘i,ﬂ.bﬂ,j

for each pair (i,j). Forexample:

1
1| =
0

Matrix multiplication has the following properties:
. (AB)C = A(BC) for all k-by-m matrices A, m-by-n matrices B and n-by-p matrices C
("associatively").
. (A+B)C = AC+BC for all m-by-n matrices A and B and n-by-k matrices C (“right
distributive™).
. C(A+B) = CA+CB for all m-by-n matrices A and B and k-by-m matrices C ("left
distributive").

(-1x3+3x2+1x1) (=1x1+4+3x1+1x0) 4 2|’

| — |
|~
[a—
A
= k2
| S
x
1
= b Qa2

(1x3+0x2+2x1) ux1|Ux1|2xm] _[5 1

Matrix multiplication is not commutative; that is, given matrices A and B and their product

defined, then generally AB 7 BA. It may also happen that AB is defined but BA is not
defined.

Transposition :

Transposing a matrix means converting an m by n matrix into an n by m matrix, by
“flipping” the rows and columns.

X a

ij = Qi

It is denoted by a superscript T, i.e:

1 2 3
A =
[4 5 6)

-

As an aside, there is an interesting relationship between transposition and multiplication:

(AxB)' =B" x A’
A=A =A
(A+B) =A"+B'
(kA" =k(A)

w N PP
o 0 b

H.W: choose Matrix A and Matrix B then applyall the above process to them.
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If you are interested, you can prove this for yourself fairly easily. Hint — look at the
definition of matrix multiply, and try swapping the subscripts.

Equality :
two matrices are considered to be equal if they have the same order, and if all their
corresponding elements are equal.

Square Matrix :

A square matrix is a matrix where the number of rows and columns are equal ,i.e. a2 by
2 matrix, a 3 by 3 matrix etc.

Unit (Identity) Matrix :
A unit matrix is a square matrix in which all the elements on the leading diagonal are 1,
and all the other elements are 0, i.e.:

o O -
o +— O
— O O

Zero (Null) Matrix:
A zero, or null, matrix is one where every element is zero, i.e.

000

000
Diagonal Matrix :
A diagonal matrix is a square matrix in which all the elements are zero except for the
elements on the leading diagonal, i.e.:

100
020
0 0 3
Symmetric Matrix
A symmetric matrix is a square matrix where

i,j N

for all elements, i.e., the matrix is symmetrical about the leading diagonal. Forexample:

w N
g B~ DN

3
5
6
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Skew Symmetric Matrix(anti-symmetrical Matrix) :
A skew symmetric matrix is a square matrix where :

a;=-4;;

for all elements. i.e., the matrix is anti-symmetrical about the leading diagonal. This of
course requires that elements along the diagonal must be zero. Forexample :

0 2 3
-2 0 5
-3 -5 0

Orthogonal Matrix:

An orthogonal matrix is a square matrix which produces an identity matrix if it is
multiplied by its own transpose, i.e.:

Ax A =1
a- AxA'zI=A'xA
Or
b- Al=AT

RANK :
The RANK of a matrix is equal to the highest order non-zero determinant that can be
formed from its sub-matrices

4 5 2 14
3 9 6 21
A=
8 10 7 28
_1 2 9 b ]
detA=0
4 5 2
3 9 6/=63
8 10 7

Rank of A=3

The rank of a matrix can also be measured by the maximum number of linearly independent
columns of A.
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This also equals the maximum number of linearly independent rows

4 5 2 14
3 9 6 21
I |+2 +0 _ [+(-D =0
8 10 7 28
1] |12] |[9] | 5 ]

Cia; + Cay+ Cqaz + €424 =0

A FULL COLUMN RANK matrix has the same number of linearly independent columns
(rows) equal to the number of columns

A FULL ROW RANK matrix has the same number of linearly independent rows (columns)
equal to the number of rows

If A does not have full row and column rank it is SINGULAR :  det(A)=0
If A does have full row and column rank it is NON-SINGULAR : det(A)£0

rank (I,) =n

rank (kA) = rank (A)

rank (A") = rank (A)

If Ais (m x n) then rank (A) is <min {m, n}
rank AB < min{rank (A), rank (B)}

Inverse Matrix: |
The inverse of a square matrix #*, sometimes called a reciprocal matrix, is a matrix A~ such
that :
AR =),
Where ““ | “is the identity matrix. A square matrix “ A ““ has an inverse if the determinant

IAl#0A matrix possessingan inverse is called nonsingular, or invertible.

The matrix inverse of a square matrix mmay be taken in Mathematic using the function
Inverse[m].

Fora2 X 2 Matrix :

A a b ‘
“le df
1 |d =&
The Inverse of “A“isthen A*:  Al= ’
|A| |=c a
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( Solution systems of linear equations using Gaussian Elimination )

Determinate
( Det)
|
Non-Homogenous
Homogenous Left Side # zero
(Left Side = zero) Number of solutions
Number of solutions are three
are two
| |
Non-singular Singular Non-singular Singular
Det #0 Det =0 Det =0 Det =0
Solution (1) Solution (2) Solution (1) Solution (2)
Trivial solution Infinity many
(One solution) solutions BExactly one Solution No-Solution
(Eigenvalue &
Eigenvector)
Solution (3
Infinity many
solutions

Definitions:
Singular : if the determinant of a matrix is zero we call that matrix singular.
Non-singular : if the determinant of a matrix isn’t zero we call the matrix non-singular.
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Gaussian Elimination ( elementary row operations) :

Before working an example let’s first define the elementary row operations. There are three of

them.
. Interchange two rows. This is exactly what it says. We will interchange row { with row

J. The notation that we'll use to denote this operation is : R, <> R,

[

Multiply row { by a constant, ¢. This means that every entry in row § will get mulaplied
by the constant ¢. The notation for this operation is : ¢k,

3. Add a mulaple of row { to row /. In our heads we will multiply row { by an appropriate
constant and then add the results to row f and put the new row back into row  leaving

row { in the matrix unchanged. The notation for this operation is : R, + R

Example 1 Solve the following system of equations.
=2x +x,=x; =4

x +2x, +3x, =13

3x, +x, =—1
-2 1 -1 4
1 2 3 13
3 0 1 -l
-2 1 -1 4 2 3 13
R o R,
12 3 13| =2 1 -1 4
—
3 0 1 -1 3 0 1 -1
Il 2 3 13\2R+R, (1 2 3 13

i o1 -1 - 10 -6 -8 —40

203 13, (1 2 3 13
0 5 5 300 1 1 6
—

0 -6 -8 —40 0 -6 -8 —40
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I 2 3 13 ER LR I 2 3 13
ks
0 1 6 R0
—
0 -6 -8 =40 0 0 -2 -4
12 03 13} (1 2 3 13
I 1 6|70 1 1 6
—
0 -2 -4 0 0 1 2
We can now convert back to equations.
I 2 3 13 X, +2x,+3x, =13
01 1 6 = X, +x,=6
00 1 2 X =2

The solution to this system of equation 1s
x, =-1 x,=4 Xy, =2
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Example 2 Solve the following system of equations.

X, + X, —2x; =3
2x, = x, +3x;, =1
Solution

First write down the augmented matrix.
(1 =2 3 =2)

2 -1 3 1) - 10 3 -3 5]

(1 =2 -2 (1 -2 3 -2
-R, 3R, + R,

) I -1 - ) -1 -1
— ) —

0 3 -3 5 0 0 0 8,
(1 =2 3 =2} x-2x,+3x,=-2

0o 1 -1 -1|= X, —x,=-1

0o 0 0 8 0=8

AU Al el / Aswaigh) et

When we get something like the third equation that simply doesn’t make sense
we immediately know that there is no solution. In other words, there is no set of three

numbers that will make all three of the equations true at the same time.
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Example 3 Solve the following system of equations.

X, —2x,+3x,==-2
X, +x,—=2x,=3
2%, =X, +3x, =7

Now write down the augmented matrix for this system,

1 -2 3 =2
-1 1 -2 3
2 -1 3 -7

The steps for this problem are identical to the steps for the second problem so we won't write
them all down. Upon performing the same steps we arrive at the following matrix.

1 -2 3 =2
0 1 -1 -
0 0 0 0
This time the last equation reduces to
0=0

and unlike the second example this is not a problem. Zero does in fact equal zero!

We could stop here and go back to equations to get a solution and there is a solution in this case.

However, if we go one more step and get a zero above the one in the second column as well as
below it our life will be a little simpler. Doing this gives,

1 -2 3 =2 1 01 -4
2R, +R,
0 1 =1 =1} ~ 01 -1 =1
f—
0 0 0 0 00 0 0

If we now go back to equation we get the following two equations.

1 0 1 -4 X, +x,=-4
01 -1 -l = X =x=-1
00 0 0

We have two equations and three unknowns. This means that we can solve for two of the
variables in terms of the remaining variable. Since x31s in both equations we will solve in terms
of that.

x, ==x,—4

X, =x,—1

What this solution means is that we can pick the value of x: to be anything that we’d like and then
find values of x; and x2. In these cases we typically write the solution as follows.

x, =—t—4
x, =1—1 ¢t = any real number
X, =1

In this wav we get an infinite number of solutions. one for each and every value of ¢.
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Eigenvalues and Eigenvectors :

If we multiply an n x » matrix by an # x | vector we will geta new » x | vector back. In other words,

4=

What we want to know is if it 1s possible for the following to happen. Instead of just getting a
brand new vector out of the multiplication 1s it possible instead to get the following,

A7 = A7 (1)
In other words is it possible, at least for certain A and 77 ., to have matrix multiplication be the

same as just multiplying the vector by a constant? Of course, we probably wouldn’t be talking
about this if the answer was no. So, 1t 1s possible for this to happen, however, it won’t happen for

just any value of A or77 . If we do happen to have a A and7 for which this works (and they will
always come in pairs) then we call 4 an eigenvalue of 4 and 77 an eigenvector of A.

So, how do we go about find the eigenvalues and eigenvectors for a matrix? Well first notice that
if 77 =0 then (1) 1s going to be true for any value of 4 and so we are going to make the

assumption that 77 # 0. With that out of the way let’s rewrite (1) a little.

A -7 =0

Aif—-217=0
(4-41,)77=0
Notice that before we factored out the 77 we added in the appropriately sized identity matrix.

This is equivalent to multiplying things by a one and so doesn’t change the value of anything.
We needed to do this because without it we would have had the difference of a matrix, 4, and a
constant, A, and this can’t be done. We now have the difference of two matrices of the same size
which can be done.

So, with this rewrite we see that
(4-21))i7=0 )

1s equivalent to (1). In order to find the eigenvectors for a matrix we will need to solve a
homogeneous system. Recall the fact from the previous section that we know that we will either

have exactly one solution (77 =0 ) or we will have infinitely many nonzero solutions. Since

we've already said that we don’t want 77 = this means that we want the second case.

Knowing this will allow us to find the eigenvalues for a matrix. Recall from this fact that we will
get the second case only if the matrix in the system is singular. Therefore we will need to
determine the values of A for which we get,

det(4—Al)

0
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Once we have the eigenvalues we can then go back and determine the eigenvectors for each
eigenvalue. Let’s take a look at a couple of quick facts about eigenvalues and eigenvectors.

Fact
If 4 is an n x n matrix then det (A —Al)=0 is an n" degree polynomial. This polynomial is

called the characteristic polynomial.

To find eigenvalues of a matrix all we need to do is solve a polynomial. That’s generally not too
bad provided we keep n small. Likewise this fact also tells us that for an # x n matrix, 4, we will
have n eigenvalues if we include all repeated eigenvalues.

Fact
If 4,,25,..., 2, 1s the complete list of eigenvalues for 4 (including all repeated eigenvalues) then,

1. If Aoccurs only once in the list then we call A simple.
2. If Aoccurs k=1 times in the list then we say that A has multiplicity k.
3. IfA,2,.....4 (k<n)arethe simple eigenvalues in the list with corresponding

LT

: —(1 —(2 —(k - - :
eigenvectors 77, 71, ..., 71" then the eigenvectors are all linearly independent.

4. If A1s an eigenvalue of multiplicity k£ = [/ then A will have anywhere from | to &
linearly independent eigenvectors.

The usefulness of these facts will become apparent when we get back into differential equations
since in that work we will want linearly independent solutions.

Let's work a couple of examples now to see how we actually go about finding eigenvalues and
eigenvectors.

Example I Find the eigenvalues and eigenvectors of the following matrix.

(2 7))
A=L |
-1 -6
Solution
The first thing that we need to do is find the eigenvalues. That means we need the following
matrix,

(2 7Y (1 0) (2-2 7 )
A—AI=L ‘-AL ‘:L |
-1 -6} "lo 1) | -1 -6-2,

In particular we need to determine where the determinant of this matrix is zero.

det(A —Al) =(2—/’,}(—6—/’,:}+? = A7 +4.-5 =(/’, +5}(z’. -1)
So, it looks like we will have two simple eigenvalues for this matrix, A, =—=5 and A, =1. We

will now need to find the eigenvectors for each of these. Also note that according to the fact
above, the two eigenvectors should be linearly independent.

To find the eigenvectors we simply plug in each eigenvalue into (2) and solve. So. let’s do that.
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= A ==5:

In this case we need to solve the following system.

7 T73%_- (0
n=
-1 -1 0
Recall that officially to solve this system we use the following augmented matrix.
7T 7 0WZR+R (T T 0
-1 =1 0 = 0 0 0
Upon reducing down we see that we get a single equation
In,+1n,=10 =

Matrices and Eigenvalues , Eigenwectors ) ALY U pall / Lptigh edllasl)

==

that will yield an infinite number of solutions. This is expected behavior. Recall that we picked

the eigenvalues so that the matrix would be singular and so we would get infinitely many
solutions.

Now, let’s get back to the eigenvector, since that is what we were after. In general then the
eigenvector will be any vector that satisfies the following,

7 -1,
7> 7>

Here's the eigenvector for this eigenvalue.

=] [-IJ .
n = ] using 7, =1

Now we get to do this all over again for the second eigenvalue.

=P/, =1

We'll do much less work with this part than we did with the previous part. We will need to solve

the following system.
1 7. [0
n=
-1 =7 0

n,+7n,=0 1, ==1n,

T -Tn,
F:[FlJz[ F_J ,.?j‘.,-?"—‘[]
7, 17, -

_{2| [-?J .
1 = E using 1, =1

Summarizing we have,

The eigenvector is the-
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Example 2 Find the eigenvalues and eigenvectors of the following matrix.
1 -1
A=
Solution

This matrix has fractions in it. That’s life so don’t get excited about it. First we need the
eigenvalues.

o~
=S
L] —

P .
dct(A—/’u’): ) 1
s 34
1 4
=(1=) === |+2
0-2)(-3-4]
:i:—E&Jrl
3
1Y’ 1
=l A—— = , =—
3) =

So, it looks like we’ve got an eigenvalue of multiplicity 2 here. Remember that the power on the
term will be the multiplicity.

Now, let’s find the eigenvector(s). This one is going to be a little different from the first example.
There is only one eigenvalue so let’s do the work for that one. We will need to solve the

following svstem.
2 0
( 3 (7?1 _ ( — R = 3 R,
4 ) : 0 2 2

So, the rows are multiples of each other. We’ll work with the first equation in this example to

find the eigenvector. ) o)
“n-n,=0 ==
3 =1, m, 3 m
In this case the eigenvector will be,

ﬁ:(}h}:(}h}: n#0
7, 37
| 3
5“1:( Ja ??1:3
\2

Also in this case we are only going to get a single (linearly independent) eigenvector. We can get
other eigenvectors, by choosing different values of 77,. However, each of these will be linearly

dependent with the first eigenvector. If you’'re not convinced of this try it. Pick some values for
17, and get a different vector and check to see if the two are linearly dependent.
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Example 3 Find the eigenvalues and eigenvectors of the following matrix.

(-4 ~17
A=
2 2

\
Solution
So, we’ll start with the eigenvalues.
—4-1 -17
det(A4-Al)=
2 2-4
= (~4-2)(2-2)+34
= A" +24+26

This doesn’t factor, so upon using the quadratic formula we arrive at,

A, =—1%5i

In this case we get complex eigenvalues which are definitely a fact of life with
eigenvalue/eigenvector problems so get used to them.

Finding eigenvectors for complex eigenvalues is identical to the previous two examples, but it
will be somewhat messier. So, let’s do that.

- [ =—1+45i :

The system that we need to solve this time 1s

SRR (I E

\
(_3 50 —17 WJ
Now, it’s not super clear that the rows are multiples of each other, but they are. In this case we
have.

R, =—IE(3+51')R2

We’ll work with the second row this time.

2n,+(3-5i)n, =0
2n, =—(3-5i)n,

1 .
n = _5(3_55)??2
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So, the eigenvector in this case is

As with the previous example we choose the value of the variable to clear out the fraction.

Now, the work for the second eigenvector is almost identical and so we’ll not dwell on that too
much.

P A, =-1-5i:

The system that we need to solve here is

(—4—(—1—5;) -17 }(ﬂ_(o}
. 2 2—(-1-5i) \n, ) L0
~3+5i -17
e
Working with the second row again gives,

2n, +(3+5i)n, =0 = m:—%(3+5j)ryz

The eigenvector in this case 1s

; _{m} _ -%(3+5f)??z

; 17, #0
T 1
_(» [—3-5i
no= 5 n, =2
. \ 2
Summarizing,
. —H'I _3+5£
A, ==1+5i n =
|,\ 2
) _lrz'-l _3_5.!
A, =—1-5i n- =
2 L2
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There 1s a nice fact that we can use to simplify the work when we get complex eigenvalues. We
need a bit of terminology first however.

It we start with a complex number,

then the complex conjugate of z is

To compute the complex conjugate of a complex number we simply change the sign on the term
that contains the */”. The complex conjugate of a vector is just the conjugate of each of the
vector’s components.

We now have the following fact about complex eigenvalues and eigenvectors.

Fact
If 4 is an n x n matrix with only real numbers and if A, = a+bi is an eigenvalue with

. —(1] = .. P . . .
eigenvector ?}‘[ ' Then A, = A, =a—Dbi is also an eigenvalue and its eigenvector is the

conjugate of r}m :

‘ (H ‘W. ]_) \ Find the eigenvalues and eigenvectors of the following matrix.
0 1 1

Solution :

the eigenvalues and eigenvectors for this matrix

1

A =2 7 =1
|1
-1
&2 =—l (2) _ 0
L\ 1
-1
A, =—1 7 =
0
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H.W.(2) : Determined the eigenvalues of the matrix A given below :

1 0 4
0 4 0
3 5

-3

A=

Solution :
}\41249 }\’2:_59}\‘3:3’

H.W.(3) : Determined the eigenvector of the HW.2at ;= 3:
Solution :

K 2s 2
The eigenvectoru = (}J) = ( {'.I) =5 (ﬂ) where s = 0 and corresponds to L= 3.

Z 5 1
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Application of matrices to electric circuits :

Example(1) :
Find the electric currents shown by solving the matrix equation (obtained using Kirchhoff's Law)
arising from this circuit (Use inverse matrix ):

Eldﬂ.?
]
[
o o
5 10 5 30 E 60
> > 2
lll hlz hh
Solution :
Iy + 1+ 14 0
—2I,+3I, | = |24
—3I, + 615 0

We can write this as:

So we have:

(L5 ()
) o 5o) o)

Using a computer algebra system to perform the inverse and multiply by the constant matrix, we get:

I;—-6A
In—4A
I;=2A

We observe that I is negative, as expected from the circuit diagram.
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Example(2) :

AU Al el / Aswaigh) et

Find the electric currents shown by solving the matrix equation (obtained using Kirchhoff's Law)

arising from this circuit (Use Gaussian Elimination):

00
v |+

55 8

Solution :
10y
15, +25(, — i, )+ 50(F —5,) =10 [ 76i, —25i, — 50i, =10
<200, -5+ 305 +1(;; —4)=0 =254, +36i, — 14 =0
150G, —4)+1G, —4)+555, =0 —50i, —1i, +106i; =0
76 -25 -50 10
25 %6 -1 O
-50 -1 106 O
Then by using the value of currents are : l
| 0 0245
0 1 0 011
0o 0 1 0117

=0117 , p=0.111 , ,=0.245
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(HW) :
Find the electric currents shown by solving the matrix equation (obtained using Nodal
Voltage Analysis) arising from this circuit (Use Gaussian Elimination):

M1 N3

Solution :

V=75V, Vi=50V

N2 is the reference node as so the voltage 1s 0V.

(H.W) : Using Matrix to find the currents in the circuit below :

(riven the circuit below, solve for the loop currents 1; and 1; indicated using mesh

analysis.
10 Q 20 Q
W\ Wy
70V S0 Q é}mw
Solution : i, =1A and i,=-2A
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Find the rank of the matrix

1 0 2 1
A=10 2 4 2
0 2 21

Solution

We use elementary row operations:

1 0 2 1 1 0 2 1
A=|0 2 4 2| --+|0 2 4 2
0 2 2 1 0 0 -2 -1
A has rank = 3.
Find the rank of the matrix
1 0 2 1
A=10 2 4 2
Solution A has rank = 3 02 21
Find the rank of the matrix
1 2 1 -1
A=19 5 2 2
7 1 0 4
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( Laplace Transforms )

Laplace Transforms :
The solution of most electrical circuit problems can be reduced ultimately to the solution
of differential equations. The use of Laplace transforms provides an alternative method to

those discussed in the previous subjects for solving linear differential equations.

Definition
Suppose that fi1) 15 a piecewise continuous function. The Laplace transform of f1) 1s

denoted L Lf [r}[ and defined as

Cif(e))="e"r(t)de (1)

There i1s an alternate notation for Laplace transforms. For the sake of convenience we will often
denote Laplace transforms as,

Cif(1)}=F(s)

With this alternate notation, note that the transform is really a function of a new variable, s, and
that all the r's will drop out in the integration process.

Now, the integral in the definition of the transform is called an improper integral and it
would probably be best to know how these kinds of integrals work before we actually jump
into computing some transforms.

Improper Integrals :
In this section we need to take a look at integrals that are called Improper Integrals.
Infinite Interval :
In this kind of integral one or both of the limits of integration are infinity. In
these cases the interval of integration is said to be over an infinite interval.
Let’s now formalize up the method for dealing with infinite intervals. There are
essentially three cases that we’ll need to look at.

1. If [_!__flix:}n'x exists for every t > athen,

‘l-:ci‘rl:r}f?"{'=]]_1'];l‘|‘d?r|:r}f?'t %

provided the limit exists and is finite.

2. If [i__f[.r_}ﬂ'x exists for every t < b then,

[ f(x)de=tim [ f(x)dx
= : Pt o | :
provided the limits exists and is finite.

o

3 If |‘: f(x:}ﬁ"x and [ __f[x:}:?'x are both convergent then,

[~ fla)ax=["_f(x)dv+[ f(x)dx

Where ¢ is any number. Note as well that this requires BOTH of the integrals to be
convergent in order for this integral to also be convergent. If either of the two integrals is
divergent then so is this integral.
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Example Determine if the following integral is convergent or divergent and if it’s convergent
find 1ts value.
¥ 32 ]
—dx

J 1 X
Solution
So, the first thing we do 1s convert the integral to a limit.

I lI:I':::=]im I .ia'x

J X == X

Mow. do the inteeral and the linut,

T

l1:1':::= limIn( :::']I|:

;X P ’

lim (In(¢)=In1)

e

=ao

5o, the limit is infinite and so the inteeral is divergent.

h—————————>

Example 1f ¢ =0, evaluate the following integral.
J‘__t e’ dt

Solution
Remember that vou need to convert improper integrals to limits as follows,

Jq e dr=lim L" e dt

n—s

Mow, do the integral, then evaluate the limit.

Jl e di=lm J' e’ dt

n—pat
10 '
=]1mI —_
II_’.".I,\\C ..-'. I
# "
R P
=lim —e —— |
II_?j-\,,C C___.'

Mow, at this point, we've got to be careful. The value of ¢ will affect our answer. We've already
asswmed that ¢ was non-zero, now we need to worry about the sign of o, If ¢ is positive the
exponential will go to infinity. On the other hand, if ¢ & negative the exponential will go to zero.

So, the integral is only convergent ({e. the limit exists and is finite) provided c<(. In this case
we get,

J1 e dt = L provided ¢ <0 (2)

C
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Now that we remember how to do these (improper integrals ), let’s compute some
Laplace transforms. We’ll start off  with probably the simplest Laplace transform to
compute.

Example Compute £ { l} .

Solution
There’s not really a whole lot do here other than plug the function f{z) =1 into (1)

ﬁ{_}‘"[r)}=b|':e"‘"_}‘"[r}dr (1)
cip={"ear

Now, at this point notice that this is nothing more than the integral in the previous example with
¢ =—s. Therefore, all we need to do is reuse (2) with the appropriate substitution. Doing this

gives,

il ® st L i

;.C«,l;=[ e dt=—— provided —s <0

' -0 —5

Or, with some simplification we have,
| :
L == provided s > 0
L) :

Example Compute L‘{Em}

Solution
Plug the function into the definition of the transform and do a little simplification.

ﬁ{ﬁm} — l‘xe-ﬁrewr df = l‘:elﬂ'—ﬁlf dt

Once again, notice that we can use (2) provided c =a—=s5. So let’s do this,

E{EM} _ l'i"elf.'—.wlr dt

= provided a—s <0

provided s > a
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Example Compute ﬁ{sin(m‘ }}

Solution
Note that we're going to leave it to you to check most of the integration here. Plug the function
into the definition. This time let’s also use the alternate notation.

E{sin(m‘}} = F(ﬁ}

= I:E"' sin (at ) dt

=lim [ﬂ

e sin(m‘}de‘
n—sx e ’
Now, if we integrate by parts we will arrive at,

F (R}=Iim -[l e cos(m‘}]

n— &

ﬂ - ij.; e " cos (m‘}d@‘

Now, evaluate the first term to simplify it a little and integrate by parts again on the integral.
Doing this arrives at,

o
e sin(ar)dt
n==| g alla a*"’ '

F(S}=Iim l(l-m""” cﬂs(an})-i [le'” sin(ar}jﬂ +i[

Now. evaluate the second term. take the limit and simplify.

- l S I. N 5‘ " .
F. =| —1= e g N -.mh = -”. Ed{
(s) Flﬁl}l[a[ e cos(an)) ﬂ[ﬂe sm(m:ﬁajﬂe sin(ar) D
| S & r=
=————| e "sin(at)dt
» ﬂ[ﬂ_fﬂ e sm(a"j ]

= l—L, [xe"" sin(at ) dt

Now, notice that in the limits we had to assume that s>( in order to do the following two limits.

[ime™" cos(m: )=0
= .
lime™" sin(an)=0
= .

Without this assumption, we get a divergent integral again. Also, note that when we got back to
the integral we just converted the upper limit back to infinity. The reason for this is that, if you

think about it, this integral is nothing more than the integral that we started with. Therefore, we
now get,

1 s°
Fls)=———F|s
( a a ( )
Now, simply solve for Ffs) to get,
E{sin(ﬂf}} =F(s)=— - = provided s > 0
S +a
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Before moving on to the next section, we need to do a little side note. On cccasion yvou will see
the following as the definition of the Laplace transform.
- " g == "
J | - -
EL_}"[I.}} =| e fle)dt
MNote the change in the lower limit from zero to negative infinity. In these cases there 1s almost
always the assumption that the function ff1) 15 in fact defined as follows,
0 1ft<0
fle)=+ . . ..
Tl fe) iftz0
In other words, it 15 assumed that the function 1s zero if 1<(). In this case the first half of the
integral will drop out since the function is zero and we will get back to the definition given in (1).
A Heaviside function i1s usually used to make the function zero for i<, We will be looking at
these in a later section.

Table of the common functions used by Laplace transform

f(1) Fis)=Lif(0)}

i
a —_
Y

§F=—ua

—at

F+a

sin at B E—
X +a

COs at

4
o]

F +a

sinh at 0

[
i

cosh at 5

[
4
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Example Find the Laplace transforms of the given functions.
(a) f(t)=6e"+e"+5£-9
(b) g(t)=4cos(4t)=9sin (4¢)+2cos(10¢)

(¢) A(t)=3sinh(2¢)+3sin(2¢) (HW.)

Solution
Okay, there's not really a whole lot to do here other than go to the table, transform the individual
functions up, put any consants back in and then add or subtract the results.

(@) f(t)=6e+¢&" +5¢ -9
1

Fls)=6 S =-9-
() s-(-5)+s-3+ e U
6 ] 30 9
i oo e o s oo
s+5 s=3 s' s
(b) g(t)=4cos(4r)-9sin(4¢)+2cos(10¢)
o (Y I . S
sT+(4)  sT+(4) s*+(10)
4s 36 2

s e + )
s5+16 s°+16 s +100
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Properties of Laplace transform:

1- Linearity: £{c; f(t) + cgf;['r"u} = mﬁ{fr'i‘?} + cgﬁ-{g(r}}.

2-  Shifting property. If £{f} = ) then & {e } = F(s—a).
3- Time scaling. Let % {f(t)} = F(s) then % {f(at)} = lf‘ (f) .
a
4-  Differentiation of the frequency. Let £ {f(t)} = F(s). Then L) = (-1)"F")(s)

5- Differentiation. Let Z{f(t)} = F(s). Then

Z{f'(t)} = sF(s) - §(0).
Z{f'(8)} = s(sF(s) - £(0)) — £(0) = £F(s) - s£(0) - £/(0).

1-Linearity :
Example  Using this property we can easily find. using the information above, the Laplace trans-
form of, e.g.. 5 — 3t + wcost:

ml':.'ll

3 n TS
. 2

L{5—-3t+mcostp=5L{1}-3.L{t}+n f{mhf}— el

2-Shifting property:

Example = Now. to find. e.g.. & {eat sinf} we do not need to evaluate the integral:

since % {sint} = ?g%

1
at . _
f {E =111 f} == m .
3-Time scaling:
Example  Find & {cos3t}.
By the previous pmp?rh and the fact that Z {cost} = =°5 we find
s/3 S

% {cost} = E[ 32+1 s2+32°

4-Differentiation of the frequency:

Example What is % {#3}7
the fact that £ {1} =

, " 3.2
ZA{t'x1} = (-1)° (—) =0

5- Differentiation used in Solution of initial value problems:
Let & {f(t)} = F(s). Then
Z{f'(t)} =sF(s) - £(0).
ZL{f'(t)} =s(sF(s) = f(0)) = f'(0) = s°F(s) — sf(0) — f'(0),
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More Examples about Laplace Transform

Laplace transform

atmn ”! L ”'!
Example 1. L{e"t"} = G5 a From  L{t"} = —=.
i at _: h 1 —EJ
Example 2. L{e™sinbt} = e From L{sinbt} = 2
. s —a .
E le 3. at — 2y = .
xample L{e™ cos bt} Y From L{cosbt} Ty
3, ks 31 4 = ‘ 3oL Ll
Example 4. L£{t"+ 5t =2} = L{t°} + 5L{t} —2L{1} = . + 55 — 2.
8 8 s
E le 5. [ 2t 43 K a0 d' o . o .
xample 5. L{e*(t° +5t —2)} = 5—2) -I-JI.:S Z9)2 " “5=2
. , - . 2 - s+1
Example 6. (12 4 4)e? — et = -
p L{(t"+4)e e cost} 52 + =2 (s+1P1l
bec: C{2 +4) = 2 : LU +4)e?) = —= :
secause L{t~ +4} = 3 + 3 = L{(I" +4)e"} = (s —2)? + g — 2

Example  Find the transform of each of the following functions.
(a) f(t)=rtcosh(3¢)
(by h(t)= t* sin (21)
© g(r)=1°
@ 1 (¢)=(10)} (H.W.)
(e) f(2)=1g'(7)

Solution

(a) f(t)=tcosh(3¢)

This function is not in the table of Laplace transforms. However we can use #30 in the table to
compute its transform. This will correspond to #30 1f we take n=1.

F(s)= ﬁ{:‘g (1‘}} =-G'(s), where g(7)=cosh(3t)

So. we then have,
.,
s , 5 +9

(53 -9)2
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(b) h(1)=1"sin(2r)

This part will also use #30 in the table. In fact we could use #30 in one of two ways. We could
use it with n =1,

H(s)= ﬁ{r_‘f(r‘}} =-F'(s), where f(7)=1sin(2¢)

Or we could use it with n = 2.

H(s)= J.C{f_f(z‘}} =F"(s), where f'(7) =sin(27)

Since it’s less work to do one derivative, let’s do it the first way. So using #9 we have,

F(s)= 4s 2 F;(S}:_IESE—I?
(-‘?2 +4) (sg +4)

The transform is then,

2

_123'—16

Hs) ;
(T' [.¢2+4)

H.W.

_ s+ 1
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Table of Laplace Transforms

F(s)y=L{f(1)}

f(1)=L"{F(s)]

AU Al el / Aswaigh) et

]

alk

L1 - e
5 §=da
!
3. £, n=123,.. 1:_‘, 4 7 p>- ri‘i:'}
; 1.3:5-(2n=1)4/7
s T f 6. ", n=123,... _}{: W=
25 25"
- ; a A
7. sin(at) . B cos(at) T
2as -
9.  tsinfat) 3 10. tcos(at) - az
(s +a) (s +a)
2a° 2as’
Il. sin(at)-atcos(at) E;;;;;ji 12. sin(at)+at cos(at) E;;;;;j;
sfsz -a’ ) sfsz + 3&2)
13.  cos(at)—atsin{at) m 14. cos(at)+atsin(at) m
15, sin(at+b) ssin[il:zfus[b} 16. cos(at+b) Scustfz}:zfi"[h}
. a A
17. sinh(at) R 18. cosh(at) -
b s—a
al : IIJ‘ 0. 1 Ii'J
19. e sin{bt) (s—a) +5° 20. e cos(bt) (s—ay <5
b §=a
21, e"sinh(bt) (—a) -7 22. ¢ cosh(bt) (s-a) b
! (5
23 t'e”, n=123,... t 24, flet) Lp[s
' iy y ( _a}"| o l.,i-',-'
25. Hc[r}=uir-c} Lﬂ 26, 5(2‘-6} E—f.'i
Heaviside Function ¥ Dirac Delta Function
27w (t)flt-c) e F(s) 8. u(t)glr) e=L{g(t+c)|
29. e f(t) F(s=c) 30, f(¢), n=123,.. (-1} F"(s)
1 = : F(s)
3 —f(0) ["Flu)de |32 [ f(v)av S
5. [fl-r)e(t)dr F()G(s) |34 fle+T)=£(1) J s
' [—e™
5. (1) F(s)-£(0) |36 17(1) SF(s)-5f (0)- £'(0)
17, fﬁn]“} EHF[S}_Sn-lfm}_sn-zfrm}”I_Ef{n—z]m}_ﬂn—n [Cl}
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!:a..'l

Table Notes

This list 1s not a complete listing of Laplace transforms and only contains some of the
more commonly used Laplace transforms and formulas.

Recall the definition of hvperbolic functions.

e +e , e =g
— sinh(t)=———

i F

cosh(t)=

Be careful when using “normal”™ trig function vs. hyperbolic functions. The only
difference in the formulas 1s the *+ a* for the “normal” trig functions becomes a *“-a*™"
for the hyperbolic functions!

Formula #4 uses the Gamma function which is defined as
L = —-x _ -
C(r)=] e"x" d
il

If#n 15 a positive integer then,

[{n+1)=n!

The Gamma function 1s an extension of the normal factorial function. Here are a couple
of quick facts for the Gamma function

C(p+l)=pl(p)
r(p+ﬁ]

plp+l)(p+2)--(p+n-1)= r(2)
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Inverse Laplace Transforms :
In these cases we say that we are finding the Inverse Laplace Transform of F(s)

and use the following notation.

_
f(1)=L7{F(s)]
As with Laplace transforms, we’ve got the following fact to help us take the inverse transform.

Fact

Given the two Laplace transforms F(s) and G(s) then
o {aF[s}+ bG [s }} =al" {F[e}} +bL™ {G [s }}

for any constants @ and b.

So, we take the inverse transform of the individual transforms, put any constants back in and then
add or subtract the results back up.

Example  Find the inverse transform of each of the following.

) 6 | 4
a) F(s)=—-— +
@ £ } § 5—=8 5-3
) 19 | 7
by Hls)= — +—
() H( } s+2 35-5 5§
X 6 3
¢) Fls)=— +—
(©) (g} s +25 s +25
d) Gls)= +
@ G } 35T +12 57 —-49
Solution
) 6 | 4
a) Fs)=—-— +
@) [g} § s5—8 -3
) ] 1 ]
F[s]=6—- + 4
’ g s—8 §—3
f(t)=6(1)—e" +4(e")
—6—e" +4e”
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19 1 7
+_

5

(b) H(s)=

s+2 35-5 s
The first term in this case looks like an exponential with @ = =2 and we'll need to factor out the
19. Be careful with negative signs in these problems, it's very easy to lose track of them.

The second term almost looks like an exponential, except that it’s got a 3s instead of just an 5 in
the denominator. It 1s an exponential, but in this case we’'ll need to factor a 3 out of the
denominator before taking the inverse transform.

The denominator of the third term appears to be #3 in the table with # =4 . The numerator
however, 1s not correct for this. There is currently a 7 in the numerator and we need a 4! =24 in
the numerator. This is very easy to fix. Whenever a numerator is off by a multiplicative

constant, as in this case, all we need to do 1s put the constant that we need in the numerator. We
will just need to remember to take it back out by dividing by the same constant.

So, let’s first rewrite the transform.

19 1 74

H(s)= - 1

)= 369
IRTSEND S U B A

s—(-2) 3s-1 41s%

24
3 3 2 3 2 3
4 -1 —_— = -1 - - = -t = s sin2
Example L 71 L ST _}L' SEY 5 sin 2t
5 - a a)
Example .- {;.} =L {£ - L.} = iﬁ_l {d—.} = ie_stﬁ_l {d—} = ie_”ta.
(s+5)4 3 (s+3)4 3 (s +5)* 3 E 3
H.W.
e |V (1)_V 1
= rRlsl RIR . Where V, R, L are constants
’ — + 5
L
H.W. Find the inverse transform of each of the following.
6s—5
(@) F(s)=—
sT+7
| -3s
(b) F(s)=5"
"5 +8s5+21
3s-2
0 Gls)=—F——
© G(s) 25" —6s5-2
(d) H(ﬂ:#
T8 =35-10
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So, let’s remind you how to get the correct partial fraction decomposition. The first step is to
factor the denominator as much as possible. Then for each term in the denominator we will use

the following table to get a term or terms for our partial fraction decomposition.

Term in partial

Factor in
denominator fraction decomgosition
A

ax+b
ax+b
[ k Al AE ce g Ak
(ax+b) ax+b  (ax+b) (ax+b)"
, Ax+ B
ax" +bx+c —_—
ax” +bx+c
A x+B,

_ . Ax+B, N A,x+ B,
ax” +bx +c) 2 > 2
( ax” +bx+c (a.r‘ +!J.r+c)

. %
(ax‘ +!Jx+c)

I I
Example  Find the inverse transform of each of the following,
) 86s—78
(@) G(s)= -
(s+3)(s—4)(5s-1)
2-35s
(b) F(s)= -
(s=6)(s”+11)
(©) G(s) =
C 5)=
) .?1'{.~:E+43+5) (H-W.)
Solution
; 8bs— 78
(a) G(s)= .
" (s+3)(s—4)(5s-1)
Here’s the partial fraction decomposition for this part.
A B C
G(s)= + +—
Tos+3 s—-4 5s5-1

865 -78=A(s—4)(5s=1)+B(s+3)(5s=1)+C(s+3)(s-4)

As with the last example, we can easily get the constants by correctly picking values of 5

s=-3 -336=4(-7)(-16) =  A4=-3

=1 B2 s e
J J J J

s=4 266=28(7)(19) -  B=2
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So, the partial fraction decomposition for this transform is,

3 2 5
G(s)=- i +—
’ s+3 s=4 35s5-1

Now, in order to actually take the inverse transform we will need to factor a 5 out of the
denominator of'the last term. The corrected transform as well as its inverse transform is.

2 |
+ +
s+3 s-4 s-—1

G(s}=-
ol = =3 + 2 +ef

2—3g

2
(s—6)(s*+11)
So, for the first time we’ve got a quadratic in the denominator. Here's the decomposition for this

part. .
4 Bs+C

-+ —
s—6 s +11

-Ss=A(s*+11)+(Bs +C)(s-6)
2-5s=A(s>+11)+(Bs+C)(s-6)

(b) F(s)=

F(ﬁ}=

Setting numerators equal gives,
7

i

= S?A+11 A +BS?’-6BS+CS-6C
=(A+B)s* +(-6B+C)s+114-6C

So, setting coefficients equal gives the following system of equations that can be solved.

st A+B=0 . .
s —6B+C=-5 = A:-“—g B:é1 C:-%

47’ 47
s 114-6C=2

F(s)=—|- + —
47 s=6 s +11

i

1( 28 283-6?]&

s e

28 28 67

+ 7 - "
4?\ s—6 s +11 s +11

The inverse transform 1s then.

f(t)= %(-Egeﬁ' +28 cns(\/ﬁf)-%sin(\/ﬁt‘ﬂ
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Solution Differential equations of initial value problems using Laplace

Structure of solutions:
e Take Laplace transform on both sides. You will get an algebraic equation for Y.
e Solve this equation to get Y(s).

e Take inverse transform to get y(t) = L7 {y}.

Example Solve the initial value problem bv Laplace transform,
y' =3y =10y = 2. y(0) = 1.4(0) = 2.
Solution :

Step 1. Take Laplace transform on both sides: Let £{y(?)} = Y (s), and then
L{y'(t)} = sY(s) —y(0) = sY — 1, L{y' (1)} =&Y (s) —sy(0) = (0) = Y —5 — 2.

Note the initial conditions are the first thing to go in!

L{y"(t)} = 3L{y'(t)} — 10L{y(t)} = L{2}. = Y —s—2-3(sY = 1) — 10Y =

v O

Now we get an algebraic equation for Y (s).
Step 2: Solve it for Y(s):
2 —s+2 s —s+2

= Y(s) = — — —
8 ' ' sls—9)ls+2)

2
(s =3s—10)Y(s)=="4s+2—-3=
' ' s

Step 3: Take inverse Laplace transform to get y(t) = £L71{Y(s)}. The main technique here is
partial fraction.
s —s+2 A B C Als—5)(s+2)+ Bs(s+2)+ Cs(s—5)

Yis)=— —_— = — 4 + = = - N
Y s(s—5)(s+2) s s5—5 542 sls—5)(s+2)

Compare the numerators:
s —s+2=A(s—5)(s+2)+Bs(s+2)+Cs(s—5).

The previous equation holds for all values of s.
Set s =0: we get —10A=2,50 A=
Set s =5: we get 3308 =22, 50 B =
Set s = —2: weget 140 =8, 50 C =

1
=

-EI»—E“’JE |

Now, Y(s) is written into sum of terms which we can find the inverse transform:

1 1 1 - 4
o CLT = s g 2y 2o
§=25 542 ) | 7

y(t) = ALTZ} + BL™Y
]
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Example  Solve
y' — 10y +9y =58, y(0)=—1,4'(0) =2.

Applying the Laplace transform to both side, we find

{si—ms+5r]1r’+s—2—m=SiE — Y(s] =

54 1252 — g3
a2 (s—0)(s—1)"

To find the inverse Laplace transform we will need first simplify the expression for ¥(s) using the
partial fraction decomposition:

54 12g% — g* _A+B+ (o N D
Fla—09)s—1) s &  8-9 g—1°
We find B . -
5 5
B=E.D=—Q.C=E.A=ﬂ.
Therefore, using the linearity of the inverse Laplace transform,
L9 5t 3L g, .
yit)=g + 5+ 2"
H. W. : Solve 3" =3/ +2y=¢" y(0)=1 4/(0)=0.

s acosb =%[sin{n+b y+sin(a—b )]
cosasinb :%[Sin(rﬁb }—sm(a—b )]

COSacosh :%[cos;(rwb )+cos(a—b)]

—

1
=

-

:.;i“% _ +\/IEZI sin 20 =2sinfl cosb

cos 20 = cos? 0 - sin* 0

(:{TH% = @ cos 20 =2cos?0- 1

- cos20=1-2 sin* 0

0 o [Tl cos0 41 tan20 2l
2 = e ,cos0 ¥£- an 28 = ——————
Ianz = 1+cosB 1 - tan?0

sinasinb=—=[cos(a+b )—cos(a—b)]
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( Probabilities and Statistics)
Introduction :

Probability and statistics are concerned with events which occur by chance. Examples
include occurrence of accidents, errors of measurements, production of defective and non-
defective items from a production line, and various games of chance, such as drawing a
card from a well-mixed deck, flipping a coin, or throwing a symmetrical six-sided die. In
each case we may have some knowledge of the likelihood of various possible results, but
we cannot predict with any certainty the outcome of any particular trial. Probability and
statistics are used throughout engineering. In electrical engineering, signals and noise are
analyzed by means of probability theory.

Probability : The chance that something will happen.

Some Important Terms :
(@) Probability as a specific term is a measure of the likelihood( Probability ) that
a particular event will occur.
(b) Statistics is a word with a variety of meanings. To the man in the street it most
often means simply a collection of numbers, such as the number of people
living in a country or city.

Events and the Sample Space

Data are obtained by observing either uncontrolled events in nature or by observing
events in controlled situations. We use the term experiment to describe either method
of data collection.

Experiment : is the process by which an observation (or measurement) is obtained.
Outcome : A possible result of one trial of a probability experiment.

Sample Point : is the one of each outcome.

Event :is the outcome that is observed on a single repetition of the experiment.
Sample space: is a collection of events. Or, The set of all events .

( Roll of die)

= BN E8Y 50N Elis

Sam ple space

/ Sam ple Point
Event

Sam ple space —— ALL
Sam ple point —————> ONE

Event — > Omne or mmore

Dependent events : The outcome of one event is affected by another event.. Or, The
probability of occurrence of one event depends on the occurrence of the other.
Independent event : Two or more events whose outcomes do not affect each other.

@
o® o o e
P(R1) P(R2)

:F'h.lc ReplacePick| % g Independent
Pick Pick = 2 Not independent
ie ie = y -
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Mutually Exclusive Events (disjoint): Two outcomes or events are mutually exclusive
when they cannot both occur simultaneously .Or , Two events are mutually exclusive if,
when one event occurs, the other cannot, and vice versa.

one throvw die

- - - - -
-

- -

I -
A =

Evar o dd PrMutually
Exelusive
o dd Lamss dimen < Mot Mutually

Exclusive

lndependent ——— > Not related
PrMutually = Canmnmot cccuar
Exclusive together

Venn Diagram : A diagram of overlapping circles that shows the relationships among
members of different sets.

Event Relations and Probability rules :
Sometimes the event of interest can be formed as a combination of several other

events. Let A and B be two events defined on the sample space S. Here are three important
relationships between events.
Union : The union of events A and B, denoted by “ A u B %, is the event that either A or

B or both occur.
Intersection : The intersection of events A and B, denoted by “ A n B “, is the event

that both A and B occur.
Complement : The complement of an event A, denoted by “ A", is the event that A does

not occur.
I/ 2 5 & 5 & 7 8 9 0O
A — > Even
B ———————> Greater than s
A — 2 4 & ,8 , 1O B —> &, 7,8, 9,10
ANB > & ,8 , 1O
-
P(A NB) s
AUB -2 ,4,6 ,8 ,10, 7 ,9
PcAauB) - Z_
1T 0
N S )
A B A AC
I |
Venn diagramof A U B Venn diagram A N B The complement of anevent
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Two fair coins are tossed, and the outcome is recorded. These are the events of

EXAMPLE
interest;
A: Observe at least one head
B: Observe al least one tail
Define the events A, B, A N B, A U B, and A® as collections of simple events, and
find their probabilities.
Solution
E;: HH (head on first coin, head on second)
E,:HT *and that each simple event has probability 1/4.
Es: TH
EJ'. TT
Event A, at least one head, occurs if
E,, E., or E, occurs, so that
A= E, E Ex}
3
= PlA) = n
Similarly,
Event g _at least one | tail  occurs if
B= {E:. Es, E.;}
3
PiB) = )
e— == AN B = {Es E:}
FlAN R =-,|5-
e = AUB=|[E,E;EsE
4 |
PHLJH}=I=| / and A = {Es} PH’]'=I

The concept of unions and intersections can be extended to more than two events.
For example, the union of three events A, B, and C, which iswrittecnas A U B U C,
is the set of simple events that are in A or B or C or in any combination of those

events. Similarly, the intersection of three events A, B, and C, which is written as
A N B N C, is the collection of simple events that are common to the three events

A, B, and C.
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Calculating Probabilities for Unions and Complements :
When we can write the event of interest in the form of a union, a complement, or an

intersection, there are special probability rules that can simplify our calculations. The first
rule deals with unions of events.

The Addition Rule :

General addition rule

Given two events, A and B, the probability of their union, A U B, is equal to

[ P(A U B) = P(A) = P(B) — P(A N B) | —eeeeniiie——

Special case of additon rule (mutually exclusive)

When two events A and B are mutually exclusive or disjoint, it means that when
A occurs, B cannot, and vice versa. This means that the probability that they both

occur, P(A N B), must be zero. Figure is a Venn diagram representation of two such
events with no simple events in common,

PAUB)= P(A) = P(B)

When two events A and B are mutually exclusive, then P(A N B) = 0 and the
Addition Rule simplifies to

Exﬂ'&.~>2.z';4~5679410 12345 6
A »Even B —— Greater than s A—* Odd
P(AUB) =P (Ahappening) + P (B happening)
= P(A&Bhappeningtogether) g— EV”\
S & B
- 1—04-;—; A-->2.,4,6,8,10 P(AUB)'P(A)'I'P(B)-P(AHB)
- 07 Bie s 28 T lctin®@ A& B ---> Mutually Exclusive
2,4,6,7,8,9,10 P(AUB)= P(A) + P(8)
P (AUB)=P(A)+ P(8B) - P(ANB) '?I"% =1

P(AUB)=P(A) +P(8) MutullgExelusivs
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Rule For Complements :

The second rule deals with complements of events, You can see from the Venn
diagram in Figure that A and A are mutually exclusive and that A U A = §, the
entire sample space. 1t follows that

PiA) + PA") = land PiA") = 1 — P(A)

P(A®) =1 — P(A)

EXAMPLE An oil-prospecting firm plans to drill two exploratory wells. Past evidence is used to
assess the possible outcomes listed in Table
TABLE . Outcomes for Oil-Drilling Experiment
Event  Description Prabability
A MNeither well produces ol or gas .80
8 Exactly one well produces oil or gas 18
[ Both wells produce oil or gas oz

Find P(A U B) and P(B U C).

Solution By their definition, events A, B, and C are jointly mutually exclusive be-

cause the occurrence of one event precludes the occurrence of either of the other two.
Therefore,

PAUB) = P(A) + P(B) = .80 + .18 = 98

and

P(BUC)=PB) + P(C)=.18+ .02=.20

A little note about a deck of cards

A deck of cards = 52 cards

Each deck has four parts (suits) with 13 cards in them.

Each suit has 3 face cards.

52 cards = 1 deck
|

|
13 5PE1J135 13 helartz-‘. 13 £|:]u|:|5 13 diamonds
4 v s +
|| Black Red Black Red
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Independence, Conditional Probability, And The Multiplication Rule :

Independent : Two events, A and B, are said to be independent if and only if the
probability of event B is not influenced or changed by the occurrence of event A, or vice
Versa

Example : consider tossing a single die two times, and
define two events:

A: Observe a 2 on the first toss
B: Observe a 2 on the second toss
If the die is fair, the probability of event A is P(A) = 1/6. Consider the probability of

event 5. Regardless of whether event A has or has not occurred, the probability of ob-
serving a 2 on the second toss is still 1/6. We could write:

P(B given that A occurred) = 1/6
P(B given that A did not occur) = 1/6

Since the probability of event B is not changed by the occurrence of event A, we say
that A and B are independent evenis.

CONDITIONAL PROBABILITY.

The probability of an event A, given that the event B has occurred, is called the
conditional probability of A4, given that B has occurred, denoted by P(AB). The
vertical bar is read “given™ and the events appearing to the right of the bar are those
that you know have occurred. We will use these probabilities to calculate the proba-
bility that both A and B occur when the experiment is performed.

Conditional Probability

_P(4NnB)

P(BlA) 20

P(ANB)=P(A)xP(B|A)

Another way to look at the conditional probability formula is:

P( first choice and second choice)

P(second | first) = P( first choice)
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CHECKING FOR INDEPENDENCE

Two events A and B are said to be independent if and only if either
P(A M B) = PIA)P(B)

or
P(BA) = P(B) or equivalently, P(A B) = P(A)

(therwise, the events are said to be dependent.

EXAMPLE Toss two coins and observe the outcome. Define these events:

A: Head on the first coin

B: Tail on the second coin

Are events A and B independent?

Solution From previous examples, you know that § = {HH, HT, TH, TT}. Use
these four simple events to find

Remember, €> PM%:LHM=%AMHAHM=%

2

qqqqqqqqqq

PIAN B = PIAPI(B)

Since P(A)P(B) = (%)(%) - ﬁ and P(A N B) = ﬁ we have PA)P(B) = P(A N B)

and the two events must be independent.,
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The Difference between Mutually Exclusive
and Independent Events

Many students find it hard to tell the difference between mutually exclusive and
independent events.

*  When two events are mutually exclusive or disjoint, they cannot both happen
together when the experiment is performed. Once the event B has occurred,
event A cannot occur, so that P(A B) = 0, or vice versa. The occurrence of
event B certainly affects the probability that event A can occur.

» Therefore, mutually exclusive events must be dependent.

*  When two events are mutually exclusive or disjoint,
P(A N B) = 0and PiA U B) = P(A) + P(B).

*  When two events are independent,
P{A N B) = P(A)P(B), and P(A U B) = P(A) + P(B) — P(A)P(B).

EXAMPFLE Two cards are drawn from a deck of 32 cands, Calculate the probability that the draw
includes an ace and 3 ten,
Solution Considar the event of intersst:
A: Draw an ace and a ten
Then A = 8 U C, where

8: Draw the ace on the first daw and the ten on the second
C: Draw the ten on the first daw and the ace on the second

Events B and O were chosen to be muteally exclusive and also to he intersactions of
events with known probahilitizs; that is,

B=8NkandC=0C, N Gy
where

B Draw an ace on the frst draw

By Draw a ten on the second daw

Cy: Draw a ten on the first draw

Cy: Draw an ace on the second draw

Applying the Multiplication Rule, you get
P(B, M By) = F(B,)P(B,|8,)

_ 4 40
=\52)\31)
and
YT
PC, NGy = :.E.l:.ﬁ_.l

Then, applying the Addition Rule,
PlA) = P{R) + P(C)
P d A
N L | .
N I,SE.I,SL_.' N

EXTERNE
| 52 .||.51 | =%e3
Check cach composition cansfully to be cerain that it is actually equal to the event of
imtarest,
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Example ': A bag contains green balls and yellow balls. You are going to choose two balls
without replacement. If the probability of selecting a green ball and a yellow ball is E, what is
the probability of selecting a yellow ball on the second draw, if you know that the probability of

selecting a green ball on the first draw is % )
Solution:
Step I: List what you know

P(Green)= %

P(Green AND Yellow) = %

Step 2: Calculate the probability of selecting a vellow ball on the second draw with a green ball
on the first draw

P(Green AND Yellow)

P(Y|G) =
Pi(Green)
'439
P(Y|G) =432
- 4
Y%
14 9
PY|Gy=—x 2=
1) 39 4
126
P(Y|Gy=—=
(+|6) 156
21
F[Y|G}=£

Step 3: Write vour conclusion: Therefore the probability of selecting a vellow ball on the second
21
draw after drawing a green ball on the first draw 1s v

Fn

HW: Refer to the probability table in Example . which is reproduced below.
Too High  Right Amount  Too Little
(4) (B) (C)
Child in College (D) 35 .08 0
No Child in College (E) 25 20 11

Are events D and A independent? Explain.
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Example !: Two cards are chosen from a deck of cards. What 1s the probability that they both
will be face cards?
Solution

Let A = 1™ Face card chosen
Let B = 2™ Face card chosen

4 suits 3 face cards per suit

-

Therefore, the total number of face cards in the deck=4 x 3=12
12
P(4)=—
52
11
P(B)=—
12 11 12 11 33
P(AAND By=—x— or P(A[NB)=—x—=—
( ) 52 51 [ ) 52 51 663
11
P(ANB) =
HW : : You have different pairs of gloves of the following colors: blue, brown, red, white

and black. Each pair 1s folded together in matching pairs and put away in your closet. You reach
into the closet and choose a pair of gloves. The first pair you pull out is blue. You replace this
pair and choose another pair. What is the probability that you will choose the blue pair of gloves

twice?

"HW - Twocards are drawn from a deck of cards.
A 1*" card is a club
B: 1*' card is a 7
C: 2" card is a heart
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Describing a setof Data with numerical measures :

Graphs can help you describe the basic shape of a data distribution; “a picture is
worth a thousand words.” But there are limitations of using graph. Therefore, we need to
find another way to convey a mental picture of the data.

One way to overcome these problems is to use numerical measures, which can be
calculated for either a sample or a population of measurements. You can use the data to
calculate a set of numbers that will convey a good mental picture of the frequency
distribution. These measures are called parameters when associated with the population,
and they are called statistics when calculated from sample measurements.

Definition :
Numerical descriptive measures associated with a population of measurements are
called parameters; those computed from sample measurements are called statistics.

Measures Of Center :
Let’s consider some rules for locating the center of a distribution of measurements.

The arithmetic mean or average :

The arithmetic average of a set of measurements is a very common and useful measure of
center. The definition of the arithmetic mean or average of a set of n measurements is
equal to the sum of the measurements divided by n.

Sample mean: x =——

Where : Population mean: p
X (x-bar) is a sample mean.
K symbol (Greek lowercase mu) for the mean of a population.

EXAMPLE raw a dotplot for the n = 5 measurements 2, 9, 11, 5, 6. Find the sample mean and
mmpare its value with what you might consider the “center” of these observations on
e dotplot.
olution The dotplot in Figure seems to be centered between 6 and 8. To find

e sample mean, calculate

= 6.6

}: ==

I 2

Sv;, 24+9+114+5+6

1
6 A 8 10

Measurements

FIGURE
Jotplot for Example

N —e
I

The statistic x = 6.6 is the balancing point or fulcrum shown on the dotplot. It does
seem to mark the center of the data.

- 197 -



L g IS Aadin and / il g ASTY) Atia A4S (Probabilities and Statistics) AN Ala el [ Lwigh cdldasl)

Median:
A second measure of central tendency is the median, which is the value in the
middle position in the set of measurements ordered from smallest to largest.

Definition : The median m of a set of n measurements is the value of x that falls in
the middle position when the measurements are ordered from smallest to largest.

We can know the order and the value of median by using the following :

The value “ .5(n + 1) “ indicates the position of the median in the ordered data set.
If the position of the median is a number that ends in the value .5, you need to average the
two adjacent values.

EXAMPLE Find the median for the set of measurements 2,9, 11, 5, 6.
Solution Rank the n = 5 measurements from smallest to largest:

2 5 6 9 11
1

The middle observation, marked with an arrow, is in the center of the set, or m = 6.

EXAMPLE Findthe median for the set of measurements 2,9, 11, 5, 6, 27.

Solution Rank the measurements from smallest to largest:

2 3 11 27
Now there are two “middle” observations, shown in the box. To find the median,
choose a value halfway between the two middle observations:

+
m=6 9=?.5
2

-

Now if we use the value “.5(n+1) :

For the n = 5 ordered measurements from Example , the position of the median
i1s .5(n + 1) =.5(6) = 3, and the median is the 3rd ordered observation, or m = 6.
For the n = 6 ordered measurements from Example , the position of the median is
S(n + 1) = .5(7) = 3.5, and the median is the average of the 3rd and 4th ordered
observations, orm = (6 + 9)/2 = 7.5.

If a distribution is tilt to the right, the mean shifts to the right; if a distribution is
skewed to the left, the mean shifts to the left. The median is not affected by these extreme

values because the numerical values of the measurements are not used in its calculation.
When a distribution is symmetric, the mean and the median are equal. If a distribution is

strongly skewed by one or more extreme values, you should use the median rather than the
mean as a measure of center.
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The Mode :
Another way to locate the center of a distribution is to look for the value of x that
occurs with the highest frequency. This measure of the center is called the mode.

Definition : The mode is the category that occurs most frequently, or the most frequently

occurring value of x. When measurements on a continuous variable have been grouped

as a frequency or relative frequency histogram, the class with the highest peak or

frequency is called the modal class, and the midpoint of that class is taken to be the mode.

Note : The mode is generally used to describe large data sets, whereas the mean and
median are used for both large and small data sets.

EXAMPLE

Starbucks and birth weight data
(a) Starbucks data (b) Birth weight data

B 7 1 5 il 1.2 7.8 6.8 6.2 8.2
4 & 4 B B8 8.0 B.2 56 B.6 7.1
B 5 B 3 4 8.2 1.7 7.5 1.2 7.7
5 5 5 7 E 58 E.8 .8 B5 7.5
3 5 7 5 5 6.1 1.8 94 9.0 7.8
B.5 8.0 7.7 6.7 7.7
(a) (b)
= 825 5
: :
8 625 2
2 4125 Y
3 3
3 225 &
0-
™2 343 &6 1 8 56 61 66 7.1 76 E1 E6 91 96
Visits Birth Weights

Solution :

For The visits :

Table: From the data in Example reproduced in Table (a), the mode of the distribution of
the number of reported weekly visits to Starbucks for 30 Starbucks customers is 5.

Using the histogram: The modal class and the value of x occurring with the highest

frequency are the same, as shown in Figure (a).

For the birth weight :

Table: For the birth weight data in Table (b), a birth weight of 7.7 occurs four times, and
therefore the mode for the distribution of birth weights is 7.7

Using the histogram : Using the histogram to find the modal class, youfind that the class
with the highest peak is the fifth class, from 7.6 to 8.1. Our choice for the mode would be
the midpoint of this class, or (7.6 + 8.1) 7.85. See Figure (b).
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Measures Of Variability :
Data sets may have the same center but look different because of the way the

numbers spread out from the center.
Measures of variability can help you create a mental picture of the spread of the

data. We will present some of the more important ones. The simplest measure of variation
IS the range.

Definition : The range, R, of a set of n measurements is defined as the difference
between the largest and smallest measurements.

For example, the measurements “5, 7, 1, 2, 4 «“ vary from 1 to 7. Hence, therangeis (7-1
= 6) . The range is easy to calculate, easy to interpret, and is an adequate measure of
variation for small sets of data. for large data sets, the range is not an adequate measure of

variability.

Definition : The variance of a population of N measurements is the average of the
squares of the deviations of the measurements about their mean m. The
population variance is denoted by “ 6° “ and is given by the formula.

ol = = (x; — )™
N
Most often, you will not have all the population measurements available but will need
to calculate the wariance of a sample of n measurements.

Definition: The variance of a sample of n measurements is the sum of the squared
deviations of the measurements about their mean > x “ divided by (n - 1). The sample
variance is denoted by s* and is given by the formula.

7 Elil'.: - ?"_
§ =

n—1

For the set of n = 3 sample measurements presented in Table . the square of the
deviation of each measurement is recorded in the third column. Adding. we obtain
S(x; — x)? = 22.80 TABLE Computation of X(x; — X)?
- [ o — ¥ | o — _.2
and the sample variance is ul i~ X) i~ X
5 5 1.2 1.44
5, 2(x;—x) 2280 - 7 3.2 10.24
sT=— T — 4 70 1 ~18 784
z —-18 324
4 2 04
19 0.0 22.B0
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The variance ( %) is measured in terms of the square of the original units of measurement.
If the original measurements are in inches, the variance is expressed in square inches.
Taking the square root of the variance, we obtain the standard deviation, which returns the
measure of variability to the original units of measurement.

Definition : The standard deviation of a set of measurements is equal to the positive
square root of the variance.

NOTATION

n: number of measurements in the N: number of measurements in the
sample population

o | . ¥ . .

§~: sample variance = population variance

s = Vs :sample standard o = Vo~ population standard
deviation deviation

For the set of n = 5 sample measurements in Table , the sample variance is

s2 = 5.70. so the sample standard deviation is s = Vs? = V5.70 = 2.39. The more

variable the data set is, the larger the value of s.

Shortcut method for calculating s,
THE COMPUTING FORMULA FOR CALCULATING s2

(Sx)?

ft

ST —

T

e

n—1

¥ - - ' o
2 x5 = Sum of the squares of the individual measurements
+ % - o ' v
(Zx;)- = Square of the sum of the individual measurements
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ExAmMPLE Calculate the variance and standard deviation for the five measurements in Table .

which are 5.7, 1. 2, 4. Use the computing formula for s  and compare your results with
those obtained using the original definition of s°.

Table for Simplified Calculation of sZ and s

X; x!
5 i
7 49
1 1
Z 4
< 16

19 95

Solution The entries in Table are the individual measurements, x;, and their
2 : : - - 2
squares, x 7. together with their sums. Using the computing formula for s~, you have

s Gx? o (197
»_ ' n T 5 2280 _

n—1 4 4

5.70

and s = Vs~ = V5.70 = 2.39, as before.

Now that you have learned how to compute the variance and standard deviation,
remember these points:

The value of s is always greater than or equal to zero.
The larger the value of s or s, the greater the variability of the data set.

If s or 5 is equal to zero, all the measurements must have the same value.

In order to measure the variability in the same units as the original
observations, we compute the standard deviation s = Vs
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Random Variables and their distributions

Definition and notation
Recall:

Dataset 1: number of errors X, § = {0,1,2,...}.
Dataset 2: time Y, S ={z:z > 0}.
Other example: Toss of a coin, outcome Z: S ={H,T}.

In the above X, Y and Z are examples of random variables.

Important note: capital letters will denote random variables, lower case let-

ters will denote particular values (realizations).

When the outcomes can be listed we have a discrete random variable, oth-

erwise we have a continuous random variable.
Let p; =P(X =1z;), i=1,2,3,.... Then any set of p;'s such that
i) p; 2 0, and
i) XX, p=PXes)=1
forms a probability distribution over x|, 9,3, ...
The distribution function F(x) of a discrete random variable is given by
Flz;)=P(X <z;) = ngpi =pi+p+..+p;

We now give some examples of distributions which can be used as models for

discrete random variables.
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Random variable
Random variable: a numerical characteristic that takes on different values due to chance.

Example :

Coin Flips

The number of heads in four flips of a coin (a numerical property of each different sequence
of flips) is a random variable because the results will vary between trials.

Discrete and Continuous Random variables :
Random variables are classified into two broad types: discrete and continuous.
A discrete random variable has a countable set of distinct possible values.
A continuous random variable is such that any value (to any number of decimal
places) within some interval is a possible value.

Examples for Discrete and Continuous Random variables
Discrete Random Variables:

« Number of heads in 4 flips of a coin (possible outcomes are 0, 1, 2, 3, 4)

« Number of classes missed last week (possible outcomesare 0, 1, 2, 3, ..., up to the
maximum number of classes)

= Amount won or lost when betting $1 on the Pennsylvania Daily number lottery

Examples for Discrete and Continuous Random variables
Continuous Random Variables:

« Heights of individuals

« Time to finish a test

« Hours spent exercising last week
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Discrete Random Variables
Probability distribution: A table, graph, or formula that gives the probability of a given
outcome's occurrence

Probability Distribution for a discrete random variable :
For a discrete random variable, its probability distribution (also called the probability
distribution function) is any table, graph, or formula that gives each possible value and the

probability of that value.

Let p; =P(X =x;). i =1.2,3,.... Then any set of p;'s such that
i) pi 2 0, and
i) ¥, pp=PXelS)=1

Note: The total of all probabilities across the distribution must be 1, and each individual
probability must be between 0 and 1, inclusive.

Example

What if we flipped a fair coin four times? What are the possible outcomes and what is the
probability of each?

Figure 1 below 1s a probability distribution for the number of heads i 4 flips of a com. Given that
P(Heads)=.50, the probability of not flipping heads at all is 1/16. or .0625. In 6.25% of all trials. we
can expect that there will be no heads. This may be written as P(X=0)=0625. Simularly, the
probability of flippmg heads once m four tnals 1s 4/16. or .25. In 25% of all trials, we can expect that heads will be flipped
exactly once. This may be written as P(X=1)=25.

This probability distribution could be constructed by listing all 16 possible sequences of heads and tails for four flips (ie .
HHHH, HTHH, HTTH, HTTT, etc.), and then counting how many sequences there are for each possible number of heads. Or, m
section 5.4 you will see how these could be computed using binomial random vanable techniques.

Figure 1. Probability Distribution for Number of Heads in 4 Flips of a Coin

Heads 0 1 2 3 4
Probability — 4/16 6/16 4/16 1/16
Example

A census was conducted at a university. All students were asked how many tattoos they had.

Figure 2 presents a probability distribution for the discrete variable of number of tattoos for each
student. From this table we can find that 83% of students in the population do not have a tattoo,
12% of students in the population have one tatioo, 1_.5% of students in the population have two
tattoos. and so on. This could be written as P(X=0)=835, P(X=1)=12, P(X=2)=0135. eic.

Figure 2. Probabilty Distribution for Number of Tattoos Each Student Has in a Population of Students
0 1 2 3 4

Tattoos

Probability | 5" 120 015 010 005
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Cumulative Probabilities

Cumulative probability: Likelihood (probability) of an outcome less than or equal to a
given value occurring.

To find a cumulative probability we add the probabilities for all values qualifying as "less

than or equal” to the specified value.

Example

Suppose we want to know the probability that the number of heads in four flips is less than two. If we let X represent number of
heads we get on four flips of a coin, then:

Because this is a discrete distribution, the probability of flipping less than two heads is equal to flipping one or zero heads:
P(X <2)=P(X=001)

The probability of flipping 1 head and the probability of flipping 0 heads are mutually exclusive events. Thus,
POUl)=P(X=0)+P(X=1)

We can use the values from Figure 1 above to solve this equation.

P(X=0)+P(X=1) = (1/16) + (4/16) = 5/16

Cumulative distribution:
Cumulative distribution: A listing of all possible values along with the probability of that
value and all lower values occurring (i.e., the cumulative probability).

Example

Cumulative probabilities are found by adding the probability up to each column of the table. In Figure 3 we find the cumulative
probability for one head by adding the probabilities for zero and one. The cumulative probability for two heads 15 found by
adding the probabilities for zero, one, and two. We continue with this procedure until we reach the maximum number of heads,
i this case four, which should have a cumulative probability of 1 00 because 100% of trials must have four or fewer heads.

Figure 3. Probability Distribution and Cumulative Distribution for Number of Heads mn 4 Flips.

Heads 0 1 2 3 4
Probability 1/16 4/16 6/16 4/16 1/16
Cumulative 1/16 5/16 11/16 15/16 1
Probability

Example

Let's construct a cumulative distribution for the data concerning number of tattoos.

Figure 4. Probability Distribution and Cumulative Distribution for Number of Tattoos Each Student
Has in a Population of Students.

Tattoos 0 ! 2 3 4
Probability 5L -120 015 010 003
Cumulative 850 970 985 995 1
Probability

Note that the comulative probability for the last column 1s always 1. That 1s. 100% of trials will be less than or equal to the maxmum

value.
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Expected Value of a Discrete Random Variable :
Law of Large Numbers: Given a large number of repeated trials, the average of the results
will be approximately equal to the expected value.
Expected value: The mean value in the long run for many repeated samples, symbolized
as E(X).

Expected Value for a Discrete Random Variable
E(X)=) =iy

x;= value of the i sutcome

Pp; = probability of the i outcome

According to this formula, we take each observed X value and multiply it by its respective
probability. We then add these products to reach our expected value.

Example
A fair six-sided die 1s tossed. You win $2 if the resultis a <“1,” yvou win $1 if the result 1s a “6.” but otherwise
vou lose $1.

The Probability Distribution for X = Amount Won or Lost
— +52 +$1 -$1 ‘@
Probability Le — . ’

E(X)=$2(3) +$1(3) + (-$1)(3) =8+ = —80.17

The interpretation is that if vou play many times, the average outcome 15 losing 17 cents per play. Thus, over time you should
expect to lose money.

Example
Using the probability distribution for number of tattoos, let's find the mean number of tattoos per student.

Probabilty Distribution for Number of Tattoos Each Student Has in a Population of Students
0 1 2 3 4

Tattoos

Probability -850 120 015 010 005

E(X) = 0(.85) +1(.12) + 2(.015) + 3(.010) + 4(.005) = .20
The mean number of tattoos per student 15 20

Svmbols for Population Parameters

Sample Statistic Population Parameter

Mean T Lt
Variance s a?
Standard Deviation 5 o

Also recall that the standard deviation is equal to the square root of the variance. Thus, o = /(o7
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Standard Deviation of a Discrete Random Variable :

To calculate the standard deviation we first must calculate the variance. From the
variance, we take the square root and this provides us the standard deviation. Conceptually,
the variance of a discrete random variable is the sum of the difference between each value
and the mean times the probability of obtaining that value, as seen in the conceptual

formulas below:

Conceptual Formulas
Variance for a Discrete Random Variable
o =3 [(zi — u)’pi]
Standard Deviation for a Discrete Random Variable
o= /2 l( — p)°pi
x;= value of the i sutcome

p=E(X) =3 zip;
p; = probability of the il outcome

In these expressions we substitute our result for E(X) into p because p is the symbol used

to represent the mean of a population .
However, there is an easier computational formula. The computational formula will give
you the same result as the conceptual formula above, but the calculations are simpler.

Computational Formulas

Variance for a Discrete Random Variable
o =Y (=lp:)] — 1

Standard Deviation for a Discrete Random Variable

o= /[X@p)] - 42

x;= value of the i outcome
p=EX)=>3 zip
p; = probability of the i outcome

Notice in the summation part of this equation that we only square each observed X value
and not the respective probability. Also note that the p is outside of the summation.
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Example

Going back to the first example used above for expectation involving the dice game. we would calculate the standard deviation
for this discrete distnibution by first calculating the vanance:

The Probability Distribution for X = Amount Won or Lost
+52 +§1 -§1

X

1/6 1/6 4/6

Probability

o =[S alp] - = [2(}) + 1(}) + (D) - (-3

=[3+1+1|_%=%=1.4?2

The variance of this discrete random variable 1s 1.472.
Ty

a= /(%)

o=+/1472=1.213

The standard deviation of this discrete randem vairable 15 1.213.

Binomial Random Variable :
A specific type of discrete random variable that counts how often a particular event
occurs in a fixed number of tries or trials.

For a variable to be a binomial random variable, ALL of the following conditions must be
met:

1. There are a fixed number of trials (a fixed sample size)

2. Oneach trial, the event of interest either occurs or does not

3. The probability of occurrence (or not) is the same on each trial

4. Trials are independent of one another.

Examples of Binomial Random Variables

= Number of correct guesses at 30 true-false questions when you randomly guess all
answers

= Number of winning lottery tickets when you buy 10 tickets of the same kind

= Number of tails when flipping a coin 10 times

Notation

n = number of trials
p = probability event of interest occurs on any one trial

Example
Number of correct guesses at 30 true-false questions when you randomly guess all answers

There are 30 trials, therefore n =230
There are two possible outcomes (true and false) that are equally probable, therefore p = 1/2

=.5
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Probabilities for Binomial Random Variables :

The conditions for being a binomial variable lead to a somewhat complicated formula
for finding the probability any specific value occurs (suchas the probability you get 20
right when you guess as 30 True-False questions.)

Binomial Random Variable Probability

7!

Plz) = zlln — I]!pI{l -t

n = number of trials
X = number of successes
p = probability event of interest occurs on any one trial

Example
Red Flowers
Cross-fertiizing a red and a whate flower produces red flowers 25% of the time. Now we cross-

fertilize five pairs of red and white flowers and produce five offspring. Find the probability that
there will be no red flowered plants in the five offspring.

X =# of red flowered plants in the five offspring.
The number of red flowered plants has a binomual distnbution withn =35, p= .25

P(X=0)= ﬁ.zsﬂfl —.25)% =1x.25% x .75°% = 237

There 15 a 23.7% chance that none of the five plants will be red flowered.

Cumulative probability: Likelihood that a certain number of successes or fewer will
occur.
Binomial random variable probabilities are mutually exclusive, therefore we can use the

addition rule that we learned before.

Example

EFed Flowers, cont.
Continming with the red flowers example. what if we wanted to know the probability that there would be one or fewer red
flowered plants?
P(Xislorless)=P(X=0)+P(X=1)
_ 5! Dpp 5 i1 4
= .23T7 +.395 = .632

There 1s a 63.2% chance that one or fewer of the five plants will be red flowered.

In the red flowers example, we first computed P(X = x) and then P(X < x). This latter
expression is called finding a cumulative probability (CDF)because you are finding the
probability that has accumulated from the minimum to some point, i.e. from 0 to 1 in this
example.
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Expected Value and Standard Deviation for Binomial Random Variable

The formula given earlier for discrete random variables could be used, but the good news is that for binomial random variables a shortcut
formula for expected value (the mean) and standard deviation can also be used.

Binomial Random Variable Formulas
L =mnp
o= ‘/ np(l —p)

n = number of trials
p = probability event of interest occurs on any one trial

After yvou use this formula a couple of times. vou'll realize this formula matches vour infuition. For nstance, the “expected” number of
correct (random) guesses at 30 True-False questions 1s np = (30)(.5) = 15 (half of the questions). For a fair six-sided die rolled 60 times,
the expected value of the number of times a “17 1s tossed 15 np = (60)(1/6) = 10.

The standard deviations for these would be, for the True-False test, ¢ = 4/30(0.5)(1 — 0.5) = /7.5 = 2.74. and for the die,

o=\/60(3) (1-3) = /3 =280

Example
Roulette

A roulette wheel has 38 slots, 18 are red. 18 are black, and 2 are green.You play five games and
always bet on red.

How many games can you expect to win?

red slote  __ 18
total slotz 38

Recall. you play five games and always betonred. n=5and p=

p=np=>5(5) =2.3684

o= /mnp(l—p)=/5(3) (1— 1) =11165

Out of 5 games. you can expect to win 2.3684 (with a standard deviation of 1.11653).

What is the probability that vou will win all five games?

P(z) = o2 p"(1—p)*

z!(n—x)!

P(X=5) =2 _(8)yYn1-=

55
sl(5-5)! \18 ﬁ}

P(X=5)= 5% (.473?5} .5263" = 1(.0238)(1) = .0238
There 1s a 2.38% chance that you will win all five out of five games.

If vou win three or more games, you make a profit. If vou win two or fewer games, you lose money. What is the probability
that you will win no more than two games?

P(X<2)=P(X=0)+P(X=1)+ P(X =2)

1 g0 gy0-0
P(X:(]):ﬁ w) (1—3)  =.0404

1 g3 1 gy5-1
P(X=1)= ﬁ x®) (1)  =.1817

1 By 2 gy5-2
P{X=2)=—2!{: o w) (1-3x%) =321

P(X < 2)=.0404 + 1817 + .3271 = .5493

There 15 a 54.93% chance that you will win no more than two games. In other words, there 15 a 54.93% chance that you will lose
money.
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The Poisson Probability Distribution :
Another discrete random variable that has numerous practical applications is the

Poisson random variable. Its probability distribution provides a good model for data that
represent the number of occurrences of a specified event in a given unit of time or space.

Here are some examples of experiments for which the random variable x can be
modeled by the Poisson random variable:
 The number of calls received by a technical support specialist during a given
period of time (time).
 The number of bacteria per small volume of fluid(Space).
 The number of customer arrivals at a checkout counter during a given minute(time).
 The number of machine breakdowns during a given day (time).
» The number of traffic accidents on a section of freeway during a given time

period(Space).

In each example, X represents the number of events that occur in a period of time or
space during which an average of “ u “ such events can be expected to occur.

The only assumptions needed when one uses the Poisson distribution to model
experiments such as these are that the counts or events occur randomly and
independently of one another. The formula for the Poisson probability distribution, as well
as its mean and variance, are given next.

THE POISSON PROBAEBILITY DISTRIBUTION

Let w be the average number of times that an event occurs in a certain period of
time or space. The probability of & occurrences of this event is

k_
e ™

!
for valuesof k= 0. 1. 2. 3. . ... The mean and standard deviation of the
Poisson random wvariable x are

P(x = k) =

Mean: u Standard deviation: o = V u

The symbol e = 271828 . | . is evaluated using vour scientific calculator, which should
have a function such as e". For each value of & you can obtain the individual probabil-
ities for the Poisson random variable, just as yvou did for the binomial random variable.
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EXAMPLE 1 average number of traffic accidents on a certain section of highway is two

per week. Assume that the number of accidents follows a Poisson distribution with
u=2
l. Find the probability of no accidents on this section of highway during a
l-week period.

2. Find the probability of at most three accidents on this section of highway during

a 2-week period.
Solution
l. The average number of accidents per week is w = 2. Therefore, the probability

of no accidents on this section of highway during a given week is

Px=0) = p(0) = =& _ = ¢72 = 135335

2. During a 2-week period. the average number of accidents on this section of

highway is 2(2) = 4. The probability of at most three accidents during a 2-week
period is
Px=3) = p0) + p(1) + p(2) + p(3)

where

P(x=3) = p0) + p(1) + p(2) + p(3)

where
0,—4 5 4
p(0) = 451 = 018316 p(2) =4_:’1_= 146525
- 3 4
p(1) =1 ; = 073263 p(3) = 4_;’1_ = 195367
Therefore,

Plx=3)= 018316 + 073263 + 146525 + 195367 = . 433471

Alternatively, you can use cumulative Poissontables:

a NEED TO KNOW...

How to Use Table 2 to Calculate Poisson Probabilities
l. Find the necessary value ol p. Isolate the appropriate column in Table 2.

2. Table 2 gives P(x = k) in the row marked k. Rewrite the probability you necd
so that it is in this form.

= List the values of x in your event,
=  From the list, write the event as either the difference of two probabilities:
Pix=a)— Plx=h)fora=b
or the complement of the event:
1 — Pix = a)

or just the event itself:

Pix=aglorPlx<a—1)
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EXAMPLE pefer to Example where we calculated probabilities for a Poisson distribution
with w = 2 and p = 4. Use the cumulative Poisson table to find the probabilities of
these events:

1. No accidents during a 1-week period.
2. At most three accidents during a 2-week period.
Solution
A portion of Table in Appendix = is shown in Figure !
FIGURE | H
Partion of Table k 2.0 2.5 3.0 35 4.0
Appendix 0 135 082 055 1033 018
1 A0E 28T 199 136 092
2 BT 544 A23 3 238
3 B57 JoEB bd7 537 A33
4 847 E291 815 A5 B29
5 SB3 958 416 .B58 785
=) 995 986 96k 935 889
K 9959 S96 O8E 973 9449
8 1.000 8995 996 490 879
9 1.000 899 Aa97 992
10 1.000 999 997
11 1.000 4499
12 1.000
1. From Example | the average number of accidents in a l-week period is

p = 2.0. Therefore, the probability of no accidents in a l-week period can be
read directly from Table 2 in the column marked “2.0” as P{x = 0) = p(0)
= .135.

2. The average number of accidents in a 2-week period is 2(2) = 4. Therefore,
the probability of at most three accidents in a 2-week period is found in
Table 2, indexing u = 4.0 and k = 3 as Plx = 3) = 433

Both of these probabilities match the calculations done in Example ~ , correct to three
decimal places.
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Continuous Random Variables
Continuous random variables are random quantities that are measured on a
continuous scale. They can usually take on any value over some interval, which
distinguishes them from discrete random variables, which can take on only a sequence of
values, usually integers.

Probability distribution of a continuous random variable :

describe the probability distribution of a continuous random variable by giving its density
function. A density function is a function f(x) which satisfies the following two properties:

1. f(z) =0 for all z.
2. / f(z)dz = 1.

1- The first condition says that the density function is always nonnegative, so the
graph of the density function always lies on or above the x-axis.
2- The second condition ensures that the area under the density curve is “ 1 ”.

The probability that the random variable takes on a value :

the probability that the random variable takes on a value between a and b is the area under
the curve between a and b. More precisely, if X is a random variable with density function
f(x)and a< Db, then :

b
Pla<X <b) = / f(z) da.

Example : Suppose the income of people in a community can be approximated by a
continuous distribution with density : . _
f[ﬂ:{ 2r~ ifx =2

0 ifr<2

a) Find the probability that a randomly chosen person has an income between $30; 000
and $50; 000.
b) Find the probability that a randomly chosen personhas an income of at least $60; 000.

Solution:
a) Let X be the income of a randomly chosenperson. The probability that a randomly

chosen person has an income between $30; 000 and $50; 000 is :

5 5 z=3 9 )
P3<X<5)= flz) dez = / 27 % dg = -2z =—=— ( - ;j =
J3 ] by

=3

b) The probability that a randomly chosen person has an income of at least $60; 000 is :

P(X >26)= / flz)dr = / 2272 dr = lim / 2772 dr
JB 4B i

— OC o
, - " , 2 2 1
= lim -2z~ =lim | ——+=| ==.
T—0 I_Ei n—2C -Ir-ll ﬁ r:}‘
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Expected value and standard deviation for continuous random variables

The procedure for finding expected values and standard deviations for random
variables of continuous random variables is similar to the procedure used to calculate
expected values and standard deviations for discrete random variables. The differences are
that sums in the formula for discrete random variables get replaced by integrals

(which are the continuous analogs of sums), while probabilities in the formula for discrete
random variables get replaced by densities. More precisely, if X is a random variable with
density f(x), then the expected value of X is given by :

Expected value of X

p=E[X]= / zf(z)dz,
while the varianceis given by :
Var(X) = B[(X — )2 = / (z — 1) F(z) de.

OR
Var(X) = E[X?] — p? = ( /

o —oo

7’ f(z) dr) —

As in the case of discrete random variables, the standard deviation of X is the square
root of the variance of X. ( standarddeviation= /Var (X) ).

Example : Supposeatrain arrives shortly after 1:00 PM each day, and that the number of

minutes after 1:00 that the train arrives can be modeled as a continuous random variable
with density given :

) 20l—z) ifo<z<1
flx)=1¢ . , .
: 0 otherwise

Find the mean and standard deviation of the number of minutes after 1:00 that the train
arrives.

Solution: Let X be the number of minutes after 1:00 that the train arrives. The mean (or,
equivalently, the expected value) of X is given by:

Jus 1 i1 r=]
p=E[X]= / zf(z) dr = / r-2(l —z)dr= / 2z — 2z dr = (IE— —j = %
Jo 40 z=l b

J—oc
Also. we have
2] oy 'lg.» 'l.g o3 2z° 2z ' 2
EX _:/ I_f[I:IrJTI:/ T -:E[l—r]:/ 2r°—2r7dr = (——_j =_—
Jd = S0 J0 d r= d
Therefore.
2
e e 1 1 1 1 1
\'ar[k]:——(-) = __—_=_
"6 \3) "6 9

and the standard deviation is /1/18 = .24,
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Special Continuous Distributions
As was the case with discrete random variables, when we gave special attention to
the geometric, binomial, and Poisson distributions, some continuous distributions occur
repeatedly in applications. Probably the three most important continuous distributions are
the uniform distribution, the exponential distribution, and the normal distribution.

Uniform Distribution:
If a < b, then we say a random variable X has the uniform distribution on [a; b] if :

1 :
. _ —a lf 1 E i E b‘
f(z) { 0 otherwise

Example : If X has the uniform distribution on [2, 3], calculate P(X > 4).

Solution: The density of X is given by

L. -
.5 if2<x<5
flz) = { 0  otherwise

Therefore.

-5 ; I=5

P[}:E—ﬂ:/ f[I?l(fI:/ 'id;c:‘E —
| J4 .:} .:}

(LRI

L3 o
Ll =

r=4

The Normal Probability Distribution :

The formula or Probability Density Function (PDF) that generates this distribution is
shown next.

NORMAL PROBABILITY DISTRIBUTION
1

e —(x— ) 2ad)
flx)y=——e
aVvaimw

— =l <l %

The symbols e and 7 are mathematical constants given approximately by 2.7183

and 3.1416, respectively; w and o (o> 0) are parameters that represent the
population mean and standard deviation, respectively.
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B EXAMPLE

The following data, reproduced from Table  of Example . Eive the frequency distribution
of the daily eommuting times (in minutes) from home to work for all 25 employees of 2 company.

Daily Commuting Time
(minutes) Number of Emplovees

{ to 255 than 10 4
10 1o 235 than 20
20 1o less than 30
30 to l2ss than 40
A ta less than 30

[N LA & Y =

Caleulate the varanece and standard deviation.

Solution Al four steps needed to caleulate the varance and standard deviation for grouped
data are shown after Table

Table
Daily Commuting Time
(minutes) f m mf wf
{0 to less than 10 4 3 20 100
10 1o 255 than 20 g 15 135 2025
20 to l2ss than 30 & 25 150 3750
30t less than 40 4 35 140 4900
Al 1o less than 50 2 45 a0 A0
N =15 Smf = 533 Shf = 14,825

Step 1.  Calculate the value of Zmf.

To caleulate the value of Zmjf, first find the midpoiot m of each class (see the third column
in Table Y and then multiply the comesponding class midpoints and elass frequencies
(see the fourth column), The value of Zmf is obtained by adding these products, Thus,

Zmf = 333

Step 2. Find the value of Tm®f,

To find the value of Ea'f, square each m value and multiply this squared value of m by the
comesponding frequency ($ee the fifth eolumn in Table 1 The sum of these products
(that 1%, the sum of the fifth column) gives EHEE_f Hence,

Emf = 14,825

Step 3. Calculate the variance.

Because the data set includes all 25 employees of the company, it represents the popula-
tion, Therefore, we vse the formula for the population varanece:

(Zmf)? : (535)°
N
N 25 25

Emf —

a2

Step 4. Calculate the standard deviation,

To obtain the standard deviation, take the (positive) square root of the varance,

= Ve® = V13504 = 11.62 minutes

Thus, the standard deviation of the daily commuting times for these employees is 11,62 minutes.



Chebyshev's Theorem

hebyshev"s theorem gives a lower bound for the area under a curve beiween two points that
ar on opposite sides of the mean and at the same distance from the mean.

Defini tion

thebyshev's Theorem  For any number & greater than |, at least (| — 1/&% of the data values
lie within & standard deviations of the mean.

Figure illusirates Chebyshey's theorem.

A et 1— 12
o $a il s in
=8 ehaded aaas

o=k

il =

Chisftry sherv's thiescnenm.

Thus, for example, if & = 2, then

1

|l == =1-— =]l—-==1-2=T50T7i%

] L] i g
Therefore, according to Chebyshev's theonem, at least 75 or 75% of the values of a data sei lie
within two standard deviations of the mean. This is shown in Figure on the next page.

If & = 3, then,

| 1

l—==1—-—=1-
I:_.E

| .
e 7= I — .11 = B9 or B9 % approsximate]y

B EXAMPLE

The average sysiolic blood pressure for 4000 women who were sereened for high blood pressure
wik found 1o ke LET with a standard deviation of 22, Using Chebyshev's theorem, find ot least
what perezmage of women inthis group have a sysiolic hlood pressure between 143 and 231,

Solution Let pand o be the mean and the standard deviation, respactively, of the sysiclic
hlood pressures of these women, Then, from the given information,

o =187 and =32

T find the peresntage of women whose sysiolic hlood pressures are hetween 143 and 231,
the firsl step is 1o determine ko As shown helow, cach of the two points, 143 and 231, is 44
units away from the mean.

|l#=— 143 — J1HT = —d4 — | «+— 3I5] — T =24 —]
143 o= 187 231

The value of &k is obtained by dividing the distance hetween the mean and each point by the
standard deviation. Thus,

E=a4p22 =2

=1=—25="150orTE%

A - B Percemtage of wamen with systalic
1laas! 75% al ha f

mlaad pr hetwesn 143 and 231.
TR - lardl preggune hetwesan 143 and 231
biaad prassura batawaan

143 and 231

143 187 231 Systalle hiood
u-2a u u =2 pressure



Empirical Rule

Whereas Chebyshev's thearem is applicable io any kind of distribution, the emplrieal role
applics only 10 a specific type of distibution called a Befi-shaped diserifurion, & shown in
Figure where it is called a Horse-
af curve Inothis section, only the fallowing three rules for the curve are given.

Empirical Rule For a hell-shaped distritution, approximately

1. &B% of the chservations lie within cne standard deviation of the mean
2. 95% of the ohsepvations lie within two standard devisticns of the mean
3. 99.7% of the chsersations lie within three standard deviations of the mean

Figura ilustrates the empircal rule. Again, the empireal rule applics 1o population data
as well as to sample data.

Mhustratian af the smpirica] role
99.7%
| a3% |
+— EAY —

=] —

H=3gp=27 p=0 pH H-ag p=-2Tp-3g

B EXAMPLE

The ape distribution of a sample of 3000 persons is bell-shaped with a mean of 40 years and
a standard deviation of |2 years, Detemine the approximate pereeniame of people who ae 16
1o &4 years old.

Solution  We use the empirical rule 1o find the required percentage hecause the distribution
of ages follows a bellshaped curve. From the given infarmaticn, for this distribution,
¥ =d0vyears and 5= 12 years

Each of the two points, 16 and &4, is 24 wnits away from the mean, Dividineg 24 by 12, we
conver the distance hetween each of the two paints and the mean in terms of standard de-
viations. Thus, the distanoe between 16 and 40 and botween 40 and &4 is cach equal 1o 25,

Figure Parcemags af peaple wha are 14 ta 54

yeary ald. /.\
16 =20 m =22 B = E0 w2
-=2r - 2r
i
|

I
18 P-4 B Agas
X¥=2r E=2r
Consequently, as shown in Figure the area from 16 1o &4 s the amea from ¥ — 25 10

T+ s
Bizcause the arsa within two standard deviations of the mean is approximately 95% For a hell-
shaped curve, approsimately #85% of the people inothe sample are 16 10 &4 years old. |
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( Sequences and Series )

In this we’ll be taking a look at sequences and (infinite) series. Actually, this section
will deal almost exclusively with series. However, we also need to understand some of the
basics of sequences in order to properly deal with series

Seguences

Let’s start off this section with a discussion of just what a sequence is. A sequence is
nothing more than a list of numbers written in a specific order. The list may or may not
have an infinite number of terms in them although we will be dealing exclusively with
infinite sequences in this section. General sequence terms are denoted as follows,

a, — first term

a, —second term

a —n term

a,.,—(n+1)" term

Because we will be dealing with infinite sequences each term in the sequence will be followed by
another term as noted above. [n the notation above we need to be very careful with the
subscripts. The subscript of n +1 denotes the next term in the sequence and NOT one plus the #™
term! In other words,

a. =a, +1

s0 be very careful when writing subscripts to make sure that the *+1" doesn’t migrate out of the
subscript! This is an easy mistake to make when you first start dealing with this kind of thing.

There is a variety of ways of denoting a sequence. Each of the following are equivalent ways of
denoting a sequence.

;_1.

npn=]

I

] i
i a, ! i o

In the second and third notations above g, is usually given by a formula.
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Example  Write down the first few terms of each of the following sequences.
n+1]"
(a) S
n n=l

1"

'?.II

(b)

n=il
Solution

n+1]"
et
n n=]

To get the first few sequence terms here all we need to do is plug in values of # into the formula
given and we’'ll get the sequence terms.

3
! 4 1 b

———
=
=0+
—
‘ﬂ M
[
]

k)
16

-]

=0 =N
-{ﬁlm

-

n=2 §

=
1]
e}

3 =4

="

[h] z.u

n=il

This one is similar to the first one. The main difference is that this sequence doesn’t start at

n=1. ('_"—}I * ={-I,%='lﬁ=;_"%"“}

n=il

Mote that the terms in this sequence alternate in signs. Sequences of this kind are sometimes
called alternating sequences.
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Waorking Definition of Limit
1. We say that

lima =L

n—s
if we can make a, as close to L as we want for all sufficiently large #. In other words, the
value of the a.’s approach L as » approaches infinity.

2. We say that
lima, =

n—s
if we can make a, as large as we want for all sufficiently large n. Again, in other words,
the value of the a,'s get larger and larger without bound as # approaches infinity.

3. We say that

lima, ==o0
n—=s

if we can make a, as large and negative as we want for all sufficiently large n. Again, in
other words, the value of the 4,'s are negative and get larger and larger without bound as
i approaches infinity.

The working definitions of the various sequence limits are nice in that they help us to visualize
what the limit actually is. Just like with limits of functions however, there is also a precise
definition for each of these limits. Let's give those before proceeding

Precise Definition of Limit

1. Wesaythat lima = L if for every number g > () there is an integer N such that
n—=s=

|ﬂ.-. - JI:| <& whenever n>N

2. Wesay that lima, =<0 if for every number M > 0 there is an integer N such that
M=z

a, =M whenever n>N

3. Wesay that lima, =—oo if for every number M < ( there is an integer N such that
=z

a <M whenever n=N

We won't be using the precise definition often, but it will show up occasionally.

Mote that both definitions tell us that in order for a limit to exist and have a finite value all the
sequence terms must be getiing closer and closer to that finite value as » increases.

Mow that we have the definitions of the limit of sequences out of the way we have a bit of
terminology that we need to look at. If lima, exists and is finite we say that the sequence is

M—

convergent. If lima, doesn’t exist or is infinite we say the sequence diverges. Note that

M=

sometimes we will say the sequence diverges to o if lima, =o0 and if lima, =—o0 we will
n—s =

sometimes say that the sequence diverges to —o0.
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Properties
1. lim(a,+b, )=lima, +limb,
n—sz ) o n—=s= n—set

2. limca, =clima,

=z n—=sz

3. lim(a,b,)=(lima, |(lim,

n—b n—s

g, lma, _ :
4. lim—====2—_ provided limbh =0
= h” ]]:ITl h” n—s=

5. lima’ = []im a,l]f provided a, =0

n—=sz n==

Testing the sequences for convergence or divergent:

e Method of n™ term test.

Example  Determine if the following sequences converge or diverge. If the sequence

converges determine its limit.

-

(a) | -1 ]\t
] 10n+5n Ill_j

’EE'I =
{b) «{ ].\
n

Solution

(2) L
] 10n+5n" |

- d =2

=

To do a limit in this form all we need to do is factor from the numerator and denominator the

largest power of #, cancel and then take the limit.

s | B-L, I' 3_l
. 3t -1 : L ). 0
hm————=1lim 710 .fI:]]mm ==
|—?1][:].l?+ SIIF =z FFE'_+5 : |—?1_+5 5
n ) n

So the sequence converges and its limit is 3.
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-

W F

g

We will need to be careful with this one. We will need to use L'Hospital's Rule on this
sequence. The problem is that L"Hespital's Rule onlv works on functions and not on sequences.
Normally this would be a problem, but we ve got Theorem | from above to help us out. Let’s

define
e!;.'
I [ x} -
x
and note that,
El.u
fln)=—
n
Theorem | says that all we need to do is take the limit of the function.
2n 2x o P
. . .
lim—=lim—=lim =a0
n=E g FE oy |

So, the sequence in this part diverges (to 0.
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Test of monotone for the sequences :

In the previous section we introduced the concept of a sequence and talked about
limits of sequences and the idea of convergence and divergence for a sequence. In this
section we want to take a quick look at some ideas involving sequences.

Let’s start off with some terminology and definitions.

Given any sequence {a,; we have the following.

1. We call the sequence increasing if a, <a__, for every i

2. We call the sequence decreasingif g >g  forevery n.

L)

3. If {a, | is an increasing sequence or {4, ; 8 a decreasing sequence we call it monotonic.

4. [f there exists a number m such that m < g, for every n we say the sequence is bounded
below. The number » 15 sometimes called a lower bound for the sequence.

Lh

If there exists a number M such that g, €M for every n we say the sequence is
bounded above. The number M is sometimes called an upper bound for the sequence.

6. If the sequence i1s both bounded below and bounded above we call the sequence
bounded.

Note that in order for a sequence to be increasing or decreasing it must be
increasing/decreasing for every n. In other words, a sequence that increases for three terms
and then decreases for the rest of the terms is NOT a decreasing sequence! Also note that a
monotonic sequence must always increase or it must always decrease.
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Example  Determine if the following sequences are monotonic and/or bounded.

@ (-]

n=tl

Soluition

@ {~r |

=

n=ll

This sequence is a decreasing sequence (and hence monotonic) because,
2

2
-n* >—(n+1)
for every n.
Also, since the sequence terms will be either zero or negative this sequence is bounded above.

We can use any positive number or zero as the bound, M, however, it's standard to choose the
smallest possible bound ifwe can and it's a nice number. So, we'll choose M =10 since,

2
-n- =0 for every n

.l1—|}1

by {(-1)"] .

The sequence terms in this sequence alternate between | and -1 and so the sequence 1s neither an
increasing sequence or a decreasing sequence. Since the sequence 1s neither an increasing nor
decreasing sequence It 1s not a monotonic sequence.

The sequence is bounded however since it is bounded above by | and bounded below by -1.

Again, we can note that this sequence 15 also divergent.
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Series :
In this section we will introduce The topic that is infiniteseries. So just what is an infinite

series? Well, let’s start with a sequence ,

= R R " f f
{a” :-”_I (note the n =1 is for convenience, it can be anything) and define the following,

5 =a,
5, =a, +da,
5, =a,+a, +d,

s, =a,+a,+a,+a,
n
S,=a+ta,ta,ta,+ota, =Y a,
=l

The s, are called partial sums and notice that they will form a sequence, { s V. Also recall

“n o=
that the £ is used to represent this summation and called a variety of names. The most common
names are : series notation, summation notation, and sigma notation.

. . . . . . =
Now back to series. We want to take a look at the limit of the sequence of partial sums, {s” :u—l .

Notationally we'll define,

n

lims, =lim Za_, = i a
=]

n—x =¥ 1
=

=
We will call Zﬂ- an infinite series and note that the series “starts” at { = | because that is

it 1ginal ) d. Had 1ginal dat 2t
where our original sequence, {a, _,started. Had our original sequence started at 2 then our
=

infinite series would also have started at 2. The infinite series will start at the same value that the
sequence of terms (as opposed to the sequence of partial sums) starts.

M ke P M M 4y P
If the sequence of partial sums, {.’:‘-‘_,I : .+ 15 convergent and its limit is finite then we also call the

=
infinite series, Za_, convergent and if the sequence of partial sums is divergent then the infinite

series 1s also called divergent.

Note that sometimes it is convenient to write the infinite series as,

=

Ya =a+a,ta;to+a,+oe

i
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Now, in E a. the i s called the index of summation or just index for short and note that the
=]

letter we use to represent the index does not matter. So for example the following series are all

the same. The only difference is the letter we've used for the index.

z _ZA 1 -3

~n’

Elc.

Properties

If za” and E’?'.-. are both convergent series then,

Em-. , Where ¢ 5 any number, 1s also convergent and

Z ca, = C‘Z a,
= =
Z a =t Z b, is also convergent and,

Za +zh z +h,).

n=x
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Testing methods for series convergence or divergence

1- Alternating Series Test :
The alternating series test that we looked at for series is convergence that have

required all the terms in the series be positive. Of course there are many series out there
that have negative terms in them and so we now need to start looking at tests for these
kinds of series.
The test that we are poing to look into in this section will be a test for alternating series. An
alternating series s any series, z a, . for which the series terms can be written in one of the

following two forms.
a,=(-1)"b, b =0
a,=(=1)"8, b, 20

There are many other ways to deal with the alternating sign, but thev can all be written as one of
the two forms above. For instance,

(=) =(=1)"(=1) = (=1
(=17 = (=17 (=07 = (-1)"

Alternating Series Test

Suppose that we have a series z a, and either a, =(— ]:]l"I b ora, =(-1) - b where b =0

for all #. Then if,

. limb =0 and,

n—sz

i - .
2. b ; isa decreasing sequence

the series Z a, 1s convergent.

Example  Determine if the following series is convergent or divergent.

= _]"'_'
z[ )

n

n=]
Solution
First, identify the b, for the test.

= =

1y .
I A b=

Now, all that we need to do is run through the two conditions in the test.

limb = ]iml: 0

n—sE n—= 1

b=t Ll _p
n o n+l

Both conditions are met and so by the Alternating Series Test the series must converze,
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Example  Determine if the following series is convergent or divergent.

i CU.‘:E;E}

n=2

Solution

The point of this problem is really just to acknowledge that it is in fact an alternating series. To
see this we need to acknowledge that,

cos(nm)=(-1)

and so the series is really,

‘um‘.[ﬂx}z (=1} _ b
e A

Checking the two condition gives,

lim b, —]1r11— =1

n—s JI—HJ_
b= > ———=
xj'r; n+1

The two conditions of the test are met and so by the Alternating Series Test the series is
convergent.

( H.W. ) Determine if the following series is convergent or divergent.

e (-1) '

n+5

n=1
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2-Ratio Test :
In this section we are going to take a look at a test that we can use to see if a series is
absolutely convergent or not. Recall that if a series is absolutely convergent then we will

also know that it’s convergent and so we will often use it to simply determine the
convergence of a series.

Ratio Test

Suppose we have the series za” . Define,

. la..

L = lim |—=2=L
n—hat a

n

Then,

. if L <1 the series is absolutely convergent (and hence convergent).
if L> 1 the series is divergent.

2
3. if L =1 the series may be divergent, conditionally convergent, or absolutely convergent.

Example  Determine if the following series is convergent or divergent.

= (-10)"
S

H+]}

Sodution

With this first example let’s be a little careful and make sure that we have everything down
correctly. Here are the series terms a,.

(-10)"

Recall that to compute a.+; all that we need to do is substitute #+/ for all the #'s in a.
[_ ] D-}.'l—l _ [_ ] |:| :}.'I—|

et = ((n+1)+1) 47 (n+2)

Now, to define L we will use,

L=lim

n—s

a.l - —

1+1
a.‘l

since this will be a little easier when dealine with fractions as we've oot here. So.

i+l n+l )
L lim j(;m_} | 4 [n:r]_}
= AT n+2) (-10)

C|=10(n+1)
=limf————
s 47 (n+2)

lhm==n+2

10
=—«]
16

So, L <1 and so by the Ratio Test the series converges absolutely and hence will converee.
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Example Determine if the following series is convergent or divergent.
= I
n!

n
n=l 5

Solution

Mow that we've worked one in detail we won't go into quite the detail with the rest of these.
Here 1s the limit.

+1)!'5" +1)!
L= tim| S, (2
=k 5“ H[ n—s 5”[

In order to do this limit we will need to eliminate the factorials. We simply can’t do the limit
with the factorials in it. To eliminate the factorials we will recall from our discussion on
factorials above that we can always “strip out” terms from a factorial. If we do that with the
numerator {in this case because it"s the larger of the two) we get,

i
Lzlim(n—l-l} n!
n—s= Sn[

at which point we can cancel the #! for the numerator an denominator to get,

(n+1)

L=lm—=m>1
N

S0, by the Ratio Test this series diverges.

(HW.) Determine if the following series is convergent or divergent.

= 9-’1
g [-Z}M n

Example  Determine if the following series is convergent or divergent.

s

n=il }?3+|
Solution
Let's first get L.
n+1 - 2
L:]im| ("}1 n +n'|=1im”—+,'=|
==|(n+1) +1 (=1)"| = (n+1) +1

So, as implied earlier we get £ =1 which means the ratio test is no good for determining the
convergence of this series. We will need to resort to another test for this series. This series is an
alternating series and so let’s check the two conditions from that test.

=0

limb, =lim—
n—s n=w o 4]

b:l:a I =h

il (n+1) 41

The two conditions are met and so by the Alternating Series Test this series is converzent. We'll
leave it to vou to verify this series is also absolutely convergent.
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3-Root Test :

This is the last test for series convergence that we’re going to be looking at.
As with the Ratio Test this test will also tell whether a series is absolutely convergent or
not rather than simple convergence.

Root Test
Suppose that we have the series Za” . Define,

4
L=lim g, =l
Then,

4. if L <1 the series is absolutely convergent (and hence convergent).
5. if L>1 the series is divergent.
6. if L=1 the series may be divergent, conditionally convergent, or absolutely convergent.

As with the ratio test, if we get L =1 the root test will tell us nothing and we'll need to use
another test to determine the convergence of the series. Also note that if L =1 in the Ratio Test
then the Root Test will also give L =1.

We will also need the following fact in some of these problems.

Fact

1
limn" =1

=

Example Determine if the following series is convergent or divergent.
e
1+2n
=1 3
Solution
There really isn't much to these problems other than computing the limit and then using the root
test. Here 1s the limit for this problem.

" : n o0
=lm——=—=o0>1
n—¥x . -

3

n"

—
1+2n

L =lim

n—sz

So, by the Root Test this series is divergent.
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Example Determine if the following series is convergent or divergent.

i (sn=3n" "

3
-“=':II'\. ?” +2 /II
Solution
Again, there isn’t too much to this series.
1
s nly
| se=30* V" . |sn=30°| |-3] 3
L=lim — :]1r113—: =—<|
"-ﬂtik T’ +2 /.' = | Tt +2 7 7

Therefore, by the Root Test this series converges absolutely and hence converges.

Mote that we had to keep the absolute value bars on the fraction until we'd mken the limit to get
the sion correct.

(H.W. ) Determine if the following series is convergent or divergent.

i[-ll}"

n=3 n
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Power Series :

We’ve spent quite a bit of time talking about series now and with only a couple of
exceptions we’ve spent most of that time talking about how to determine if a series will
converge or not. It’s now time to start looking at some specific kinds of series.

In this section we are going to start talking about power series. A power series
about a, or just power series, is any series that can be written in the form :

a0
n
e, (x-a)

n=0

where “ a ” and “ c, “ are numbers. The “ c,’s *“ are often called the
coefficients of the series. The first thing to notice about a power series is that it is a
function of x. That is different from any other kind of series that we’ve looked at to this
point. In all the prior sections we’ve only allowed numbers in the series and now we are
allowing variables to be in the series as well. This will not change how things work
however. Everything that we know about series still holds.

In the discussion of power series convergence is still a major question that we’ll be
dealing with. The difference is that the convergence of the series will now depend upon the
values of x that we put into the series. A power series may converge for some values of x
and not for other values of x.

Before we get too far into power series there is some terminology that we need to get

out of the way.

First, as we will see in our examples, we will be able to show that there is a number R so that the

power series will converge for, |‘c —ﬂ'| < R and will diverge for |x —ﬂ'| > R . This number is

called the radius of convergence for the series. Note that the series may or may not converge if

|x —.:1'| = R . What happens at these points will not change the radius of convergence.

Secondly, the interval of all x's, including the endpoints if need be, for which the power series

converges is called the interval of convergence of the series.

These two concepts are fairly closely tied together. If we know that the radius of convergence of
a power series is R then we have the following.

a—-R<x<a+R POWEr Series converges

x<a—R and x>a+R power series diverges

The interval of convergence must then contain the interval a — R <x < a+ R since we know that
the power series will converge for these values. We also know that the interval of convergence
can’t contain x's in the ranges x <a— R and x >a + R since we know the power series
diverges for these value of x. Therefore, to completely identify the interval of convergence all
that we have to do is determine if the power series will converge for x=a—-R or x=aq+ R . If
the power series converges for one or both of these values then we'll need to include those in the
interval of convergence.
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Before getting into some examples let’s take a quick look at the convergence of a power series for
the case of x =a . In this case the power series becomes,

Se(a-a) =3 (0)=c,(0)+3c,(0) =¢,+30=c,+0=c
n=i n={ n=| n=|

and so the power series converges. Note that we had to strip out the first term since it was the
only non-zero term in the series.

It 1s important to note that no matter what else i1s happening in the power series we are guaranteed
to get convergence for x =a . The series may not converge for any other value of x, but it will
always converge for x=a.

Example  Determine the radius of convergence and interval of convergence for the following
POWEr Series.

[x+3}“

2

n=|

i (—l}"' n
1

we know that this power series will converge for x = - 3, but that’s it at this point.

*( 1) To determine the remainder of the x’s for which we’ll get convergence we can use
any of the tests that we’ve discussed 10 this point

*( 2 ) After application of the test that we choose to work with we will arrive at
condition(s) on x that we can use to determine which values of x for which the power
series will converge and which values of x for which the power series will diverge.

*(3) From this we can get the radius of convergence and most of the interval of
convergence.

1. With all that said, the best tests to use here are almost always the ratio or root test.
Most of the power series that we’ll be looking at are set up for one or the other. In
this case we’ll use the ratio test.

—I_ n+l » -|-|_ J+3 n+l "
L:Iim{ ) ”.}[1{ ) ; ,.,4 ; |
¥ (=1) (m)(x+3)'|
—lim —(1:+l}(x+3}
n—y0 4n

. on+l
lim—
1= 4y

L=|x+3

= Llv+3)
-

So, the ratio test tells us that if L < the series will converge, if L > the series will diverge,
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and if L =1 we don’t know what will happen. So, we have,

] :
E|x+3| <1 = |x+3| <4 series converges
1 .
E|x+3| > 1 = |x+3| >4 series diverges
3. We’ll deal with the L =1 case ina bit. Notice that we now have the radius of convergence for

this power series. These are exactly the conditions required for the radius of convergence. The
radius of convergence for this power seriesi1s R=4.

Now, let’s get the interval of convergence. We'll get most (if not all) of the interval by solving
the first inequality from above.

—d<x+3<4

—T<x<l

So, most of the interval of validity is given by =7 < x < 1. All we need to do is determine if the
power series will converge or diverge at the endpoints of this interval. Note that these values of x
will correspond to the value of x that will give L =1.

The way to determine convergence at these points is to simply plug them into the original power
series and see 1f the series converges or diverges using any test necessary.

x==-7:
In this case the series is,

SE ey =Sy

(1) (=1)'n (=1) (=1) =(-1)" =1

Il
[

1

=

This series is divergent by the Divergence Test since limn =0 =0,

x=1:

In this case the series is,
Sy =3 iy
n=| 4 n=|

This series is also divergent by the Divergence Test since lim (—l}” n doesn't exist.

A=

So, in this case the power series will not converge for either endpoint. The interval of
convergence is then,

—T<x<|
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Example Determine the radius of convergence and interval of convergence for the following
pPOWEr Series.

S (21 +1)"

Solution
We'll start this example with the ratio test as we have for the previous ones.

3 ya+l
L:]im[”-l-]Jl-rlizx-l-.J],JI |
==l nl(2x+1)" |
:]]_ml[n+]}n.’[3x+]}|

n—s= f-? ! |

=|2x - ]|]im{ n+1)
n—st
At this point we need to be careful. The limit 15 infinite, but there 1s that term with the x's in front
of the limit. We'll have L=oo> 1 provided x # —<. So, this power series will only converge if x=—1.

In this case we say the radius of convergence is K =0 and the interval of convergence is
x=—1,and yes we really did mean interval of convergence even though it's only a point.

Example Determine the radius of convergence and interval of convergence for the following
POWEr Series.

i (x—6)"
n=1 H”
Serlution

In this example the root test seems more appropriate. So,
1

(x— ﬁ]" =

n

L=lIm

N— "

. |x=6
=lim

N— M

1
= |x— 6| lim—
n— f-i

=10

So, since L =0<1 regardless of the value of x this power series will converge for every x.

In these cases we say that the radius of convergence is K =<0 and interval of convergence is
e A

So, let’s summarize the last two examples. If the power series only converges for x =g then the
radius of convergence is K =0 and the interval of convergence is x =a . Likewise if the power

series converges for every x the radius of convergence is R = o0 and interval of convergence is

—F X0
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(HW. ) Determine the radius of convergence and interval of convergence for the following
POWET SEries.
=

n=1

n

)

(4x-8)'

:|t

(HW. )

pPOWer series.

Determine the radius of convergence and interval of convergence for the following

i x

et (—3)

2n
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Taylor Series :

In the previous section we started looking at writing down a power series
representation of a function. The problem with the approach in that section is that
everything came down to needing to be able to relate the function in some way to :

l—x

and while there are many functions out there that can be related to this function there are
many more that simply can’t be related to this.

So, without taking anything away from the process we looked at in the previous
section, what we need to do is come up with a more general method for writing a power
series representation for a function. 1

So, for the time being, let's make two assumptions. First, let's assume that the function f [‘c}

does in fact have a power series representation about x=a,

f['c]=ic (x-cr}" =c,+¢, (x-c?}+ cz(x-cr}2+c*3 (x-.:r}3+r:_.(x-.:1}; N

n=i)

Next, we will need to assume that the function, [ (‘c ), has derivatives of every order and that we
can in fact find them all.

3 Now that we've assumed that a power series representation exists we need to determine what the
coefficients, ¢,, are. This is easier than it might at first appear to be. Let’s first just evaluate
everything atx = a. This gives,

f ( a)=c,

So, all the terms except the first are zero and we now know what ¢p1s. Unfortunately, there isn’t
any other value of x that we can plug into the function that will allow us to quickly find any of the
other coefficients. However, if we take the derivative of the function (and its power series) then
plug in x =a we get,

f'(x)=c +2c,(x—a)+3c,(x—a) +4c,(x—a) +---
f'(a)=¢
and we now know ¢;.
Let's continue with this idea and find the second derivative.
7 # r # 7 2
f(x)=2c,+3(2)c;(x—a)+4(3)c, (x—a) +--
f"(a)=2c,

So. it looks like,
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Using the fourth derivative gives,
1) =43)(2)e. +5(4)(3)(2)es (x-a)-

f(a)

4(3)(2)

Hopefully by this time you’ve seen the pattern here. It looks like, in general, we’'ve got the

following formula for the coefficients.

fl_'l(,:?}=4(3}(2}c_. — c, =

" (a)

c =
n!

This even works for n=0 if you recall that 0!=1 and define f'nl [r} = f[‘c} .

So, provided a power series representation for the function f (‘c} about x = a exists the Taylor
Series for [ (x) about x =ais,

Taylor Series

w gl
1) =3 L e ay

=~ n!

:_f(cx}+f"(.:1)(x-cx}+ ' "ﬂ

[f we use @ =0, so we are talking about the Taylor Series about x =0, we call the series a
Maclaurin Series for f(x) or,

Maclaurin Series
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Example

Solution

Find the Taylor Series for _f[_r} =¢" about x=0.

AU Al el / Aswaigh) et

This 1s actually one of the easier Tavlor Series that we'll be asked to compute. To find the Taylor

Series for a function we will need to determine a general formula for £/ [a]_ This 15 one of the

few functions where this is easy to do right from the start.
To get a formula for /" (D} all we need to do 1s recognize that,
£ (x)=e

and so,

.fl:n.l[[]}=el:|=| ”=D:I:2!3!'“

Therefore, the Taylor series for [ [I} =e¢" about x=07 is,

Example Find the Taylor Series for f(x)=e about x=0.

Solution

n=0,1,23,...

As with the first example we’ll need to get a formula for [’ [EI} However, unlike the first one

we've got a little more work to do. Let's first take some derivatives and evaluate them at x=/{).

fH(x)=e" fU(0)=1
fx)=—e f(0)=-1
fo(x)=e F7(0)=1
I (x)=-e" F2(0)=-1

=1 (0=

After a couple of computations we were able to get general formulas for both ' [r} and

n=01,2,3

_f‘l"-'[[]}. We often won't be able to get a general formula for £/ (x) so don’t get too excited

about getting that formula. Also, as we will see itwon't always be easy to get a general formula

for _f':”"[a}.

S0, In this case we've got general formulas so all we need to do 1s plug these into the Tavlor

Series formula and be done with the problem.

o i(-l}"

n!
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Example  Find the Taylor Series for f (r} =xe about x=10.

Solution

For this example we will take advantage of the fact that we already have a Taylor Series for e*

about x =0. In this example, unlike the previous example, doing this directly would be
significantly longer and more difficult.

‘IIIIIIIIIIIIIIIIIIIIIIIIIIn::llII}‘:IIIIIIIIIIIIIIIIIIIIIIIII>

To this point we've only looked at Taylor Series about x =0 (also known as Maclaurin Series)
so let’s take a look at a Taylor Series that isn't about x = 0. Also, we'll pick on the exponential

function one more time since it makes some of the work easier. This will be the final Taylor

Series for exponentials in this section.
‘llIllIllIlIIlIIllIllIllIllIlIIlIIIIIIIIIIIIIIIIIIIIIIII

Example Find the Taylor Series for f(x)=e™ about x =—4.

Solution

in)

Finding a general formula for f [—4} 15 fairly simple.

A [I}= |:-|:|'J1 e " Fim [_4} =(-1 }n o

The Tavlor Series is then.

e = z—[-lj ¢ (x+4)

I
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Find the Taylor Series for f (x)=cos(x) about x =0
Solution

' x)=cosx

First we'll need to take some derivatives of the function and evaluate them at x={

F(0)=t
Y (x)=-sinx 0)=
¥ (x)==cosx _f“"([]]z_l
¥ (x)=sinx FAo)=0
f‘ﬂ-'li_r}=cuﬁ_r _fH-'IID]=I
M (x)=-sinx FH0)=0
9 x)==cosx (0

F(0)=-1

In this example, unlike the previous ones, there is not an easy formula for either the general
derivative or the evaluation of the derivative
5 !

. Howewver, there 1s a clear pattern to the evaluation
So, let's plug what we've got into the Taylor series and see what we get
o fn:.n'l |[ D
COs X = ng“

i
n={} n.

__f[[]}+_f'[[]}_r+w

L [] |:lﬂ'l D |:5'I D
JES A ) NS ) B i C) P
2! 3! 4! 5!
=1+0- L x* =+ 0 +L_r°‘+ 0 -Lf‘+-
o TR aT
n=(l n=l I\—:3—l n=3 e

n=8
So, we only pick up terms with even powers on the x's
eeneral formula for the Taylor Series

as follows to see what we can get

This doesn’t really help us to get a
However, let’s drop the zercoes and “renumber

the terms

By renumbering the terms as we did we can actually come up with a general formula for the
Tavlor Series and here it 1s.

L — —(-I} j”
o ; (2n)!

(H.W.) |Find the Taylor Series for f[_r]—'i'.lnl[ } about x= 0
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Example  Find the Taylor Series for f(x)=1In(x) about x=2.

Solution
Here are the first few derivatives and the evaluations.

F9(x)=In(x) f7(2)=In2

(9L e,

()= 00)=5

- e

. 3{i}5[4} o [3}_3@5{4}
f.;J.-.[x}:E-l}"_'E”-'}f _f-:m[3}:("}”_|[”"}[ n=123,..

x 3"

Note that while we got a general formula here it doesn’t work for n =0 . This will happen on
occasion so don't worry about it when it does.

Note that while we got a general formula here it doesn’t work for n = 0. This will happen on
occasion so don't worry about it when it does.

In order to plug this into the Taylor Series formula we'll need to strip out the n =0 term first.

r(2)

=

Z .

-

i

(x-2)

(=1)"" (n-1)!

n! 2°

(1)

H E.II

(x-2)

(x

AU Al el / Aswaigh) et

Notice that we simplified the factorials in this case. Y ou should always simplify them if there are

more than one and it’s possible to simplify them.

( HW.)

( HW.)

Find the Tavlor Series for _f(x} —- about x=-—1.

x

Find the Taylor Series for _,1‘IIJ:}:J:J-IL']J:3 +6 about x=3.
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